National Library of Energy BETA

Sample records for ne omaha nh

  1. HIA 2015 DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    Energy Savers [EERE]

    Thomas Homes Anna Model Omaha, NE DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give

  2. Omaha Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Omaha Public Power District Developer Omaha Public Power District Energy...

  3. Theoretical investigation of HNgNH{sub 3}{sup +} ions (Ng = He, Ne, Ar, Kr, and Xe)

    SciTech Connect (OSTI)

    Gao, Kunqi; Sheng, Li

    2015-04-14

    The equilibrium geometries, harmonic frequencies, and dissociation energies of HNgNH{sub 3}{sup +} ions (Ng = He, Ne, Ar, Kr, and Xe) were investigated using the following method: Becke-3-parameter-Lee-Yang-Parr (B3LYP), Boese-Matrin for Kinetics (BMK), second-order Mller-Plesset perturbation theory (MP2), and coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)). The results indicate that HHeNH{sub 3}{sup +}, HArNH{sub 3}{sup +}, HKrNH{sub 3}{sup +}, and HXeNH{sub 3}{sup +} ions are metastable species that are protected from decomposition by high energy barriers, whereas the HNeNH{sub 3}{sup +} ion is unstable because of its relatively small energy barrier for decomposition. The bonding nature of noble-gas atoms in HNgNH{sub 3}{sup +} was also analyzed using the atoms in molecules approach, natural energy decomposition analysis, and natural bond orbital analysis.

  4. Omaha, Nebraska Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard Omaha, Nebraska Data Dashboard The data dashboard for Omaha, Nebraska, a partner in the Better Buildings Neighborhood Program. Office spreadsheet icon Omaha Data Dashboard More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data Dashboard

  5. Omaha, Nebraska Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Summary of Reported Data Omaha, Nebraska Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Omaha, Nebraska. PDF icon Omaha, Nebraska Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data University Park Summary of Reported Data NYSERDA Summary of Reported Data

  6. Omaha Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Omaha Public Power District (OPPD) offers incentives for commercial and industrial customers to install energy-efficient heat pumps and replace/retrofit existing lighting systems. The Commercial...

  7. Omaha, Nebraska Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    PDF icon Omaha, Nebraska Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data University Park Summary of Reported Data NYSERDA...

  8. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha

    Fuel Cell Technologies Publication and Product Library (EERE)

    A case study of the First National Bank of Omaha fuel cell system, covering 1999 through October 2009. The system reduced heating bills by more than $1 million.

  9. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha

    SciTech Connect (OSTI)

    2010-12-31

    A case study of the First National Bank of Omaha fuel cell system, covering 1999 through October 2009. The system reduced heating bills by more than $1 million.

  10. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1939WH02: 19Ne. 1952SC15: 19Ne. 1954JO21: 19Ne. 1954NA29: 19Ne. 1957AL29: 19Ne. 1957PE12: 19Ne. 1958WE25: 19Ne. 1960JA12: 19Ne; measured not abstracted; deduced nuclear properties. 1960WA04: 19Ne; measured not abstracted; deduced nuclear properties. 1962EA02: 19Ne; measured not abstracted; deduced nuclear properties. 1964VA23: 19Ne; measured not abstracted; deduced nuclear properties. 1968GO10: 19Ne; measured T1/2. 1972LE33: 19Ne; measured K/β+ ratios.

  11. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha

    Broader source: Energy.gov [DOE]

    First National Bank of Omaha installed a fuel cell system in 1999 to provide primary power to its data center in Omaha, Nebraska. In more than 89,000 hours of operation through October 2009, the system is estimated to have reduced heating bills by more than $1 million.

  12. 17Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne +-Decay Evaluated Data Measurements 1964MC16: 17Ne; measured not abstracted; deduced nuclear properties. 1966HA22: 17Ne; deduced log ft. 1967ES02: 17Ne; measured not...

  13. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center Fuel cells are a viable primary power choice for data centers-they generate highly reliable on-site power and useful thermal energy, and they can reduce greenhouse gas emissions by more than 50% compared to the baseline. 1 First National Bank of Omaha installed a fuel cell system in 1999 to provide primary power to its data center in Omaha, Nebraska. In more than 89,000 hours of operation through October 2009, the

  14. Omaha, Nebraska, Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Omaha, Nebraska, Summary of Reported Data From July 1 , 2010 - September 3 0, 2013 Better B uildings Neighborhood Program Report Produced By: U.S. Department of Energy June 2014 OMAHA, NEBRASKA, SUMMARY OF REPORTED DATA ACKNOWLEDGMENTS This document presents a summary of data reported by an organization awarded federal financial assistance (e.g., grants, cooperative agreements) through the U.S. Department of Energy's ( DOE's) Better Buildings Neighborhood Program (BBNP) from July 2010 or

  15. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1954GO17: 18Ne. 1961BU05: 18Ne; measured not abstracted; deduced nuclear properties. 1961EC02: 18Ne; measured not abstracted; deduced nuclear properties. 1963FR10: 18Ne; measured not abstracted; deduced nuclear properties. 1965FR09: 18Ne; measured not abstracted; deduced nuclear properties. 1968GO05: 18Ne; measured Eγ, Iγ; deduced Iβ, log ft. 18F deduced levels, branching ratios. 1970AL11: 18Ne; measured T1/2; deduced log ft, β-branching. 1970AS06,

  16. DOE ZERH Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 48 without PV, with 2x6 24” on center walls with R-23 blown fiberglass, ocsf at rim joists, basement with plus 2x4 stud walls with R-23 blown fiberglass, with R-20 around slab, R-38 under slab; a vented attic with R-100 blown cellulose; 95% AFUE furnace, 14 SEER AC, ERV; heat pump water heater.

  17. 15Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 15Ne Adopted value: 0.59 MeV (2014WA09) Measured Mass Excess for 15Ne Adopted value: 40215 ± 69 keV (2014WA09) Measurements 2014WA09: C(17Ne, 2p)15Ne, E = 500 MeV/nucleon; measured reaction products; deduced fractional energy spectra, J, π, energy levels, atomic mass excess. 15Ne(2p); measured decay products, Ep, Ip; deduced implications for 13O + p + p system. Back to Top Back to Ground-State Decays Data Main Page Back to

  18. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 16Ne Adopted value: 122 ± 37 keV (1993TI07) Measured Mass Excess for 16Ne Adopted value: 23996 ± 20 keV (2003AU02) Measurements 1971MAXQ: 16O(π+, π-); measured particle spectra, σ. 1977HO13: 16O(π+, π-), E = 145 MeV; measured σ; deduced Q. 16Ne deduced mass excess. 1977KEZX: 20Ne(α, 8He), E = 118 MeV; measured σ. 16Ne deduced levels, mass excess. 1978BU09: 16O(π+, π-), E = 145 MeV; measured σ. 16Ne deduced mass

  19. NE-23,

    Office of Legacy Management (LM)

    t:"'. ? - ' y5 NE-23, wk$& Dr. Joseph A. Warburton Chainnan, Radiological and Toxicological Safety Board University of Nevada System DRI/ASC, P.O. Box 60220 Reno, Nevada 89506 Dear Dr. Warburton: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the Mackay School of M ines facility at the University of Nevada, Reno, Nevada, to determine whether it contains residual radioactivity traceable to activities

  20. NE-23:

    Office of Legacy Management (LM)

    1 , : -2 rn; NE-23: 4 Whitr%; Ms. Theresa Schaffer 3315 S. Emerald Avenue Chicago, Illinois 60616 Dear Ms. Schaffer: . -. r ;-, .4r.-,. , ' P?;c \ \ ; . EC.. ., . The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former General Services Administratlon 39th Street Werehouse, Chicago, Illincis, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan

  1. NE-24

    Office of Legacy Management (LM)

    VW- 50 "id AU6 3 1983 NE-24 .' . _ : ' : R&D Decontamination Projects Under the Formerly Utilized Sites Remedial Actlon Program (FUSRAP) '_ F .- ,: 'J,.LaGrone, Manager . Oak Ridge Operations Office As a result of the House-Senate Conference Report and the Energy and Water Appropriations Act for FY 1984, and based on the data in the attached reports indicating radioactive contamination in excess of acceptable guidelines, the sites listed in the attachment and their respective vicinity

  2. BooNE: About BooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About BooNE General Information BooNE Collaboration BooNE Experiment BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles BooNE photo montage Technical Information BooNE Proposal Original BooNE proposal (30M ps) Run Plan MiniBooNE Run Plan(3.0M ps.gz) Detector TDR Technical Design Report for the MiniBooNE detector (6.1M .ps.gz) Horn TDR Technical Design Report for the MiniBooNE horn (7.5M .ps.gz) 8GeV Beam TDR Technical Design Report for the primary beam (0.4M

  3. NE-20

    Office of Legacy Management (LM)

    hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is

  4. BooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  5. BooNE: Picture Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial...

  6. BooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration The BooNE collaboration consists of approximately sixty-five physicists from 13 institutions. While small on the scale of high energy physics experiments, BooNE thrives from the diversity of its membership. This includes scientists from national laboratories, research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators The BooNE Collaboration The BooNE Collaboration

  7. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email MicroBooNE schematic drawing Figure 1: A schematic drawing of the MicroBooNE liquid argon TPC detector. The main goals of the MicroBooNE experiment are: (1) to demonstrate the capabilities of a liquid argon TPC in the reconstruction of neutrino

  8. SciBooNE/MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particles * p separation using dEdx 2m 4m Used in K2K experiment Used in CHORUS, HARP and K2K Parts recycled from past experiments 31 SciBooNE publications * NuMu...

  9. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optic transmission of the Resistive Wall Monitor (RWM) beam crossing time to transmit the signal to the detector. In the past, for MiniBooNE, this was done with an RG59 copper...

  10. BooNE: Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  11. BooNE versus MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vs MiniBooNE MiniBooNE refers to the first phase of the BooNE experiment and describes the neutrino oscillation measurements that will be made with a single detector. If neutrino oscillations are observed, then MiniBooNE will be upgraded to a second detector. This 2-detector arrangement (BooNE) will fulfill the second and final stage of the experiment. The BooNE experiment sets out to definitively explore the neutrino oscillation signal reported by the Los Alamos LSND experiment. MiniBooNE

  12. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  13. Category:Concord, NH | Open Energy Information

    Open Energy Info (EERE)

    16 files are in this category, out of 16 total. SVFullServiceRestaurant Concord NH Public Service Co of NH.png SVFullServiceRestauran... 74 KB SVHospital Concord NH Public...

  14. BooNE: Interesting Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the BooNE experiment: BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE will be ready to collect data in summer, 2002. The BooNE collaboration is small by high energy physics standards, having 65 physicists from 13 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to enlarge About the

  15. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05152012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'): for production of -rays threshold - 23 1.63-MeV -rays...

  16. NE - Nuclear Energy - Energy Conservation Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use ...

  17. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  18. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The DOE Tours MicroBooNE! - Nov. 27, 2012

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Delivering Beam to MiniBooNE

  20. UPdate THE NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPdate THE NE January 2014 Edition U.S. Department of Energy's Nuclear Energy University Programs It's not every day graduate students get to meet one of nuclear energy's most important decision makers. Integrated University Program (IUP) Fellows had this opportunity at the 2013 Winter American Nuclear Society (ANS) Meeting this past November in Washington, D.C. Department of Energy Assistant Secretary for Nuclear Energy, Dr. Pete Lyons, greeted IUP Fellows in a special meeting to discuss

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial progress of MiniBooNE detector installation BooNE Scrapbook A selection from BooNE

  2. US NE MA Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  3. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  4. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciBooNE Detector TargetHorn SciBooNE constraint reduces error at MiniBooNE * Flux errors become 1-2% level: negligible for this analysis * Cross-section errors reduced, but...

  5. DOE - Office of Legacy Management -- R Brew Co - NH 01

    Office of Legacy Management (LM)

    Brew Co - NH 01 FUSRAP Considered Sites Site: R. BREW CO. (NH.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Concord , New Hampshire NH.01-1 Evaluation Year: 1994 NH.01-2 Site Operations: Conducted vacuum furnace tests using uranium and copper billets. NH.01-1 NH.01-3 Site Disposition: Eliminated - Potential for contamination remote NH.01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NH.01-1

  6. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vs MiniBooNE MiniBooNE is the first phase of the Booster Neutrino Experiment (BooNE); in this phase, neutrino oscillation measurements will be made with a single detector. If oscillations are observed, then MiniBooNE will be upgraded to stage two (BooNE) with a two-detector configuration. The BooNE experiment proposes to definitively explore the neutrino oscillation signal reported by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of

  7. MiniBooNE Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results and Follow-On Experiments W. C. LOUIS for the MiniBooNE collaboration Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA E-mail: louis@lanl.gov ABSTRACT The MiniBooNE experiment at Fermilab was designed to test the LSND evi- dence for neutrino oscillations 1) . The updated MiniBooNE oscillation result in neutrino mode 2) with 6.5E20 protons on target (POT) shows no significant excess of events at higher energies (above 475 MeV), although a sizeable ex- cess

  8. A=14Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 14Ne has not been observed. See (1976BE1V

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE General Information BooNE Collaboration Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original BooNE proposal (30M ps) Run Plan MiniBooNE Run Plan(3.0M ps.gz) Detector TDR Technical Design Report for the MiniBooNE detector (6.1M .ps.gz) Horn TDR Technical Design Report for the MiniBooNE horn (7.5M .ps.gz) 8GeV Beam TDR Technical Design Report for the primary beam (0.4M .ps.gz)

  10. Djurcic_MiniBooNE_PANIC2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Neutrino Oscillation Results Neutrino Oscillation Results Zelimir Djurcic Zelimir Djurcic Physics Department Physics Department Columbia University Columbia University The Eighteenth Particle and The Eighteenth Particle and Nuclei International Conference Nuclei International Conference 9-14 November 2008, 9-14 November 2008, Eilat Eilat , ISRAEL , ISRAEL Outline Outline MiniBooNE MiniBooNE Motivation and Description Motivation and Description MiniBooNE MiniBooNE ' ' s s First First

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the Booster Neutrino Experiment (BooNE): BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE has been collecting data since August 2002. The BooNE collaboration is small by high energy physics standards, comprising 75 physicists from 16 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to

  12. ICARUS/MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) ICARUS/MicroBooNE ν ( Φ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 µ ν µ ν e ν e ν

  13. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award ...

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995,...

  15. A=19Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    78AJ03) (See Energy Level Diagrams for 19Ne) GENERAL: See (1972AJ02) and Table 19.24 Table of Energy Levels (in PDF or PS). Nuclear models: (1972EN03, 1972NE1B, 1972WE01,...

  16. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Excess in the MiniBooNE Search for bar numu rightarrow bar nue Oscillations", arXiv:1007.1150 hep-ex,Phys.Rev.Lett.105,181801 (2010) The following MiniBooNE...

  17. A=14Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1983ANZQ

  18. A=14Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1986AN07

  19. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration (*) The MicroBooNE spokespeople are Bonnie Fleming (Yale) and Sam Zeller (FNAL) (+) The MicroBooNE project manager was Gina Rameika Updated collaboration list for presentations: powerpoint pdf map collaboration photo MicroBooNE organizational chart MicroBooNE contact list (password required) (IB) = Insititutional Board representative (PD) = postdoc (GS) = graduate student (UG) = undergraduate student Laboratory for High Energy Physics, University of Bern, Switzerland Martin Auger

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration Find here collaboration lists of MiniBooNE at various stages of the experiment Current MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated ~2008. from inspirehep.net Booster Neutrino Experiment FNAL-E-0898

  1. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1959AJ76) (Not illustrated) Theory: See (RA57). 1. 18Ne(β+)18F Qm = 4.227 The maximum energy of the positrons is 3.2 ± 0.2 MeV, the half-life is 1.6 ± 0.2 sec: log ft = 2.9 ± 0.2 (GO54D). See also (DZ56). 2. 16O(3He, n)18Ne Qm = -2.966 See (KU53A). 3. 19F(p, 2n)18Ne Qm = -15.424 See (GO54D). 4. 20Ne(p, t)18Ne Qm = -19.812 Not reported

  2. A=17Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    77AJ02) (See the Isobar Diagram for 17Ne) GENERAL: See also (1971AJ02) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1971HA1Y, 1973HA77, 1973RE17, 1975BE31). Mass of 17Ne: The mass excess of 17Ne, determined from a measurement of the Q-value of 20Ne(3He, 6He)17Ne is 16.48 ± 0.05 MeV (1970ME11, 1972CE1A). Then 17Ne - 17F = 14.53 MeV and Eb for p, 3He and α are, respectively, 1.50, 6.46 and 9.05 MeV. See also (1971AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93

  3. Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m er of 2002, the cross sections for an 8 GeV proton beam on Be were m easured by the HARP ex perim ent at CERN. Harp Setup Intro ductio n Im po rtant s te ps s ince las t re v...

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact BooNE Spokespersons: E898 (ν running); E944 (anti-ν and beam-dump running) Rex Tayloe rtayloe@indiana.edu (812) 855-3057 Richard Van de Water vdwater@lanl.gov (505) 695 8364 BooNE Experiment: contact-boone@fnal.gov Current Shifter: (505) 500 5511 Detector Enclosure: (630) 840 6881 or 6081 BooNE Collaborators and Associates:

  5. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNN'10 Recent Results from MiniBooNE * MiniBooNE * Neutrino cross-sections * Quasielastic and elastic scattering * Hadron production channels * Neutrino Oscillations * Antineutrino Oscillations Motivating MiniBooNE: LSND Liquid Scintillator Neutrino Detector * Stopped + beam at Los Alamos LAMPF produces e , , but no e (due to capture). * Neutron thermalizes, captures ➨2.2 MeV -ray * Look for the delayed coincidence. * Major background non-beam (measured, subtracted) * 3.8 standard dev. excess

  6. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scrapbook Page 2 The BooNE collaboration in winter. A tour of the construction site. Working with the BooNE Horn. BooNE in the winter A tour of the construction site. A day with the Horn Janet, Bonnie, and Jen in the Tank. Janet and Bill: the early years. Bill, Richard, Jeff, and Shawn in the midst of discussion. Preparing the tubes Janet and Bill: the early days Discussion in progress The oil tanker arrives. The final stages of oil filling. The BooNE Collaboration in the summer. The oil tanker

  7. Recent Results from MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results from MiniBooNE and the Future Project LBNE Christopher Mauger 18 December 2009 Los Alamos NaEonal Laboratory Outline * Overview of MiniBooNE * Recent OscillaEon Results * IntroducEon to the Next GeneraEon of Long- Baseline Experiment * SensiEvity PotenEal of LBNE * Conclusions MiniBooNE moEvated by LSND Result * MiniBooNE designed to test LSND result: 3.8σ appearance of electron anEneutrino in muon anEneutrino beam * Use the same L/E but in different energy regime - different

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dominate. For MiniBooNE, the contributions from multi-pion production and deep inelastic scattering (DIS) are small. image: neutrino cross sections vs energy There are...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civil Construction Pictures The civil construction required for the MiniBooNE experiment consists of two independent construction projects. The Detector Construction: This project...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers with released data are listed here. Refer to the Publications page for a complete list of MiniBooNE publications. Other MiniBooNE Data Releases: Data Released with A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Antineutrino Double-Differential Charged-Current Quasielastic Cross section",

  11. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE In the News MicroBooNE internal newletters (password protected) The Hidden Neutrino, Symmetry Magazine, 03/01/16 Booster Neutrino Beam Reaches Record Beam Intensity, Fermilab This Week, 02/02/16 MicroBooNE Sees First Accelerator-Born Neutrinos, Fermilab Today, 11/02/15 MicroBooNE Sees First Accelerator-Born Neutrinos, Symmetry Magazine, 11/02/15 Detector Finds its First Ghost Particle, Daily Mail, 11/03/15 First Evidence of Neutrinos, Daily Galaxy, 11/03/15 A Neutrino in a Haystack,

  12. The MicroBooNE Experiment - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Documents and Publications Public Notes See the Public Notes Page for a list of notes with results made public by the MicroBooNE collaboration. Presentations See the Talks Page for copies of slides and posters presented at conferences and workshops. MicroBooNE DocDB Like most experiments at Fermilab, MicroBooNE uses DocDB - a documents database. Much of the contents of the DocDB are restricted to members of the collaboration, but some items are public. Use the link below to enter the

  13. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents: Pion Group Home Pion Group Members Pion References Colin's Cross Section Page MiniBooNE Internal Email M. Tzanov.

  14. MiniBooNE Results / MicroBooNE Status! Eric Church, Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at this talk?) 3 Outline MiniBooNE past results future MicroBooNE physics motivation R&D motivation status: (running is imminent) 4 The Booster...

  15. Measurement and Modeling of Spatial NH3 Storage Distributions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement and Modeling of Spatial NH3 Storage Distributions in a Commercial Small Port Cu Zeolite Urea SCR Catalyst A modified Spaci-IR technique can measure transient NH3 and ...

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The BooNE collaboration consists of approximately sixty-five physicists from 13 institutions. While small on the scale of high energy physics experiments, BooNE thrives from the diversity of its membership. This includes scientists from national laboratories, research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators

  17. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Details This page provides information on the MiniBooNE experiment. Images are linked in their own page with captions. Additional resources are the Talks, Slides and Posters page, Publications page, and Data Release page Beamline Flux Detector Cross sections Light Propagation (Optical Model) Calibration Particle Identification BooNE photo montage

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Physicists These pages provides information (numbers, plots, details) of the MiniBooNE experiment and analysis pieces. Images are linked in their own page with captions. Additional resources are the Talks, Slides and Posters page and the Publications page Experiment Details Data Releases BooNE photo montage

  19. MiniBooNE Collaboration MiniBooNE Collaboration Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Neutrino Oscillation Search Progress on a Neutrino Oscillation Search at MiniBooNE at MiniBooNE B. T. Fleming for the B. T. Fleming for the MiniBooNE Collaboration MiniBooNE Collaboration Yale University Yale University The LSND experiment observed ν e appearance in a ν μ beam MiniBooNE experiment: designed to confirm or rule out the LSND result ν e appearance in a ν μ beam L=540 m (~x20 LSND) E = 800 MeV (~x20 LSND) 8 GeV protons from Fermilab Booster incident on target inside horn π's

  20. A=16Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 16Ne) GENERAL: See also (1977AJ02) and Table 16.27 [Table of Energy Levels] (in PDF or PS). Theoretical work: (1978GU10, 1978SP1C, 1981LI1M). Reviews: (1977CE05, 1979AL1J, 1980TR1E). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to an atomic mass excess of 24.02 ± 0.04 MeV for 16Ne. 16Ne is then unbound with respect to decay into 14O + 2p by 1.43 MeV and is bound with respect to decay into 15F + p by 0.04 MeV. 1. 16O(π+,

  1. A=17Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 17Ne) GENERAL: See Table Prev. Table 17.26 preview 17.26 [Table of Energy Levels] (in PDF or PS). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.928 (b) 17Ne(β+)17F → 13N + α Qm = 8.711 (c) 17Ne(β+)17F Qm = 14.529 The half-life of 17Ne has been reported as 109.0 ± 1.0 msec (1971HA05) and 109.3 ± 0.6 msec (1988BO39): the weighted mean is 109.2 ± 0.6 and we adopt it. The decay is primarily to the proton unstable states of 17F at 4.65, 5.49, 6.04 and 8.08 MeV

  2. A=17Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    71AJ02) (See the Isobar Diagram for 17Ne) GENERAL: See also Table 17.22 [Table of Energy Levels] (in PDF or PS). Theory: (WI64E, MA65J, MA66BB). Reviews: (BA60Q, GO60P, BA61F, GO62N, GO64J, GO66J, GO66L, MC66E, CE68A, GA69M). Mass of 17Ne: M - A, determined from the Q-value of the 20Ne(3He, 6He)17Ne reaction, is 16.479 ± 0.050 MeV (ME70E). See also (ES67). Then 17Ne - 17F = 14.53 MeV and Eb for p, 3He and α are, respectively, 1.50, 6.46 and 9.05 MeV. [Eb for an α-particle is calculated using

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Nutshell BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam into the MiniBooNE detector and looking for electron neutrinos. This experiment is motivated by the oscillation results reported by the LSND experiment at Los Alamos. By changing the muon neutrino beam into a muon anti-neutrino beam, BooNE can explore oscillations from muon anti-neutrinos to electron

  4. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D. 79, 072002 (2009) The following MiniBooNE information from the large flux paper in 2009 is made available to the public: Text files containing flux information for each neutrino species Positive horn polarity (neutrino-enhanced mode) Negative horn polarity (anti neutrino-enhanced mode) Contact Information For clarifications on how to use MiniBooNE public data or for enquiries about additional data not linked

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings This page contains links to conference proceedings submitted by members of the MiniBooNE collaboration New Guidelines for Submitting Proceedings at MiniBooNE: As of June 2007, we have changed the rules on conference proceedings. Proceedings must be read by one other MiniBooNE person (besides the author) of postdoc level or above before being submitted. Proceedings should also be sent to boone-talks@fnal.gov for archiving on this website. back to Talks page Speaker Proceedings Info

  6. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The primary goal of The inside of the MiniBooNE tank is covered with 1280 photomultiplier tubes. (Courtesy: Fermilab Visual Media Services) this experiment is: To test for neutrino mass by searching for neutrino oscillations. Neutrino mass is important because it may lead us to physics beyond the Standard Model. Masses in the range accessible to MiniBooNE will expand our understanding of how the universe has evolved. The BooNE project began in 1997. The first beam induced neutrino events were

  7. About the MicroBooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About MicroBooNE The MicroBooNE collaboration is currently operating a large 170-ton liquid Argon Time Projection Chamber (LArTPC) that is located on the Booster neutrino beam line at Fermilab. The experiment will measure low energy neutrino cross sections and investigate the low energy excess events observed by the MiniBooNE experiment. The detector also serves as a next step in a phased program towards the construction of massive kiloton scale LArTPC detectors for future long-baseline neutrino

  8. A=16Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 16Ne) GENERAL: See also (1982AJ01) and Table 16.26 [Table of Energy Levels] (in PDF or PS) here. See (1981SE1B, 1983ANZQ, 1985AN28, 1985MA1X). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is 23.989 ± 0.020 MeV which is

  9. A=16Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 16Ne) GENERAL: See Table Prev. Table 16.29 preview 16.29 [General Table] (in PDF or PS) and Table Prev. Table 16.32 preview 16.32 [Table of Energy Levels] (in PDF or PS). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is

  10. A=17Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 17Ne) GENERAL: See (1977AJ02) and Table 17.22 [Table of Energy Levels] (in PDF or PS). Theory and reviews:(1975BE56, 1977CE05, 1978GU10, 1978WO1E, 1979BE1H). Other topics:(1981GR08). Mass of 17Ne: The mass excess adopted by (1977WA08) is 16.478 ± 0.026 MeV, based on unpublished data. We retain the mass excess 16.48 ± 0.05 MeV based on the evidence reviewed in (1977AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of

  11. A=17Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 17Ne) GENERAL: See (1982AJ01) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1983ANZQ, 1983AU1B, 1985AN28). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of 17Ne is 109.0 ± 1.0 msec (1971HA05). Earlier values (see (1971AJ02)) gave a mean value of 108.0 ± 2.7 msec. The decay is primarily to the proton unstable states of 17F at 4.70, 5.52 and 6.04 MeV with Jπ = 3/2-, 3/2- and 1/2-: see

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on a beryllium target. The beam is modeled with measured mean position and angle with Gaussian smearing. MiniBooNE simulates the effects of varying the spread in the beam and...

  13. A=19Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 19Ne) GENERAL: See (1978AJ03) and Table 19.23 Table of Energy Levels (in PDF or PS). Nuclear models: (1978MA2H, 1978PE09, 1978PI06,...

  14. A=18Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1978AJ03) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1972AJ02) and Table 18.22 Table of Energy Levels (in PDF or PS). Model calculations: (1972EN03, 1974LO04)....

  15. A=19Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 19Ne) GENERAL: See (1983AJ01) and Table 19.21 Table of Energy Levels (in PDF or PS). Nuclear models:(1983BR29, 1983PO02). Special states:...

  16. A=18Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1978AJ03) and Table 18.21 Table of Energy Levels (in PDF or PS). Model calculations: (1979DA15, 1979SA31,...

  17. A=18Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See (1983AJ01) and Table 18.22 Table of Energy Levels (in PDF or PS). Model calculations:(1982ZH01, 1983BR29, 1984SA37,...

  18. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact MicroBooNE Spokespeople: Bonnie Fleming, Yale email: bonnie.fleming(AT)yale.edu phone: (203) 432-3235 Sam Zeller, FNAL email: gzeller(AT)fnal.gov phone: (630) 840-6879 Collaboration Members

  19. A=20Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) elastic scattering. It is interpreted in terms of a quasi-molecular -particle cluster model (CO69S). See also (WA65M). 18. 17O(, n)20Ne Qm 0.588 Angular...

  20. The NeXus data format

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; et al

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  2. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talks and Proceedings This page contains links to talks and proceedings about the MiniBooNE experiment presented by members of the collaboration. Password protected link to page containing future talks schedule and unassigned talks list. Password protected link to seminar schedule. Conference talks Other talks Proceedings Posters All Experimenters Meeting talks The MiniBooNE Talks Committee is Jon Link (chair), Rex Tayloe, and Morgan Wascko. Conference Talks Speaker Conference Info Material Name

  4. The MicroBooNE Experiment - Public Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Public Notes Page Back to the Publications Page

  5. FY17 NE Budget Request Presentation | Department of Energy

    Energy Savers [EERE]

    7 NE Budget Request Presentation FY17 NE Budget Request Presentation PDF icon FY17 NE Budget Request Presentation More Documents & Publications FY16 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request Before the House Subcommittee on Energy, Committee on Science, Space and Technology

  6. Cross section analyses in MiniBooNE and SciBooNE experiments

    SciTech Connect (OSTI)

    Katori, Teppei

    2015-05-15

    The MiniBooNE experiment (2002-2012) and the SciBooNE experiment (2007-2008) are modern high statistics neutrino experiments, and they developed many new ideas in neutrino cross section analyses. In this note, I discuss selected topics of these analyses.

  7. A=18Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See Table 18.23 [Table of Energy Levels] (in PDF or PS). Shell and cluster model calculations:(WI57H, BE69H, BA70P, EL70D, HA70M, KA72). Electromagnetic transitions:(EL70D, HA70M). Special levels:(MI66C, KA69P, KA72). Pion reactions:(PA65F). Other theoretical calculations:(GO65E, KE66C, BA68EE, BE68V, MU68G, NE68A, VA68E, VA68L, BA69GG, GA69O, KA69P, MU69C, RA69C, SO69A, BA70, DI70F, EL70D, KA72). 1. 18Ne(β+)18F Qm = 4.447 The half-life of

  8. A=19Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 19Ne) GENERAL: See Table Prev. Table 19.26 preview 19.26 [General Table] (in PDF or PS) and Table Prev. Table 19.27 preview 19.27 [Table of Energy Levels] (in PDF or PS) here. μg.s. = -1.88542 (8) nm (1982MA39) μ0.239 = -0.740 (8) nm (1978LEZA) 1. 19Ne(β+)19F Qm = 3.238 We adopt the half-life of 19Ne suggested by (1983AD03): 17.34 ± 0.09 s. See also (1978AJ03). The decay is principally to 19Fg.s.: see Table Prev. Table 19.29 preview 19.29 (in PDF or

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FermiNews A biweekly magazine published by the Fermilab Office of Public Affairs about work and life at Fermilab. 2002: September 20, 2002 - New Neutrino Experiment at Fermilab Goes Live June 14, 2002 - Changing of the Guard: Mike Shaevitz returns to Columbia May 24, 2002 - Beam Me Up: MiniBooNE gets ready to go May 10, 2002 - Dastow 2002: 3D neutrino event simulation Mar. 29, 2002 - Exploring the Invisible Universe Jan. 18, 2002 - A Clear View: MiniBooNE's detector oil 2001: Dec. 14, 2001 -

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detector The MiniBooNE tank is 12 m diameter sphere, filled with approximately 800 tons of mineral oil, CH2, which has a density of 0.845 ± 0.001 g/cm3. 1280 PMTs provide about 10% coverage of the inner tank region, and 240 PMTs cover the outer, optically isolated "veto" region in the last 1.3 m in the tank. Most of the tubes were recovered from LSND, and are 'old' tubes, some additional ones were bought for MiniBooNE, and are 'new'; differences in the new vs the old tube function are

  11. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0704.1500 [hep-ex], Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in 2007 is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) ntuple file of official MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron oscillation fit, and 90% and 3sigma confidence

  12. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search for Electron Anti-Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0904.1958 [hep-ex], Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009 nuebar appearance paper is made available to the public: Energy Range: 475 MeV - 3000 MeV reconstructed neutrino energy ntuple file of MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron antineutrino oscillation fit, and 90% and 3sigma confidence

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestones 2008: January 1 1E21 protons on target recorded by MiniBooNE 2007: April 10 25m absorber repaired 2006: August 23 9e16 protons delivered in a single hour (Booster champagne goal) January 18 first antineutrino beam 2004: April 26 Record week (04/19-04/26) 6.83E18 protons delivered. 2003: March 28 Record day: 9.6E17 protons delivered March 18 Record day: 8.18E17 protons delivered March 06 5.5E17 protons delivered to MiniBooNE in 1 hour. (passed the official BD 5E16 milestone) March 01

  14. MicroBooNE First Cosmic Tracks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Tracks in MicroBooNE (August 6, 2015) On August 6, 2015, we started to turn on the drift high voltage in the MicroBooNE detector for the very first time. We paused at 58 kV (this is about 1/2 of our design voltage) and immediately started to see tracks across the entire TPC. Below are some of our first images of cosmic rays and UV laser tracks (last picture) recorded by the TPC! Collection plane images: And here is one of the first images of a UV laser track in the TPC. You can tell which

  15. MiniBooNE Steve Brice Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 May 2006 1 MiniBooNE Steve Brice Fermilab * Oscillation Analysis * Issues of the Past Year - Normalization - Optical Model -  0 MisIDs * Summary * Future DOE Review 17 May 2006 2 MiniBooNE Goal * Search for  e appearance in a   beam at the ~0.3% level - L=540 m ~10x LSND - E~500 MeV ~10x LSND DOE Review 17 May 2006 3 Particle ID * Identify electrons (and thus candidate  e events) from characteristic hit topology * Non-neutrino background easily removed     n p W

  16. MiniBooNE Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sections Group e-mail: BOONE-CROSSSECTIONS(AT)fnal.gov convenors: Alessandro Curioni (alessandro.curioni(AT)yale.edu) and Sam Zeller (gzeller(AT)fnal.gov) Cross Sections at MiniBooNE, Meetings, Reference Articles, Conferences, Useful Links Last updated on 07/19/07

  17. A=16Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (CE68A: 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV. See also (GO60K, GO60P, BA61F, GO61N, GO62N, GO62O, GA64A,...

  18. A=16Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (1968CE1A); 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV: see (1971AJ02) for the earlier work. See also (1972WA07)...

  19. NE-23 Disposal of Offsite-Generated Defense Radioactive Waste...

    Office of Legacy Management (LM)

    piL +3 *3L 52. NE-23 Disposal of Offsite-Generated Defense Radioactive Waste, Ventron FUSRAP Site Jill E. Lytle, DP-12 NE-23 The Office of Remedial Action and Waste Technology has...

  20. Public Service Co of NH | Open Energy Information

    Open Energy Info (EERE)

    EversourceNH Outage Hotline: 800-662-7764 Outage Map: www.eversource.comContentgen Green Button Access: Implemented Green Button Landing Page: www.psnh.comSaveEnergyMo...

  1. FY16 NE Budget Request Presentation | Department of Energy

    Energy Savers [EERE]

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request FY 2016 Budget Justification

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light propagation in mineral oil Though the dominant light observed in MiniBooNE is Cherenkov light, scintillation and fluorescence (here, reabsorbed Cherenkov light re-emitted) account for about 25% of the light. We model: scintillation light (yield, decay times, spectrum), fluorescence, scattering (Rayleigh, Raman), absorption, reflection (off tank walls, PMT faces) and PMT effects (single pe charge response). External measurements Scintillation from p beam (IUCF) Scintillation from cosmic mu

  3. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Proposal Addendum March 3, 2008 H. Chen, G. de Geronimo, J. Farrell, A. Kandasamy, F. Lanni, D. Lissauer, D. Makowiecki, J. Mead, V. Radeka, S. Rescia, J. Sondericker, B. Yu Brookhaven National Laboratory, Upton, NY L. Bugel, J. M. Conrad, Z. Djurcic, V. Nguyen, M. Shaevitz, W. Willis ‡ Columbia University, New York, NY C. James, S. Pordes, G. Rameika Fermi National Accelerator Laboratory, Batavia, IL C. Bromberg, D. Edmunds Michigan State University, Lansing, MI P. Nienaber St.

  4. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Releases NE Press Releases RSS January 5, 2016 Energy Department selects Battelle team for a deep borehole field test in North Dakota The U.S. Department of Energy has selected a Battelle Memorial Institute-led team to drill a test borehole of over 16,000 feet into a crystalline basement rock formation near Rugby, North Dakota. December 10, 2015 Energy Department Announces New Investments in Supercritical Transformational Electric Power (STEP) Program The U.S. Department of Energy's

  5. M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 7117-03.87.cdy.43 23 September 1987 M r. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordi with your suggestion during our meeting on 22 September. The reconu includes 26 colleges and universities

  6. For the MicroBooNE Collaboration IPA2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of MicroBooNE Christina Ignarra (MIT) For the MicroBooNE Collaboration IPA2013 May 14, 2013 Motivation for MicroBooNE: MiniBooNE Motivation for MiniBooNE: LSND * LSND result: Observed an appearance signal consistant with oscillations at a m 2 not consistent with known mass splittings: * A 3 rd mass splitting would solve this problem: P (ν µ → ν e ) = sin 2 2θ sin 2 (1.27∆m 2 L E ) 3 3+1 Sterile Neutrino Model l Assume one more neutrino that doesn't interact through the weak

  7. Djurcic_MiniBooNE_NuFact2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Results Zelimir Djurcic Zelimir Djurcic Argonne National Laboratory Argonne National Laboratory NuFact2010: 12th International Workshop on Neutrino Factories, NuFact2010: 12th International Workshop on Neutrino Factories, Superbeams Superbeams and and Beta Beams Beta Beams October 20-25, 2010. Mumbai, India October 20-25, 2010. Mumbai, India Outline Outline * * MiniBooNE MiniBooNE Experiment Description Experiment Description * * MiniBooNE MiniBooNE ' ' s s Neutrino Results Neutrino

  8. The MicroBooNE Experiment - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE one of the first neutrino event candidates seen in the MicroBooNE detector see more neutrino images here! see more cosmic tracks here! The MicroBooNE Experiment Located at Fermilab, the MicroBooNE collaboration is currently operating a large 170 ton Liquid Argon Time Projection Chamber (LAr TPC) that is located on the Booster neutrino beam line at Fermilab. The experiment first started collecting neutrino data in October 2015. MicroBooNE will measure low energy neutrino cross sections

  9. MiniBooNE at All Experimenter's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year [2002] [2003] [2004] [2005] [2006][2007] [2008] [2009] [2010] [2011] [2012] [2014] 2014 Date Focus Speaker Every Monday @ 4:00 P.M., Curia II 09/08/14 MiniBooNE Status Report Zarko Pavlovic 08/25/14 MiniBooNE Status Report Zarko Pavlovic 08/18/14 MiniBooNE Status Report Zarko Pavlovic 08/11/14 MiniBooNE Status Report Zarko Pavlovic 08/04/14 MiniBooNE Status Report Zarko Pavlovic 07/28/14 MiniBooNE Status Report Zarko Pavlovic 07/21/14 MiniBooNE Status Report Zarko Pavlovic 07/14/14

  10. Category:Utility Rate Impacts on PV Economics By Location | Open...

    Open Energy Info (EERE)

    MI Traverse City, MI International Falls, MN Minneapolis, MN Kansas City, MO Jackson, MS Billings, MT Greensboro, NC Wilmington, NC Bismarck, ND Minot, ND Omaha, NE...

  11. Stephan O. Nellis | Open Energy Information

    Open Energy Info (EERE)

    Stephan O. Nellis Jump to: navigation, search Name: Stephan O. Nellis Place: Omaha, NE Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test &...

  12. 1. Hallam Nuclear Power Facility, NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hallam Nuclear Power Facility, NE 1969 1998 2. Piqua Nuclear Power Facility, OH 1969 1998 3. Bayo Canyon, NM 1982 1998 4. Kellex/Pierpont, NJ 1982 1998 5. University of California, CA 1982 1998 6. Acid/Pueblo Canyons, NM 1984 1999 7. Chupadera Mesa, NM 1984 1999 8. Canonsburg, PA 1986 1999 9.Shiprock, NM 1987 2000 10. Middlesex Municipal Landfill, NJ 1987 2000 11. Niagara Falls Storage Site Vicinity Properties, NY 1987 2001 12. Salt Lake City, UT 1989 2001 13. Spook, WY 1989 2001 14. National

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Author Resources The following is a randomly ordered set of useful resources for people writing MiniBooNE publications:- Have a journal in mind when first putting together the paper. Each journal has LaTeX style files that can be downloaded from their web pages. There is a nice little LaTeX macro that will put line numbers by each line of your document. This makes it much easier for people to feedback comments on the paper. To use it just put \RequirePackage{lineno} just before the

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Goto: refereed publications , theses , related publications, proposals/TDRs. Refereed publications by the MiniBooNE Collaboration: A.A. Aguilar-Arevalo et al., Measurement of the Antineutrino Neutral-Current Elastic Differential Cross Section, arXiv:1309.7257, Phys. Rev. D91, 012004 (2015), Data Release A.A. Aguilar-Arevalo et al., First Measurement of the Muon Antineutrino Double Differential Charged Current Quasi-Elastic Cross Section, arXiv:1301.7067, Phys. Rev. D88, 032001

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Tour This series of pages about MiniBooNE will help you understand more about the what, why, and how of our experiment. When you begin the tour, a new window will open and you can use the next and back buttons to navigate. You may exit at any time by clicking on the "X" button in the upper right hand corner of the window. Start the tour here... This tour was created by Jessica Falco in 2000 and updated by Kelly O'Hear in 2002. Jessica and Kelly were high school students who

  16. NE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blog Archive NE Blog Archive RSS December 21, 2015 The Department of Energy is working toward long-term solutions for nuclear waste storage. | Photo by <a href="https://www.flickr.com/photos/mandj98/">James Marvin Phelps</a>. Finding Long-Term Solutions for Nuclear Waste Find out how we are working with communities, tribes and states to find long-term nuclear waste storage solutions. July 15, 2015 This image of Pluto, taken by New Horizons after a 9 1/2-year journey, is our

  17. CA Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    ?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO 7117-03.B7.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Oepartment of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES zh/ ! o-01 lM!tl5 ML)!o-05 PI 77!0> The attached elimination recoannendation was prepared in accordance . -1 rlL.0~ with your suggestion during our meeting on

  18. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M/).0-05 pl 0.0% The attached elimination recommendation was prepared in accordance ML.05 with your suggestion during our meeting on 22 September. The recommendation flD.o-02

  19. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 7117-03.87.cdy.'i3 23 September 1967 ~ s ~ Mr. Andrew Wallo, III, NE-23 Oivision of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND IJNIVFRSITIES , The attached elimination reconnnendation was prepar!ad in accordance with your suggestion during our meeting on 22 September! The recommendation includes 26 colleges and

  20. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 7117~03.87.dy.43 23 September 1987 I j / Dear Mr. Wallo: I ELIMINATION RECOMMENDATION -- COLLEGES AND UN&ITIES I . The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September!. The recommend includes 26

  1. REPLY TO ATTN OF NE-301

    Office of Legacy Management (LM)

    N\I&?' d,' g 4 DATE. fdov 2 5 1980 REPLY TO ATTN OF NE-301 .* - memoraadu SUBJECT Remedial Action for Linde Air Products Plant, Tonawanda, New York TO W. E. Mott, EV In view of the General Counsel's reconsideration of the authority to proceed with remedial action on this site and your determination that remedial action is needed to protect the public health and safety, we will include this site in our program for remedial action. of this memorandum. Oak Ridge is requested to do so by copy I

  2. The MicroBooNE Experiment - About the Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Goals MicroBooNE will collect neutrino interactions using the Booster Neutrino Beam at Fermilab and produce the first neutrino cross section measurements on argon in the 1 GeV energy range. MicroBooNE will also explore the currently unexplained excess of low energy electromagnetic events observed in the MiniBooNE experiment. Click here for public plots and physics distributions.

  3. The MicroBooNE Experiment - Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on MicroBooNE Welcome to MicroBooNE! This page is designed to help new MicroBooNE collaborators find their way around the experiment and Fermilab. Table of Contents Fermilab ID, Computing Accounts, and Required Training Visas for non-US Citizens Traveling to Fermilab Housing/Hotels Getting Around Communication within the Collaboration Software Getting Help Fermilab ID, Computing Accounts, and Required Training Badging changes for non-US visitors Whether obtaining a new Fermilab

  4. A=19Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1959AJ76) (See Energy Level Diagram for 19Ne) GENERAL: See also Table 19.9 [Table of Energy Levels] (in PDF or PS). Theory: See (EL55A, RE55, RE55B, RA57, RE58). 1. 19Ne(β+)19F Qm = 3.256 The positron end point is 2.18 ± 0.03 (SC52A), 2.23 ± 0.05 (AL57), 2.24 ± 0.01 MeV (WE58B). The half-life is 17.4 ± 0.2 sec (HE59), 17.7 ± 0.1 (PE57), 18.3 ± 0.5 (AL57), 18.5 ± 0.5 (SC52A), 19 ± 1 (NA54B), 19.5 ± 1.0 (WE58B), 20.3 ± 0.5 sec (WH39). The absence of low-energy γ-rays (see 19F)

  5. Appearance Results from MiniBooNE Georgia Karagiorgi Columbia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with 1280 PMT's (10% photocathode) & optically isolated veto (240 PMT's) dominant beam component: (C or H nucleus) 14 Events in the MiniBooNE detector: Dominant neutrino...

  6. CA CAIOlf Mr. Andrew Wallo. III, NE-23

    Office of Legacy Management (LM)

    III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy ... Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated ...

  7. Djurcic_MiniBooNE_NuFact2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Rate Flux x Cross-sections x Detector response External measurements (HARP, etc) rate constrained by neutrino data External and MiniBooNE Measurements 0 ,...

  8. A=20Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3AJ01) (See Energy Level Diagrams for 20Ne) GENERAL: See also (1978AJ03) and Table 20.17 [Table of Energy Levels] (in PDF or PS). Shell model: (1977GR16, 1977HA1Z, 1977SC27, 1978AR1H, 1978CH26, 1978HA2C, 1978HE04, 1978MA2H, 1978RA1B, 1978TO07, 1979DA15, 1979EL04, 1979HA50, 1979HA59, 1979SI12, 1979WU06, 1980CA12, 1980MC1D, 1980RO11, 1980TE02, 1981ER03, 1981GR06, 1981KR1G, 1981SC12, 1982KA1K, 1982KI02). Collective, deformed and rotational models: (1977FO1E, 1977HA1Z, 1978HO1E, 1978PE09, 1978PI08,

  9. A=20Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 20Ne) GENERAL: See (1983AJ01) and Table 20.13 [Table of Energy Levels] (in PDF or PS). Shell model: (1978WI1B, 1982BR08, 1982FL04, 1982RA1N, 1982SH30, 1983BR29, 1983DR04, 1983DR03, 1984JA15, 1984PA04, 1984RA13, 1985AN16, 1985HA15, 1985HU08, 1985MI23, 1985MU10, 1986CH28, 1986COZZ, 1986HU1G, 1986WA1R, 1987PR01). Collective, deformed and rotational models: (1981OK02, 1982BR08, 1982RA1N, 1982RO06, 1982SC20, 1983DR04, 1983DR03, 1983LO05, 1983MA29, 1983MA68,

  10. MiniBooNE darkmatter collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-DM Collaboration A.A. Aguilar-Arevalo,1 B. Batell,2 B.C. Brown,3 R. Carr,4 R. Cooper,5 P. deNiverville,6 R. Dharmapalan,7 R. Ford,3 F.G. Garcia,3 G. T. Garvey,8 J. Grange,9 W. Huelsnitz,8 I. L. de Icaza Astiz,1 R.A. Johnson,10 G. Karagiorgi,4 T. Katori,11 T. Kobilarcik,3 W. Ketchum,8 Q. Liu,8 W.C. Louis,8 C. Mariani,12 W. Marsh,3 D. McKeen,13 C.D. Moore,3 G.B. Mills,8 J. Mirabal,8 P. Nienaber,14 Z. Pavlovic,8 D. Perevalov,3 M. Pospelov,6 H. Ray,9 A. Ritz,6 B.P. Roe,15 M.H. Shaevitz,4

  11. Microsoft Word - NEAC International Subcommittee Recomendations List for NE and NE6.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Advisory Committee International Subcommittee Report Recommendations Specifically NE Related December 8 th , 2013 (Prepared for the December 19 th , 2013 NEAC Meeting) Introduction There is a broad array of U.S. policy objectives in which nuclear energy plays a role, including: prevention of nuclear terrorism; nonproliferation; nuclear safety; energy security; climate change and environmental protection; and exports of American nuclear products with increased jobs to strengthen

  12. NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division

    Office of Legacy Management (LM)

    NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are

  13. Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U. ECT workshop Trento, Italy, 1211 Outline: introduction, motivation MiniBooNE experiment MiniBooNE ...

  14. Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment Investigation of a series of transition metal...

  15. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Search for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 [hep-ex], Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu and numubar disappearance paper is made available to the public: Numu Disappearance ntuple file of MiniBooNE numu 90% confidence level sensitivity as a function of Dm2, for a 2-neutrino numu -> nux ocillation fit. The file contains 141 rows, with two columns: Dm2 value in the range 0.4 < Dm2 (eV2)

  16. MiniBooNE QE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Charged Current Quasielastic Double Differential Cross section", arXiv:1002:2680 [hep-ex], Phys. Rev. D81, 092005 (2010) The following MiniBooNE information from the 2010 CCQE cross section paper is made available to the public: νμ CCQE cross sections: MiniBooNE flux table of predicted MiniBooNE muon neutrino flux (Table V) flux-integrated double differential cross section (Figure 13) 1D array of bin boundaries partitioning the muon kinetic energy (top) and the cosine of the muon

  17. MiniBooNE Requires a LOT of Protons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requires a LOT of Protons Our goal is 1 X 10 21 to be exact! In fact the Booster has been running at record intensities for over a year now delivering protons to MiniBooNE. But for MiniBooNE we actually need more, so we continue to work with our colleagues in Accelerator Division to improve the Booster performance. More protons leads directly to better coverage of the LSND allowed regions as MiniBooNE is statistically limited. Booster Monitoring and Improvement Projects This figure shows

  18. Neutral Current Elastic Interactions at MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Elastic Interactions at MiniBooNE -Ranjan Dharmapalan for the MiniBooNE collaboration NuInt '11 Dehradun, India. 2 Outline: 1. The MiniBooNE Experiment 2. Neutral current Elastic scattering (theory) 3. Neutral current Elastic scattering in MiniBooNE (expt) 4. mode results 5. First look at data 6. Future plans and conclusion 3 B o o s t e r t a r g e t a n d h o r n d e t e c t o r d i r t d e c a y r e g i o n a b s o r b e r p r i m a r y b e a m t e r t i a r y b e a m s e c o n d a r

  19. MicroBooNE Project Critical Decision Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Decisions for MicroBooNE Documents CD-0 Mission Need CD-1 Selection of Alternatives CD-2/3a Performance Baseline and Long Lead Procurements CD-3b Start of Construction

  20. MiniBooNE/LSND Neutrino Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE/LSND Neutrino Oscillation Results 1 M. Sorel (IFIC - CSIC & U. Valencia) Workshop on Beyond Three Family Neutrino Oscillations May 3-4, 2011, LNGS (Italy) 1. LSND ν̅ μ →ν̅ e (1993-2001) 2. MiniBooNE ν μ →ν e (2001-2007) 3. MiniBooNE ν̅ μ →ν̅ e (2006-2010) 5. Light sterile neutrino oscillations: where we stand (2011) Outline of this talk 2 4. MiniBooNE ν μ →ν μ and ν̅ μ →ν̅ μ (2001-2011) 3 LSND ν̅ μ →ν̅ e The LSND Experiment 4 Stopped pion

  1. New Oscillation Results From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic e 20 Background prediction Intrinsic nue External measurements - HARP p+Be for - Sanford-Wang fits to world K + K 0 data MiniBooNE data...

  2. {alpha}-cluster states in N{ne}Z nuclei

    SciTech Connect (OSTI)

    Goldberg, V. Z.; Rogachev, G. V.

    2012-10-20

    The importance of studies of {alpha}-Cluster structure in N{ne}Z light nuclei is discussed. Spin-parity assignments for the low-lying levels in {sup 10}C are suggested.

  3. High Precision Measurement of the 19Ne Lifetime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics Duke University Date: Approved: Albert Young Calvin Howell Kate Scholberg Berndt Mueller John Thomas Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2012 Abstract (Nuclear physics) High Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics

  4. DOE NE Used Fuel Disposition FY2015 Working Group Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy/ne-workshops/ufd-working-group-2015/ FOLDER NAME PRESENTATION TITLE AUTHOR Tuesday, June 9, 2015 UFD WG 2015-06-09 Tue Auditorium Afternoon - 1 Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions Powell UFD WG 2015-06-09 Tue Auditorium Afternoon - 1 Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures

  5. Array-type NH.sub.3 sensor

    DOE Patents [OSTI]

    West, David Lawrence; Montgomery, Frederick Charles; Armstrong, Timothy R; Warmack, Robert J

    2013-12-31

    An array-type sensor that senses NH.sub.3 includes non-Nernstian sensing elements constructed from metal and/or metal-oxide electrodes on an O.sub.2 ion conducting substrate. In one example sensor, one electrode may be made of platinum, another electrode may be made of manganese (III) oxide (Mn.sub.2O.sub.3), and another electrode may be made of tungsten trioxide (WO.sub.3). Some sensing elements may further include an electrode made of La.sub.0.6Sr.sub.0.4Co.sub.0.2Fe.sub0.8O.sub.3 and another electrode made of LaCr.sub.0.95.Mg.sub.0.05O.sub.3.

  6. Hollow-fiber gas-membrane process for removal of NH{sub 3} from solution of NH{sub 3} and CO{sub 2}

    SciTech Connect (OSTI)

    Qin, Y.; Cabral, J.M.S.; Wang, S.

    1996-07-01

    A hollow-fiber supported gas membrane process for the separation of NH{sub 3} from aqueous solutions containing both NH{sub 3} and CO{sub 2} was investigated theoretically and experimentally. A lumen laminar flow and radial diffusion model was applied to calculate the membrane wall transfer coefficient from the data stripping a single volatile component, NH{sub 3} or CO{sub 2}, from their individual aqueous solutions. Influence of the type of membranes and operating conditions on mass-transfer rate were discussed, especially the influence of the membrane transfer coefficient on the film mass-transfer coefficient in the lumen. Appropriate configurations of the hollow-fiber modules for stripping of a single component were analyzed to optimize mass transfer. To predict the stripping of NH{sub 3} from a solution containing NH{sub 3} and CO{sub 2}, a mathematical model incorporating local chemical equilibria and Nernst-Planck diffusion was developed to describe the mass transport. The models described the experimental data fairly well. The experimental results showed that the supported gas membrane process can be used to remove NH{sub 3} effectively from aqueous media containing NH{sub 3} and CO{sub 2}.

  7. Measurement and Modeling of Spatial NH3 Storage Distributions in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Small Port Cu Zeolite Urea SCR Catalyst | Department of Energy Modeling of Spatial NH3 Storage Distributions in a Commercial Small Port Cu Zeolite Urea SCR Catalyst Measurement and Modeling of Spatial NH3 Storage Distributions in a Commercial Small Port Cu Zeolite Urea SCR Catalyst A modified Spaci-IR technique can measure transient NH3 and NOx concentrations; data have been used to calibrate and validate an SCR model, with good agreement between experiments and simulations. PDF

  8. Modeling Study of SCR/PGM Interactions in NH3 Slip Catalysts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Study of SCR/PGM Interactions in NH3 Slip Catalysts Modeling Study of SCR/PGM Interactions in NH3 Slip Catalysts The focus of this research is on the optimization of NH3 slip catalyst performance by simulating the behavior of different SCR/PGM configurations. PDF icon p-19_nova.pdf More Documents & Publications Experimental and Modelling Study of the Effect of Diffusional Limitations on the NH3 SCR Activity Selective ammonia slip catalyst enabling highly efficient NOx removal

  9. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exclusive Neutrino Cross Sections From MiniBooNE Martin Tzanov University of Colorado PANIC 2008, 9-14 November, Eilat, ISRAEL Martin Tzanov, PANIC 2008 Neutrino Cross Sections Today * Precise knowledge needed for precise oscillation measurements. * Cross section well measured above 20 GeV. * Few measurements below 20 GeV. * 20-30 years old bubble chamber experiments (mostly H 2 , D 2 ). * Neutral current cross sections are even less understood. ν CC world data CC world data ν T2K, BooNE K2K,

  10. The MicroBooNE Experiment - At Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE at Work At Work Now The Getting Started Page holds links to help find your way around Fermilab services and prepare for working on the experiment. The MicroBooNE Contact List contains contact information for collaboration members. The Working Groups Page is a portal to these sub-sites. The Operations Page is a portal to the running detector. The Meetings Page lists the current regular meeting time slots, and also lists the collaboration meeting dates with links to the DocDB for past

  11. The MicroBooNE Experiment - Conference Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talks and Posters Once you have given a MicroBooNE presentation, please send your talk to Ben Carls so it can be archived. If you have written proceedings to accompany your talk, please upload them to the MicroBooNE DocDB and send the document number to Ben. Also, remember that conference proceedings are required by Fermilab policy to be submitted to the Fermilab Technical Publications archive. Instructions for doing that appear here. Click here for Future talks. Conference Presentations Speaker

  12. MiniBooNE Antineutrino Data Van Nguyen Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moriond EW 2008 Coherent NC π 0 Production in the MiniBooNE Antineutrino Data Van Nguyen Columbia University for the MiniBooNE collaboration Moriond EW 2008 2 Moriond EW 2008 At low energy, NC π 0 's can be created through resonant and coherent production:  Resonant NC π 0 production:  Coherent NC π 0 production: (Signature: π 0 which is highly forward-going) NC π 0 Production 3 Moriond EW 2008 Why study coherent NC π 0 production? ➔ NC π 0 events are the dominant bgd to osc

  13. MiniBooNE at First Physics E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at First Physics E. D. Zimmerman University of Colorado NBI 2003 KEK, Tsukuba November 7, 2003 MiniBooNE at First Physics Physics motivation: LSND MiniBooNE overview ¡ Beam ¡ Detector ¡ Reconstruction and particle ID First physics results Status and near future LSND decay-at-rest neutrino source ν µ -> ν e appearance search Decay-at-rest E ν <53 MeV Baseline 30 meters Energy E<53 MeV L/E ~ 1-1.5 km/GeV . . LSND oscillation signature From µ + decay at rest: Reconstruct e + and γ

  14. SHORT-BASELINE NEUTRINO PHYSICS AT MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEUTRINO PHYSICS AT MiniBooNE E. D. Zimmerman University of Colorado PANIC 2011 Cambridge, Mass. 25 July 2011 Short-Baseline Neutrino Physics at MiniBooNE * MiniBooNE * Neutrino cross-sections * Hadron production channels * Oscillation physics * Antineutrino Oscillations * MiniBooNE-SciBooNE joint result Motivating MiniBooNE: LSND Liquid Scintillator Neutrino Detector * Stopped + beam at Los Alamos LAMPF produces e , , ̅ but no ̅ e (due to capture). * Look for delayed coincidence of positron

  15. EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH |

    Office of Environmental Management (EM)

    Department of Energy 01: Granite Reliable Power Wind Park Project in Coos County, NH EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH June 25, 2010 EA-1801: Final Environmental Impact Granite Reliable Power Wind Project, Coos County, New Hampshire July 23, 2010 EA-1801: Finding of No Significant Impact Granite Reliable Power Wind Project, Coos County, New Hampshire

  16. Oscillations results from the MiniBooNE experiment Alexis Aguilar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ICN-UNAM) SILAFAE 2010, Valparaso, Chile December 6-12, 2010 Input from HARP production data 10 and interactions MiniBooNE MiniBooNE CCQE (MB...

  17. Analysis of Neutral Current 0 Events at MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutral Current 0 Events at MiniBooNE Colin Anderson April 14, 2008 The Experiment Analysis Outline Experiment MiniBooNE Description NC 0 Overview Analysis Selection and...

  18. RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman University of Colorado American Physical Society Meeting Jacksonville, April 16, 2007 Results of the MiniBooNE Neutrino Oscillation Search * Introduction to MiniBooNE * The oscillation analysis * The initial results and their implications * The next steps MiniBooNE: E898 at Fermilab * Purpose is to test LSND with: * Higher energy * Different beam * Different oscillation signature * Different systematics * L=500 meters, E=0.5-1

  19. 2011 Annual Planning Summary for Nuclear Energy (NE) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy (NE) 2011 Annual Planning Summary for Nuclear Energy (NE) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Nuclear Energy (NE). PDF icon 2011 Annual Planning Summary for Nuclear Energy (NE) More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2011 Annual Planning Summary for NNSA Service Center

  20. Morgan Wascko Imperial College London MiniBooNE's First Neutrino Oscillation Result

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Imperial College London MiniBooNE's First Neutrino Oscillation Result Morgan Wascko CalTech Physics Research Conference 26 April, 2007 Outline * A short course in the physics of ν oscillations * What are neutrinos? Oscillations? * ν oscillation landscape * MiniBooNE * Experiment description * MiniBooNE's First Results * Neutrino Physics Big Picture * Next Steps for the Field * What has MiniBooNE told us? 2 Morgan Wascko CalTech Physics Research Conference 26 April, 2007 * Particle

  1. Application for Presidential Permit OE Docket No. PP-400 TDI- NE New

    Energy Savers [EERE]

    England Clean Power Link Project | Department of Energy NE New England Clean Power Link Project Application for Presidential Permit OE Docket No. PP-400 TDI- NE New England Clean Power Link Project Response to TDI - NE application from State Department to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon State Department Concurrence.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-400 TDI-NE New

  2. Simulation of an Ar/NH{sub 3} low pressure magnetized direct current discharge

    SciTech Connect (OSTI)

    Li Zhi [School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [Physiccal Science and Technical College, Dalian University, Dalian 116622 (China)

    2013-01-15

    A two-dimensional fluid model has been used to investigate the properties of plasma in an Ar/NH{sub 3} low pressure magnetized direct current discharge. We compared the simulation results with the theoretical and experimental results of the other gas discharge in which the magnetic field is considered. Results that obtained using this method are in good agreement with literature. The simulation results show that the positive ammonia ion density follows the positive argon ion density. The Ar{sub 2}{sup +} density is slightly higher than the Ar{sup +} density at 100 mTorr. The largest ammonia ion is NH{sub 3}{sup +} ion, followed by NH{sub 2}{sup +}, NH{sub 4}{sup +}, and NH{sup +} ions. The contribution of NH{sup +} ions to the density of the positive ammonia ions is marginal. The influence of pressure on the plasma discharge has been studied by simulation, and the mechanisms have been discussed. The average plasma density increases as pressure increased. The plasma density appears to be more inhomogeneous than that at the lower pressure. The ratio of charge particles changed as pressure increased. The Ar{sup +} density is slightly higher than the Ar{sub 2}{sup +} density as the pressure increased. It makes NH{sub 4}{sup +} ratio increase as pressure increased. It shows that the electron temperature drops with rising pressure by numerical calculation.

  3. NH3-Selective Catalytic Reduction over Ag/Al2O3 Catalysts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy -Selective Catalytic Reduction over Ag/Al2O3 Catalysts NH3-Selective Catalytic Reduction over Ag/Al2O3 Catalysts DRIFT spectroscopy used together with flow reactor experiments to investigate the role of H2 for SCR over Ag/Al2O3 PDF icon deer12_tamm.pdf More Documents & Publications Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Experimental and Modelling Study of the Effect of Diffusional Limitations on the NH3 SCR Activity Development of Optimal Catalyst

  4. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

  5. MICROBOONE PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline * The detector and beam - MicroBooNE TPC - Booster and NuMI beams at Fermilab * Oscillation physics - Shed light on the MiniBooNE low energy excess * Low energy neutrino cross sections * Non-accelerator topics - Supernova neutrino detection - Proton decay backgrounds 2 B. Carls, Fermilab MicroBooNE Physics MicroBooNE Detector * 60 ton fiducial volume (of 170 tons total) liquid Argon TPC * TPC consists of 3 planes of wires; vertical Y, ±60°

  6. Microsoft PowerPoint - TAUP_07_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MinibooNE Oscillation Results and Implications Mike Shaevitz Columbia University for the MiniBooNE Collaboration 2 Outline * MiniBooNE Experiment and Analysis Techniques * MiniBooNE First Oscillation Result * Going Beyond the First Result * Future Plans and Prospects 3 LSND observed a (~3.8σ) excess of⎯ν e events in a pure⎯ν μ beam: 87.9 ± 22.4 ± 6.0 events MiniBooNE was Prompted by the Positive LSND Result Oscillation Probability: ( ) (0.264 0.067 0.045)% e P μ ν ν → = ± ± The

  7. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model,

    Energy Savers [EERE]

    Omaha, NE | Department of Energy Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 48 without PV, with 2x6 24" on center walls with R-23 blown fiberglass, ocsf at rim joists, basement with plus 2x4 stud walls with R-23 blown fiberglass, with R-20 around slab, R-38 under slab; a vented attic with R-100 blown

  8. NH3 generation over commercial Three-Way Catalysts and Lean-NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation over commercial Three-Way Catalysts and Lean-NOx Traps NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Research to identify most promising...

  9. NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps

    Broader source: Energy.gov [DOE]

    Research to identify most promising catalytic formulations and operation for the in-situ generation of NH3, storage on a downstream SCR catalyst, and utilized to reduce the remaining NOx

  10. Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment Selective Catalytic Oxidation (SCO) of NH3 to N2 for Hot Exhaust Treatment Investigation of a series of transition metal oxides and precious metal based catalysts for ammonia selective oxidation at low temperatures PDF icon deer12_thrun.pdf More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon

  11. Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    N2O Selectivities over a Commercial LNT Catalyst | Department of Energy Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst Evaluation of commercial Ba-based LNT (CLEERS benchmark catalyst; containing oxygen storage capacity) in a bench flow reactor under fast-cycling conditions, varying reductant type,

  12. Study of On-Board Ammonia (NH3) Generation for SCR Operation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Study of On-Board Ammonia (NH3) Generation for SCR Operation Study of On-Board Ammonia (NH3) Generation for SCR Operation The feasibility of on-board ammonia generation was examined using synthesized exhaust compositions PDF icon deer09_wong.pdf More Documents & Publications On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Delphi On-board Ammonia Generation (OAG) Reductant Utilization in a LNT + SCR System

  13. Migration of Nuclear Shell Gaps Studied in the d({sup 24}Ne,p{gamma}){sup 25}Ne Reaction

    SciTech Connect (OSTI)

    Catford, W. N.; Timis, C. N.; Baldwin, T. D.; Gelletly, W.; Pain, S. D.; Lemmon, R. C.; Pucknell, V. P. E.; Warner, D. D.; Labiche, M.; Orr, N. A.; Achouri, N. L.; Chapman, R.; Amzal, N.; Burns, M.; Liang, X.; Spohr, K.; Freer, M.; Ashwood, N. I.

    2010-05-14

    The transfer of neutrons onto {sup 24}Ne has been measured using a reaccelerated radioactive beam of {sup 24}Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2{sup +} level in {sup 25}Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this state's identity. The raised 3/2{sup +} level is observed simultaneously with the intruder negative parity 7/2{sup -} and 3/2{sup -} levels, providing evidence for the reduction in the N=20 gap. The coincident gamma-ray decays allowed the assignment of spins as well as the transferred orbital angular momentum. The excitation energy of the 3/2{sup +} state shows that the established USD shell model breaks down well within the sd model space and requires a revised treatment of the proton-neutron monopole interaction.

  14. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexplained Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 [hep-ex], Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009 updated nue oscillation paper is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) 1D array of bin boundaries in electron neutrino reconstructed neutrino energy 1D array of observed electron neutrino candidate events per reconstructed

  15. The MicroBooNE Project - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Home Project Status Reporting Project Reports Monthly Reports Quarterly Reports, pre-CD2 PMG Meetings Project Management Group meetings are held on the 2nd Wednesday of each month, at 1pm CT in the Black Hole meeting room (WH2NW). Presentation materials are posted in the MicroBooNE DocDB, private access user-name is reviewer, password on request. From the DocDB home page, select Calendar, and on the Calendar click on PMG in the appropriate day box to bring up the meeting's Event Page.

  16. MiniBooNE Nue & Nuebar Data Release 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Neutrino and Antineutrino fit in 200 MeV - 3000 MeV reconstructed neutrino energy range 90% sensitivity contour, 1 sigma limit contour, 90% limit contour, 99% limit contour and 3 sigma limit contour. Sensitivity and limit curves for a 2-neutrino muon-to-electron neutrino and antineutrino oscillation fit. Frequentist studies were performed to determine the proper coverage. Each file contains a set of (sin2(2theta), Dm2 ) points on a given contour. ntuple file of MiniBooNE 2-dimensional

  17. MiniBooNE Nue & Nuebar Data Release 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antineutrino mode fit in 200 MeV - 3000 MeV reconstructed neutrino energy range 90% sensitivity contour, 1 sigma limit contour, 90% limit contour and 99% limit contour. Sensitivity and limit curves for a 2-neutrino muon-to-electron antineutrino oscillation fit. Only anti-neutrinos were assumed to oscillate. Frequentist studies were performed to determine the proper coverage. Each file contains a set of (sin2(2theta), Dm2 ) points on a given contour. ntuple file of MiniBooNE 2-dimensional

  18. MiniBooNE Nue & Nuebar Data Release 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino mode fit in 200 MeV - 3000 MeV reconstructed neutrino energy range 90% sensitivity contour, 1 sigma limit contour, 90% limit contour and 99% limit contour. Sensitivity and limit curves for a 2-neutrino muon-to-electron neutrino and antineutrino oscillation fit. Frequentist studies were performed to determine the proper coverage. Each file contains a set of (sin2(2theta), Dm2 ) points on a given contour. ntuple file of MiniBooNE 2-dimensional likelihood surface as a function of ( Dm2,

  19. NE-24 Unlverslty of Chicayo Remedial Action Plan

    Office of Legacy Management (LM)

    (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the

  20. Office of Nuclear Energy Doe/ne-0143

    Energy Savers [EERE]

    Doe/ne-0143 Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room, cutting the grass, or studying

  1. Idaho National Laboratory DOE-NE's National Nuclear Capability-

    Office of Environmental Management (EM)

    -2023 Idaho National Laboratory DOE-NE's National Nuclear Capability- Developing and Maintaining the INL Infrastructure TEN-YEAR SITE PLAN DOE/ID-11474 Final June 2012 Sustainable INL continues to exceed DOE goals for reduction in the use of petroleum fuels - running its entire bus fleet on biodiesel while converting 75% of its light-duty fleet to E85 fuel. The Energy Systems Laboratory (ESL), slated for completion this year, will be a state-of-the-art laboratory with high-bay lab space where

  2. CA CAIOlf Mr. Andrew Wallo. III, NE-23

    Office of Legacy Management (LM)

    kire 7900. 955 L*E,,fa,u PLUG S. W.. Washin@ on. D.C. 20024-2174, Tekphme: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 CA CAIOlf Mr. Andrew Wallo. III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 CT.05 FL .0-o/ lti.Ob id.Or Dear Mr. Wallo: In/. O-01 flA.05 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES Mbj.o-03 I4 v.o+ The attached elimination recommendation was prepared in accordance ML.o= with your

  3. CA M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    i900,9SS L%nfam Phm, S. W.. Washington. D.C. 20024.2174, Tlkphme: (20.7) 4S.S-M)o 7117-03.87.cdy.43 23 September 1987 CA M r. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES I - The attached elimination recommendation was prepared in accordance M1.oS with your suggestion during our meeting on 22 September. The recommendation nO.O-02

  4. CA M r. Andrew Wallo, III. NE-23

    Office of Legacy Management (LM)

    i5W 95.5 L' E&nt plom. S. W.:. Washingr on. D.C. ZOOX2i74, Tekphm: (202) 488-6OGb 7II7-03.87.cdy.43 23 September 1987. Ii CA M r. Andrew Wallo, III. NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES pqq.0' 05 PI ;p.03- The attached elimination recommendation was prepared in accordance ,I ML.05 with your suggestion during our meeting on 22 September. The

  5. Numerical analysis of a mixture of Ar/NH{sub 3} microwave plasma chemical vapor deposition reactor

    SciTech Connect (OSTI)

    Li Zhi [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); Zhao Zhen [Chemistry Department, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Physical Science and Technical College, Dalian University, Dalian 116622 (China)

    2012-06-01

    A two-dimensional fluid model has been used to investigate the properties of plasma in Ar/NH{sub 3} microwave electron cyclotron resonance discharge at low pressure. The electromagnetic field model solved by the three-dimensional Simpson method is coupled to a fluid plasma model. The finite difference method was employed to discrete the governing equations. 40 species (neutrals, radicals, ions, and electrons) are consisted in the model. In total, 75 electron-neutral, 43 electron-ion, 167 neutral-neutral, 129 ion-neutral, 28 ion-ion, and 90 3-body reactions are used in the model. According to the simulation, the distribution of the densities of the considered plasma species has been showed and the mechanisms of their variations have been discussed. It is found that the main neutrals (Ar*, Ar**, NH{sub 3}{sup *}, NH, H{sub 2}, NH{sub 2}, H, and N{sub 2}) are present at high densities in Ar/NH{sub 3} microwave electron cyclotron resonance discharge when the mixing ratio of Ar/NH{sub 3} is 1:1 at 20 Pa. The density of NH is more than that of NH{sub 2} atom. And NH{sub 3}{sup +} are the most important ammonia ions. But the uniformity of the space distribution of NH{sub 3}{sup +} is lower than the other ammonia ions.

  6. Demonstration Assessment of LED Roadway Lighting: NE Cully Blvd., Portland, OR

    SciTech Connect (OSTI)

    Royer, M. P.; Poplawski, M. E.; Tuenge, J. R.

    2012-08-01

    GATEWAY program report on a demonstration of LED roadway lighting on NE Cully Boulevard in Portland, OR, a residential collector road.

  7. 2014 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Annual EM/NE/SC SQA Support Group Meeting 2014 Annual EM/NE/SC SQA Support Group Meeting 2014 Annual EM/NE/SC SQA Support Group Meeting The 2014 Annual Face-to-Face Meeting of the Environmental Management (EM), Nuclear Energy (NE), and Science (SC) Software Quality Assurance (SQA) Support Group (SG) was held May 6-8, 2014. This meeting was hosted by the Office of Safeguards, Security and Emergency Services (OSSES) at the Savannah River Site (SRS). The Chief of Nuclear Safety (CNS) sponsors

  8. 2015 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Annual EM/NE/SC SQA Support Group Meeting 2015 Annual EM/NE/SC SQA Support Group Meeting 2015 Annual EM/NE/SC SQA Support Group Meeting The Chief of Nuclear Safety (CNS) formed the Environmental Management (EM), Nuclear Energy (NE), and Science (SC) Software Quality Assurance (SQA) Support Group (SG) in March 2007. The first Annual Meeting was held August 2008. The 8th Annual Meeting will be held May 11-14, 2015. This year the Annual Meeting will be hosted by EM's Office of River Protection in

  9. High-energy physics detector MicroBooNE sees first accelerator-born

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrinos MicroBooNE sees first accelerator-born neutrinos High-energy physics detector MicroBooNE sees first accelerator-born neutrinos The principal purpose of the detector is to confirm or deny the existence of a hypothetical particle known as the sterile neutrino. November 2, 2015 An accelerator-born neutrino candidate, spotted with the MicroBooNE detector. Image courtesy Fermilab. An accelerator-born neutrino candidate, spotted with the MicroBooNE detector. Image courtesy Fermilab.

  10. Kaon Monitoring in MiniBooNE: The LMC Detector E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kaon Monitoring in MiniBooNE: The LMC Detector E. D. Zimmerman University of Colorado NBI 2003 KEK, Tsukuba November 10, 2003 Kaon Monitoring at MiniBooNE 1) K-decay ν e background at BooNE K production estimates 2) Decay kinematics 3) The "Little Muon Counter" (LMC) Concept/Placement Civil construction/infrastructure Collimator Fiber Tracker Temporary detector Status K-decay ν e background MiniBooNE will see ~200-400 ν e from K + and K 0 L decays each year -- comparable to the

  11. 14-07-09 MicroBooNE calibrations.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud disperse: Diffusion* * Charge loss due to impurities** * Signal on wires * Induction * Collection 090714 MicroBooNE Calibrations, T. Strauss 4 First we need to...

  12. MiniBooNE as realated to "Window's on the Universe"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Windows on the Universe" Ray Stefanski Fermilab Blois 2009 Windows on the Universe June 22, 2009 Outline: Introduction Current Status New Results Expectations Summary June 22, 2009 Blois 2009 Windows on the Universe 2 Introduction                 : nce disappeara : appearance s experiment n oscillatio e e   MiniBooNE   SciBooNE accelerator sources stopped muons @ LANL -> LSND BNB @ FNAL -> MiniBooNE -> SciBooNE NuMI

  13. MiniBooNE's First Oscillation Result Morgan Wascko Imperial College...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 July, 2007 Meson Production 9 MiniBooNE Overview * External meson production data * HARP data (CERN) * Parametrisation of cross- sections * Sanford-Wang for pions * Feynman...

  14. I. Neutrino Oscillations with the MiniBooNE Experiment at FNAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E QE Events Flux x Cross-section x Detector response External measurements (HARP, etc) rate constrained by neutrino data External and MiniBooNE...

  15. Application for Presidential Permit OE Docket No. PP-400 TDI-NE New England

    Energy Savers [EERE]

    Clean Power Link Project | Department of Energy New England Clean Power Link Project Application for Presidential Permit OE Docket No. PP-400 TDI-NE New England Clean Power Link Project Response for TDI-NE from Department of Defense to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-400 TDI-NE - Response Letter from DOD.pdf More Documents & Publications Application for Presidential Permit OE Docket No. PP-400 TDI- NE New England

  16. DOE-NE Small Business Voucher Program Launched | Department of Energy

    Energy Savers [EERE]

    DOE-NE Small Business Voucher Program Launched DOE-NE Small Business Voucher Program Launched March 1, 2016 - 9:48am Addthis News Media Contact Danielle Miller, 208-569-7806 millerdc@id.doe.gov WASHINGTON - The DOE-NE Voucher Program for eligible small businesses is open for applications. As part of the Gateway for Accelerated Innovation in Nuclear (GAIN) initiative, the NE Voucher program will provide up to $2 million in this pilot year for access to expertise, knowledge, and facilities of the

  17. Photolysis of solid NH{sub 3} and NH{sub 3}-H{sub 2}O mixtures at 193 nm

    SciTech Connect (OSTI)

    Loeffler, M. J.; Baragiola, R. A.

    2010-12-07

    We have studied UV photolysis of solid ammonia and ammonia-dihydrate samples at 40 K, using infrared spectroscopy, mass spectrometry, and microgravimetry. We have shown that in the pure NH{sub 3} sample, the main species ejected are NH{sub 3}, H{sub 2}, and N{sub 2}, where the hydrogen and nitrogen increase with laser fluence. This increase in N{sub 2} ejection with laser fluence explains the increase in mass loss rate detected by a microbalance. In contrast, for the ammonia-water mixture, we see very weak signals of H{sub 2} and N{sub 2} in the mass spectrometer, consistent with the very small mass loss during the experiment and with a <5% decrease in the NH{sub 3} infrared absorption bands spectroscopy after a fluence of {approx}3 x 10{sup 19} photons/cm{sup 2}. The results imply that ammonia-ice mixtures in the outer solar system are relatively stable under solar irradiation.

  18. A Review & Assessment of Current Operating Conditions Allowable Stresses in ASME Section III Subsection NH

    SciTech Connect (OSTI)

    R. W. Swindeman

    2009-12-14

    The current operating condition allowable stresses provided in ASME Section III, Subsection NH were reviewed for consistency with the criteria used to establish the stress allowables and with the allowable stresses provided in ASME Section II, Part D. It was found that the S{sub o} values in ASME III-NH were consistent with the S values in ASME IID for the five materials of interest. However, it was found that 0.80 S{sub r} was less than S{sub o} for some temperatures for four of the materials. Only values for alloy 800H appeared to be consistent with the criteria on which S{sub o} values are established. With the intent of undertaking a more detailed evaluation of issues related to the allowable stresses in ASME III-NH, the availabilities of databases for the five materials were reviewed and augmented databases were assembled.

  19. Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis Details progress on non-zeolitic zirconia-based mixed oxides as promising new SCR catalyst materials and results of engine bench testing of full-size SCR prototype confirms Details progress on non-zeolitic zirconia-based mixed oxides as promising new SCR catalyst materials and results of engine bench testing of full-size SCR prototype

  20. Grants to Help N.H. Towns Conserve Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants to Help N.H. Towns Conserve Energy Grants to Help N.H. Towns Conserve Energy March 19, 2010 - 4:17pm Addthis New Hampshire has a plan to lower expenses and create jobs, all while conserving energy. In all, the state has received $17.3 million in Energy Efficiency and Conservation Block Grant (EECBG) funding. Of that, $9.6 million has been sent to the New Hampshire Office of Energy and Planning (NHOEP) to launch several energy saving projects. NHOEP established a subgrant program to award

  1. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genset | Department of Energy NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_malyala.pdf More Documents & Publications Two Catalyst Formulations - One Solution for NOx After-treatment Systems Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Development of Optimal Catalyst

  2. Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Consumption Using High and Low Engine-Out NOx Calibrations | Department of Energy ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Development and validation of a simple strategy-based technique using four engine parameters to minimize emissions and fuel

  3. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  4. The Ne-to-O abundance ratio of the interstellar medium from IBEX-Lo observations

    SciTech Connect (OSTI)

    Park, J.; Kucharek, H.; Mbius, E.; Leonard, T.; Bzowski, M.; Sok?, J. M.; Kubiak, M. A.; Fuselier, S. A.; McComas, D. J.

    2014-11-01

    In this paper we report on a two-year study to estimate the Ne/O abundance ratio in the gas phase of the local interstellar cloud (LIC). Based on the first two years of observations with the Interstellar Boundary Explorer, we determined the fluxes of interstellar neutral (ISN) O and Ne atoms at the Earth's orbit in spring 2009 and 2010. A temporal variation of the Ne/O abundance ratio at the Earth's orbit could be expected due to solar cycle-related effects such as changes of ionization. However, this study shows that there is no significant change in the Ne/O ratio at the Earths orbit from 2009 to 2010. We used time-dependent survival probabilities of the ISNs to calculate the Ne/O abundance ratio at the termination shock. Then we estimated the Ne/O abundance ratio in the gas phase of the LIC with the use of filtration factors and the ionization fractions. From our analysis, the Ne/O abundance ratio in the LIC is 0.33 0.07, which is in agreement with the abundance ratio inferred from pickup-ion measurements.

  5. Level-resolved R-matrix calculations for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}

    SciTech Connect (OSTI)

    Ludlow, J. A.; Lee, T. G.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S.

    2011-08-15

    Large-scale R-matrix calculations are carried out for the electron-impact excitation of Ne{sup 3+} and Ne{sup 6+}. For Ne{sup 3+}, a 581-LSJ-level R-matrix intermediate coupling frame transformation calculation is made for excitations up to the n=4 shell. For some transitions, large effective collision strength differences are found with current 23-jKJ-level Breit-Pauli R-matrix and earlier 22-LSJ-level R-matrix jj omega (JAJOM) calculations. For Ne{sup 6+}, a 171-jKJ-level Breit-Pauli R-matrix calculation is made for excitations up to the n=5 shell. For some transitions, large effective collision strength differences are found with current 46-jKJ-level Breit-Pauli R-matrix and earlier 46-LSJ-level R-matrix JAJOM calculations. Together with existing R-matrix calculations for other ion stages, high-quality excitation data are now available for astrophysical and laboratory plasma modeling along the entire Ne isonuclear sequence.

  6. /Users/jzennamo/Desktop/ObsLimit_MiniSciBooNE_SBN_numuDis.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    µ θ 2 2 sin 3 - 10 2 - 10 1 - 10 1 ] 2 [eV 2 m ∆ 1 - 10 1 10 2 10 POT) 20 10 × POT) and T600 (6.6 21 10 × MicroBooNE (1.3 POT) 20 10 × LAr1-ND (6.6 mode, CC Events ν Stat, Flux, Cross Section Uncerts. Reconstructed Energy Efficiency µ ν 80% Shape and Rate 90% CL CL σ 3 CL σ 5 MiniBooNE + SciBooNE 90% CL

  7. An accumulator/compressor ring for Ne+ ions (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: An accumulator/compressor ring for Ne+ ions Citation Details In-Document Search Title: An accumulator/compressor ring for Ne+ ions The primary goal of the High Energy Density Physics (HEDP) program is to create an extremely bright ion beam at low duty cycle. For example, a typical set of parameters is: (1) Particle type = Ne{sup +}; (2) Ion energy = 20.1 MeV; (3) One ion pulse = 1 {micro}C, 1 ns, 1 mm{sup 2}; and (4) Repetition rate = 1 Hz. This would give a volume density of

  8. MiniBooNE: Up and Running Morgan Wascko Morgan Wascko Louisiana State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Up and Running Morgan Wascko Morgan Wascko Louisiana State University Louisiana State University Morgan O. Wascko, LSU Yang Institute Conference 11 October, 2002 MiniBooNE detector at Fermi National Accelerator Lab Outline Motivation MiniBooNE Overview Physics at MiniBooNE Current Status First Data! Morgan O. Wascko, LSU Yang Institute Conference 11 October, 2002 Neutrino Oscillations The Evidence So Far ... Solar Solar ∆ ∆ m m 2 2 ~ ~ 10 10 -(4~5) -(4~5) Atmospheric Atmospheric ∆ ∆ m m

  9. WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf PDF icon WC_2000_001_CLASS_WAIVER_BETWEEN_DOE_and_EMPLOYEES_OF_THE_NE.pdf More Documents & Publications Class_Waiver_W_C-2000-001.pdf WC_1994_010__CLASS_WAIVER_of_the_Governments_Patent_Rights_.pdf WC_1994_001_CLASS_WAIVER_OF_THE_Governments_Patent_Rights_i

  10. EcoCAR: The NeXt Challenge | Department of Energy

    Office of Environmental Management (EM)

    EcoCAR: The NeXt Challenge EcoCAR: The NeXt Challenge May 18, 2010 - 7:30am Addthis While most college students' experience with vehicles goes no further than the beater they picked up for a few thousand dollars, students participating in the EcoCAR: The NeXT Challenge competition get to experience the cutting-edge of driving technology. The competition, which was established by the U.S. Department of Energy and General Motors, is a three year advanced vehicle engineering contest. Yesterday, May

  11. File:USDA-CE-Production-GIFmaps-NE.pdf | Open Energy Information

    Open Energy Info (EERE)

    NE.pdf Jump to: navigation, search File File history File usage Nebraska Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  12. Fermilab | Newsroom | Press Releases | June 24, 2014: MicroBooNE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jpeg images. When using these images, please credit each photo as indicated. Med Res | Hi Res The 30-ton MicroBooNE neutrino detector was transported across the Fermilab site on...

  13. ARM - Field Campaign - 2001 Philadelphia NE-OPS Air Quality Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Philadelphia NE-OPS Air Quality Experiment ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign...

  14. Application for Presidential Permit PP-400 TDI-NE - New England...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-400 TDI-NE - New England Clean Power Link Project - Motion to Intervene and Comments of the Vermont Department of Public Service - August 6, 2014 Application for Presidential...

  15. 2013 Annual DOE-NE Materials Research Coordination Meeting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote

  16. DOE/NE Sponsors a U.S. - Kazakhstan Civilian Nuclear Energy Workshop at

    Energy Savers [EERE]

    Idaho National Laboratory | Department of Energy DOE/NE Sponsors a U.S. - Kazakhstan Civilian Nuclear Energy Workshop at Idaho National Laboratory DOE/NE Sponsors a U.S. - Kazakhstan Civilian Nuclear Energy Workshop at Idaho National Laboratory February 26, 2015 - 12:48pm Addthis U.S. and Kazakhstani participants follow a briefing about modeling and simulation U.S. and Kazakhstani participants follow a briefing about modeling and simulation Kazakhstanis ask questions about computing

  17. NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho National Laboratory | Department of Energy NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory April 24, 2014 - 5:57pm Addthis The Energy Innovation Laboratory at the Energy Department’s Idaho National Laboratory was dedicated earlier this week. The new facility enables researchers to tackle some of the most pressing

  18. Introduction to MiniBooNE and Charged Current Quasi-Elastic (CCQE) Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE and ν μ Charged Current Quasi-Elastic (CCQE) Results Byron P. Roe University of Michigan For the MiniBooNE collaboration 2 University of Alabama Los Alamos National Laboratory Bucknell University Louisiana State University University of Cincinnati University of Michigan University of Colorado Princeton University Columbia University Saint Mary's University of Minnesota Embry Riddle University Virginia Polytechnic Institute Fermi National Accelerator Laboratory Western Illinois

  19. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New

    Energy Savers [EERE]

    England Clean Power Link Project: Federal Register Notice, Volume 79, No. 131 - July 9, 2014 | Department of Energy - New England Clean Power Link Project: Federal Register Notice, Volume 79, No. 131 - July 9, 2014 Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New England Clean Power Link Project: Federal Register Notice, Volume 79, No. 131 - July 9, 2014 Application from TDI-NE to construct, operate and maintain electric transmission facilities at the U.S. - Canada

  20. Application for Presidential Permit PP-400 TDI-NE - New England Clean Power

    Energy Savers [EERE]

    Link Project - Motion to Intervene and Comments of the Vermont Department of Public Service - August 6, 2014 | Department of Energy PP-400 TDI-NE - New England Clean Power Link Project - Motion to Intervene and Comments of the Vermont Department of Public Service - August 6, 2014 Application for Presidential Permit PP-400 TDI-NE - New England Clean Power Link Project - Motion to Intervene and Comments of the Vermont Department of Public Service - August 6, 2014 The Vermont Department of

  1. DOE - Office of Legacy Management -- Hallam Nuclear Power Facility - NE 01

    Office of Legacy Management (LM)

    Hallam Nuclear Power Facility - NE 01 FUSRAP Considered Sites Site: Hallam Nuclear Power Facility (NE.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Hallam, Nebraska, Decommissioned Reactor Site Documents Related to Hallam Nuclear Power Facility U.S. Department of Energy 2009 Annual Inspection - Hallam, Nebraska June 2009 Page 1

  2. 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANNUAL DOE-NE MATERIALS RESEARCH MEETING 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2015 coordination meeting as a series of two web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various

  3. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term

    Office of Environmental Management (EM)

    Operations Program - Joint Research and Development Plan | Department of Energy DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low

  4. COS OBSERVATIONS OF METAL LINE AND BROAD LYMAN-{alpha} ABSORPTION IN THE MULTI-PHASE O VI AND Ne VIII SYSTEM AT z = 0.20701 TOWARD HE 0226-4110

    SciTech Connect (OSTI)

    Savage, B. D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Lehner, N. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Narayanan, A. [Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala (India)

    2011-12-20

    Observations of the QSO HE 0226-4110 (z{sub em} = 0.495) with the Cosmic Origins Spectrograph (COS) from 1134 to 1796 A with a resolution of {approx}17 km s{sup -1} and signal-to-noise ratio (S/N) per resolution element of 20-40 are used to study the multi-phase absorption system at z = 0.20701 containing O VI and Ne VIII. The system was previously studied with lower S/N observations with Far-Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS). The COS observations provide more reliable measures of the H I and metal lines present in the system and reveal the clear presence of broad Ly{alpha} (BLA) absorption with b = 72(+13, -6) km s{sup -1} and log N(H I) = 13.87 {+-} 0.08. Detecting BLAs associated with warm gas absorbers is crucial for determining the temperature, metallicity, and total baryonic content of the absorbers. The BLA is probably recording the trace amount of thermally broadened H I in the collisionally ionized plasma with log T {approx} 5.7 that also produces the O VI and Ne VIII absorption. The total hydrogen column in the collisionally ionized gas, log N(H) {approx} 20.1, exceeds that in the cooler photoionized gas in the system by a factor of {approx}22. The oxygen abundance in the collisionally ionized gas is [O/H] = -0.89 {+-} 0.08 {+-} 0.07. The absorber probably occurs in the circumgalactic environment (halo) of a foreground L = 0.25L{sub *} disk galaxy with an impact parameter of 109 h{sub 70}{sup -1} kpc identified by Mulchaey and Chen.

  5. Structural transitions of ternary imide Li{sub 2}Mg(NH){sub 2} for hydrogen storage

    SciTech Connect (OSTI)

    Liang, C.; Gao, M. X.; Pan, H. G. Liu, Y. F.

    2014-08-25

    Phase transitions and energetic properties of Li{sub 2}Mg(NH){sub 2} with different crystal structures are investigated by experiments and first-principles calculations. The Li{sub 2}Mg(NH){sub 2} with the primitive cubic and orthorhombic structure is obtained by dynamically dehydrogenating a Mg(NH{sub 2}){sub 2}-2LiH mixture up to 280?C under an initial vacuum and 9.0?bars H{sub 2}, respectively. It is found that the obtained orthorhombic Li{sub 2}Mg(NH){sub 2} is converted to a primitive cubic structure as the dehydrogenation temperature is further increased to 400?C or performed by a 36?h of high-energetic ball milling. Moreover, the primitive cubic phase can be converted to an orthorhombic phase after heating at 280?C under 9.0?bars H{sub 2} for 1?h. Thermodynamic calculations show that the orthorhombic phase is the ground state structure of Li{sub 2}Mg(NH){sub 2}. The mechanism for phase transitions of Li{sub 2}Mg(NH){sub 2} is also discussed from the angle of energy.

  6. Effects of reactant rotational excitations on H{sub 2} + NH{sub 2} → H + NH{sub 3} reactivity

    SciTech Connect (OSTI)

    Song, Hongwei; Guo, Hua

    2014-12-28

    Rotational mode specificity of the title reaction is examined using an initial state selected time-dependent wave packet method on an accurate ab initio based global potential energy surface. This penta-atomic reaction presents an ideal system to test several dynamical approximations, which might be useful for future quantum dynamics studies of polyatomic reactions, particularly with rotationally excited reactants. The first approximation involves a seven-dimensional (7D) model in which the two non-reactive N–H bonds are fixed at their equilibrium geometry. The second is the centrifugal sudden (CS) approximation within the 7D model. Finally, the J-shifting (JS) model is tested, again with the fixed N–H bonds. The spectator-bond approximation works very well in the energy range studied, while the centrifugal sudden and J-shifting integral cross sections (ICSs) agree satisfactorily with the coupled-channel counterparts in the low collision energy range, but deviate at the high energies. The calculated integral cross sections indicate that the rotational excitation of H{sub 2} somewhat inhibits the reaction while the rotational excitations of NH{sub 2} have little effect. These findings are compared with the predictions of the sudden vector projection model. Finally, a simple model is proposed to predict rotational mode specificity using K-averaged reaction probabilities.

  7. Beyond standard model searches in the MiniBooNE experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Katori, Teppei; Conrad, Janet M.

    2014-08-05

    Tmore » he MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. he experiment was originally designed to test the Δm2~1eV2 region of the sterile neutrino hypothesis by observing νe(ν-e) charged current quasielastic signals from a νμ(ν-μ) beam. MiniBooNE observed excesses of νe and ν-e candidate events in neutrino and antineutrino mode, respectively. o date, these excesses have not been explained within the neutrino standard model (νSM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. he results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. In addition, this review describes these studies, demonstrating that short baseline neutrino experiments are rich environments in new physics searches.« less

  8. ARM - Field Campaign - 1996 NARSTO Northeast Field Study (NARSTO-NE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 NARSTO Northeast Field Study (NARSTO-NE) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 1996 NARSTO Northeast Field Study (NARSTO-NE) 1996.07.01 - 1996.07.28 Lead Scientist : Larry Kleinman For data sets, see below. Abstract The DOE G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the

  9. MiniBooNE Charged Current Charged Pion Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muon Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at Enu~1 GeV", arXiv:1011.3572 [hep-ex], submitted to Phys. Rev. D. The following MiniBooNE information for the 2010 CC π+ cross section paper is made available to the public. Tables A root file containing histograms of all of the cross section results in the paper can be found here. A text file of the cross section results can be found here. The MiniBooNE muon neutrino flux distribution can be

  10. Microsoft PowerPoint - Oxford_MiniBooNE_and_SterileNus.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxford Seminar June 23, 2004 * Extensions to the Neutrino Standard Model: Sterile Neutrinos * MiniBooNE: Status and Prospects * Future Directions if MiniBooNE Sees Oscillations 2 Theoretical Prejudices before 1995 * Natural scale for ∆m 2 ~ 10 - 100 eV 2 since needed to explain dark matter * Oscillation mixing angles must be small like the quark mixing angles * Solar neutrino oscillations must be small mixing angle MSW solution because it is "cool" * Atmospheric neutrino anomaly must

  11. Numerical Analysis of Parasitic Crossing Compensation with Wires in DA$\\Phi$NE

    SciTech Connect (OSTI)

    Valishev, A.; Shatilov, D.; Milardi, C.; Zobov, M.

    2015-06-24

    Current-bearing wire compensators were successfully used in the 2005-2006 run of the DAΦNE collider to mitigate the detrimental effects of parasitic beam-beam interactions. A marked improvement of the positron beam lifetime was observed in machine operation with the KLOE detector. In view of the possible application of wire beam-beam compensators for the High Luminosity LHC upgrade, we revisit the DAΦNE experiments. We use an improved model of the accelerator with the goal to validate the modern simulation tools and provide valuable input for the LHC upgrade project.

  12. The thermal decomposition of NH{sub 2}OH and subsequent reactions : ab initio transition state theory and reflected shock tube experiments.

    SciTech Connect (OSTI)

    Klippenstein, S. J.; Harding, L. B.; Ruscic, B.; Sivaramakrishnan, R.; Srinivasan, N. K.; Su, M.-C.; Michael, J. V.; Chemical Sciences and Engineering Division; Sonoma State Univ.

    2009-01-01

    Primary and secondary reactions involved in the thermal decomposition of NH{sub 2}OH are studied with a combination of shock tube experiments and transition state theory based theoretical kinetics. This coupled theory and experiment study demonstrates the utility of NH{sub 2}OH as a high temperature source of OH radicals. The reflected shock technique is employed in the determination of OH radical time profiles via multipass electronic absorption spectrometry. O-atoms are searched for with atomic resonance absorption spectrometry. The experiments provide a direct measurement of the rate coefficient, k{sub 1}, for the thermal decomposition of NH{sub 2}OH. Secondary rate measurements are obtained for the NH{sub 2} + OH (5a) and NH{sub 2}OH + OH (6a) abstraction reactions. The experimental data are obtained for temperatures in the range from 1355 to 1889 K and are well represented by the respective rate expressions: log[k/(cm{sup 3} molecule{sup -1} s{sup -1})] = (?10.12 {+-} 0.20) + (?6793 {+-} 317 K/T) (k{sub 1}); log[k/(cm{sup 3} molecule{sup -1} s{sup -1})] = (?10.00 {+-} 0.06) + (?879 {+-} 101 K/T) (k{sub 5a}); log[k/(cm{sup 3} molecule{sup -1} s{sup -1})] = (?9.75 {+-} 0.08) + (?1248 {+-} 123 K/T) (k{sub 6a}). Theoretical predictions are made for these rate coefficients as well for the reactions of NH{sub 2}OH + NH{sub 2}, NH{sub 2}OH + NH, NH + OH, NH{sub 2} + NH{sub 2}, NH{sub 2} + NH, and NH + NH, each of which could be of secondary importance in NH{sub 2}OH thermal decomposition. The theoretical analyses employ a combination of ab initio transition state theory and master equation simulations. Comparisons between theory and experiment are made where possible. Modest adjustments of predicted barrier heights (i.e., by 2 kcal/mol or less) generally yield good agreement between theory and experiment. The rate coefficients obtained here should be of utility in modeling NO{sub x} in various combustion environments.

  13. Simulation of Crab Waist Collisions In DA$\\Phi$NE With KLOE-2 Interaction Region

    SciTech Connect (OSTI)

    Zobov, M.; Drago, A.; Gallo, A.; Milardi, C.; Shatilov, D.; Valishev, A.

    2015-06-24

    After the successful completion of the SIDDHARTA experiment run with crab waist collisions, the electron-positron collider DAΦNE has started routine operations for the KLOE-2 detector. The new interaction region also exploits the crab waist collision scheme, but features certain complications including the experimental detector solenoid, compensating anti-solenoids, and tilted quadrupole magnets. We have performed simulations of the beam-beam collisions in the collider taking into account the real DAΦNE nonlinear lattice. In particular, we have evaluated the effect of crab waist sextupoles and beam-beam interactions on the DAΦNE dynamical aperture and energy acceptance, and estimated the luminosity that can be potentially achieved with and without crab waist sextupoles in the present working conditions. A numerical analysis has been performed in order to propose possible steps for further luminosity increase in DAΦNE such as a better working point choice, crab sextupole strength optimization, correction of the phase advance between the sextupoles and the interaction region. The proposed change of the e- ring working point was implemented and resulted in a significant performance increase.

  14. Increasing biogas yield of rural biogas digester by addition of NH/sub 4/HCO/sub 3/

    SciTech Connect (OSTI)

    Sun, G.C.; Chen, G.Q.; Chen, M.; Liu, K.X.; Zhou, S.Y.

    1983-12-01

    By addition of 0.3% NH/sub 4/HCO/sub 3/ instead of animal manure into rural biogas digester in which the rotted rice straw was the major feedstock, the biogas yield doubled in comparison with the check digester (0.1 m/sup 3//m/sup 3//d) and the fertility of NH/sub 4/HCO/sub 3/ did not decrease because of biogas fermentation. Many digesters have been built in China. But, owing to the problems of improper management, unsuitable influent mixing, etc., neither digesters nor feedstock were fully utilized. In order to solve these problems, adding NH/sub 4/HCO/sub 3/ into digester instead of animal manure was tried. Its results showed that the suitable C/N ratio of influent mixing was obtained, the fertility of effluent went up, and biogas producing rate increased. The concentration of NH/sub 4/HCO/sub 3/ is 0.2-0.6%, but the optimal is 0.3%.

  15. Update and Improve Subsection NH –– Alternative Simplified Creep-Fatigue Design Methods

    SciTech Connect (OSTI)

    Tai Asayama

    2009-10-26

    This report described the results of investigation on Task 10 of DOE/ASME Materials NGNP/Generation IV Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 10 is to Update and Improve Subsection NH -- Alternative Simplified Creep-Fatigue Design Methods. Five newly proposed promising creep-fatigue evaluation methods were investigated. Those are (1) modified ductility exhaustion method, (2) strain range separation method, (3) approach for pressure vessel application, (4) hybrid method of time fraction and ductility exhaustion, and (5) simplified model test approach. The outlines of those methods are presented first, and predictability of experimental results of these methods is demonstrated using the creep-fatigue data collected in previous Tasks 3 and 5. All the methods (except the simplified model test approach which is not ready for application) predicted experimental results fairly accurately. On the other hand, predicted creep-fatigue life in long-term regions showed considerable differences among the methodologies. These differences come from the concepts each method is based on. All the new methods investigated in this report have advantages over the currently employed time fraction rule and offer technical insights that should be thought much of in the improvement of creep-fatigue evaluation procedures. The main points of the modified ductility exhaustion method, the strain range separation method, the approach for pressure vessel application and the hybrid method can be reflected in the improvement of the current time fraction rule. The simplified mode test approach would offer a whole new advantage including robustness and simplicity which are definitely attractive but this approach is yet to be validated for implementation at this point. Therefore, this report recommends the following two steps as a course of improvement of NH based on newly proposed creep-fatigue evaluation methodologies. The first step is to modify the current approach by incorporating the partial advantages the new method offer, and the second step is to replace the current method by the simplified test approach when it has become technically mature enough. The recommendations are basically in line with the work scope of the Task Force on Creep-Fatigue of the Subgroup on Elevated Temperature Design of the Standards Committee of the ASME Boiler and Pressure Vessel Committee Section III.

  16. Verification of Allowable Stresses In ASME Section III Subsection NH For Grade 91 Steel & Alloy 800H

    SciTech Connect (OSTI)

    R. W. Swindeman; M. J. Swindeman; B. W. Roberts; B. E. Thurgood; D. L. Marriott

    2007-11-30

    The database for the creep-rupture of 9Cr-1Mo-V (Grade 91) steel was collected and reviewed to determine if it met the needs for recommending time-dependent strength values, S{sub t}, for coverage in ASME Section III Subsection NH (ASME III-NH) to 650 C (1200 F) and 600,000 hours. The accumulated database included over 300 tests for 1% total strain, nearly 400 tests for tertiary creep, and nearly 1700 tests to rupture. Procedures for analyzing creep and rupture data for ASME III-NH were reviewed and compared to the procedures used to develop the current allowable stress values for Gr 91 for ASME II-D. The criteria in ASME III-NH for estimating S{sub t} included the average strength for 1% total strain for times to 600,000 hours, 80% of the minimum strength for tertiary creep for times to 600,000 hours, and 67% of the minimum rupture strength values for times to 600,000 hours. Time-temperature-stress parametric formulations were selected to correlate the data and make predictions of the long-time strength. It was found that the stress corresponding to 1% total strain and the initiation of tertiary creep were not the controlling criteria over the temperature-time range of concern. It was found that small adjustments to the current values in III-NH could be introduced but that the existing values were conservative and could be retained. The existing database was found to be adequate to extend the coverage to 600,000 hours for temperatures below 650 C (1200 F).

  17. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well-defined, well-characterized data. Element 3. Standards will be established for the design and operation of experiments for the generation of new validation data sets that are to be submitted to NE-CAMS that addresses the completeness and characterization of the dataset. Element 4. Standards will be developed for performing verification and validation (V&V) to establish confidence levels in CFD analyses of nuclear reactor processes; such processes will be acceptable and recognized by both CFD experts and the NRC.

  18. Microsoft PowerPoint - NOW2004_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOW2004 Workshop * Extensions to the Neutrino Standard Model: Sterile Neutrinos * MiniBooNE: Status and Prospects * Future Directions if MiniBooNE Sees Oscillations 2 Three Signal Regions * LSND ∆m 2 = 0.1 - 10 eV 2 , small mixing * Atmospheric ∆m 2 = 2.5×10 -3 eV 2 , large mixing * Solar ∆m 2 = 8.2×10 -5 eV 2 , large mixing ∆m 13 ∆m 12 ∆m 23 2 2 2 ( ) 1 sin 2 sin (1.27 / ) P m L E α α ν ν θ → = - ∆ 2 2 2 2 2 2 21 32 31 Three distinct neutrino oscillation signals, with For

  19. Microsoft Word - MicroBooNE CD-1 appr.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Approve Alternative Selection and Cost Range of the Large Liquid Argon Detector for Neutrino Physics (MicroBooNE) Project at the Fermi National Accelerator Laboratory Office of High Energy Physics Office of Science Purpose The purpose of this paper is to document the review and approval by the Office of Science Energy Systems Acquisition Advisory Board-equivalent for Critical Decision 1 (CD-1) "Approve Alternative Selection and Cost Range" for the Large Liquid Argon Detector for

  20. NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste

    Office of Legacy Management (LM)

    AM? 2 2 1986 NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste Line Sites from Further Consideration for FUSRAP Inclusion Carlos E. Garcia, Director Environmental Safety and Health Division Albuquerque Operations Office The enclosed material is being provided to you to document the final actions taken under the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP) for the Chupadera Mesa area and the Los Alamos County Industrial Waste Lines, New

  1. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New

    Energy Savers [EERE]

    England Clean Power Link Project - Comments and Motion to Intervene of Conservation Law Foundation | Department of Energy Project - Comments and Motion to Intervene of Conservation Law Foundation Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New England Clean Power Link Project - Comments and Motion to Intervene of Conservation Law Foundation Conservation Law Foundation (CLF) provides the following comments and Motion to Intervene regarding the Application by TDI-New

  2. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New

    Energy Savers [EERE]

    England Clean Power Link Project: Motion to Intervene of The Northeast Power Coordinating Council, Inc. | Department of Energy Project: Motion to Intervene of The Northeast Power Coordinating Council, Inc. Application for Presidential Permit OE Docket No. PP-400 TDI-NE - New England Clean Power Link Project: Motion to Intervene of The Northeast Power Coordinating Council, Inc. Northeast Power Coordinating Council, Inc. (NPCC) submits its Motion to Intervene the New England Clean Power Link

  3. Application for Presidential Permit OE Docket No. PP-400 TDI-NE New England

    Energy Savers [EERE]

    Clean Power Link Project: Notice of Intent to Prepare an Environmental Impact Statement: Federal Register Notice, Volume 79, No. 165, August 26, 2014 | Department of Energy New England Clean Power Link Project: Notice of Intent to Prepare an Environmental Impact Statement: Federal Register Notice, Volume 79, No. 165, August 26, 2014 Application for Presidential Permit OE Docket No. PP-400 TDI-NE New England Clean Power Link Project: Notice of Intent to Prepare an Environmental Impact

  4. ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003

    Office of Legacy Management (LM)

    * * * * * * * * * ~n~EGc.G ENERGY MEASUREMENTS GROUP EG&G SURVEY REPORT NE-F-003 FEBRUARY 1983 THE REMOTE SENSING LABORATORY OF THE UNITED STATES DEPARTMENT OF ENERGY AN AERIAL RADIOLOGICAL SURVEY OF AN AREA SURROUNDING THE FORMER MIDDLESEX SAMPLING PLANT IN MIDDLESEX, NEW JERSEY DATE OF SURVEY: MAY 1978 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

  5. NE-24 R&D Decontamination Projects Under the Formerly Utilized Sites Remedial

    Office of Legacy Management (LM)

    " _ ,' ,:.' : NE-24 R&D Decontamination Projects Under the Formerly Utilized Sites Remedial Action Program (FUSRAP) '. * * ,~~'.'J.' L.aGrone, Manager Oak Ridge Operations O fffce As a result of the House-Senate Conference Report and the Energy and W a ter Appropriations Act for FY 1984, and based on the data in the attached reports indicating radioactive contamination In excess of acceptable guidelines, the sites listed In the attachment and their respectfve vicinity properties

  6. Synthesis, characterization and optical properties of NH{sub 4}Dy(PO{sub 3}){sub 4}

    SciTech Connect (OSTI)

    Chemingui, S.; Ferhi, M. Horchani-Naifer, K.; Férid, M.

    2014-09-15

    Polycrystalline powders of NH{sub 4}Dy(PO{sub 3}){sub 4} polyphosphate have been grown by the flux method. This compound was found to be isotopic with NH{sub 4}Ce(PO{sub 3}){sub 4} and RbHo(PO{sub 3}){sub 4}. It crystallizes in the monoclinic space group P2{sub 1/n} with unit cell parameters a=10.474(6) Å, b=9.011(4) Å, c=10.947(7) Å and β=106.64(3)°. The title compound has been transformed to triphosphate Dy(PO{sub 3}){sub 3} after calcination at 800 °C. Powder X-ray diffraction, infrared and Raman spectroscopies and the differential thermal analysis have been used to identify these materials. The spectroscopic properties have been investigated through absorption, excitation, emission spectra and decay curves of Dy{sup 3+} ion in both compounds at room temperature. The emission spectra show the characteristic emission bands of Dy{sup 3+} in the two compounds, before and after calcination. The integrated emission intensity ratios of the yellow to blue (I{sub Y}/I{sub B}) transitions and the chromaticity properties have been determined from emission spectra. The decay curves are found to be double-exponential. The non-exponential behavior of the decay rates was related to the resonant energy transfer as well as cross-relaxation between the donor and acceptor Dy{sup 3+} ions. The determined properties have been discussed as function of crystal structure of both compounds. They reveal that NH{sub 4}Dy(PO{sub 3}){sub 4} is promising for white light generation but Dy(PO{sub 3}){sub 3} is potential candidates in field emission display (FED) and plasma display panel (PDP) devices. - Graphical abstract: The CIE color coordinate diagrams showing the chromatic coordinates of Dy{sup 3+} luminescence in NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3}. - Highlights: • The polycrystalline powders of NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3} are synthesized. • The obtained powders are characterized. • The spectroscopic properties of Dy{sup 3+} ion are investigated. • Results are discussed as function of crystal structure and chemical composition. • The usefulness of NH{sub 4}Dy(PO{sub 3}){sub 4} and Dy(PO{sub 3}){sub 3} in optical devices is revealed.

  7. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  8. Possible shape coexistence and magnetic dipole transitions in {sup 17}C and {sup 21}Ne

    SciTech Connect (OSTI)

    Sagawa, H.; Zhou, X. R.; Suzuki, Toshio; Yoshida, N.

    2008-10-15

    Magnetic dipole (M1) transitions of N=11 nuclei {sup 17}C and {sup 21}Ne are investigated by using shell model and deformed Skyrme Hartree-Fock + blocked BCS wave functions. Shell model calculations predict well observed energy spectra and magnetic dipole transitions in {sup 21}Ne, while the results are rather poor to predict these observables in {sup 17}C. In the deformed HF calculations, the ground states of the two nuclei are shown to have large prolate deformations close to {beta}{sub 2}=0.4. It is also pointed out that the first K{sup {pi}}=1/2{sup +} state in {sup 21}Ne is prolately deformed, while the first K{sup {pi}}=1/2{sup +} state in {sup 17}C is predicted to have a large oblate deformation close to the ground state in energy, We point out that the experimentally observed large hindrance of the M1 transition between I{sup {pi}}=1/2{sup +} and 3/2{sup +} in {sup 17}C can be attributed to a shape coexistence near the ground state of {sup 17}C.

  9. Comparison of GiBUU calculations with MiniBooNE pion production data

    SciTech Connect (OSTI)

    Lalakulich, O.; Mosel, U.

    2015-05-15

    Background: Neutrino-induced pion production can give important informationon the axial coupling to nucleon resonances. Furthermore, pion production represents a major background to quasielastic-like events. one pion production data from the MiniBooNE in charged current neutrino scattering in mineral oil appeared higher than expected within conventional theoretical approaches. Purpose: We aim to investigate which model parameters affect the calculated cross section and how they do this. Method: The Giessen BoltzmannUehlingUhlenbeck (GiBUU) model is used for an investigation of neutrino-nucleus reactions. Results: Presented are integrated and differential cross sections for 1?{sup +} and 1?{sup 0} production before and after final state interactions in comparison with the MiniBooNE data. Conclusions: For the MiniBooNE flux all processes (QE, 1?-background, ?, higher resonance production, DIS) contribute to the observed final state with one pion of a given charge. The uncertainty in elementary pion production cross sections leads to a corresponding uncertainty in the nuclear cross sections. Final state interactions change the shape of the muon-related observables only slightly, but they significantly change the shape of pion distributions.

  10. RELAP5 assessment using semiscale SBLOCA test S-NH-1. International Agreement Report

    SciTech Connect (OSTI)

    Lee, E.J.; Chung, B.D.; Kim, H.J.

    1993-06-01

    2-inch cold leg break test S-NH-1, conducted at the 1/1705 volume scaled facility Semiscale was analyzed using RELAP5/MOD2 Cycle 36.04 and MOD3 Version 5m5. Loss of HPIS was assumed, and reactor trip occurred on a low PZR pressure signal (13.1 MPa), and pumps began an unpowered coastdown on SI signal (12.5 MPa). The system was recovered by opening ADV`s when the PCT became higher than 811 K. Accumulator was finally injected into the system when the primary system pressure was less than 4.0 MPa. The experiment was terminated when the pressure reached the LPIS actuation set point RELAP5/MOD2 analysis demonstrated its capability to predict, with a sufficient accuracy, the main phenomena occurring in the depressurization transient, both from a qualitative and quantitative points of view. Nevertheless, several differences were noted regarding the break flow rate and inventory distribution due to deficiencies in two-phase choked flow model, horizontal stratification interfacial drag, and a CCFL model. The main reason for the core to remain nearly fully covered with the liquid was the under-prediction of the break flow by the code. Several sensitivity calculations were tried using the MOD2 to improve the results by using the different options of break flow modeling (downward, homogeneous, and area increase). The break area compensating concept based on ``the integrated break flow matching`` gave the best results than downward junction and homogeneous options. And the MOD3 showed improvement in predicting a CCFL in SG and a heatup in the core.

  11. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear reactor systems, components and processes, and will later expand to include materials, fuel system performance and other areas of M&S as time and funding allow.

  12. Beyond standard model searches in the MiniBooNE experiment

    SciTech Connect (OSTI)

    Katori, Teppei; Conrad, Janet M.

    2014-08-05

    The MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the Δm2~1eV2 region of the sterile neutrino hypothesis by observing νe(ν-e) charged current quasielastic signals from a νμ(ν-μ) beam. MiniBooNE observed excesses of νe and ν-e candidate events in neutrino and antineutrino mode, respectively. To date, these excesses have not been explained within the neutrino standard model (νSM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. The results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. In addition, this review describes these studies, demonstrating that short baseline neutrino experiments are rich environments in new physics searches.

  13. Capacitive deionization of NH{sub 4}CIO{sub 4} solutions with carbon aerogel electrodes. Revision 1

    SciTech Connect (OSTI)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1996-01-01

    A process for capacitive deionization of water with a stack of carbon aerogel electrodes was developed. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system; electricity is used instead. An aqueous solution of NH{sub 4}ClO{sub 4} is pumped through the electrochemical cell. After polarization, NH{sub 4}{sup +} and ClO{sub 4}{sup -} ions are removed from the water by the imposed electric field and trapped in the extensive cathodic and anodic double layers. Thsi process produces one stream of purified water and a second stream of concentrate. Effects of cell voltage, salt concentration, and cycling on electrosorption capacity were studied and results reported.

  14. A reaction mechanism for titanium nitride CVD from TiCl{sub 4} and NH{sub 3}

    SciTech Connect (OSTI)

    Larson, R.S.; Allendorf, M.D.

    1995-12-01

    A gas-phase and surface reaction mechanism for the CVD of TiN from TiCl{sub 4} and NH{sub 3} is proposed. The only gas-phase process is complex formation, which can compete with deposition. The surface mechanism postulates the stepwise elimination of Cl and H atoms from TiCl{sub 4} and NH{sub 3}, respectively, to form solid TiN and gaseous HCl. The mechanism also accounts for the change in oxidation state of Ti by allowing for liberation of N{sub 2}. Provided that the surface composition is at steady state, the stoichiometry of the overall reaction is reproduced exactly. In addition, the global kinetic law predicted by the mechanism is successfully fit to new deposition data from a rotating disk reactor and is shown to be consistent with literature results.

  15. NOIlVUlSININdV NOIlVWdOdNI AOd3N3 ACTO3NH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOIlVUlSININdV NOIlVWdOdNI AOd3N3 ACTO3NH 0661 This publication may be purchased from the Superintendent of Documents, U.S. Government Printing Office. Purchasing in formation for this or other Energy Information Administration (EIA) publications may be obtained from the Government Printing Office or ElA's National Energy Information Center. Questions on energy statistics should be directed to the Center by mail, telephone, or telecommunications device for the hearing impaired. Addresses,

  16. High-temperature phase transformation and topochemical nature in ferroelastic (NH{sub 4}){sub 2}SO{sub 4}

    SciTech Connect (OSTI)

    Lee, Kwang-Sei; Oh, In-Hwan; Ko, Jae-Hyeon

    2014-04-01

    The electrical conductivity of ferroelastic ammonium sulfate (NH{sub 4}){sub 2}SO{sub 4} revealed an anomaly at around 130 C (=403 K, T{sub P}) on heating with large and irreversible thermal hysteresis through thermal cycle. Ferroelastic domain walls and surface morphology of (NH{sub 4}){sub 2}SO{sub 4} were investigated by hot-stage polarizing microscopy. Structural phase transition from an orthorhombic ferroelastic phase to a hexagonal paraelastic phase was not identified at T{sub P} upon heating. On further heating above T{sub P}, microscopic spots appeared and grew on the crystal surface, suggesting that the high-temperature anomaly at T{sub P} was an indication of an onset of thermal decomposition controlled by topochemical factors. The increase of electrical conductivity above T{sub P} was attributed to proton migration. - Graphical abstract: Surface morphology of the (100) face of (NH{sub 4}){sub 2}SO{sub 4} on heating, showing chemical reaction at the surface. - Highlights: We investigate the high-temperature phase transformation of ammonium sulfate. The increasing conductivity upon heating is attributed to proton migration. Structural phase transition from orthorhombic to hexagonal phase is not confirmed. High-temperature anomaly is related to an onset of thermal decomposition. The nature of the high-temperature anomaly is topochemical controlled by defects.

  17. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  18. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  19. 20Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  20. NE-24

    Office of Legacy Management (LM)

    the Bureau of Hines Site at Albany, Oregon, for Remedial Action Under the Formerly Utilized Sites Remedial Action Program I L@ _I' J.-La&one, Manager Oak Ridge Operations Office Based on the data in the attached draft reports, it has been determined that the subject site is contaminated with residual radioactive material ' as a result of Manhattan Engineer District/Atomic Energy Commission operations P * at this site. The contamination is in excess of the acceptable guidelines and warrants

  1. NE-23

    Office of Legacy Management (LM)

    4:00 p.m., Monday through Friday (except Federal holidays), at the DOE Public Document Room located in Room lE-190 of the Forrestal Building, 1000 Independence Avenue, S.W.,...

  2. Electrocatalytic Hydrogen Production by [Ni(7PPh2NH)2]2+: Removing the Distinction Between Endo- and Exo- Protonation Sites

    SciTech Connect (OSTI)

    Brown, Houston JS; Wiese, Stefan; Roberts, John A.; Bullock, R. Morris; Helm, Monte L.

    2015-04-03

    A new Ni(II) complex, [Ni(7PPh2NH)2]2+ (7PPh2NH = 3,6-triphenyl-1-aza-3,6-diphosphacycloheptane) has been synthesized, and its electrochemical properties are reported. The 7PPh2NH ligand features an NH, ensuring properly positioned protonated amine groups (NH+) for electrocatalysis, regardless of whether protonation occurs exo- or endo- to the metal center. The compound is an electrocatalyst for H2 production in the presence of organic acids (pKa range 1013 in CH3CN) with turnover frequencies ranging from 160770 s-1 at overpotentials between 320470 mV, as measured at the half peak potential of the catalytic wave. In stark contrast to [Ni(PR2NR'2)2]2+ and other [Ni(7PPh2NR')]2+ complexes, catalytic turnover frequencies for H2 production by [Ni(7PPh2NH)2]2+ do not show catalytic rate enhancement upon the addition of H2O. This finding supports the assertion that [Ni(7PPh2NH)2]2+ eliminates the distinction between the endo- and exo-protonation isomers. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  3. Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage

    SciTech Connect (OSTI)

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  4. A Pyrrolyl-based Triazolophane: A Macrocyclic Receptor With CH and NH Donor Groups That Exhibits a Preference for Pyrophosphate Anions

    SciTech Connect (OSTI)

    Sessler, Jonathan L.; Cia, Jiajia; Gong, Han-Yuan; Yang, Xiauping; Arambula, Jonathan F.; Hay, Benjamin

    2010-01-01

    A pyrrolyl-based triazolophane, incorporating CH and NH donor groups, acts as a receptor for the pyrophosphate anion in chloroform solution. It shows selectivity for this trianion, followed by HSO{sub 4}{sup -} > H{sub 2}PO{sub 4}{sup -} > Cl{sup -} > Br{sup -} (all as the corresponding tetrabutylammonium salts), with NH-anion interactions being more important than CH-anion interactions. In the solid state, the receptor binds the pyrophosphate anion in a clip-like slot via NH and CH hydrogen bonds.

  5. MiniBooNE Charged Current Neutral Pion Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muon Neutrino Induced Charged Current Neutral Pion Cross Sections on Mineral Oil at Enu=0.5-2.0 GeV" , arXiv:1010.3264 [hep-ex] The following MiniBooNE information for the 2010 CC π0 cross section paper is made available to the public. Each of the following tables contains: The bin boundaries and units. The central-value measurement or prediction with its units and multiplicative factor. The statistical uncertainty per bin of each measurement with its units and multiplicative factor. The

  6. Microsoft Word - MicroBooNE CD-3b appr.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3b Approve Start of Full Construction of the Micro Booster Neutrino Project at the Fermi National Accelerator Laboratory Office of High Energy Physics Office of Science A. Purpose The purpose of this document is to record the review and approval by the Office of Science Energy Systems Acquisition Advisory Board-equivalent for Critical Decision (CD) 3b "Approve Start of Full Construction" for the Micro Booster Neutrino (MicroBooNE) Project at the Fermi National Accelerator Laboratory

  7. MiniBooNE H. A. Tanaka Princeton University Neutrino Factory 2004 Osaka, Japan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. A. Tanaka Princeton University Neutrino Factory 2004 Osaka, Japan The MiniBooNE Collaboration University of Alabama: Y.Liu, I.Stancu Bucknell University: S.Koutsoliotas University of Cincinnati: E.Hawker, R.A.Johnson, J.L.Raaf University of Colorado: T.Hart, R.H.Nelson, M.Wilking, E.D.Zimmerman Columbia University: A.A.Aguilar-Arevalo, L.Bugel, J.M.Conrad, J.Link, J.Monroe, D.Schmitz, M.H.Shaevitz, M.Sorel, G.P.Zeller Embry Riddle Aeronautical University: D.Smith Fermi National Accelerator

  8. DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-06-21

    This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D program planning.

  9. DOE-NE-STD-1004-92; Root Cause Analysis Guidance Document

    Office of Environmental Management (EM)

    NE-STD-1004-92 DOE GUIDELINE ROOT CAUSE ANALYSIS GUIDANCE DOCUMENT February 1992 U.S. Department of Energy Office of Nuclear Energy Office of Nuclear Safety Policy and Standards Washington, D.C. 20585 ii ABSTRACT DOE Order 5000.3A, "Occurrence Reporting and Processing of Operations Information," investigation and reporting of occurrences (including the performance of root cause analysis) requires the and the selection, implementation, and follow-up of corrective actions. The level of

  10. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect (OSTI)

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  11. OZONE PRODUCTION IN THE PHILADELPHIA URBAN AREA DURING NE-OPS 99.

    SciTech Connect (OSTI)

    KLEINMAN,L.I.; DAUM,P.H.; BRECHTEL,F.; LEE,Y.N.; NUNNERMACKER,L.J.; SPRINGSTON,S.R.; WEINSTEIN-LLOYD,J.

    2001-10-01

    As part of the 1999 NARSTO Northeast Oxidant and Particulate Study (NE-OPS) field campaign, the DOE G-1 aircraft sampled trace gases and aerosols in and around the Philadelphia metropolitan area. Twenty research flights were conducted between July 25 and August 11. The overall goals of these flights were to obtain a mechanistic understanding of O{sub 3} production; to characterize the spatial and temporal behavior of photo-oxidants and aerosols; and to study the evolution of aerosol size distributions, including the process of new particle formation. Within the NE-OPS program, other groups provided additional trace gas, aerosol, and meteorological observations using aircraft, balloon, remote sensing, and surface based instruments (Phillbrick et al., 2000). In this article we provide an overview of the G-1 observations related to O{sub 3} production, focusing on the vertical distribution of pollutants. Ozone production rates are calculated using a box model that is constrained by observed trace gas concentrations. Highest O{sub 3} concentrations were observed on July 31, which we present as a case study. On that day, O{sub 3} concentrations above the 1-hour 120 ppb standard were observed downwind of Philadelphia and also in the plume of a single industrial facility located on the Delaware River south of the city.

  12. Wave packet and statistical quantum calculations for the He + NeH{sup +} → HeH{sup +} + Ne reaction on the ground electronic state

    SciTech Connect (OSTI)

    Koner, Debasish; Panda, Aditya N.; Barrios, Lizandra; González-Lezana, Tomás

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  13. QSO ABSORPTION SYSTEMS DETECTED IN Ne VIII: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION

    SciTech Connect (OSTI)

    Meiring, J. D.; Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)] [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Werk, J. K.; Prochaska, J. X. [University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States)] [University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States); Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States)] [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jenkins, E. B. [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)] [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Lehner, N.; Sembach, K. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)] [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-04-10

    Using high-resolution, high signal-to-noise ultraviolet spectra of the z{sub em} = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of Ne VIII+O VI absorption line systems at z{sub abs} = 0.68381, 0.70152, 0.72478. In addition to Ne VIII and O VI, absorption lines from multiple ionization stages of oxygen (O II, O III, O IV) are detected and are well aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T Almost-Equal-To 10{sup 5.7} K) that produces Ne VIII and O VI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z{sub Sun} to supersolar. The cool ( Almost-Equal-To 10{sup 4} K) phases have densities n{sub H} Almost-Equal-To 10{sup -4} cm{sup -3} and small sizes (<4 kpc); these cool clouds are likely to expand and dissipate, and the Ne VIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The Ne VIII redshift density, dN/dz{approx}7{sup +7}{sub -3}, requires a large number of these clouds for every L > 0.1 L* galaxy and a large effective absorption cross section ({approx}> 100 kpc), and indeed, we find a star-forming {approx}L {sup *} galaxy at the redshift of the z{sub abs} = 0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these Ne VIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.

  14. Observational results of a multi-telescope campaign in search of interstellar urea [(NH{sub 2}){sub 2}CO

    SciTech Connect (OSTI)

    Remijan, Anthony J.; Snyder, Lewis E.; Kuo, Hsin-Lun; Looney, Leslie W.; Friedel, Douglas N.; McGuire, Brett A.; Golubiatnikov, G. Yu; Lovas, Frank J.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; McCall, Benjamin J.; Hollis, Jan M.

    2014-03-10

    In this paper, we present the results of an observational search for gas phase urea [(NH{sub 2}){sub 2}CO] observed toward the Sgr B2(N-LMH) region. We show data covering urea transitions from ?100 GHz to 250 GHz from five different observational facilities: the Berkeley-Illinois-Maryland-Association (BIMA) Array, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the NRAO 12 m telescope, the IRAM 30 m telescope, and the Swedish-ESO Submillimeter Telescope (SEST). The results show that the features ascribed to urea can be reproduced across the entire observed bandwidth and all facilities by best-fit column density, temperature, and source size parameters which vary by less than a factor of two between observations merely by adjusting for telescope-specific parameters. Interferometric observations show that the emission arising from these transitions is cospatial and compact, consistent with the derived source sizes and emission from a single species. Despite this evidence, the spectral complexity of both (NH{sub 2}){sub 2}CO and of Sgr B2(N) makes the definitive identification of this molecule challenging. We present observational spectra, laboratory data, and models, and discuss our results in the context of a possible molecular detection of urea.

  15. Effect of supplementation on vitamin A and zinc nutriture of children in northeast (NE) Thailand

    SciTech Connect (OSTI)

    Udomkesmalee, E.; Dhanamitta, S.; Charoenklatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Kramer, T.R.; Smith, J.C. Jr. USDA, Beltsville, MD )

    1991-03-11

    Previous surveys of the nutritional status of young children in NE Thailand suggested that they may benefit from vitamin A (VA) and/or zinc (Zn) supplementation. 140 children, with low plasma retinol concentrations were entered in a double-blind study. They were randomized and supplemented with either VA, Zn, VA + Zn or placebo each weekday for 6 mos. All subjects consumed their usual diet that provided adequate protein, less than recommended calories, fat, Zn and VA. Biochemical indices of VA and Zn status increased significantly. The children had adequate VA liver stores as assessed by relative dose response. Zn supplementation resulted in improvement of vision restoration time in dim light using rapid dark adaptometry. VA and Zn synergistically normalized conjunctival epithelium after a 6 mo supplementation. Data suggest that functional improvements of populations with suboptimal VA and Zn nutriture can be accomplished by supplementation with {lt}2 times of RDA of these nutrients.

  16. MiniBooNE NC 1π0 Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    νμ and ν̅μ induced neutral current single π0 production cross sections on mineral oil at Eν~O(1 GeV)", arXiv:0911.2063 [hep-ex], Phys. Rev. D81, 013005 (2010) The following MiniBooNE information from the 2009 NC 1π0 cross section paper is made available to the public: Neutrino Mode Running νμ NC 1π0 pπ0 Differential Cross Section 1D array of bin boundaries partitioning the momentum of the π0 1D array of the value of the differential cross section in each bin in units of 10-40

  17. Test of ''Crab-Waist'' Collisions at the DA{Phi}NE {Phi} Factory

    SciTech Connect (OSTI)

    Zobov, M.; Alesini, D.; Biagini, M. E.; Biscari, C.; Bocci, A.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G. O.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.

    2010-04-30

    The electron-positron collider DA{Phi}NE, the Italian {Phi} factory, has been recently upgraded in order to implement an innovative collision scheme based on large crossing angle, small beam sizes at the crossing point, and compensation of beam-beam interaction by means of sextupole pairs creating a ''crab-waist'' configuration in the interaction region. Experimental tests of the novel scheme exhibited an increase by a factor of 3 in the peak luminosity of the collider with respect to the performances reached before the upgrade. In this Letter we present the new collision scheme, discuss its advantages, describe the hardware modifications realized for the upgrade, and report the results of the experimental tests carried out during commissioning of the machine in the new configuration and standard operation for the users.

  18. Unusual defect physics in CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell absorber

    SciTech Connect (OSTI)

    Yin, Wan-Jian Shi, Tingting; Yan, Yanfa

    2014-02-10

    Thin-film solar cells based on Methylammonium triiodideplumbate (CH{sub 3}NH{sub 3}PbI{sub 3}) halide perovskites have recently shown remarkable performance. First-principle calculations show that CH{sub 3}NH{sub 3}PbI{sub 3} has unusual defect physics: (i) Different from common p-type thin-film solar cell absorbers, it exhibits flexible conductivity from good p-type, intrinsic to good n-type depending on the growth conditions; (ii) Dominant intrinsic defects create only shallow levels, which partially explain the long electron-hole diffusion length and high open-circuit voltage in solar cell. The unusual defect properties can be attributed to the strong Pb lone-pair s orbital and I p orbital antibonding coupling and the high ionicity of CH{sub 3}NH{sub 3}PbI{sub 3}.

  19. Solvent extraction of Li+, H3O+ and NH4+ into nitrobenzene by using sodium dicarbollylcobaltate and calix[4]arene-bis(t-octylbenzo-18-crown-6)

    SciTech Connect (OSTI)

    Makrlik, Emanuel; Selucky, P.; Vanura, Petr; Moyer, Bruce A

    2013-01-01

    From extraction experiments and c-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + NaL+ (nb) , ML+ (nb) + Na+ (aq) taking place in the two-phase water nitrobenzene system (M+ = Li+, H3O+, NH+4; L = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: zH3O+ < Li+ < NH+4.

  20. Microstructures and properties of CH{sub 3}NH{sub 3}PbI{sub 3?x}Cl{sub x} hybrid solar cells

    SciTech Connect (OSTI)

    Suzuki, Kohei E-mail: oku@mat.usp.ac.jp; Suzuki, Atsushi E-mail: oku@mat.usp.ac.jp; Zushi, Masahito E-mail: oku@mat.usp.ac.jp; Oku, Takeo E-mail: oku@mat.usp.ac.jp

    2015-02-27

    Halide-perovskite CH{sub 3}NH{sub 3}PbI{sub 3} was produced on mesoporous TiO{sub 2} layer by spin-coating a precursor solution of PbCl{sub 2} and CH{sub 3}NH{sub 3}I in dimethylformamide. The role of the annealing process and chlorine (Cl) doping for the perovskite-phase formation was investigated. It was found that crystallization of the perovskite materials was stimulated by the annealing process, and that longer annealing time is necessary for the Cl-doped perovskite compared with that of non-doped perovskite phase.

  1. Demonstration Assessment of LED Roadway Lighting: NE Cully Boulevard Portland, OR

    SciTech Connect (OSTI)

    Royer, Michael P.; Poplawski, Michael E.; Tuenge, Jason R.

    2012-06-29

    A new roadway lighting demonstration project was initiated in late 2010, which was planned in conjunction with other upgrades to NE Cully Boulevard, a residential collector road in the northeast area of Portland, OR. With the NE Cully Boulevard project, the Portland Bureau of Transportation hoped to demonstrate different light source technologies and different luminaires side-by-side. This report documents the initial performance of six different newly installed luminaires, including three LED products, one induction product, one ceramic metal halide product, and one high-pressure sodium (HPS) product that represented the baseline solution. It includes reported, calculated, and measured performance; evaluates the economic feasibility of each of the alternative luminaires; and documents user feedback collected from a group of local Illuminating Engineering Society (IES) members that toured the site. This report does not contain any long-term performance evaluations or laboratory measurements of luminaire performance. Although not all of the installed products performed equally, the alternative luminaires generally offered higher efficacy, more appropriate luminous intensity distributions, and favorable color quality when compared to the baseline HPS luminaire. However, some products did not provide sufficient illumination to all areas—vehicular drive lanes, bicycle lanes, and sidewalks—or would likely fail to meet design criteria over the life of the installation due to expected depreciation in lumen output. While the overall performance of the alternative luminaires was generally better than the baseline HPS luminaire, cost remains a significant barrier to widespread adoption. Based on the cost of the small quantity of luminaires purchased for this demonstration, the shortest calculated payback period for one of the alternative luminaire types was 17.3 years. The luminaire prices were notably higher than typical prices for currently available luminaires purchased in larger quantities. At prices that are more typical, the payback would be less than 10 years. In addition to the demonstration luminaires, a networked control system was installed for additional evaluation and demonstration purposes. The capability of control system to measure luminaire input power was explored in this study. A more exhaustive demonstration and evaluation of the control system will be the subject of future GATEWAY report(s).

  2. Proposal of a new generation of Laser Beacon for time calibration in the KM3NeT neutrino telescope

    SciTech Connect (OSTI)

    Real, Diego [IFIC, Instituto de Fsica Corpuscular, CSIC-Universidad de Valencia, C Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each a set (31) of small area photomultipliers. The main motivation of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. To this end, several time calibration subsystems have been developed. In this article, the proposal of a last generation Laser Beacon, to be used in KM3NeT and developed to measure and monitor the relative time offsets between photomultipliers, is presented.

  3. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

  4. Rotational and angular distributions of NO products from NO-Rg(Rg = He, Ne, Ar) complex photodissociation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heather L. Holmes-Ross; Hall, Gregory E.; Valenti, Rebecca J.; Yu, Hua -Gen; Lawrance, Warren D.

    2016-01-29

    In this study, we present the results of an investigation into the rotational and angular distributions of the NO A~ state fragment following photodissociation of the NO-He, NO-Ne and NO-Ar van der Waals complexed excited via the A~ ← X~ transition. For each complex the dissociation is probed for several values of Ea, the available energy above the dissociation threshold.

  5. REP&V TO ATTNJF: NE-23 SUWECC Commercial Facilities Used by National Lead Company of Ohio in Support

    Office of Legacy Management (LM)

    REP&V TO ATTNJF: NE-23 SUWECC Commercial Facilities Used by National Lead Company of Ohio in Support 'of FMPC Operations TO: Robert E. Lynch Procuresnent and CorXracts Division, AD-42 Oak Ridge Operations Office The Division of Facility and Site Decormnissioning Projects (DFSP) is responsible for managing the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP). The purposes of FUSRAP are (1) to identify facilities formerly operated for or by the Manhattan Engineer District

  6. A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE

    SciTech Connect (OSTI)

    Cox, David Christopher; /Indiana U.

    2008-02-01

    The neutral current neutrino-nucleon elastic interaction {nu} N {yields} {nu} N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises {approx}18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using {approx}10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q{sup 2}. This is the first measurement of a differential cross section with MiniBooNE data. From this analysis, a value for the nucleon axial mass M{sub A} was extracted to be 1.34 {+-} 0.25 GeV consistent with previous measurements. The integrated cross section for the Q{sup 2} range 0.189 {yields} 1.13 GeV{sup 2} was calculated to be (8.8 {+-} 0.6(stat) {+-} 0.2(syst)) x 10{sup -40} cm{sup 2}.

  7. Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH{sub 3}-molecular beam epitaxy

    SciTech Connect (OSTI)

    Fireman, Micha N.; Browne, David A.; Mazumder, Baishakhi; Speck, James S.; Mishra, Umesh K.

    2015-05-18

    The results of vertical transport through nitride heterobarrier structures grown by ammonia molecular beam epitaxy are presented. Structures are designed with binary layers to avoid the effects of random alloy fluctuations in ternary nitride barriers. The unintentional incorporation of Ga in the AlN growth is investigated by atom probe tomography and is shown to be strongly dependent on both the NH{sub 3} flowrate and substrate temperature growth parameters. Once nominally pure AlN layer growth conditions are achieved, structures consisting of unintentionally doped (UID) GaN spacer layers adjacent to a nominally pure AlN are grown between two layers of n+ GaN, from which isotype diodes are fabricated. Varying the design parameters of AlN layer thickness, UID spacer layer thickness, and threading dislocation density show marked effects on the vertical transport characteristics of these structures. The lack of significant temperature dependence, coupled with Fowler-Nordheim and/or Milliken-Lauritsen analysis, point to a prevalently tunneling field emission mechanism through the AlN barrier. Once flatband conditions in the UID layer are achieved, electrons leave the barrier with significant energy. This transport mechanism is of great interest for applications in hot electron structures.

  8. Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3

    SciTech Connect (OSTI)

    Wang, Yun; Huang, Jingsong; Sumpter, Bobby G; Zhang, Haimin; Liu, Porun; Yang, Huagui; Zhao, Huijun

    2015-01-01

    Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms, which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.

  9. The efficiency limit of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells

    SciTech Connect (OSTI)

    Sha, Wei E. I.; Ren, Xingang; Chen, Luzhou; Choy, Wallace C. H.

    2015-06-01

    With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CH{sub 3}NH{sub 3}PbI{sub 3}) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200?nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics.

  10. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect (OSTI)

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  11. Modeling of plasma chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge described using the one-dimensional fluid model

    SciTech Connect (OSTI)

    Li Zhi [School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan 114007 (China); School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051 (China); Li Xuehui [Physical Science and Technical College, Dalian University, Dalian 116622 (China)

    2013-01-15

    The keynote of our research is to study the gas phase chemistry in an atmospheric pressure Ar/NH{sub 3} cylindrical dielectric barrier discharge, which is very important to produce the iron-nitride magnetic fluid. For this purpose, a home-made one dimensional fluid model with the Scharfetter-Gummel method has been developed. The equations solved are the particle balances, assuming a drift-diffusion approximation for the fluxes, and the electron energy equation. The self-consistent electric field is obtained by the simultaneous solution of Poisson's equation. The simulations were carried out for the different ammonia concentrations (2%, 3.5%, and 7%), at a voltage of 1 kV, and a driving frequency of 20 kHz. It concluded that the major ion products of Ar are Ar{sup +} and Ar{sub 2}{sup +}. Ar{sup +} is the most important positive ions, followed by Ar{sub 2}{sup +}. It is shown that the NH{sup +} density is smaller than that of the other ammonia ions. The density of NH{sub 4}{sup +} is more than that of the other ammonia ions when the ammonia concentration increased. The diffuse mode can be established after the discharge was ignited, and the mode changes to filamentary mode with an increase in ammonia concentration.

  12. The Origin and Coupling Mechanism of the Magnetoelectric Effect in TM Cl 2 -4SC(NH 2 ) 2 ( TM = Ni and Co)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mun, Eundeok; Wilcox, Jason; Manson, Jamie L.; Scott, Brian; Tobash, Paul; Zapf, Vivien S.

    2014-01-01

    Most research on multiferroics and magnetoelectric effects to date has focused on inorganic oxides. Molecule-based materials are a relatively new field in which to search for magnetoelectric multiferroics and to explore new coupling mechanisms between electric and magnetic order. We present magnetoelectric behavior in NiCl 2 -4SC(NH 2 ) 2 (DTN) and CoCl 2 -4SC(NH 2 ) 2 (DTC). These compounds form tetragonal structures where the transition metal ion (Ni or Co) is surrounded by four electrically polar thiourea molecules [SC(NH 2 ) 2 ]. By tracking the magnetic and electric properties of these compounds as a function ofmore » magnetic field, we gain insights into the coupling mechanism by observing that, in DTN, the electric polarization tracks the magnetic ordering, whereas in DTC it does not. For DTN, all electrically polar thiourea molecules tilt in the same direction along the c -axis, breaking spatial-inversion symmetry, whereas, for DTC, two thiourea molecules tilt up and two tilt down with respect to c -axis, perfectly canceling the net electrical polarization. Thus, the magnetoelectric coupling mechanism in DTN is likely a magnetostrictive adjustment of the thiourea molecule orientation in response to magnetic order.« less

  13. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; Mulligan, Padhraic; Qiu, Jie; Cao, Lei; Huang, Jinsong

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm–2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals thanmore » in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  14. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dong, Qingfeng; Fang, Yanjun; Shao, Yuchuan; Mulligan, Padhraic; Qiu, Jie; Cao, Lei; Huang, Jinsong

    2015-02-27

    Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm–2) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals thanmore »in polycrystalline thin films. As a result, the long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.« less

  15. Angular momentum exchange by gravitational torques and infall in the circumbinary disk of the protostellar system L1551 NE

    SciTech Connect (OSTI)

    Takakuwa, Shigehisa; Ho, Paul T. P. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Saito, Masao [Joint ALMA Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Saigo, Kazuya [ALMA Project Office, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Chiyoda-ku, Tokyo 102-8160 (Japan); Lim, Jeremy [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hanawa, Tomoyuki, E-mail: takakuwa@asiaa.sinica.edu.tw [Center for Frontier Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)

    2014-11-20

    We report an ALMA observation of the Class I binary protostellar system L1551 NE in the 0.9 mm continuum, C{sup 18}O (3-2), and {sup 13}CO (3-2) lines at a ?1.6 times higher resolution and a ?6 times higher sensitivity than those of our previous SubMillimeter Array (SMA) observations, which revealed a r ? 300 AU scale circumbinary disk in Keplerian rotation. The 0.9 mm continuum shows two opposing U-shaped brightenings in the circumbinary disk and exhibits a depression between the circumbinary disk and the circumstellar disk of the primary protostar. The molecular lines trace non-axisymmetric deviations from Keplerian rotation in the circumbinary disk at higher velocities relative to the systemic velocity, where our previous SMA observations could not detect the lines. In addition, we detect inward motion along the minor axis of the circumbinary disk. To explain the newly observed features, we performed a numerical simulation of gas orbits in a Roche potential tailored to the inferred properties of L1551 NE. The observed U-shaped dust features coincide with locations where gravitational torques from the central binary system are predicted to impart angular momentum to the circumbinary disk, producing shocks and hence density enhancements seen as a pair of spiral arms. The observed inward gas motion coincides with locations where angular momentum is predicted to be lowered by the gravitational torques. The good agreement between our observation and model indicates that gravitational torques from the binary stars constitute the primary driver for exchanging angular momentum so as to permit infall through the circumbinary disk of L1551 NE.

  16. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    SciTech Connect (OSTI)

    Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Pina, Ll.; Rubayo-Soneira, J.

    2012-08-07

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  17. Transfer mechanism in /sup 16/O+/sup 24/Mg and /sup 20/Ne+/sup 24/Mg elastic scattering

    SciTech Connect (OSTI)

    NING Ping-Zhi; GAO Cheng-Qun; HE Guo-Zhu

    1985-10-01

    The mechanism of transferring a cluster of nucleons between two colliding nuclei is considered to explain the backward angle oscillatory rise in the differential cross section of the elastic scattering between certain nuclei, such as /sup 16/O+/sup 24/Mg or /sup 20/Ne+/sup 24/Mg. The nuclear molecular orbit approximation theory is applied. For one-step transfer, if the parameter involved is assumed to be adjustable, the numerical calculations can be made to fit the experimental results naturally.

  18. 35 COFibE, Series A. U. S. ATOXIC ENERGY CCMMISSION r'C Cj NE# YORK OPERATIONS OFFICE

    Office of Legacy Management (LM)

    COFibE, Series A. - U. S. ATOXIC ENERGY CCMMISSION r'C Cj NE# YORK OPERATIONS OFFICE HEkLTH AND SAFETY DIVISION (Merril Eicsnbud, Dirsator) MONTHLY REPORT OF FIELD ACTIVITIES (This report%v,rs%~~~nth period) Indusorial Ii~iene Branoh m a . . 0 . . c . . . o W. B. Harris, Chief Radiation Branch . y y e 0e . e . e . . . . e . . . Hanson Blatz, Chief Fi:e and Accident Branch D e a o o . . . ..s . . B. J. Kehoe, Chief Medical Advioer, Dr. J. A. Quiglsy Siometrician, Dr. A. E. Brandt TABLF OF

  19. REPLY TO ATTN OF: NE-24 L SUBJECT: Authorization to Conduct Remedial Action at Vicinity Properties In Lodi,

    Office of Legacy Management (LM)

    HBS. - 2- United States Government '--Department of Energy | memorandum 4 ' It) |1~~~~~ e~~~~0i78 DATE: OCT 9 1984 REPLY TO ATTN OF: NE-24 L SUBJECT: Authorization to Conduct Remedial Action at Vicinity Properties In Lodi, New Jersey TO: J. LaGrone, Manager Oak Ridge Operations Office Based on the designation survey conducted by ORNL (Attachments 1-6), the following properties are being authorized for remedial action. It should be noted that the attached survey data are for designation purposes

  20. REP&V TO ATTNOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio in Support

    Office of Legacy Management (LM)

    x:Y" . .' 3023 I\ \ 'a' '. Unita? -&&s Coverament , ,Q,.l. ),&, ,(>.. Department of Energy riGmorandum / d6a 2/. $3 DATE: JL(L 2 8 ;;$5 co. /3 .-J/ co,/3 REP&V TO ATTNOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio in Support of FMPC Operations TO: Robert E. Lynch Procuremnent and Contracts Division, AD-42 Oak Ridge Operations Office The Division of Facility and Site Decommissioning Projects (DFSD) is responsible for managing the

  1. DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term Operation Program … Joint Research & Development Plan

    Office of Environmental Management (EM)

    2-24562 Revision 4 DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term Operations Program - Joint Research and Development Plan April 2015 U.S. Department of Energy Office of Nuclear Energy DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the

  2. Forward fitting of experimental data from a NE213 neutron detector installed with the magnetic proton recoil upgraded spectrometer at JET

    SciTech Connect (OSTI)

    Binda, F. Ericsson, G.; Eriksson, J.; Hellesen, C.; Conroy, S.; Sundn, E. Andersson; Collaboration: JET-EFDA Team

    2014-11-15

    In this paper, we present the results obtained from the data analysis of neutron spectra measured with a NE213 liquid scintillator at JET. We calculated the neutron response matrix of the instrument combining MCNPX simulations, a generic proton light output function measured with another detector and the fit of data from ohmic pulses. For the analysis, we selected a set of pulses with neutral beam injection heating (NBI) only and we applied a forward fitting procedure of modeled spectral components to extract the fraction of thermal neutron emission. The results showed the same trend of the ones obtained with the dedicated spectrometer TOFOR, even though the values from the NE213 analysis were systematically higher. This discrepancy is probably due to the different lines of sight of the two spectrometers (tangential for the NE213, vertical for TOFOR). The uncertainties on the thermal fraction estimates were from 4 to 7 times higher than the ones from the TOFOR analysis.

  3. Regulatory Safety Issues in the Structural Design Criteria of ASME Section III Subsection NH and for Very High Temperatures for VHTR & GEN IV

    SciTech Connect (OSTI)

    William J. O’Donnell; Donald S. Griffin

    2007-05-07

    The objective of this task is to identify issues relevant to ASME Section III, Subsection NH [1], and related Code Cases that must be resolved for licensing purposes for VHTGRs (Very High Temperature Gas Reactor concepts such as those of PBMR, Areva, and GA); and to identify the material models, design criteria, and analysis methods that need to be added to the ASME Code to cover the unresolved safety issues. Subsection NH was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. This Report describes: (1) NRC and ACRS safety concerns raised during the licensing process of CRBR , (2) how some of these issues are addressed by the current Subsection NH of the ASME Code; and (3) the material models, design criteria, and analysis methods that need to be added to the ASME Code and Code Cases to cover unresolved regulatory issues for very high temperature service.

  4. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; Beyzavi, M. Hassan; Stephenson, Casey J.; Hupp, Joseph T.; Farha, Omar K.

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However,more » UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.« less

  5. Synthesis and Evaluation of Cu/SAPO-34 Catalysts for NH3-SCR 2: Solid-state Ion Exchange and One-pot Synthesis

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-01-01

    Cu-SAPO-34 catalysts are synthesized using two methods: solid-state ion exchange (SSIE) and one-pot synthesis. SSIE is conducted by calcining SAPO-34/CuO mixtures at elevated temperatures. For the one-pot synthesis method, Cu-containing chemicals (CuO and CuSO4) are added during gel preparation. A high-temperature calcination step is also needed for this method. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, and scanning electron microscopy (SEM). Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. In Cu-SAPO-34 samples formed using SSIE, Cu presents both as isolated Cu2+ ions and unreacted CuO. The former is highly active and selective in NH3-SCR, while the latter catalyzes a side reaction; notably, the non-selective oxidation of NH3 above 350 C. Using the one-pot method followed by a high-temperature aging treatment, it is possible to form Cu SAPO-34 samples with predominately isolated Cu2+ ions at low Cu loadings. However at much higher Cu loadings, isolated Cu2+ ions that bind weakly with the CHA framework and CuO clusters also form. These Cu moieties are very active in catalyzing non-selective NH3 oxidation above 350 C. Low-temperature reaction kinetics indicate that Cu-SAPO-34 samples formed using SSIE have core-shell structures where Cu is enriched in the shell layers; while Cu is more evenly distributed within the one-pot samples. Reaction kinetics also suggest that at low temperatures, the local environment next to Cu2+ ion centers plays little role on the overall catalytic properties. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOEs Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle under contract number DE-AC05-76RL01830. The authors also thank Shari Li (PNNL) for surface area/pore volume measurements, and Bruce W. Arey (PNNL) for SEM measurements. Discussions with Drs. A. Yezerets, K. Kamasamudram, J.H. Li, N. Currier and J.Y. Luo from Cummins, Inc. and H.Y. Chen and H. Hess from Johnson-Matthey are greatly appreciated.

  6. Effects of gaseous NH{sub 3} and SO{sub 2} on the concentration profiles of PCDD/F in flyash under post-combustion zone conditions

    SciTech Connect (OSTI)

    Hajizadeh, Yaghoub; Onwudili, Jude A.; Williams, Paul T.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Influence of NH{sub 3} and SO{sub 2} on 2378-PCDD/F in flyash and flue gases was investigated. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 34-75% in the flyash. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 21-40% from the flue gases. Black-Right-Pointing-Pointer SO{sub 2} led to 99% PCDD and 93% PCDF reductions in the flyash. Black-Right-Pointing-Pointer SO{sub 2} led to 89% PCDD and 76% PCDF reductions in the flue gases. - Abstract: The influence of gaseous ammonia and sulphur dioxide on the formation of 2378-substituted PCDD/F on a reference flyash from a municipal waste incinerator has been investigated using a laboratory scale fixed-bed reactor. The reference flyash samples (BCR-490) was reacted under a simulated flue gas stream at temperatures of 225 and 375 Degree-Sign C for 96 h. The experiments were carried out in two series: first with simulated flue gas alone, and then with injection of NH{sub 3} or SO{sub 2} gas into the flue gas just before the reactor inlet. It was found that the injection of gaseous ammonia into the flue gas could decrease the concentration of both PCDD and PCDF by 34-75% from the solid phase and by 21-40% from the gas phase. Converting the results to I-TEQ values, it could reduce the total I-TEQ values of PCDD and PCDF in the sum of the flyash and exhaust flue gas by 42-75% and 24-57% respectively. The application of SO{sub 2} led to 99% and 93% reductions in the PCDD and PCDF average congener concentrations, respectively in the solid phase. In the gas phase, the total reductions were 89% and 76% for PCDD and PCDF, respectively. Moreover, addition of SO{sub 2} reduced the total I-TEQ value of PCDD and PCDF in the flyash and exhaust flue gas together by 60-86% and 72-82% respectively. Sulphur dioxide was more effective than ammonia in suppressing PCDD/F formation in flyash under the conditions investigated.

  7. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program. Joint Research and Development Plan

    SciTech Connect (OSTI)

    Williams, Don

    2014-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation’s electrical generation capability. By the end of 2014, about one-third of the existing domestic fleet will have passed their 40th anniversary of power operations, and about one-half of the fleet will reach the same 40-year mark within this decade. Recognizing the challenges associated with pursuing extended service life of commercial nuclear power plants, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs (DOE-NE’s Light Water Reactor Sustainability [LWRS] Program and EPRI’s Long-Term Operations [LTO] Program) to address these challenges. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a memorandum of understanding in late 2010 to “establish guiding principles under which research activities (between LWRS and LTO) could be coordinated to the benefit of both parties.” This document represents the third annual revision to the initial version (March 2011) of the plan as called for in the memorandum of understanding.

  8. Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne

    SciTech Connect (OSTI)

    Nilsen, J; Rohringer, N

    2011-08-30

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

  9. Quantum wells on 3C-SiC/NH-SiC heterojunctions. Calculation of spontaneous polarization and electric field strength in experiments

    SciTech Connect (OSTI)

    Sbruev, I. S.; Sbruev, S. B.

    2010-10-15

    The results of experiments with quantum wells on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions obtained by various methods are reconsidered. Spontaneous polarizations, field strengths, and energies of local levels in quantum wells on 3C-SiC/NH-SiC heterojunctions were calculated within a unified model. The values obtained are in agreement with the results of all considered experiments. Heterojunction types are determined. Approximations for valence band offsets on heterojunctions between silicon carbide polytypes and the expression for calculating local levels in quantum wells on the 3C-SiC/NH-SiC heterojunction are presented. The spontaneous polarizations and field strengths induced by spontaneous polarization on 3C-SiC/4H-SiC and 3C-SiC/6H-SiC heterojunctions were calculated as 0.71 and 0.47 C/m{sup 2} and 0.825 and 0.55 MV/cm, respectively.

  10. AFFECTS OF MECHANICAL MILLING AND METAL OXIDE ADDITIVES ON SORPTION KINETICS OF 1:1 LiNH2/MgH2 MIXTURE

    SciTech Connect (OSTI)

    Erdy, C.; Anton, D.; Gray, J.

    2010-12-08

    The destabilized complex hydride system composed of LiNH{sub 2}:MgH{sub 2} (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of {approx}32 kJ/mole H{sub 2} was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 C to 200 C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert's apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH{sub 3} formation.

  11. Application of the explicitly correlated coupled-cluster models CCSD(F12*) and CC3(F12*) to the hyperpolarizability of the Ne atom

    SciTech Connect (OSTI)

    Hanauer, Matthias; Khn, Andreas

    2015-01-22

    This work demonstrates the performance of the recently proposed explicitly correlated coupled-cluster method CCSD(F12*) and a new method using explicitly correlated triple excitations, CC3(F12*), in the calculation of the static ESHG hyperpolarizability of the Ne atom.

  12. METALLICITIES, DUST, AND MOLECULAR CONTENT OF A QSO-DAMPED Ly{alpha} SYSTEM REACHING log N(H I) = 22: AN ANALOG TO GRB-DLAs

    SciTech Connect (OSTI)

    Guimaraes, R.; Noterdaeme, P.; Petitjean, P.; Ledoux, C.; Srianand, R.; Rahmani, H.; Lopez, S.

    2012-06-15

    We present the elemental abundance and H{sub 2} content measurements of a damped Ly{alpha} (DLA) system with an extremely large H I column density, log N(H I) (cm{sup -2}) = 22.0 {+-} 0.10, at z{sub abs} = 3.287 toward the QSO SDSS J081634+144612. We measure column densities of H{sub 2}, C I, C I*, Zn II, Fe II, Cr II, Ni II, and Si II from a high signal-to-noise and high spectral resolution VLT-UVES spectrum. The overall metallicity of the system is [Zn/H] = -1.10 {+-} 0.10 relative to solar. Two molecular hydrogen absorption components are seen at z = 3.28667 and 3.28742 (a velocity separation of Almost-Equal-To 52 km s{sup -1}) in rotational levels up to J = 3. We derive a total H{sub 2} column density of log N(H{sub 2}) (cm{sup -2}) = 18.66 and a mean molecular fraction of f = 2N(H{sub 2})/[2N(H{sub 2}) + N(H I)] = 10{sup -3.04{+-}0.37}, typical of known H{sub 2}-bearing DLA systems. From the observed abundance ratios we conclude that dust is present in the interstellar medium of this galaxy, with an enhanced abundance in the H{sub 2}-bearing clouds. However, the total amount of dust along the line of sight is not large and does not produce any significant reddening of the background QSO. The physical conditions in the H{sub 2}-bearing clouds are constrained directly from the column densities of H{sub 2} in different rotational levels, C I and C I*. The kinetic temperature is found to be T Almost-Equal-To 75 K and the particle density lies in the range n{sub H} = 50-80 cm{sup -3}. The neutral hydrogen column density of this DLA is similar to the mean H I column density of DLAs observed at the redshift of {gamma}-ray bursts (GRBs). We explore the relationship between GRB-DLAs and the high column density end of QSO-DLAs finding that the properties (metallicity and depletion) of DLAs with log N(H I) > 21.5 in the two populations do not appear to be significantly different.

  13. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Yuchuan; Xiao, Zhengguo; Bi, Cheng; Yuan, Yongbo; Huang, Jinsong

    2014-12-15

    The large photocurrent hysteresis observed in many organometal trihalide perovskite solar cells has become a major hindrance impairing the ultimate performance and stability of these devices, while its origin was unknown. Here we demonstrate the trap states on the surface and grain boundaries of the perovskite materials to be the origin of photocurrent hysteresis and that the fullerene layers deposited on perovskites can effectively passivate these charge trap states and eliminate the notorious photocurrent hysteresis. Fullerenes deposited on the top of the perovskites reduce the trap density by two orders of magnitude and double the power conversion efficiency of CH3NH3PbI3more » solar cells. As a result, the elucidation of the origin of photocurrent hysteresis and its elimination by trap passivation in perovskite solar cells provides important directions for future enhancements to device efficiency.« less

  14. Simplification of femtosecond transient absorption microscopy data from CH3NH3PbI3 perovskite thin films into decay associated amplitude maps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; Xiao, Kai; Ma, Ying -Zhong

    2016-02-16

    This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. These maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insightmore » into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less

  15. Qualifying composition dependent p and n self-doping in CH{sub 3}NH{sub 3}PbI{sub 3}

    SciTech Connect (OSTI)

    Wang, Qi; Shao, Yuchuan; Huang, Jinsong; Xie, Haipeng; Lyu, Lu; Liu, Xiaoliang; Gao, Yongli

    2014-10-20

    We report the observation of self-doping in perovskite. CH{sub 3}NH{sub 3}PbI{sub 3} was found to be either n- or p-doped by changing the ratio of methylammonium halide (MAI) and lead iodine (PbI{sub 2}) which are the two precursors for perovskite formation. MAI-rich and PbI{sub 2}-rich perovskite films are p and n self-doped, respectively. Thermal annealing can convert the p-type perovskite to n-type by removing MAI. The carrier concentration varied as much as six orders of magnitude. A clear correlation between doping level and device performance was also observed.

  16. Interaction of vacuum ultraviolet light with a low-k organosilicate glass film in the presence of NH{sub 3}

    SciTech Connect (OSTI)

    Behera, Swayambhu; Lee, Joe; Graves, David; Gaddam, Sneha; Pokharel, Sundari; Wilks, Justin; Pasquale, Frank; Kelber, Jeffry A.

    2010-07-19

    In situ x-ray photoemission spectroscopy (XPS) and ex situ Fourier transform infrared spectroscopy (FTIR) were used to characterize effects on organosilicate films of 147 nm irradiation in the presence of 10{sup -4} Torr NH{sub 3}. XPS and FTIR data indicate Si-O and Si-C bond scission, with nitridation only at Si sites. Photoirradiation causes the surface layer to become enriched in sp{sup 2} carbon. FTIR spectra of silanol formation upon exposure to ambient indicate reactive sites in the bulk have lifetimes of up to six days. XPS data indicate lifetimes of approxminutes for surface states. Nitrogen uptake passivates with longer exposure times, indicating surface densification.

  17. New operation strategy for driving the selectivity of NOx reduction to N2, NH3 or N2O during lean/rich cycling of a lean NOx trap catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mr?ek, David; Koci, Petr; Choi, Jae -Soon; Partridge, Jr., William P.

    2015-09-08

    Periodical regeneration of NOx storage catalyst (also known as lean NOx trap) by short rich pulses of CO, H2 and hydrocarbons is necessary for the reduction of nitrogen oxides adsorbed on the catalyst surface. Ideally, the stored NOx is converted into N2, but N2O and NH3 by-products can be formed as well, particularly at low-intermediate temperatures. The N2 and N2O products are formed concurrently in two peaks. The primary peaks appear immediately after the rich-phase inception, and tail off with the breakthrough of the reductant front accompanied by NH3 product. In addition, the secondary N2 and N2O peaks then appearmoreat the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, NCO) and residual stored NOx under increasingly lean conditions.less

  18. PETROPHYSICAL INVESTIGATION OF THE SECONDARY RECOVERY POTENTIAL IN THE CHERRY CANYON FORMATION NE LEA FIELD LEA COUNTY, NEW MEXICO

    SciTech Connect (OSTI)

    T. Scott Hickman

    2002-06-01

    Read and Stevens has proposed the evaluation of the waterflood potential from the Cherry Canyon formation in the NE Lea Field in lea County, New Mexico. Much of the development in this area is approaching primary recovery limitations; additional recovery of remaining oil reserves by waterflood needs to be evaluated. The Cherry Canyon formation is composed of fine grained sandstone, containing clay material which results in high water saturation, and also has the tendency to swell and reduce reservoir permeability--the ability of fluid to flow through the rock pores and fractures. There are also abundant organic materials that interfere with obtaining reliable well logs. These complications have limited oil in place calculations and identification of net pay zones, presenting a challenge to the planned waterflood. Core analysis of the Cherry Canyon should improve the understanding of existing well logs and possibly indicate secondary recovery measures, such as waterflood, to enhance field recovery. Lacking truly representative core to provide accurate analyses, Read and Stevens will obtain and preserve fresh core. The consulting firm of T. Scott Hickman and Associates will then collaborate on special core analyses and obtain additional well logs for a more detailed analysis of reservoir properties. The log interpretation will be compared to the core analysis results, and the entire collected data set will be used to assess the potential and economic viability of successfully waterflooding the identified oil zones. Successful results from the project will improve accuracy of log interpretation and establish a methodology for evaluating secondary recovery by waterflood.

  19. Study of the K{sub stop}{sup -}A{yields}{Sigma}{sup {+-}}{pi}{sup {+-}}A' reaction at DA{Phi}NE

    SciTech Connect (OSTI)

    Agnello, M.; Benussi, L.; Bertani, M.; Fabbri, F. L.; Gianotti, P.; Lucherini, V.; Bhang, H. C.; Bonomi, G.; Moia, F.; Zenoni, A.; Botta, E.; Bressani, T.; Bufalino, S.; Busso, L.; Calvo, D.; De Mori, F.; Feliciello, A.; Filippi, A.; Marcello, S.; Wheadon, R.

    2010-12-28

    This work describes an experimental study of the K{sub stop}{sup -}A{yields}{pi}{sup {+-}}{Sigma}{sup {+-}}A' reaction performed with the FINUDA spectrometer at the DA{Phi}NE {phi}-factory. The reaction is studied via the detection of {pi}{sup +}{pi}{sup -}n events on {sup 6,7}Li, {sup 9}Be, {sup 13}C and {sup 16}O.

  20. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore » Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  1. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore »Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  2. Two-chord interferometry using 3.39 {mu}m He-Ne laser on a flux-coil-generated FRC

    SciTech Connect (OSTI)

    Gota, H.; Deng, B. H.; Gupta, D.; Kiyashko, V.; Knapp, K.; Mendoza, R.; Morehouse, M.; Bolte, N.; Roche, T.; Wessel, F.

    2010-10-15

    A two-chord {lambda}{sub IR}{approx}3.39 {mu}m He-Ne laser interferometer system was developed for a flux-coil-generated field-reversed configuration to estimate the electron density and the total temperature of the field-reversed configuration (FRC) plasma. This two-chord heterodyne interferometer system consists of a single {approx}2 mW infrared He-Ne laser, a visible ({lambda}{sub vis}{approx}632.8 nm) He-Ne laser for the alignment, a 40 MHz acousto-optic modulator, photodetectors, and quadrature phase detectors. Initial measurement was performed and the measured average electron densities were 2-10x10{sup 19} m{sup -3} at two different radial positions in the midplane. A time shift in density was observed as the FRC expands radially. The time evolution of the line-averaged density agrees with the density estimated from the in situ internal magnetic probes, based on a rigid-rotor profile model.

  3. Improved Search for ν̄μ→ν̄e Oscillations in the MiniBooNE Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; et al

    2013-04-15

    The MiniBooNE experiment at Fermilab reports results from an analysis of ν¯e appearance data from 11.27×10²⁰ protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.4±28.5 events (2.8σ) is observed in the energy range 200QEν<1250 MeV. If interpreted in a two-neutrino oscillation model, ν¯μ→ν¯e, the best oscillation fit to the excess has a probability of 66% while the background-only fit has a χ² probability of 0.5% relative to the best fit. The data are consistent with antineutrino oscillations in the 0.01<Δm²<1.0 eV² range and havemore » some overlap with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector. All of the major backgrounds are constrained by in situ event measurements so nonoscillation explanations would need to invoke new anomalous background processes. The neutrino mode running also shows an excess at low energy of 162.0±47.8 events (3.4σ) but the energy distribution of the excess is marginally compatible with a simple two neutrino oscillation formalism. Expanded models with several sterile neutrinos can reduce the incompatibility by allowing for CP violating effects between neutrino and antineutrino oscillations.« less

  4. A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

    2011-12-01

    The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

  5. LOW-TEMPERATURE ION TRAP STUDIES OF N{sup +}({sup 3} P{sub ja} ) + H{sub 2}(j) {yields} NH{sup +} + H

    SciTech Connect (OSTI)

    Zymak, I.; Hejduk, M.; Mulin, D.; Plasil, R.; Glosik, J.; Gerlich, D.

    2013-05-01

    Using a low-temperature 22-pole ion trap apparatus, detailed measurements for the title reaction have been performed between 10 K and 100 K in order to get some state specific information about this fundamental hydrogen abstraction process. The relative population of the two lowest H{sub 2} rotational states, j = 0 and 1, has been varied systematically. NH{sup +} formation is nearly thermo-neutral; however, to date, the energetics are not known with the accuracy required for low-temperature astrochemistry. Additional complications arise from the fact that, so far, there is no reliable theoretical or experimental information on how the reactivity of the N{sup +} ion depends on its fine-structure (FS) state {sup 3} P{sub ja} . Since in the present trapping experiment, thermalization of the initially hot FS population competes with hydrogen abstraction, the evaluation of the decay of N{sup +} ions over long storage times and at various He and H{sub 2} gas densities provides information on these processes. First assuming strict adiabatic behavior, a set of state specific rate coefficients is derived from the measured thermal rate coefficients. In addition, by recording the disappearance of the N{sup +} ions over several orders of magnitude, information on nonadiabatic transitions is extracted including FS-changing collisions.

  6. Application of x-ray tomography to optimization of new NOx/NH3 mixed potential sensors for vehicle on-board emissions control

    SciTech Connect (OSTI)

    Nelson, Mark A; Brosha, Eric L; Mukundan, Rangachary; Garzon, Fernando H

    2009-01-01

    Mixed potential sensors for the detection of hydrocarbons, NO{sub x}, and NH{sub 3} have been previously developed at Los Alamos National Laboratory (LANL). The LANL sensors have a unique design incorporating dense ceramic-pelletlmetal-wire electrodes and porous electrolytes. The performance of current-biased sensors using an yttria-stabilized zirconia (YSZ) electrolyte and platinum and La{sub 0.8}Sr{sub 0.2}CrO{sub 3} electrodes is reported. X-ray tomography has been applied to non-destructively examine internal structures of these sensors. NO{sub x} and hydrocarbon response of the sensors under various bias conditions is reported, and very little NO{sub x} response hysteresis was observed. The application of a 0.6 {mu}A bias to these sensors shifts the response from a hydrocarbon response to a NO{sub x} response equal for both NO and NO{sub 2} species at approximately 500 {sup o}C in air.

  7. 18Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  8. 18Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  9. 19Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  10. 19Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  11. 20Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  12. 20Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  13. NE Blog Archive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    class"field-item odd">

    The 7th Workshop on Risk Informed Regulation and Safety Culture was one of a series of workshops designed by the Office of Nuclear Energy in...

  14. NE Press Releases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...

  15. MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

                  ! "  #$             ∆ (

  16. 625 Marion St. NE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dear Dr. Kosson: Oregon appreciates the opportunity to provide comments on the draft methodology for the Hanford Site-Wide Risk Review Project. We especially thank you for your...

  17. MiniBooNE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monroe, Columbia University Moriond Electroweak, March 21, 2004 From kaons: &24; data from HARP & BNL E910 on production &24; high energy e() events in detector &24; events in the LMC...

  18. MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 GeV KE protons from Fermilab Booster Accelerator 1.7 beryllium target (HARP results coming soon) horn focusses + sign mesons and K Can reverse...

  19. NE-23 W

    Office of Legacy Management (LM)

    4:00 p.m., Monday through Friday (except Federal holidays), at the DOE Public Document Room located in Room lE-1% of the Forrestal Building, 1000 Independence Avenue, S.W.,...

  20. REP&" TO A~NOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio iin Support

    Office of Legacy Management (LM)

    tifr'itG!'l' &i&s Coverament --_ , ,&,.i +.&r, ,' ,T.L ' Department of Energy / REP&" TO A~NOF: NE-23 SUBJECT: Commercial Facilities Used by National Lead Company of Ohio iin Support of FMPC Operations TO: Robert E. Lynch Procuremnent and Contracts Division, AD-42 Oak Ridge Operations Office , / I I The Division of Facility and Site Oecomnissioning Projects (OF%) is responsible for managing the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP). The

  1. Determination of structure and phase transition of light element nanocomposites in mesoporous silica: case study of NH3BH3 in MCM-41

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2009-09-30

    The structure of ammonia borane (AB), NH3BH3, infused in mesoporous silica MCM-41 and its evolution over the temperature range of 80 to 300 K was investigated using the atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data in order to understand the origin of improved dehydrogenation properties of the system. Our study shows how X-ray PDF analysis can be used to elucidate the structure of light guest species loaded in mesoporous silica materials despite of its low scattering power of composed elements (N, B, and H) compared to its host (SiO2). PDF analyses of two AB-loaded compositions with weight ratio AB:MCM-41=1:1 and 3:1 provide a strong evidence that AB aggregate, previously found in AB:MCM-41?1:1 samples, is same species as neat AB. For both of them an orthorhombic to tetragonal structural phase transition occurs at 225 K on warming. On the other hand, AB residing inside meso-pores, which is found in AB:MCM-41=1:2 sample, does not undergo such phase transition. It rather stays in tetragonal phase over a wide temperature range of 110 to 240 K and starts to lose structural correlation above 240 K. This strongly suggests that nano-confinement of AB inside meso-pores stabilizes high temperature tetragonal phase at much lower temperature. These results provide important clues to two critical questions: why nan-compositions of AB leads dehydrogenation to lower temperature and why the neat AB like propoerties are recovered at high AB loading samples. This work was supported by the US Department of Energy Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Formation and consumption of NO in H{sub 2} + O{sub 2} + N{sub 2} flames doped with NO or NH{sub 3} at atmospheric pressure

    SciTech Connect (OSTI)

    Shmakov, A.G.; Chernov, A.A.; Knyazkov, D.A.; Bolshova, T.A.; Korobeinichev, O.P.; Rybitskaya, I.V.; Konnov, A.A.

    2010-03-15

    Flat premixed burner-stabilized H{sub 2} + O{sub 2} + N{sub 2} flames, neat or doped with 300-1000 ppm of NO or NH{sub 3}, were studied experimentally using molecular-beam mass-spectrometry and simulated numerically. Spatial profiles of temperature and concentrations of stable species, H{sub 2}, O{sub 2}, H{sub 2}O, NO, NH{sub 3}, and of H and OH radicals obtained at atmospheric pressure in lean ({phi} = 0.47), near-stoichiometric ({phi} = 1.1) and rich ({phi} = 2.0) flames are reported. Good agreement between measured and calculated structure of lean and near-stoichiometric flames was found. Significant discrepancy between simulated and measured profiles of NO concentration was observed in the rich flames. Sensitivity and reaction path analyses revealed reactions responsible for the discrepancy. Modification to the model was proposed to improve an overall agreement with the experiment. (author)

  3. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  4. Enhanced T-lymphocyte blastogenic response to tuberculin (PPD) in children of northeast (NE) Thailand supplemented with vitamin A (VA) and zinc (Zn)

    SciTech Connect (OSTI)

    Kramer, T.R.; Udomkesmalee, E.; Dhanamitta, S.; Sirisinha, S.; Charoenkiatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Smith, J.C. Jr. Mahidol Univ., Nakhon Pathom )

    1991-03-15

    Beneficial effects of Va and/or Zn supplementation of children in NE Thailand are described in a companion abstract. In the same study, blastogenic response (BR) of T-lymphocytes to concanavalin-A (ConA) and PPD were assayed in cultures containing mononuclear cells (MNC) or whole blood (WB). Methods were previously described. Children were previously vaccinated with BCG. BR to ConA of MNC or WB from children supplemented with VA, Zn, VA + Zn or placebo were similar. BR to PPD of MNC was higher in children receiving VA + Zn than placebo, but not in children supplemented with VA or Zn alone. Data indicate that children with suboptimal VA and Zn nutriture supplemented with < 2 times RDA of these nutrients showed enhanced cellular immunity to PPD. This observation is relevant to BCG immunization program and thus may benefit public health.

  5. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  6. Morphology control of open-framework zinc phosphate Zn{sub 4}(H{sub 3}O)(NH{sub 4}){sub 3}(PO{sub 4}){sub 4} via microwave-assisted technique

    SciTech Connect (OSTI)

    Ding, Ling; Song, Yu; Yang, Wei; Xue, Run-Miao; Zhai, Shang-Ru; An, Qing-Da

    2013-08-15

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 C to 220 C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}H{sub 2}O at 130 C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. Dependence of morphology on the reaction conditions. Morphology transformation from hexagonal prisms to polyhedron was observed.

  7. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    SciTech Connect (OSTI)

    Greg Weirs; Hyung Lee

    2011-09-01

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors.

  8. Extraordinary luminous soft X-ray transient MAXI J0158744 as an ignition of a nova on a very massive O-Ne white dwarf

    SciTech Connect (OSTI)

    Morii, M.; Serino, M.; Mihara, T.; Sugizaki, M.; Tomida, H.; Kimura, M.; Nakahira, S.; Suwa, F.; Negoro, H.; Kennea, J. A.; Pritchard, T.; Page, K. L.; Osborne, J. P.; Curran, P. A.; Walter, F. M.; Kuin, N. P. M.; Hiroi, K.; Usui, R.; Kawai, N.; Gehrels, N.; and others

    2013-12-20

    We present the observation of an extraordinary luminous soft X-ray transient, MAXI J0158744, by the Monitor of All-sky X-ray Image (MAXI) on 2011 November 11. This transient is characterized by a soft X-ray spectrum, a short duration (1.3 10{sup 3} s < ?T{sub d} < 1.10 10{sup 4} s), a rapid rise (<5.5 10{sup 3} s), and a huge peak luminosity of 2 10{sup 40} erg s{sup 1} in 0.7-7.0 keV band. With Swift observations and optical spectroscopy from the Small and Moderate Aperture Research Telescope System, we confirmed that the transient is a nova explosion, on a white dwarf in a binary with a Be star, located near the Small Magellanic Cloud. An early turn-on of the super-soft X-ray source (SSS) phase (<0.44 days), the short SSS phase duration of about one month, and a 0.92 keV neon emission line found in the third MAXI scan, 1296 s after the first detection, suggest that the explosion involves a small amount of ejecta and is produced on an unusually massive O-Ne white dwarf close to, or possibly over, the Chandrasekhar limit. We propose that the huge luminosity detected with MAXI was due to the fireball phase, a direct manifestation of the ignition of the thermonuclear runaway process in a nova explosion.

  9. Production of cold beams of ND{sub 3} with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    SciTech Connect (OSTI)

    Twyman, Kathryn S.; Bell, Martin T.; Heazlewood, Brianna R.; Softley, Timothy P.

    2014-07-14

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND{sub 3} is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND{sub 3} beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90 bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND{sub 3} can be produced with rotational state populations corresponding to approximately T{sub rot} = 918 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND{sub 3}. The translational temperature of the guided ND{sub 3} is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.

  10. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy

    SciTech Connect (OSTI)

    Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.

    2011-04-01

    High external quantum efficiency (EQE) p-i-n heterojunction solar cellsgrown by NH3 -based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorptionmeasurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

  11. Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same

    DOE Patents [OSTI]

    Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

    2012-04-03

    As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

  12. Simple and low-temperature preparation of Co{sub 3}O{sub 4} sphere-like nanoparticles via solid-state thermolysis of the [Co(NH{sub 3}){sub 6}](NO{sub 3}){sub 3} complex

    SciTech Connect (OSTI)

    Farhadi, Saeid; Pourzare, Kolsoum

    2012-06-15

    Highlights: ? [Co(NH{sub 3}){sub 6}](NO{sub 3}){sub 3} precursor was used for synthesizing pure Co{sub 3}O{sub 4} nanocrystals. ? Co{sub 3}O{sub 4} nanocrystals were synthesized at low temperature of 200 C. ? Co{sub 3}O{sub 4} nanocrystals show a weak ferromagnetic behavior at room temperature. ? This simple method is low-cost and suitable for high-scale production of Co{sub 3}O{sub 4}. -- Abstract: In this work, spinel-type Co{sub 3}O{sub 4} spherical nanoparticles were easily prepared via decomposition of the hexamminecobalt(III) nitrate complex, [Co(NH{sub 3}){sub 6}](NO{sub 3}){sub 3}, at low temperature (200 C). The product was characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, UVvis spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), BrunauerEmmettTeller (BET) specific surface area measurement and magnetic measurements. The results confirmed that pure single-phase Co{sub 3}O{sub 4} nanoparticles with weak ferromagnetic behavior were obtained by this method. TEM images showed that the Co{sub 3}O{sub 4} nanoparticles are sphere-like with an average diameter size of around 15 nm. The optical spectrum indicated two direct band gaps at 2.15 and 3.56 eV which are blue-shifted relative to reported values for the bulk sample. Using this fast and simple method, Co{sub 3}O{sub 4} nanoparticles can be produced without expensive and toxic solvents or complicated equipment.

  13. BooNE Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  14. BooNE News Articles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost...

  15. Accurate ab initio-based adiabatic global potential energy surface for the 2{sup 2}A″ state of NH{sub 2} by extrapolation to the complete basis set limit

    SciTech Connect (OSTI)

    Li, Y. Q.; Ma, F. C.; Sun, M. T.

    2013-10-21

    A full three-dimensional global potential energy surface is reported first time for the title system, which is important for the photodissociation processes. It is obtained using double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. Such a work can be recommended for dynamics studies of the N({sup 2}D) + H{sub 2} reaction, a reliable theoretical treatment of the photodissociation dynamics and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen containing systems. In turn, a preliminary theoretical study of the reaction N({sup 2}D)+H{sub 2}(X{sup 1}Σ{sub g}{sup +})(ν=0,j=0)→NH(a{sup 1}Δ)+H({sup 2}S) has been carried out with the method of quasi-classical trajectory on the new potential energy surface. Integral cross sections and thermal rate constants have been calculated, providing perhaps the most reliable estimate of the integral cross sections and the rate constants known thus far for such a reaction.

  16. Effective hole extraction using MoO{sub x}-Al contact in perovskite CH{sub 3}NH{sub 3}PbI{sub 3} solar cells

    SciTech Connect (OSTI)

    Zhao, Yixin; Nardes, Alexandre M.; Zhu, Kai

    2014-05-26

    We report an 11.4%-efficient perovskite CH{sub 3}NH{sub 3}PbI{sub 3} solar cell using low-cost molybdenum oxide/aluminum (i.e., MoO{sub x}/Al) as an alternative top contact to replace noble/precious metals (e.g., Au or Ag) for extracting photogenerated holes. The device performance of perovskite solar cells using a MoO{sub x}/Al top contact is comparable to that of cells using the standard Ag top contact. Analysis of impedance spectroscopy measurements suggests that using 10-nm-thick MoO{sub x} and Al does not affect charge-recombination properties of perovskite solar cells. Using a thicker (20-nm) MoO{sub x} layer leads to a lower cell performance caused mainly by a reduced fill factor. Our results suggest that MoO{sub x}/Al is promising as a low-cost and effective hole-extraction contact for perovskite solar cells.

  17. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    SciTech Connect (OSTI)

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.; Ronnebro, Ewa

    2012-04-19

    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 release properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.

  18. Pittsburg, NH Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    18,297 19,826 47,451 63,446 52,160 77,866 1998-2015 Pipeline Prices 5.48 5.45 4.08 6.63 10.55 5.18 1998

  19. Pittsburg, NH Natural Gas Exports to Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10 2011 2012 2013 2014 2015 View History Pipeline Volumes 0 336 199 95 373 735 2007-2015 Pipeline Prices -- 7.54 2.62 6.65 4.06 2.96 2007-2015

  20. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    SciTech Connect (OSTI)

    2009-09-30

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison. Another important issue addressed at the conference was the time scale on which long-term sustainability issues must be solved. There was a wide diversity of opinion and no consensus was possible. One group, primarily composed of members of the fission community, argued that the present strategies with respect to waste management (on-site storage) and fuel supply (from natural uranium) would suffice for at least 50 years, with the main short-term problem being the economics of light water reactors (LWRs). Many from the fusion community believed that the problems, particularly waste management, were of a more urgent nature and that we needed to address them sooner rather than later. There was rigorous debate on all the issues before, during, and after the workshop. Based on this debate, the workshop participants developed a set of high-level Findings and Research Needs and a companion set of Technical Findings and Research Needs. In the context of the Executive Summary it is sufficient to focus on the high-level findings which are summarized.

  1. Design and Operation of A Setup with A Camera and Adjustable Mirror to Inspect the Sense-Wire Planes of the Time Projection Chamber Inside the MicroBooNE Cryostat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carls, Benjamin; Horton-Smith, Glenn; James, Catherine C.; Kubinski, Robert M.; Pordes, Stephen; Schukraft, Anne; Strauss, Thomas

    2015-08-26

    Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. Our paper describes an approach to view the inside of themore » MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper also describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance.« less

  2. COMPNAME","COMPID","YEAR","PLANTNAME","KIND","CONSTRUC","INSTALLED","MAXCAP","NE

    U.S. Energy Information Administration (EIA) Indexed Site

    EQUIP","TOTCOST","COSTCAP","GROSSEXP","OPERENG","FUEL","COOLANTS","STEXP","STOTH","STTRANS","ELECEXP","MISCST","RENTS","MAINSUP","MAINSTRUC","MAINBOIL","MAINELEC","MAINMISC","TOTPROD","EXPKWH","UNITCL","QUANTCL","AVGHEATCL","ACDELCL","ACBURNCL","ACBTUCL","ACNETGENCL","ABTUNETGCL","UNITGAS","QUANTGAS","AVGHEATGAS","ACDELGAS","ACBURNGAS","ACBTUGAS","ACNETGNGAS","ABTUNETGAS","UNITOIL","QUANTOIL","AVGHEATOIL","ACDELOIL","ACBURNOIL","ACBTUOIL","ACNETGNOIL","ABTUNETOIL" "Tennessee Valley Authority",18642,1999,"Sequoyah","Nuclear","01/01/81",,2441160,2303000,8760,1008,1.8570502e+10,3184031,533636867,2488511062,3025331960,1239,33187938,21080862,86166618,4316783,11925073,0,0,13329621,28360769,0,16330987,1528775,8295886,3650336,7012139,201997849,11,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",189924066,0,0,0,0.43,0.04,10230 "Tennessee Valley Authority",18642,1999,"Watts Bar","Nuclear","01/01/96","1/1/1996",1269000,1200000,8208,728,8230350000,1953589,2108999339,4827648621,6938601549,5468,30551823,12179502,38261150,3963151,7056493,0,0,10400580,24553068,0,14243155,2328791,9244870,870737,990214,124091711,15,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",84467683,0,0,0,0.43,0.04,10260 "Tennessee Valley Authority",18642,1999,"Johnsonville","Gas Turbine","01/01/75","1/1/1975",1088000,1407000,8760,14,256798000,0,6064116,119609619,125673735,116,112893140,2747882,9870790,0,0,0,0,0,477926,0,2274,1326,0,475339,7436,13582973,53,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Gallons",24224936,139600,0,0.41,0.03,0,13170 "Tennessee Valley Authority",18642,1999,"Gallatin","Gas Turbine","01/01/75","1/1/1975",325200,431000,8760,8,176258000,0,3324533,63486109,66810642,205,80539157,665541,6810251,0,0,0,0,0,151587,0,1339166,1553,0,3922,4338,8976358,51,,0,0,0,0,0,0,0,"Mcf",2252179,1024,0,2.67,2.61,0,0,"Gallons",2063233,139100,0,0.37,0,0.03,14710 "Tennessee Valley Authority",18642,1999,"Browns Ferry","Nuclear","01/01/74","1/1/1977",3456000,2529000,8760,1085,1.771301e+10,890631,909522117,3830292072,4740704820,1372,47061477,58344025,102890781,3642332,11672365,0,0,16130309,26099224,0,5560106,0,25822517,1921329,0,252082988,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",186421503,0,0,0,0.53,0,10520 "Tennessee Valley Authority",18642,1999,"Cumberland","Steam","01/01/73","1/1/1973",2600000,2591000,8760,323,1.6530325e+10,1829568,103903145,1638681020,1744413733,671,63827428,5077791,197194700,0,86656,0,0,3945,13987241,0,1210473,1306476,16946838,4232440,841362,240887922,15,"Tons",6868849,10459,26.16,27.86,1.2,0.01,9746,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Gas Turbine","01/01/71","1/1/1972",820300,622000,8760,9,264695000,0,3063638,102977658,106041296,129,1709273,879771,11709062,0,0,0,0,0,72128,0,301000,0,0,150309,2816,13115086,50,,0,0,0,0,0,0,0,"Mcf",3589538,1024,0,3.06,3.03,0,0,"Gallons",1173222,139500,0,0.55,0,0.03,14460 "Tennessee Valley Authority",18642,1999,"Colbert","Gas Turbine","01/01/72","1/1/1972",476000,420000,8760,7,326221000,0,2826177,64911682,67737859,142,3078759,1248563,12167389,0,0,0,0,0,69117,0,27275,0,0,74,2699,13515117,41,,0,0,0,0,0,0,0,"Mcf",3866688,1024,0,2.8,2.71,0,0,"Gallons",3619161,138400,0,0.35,0,0.03,13670 "Tennessee Valley Authority",18642,1999,"Bull Run","Steam","01/01/67","1/1/1967",950000,912000,8760,87,4389788000,2220883,35786684,300943172,338950739,357,21987402,2324904,50419615,0,2286709,0,0,1742,6906593,0,754423,481980,8505768,2788903,314448,74785085,17,"Tons",1593346,11895,28.85,30.74,1.24,0.01,9257,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Steam","01/01/59","1/1/1959",990000,858000,8760,122,4102572000,142024,73025058,451231229,524398311,530,20254094,1206283,60294160,0,16,0,0,0,9854407,0,392524,824748,8011764,5402527,184253,86170682,21,"Tons",2039487,9680,25.5,29.45,1.39,0.01,10585,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Watts Bar","Steam","01/01/42","1/1/1945",240000,0,8760,0,-1381000,11997,4933530,18578656,23524183,98,-6629,177,0,0,0,0,0,0,109802,0,908,5,0,0,0,110892,-80,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Paradise","Steam","01/01/63","1/1/1970",2558200,2286000,8760,296,1.4181992e+10,8519495,115906466,1287447341,1411873302,552,57696636,6093708,168293657,0,752026,0,0,536,10779025,0,3529172,4127133,18094770,3094627,676700,215441354,15,"Tons",6332104,10413,21.43,26.2,1.14,0.01,10280,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Gallatin","Steam","01/01/56","1/1/1959",1255200,992000,8760,131,7002818000,690082,44703289,427469961,472863332,377,5073325,1612720,80238724,0,1258244,0,0,73323,7350012,0,1803476,714460,6039653,3054984,792751,102938347,15,"Tons",3266195,9540,22.99,24.49,1.19,0.01,9651,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"John Sevier","Steam","01/01/55","1/1/1957",800000,748000,8760,129,5522165000,1570328,37309270,253176616,292056214,365,2993416,946133,70531483,0,3286201,0,0,0,4864155,0,569877,953882,3537596,666934,559907,85916168,16,"Tons",2120222,11710,32.44,33.21,1.3,0.01,9802,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Kingston","Steam","01/01/54","1/1/1955",1700000,1583000,8760,275,1.0147089e+10,3475653,55125946,433125237,491726836,289,31839874,1201130,133624099,0,732904,0,0,671,15993919,0,2888077,697638,10886872,3114678,359796,169499784,17,"Tons",4038449,11134,31.75,32.96,1.34,0.01,9845,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Colbert","Steam","01/01/55","1/1/1965",1350000,1283000,8760,222,6557785000,279029,50717782,608908796,659905607,489,12808186,3684548,92134159,0,115314,0,0,3096,11894009,0,1552144,1216679,16776178,4392373,150021,131918521,20,"Tons",2890398,10787,27.4,31.47,1.38,0.01,10066,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Shawnee","Steam","01/01/53","1/1/1956",1750000,1368000,8760,264,8060005000,504507,64076435,534941906,599522848,343,20760203,5379072,113531307,0,6565666,0,0,278,7470171,0,2988378,2163530,11022440,5415043,396055,154931940,19,"Tons",3766896,10234,28.54,29.83,1.34,0.01,10474,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Johnsonville","Steam","01/01/51","1/1/1959",1485200,1213000,8760,269,6638234000,87967,76839994,522564850,599492811,404,5328716,12443723,83697340,0,-481100,0,0,6321,6501533,0,2973740,1891947,6444598,2867797,430252,116776151,18,"Tons",2922958,11389,26.49,28.52,1.16,0.01,10912,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Widows Creek","Steam","01/01/52","1/1/1965",1968760,1652000,8760,332,8498846000,855691,74795817,748521437,824172945,419,22653730,3695032,119092329,0,6555644,0,0,1697,9854746,0,1449646,2594983,13869309,4635675,4932791,166681852,20,"Tons",3858785,10808,28.8,30.16,1.27,0.01,10896,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"PALO VERDE 17.49%","n","01/01/86","01/01/88",666364,659000,8760,0,5317709000,1244457,281584974,735793972,1018623403,1529,6013000,4282694,25651422,2986065,4032493,0,0,2276671,26939892,0,5837013,1933729,6303817,3749209,2418208,86411213,16,,0,0,0,0,0,0,0,"BBTU",57406,0,0,440.13,0.44,0.01,10795,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"San Tan","Combined Cy","01/01/74","01/01/75",414000,292000,4112,43,714062000,149179,2773141,65463525,68385845,165,-5000,380221,14107193,0,1594474,0,0,0,845877,0,332730,170816,0,7389209,249749,25070269,35,,0,0,0,0,0,0,0,"MCF",6579686,1017,2.12,2.12,2.08,0.02,9372,"BBL",291,485968,0,24.61,4.22,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"SOLAR PV1 & PV2","So1ar","01/01/98","01/01/98",216,100,3000,0,119493,0,0,1676818,1676818,7763,1852000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Steam","01/01/52","01/01/54",108000,106000,736,12,50072000,313326,2433283,15283485,18030094,167,726000,180057,1483303,0,338591,0,0,169009,304652,0,157896,27729,608781,344347,214929,3829294,76,,0,0,0,0,0,0,0,"MCF",651225,1016,2.16,2.16,2.12,0.03,13215,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Gas Turbine","01/01/71","01/01/73",226850,149000,290,0,18990000,0,0,16888448,16888448,74,0,114913,724438,0,85074,0,0,0,40298,0,64493,11249,0,291038,96634,1428137,75,,0,0,0,0,0,0,0,"MCF",281631,1017,2.09,2.09,2.06,0.04,15094,"BBL",60,488889,0,24.61,4.19,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"MOHAVE 10%","Steam","01/01/71","01/01/71",163620,158000,8715,0,996913000,42812,5046928,50920964,56010704,342,1221000,250561,13703464,0,389195,0,0,245787,1776796,-12611,497248,178489,1673455,685271,112185,19499840,20,"Tons",457815,10939,28.47,29.64,1.35,0.01,10093,"MCF",45107,1028,0,2.94,2.86,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CORONADO","Steam","01/01/79","01/01/80",821880,760000,8760,213,5039392000,8300198,158523884,696108809,862932891,1050,7523000,1228492,96325127,0,4607490,0,0,403466,4002498,10446,1754276,1703703,12035645,3902862,1238765,127212770,25,"Tons",2632698,9886,34.53,35.42,1.79,0.02,10357,,0,0,0,0,0,0,0,"BBL",24155,137315,24.21,26.79,4.65,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CRAIG 29%","Steam","01/01/79","01/01/81",259414,248000,8760,0,2050747000,83589,52424794,181936864,234445247,904,680000,368849,22362014,0,1036824,0,0,425951,1689040,12271,323682,251566,1760910,701820,370069,29302996,14,"Coal",1040589,10060,22.56,21.42,1.06,0.01,10223,"MCF",28100,1000,0,2.49,2.49,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CROSS CUT","Steam","01/01/42","01/01/49",30000,3000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 21.7%","Steam","01/01/74","01/01/76",522857,488000,8760,539,3676183000,42866,27115117,246304509,273462492,523,5605000,1396220,45545213,0,1123640,0,0,257918,3750053,132023,667722,165042,7069421,2110905,434407,62652564,17,"Tons",1685726,10956,23.51,26.74,1.22,0.01,10061,,0,0,0,0,0,0,0,"BBL",8625,139078,22.75,28.63,4.9,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 100%","Steam","01/01/74","01/01/76",2409480,2250000,8760,539,1.6020912e+10,197537,124954457,1135043822,1260195816,523,25829493,6236459,196347455,0,5554459,0,0,1293757,8406791,0,3306198,769371,29759456,10024854,2263428,263962228,16,"Tons",7339290,10979,23.5,26.63,1.21,0.01,10074,,0,0,0,0,0,0,0,"BBL",39756,139079,22.75,22.47,3.85,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"FOUR CORNERS 10%","Steam","01/01/69","01/01/70",163620,148000,8760,0,1176172000,11573,7334703,91939839,99286115,607,37000,105696,11684589,0,978340,0,0,90099,1040379,83795,135949,61864,1112429,291525,340786,15925451,14,"Tons",644302,8885,17.41,17.97,1.01,0.01,9757,"MCF",26430,1008,0,4.13,4.1,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"HAYDEN 50%","Steam","01/01/76","01/01/76",137700,131000,6809,0,812423000,482702,13855905,64632670,78971277,574,16419000,157050,8427442,0,469402,0,0,101091,1360780,0,245277,92834,431566,123971,241674,11651087,14,"Tons",413486,10561,22.49,20.28,0.96,0.01,10759,,0,0,0,0,0,0,0,"BBL",1248,138870,26.63,32.67,5.6,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Steam","01/01/57","01/01/61",390472,407000,4062,62,888092000,139014,5833721,51714773,57687508,148,23000,345003,21091146,0,1032200,0,0,1186582,715713,0,741888,530777,2232219,897096,413430,29186054,33,,0,0,0,0,0,0,0,"MCF",9553025,1009,2.14,2.14,2.12,0.02,10859,"BBL",3,500000,0,24.61,4.1,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Gas Turbine","01/01/74","01/01/75",222950,197000,451,0,42223000,0,299904,22692012,22991916,103,0,108584,1469697,0,233742,0,0,0,36481,0,284381,9332,0,296342,34359,2472918,59,,0,0,0,0,0,0,0,"MCF",617372,1007,2.12,0,2.1,0.03,14371,,0,0,0,0,0,0,0 "Alexandria City",298,1999,,"STEAM","01/01/56","01/01/74",171000,170000,5326,20,194429,0,0,0,0,0,0,708998,0,0,0,0,0,0,0,0,199997,14994,0,404462,0,1328451,6833,,0,0,0,0,0,0,0,"MCF",2346281,10,2.24,2.24,2.14,0.03,12.45,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"STEAM","01/01/50",,102500,103000,8760,45,381623000,0,0,0,0,0,0,4120850,6152121,0,0,0,0,0,0,0,0,0,0,0,0,10272971,27,,239196,8800,25.72,25.72,1.46,0.02,11031,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"GAS TURBINE","01/01/72","1/1/1972",22000,18000,95,0,1007000,0,0,0,0,0,0,9422,53460,0,0,0,0,0,0,0,0,0,0,0,0,62882,62,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,99000,137300,0.54,0.54,3.93,0.05,13498 "Anaheim City of",590,1999,,"GAS TRUBINE","01/01/90","01/01/91",49270,45998,638,6,27719000,0,9226000,27237000,36463000,740,0,280835,699954,0,0,0,0,0,0,0,187223,0,0,0,1146979,2314991,84,,0,0,0,0,0,0,0,"MCF",258683,1009,2.76,2.76,2.74,25.7,9394,,0,0,0,0,0,0,0 "Anchorage City of",599,1999,"#1","4 Gas 2 Int","01/01/62","01/01/72",85000,33000,1010,14,9983618,80839,3457655,22418738,25957232,305,380194,55796,353989,0,0,0,0,809120,0,3922,67280,67353,0,442853,0,1800313,180,,0,0,0,0,0,0,0,273580,0,1000,1.38,1.38,1.38,0.03,19744,778,0,133500,33.82,33.82,6.03,0,0 "Anchorage City of",599,1999,"#2","3 Gas 1 Ste","01/01/75","01/01/84",243200,151000,19516,30,759258360,11240,8928538,75136820,84076598,346,5364843,257796,10642281,0,678572,0,0,1623991,233929,0,330573,231135,303990,1190866,118352,15611485,21,,0,0,0,0,0,0,0,7701758,0,1000,1.38,1.38,1.38,0.01,10144,570,0,133500,34.71,34.71,6.19,0,0 "Austin City of",1009,1999,"Downtown","Gas Turbine","01/01/54","01/01/54",5500,5000,0,0,493000,0,0,1065016,1065016,194,0,142,36663,0,0,0,0,7532,0,0,143,0,0,142049,0,186529,378,,0,0,0,0,0,0,0,"MCF",1347,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Northeast","Steam","01/01/71","01/01/71",31500,31300,7566,24,120607160,70498,2376720,5711293,8158511,259,0,42490,2760067,0,395223,0,0,366434,798118,0,24135,51518,290200,20129,3652,4751966,39,"TON",58175,12000,39.8,39.48,1.64,0.02,12637,"MCF",125541,1020,2.75,2.75,2.7,0.03,12648,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Downtown","Steam","01/01/35","01/01/54",27500,22500,465,11,4508000,24099,1221355,5587700,6833154,248,0,31568,193351,0,41643,0,0,12652,492890,0,23781,136549,88433,55977,1897,1078741,239,,0,0,0,0,0,0,0,"MCF",70119,1020,2.75,2.75,2.7,0.04,15874,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER TURBINES","GAS TURBINE","01/01/88","01/01/88",200000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER SOLAR","SOLAR","01/01/86","01/01/86",300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER","STEAM","01/01/70","01/01/77",726000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"HOLLY","STEAM","01/01/60","01/01/74",558000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"SEAHOLM","STEAM","01/01/51","01/01/55",120000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Braintree Town of",2144,1999,"Potter II","Gas Turbine","01/01/77","01/01/77",97500,79500,1284,27,72929000,20271,3762859,18429374,22212504,228,132748,176565,2625145,0,1154442,0,0,0,0,0,158096,316309,488498,491410,262035,5672500,78,,0,0,0,0,0,0,0,"MCF",931167,1035,3.03,3.03,2.92,0.03,11631,"BBLS",14190,138809,15.72,15.72,2.7,0.03,10520 "Brownsville Public Utils Board",2409,1999,"SILAS RAY","STEAM GAS T","01/01/46","01/01/77",155000,197000,5256,29,206,528443,4499041,192117166,197144650,1272,0,205477,6239714,0,1311,0,0,155739,309455,0,74856,224382,203068,176038,1264465,8854505,42983034,,0,0,0,0,0,0,0,"MCF",2346974,1059,2.65,2.65,2.5,0.03,12048,,0,0,0,0,0,0,0 "Bryan City of",2439,1999,,"Gas Turbine","01/01/70","01/01/87",39,30,265,8,5177,0,0,0,0,0,0,0,311874,0,0,0,0,499578,0,0,0,0,0,216081,0,1027533,198480,,0,0,0,0,0,0,0,"Mcf",72688,1000,3.8,3.8,3.8,0.06,29839,"Bbl29839",639,128000,55.63,55.63,7.12,0.06,29839 "Bryan City of",2442,1999,"Bryan Municipal","STEAM, GAS","01/01/55","01/01/74",138000,115000,0,20,118273000,0,7590674,7546886,15137560,110,46427,76607,3529286,0,372623,0,0,606045,154868,9320,63805,20315,520977,159461,31344,5544651,47,,0,0,0,0,0,0,0,"MCF",1626575,1,2.25,2.25,2.21,0.03,14.05,,0,0,0,0,0,0,0 "Bryan City of",2442,1999,"Roland C. Dandy","STEAM","01/01/77","01/01/77",105000,106000,0,19,461142000,1183486,10201555,18752019,30137060,287,105283,76291,11510542,0,391030,0,0,512056,181517,12858,53081,31539,405327,91686,57727,13323654,29,,0,0,0,0,0,0,0,"MCF",5120070,1,2.24,2.24,2.21,0.02,11.36,,0,0,0,0,0,0,0 "Burlington City of",2548,1999,"Gas Turbine","Gas Turbine","01/01/71","01/01/71",25500,25000,106,1,2093500,13587,531143,3214616,3759346,147,17164,6073,130467,0,0,0,0,324,5442,16648,0,0,0,75762,0,234716,112,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",6016,137674,20.61,21.69,3.75,0.06,16616 "Burlington City of",2548,1999,"Joseph C McNeil GenrЬ ","Steam","01/01/84","01/01/84",50,53,4305,48,183109400,278455,18147811,50484579,68910845,1378217,571376,140467,6439721,0,788415,0,0,291816,360657,0,131396,35661,553086,1325161,20193,10086573,55,"Wood-Tons",263762,4750,23.46,23.52,2.47,0.03,13742,"MCF",66041,1012124,2.82,2.82,2.78,0.24,86785,"BBL",2260,136430,20.13,21.19,3.7,0,71.02 "Cedar Falls City of",3203,1999,"Streeter Station","Steam","01/01/63","01/01/73",51500,50000,1650,23,38111600,281328,3758281,14375110,18414719,358,699506,97410,1113417,0,230220,0,0,102634,142771,0,90418,180725,588058,55402,9122,2610177,68,"Tons",19527,12429,38.79,36.49,1.47,0.02,14033.99,"MCF",49410,1000,2.75,2.75,2.75,0.04,14033.99,,0,0,0,0,0,0,0 "Cedar Falls City of",3203,1999,"Combustion Turbine","Combustion","01/01/68","01/01/68",25000,20000,193,0,2814300,70777,134588,3497629,3702994,148,3062,4978,122537,0,0,0,0,5713,0,0,6674,9708,0,32837,0,182447,65,,0,0,0,0,0,0,0,"MCF",50599,1000,2.42,2.42,2.42,0.04,17979.25,,0,0,0,0,0,0,0 "California Dept-Wtr Resources",3255,1999,"Reid Garner #4","Steam-coal","01/01/83","01/01/83",275000,250000,0,96,1597086000,319709000,0,0,319709000,1163,0,0,22054817,0,0,0,0,0,21659183,0,0,0,0,0,0,43714000,27,"Tons",672949,11858,0,13.11,1.31,0.01,11079,,0,0,0,0,0,0,0,"Barrels",7515,133622,0,25,4.55,0.05,11570 "California Dept-Wtr Resources",3255,1999,"BottleRock & S Geysep","Steam-Geoth","01/01/85","01/01/85",55000,0,0,0,0,10000,0,0,10000,0,0,0,0,0,0,0,0,0,553000,0,0,0,0,0,0,553000,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Chanute City of",3355,1999,"Plant #3","Internal Co","01/01/85","01/01/91",31915,39975,595,8,10378156,50000,612000,15500000,16162000,506,0,369525,245371,0,0,0,0,0,0,0,166666,0,0,136912,0,918474,89,"N/A",0,0,0,0,0,0,0,"MCF",78668,1000,2.66,2.66,2.66,0.02,0.02,"Barrels",3969,138000,26.57,26.57,0.08,0.01,0.01 "PUD No 1 of Clark County",3660,1999,"River Road CCCT","Gas Turbine","01/01/97","01/01/97",248000,258504,7058,21,1711891704,1053160,141767983,13187783,156008926,629,2319343,4203148,23066109,0,0,0,0,0,0,0,0,91900,0,0,0,27361157,16,,0,0,0,0,0,0,0,"MCF",11463,1060,2042,2012,1.9,0.01,7114,,0,0,0,0,0,0,0 "Clarksdale City of",3702,1999,,"Combine Cyc","01/01/71","01/01/71",25550,24000,2149,6,43507,0,0,4581109,4581109,179,0,10000,1053091,0,0,0,0,130000,80000,0,10000,0,12009,328580,0,1623680,37320,,0,0,0,0,0,0,0,"MCF",374997,1000,2.8,2.8,2.8,0.02,8.62,"BBL",70,142.5,23.14,23.14,3.86,0.05,13.99 "Clarksdale City of",3702,1999,,"Gas Turbine","01/01/65","01/01/65",11500,11500,754,6,12158,0,0,1445133,1445133,126,0,10000,478409,0,0,0,0,100000,50000,0,20000,0,0,226974,0,885383,72823,,0,0,0,0,0,0,0,"MCF",169662,1000,2.8,2.8,2.8,0.03,13.99,"BBL",115,142.5,23.14,23.14,3.86,0.07,20.18 "Coffeyville City o",3892,1999,"COFFEYVILLE","STEAM","01/01/01","01/01/73",56985,55900,4013,23,68578900,0,0,0,0,0,0,57285,2419645,0,0,0,0,0,1146750,0,0,0,8610,0,0,3632290,53,,0,0,0,0,0,0,0,"MMBTU",938070,1000,2.25,2.58,2.58,0.03,1368,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Steam","01/01/00","01/01/64",11125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68864,7301,41,105,51389,127700,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Diesel","01/01/48","01/01/78",13250,45933,1719,6,7081208,0,0,0,0,0,0,40423,214682,0,0,0,0,37863,0,0,0,12739,0,71418,0,377125,53,,0,0,0,0,0,0,0,"Mcf",65604,9530000,2.84,0,0,0,0,"Barrels",1725,126000,17.7,0,0,0,0 "Colorado Springs City of",3989,1999,"Birdsall","Steam-Gas","01/01/53","01/01/57",62500,4500,1717,4,20716000,10761,2593301,11384249,13988311,224,0,67716,1180669,0,107787,0,0,227078,88988,0,31363,89311,290603,224308,38374,2346197,113,,0,0,0,0,0,0,0,"MCF",412714,806,2.83,2.83,3.52,0.06,16212,"GALLONS",22000,137420,0.11,0.11,0.81,0.01,16212 "Colorado Springs City of",3989,1999,"Drake","Steam-Gas","01/01/25","01/01/74",257300,256000,8760,106,1484262000,2725551,23014851,80547185,106287587,413,0,1059853,25816108,0,1094453,0,0,3228406,1184954,0,462905,237248,4111443,1735831,152472,39083673,26,"TONS",769313,10914,29.13,31.49,1.44,0.01,11585,"MCF",494125,808,2.73,2.73,3.38,0.03,11585,"BARRELS",0,0,0,0,0,0,0 "Colorado Springs City of",3989,1999,"Nixon","Steam-Gas","01/01/80","01/01/80",207000,214000,6081,81,1117841000,5059222,39785705,107090082,151935009,734,0,969721,11571054,0,779121,0,0,1343687,1057607,0,489855,218501,3309067,2974204,146609,22859426,20,"TONS",538337,10432,18.31,18.84,0.9,0,10120,,0,0,0,0,0,0,0,"BARRELS",13952,136738,24.87,24.87,4.33,0.04,10120 "Colorado Springs City of",3989,1999,"CTS","Gas","01/01/99","01/01/99",71660,73000,458,0,22292000,418573,123167,32084223,32625963,455,0,0,715385,0,0,0,0,0,0,0,0,0,0,26204,0,741589,33,,0,0,0,0,0,0,0,"MCF",291394,983,2.89,2.87,2.92,0.03,12852,,0,0,0,0,0,0,0 "Columbia City of",4045,1999,,"Steam/Gas T","01/01/10","01/01/70",86000,226000,8760,46,62152000,115894,3578025,15986526,19680445,229,5320808,43503,2133251,0,531664,0,0,967929,376491,0,170114,28005,512239,452108,0,5215304,84,"Tons",37319,13265,53.83,53.69,2.02,3.22,15930,"Mcf",34179,0,3.64,3.64,0,0,0,,0,0,0,0,0,0,0 "Columbus City of",4065,1999,"O'Shaughnessy",,,,5000,5000,0,1,5860000,0,0,0,0,0,0,0,0,0,0,0,0,49898,0,0,0,0,0,2864,0,52762,9,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Concord City of",4150,1999,,,,,0,0,0,0,545243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Connecticut Mun Elec Engy Coop",4180,1999,"Millstone Unit 3","Nuclear (e)","01/01/86","01/01/86",1253100,1164700,7329,933,8277624400,0,20415627,29930688,50346315,40,0,324496,363329,24201,162455,0,0,48209,296706,13608,313554,74201,315415,228127,1354,2165655,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Wansley 1 & 2","Coal fired","01/01/76","01/01/78",22220,0,0,0,149590620,0,0,9113036,9113036,410,28304,29233,2186381,0,24950,0,0,15863,81536,0,42895,19710,138435,167350,13819,2720172,18,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Scherer 1 & 2","Coal fired","/ /","01/01/84",22680,0,0,0,144814966,0,0,13467749,13467749,594,50818,27106,2605498,0,25617,0,0,15303,77539,0,34949,22981,256897,16076,11927,3093893,21,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Denton City of",5063,1999,"SPENCER PLANT","STEAM","01/01/55","01/01/73",179000,259100,11980,36,305539695,0,0,0,0,0,0,233373,9138796,0,348227,0,0,468112,432003,0,71604,11794,211613,467529,210327,11593378,38,,0,0,0,0,0,0,0,"Mcf",3800668,1,2.24,2.24,2.24,2.99,12.43,"BBl",0,139.68,7.82,0,0,0,0 "Eugene City of",6022,1999,"Willamette","Steam","01/01/31","01/01/50",25000,0,0,0,0,0,0,1189332,1189332,48,0,0,260,0,1204,0,0,-975,0,0,0,0,0,5095,7459,13043,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Eugene City of",6022,1999,"Energy Center","Steam","01/01/76","01/01/76",51200,41000,0,0,192829000,1280,320371,7521672,7843323,153,0,13058,1366594,0,0,0,0,261785,0,0,0,94,0,127793,0,1769324,9,,0,0,0,0,0,0,0,,321587,0,2.51,0,0,0,2495.24,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"ANIMAS","STEAM-COMBI","01/01/55","01/01/94",32180,28000,7808,14,170805000,5968,1109574,25033191,26148733,813,0,70145,3611891,0,225548,0,0,460952,226694,0,122984,0,217797,1021413,38103,5995527,35,,0,0,0,0,0,0,0,"MCF",1668856,1013,2.13,2.13,2.1,0.02,9897,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"SAN JUAN","STEAM-COAL","/ /","/ /",4300042200,43000,7919,10,293222700,0,5471749,62874731,68346480,0,0,71242,5641682,0,114021,0,0,120758,93838,131,62021,34762,382623,77158,65298,6663534,23,"TONS",167448,9421,32.33,32.33,1.72,0.01,10774,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Fayetteville Public Works Comm",6235,1999,"Butler-Warner Gen PtP","Gas-Turbine","01/01/76","01/01/88",303400,276500,1134,33,0,749336,5123088,100277060,106149484,350,4108529,0,-6665,0,0,0,0,0,0,0,0,0,0,292639,-141172,144802,0,,0,0,0,0,0,0,0,"Mcf",1724674,1046,2.72,2.72,2.6,0.03,12249.5,"Barrels",4,138800,27.15,27.87,4.78,0.06,13375.25 "Fort Pierce Utilities Auth",6616,1999,"Steam","Steam","01/01/21","01/01/89",120011,0,0,0,0,0,0,0,0,0,0,564929,6990,0,231196,0,0,428922,138247,0,21508,56082,204594,1437831,87424,3177723,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Freeport Village of Inc",6775,1999,"Power Plant #1","Internal Co",,"01/01/64",13190,0,0,9,2066120,5022,1113459,3036221,4154702,315,51721,42612,209909,0,0,0,0,518539,0,0,0,79604,0,0,0,850664,412,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",293755,138788,0.81,0.68,0.18,0.97,14.88 "Freeport Village of Inc",6775,1999,"Power Plant #2","Internal Co","1/1/1968","01/01/73",37390,57000,1,9,1277200,1827,3178208,8088951,11268986,301,0,52596,205053,0,0,0,0,634322,0,28573,0,101784,0,0,0,1022328,800,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",319336,138788,0.86,0.64,0.13,0.16,9.2 "Fremont City of",6779,1999,"Wright","Steam","01/01/56","01/01/76",132700,83390,8760,47,336075,202231,5905920,42850719,48958870,369,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Gainesville Regional Utiliti",6909,1999,"DEERHAVEN","STEAM (330-","01/01/69","01/01/81",327500,290000,12226,0,1352589900,254025,31881608,176716069,208851702,638,0,357675,29040171,0,1948913,669408,0,709824,318849,0,0,234571,2947099,1471570,212996,37911076,28,"Tons",434183,13091,0,43.31,1.65,0.02,10917.81,"Mcf",3363772,1047,0,2.65,2.53,0.03,12133.79,"Barrels",37465,152355.8,0,17.6,2.75,0.03,11346.38 "Gainesville Regional Utiliti",6909,1999,"DEERHAVEN","GAS TURBINE","01/01/76","01/01/97",121000,106000,1766,0,84018600,0,1321304,28064043,29385347,243,0,39742,3231130,0,28286,26111,0,2792,9961,0,0,15073,36357,60563,3746,3453761,41,,0,0,0,0,0,0,0,"Mcf",1122969,1047,0,2.86,2.74,0.04,14030.74,"Barrels",692,139057.2,0,20.13,3.45,0.06,18331.59 "Gainesville Regional Utiliti",6909,1999,"CRYSTAL RIVER","NUCLEAR","01/01/77","01/01/77",12530,13000,8736,0,100282800,3267,4269194,7051636,11324097,904,0,649986,434350,0,10743,21,0,0,421140,180700,453410,74742,63458,47809,56124,2392483,24,,0,0,0,0,0,0,0,"mmbtu",1060237,1,0,0.41,0.41,0,10572.47,,0,0,0,0,0,0,0 "Gainesville Regional Utiliti",6909,1999,"KELLY","STEAM (310,","01/01/13","01/01/65",69000,70000,6288,38,122927200,29000,3448845,16424862,19902707,288,0,116270,4283336,0,725363,41979,0,353107,42098,0,37872,118991,299095,266800,56631,6341542,52,,0,0,0,0,0,0,0,"Mcf",1386371,1041,0,2.8,2.69,0.04,1359.07,"Barrels",27416,150944,0,14.6,2.3,0.03,11701.63 "Gainesville Regional Utiliti",6909,1999,"KELLY","GAS TURBINE","01/01/38","01/01/65",48900,23000,187,0,1323700,0,3911,6914299,6918210,141,0,2848,102069,0,3654,898,0,156,983,0,56884,2806,253,6844,9228,186623,141,,0,0,0,0,0,0,0,"Mcf",34317,1041,0,2.97,2.85,0.08,27441.76,"Barrels",125,137462.3,0,2.18,0.38,0.01,33607.61 "Garland City of",6958,1999,"C E Newman","Steam","01/01/57","01/01/64",90,0,0,15,52988540,0,0,0,0,0,0,393626,2065599,0,337730,0,0,304378,0,0,0,95143,576059,204996,14547,3992078,75,,0,0,0,0,0,0,0,"mcf",751031,1027,2.68,2.68,2.61,0.03,14558,,0,0,0,0,0,0,0 "Garland City of",6958,1999,"Ray Olinger","Steam","01/01/66","01/01/75",340,0,0,53,1124489300,352431,77747728,0,78100159,229706,0,925754,28773849,0,899894,0,0,340126,0,0,75135,141289,2796239,1696904,58564,35707754,32,,0,0,0,0,0,0,0,"mcf",12530666,1015,2.29,2.29,2.25,0.02,11307,,0,0,0,0,0,0,0 "Glendale City of",7294,1999,"Grayson Power Plant","C.C. 8 & St","01/01/77","01/01/77",98000,30000,6550,46,83627000,0,0,0,0,0,0,0,2304766,0,0,0,0,0,0,0,0,0,0,0,0,2304766,28,,0,0,0,0,0,0,0,,885159,1032,2.6,2.6,2.52,0.02,10922,,0,0,0,0,0,0,0 "Glendale City of",7294,1999,"Grayson Power Plant","Steam 3, 4,","01/01/53","01/01/64",117000,79000,8095,46,235016000,0,0,0,0,0,0,83118,12398533,0,2564287,0,0,0,199205,0,21789,81361,407902,1157488,0,16913683,72,,0,0,0,0,0,0,0,,6354878,665,1.96,1.96,2.94,0.04,13452,,0,0,0,0,0,0,0 "Glendale City of",7294,1999,"Grayson Power Plant","Gas Turbine","01/01/72","01/01/74",53000,1000,34332,46,295600,0,0,0,0,0,0,60626,127128,0,0,0,0,0,312,0,0,0,73,124,0,188263,637,,0,0,0,0,0,0,0,,49491,1032,2.57,2.57,2.49,0.04,17276,,0,0,0,0,0,0,0 "Grand Haven City of",7483,1999,"Sims 111","Steam","01/01/61","01/01/83",65000,65640,7248,34,325839300,194823,17546372,59386460,77127655,1187,608741,60314,5842025,0,518785,0,0,229677,414863,0,31843,59567,1244336,91370,29265,8522045,26,"tons",160760,11367,0,36.34,1.59,17.93,11338,,0,0,0,0,0,0,0,"mcf",13850,1000,0,4.34,0,0,0 "Grand Haven City of",7483,1999,"Diesel Plant","internal co","01/01/31","01/01/74",20430,9030,28,1,72500,27458,445645,4740308,5213411,255,22625,776,38089,0,0,0,0,0,30018,0,0,2297,0,0,74851,146031,2014,,0,0,0,0,0,0,0,"mcf",933,1000,0,4.34,11.87,525.39,44239,"brls",376,144000,0,0.05,0,0,0 "Grand River Dam Authority",7490,1999,"GRDA #1","STEAM","01/01/81","01/01/81",490000,519,8044,97,3074727000,1689890,98855201,234243925,334789016,683,0,134410,29404628,0,904037,0,0,798928,375518,0,169174,314792,2121091,430639,266073,34919290,11,"TONS",1895637,8384,14.42,14.42,0.86,0,10337.97,"MCF",107483,1006,2.44,2.44,2.39,0,35.72,,0,0,0,0,0,0,0 "Grand River Dam Authority",7490,1999,"GRDA #2","STEAM","01/01/86","01/01/86",520000,553,8023,120,2084345000,0,53986144,402596506,456582650,878,0,83334,20574802,0,2216945,0,0,525668,233196,0,104888,178859,2453678,344835,172902,26889107,13,"TONS",2049199,8701,14.76,15.18,0.87,0,10756.78,"MCF",67904,1006,2.52,2.52,2.46,0,20.98,,0,0,0,0,0,0,0 "PUD No 1 of Grays Harbor Cnty",7548,1999,,,,,0,0,0,0,0,82928,2208894,12774993,15066815,0,0,61617,6477957,0,27174,0,0,0,581817,934,212,0,14634,18437,28696,7211478,0,"Tons",249975,8218,25.98,25.74,1.56,0.02,10782,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Greenwood Utilities Comm",7651,1999,,,,,0,0,0,0,0,0,0,0,0,445,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Greenwood Utilities Comm",7651,1999,"Wright","Steam","1/1/1902","1/1/1955",17500,11721,1472,12,10291142,44232,477968,5142250,5664450,324,0,43208,293538,0,168488,0,0,154435,29059,1228,19461,29411,12072,62764,5858,819522,80,"Tons",140,13248,0,0,0,0,0,"MCF",93243,1019,0,0,0,0,0,,0,0,0,0,0,0,0 "Greenwood Utilities Comm",7651,1999,"Henderson","Steam","1/1/1960","1/1/1967",46179,40900,2903,23,50661210,117233,1499663,13202167,14819063,321,0,56586,2045916,0,255116,0,0,157434,117767,0,52669,867,272422,88793,111926,3159496,62,"Tons",545,13100,0,0,0,0,0,"MCF",687608,1019,0,0,0,0,0,"Barrels",120,138486,0,0,0,0,0 "Harrisonburg City of",8198,1999,"PLEASANT VALLEY","GAS-TURBINE","01/01/97","01/01/98",14000,13795,0,2,1546628,18753,975623,6407017,7401393,529,0,9077,75597,0,0,0,0,10595,4440,0,0,5214,15176,0,188,120287,78,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"GALLONS",186918,0,0.4,0.4,0,0,0 "Harrisonburg City of",8198,1999,"MT. CLINTON","GAS-TURBINE","01/01/98","01/01/99",14000,8846,0,2,525731,0,139162,2862528,3001690,214,0,1057,18332,0,0,0,0,6844,366,0,0,5001,1332,0,21,32953,63,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"GALLONS",66356,0,0.4,0.4,0,0,0 "Henderson City Utility Comm",8449,1999,"STATION ONE","STEAM","01/01/51","01/01/68",40591,20000,0,30,4898138,0,2293070,8187353,10480423,258,0,312060,1078245,0,309093,0,0,263344,276291,0,0,14500,164236,186376,9722,2613867,534,"TONS",34517,11434,28.82,28.66,1.31,20.31,11501,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Henderson City Utility Comm",8449,1999,"STATION TWO","STEAM","01/01/73","01/01/74",350000,312000,0,0,2104822040,0,0,115186365,115186365,329,0,469431,479283,0,1971482,0,0,894387,491084,0,272097,167212,3356917,539212,306867,8947972,4,"TONS",249039,11435,23.99,24.09,1.05,10.97,11458,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Holland City of",8723,1999,"48th Street","Oil/Gas Tur","01/01/94","01/01/94",75300,75651,1207,0,55601071,336770,5131914,24597253,30065937,399,33140,0,1847609,0,0,0,0,304910,0,0,0,0,0,70013,0,2222532,40,,0,0,0,0,0,0,0,"Mcf",717801,1020,2.6,2.6,2.55,0.03,13168,"Brls",2149,137000,29.4,29.4,5.11,0,222 "Holland City of",8723,1999,"James DeYoung","Steam","01/01/41","01/01/68",62250,55503,8760,45,321994740,803565,5456558,33980556,40240679,646,169931,203954,7360870,0,1786693,0,0,0,0,0,0,0,0,1639115,0,10990632,34,"Tons",168615,12700,41,41,1.57,0.02,13300,"Mcf",4050,1020,3,3,2.94,0,13,"Brs",250,137000,29.4,29.4,5.11,0,4.46 "Holland City of",8723,1999,"6th Street","Oi/Gas Turb","01/01/74","/ /",24000,13000,54,0,139040,20548,219739,2965966,3206253,134,0,0,27012,0,0,0,0,0,0,0,0,0,0,11677,0,38689,278,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Brs",1208,137000,29.4,29.4,5.11,0.25,49992 "Holyoke City of",8774,1999,"Steam","Conventiona","01/01/02","01/01/61",25500,18000,272,32,-1054,143821,1991971,11336832,13472624,528,0,1028334,2937101,0,124366,0,0,0,0,0,416066,0,0,0,0,307775,-292007,,0,0,0,0,0,0,0,"Mcf",57642,1020,2.74,2.74,2.68,0.05,23544,"Barrels",265,152297,16.24,22.59,3.53,0.05,23544 "Homestead City of",8795,1999,"G.W.","Int. Combus","01/01/26","01/01/81",59100,63000,8700,21,73393186,7431029,52158226,0,59589255,1008,3549232,0,2715528,0,0,0,0,211533,0,0,749417,13328,0,1665477,0,5355283,73,,0,0,0,0,0,0,0,"MCP",652925,1091,2.85,3.21,2.85,0,10060,"BARRELS",13090,140600,24,24,0,0,1038 "Terrebonne Parish Consol Govt",8884,1999,"Houm plnt","Stem","01/01/62","01/01/76",78950,67,8908,26,108812349,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"mcf",1412914,1,2.82,2.82,2.66,0.03,13778,,0,0,0,0,0,0,0 "Hudson Town of",8973,1999,"Cherry St Station","Internal Co","01/01/00","01/01/72",15200,15200,328,10,2018120,3500,332760,3278258,3614518,238,0,29030,151138,0,0,0,0,177436,0,0,27887,98252,0,122644,0,606387,300,,0,0,0,0,0,0,0,,33210,910,2.98,2.98,3.27,0,0,,2307,140000,24.47,22.62,3.85,0.04,0 "Hudson Town of",8973,1999,"HLP Peaking","Internal Co","01/01/62","01/01/62",4400,4400,283,0,1552200,0,1503,711956,713459,162,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lafayette City of",9096,1999,"Doc Bonin","Steam","01/01/65","01/01/77",331500,276000,14682,26,772281,302436,6849008,50156340,57307784,173,1732453,190840,21238385,0,398587,0,0,563223,268406,0,110983,25741,202633,459320,729180,24187298,31319,,0,0,0,0,0,0,0,"MCF",8285542,1055,2.47,2.47,2.34,0.02,11586,,0,0,0,0,0,0,0 "Lafayette City of",9096,1999,"Curtis A. Rodemacherи","Steam","01/01/51","01/01/60",33700,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Hutchinson Utilities Comm",9130,1999,"NO.2","GAS TURBINE","01/01/75","01/01/95",90500,52000,3484,8,143171,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",1199515,1000000,1.94,1.94,1.94,0.02,857,,0,0,0,0,0,0,0 "Hutchinson Utilities Comm",9130,1999,"NO.1","INTERNAL CO","01/01/41","01/01/63",19280,13000,481,17,1411,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",10876,1000000,2.5,2.5,2.5,0.02,11409,"BARRELS",898,138500,21.33,21.33,3.67,0.04,11409 "Hutchinson Utilities Comm",9130,1999,"NO.1","GAS TURBINE","01/01/71","01/01/71",16000,12600,1947,17,18870,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",210955,1000000,2.16,2.16,2.16,0.02,11179,,0,0,0,0,0,0,0 "Imperial Irrigation District",9216,1999,"YUMA AXIS (YUCCA)","STEAM/GAS T","01/01/59","01/01/59",97000,88000,8721,26,352808000,64181,2260883,23196343,25521407,263,0,379434,10637888,0,935878,0,0,640464,495843,0,99827,69611,406661,211055,674585,14551246,41,,0,0,0,0,0,0,0,"MCF",4064674,1009,2.34,2.34,2.32,0.03,11.62,,0,0,0,0,0,0,0 "Imperial Irrigation District",9216,1999,"BRAWLEY","GAS TURBINE","01/01/62","01/01/62",22500,0,0,0,0,5071,76410,2726341,2807822,125,0,0,0,0,0,0,0,1734,0,0,0,2153,82770,0,0,86657,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Imperial Irrigation District",9216,1999,"ROCKWOOD","GAS TURBINE","01/01/77","01/01/80",49900,43000,449,3,8735400,3032,432127,10030106,10465265,210,0,48642,178668,0,0,0,0,31135,0,0,83679,478,0,196364,0,538966,62,,0,0,0,0,0,0,0,"MCF",120588,1009,2.77,2.77,2.75,0.03,13.81,"BBLS",309,139000,31.32,31.32,5.36,0.08,12.78 "Imperial Irrigation District",9216,1999,"EC STEAM PLANT","STEAM","01/01/49","01/01/93",236000,200000,14438,32,346976000,145322,8507545,92188450,100841317,427,0,435334,9038913,0,564914,0,0,928726,354013,0,378925,35949,1083557,364726,297164,13482221,39,,0,0,0,0,0,0,0,"MCF",3854124,1009,2.73,2.73,2.7,0.03,11.2,,0,0,0,0,0,0,0 "Imperial Irrigation District",9216,1999,"COACHELLA PLANT","GAS TURBINE","01/01/73","01/01/76",92600,79900,484,3,8735400,0,660201,8509765,9169966,99,0,0,384991,0,0,0,0,16129,0,0,0,0,0,221825,0,622945,71,,0,0,0,0,0,0,0,"MCF",133342,1009,2.68,2.68,2.65,0.07,15.4,"BBLS",161,139000,19.82,19.82,3.4,0.03,15.49 "Independence City of",9231,1999,"Station H","Combustion","01/01/72","01/01/72",43900,35000,768,0,9679000,0,264494,7881342,8145836,186,3650000,0,418654,0,0,0,0,259,6023,0,1558,1922,0,40063,6460,474939,49,,0,0,0,0,0,0,0,"Mcf",165620,1006,2.52,2.52,2.5,4.32,17250,"barrel",70,137380,0,22.9,3.97,0,0 "Independence City of",9231,1999,"Station I","Combustion","01/01/72","01/01/72",39200,20000,84,0,913000,0,302177,5529062,5831239,149,1900000,0,60551,0,0,0,0,165,6970,0,5781,13239,0,25841,31762,144309,158,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"barrel",2704,137380,19.9,22.39,3.88,6.63,17087 "Independence City of",9231,1999,"Station J","Combustion","01/01/69","01/01/69",36000,25000,236,0,2002000,0,0,7805061,7805061,217,0,0,125702,0,0,0,0,222,1531,0,871,4113,0,24419,8730,165588,83,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"barrel",6516,137380,19.17,19.29,3.34,6.28,18779 "Independence City of",9231,1999,"Missouri City","Steam","01/01/55","01/01/55",46000,39000,1671,4,15124000,35409,3991334,17761788,21788531,474,0,7082,502886,0,176489,0,0,179516,70526,0,12705,8751,225619,212687,60099,1456360,96,"tons",12047,11335,30.77,38.88,1.72,3.33,18669,,0,0,0,0,0,0,0,"barrel",1600,137380,20.32,22.13,3.83,0,0 "Independence City of",9231,1999,"Blue Valley Steam","Steam","01/01/58","01/01/65",115000,84320,13965,66,241792052,334550,7113970,51575531,59024051,513,0,419819,4808525,0,524873,0,0,530126,996421,0,397024,47705,1359676,212400,446582,9743151,40,"tons",141859,10419,27.47,28,1.34,1.99,13563,"Mcf",318933,1007,2.6,2.6,2.58,0,0,"barrel",381,137380,19.7,29.02,5.03,0,0 "Independence City of",9231,1999,"Blue Valley RCT","Gas Turbine","01/01/76","01/01/76",61000,0,0,0,-34900,0,79423,9483847,9563270,157,0,0,0,0,0,0,0,0,0,0,6781,13176,0,85297,2666,107920,-3092,,0,0,0,0,0,0,0,"Mcf",0,0,0,0,0,0,0,"barrel",0,0,19.7,0,0,0,0 "Indiana Municipal Power Agency",9234,1999,"Anderson","Combustion","01/01/92","01/01/92",77400,0,677,1,16207699,338303,2059957,27858215,30256475,391,24719,109921,852328,0,0,0,0,-99533,0,0,0,0,0,35406,0,898122,55,,0,0,0,0,0,0,0,"Mcf",221255,1008,3.76,3.76,0,0.03,13866,"Barrels",913,135000,0,21.44,0,0,0 "Indiana Municipal Power Agency",9234,1999,"Richmond","Combistion","01/01/92","01/01/92",77400,0,672,2,16681301,285908,1897137,27678416,29861461,386,24719,109412,777649,0,0,0,0,63041,0,0,0,0,0,113291,0,1063393,64,,0,0,0,0,0,0,0,"Mcf",205930,1008,3.25,3.25,0,0.03,13826,"Barrels",4618,135000,0,22.83,0,0,0 "Jacksonville Electric Auth",9617,1999,"St. Johns River Powr","Steam","01/01/87","01/01/88",1359200,1254800,16230,379,9769075000,8261567,216790382,1265014325,1490066274,1096,3558053,1278911,141047857,0,5601281,0,0,1074855,5428044,46697,1187268,2385486,20285812,4095589,1403840,183835640,19,"Ton",3747220,12457,34.89,34.89,1.42,0.02,9594,,0,0,0,0,0,0,0,"bbl",63214,139174,0,21.47,2.12,0,0 "Jacksonville Electric Auth",9617,1999,"Southside Station","Steam","01/01/50","01/01/64",231600,212500,10904,10,554635000,260352,9143119,32049310,41452781,179,1629842,271851,15520408,0,1599580,0,0,0,206567,0,326718,25186,630482,191705,280057,19052554,34,,0,0,0,0,0,0,0,"Mcf",2507368,1060,0,2.34,3.06,0.03,11179,"Bbl",557864,151168,0,15.84,3.06,0.03,11179 "Jacksonville Electric Auth",9617,1999,"Northside Station","Steam","01/01/66","01/01/77",1158700,770000,15844,253,3351845000,2786108,56942751,225240754,284969613,246,33142204,2784678,74049151,0,5992982,0,0,44719,4602152,0,1374517,505398,7585701,1471833,857253,99268384,30,,0,0,0,0,0,0,0,"Mcf",8655547,1061,0,2.25,2.88,0.02,10216,"Bbl",3945407,150694,0,13.69,2.88,0.02,10216 "Jacksonville Electric Auth",9617,1999,"Northside Station","Combustion","01/01/68","01/01/75",248400,133600,1573,0,37400000,0,13725,30470646,30484371,123,788220,0,2222304,0,0,0,0,0,0,0,0,0,0,0,0,2222304,59,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Bbl",106276,141886,0,20.19,4.14,0.05,16933 "Jacksonville Electric Auth",9617,1999,"Kennedy Station","Steam","01/01/55","01/01/69",149600,99000,5097,10,347132000,1512681,17018214,28634062,47164957,315,401104,268512,9068081,0,772026,0,0,0,215330,0,64213,51497,330526,641660,660280,12072125,35,,0,0,0,0,0,0,0,"Mcf",391837,1061,0,2.34,2.97,0.02,11107,"Bbl",540582,151503,0,14.74,2.97,0.02,11107 "Jacksonville Electric Auth",9617,1999,"Kennedy Station","Combustion","01/01/69","01/01/78",168600,154000,1125,0,42180000,0,1327436,21421124,22748560,135,25091556,0,2490159,0,0,0,0,0,0,0,0,0,0,0,0,2490159,59,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Bbl",112392,139127,0,20.19,4.14,0.05,15570 "Jamestown City of",9645,1999,"Samuel A. Carlson","Steam","01/01/00","01/01/68",57700,49026,8760,35,150393293,431201,4905918,44660838,49997957,867,0,307142,3248587,0,767918,0,0,67674,0,0,323990,45918,307513,223184,92412,5384338,36,"Tons",90599,12698,32.64,32.62,1.3,0.02,15.15,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kansas City City of",9996,1999,"NEARMAN","STEAM","01/01/81","01/01/81",235000,0,6232,0,1163529000,1149455,33440175,132136477,166726107,709,0,2403060,10767308,0,0,0,0,0,0,0,4927543,0,0,0,0,18097911,16,"Tons",816559,11608,0,13.63,0,0,0,,0,0,0,0,0,0,0,"Gallons",337856,0,0,0.53,0,0,0 "Kansas City City of",9996,1999,"QUINDARO","GAS TURBINE","01/01/61","01/01/77",121100,0,848,0,37328000,0,0,12878040,12878040,106,0,0,2472937,0,0,0,0,0,0,0,154961,0,0,0,0,2627898,70,,0,0,0,0,0,0,0,"MCF",82098,0,0,2.67,0,0,0,"Gallons",3996910,10968,0,0.56,0,0,0 "Kansas City City of",9996,1999,"Kaw","STEAM","01/01/55","01/01/62",144000,0,735,0,52780000,226366,10485751,61538861,72250978,502,0,1219250,2547603,0,0,0,0,0,0,0,120227,0,0,0,0,3887080,74,,0,0,0,0,0,0,0,"MCF",768569,14616,0,2.89,0,0,0,"Gallons",2470,0,0,0,0,0,0 "Kansas City City of",9996,1999,"Quindaro","STEAM","01/01/66","01/01/71",232000,0,7553,0,432609000,318548,21469578,113626934,135415060,584,0,4220013,12201830,0,0,0,0,0,0,0,6446514,0,0,0,0,22868357,53,"Tons",257094,10922,0,18.02,0,0,0,"MCF",136450,0,0,2.53,0,0,0,,0,0,0,0,0,0,0 "Kaukauna City of",10056,1999,"Gas-Turbine","Gas-Turbine","01/01/69","01/01/69",20000,20000,0,0,1633000,27532,147667,1773210,1948409,97,0,6258,0,0,0,0,0,5950,179,0,5243,0,0,25424,859,43913,27,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kaukauna City of",10056,1999,"Diesel","Internal Co","01/01/66","01/01/66",6000,6000,0,1,2547740,0,0,750737,750737,125,0,1797,0,0,0,0,0,17685,70,0,1675,0,0,119575,865,141667,56,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kennett City of",10152,1999,,,"01/01/42","01/01/75",31906,0,0,11,1634000,22309,787483,6445027,7254819,227,0,388548,59743,0,0,0,0,90225,0,0,0,0,0,71100,0,609616,373,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Key West City of",10226,1999,"STOCK ISLAND GENERAT","STOCK ISLAN","01/01/65","01/01/65",6000,1830,504,3,787200,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",1537,147619,25.24,23.84,3.85,0.04,12420 "Key West City of",10226,1999,"BIG PINE & CUDJOE KE","PEAKING DIE","01/01/66","01/01/66",7800,6000,1241,3,1626000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",3240,147619,25.24,22.91,3.69,0.04,12353 "Key West City of",10226,1999,"STOCK ISLAND GENERAT","COMBUSTION","01/01/98","01/01/98",19770,17800,170,3,6338385,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",19072,147619,25.24,23.84,3.85,0.07,18656 "Key West City of",10226,1999,"STOCK ISLAND GENERA","COMBUSTION","01/01/98","01/01/98",19770,17800,312,3,4201594,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",12081,147619,25.24,23.84,3.85,0.06,17828 "Key West City of",10226,1999,"STOCK ISLAND GENERA","MEDIUM SPEE","01/01/92","01/01/92",19200,17400,1348,4,7680400,725946,2129491,33095400,35950837,1872,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",15168,147619,25.24,23.84,3.85,0.04,12245 "Key West City of",10226,1999,"STOCK ISLAND GENERA","COMBUSION T","01/01/78","01/01/78",23450,20000,338,3,3341400,102063,3836252,41439758,45378073,1935,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",10618,147619,25.24,23.84,3.85,0.07,19703 "Kissimmee Utility Authority",10376,1999,"Cane Island Unit 1","Gas Turbine","01/01/94","01/01/95",40000,40500,959,0,14625850,2178026,8322640,16405426,26906092,673,0,155794,616975,0,21370,0,0,0,47552,0,0,82207,42233,3552,0,969683,66,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kissimmee Utility Authority",10376,1999,"Cane Island Unit 2","Combined Cy","01/01/95","01/01/95",120000,120900,8016,0,410918450,0,18118934,33576386,51695320,431,0,574702,9819459,0,1048989,0,0,0,317852,44,602,7445,273743,228456,0,12271292,30,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kissimmee Utility Authority",10376,1999,"Hansel 8-20","Internal Co","01/01/59","01/01/80",18350,17800,1896,7,2753500,83022,1284485,18177017,19544524,1065,0,0,60138,0,0,0,0,0,0,0,0,0,0,0,0,60138,22,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kissimmee Utility Authority",10376,1999,"Hansel 21-23","Combined Cy","01/01/83","01/01/83",55000,52300,3391,23,48803800,188985,8733288,12117381,21039654,383,1360859,467366,1917038,0,669123,0,0,0,263562,0,0,9168,294075,290,407232,4027854,83,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lake Worth City of",10620,1999,"Tom G Smith","Gas Turbine","01/01/76","01/01/76",30000,0,0,0,9028400,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lake Worth City of",10620,1999,"Tom G Smith","Gas-Turbine","01/01/76","01/01/76",34000,0,10495,35,57950539,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lake Worth City of",10620,1999,"Tom G Smith","Internal Co","01/01/65","01/01/65",10000,0,1433,0,2538120,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lakeland City of",10623,1999,"McIntosh","Steam","01/01/71",,404000,382000,7228,201,1839190600,1885069,31460078,296239998,329585145,816,8226431,522705,41752998,0,2155417,0,0,1371320,950229,0,705662,501402,5163353,1063922,1302923,55489931,30,"Tons",500198,12850,43.47,43.81,0,0,0,"MCF",5551769,953000,2.45,2.45,0,0,0,"BBLS",0,0,0,0,0,0,0 "Lakeland City of",10623,1999,"McIntosh","Internal Co","01/01/70","1/1/1970",5500,5500,344,0,892340,0,0,1320630,1320630,240,0,0,34735,0,0,0,0,9947,0,0,0,0,0,0,0,44682,50,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBLS",1518,138953,25.45,22.89,3.92,0,0 "Lakeland City of",10623,1999,"McIntosh","Gas Turbine","01/01/73","1/1/1973",20200,20000,284,0,22266010,0,0,4357281,4357281,216,21292755,0,764571,0,0,0,0,494377,0,0,0,0,0,0,0,1258948,57,,0,0,0,0,0,0,0,"MCF",67719,953000,2.51,2.51,2.39,0,0,"BBLS",927,138953,25.45,23.77,4.07,0,0 "Lakeland City of",10623,1999,"Larsen","Steam","01/01/59","1/1/1966",70000,87000,3471,7,109781131,18222,3205076,39859999,43083297,615,1568340,-458515,4264086,0,661973,0,0,352157,157768,0,224398,35362,686445,74964,71417,6070055,55,,0,0,0,0,0,0,0,"MCF",1067068,953000,2.52,2.52,2.4,0,0,"BBLS",62536,149341,15.9,15.4,2.46,0,0 "Lakeland City of",10623,1999,"Larsen","GasTurbine","01/01/62","1/1/1992",141000,144000,5825,39,519222486,10000,355941,47760931,48126872,341,1320675,0,14688881,0,0,0,0,57111,49377,0,75387,135332,474794,0,18035,15498917,30,,0,0,0,0,0,0,0,"MCF",4954465,953000,2.5,2.5,2.38,0,0,"BBLS",778,138657,18.94,23.73,4.07,0,0 "Lansing City of",10704,1999,"Erickson","Steam","01/01/73","01/01/73",154716,155993,7562,28,902816777,503834,8008408,37441310,45953552,297,9431143,598448,15649944,0,1139751,0,0,375627,144309,0,521787,398880,1081673,289370,373441,20573230,23,"Tons",359532,12604,40.78,41.97,1.66,0.02,10054,0,0,0,0,0,0,0,0,"BBL",2451,137028,18.35,17.87,3.1,0.03,10213 "Lansing City of",10704,1999,"Ottawa","Steam","01/01/38","01/01/54",2500,0,0,0,0,608570,3547880,114658,4271108,1708,1064667,0,0,0,43886,0,0,0,127,0,0,16474,0,0,716,61203,0,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lansing City of",10704,1999,"Eckert","Steam","01/01/00","01/01/00",375000,313553,8760,81,1359307426,17065,20619486,113409313,134045864,357,7390092,1095136,26848959,0,3418600,303612,0,443302,132055,0,712432,787553,4216929,2271054,978202,40742496,30,"tons",809048,10575,30.23,30.51,1.51,0.02,12067,0,0,0,0,0,0,0,0,"BBL",12900,138067,18.25,18.61,3.21,0.03,9035 "Lincoln Electric System",11018,1999,"Laramie River","Steam","01/01/80",,183000,0,0,0,1368728000,948685,27384698,112496736,140830119,770,162367,402737,7659439,0,0,0,0,2448015,0,0,0,0,3077883,0,0,13588074,10,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lincoln Electric System",11018,1999,"Rokeby 2","Gas Turbine","01/01/97","1/1/1997",95400,85000,472,10,27550000,292531,1645078,27003893,28941502,303,4175680,124454,675616,0,0,0,0,179579,0,0,6681,10203,0,200778,21818,1219129,44,"N/A",0,0,0,0,0,0,0,"MCF",338164,996,2.05,2.05,2.05,0.03,12591,"BBLS",1980,137799,0,22.26,3.78,0.06,14724 "Lincoln Electric System",11018,1999,"8th & J","Gas Turbine","01/01/72","1/1/1972",27000,31000,81,10,1838000,77662,98128,4865007,5040797,187,164554,41168,79431,0,0,0,0,43462,0,0,1750,5169,0,55828,0,226808,123,"N/A",0,0,0,0,0,0,0,"MCF",29571,989,2.75,2.75,2.79,0.04,16104,"BBLS",67,128691,0,22.26,3.78,0.07,17830 "Lincoln Electric System",11018,1999,"Rokeby #1","Gas Turbine","01/01/75","1/1/1975",72400,71000,64,10,2311000,95118,1918857,8492052,10506027,145,175405,74672,114678,0,0,0,0,94085,0,0,40687,67514,0,1328510,21818,1741964,754,"N/A",0,0,0,0,0,0,0,"MCF",32475,994,2.33,2.33,2.34,0.03,14499,"BBLS",293,137799,19.45,22.23,3.77,0.08,20315 "Littleton Town of",11085,1999,"NEW HAVEN HARBOR",".225% JOINT",,,0,0,0,0,1732502,0,0,0,0,0,0,90,51512,0,948,0,0,0,0,0,2392,0,0,0,0,54942,32,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Logansport City of",11142,1999,"Logansport","Steam","01/01/58","01/01/64",38500,0,8760,22,162228320,109642,1405355,19237386,20752383,539,0,190031,3821848,0,128670,0,0,36753,919428,0,140403,20089,563819,408835,480785,6710661,41,90397,92870,11500,41.15,41.15,2.13,0.02,13.17,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Logansport City of",11142,1999,"Logansport","Oil/Gas","01/01/69","01/01/69",17500,0,0,0,577170,0,1025207,0,1025207,59,0,0,42618,0,0,0,0,0,0,0,0,0,0,0,0,42618,74,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"VALLEY","STEAM","01/01/54","01/01/56",545600,337000,0,7,27314000,926527,25439704,84246953,110613184,203,3500000,60235,13221495,0,55929,0,0,0,442925,0,11284,70392,77493,61823,114689,14116265,517,,0,0,0,0,0,0,0,"mcf",404724,1,3,3,2.96,37.96,12816,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"HARBOR","CONBINED ST","01/01/94","01/01/94",229000,558000,2259,41,524137000,1740059,87786094,289957234,379483387,1657,8879733,276214,3330349,0,62330,0,0,0,1084424,0,580563,202658,212797,374547,185390,6309272,12,,0,0,0,0,0,0,0,"mcf",4522291,1,3,3,2.96,25.77,8701,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"HARBOR","GAS TURBINE","01/01/72","01/01/72",38000,36000,48,0,850000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"HAYNES","STEAM","01/01/62","01/01/67",1608000,1489000,8015,123,2113574000,933038,37791521,306054386,344778945,214,1741576,1052843,50891914,0,3057224,0,0,1792056,5017847,0,939570,1424717,3202792,2787404,1583937,71750304,34,,0,0,0,0,0,0,0,"mcf",22709425,1,3,3,2.96,32.1,10839,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"SCATTERGOOD","STEAM","01/01/58","01/01/74",823200,835000,8758,91,1679449000,515557,47288037,164431480,212235074,258,46903,1404338,66439099,0,1408691,0,0,0,3756004,0,214277,727252,3701955,1608703,1273919,80534238,48,,0,0,0,0,0,0,0,"mcf",15638964,1,3,3,2.96,28.3,9556,,0,0,0,0,0,0,0 "Lower Colorado River Authority",11269,1999,"Ferguson",,"01/01/74","01/01/74",446000000,0,0,0,1378410000,931823,26158508,42319502,69409833,0,0,347319,29342167,0,137242,0,0,734629,899018,0,332791,702887,413738,469747,33658,33413196,24,"TONS",0,0,0,0,0,0,0,"MCF",14169320,1013,2.06,2.06,2.03,0.02,10552,"BBL",0,0,0,0,0,0,0 "Lower Colorado River Authority",11269,1999,"Fayette","Steam","01/01/79","01/01/88",1690000000,0,0,0,1.1015857e+10,13591047,103023934,837863878,954478859,1,0,2157811,109413990,0,3840257,0,0,2391848,4494846,0,2014006,1954362,4931568,1961033,403807,133563528,12,"TONS",6553001,8409,16.17,16.17,0.96,0,0,"MCF",0,0,0,0,0,0,0,"BBL",19258,141000,14.25,14.25,2.4,0,0 "Lower Colorado River Authority",11269,1999,"Sim Gideon","Steam","01/01/65","01/01/69",623000000,0,0,0,2101292000,458719,20455136,65676320,86590175,0,0,482445,43723684,0,794924,0,0,891660,1130940,0,200902,1092136,961820,567117,75540,49921168,24,"TONS",0,0,0,0,0,0,0,"MCF",20136681,1095,2.1,2.1,1.91,0.02,10495,"BBL",0,0,0,0,0,0,0 "Lubbock City of",11292,1999,,"STEAM","01/01/49","01/01/58",72000,51000,5256,6,20565500,6000,300000,13000000,13306000,185,0,105299,1101550,0,0,0,0,0,0,0,26625,6656,0,33282,0,1273412,62,,0,0,0,0,0,0,0,"MCF",382836,1025,2.88,2.88,2.81,0.05,19081,,0,0,0,0,0,0,0 "Lubbock City of",11292,1999,"BRANDON","GAS TURBINE","01/01/90","01/01/90",20000,21000,8760,8,139296480,0,1000000,15500000,16500000,825,0,233999,3337924,0,0,0,0,0,0,0,59168,14792,0,73959,0,3719842,27,,0,0,0,0,0,0,0,"MCF",1543387,1018,2.16,2.16,2.12,0.02,11279,,0,0,0,0,0,0,0 "Lubbock City of",11292,1999,"HOLLY","GAS TURBINE","01/01/64","01/01/74",52500,45000,4818,3,21967922,10000,300000,5300000,5610000,107,0,11700,962730,0,0,0,0,0,0,0,2958,740,0,3698,0,981826,45,,0,0,0,0,0,0,0,"MCF",384439,1040,2.5,2.5,2.41,0.04,18200,,0,0,0,0,0,0,0 "Lubbock City of",11292,1999,"HOLLY","STEAM","01/01/65","01/01/78",98000,102000,8760,32,323909370,62000,1000000,21000000,22062000,225,0,818996,9820907,0,0,0,0,0,0,0,207086,51772,0,258858,0,11157619,34,,0,0,0,0,0,0,0,"MCF",3921699,1040,2.5,2.5,2.41,0.03,12592,,0,0,0,0,0,0,0 "Manitowoc Public Utilities",11571,1999,"MPU","Gas-Turbine","01/01/99","01/01/99",25000,0,214,0,3613,290255,201403,6104428,6596086,264,0,0,264472,0,0,0,0,30590,0,0,0,0,0,41325,0,336387,93105,,0,0,0,0,0,0,0,"MCF",51,1000,0.41,0.41,4.17,0.07,0,"Barrels",2438,141200,20.88,20.88,3.52,0.07,0 "Manitowoc Public Utilities",11571,1999,"MPU","Steam","01/01/00","01/01/91",79000,107500,8760,39,249415,211671,5013787,36586533,41811991,529,0,138503,5701868,0,541602,0,0,470467,759564,704,62857,42576,1443126,445568,10944,9617779,38561,"Tons",163852,11080,40.02,40.02,1.81,0.02,0,"MCF",2,1000,0.71,0.71,7.13,0.02,0,,0,0,0,0,0,0,0 "Manitowoc Public Utilities",11571,1999,"MPU","Internal Co","01/01/85","01/01/85",10500,0,207,0,2140,0,352901,5986839,6339740,604,0,6091,84690,0,0,0,0,49736,0,0,0,0,0,58906,0,199423,93188,,0,0,0,0,0,0,0,"MCF",8,1000,0.62,0.62,0.62,0.03,0,"Barrels",1570,141200,22.77,22.77,3.84,0.03,0 "Marquette City of",11701,1999,"Shiras Steam Plant","Steam","01/01/64","01/01/83",77358,52900,24,40,263218000,951797,8431629,56045965,65429391,846,41203,67627,4986648,0,777004,0,0,293702,159196,0,54712,51526,724902,292519,10515,7418351,28,"Tons",181283,9554,21.46,22.7,1.19,0.02,13173,,0,0,0,0,0,0,0,"Barrels",582,138200,20.58,26.46,4.56,0.02,13173 "Marquette City of",11701,1999,"#4 Plant","Gas-Turbine","01/01/79","01/01/79",23000,24700,1,0,5060000,0,300285,4190798,4491083,195,0,4733,283345,0,0,0,0,17195,3952,0,4867,6844,0,27249,40,348225,69,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",13164,138200,21.37,23.67,3.68,0.06,15100 "Marshall City of",11732,1999,"Mrshll","Stem/Intern","01/01/36","01/01/94",57000,43,24,56,48751000,313299,4219564,22221117,26753980,469,395259,452378,1560029,0,0,0,0,0,349846,0,37339,40097,532898,65835,0,3038422,62,26848,11000,32,0,0,0,0,0,190844,140000,2,0,0,0,0,0,755,10000,24.17,0,0,0,0,0 "Massachusetts Mun Whls Elec Co",11806,1999,"Stonybrook Intermedil","Combined Cy","01/01/81","01/01/81",360000,352000,12276,33,780857100,1222270,29736068,116789790,147748128,410,161005,341244,19982046,0,0,0,0,1295017,0,0,217695,109254,0,4801314,0,26746570,34,,0,0,0,0,0,0,0,"mcf",5422522,1025,2.75,2.75,2.68,0,0,"barrel",265482,138500,21.33,19.11,3.28,0.01,9096 "Massachusetts Mun Whls Elec Co",11806,1999,"Stonybrook Peaking","Gas Turbine","/ /","/ /",170000,170000,620,33,40304600,457327,10488903,45433687,56379917,332,41438,85682,1683238,0,0,0,0,251375,0,0,16235,17343,0,119640,0,2173513,54,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"barrel",86543,138500,21.33,19.45,3.34,0.04,12490 "McPherson City of",12208,1999,"Power Plant 3","Gas Turbine","01/01/98","01/01/98",115600,92000,851,5,32881000,95000,0,25388890,25483890,220,483472,16336,1488284,0,0,0,0,2781,65038,0,8158,7240,0,77867,59525,1725229,52,,0,0,0,0,0,0,0,"mcf",454570,1012,3.19,3.19,3.16,4.5,14233,"bbl",1154,129200,0.39,0.39,3.06,3.42,11185 "McPherson City of",12208,1999,"Gas Turbine 2","Gas Turbine","01/01/76","01/01/76",56,51000,90,5,2234000,0,0,5867669,5867669,104780,0,16153,125470,0,0,0,0,120168,30978,0,8157,0,0,109601,61288,471815,211,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"bbl",5874,129200,0.51,0.51,3.95,5.64,14268 "McPherson City of",12208,1999,"Gas Turbine 3","Gas Turbine","01/01/79","01/01/79",57,50000,416,5,11756000,0,0,8189960,8189960,143684,0,16153,502404,0,0,0,0,120168,30977,0,8158,0,0,125268,61288,864416,74,,0,0,0,0,0,0,0,"mcf",167915,1012,3.33,3.33,3.3,4.78,14473,"bbl",63,129200,0.51,0.51,3.95,9,22782 "McPherson City of",12208,1999,"Plant 2","Steam","01/01/63","01/01/63",27200,25000,1054,5,13725000,103203,908048,4415135,5426386,199,42,16153,666001,0,3889,0,0,120168,30978,0,8158,22083,74263,39108,61287,1042088,76,,0,0,0,0,0,0,0,"mcf",173245,1012,3.33,3.33,3.3,4.21,12774,"bbl",0,0,0,0,0,0,0 "McPherson City of",12208,1999,"Gas Turbine 1","Gas Turbine","01/01/73","01/01/73",56400,52000,289,5,10349000,0,0,5796442,5796442,103,0,16153,444620,0,0,0,0,120169,30977,0,8158,0,0,41682,61288,723047,70,,0,0,0,0,0,0,0,"mcf",142295,1012,3.33,3.33,3.3,4.6,13948,"bbl",74,129200,0.51,0.51,3.95,6.37,16124 "Modesto Irrigation District",12745,1999,"Mc Clure","Gas Turbine","01/01/80","01/01/81",142400,114000,458,3,17013650,41196,671200,22702649,23415045,164,0,39428,921989,0,0,0,0,64862,0,0,93204,0,0,143571,0,1263054,74,,0,0,0,0,0,0,0,"MCF",184791,1,2.85,2.85,2.79,0.04,14761.28,"BBl",9827,139269,36.12,36.12,0,0.09,15255.06 "Modesto Irrigation District",12745,1999,"Woodland","Gas Turbine","01/01/93","01/01/93",56000,50400,3047,11,112459100,734117,28375,53064895,53827387,961,0,276493,3266313,0,0,0,0,513943,0,0,1528,0,0,410220,0,4468497,40,,0,0,0,0,0,0,0,"MCF",1012876,1,3.02,3.02,2.96,0.03,9186.75,,0,0,0,0,0,0,0 "Menasha City of",12298,1999,"Menasha","Steam","01/01/49","01/01/64",23400,19595,2037,14,13992,6795,1217617,5289233,6513645,278,20649,40246,27120,0,79885,0,0,60710,95780,0,0,31581,159677,52699,457,548155,39176,"TONS",6898,13928,56.5,56.5,2.02,0.03,15599,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Michigan South Central Pwr Agy",12807,1999,"ENDICOTT","STEAM",,,60000,60000,7000,52,254166000,1446080,18162501,58822650,78431231,1307,914746,337766,5265494,0,924558,0,35080,360832,450758,0,195457,66358,661707,192331,74782,8565123,34,"TONS",137701,12027,37.16,36.29,1.51,0.01,12748,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Moorhead City of",12894,1999,"Mhd Power Plant","gas turbine","01/01/61","01/01/61",10000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Morgan City City of",12927,1999,"Joe Cefalu Plant","Steam","01/01/62","01/01/73",70000,40000,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Muscatine City of",13143,1999,"MUSCATINE","STEAM","01/01/58","01/01/83",275500,149900,16238,134,1301983501,784560,72060043,213242536,286087139,1038,28455966,817203,14751640,0,1679994,0,0,663199,1356159,0,672523,554305,2370831,1148168,1101042,25115064,19,"TONS",877820,8297,12.88,13.05,0.79,0.01,11188,"MCF",283208,10200,3.26,3.26,3.18,0,0,"BARRELS",610,138500,30.04,21.9,3.77,0,0 "Nebraska Public Power District",13337,1999,"Hallam Peaking Unit","Gas Turbine","01/01/73","01/01/73",56700,60000,258,0,10894000,0,229583,4830489,5060072,89,0,0,440985,0,0,0,0,60635,0,0,0,89639,0,94772,13125,699156,64,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Canaday","Steam","01/01/58","01/01/58",108800,121200,2001,14,85089000,0,9403261,329722,9732983,89,328840,152096,2125397,0,407076,0,0,27245,201168,0,32073,131835,231925,109745,195984,3614544,42,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Gerald Gentleman Sta(","Steam","01/01/78","/ /",1362600,1254000,8657,192,8027362000,3015802,318185462,344602325,665803589,489,19495116,1045932,44726329,0,1955325,0,0,1668527,2934342,193314,448908,877355,10569506,3498868,1294889,69213295,9,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"McCook Peaking Unit","Gas Turbine","01/01/73","01/01/73",56700,56000,60,0,211000,0,194256,4595530,4789786,84,0,0,81476,0,0,0,0,25734,0,0,0,2300,0,73703,18199,201412,955,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Hebron Peaking Unit","Gas Turbine","01/01/73","01/01/73",56700,57000,75,0,854000,0,301381,5462494,5763875,102,0,0,181334,0,0,0,0,26759,0,0,0,1630,0,58749,11328,279800,328,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Cooper Nuclear Stat.(","Nuclear","01/01/74","01/01/74",835550,783000,8563,726,6510414600,1028504,187460511,519340650,707829665,847,2508133,8619618,38176410,69343,4859991,0,0,93589,58078357,0,1807073,518308,3317219,1964536,2016373,119520817,18,,20216418,0,0,5.67,53.53,0,10598,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Sheldon Station","Steam","01/01/61","01/01/65",228650,220000,8701,78,1347971000,1843119,10754821,79036432,91634372,401,5634223,590917,10462420,0,930249,0,0,633786,1478748,0,168336,7310,2160302,1295964,920587,18648619,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "New Ulm Public Utilities Comm",13488,1999,"No 3 & 4 & 6","Steam Gener","01/01/02","01/01/64",27000,44000,24,21,16916000,0,3055780,9310761,12366541,458,473090,425178,467864,0,0,0,0,0,0,0,0,31350,152102,138437,0,1214931,72,"tons",0,0,0,0,0,0,0,"mcf",16576,1000,2.82,2.82,2.82,0.03,10,,0,0,0,0,0,0,0 "New Ulm Public Utilities Comm",13488,1999,"No 5","Gas Turbine","01/01/75","01/01/75",24000,24000,24,21,2041000,0,0,2465211,2465211,103,0,22377,91296,0,0,0,0,0,0,0,0,1650,0,14351,0,129674,64,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"barrel",4657,140000,26.02,19.6,3.36,0.05,13500 "North Attleborough Town of",13679,1999,,,,,0,0,0,0,0,0,0,0,0,326,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "North Attleborough Town of",13679,1999,,,,,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "North Carolina Eastern M P A",13687,1999,"Roxboro 4","Steam","01/01/66","01/01/80",96000,0,8175,0,520837921,1000,1011000,44494000,45506000,474,72000,48000,9137000,0,80000,0,0,22000,837000,0,67000,17000,475000,136000,53000,10872000,21,"Tons",211870,12369,42.51,42.95,1.74,0.02,10083,,0,0,0,0,0,0,0,"Barrels",1763,140091,22.71,21.55,3.66,0,0 "North Carolina Eastern M P A",13687,1999,"Mayo 1","Steam","01/01/83","01/01/83",119000,761,7807,69,651982032,3301000,16199000,82569000,102069000,858,26000,92000,11843000,0,79000,0,0,54000,1174000,0,76000,30000,808000,111000,73000,14340000,22,"Tons",265246,12531,44.52,44.47,1.77,0.02,10243,,0,0,0,0,0,0,0,"Barrels",5203,140620,21.57,9.23,1.56,0,0 "North Carolina Eastern M P A",13687,1999,"Roxboro 4","Steam","01/01/66","01/01/80",96000,0,8175,0,520837921,1000,1011000,44494000,45506000,474,72000,48000,9137000,0,80000,0,0,22000,874000,0,67000,17000,475000,136000,53000,10909000,21,"Tons",211870,12369,42.51,42.95,1.74,0.02,10083,,0,0,0,0,0,0,0,"Barrels",1763,140091,22.7,21.55,3.66,0,0 "North Carolina Eastern M P A",13687,1999,"Mayo 1","Steam","01/01/00","01/01/00",119000,761,7807,69,651982032,3301000,16199000,82569000,102069000,858,26000,92000,11843000,0,79000,0,0,54000,1221000,0,76000,30000,808000,111000,73000,14387000,22,"Tons",265246,12531,44.52,44.47,1.77,0.02,10243,,0,0,0,0,0,0,0,"Barrels",5203,140620,21.57,9.23,1.56,0,0 "North Carolina Eastern M P A",13687,1999,"Brunswick","Nuclear","01/01/75","01/01/77",318000,1696,8584,784,2400008776,617000,94117000,339616000,434350000,1366,297000,666000,11776000,401000,2353000,0,0,533000,9457000,0,1849000,3278000,1064000,298000,1353000,33028000,14,"MW Days",308602,3413000,0,38.16,0.47,0,10533,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "North Carolina Eastern M P A",13687,1999,"Harris","Nuclear","01/01/87","01/01/87",154000,905,8485,491,1171376626,10260000,369018000,452494000,831772000,5401,118000,675000,5246000,252000,1018000,0,0,337000,4827000,0,1102000,634000,445000,182000,302000,15020000,13,"MW Days",156551,3413000,0,33.51,0.41,0,10947,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Oklahoma Municipal Power Auth",14077,1999,"PCRP","Combined cy","01/01/95","01/01/95",60000,60000,0,0,138484081,0,11344757,29655189,40999946,683,0,598783,2955212,0,0,0,0,253386,0,0,44427,0,0,105374,0,3957182,29,,0,0,0,0,0,0,0,"MCF",1392824,1040,2.17,0,2.14,0.02,10460,,0,0,0,0,0,0,0 "Omaha Public Power District",14127,1999,"FORT CALHOUN","NUCLEAR","01/01/73","01/01/73",502000,492000,7785,634,3580681000,1072930277,146516232,296914274,442618959,882,0,4971003,23034948,164893,24110476,0,0,-21786,44474249,3358,250883,11195901,6710538,736065,-37917,115592611,32,,0,0,0,0,0,0,0,"GRAMS",315984,120828860,0,72.9,60.33,6.42,10650.7,,0,0,0,0,0,0,0 "Omaha Public Power District",14127,1999,"SARPY COUNTY","GAS TURBINE","01/01/72","01/01/96",216405,248000,8271,0,55696000,23490,2151281,52951321,55126092,255,0,54073,2103596,0,0,0,0,0,404211,0,3965,2988,0,310603,72329,2951765,53,,0,0,0,0,0,0,0,"MCF",707344,823,2.46,2.46,2.49,0.04,12745,"BARRELS",3829,138176,17.91,17.91,1.41,0.01,8647 "Omaha Public Power District",14127,1999,"JONES STREET","GAS TURBINE","01/01/73","01/01/74",116000,129400,8332,0,4369000,0,240081,9753334,9993415,86,0,6331,293819,0,0,0,0,0,47413,0,6227,3925,0,20535,134815,513065,117,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BARRELS",13267,138176,13.48,13.48,2.32,0.04,9604 "Omaha Public Power District",14127,1999,"NEBRASKA CITY","STEAM","01/01/79","01/01/79",565000,631500,7500,0,4036035000,-2006108,95061544,382545074,475600510,842,0,779178,25569961,0,1719974,0,0,633248,6781672,0,412434,994984,3789696,1154076,1789468,43624691,11,"TONS",2500212,8357,9.58,9.58,0.57,0,9500,,0,0,0,0,0,0,0,"BARRELS",9924,138281,20.11,20.11,3.46,0,9493 "Omaha Public Power District",14127,1999,"NORTH OMAHA","STEAM","01/01/54","01/01/68",644700,664700,7628,0,3047689000,903939,34352799,194479388,229736126,356,0,473699,25644165,0,1556034,0,0,1205626,5794175,56855,619731,1383677,5536481,4204373,2068776,48543592,16,"TONS",1996018,8393,11.99,11.99,0.71,0,11245,"MCF",706934,988,3.06,3.06,5.95,0,11266,,0,0,0,0,0,0,0 "Orrville City of",14194,1999,,"Steam","01/01/16","01/01/71",84,57,8760,65,330508,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"ton",195800,11500,0,0,0,0,0,"mcf",6100,1000,0,0,0,0,0,,0,0,0,0,0,0,0 "Owatonna City of",14246,1999,,"Steam","01/01/24","01/01/69",26000,0,0,0,0,139199,957861,5646398,6743458,259,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Owatonna City of",14246,1999,,"Gas Turbine","/ /","/ /",19000,0,0,0,0,0,0,1935528,1935528,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Owensboro City of",14268,1999,"Plant 1","Steam","01/01/39","01/01/50",52500,0,0,0,0,0,2061142,4570567,6631709,126,0,0,0,0,0,0,0,0,0,9106,0,0,0,0,760,9866,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Owensboro City of",14268,1999,"Elmer Smith","Steam","01/01/64","01/01/74",415000,183200,8569,99,2600771,835345,8832392,209611123,219278860,528,801542,250280,29285825,0,1422865,0,0,496091,498805,0,465966,39935,4297784,658819,98181,37514551,14424,"Tons",1247843,10825,20.49,20.56,0.95,0.01,10197,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Painesville City of",14381,1999,"ELECTRIC PLANT","STEAM",,"01/01/88",53500,46000,8760,66,154647000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"TONS",92400,12517,0,33.22,1.33,0,0,"MCF",21300,1000,0,4.41,4.41,0,0,"BARRELS",47,138000,0,14.36,2.48,0,0 "Paragould Light & Water Comm",14446,1999,"Jones Road","Gas turbine","01/01/90",,16,14,415,1,400000,0,8093740,0,8093740,505859,0,0,166593,0,0,0,0,0,0,0,0,0,0,45047,0,211640,529,"mmbtu",91074,0,0,1.83,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Pasadena City of",14534,1999,"Broadway Steam Plantф",,"01/01/54","01/01/65",183000,183000,0,25,179950000,489703,3194316,50159075,53843094,294,0,387760,8839709,0,555006,0,0,988783,11216,228337,138986,37842,440585,136394,7625,11772243,65,,0,0,0,0,0,0,0,"MCF",2295070,1019,3.43,3.43,3.36,0.04,13290,,0,0,0,0,0,0,0 "Pasadena City of",14534,1999,"Glenarm Gas Turbine","Included in","01/01/06","01/01/76",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",59150,1,3.43,3.43,3.36,0.04,16342,,0,0,0,0,0,0,0 "Peabody City of",14605,1999,,"Gas Turbine","01/01/71","01/01/91",65900,65900,8760,5,11639468,177260,0,22101467,22278727,338,0,22746,409579,0,0,0,0,0,0,0,0,0,0,176643,0,608968,52,,0,0,0,0,0,0,0,"MCF",143226,1,3.05,2.96,2.89,0.03,13227,"BBLS",1239,134127,22.14,22.89,4.06,0.05,12185 "Peru City of",14839,1999,"Peru","Steam","01/01/03","01/01/59",34500,35563,1585,13,12600568,5739,1706469,9574492,11286700,327,325600,0,442012,0,172164,0,0,119874,37861,0,0,14278,126165,22675,0,935029,74,"Tons",7915,12797,47.4,47.33,1.85,0.03,16076,,0,0,0,0,0,0,0,"Barrels",221,140000,26.47,24.56,4.18,0,103.08 "Piqua City of",15095,1999,"City of Piqua","Steam & Gas","01/01/32","01/01/89",81113,0,159,39,2138000,21863555,0,0,21863555,270,4196219,76685,242280,0,19742,0,0,231157,56432,0,61697,67457,9593,91301,0,856344,401,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",10878,144000,25.3,25.3,4.3,0.09,23092 "Platte River Power Authority",15143,1999,"Craig Station","Steam","01/01/79","01/01/80",154000,0,0,0,1205402000,60113,33649805,110581113,144291031,937,947978,194976,12128811,0,1172233,0,0,260695,1245083,7283,237766,121071,814536,181154,912508,17276116,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Platte River Power Authority",15143,1999,"Rawhide","Steam","01/01/84","01/01/84",270000,270000,8668,86,2119444000,1977213,176729012,277169671,455875896,1688,1471951,1258343,14119301,0,2361900,0,0,4034357,686346,1872,639188,491650,2599323,371255,1094312,27657847,13,"Ton",1294255,8825,10.4,10.4,0.6,0.01,10.78,,0,0,0,0,0,0,0,"Gallons",54089,138,0.78,0.78,5.63,0,3.5 "Power Authority of State of NY",15296,1999,"C.M. POLETTI","Steam","01/01/77","01/01/77",883000000,831000000,6386000,122000,1826391000,730000,72140000,359400000,432270000,0,10329000,561000,60034000,0,0,0,0,668000,7300000,0,826000,377000,2299000,2700000,411000,75176000,41,,0,0,0,0,0,0,0,"MCFS",10932333,1031,2.95,3.39,3.29,31.61,10284,"BBLS",1348181,148399,15.78,17.33,2.78,0,0 "Power Authority of State of NY",15296,1999,"R.M. FLYNN","GT/Steam-Co","01/01/94","01/01/94",164000000,159000000,7280000,27000,9.96144e+11,0,7238000,129266000,136504000,1,1136000,88000,43602000,0,0,0,0,93000,1585000,0,0,137000,469000,3225000,39000,49238000,0,,0,0,0,0,0,0,0,"MCFS",7095707,1012,4.39,5.62,5.55,42.59,7774,"BBLS",120516,141470,19.98,32.3,4.68,0,0 "Power Authority of State of NY",15296,1999,,,"/ /","/ /",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Power Authority of State of NY",15296,1999,"JAF","Nuclear","01/01/75","01/01/75",883000000,848000000,8204000,757000,6.567395e+12,805000,166067000,568085000,734957000,1,13913000,23876000,38317000,0,487000,0,0,54000,32618000,0,5766000,184000,4261000,5843000,3143000,114549000,0,"GMU 235",0,82,0,0,0,5.17,0,"Equivalent",842735,0,0,40.32,0.49,0,10508,,0,235,0,0,0,0,0 "Power Authority of State of NY",15296,1999,"IP3","Nuclear","01/01/76","01/01/76",1013000000,1031000000,7662000,828000,7.26917e+12,747000,206897000,755257000,962901000,1,17924000,29680000,39545000,0,11264000,0,0,0,36622000,0,1577000,2648000,15765000,11868000,29759000,178728000,0,"GMU235",0,82,0,0,0,4.76,0,"Equivalent",937453,0,0,36.9,0.45,0,10560,,0,235,0,0,0,0,0 "Rantoul Village of",15686,1999,"Rantoul Light & Powep ","Internal Co","01/01/00","01/01/67",18132,38,100,3,16000,0,0,0,0,0,0,0,11984,0,0,0,0,211546,0,0,0,0,0,0,0,223530,13971,,0,0,0,0,0,0,0,"Gallons",19070,10500,0.62,0.62,0,0,0,,0,0,0,0,0,0,0 "Reedy Creek Improvement Dist",15776,1999,"CEP TURBINE","GAS TURBINE","01/01/88","01/01/88",35000,28000,6321,12,173569000,0,1455178,24161379,25616557,732,0,640027,4274368,0,0,0,0,392603,0,0,0,341,0,1449579,0,6756918,39,,0,0,0,0,0,0,0,"MCP",1545973,1040,2.76,2.76,2.76,0.02,8007,,0,0,0,0,0,0,0 "Reedy Creek Improvement Dist",15776,1999,"CEP HRSG","HRSG","01/01/88","01/01/88",8500,7000,2327,2,30042000,0,0,2731920,2731920,321,0,93944,742496,0,115993,0,0,17882,0,0,0,59,0,247253,0,1217627,41,,0,0,0,0,0,0,0,"MCF",268549,1049,2.76,2.76,2.76,0.02,8939,,0,0,0,0,0,0,0 "Redding City of",15783,1999,"Redding Power Plant","Steam","01/01/89","01/01/94",28000,28900,1977,16,18060300,602377,15385522,117247,16105146,575,0,1320,443065,0,117993,0,0,77221,568426,0,70690,2368,53194,57222,0,1391499,77,,0,0,0,0,0,0,0,"mcf",287348,1027,1.54,1.54,1.45,0.03,16610,,0,0,0,0,0,0,0 "Redding City of",15783,1999,"Redding Power Plant","Combustion","01/01/96","01/01/96",65680,27400,854,16,18037300,1807131,0,59683477,61490608,936,0,97874,621818,0,0,0,0,25071,0,0,24410,0,0,321071,0,1090244,60,,0,0,0,0,0,0,0,"mcf",216279,1027,2.53,2.53,2.18,0.02,15570,,0,0,0,0,0,0,0 "Richmond City of",15989,1999,"WWVS","Steam","01/01/55","01/01/72",97700,173080,0,40,627786010,80644,2830371,31698586,34609601,354,0,465409,11078167,0,452274,0,0,404016,348230,0,104865,43599,701670,259774,21756,13879760,22,"Tons",308831,11699,29.73,30.79,1.45,0.01,11517,,0,0,0,0,0,0,0,"Barrels",708,138000,0.46,0.46,0,0,0 "Rochelle Municipal Utilities",16179,1999,"Caron Rd Steam Plant(","Steam","01/01/63","01/01/63",11000,0,13,0,62,0,0,11112324,11112324,1010,0,0,15556,0,134143,0,0,0,0,0,0,0,0,193715,0,343414,5538935,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Rochelle Municipal Utilities",16179,1999,"2nd Ave Diesel Plant(","Internal Co","01/01/00","01/01/89",24000,7500,900,8,990,0,0,6076110,6076110,253,0,0,130511,0,520866,0,0,0,0,0,0,0,0,301469,0,952846,962471,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Rochester Public Utilities",16181,1999,"SILVER LAKE","STEAM","01/01/49","01/01/69",98400,99962,6002,48,206169300,467713,5967620,20459364,26894697,273,0,105471,4663327,0,733957,0,0,427195,653639,0,121158,91168,610473,166756,202286,7775430,38,"Tons",105624,11800,35.06,34.95,1.48,0,0,"Mcf",116790,1022,2.87,2.87,2.81,0.02,12548,,0,0,0,0,0,0,0 "Rochester Public Utilities",16181,1999,"CASCADE CREEK","GAS TURBINE","01/01/75","01/01/75",35000,31412,214,0,975100,0,0,2553775,2553775,73,0,5098,155418,0,0,0,0,0,2538,0,712,425,0,13749,25610,203550,209,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Bbl",6593,140546,25.25,22.87,3.87,0.16,31067 "Ruston City of",16463,1999,,,,,0,0,0,0,158085,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,1024,2014,0,0,0,12204,,0,0,0,0,0,0,0 "Sacramento Municipal Util Dist",16534,1999,"McClellanј","Ga","01/01/86","01/01/86",49999,0,0,3,7166000,0,2636791,21642932,24279723,486,280011,128813,308700,0,0,0,0,93215,0,0,46694,4591,0,454373,0,1036386,145,,0,0,0,0,0,0,0,"MC",90473,0,3.39,3.39,3.28,0.04,0,"Diesel/gal",1254,0,1.43,1.43,0,0,0 "San Antonio Public Service Bd",16604,1999,"Total All Plants",,,,4515000,0,0,345,1.74570025e+10,12977200,1115386160,2245397416,3373760776,747,46882000,12160268,206856386,1142440,9404554,374590,0,6237186,12301280,6685,9401271,2767009,20299658,10510426,3154574,294616327,17,"Tons",5220135,8563,16.23,16.23,0.95,9.82,10370,"MCF",37334239,1010,2.64,2.64,2.62,28.78,10988,"Barrels",12309,139887,18.78,18.78,3.2,32.97,10315 "San Antonio Public Service Bd",16604,1999,"J K Spruce","Steam","1/1/1992","1/1/1992",555000,546000,6546,82,3480720800,0,65252301,515684631,580936932,1047,23719,571470,31109011,0,1807766,51663,0,193515,960889,0,759790,205041,2649188,748621,211926,39268880,11,"Tons",1949398,8860,15.91,15.91,1.01,8.91,9857,"MCF",38851,1008,2.27,2.27,2.25,0,0,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"Mission Road","Steam","1/1/1909","1/1/1958",100000,96000,436,4,5787800,24329,2488463,10241714,12754506,128,128349,114144,487728,0,158813,0,0,102150,168983,0,21233,17234,339856,83899,40097,1534137,265,,0,0,0,0,0,0,0,"MCF",134106,1013,3.64,3.64,3.59,84.27,14024,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"Leon Creek","Steam","1/1/1949","1/1/1959",160000,171000,676,4,16974100,44831,2782361,17503846,20331038,127,157506,125267,942872,0,184569,0,0,128819,161398,0,28472,58566,543819,190400,43539,2407721,142,,0,0,0,0,0,0,0,"MCF",258204,1002,3.65,3.65,3.64,55.55,12533,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"O W Sommers","Steam","1/1/1972","1/1/1974",880000,846000,7232,55,2199508300,5854171,33295035,79674715,118823921,135,395537,545083,59562142,0,1025490,87705,0,302727,706288,0,702876,370388,615434,259192,190180,64367505,29,,0,0,0,0,0,0,0,"MCF",23626870,1009,2.54,2.54,2.51,27.24,10444,"Barrels",5652,140932,19.35,19.35,3.27,0,0 "San Antonio Public Service Bd",16604,1999,"J T Deely","Steam","1/1/1977","1/1/1978",830000,854000,8760,90,5149460300,0,30290474,285476722,315767196,380,12595000,638478,53085711,0,1562761,85357,0,320680,966629,0,838807,331106,3399637,799226,238550,62266942,12,"Tons",3270737,8389,16.42,16.42,0.98,10.43,10513,,0,0,0,0,0,0,0,"Barrels",5811,141351,18.29,18.29,3.08,0,0 "San Antonio Public Service Bd",16604,1999,"South Texas Project","Nuclear","1/1/1988","1/1/1989",700000,708000,0,0,5399983000,5170385,957819101,1216165845,2179155331,3113,29619638,9121123,23744212,1142440,2798248,0,0,4436896,8134977,6685,6295439,1408553,10346770,6695513,2005195,76136051,14,,0,0,0,0,0,0,0,"MMBTU",56623147,0,0.42,0.42,0.42,4.4,10485,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"W B Tuttle","Steam","1/1/1954","1/1/1963",425000,351000,2570,25,83806100,116166,6081714,40803880,47001760,111,3029638,407804,3903164,0,659061,0,0,371008,270977,0,137334,47220,945777,460460,131033,7333838,88,,0,0,0,0,0,0,0,"MCF",1126499,1007,3.47,3.47,3.44,46.57,11568,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"V H Brauning","Steam","1/1/1966","1/1/1970",865000,0,5631,85,1120762100,1767318,17376711,79846063,98990092,114,932613,636899,33301546,0,1207846,149865,0,381391,931139,0,617320,328901,1459177,1273115,294054,40581253,36,,0,0,0,0,0,0,0,"MCF",12149759,1011,2.74,2.74,2.71,29.7,10522,"Barrels",846,122847,18.29,18.29,3.55,0,0 "Seattle City of",16868,1999,"Centralia (8% share)","Steam","01/01/72","01/01/72",107200,32000,0,1,689802000,167213,4462081,22916331,27545625,257,0,186229,12042641,0,56382,0,0,0,1030435,2329,557,0,306392,38323,72862,13736150,20,"Tons",453199,7850,27.6,26.57,1.76,0.02,10315,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Shrewsbury Town of",17127,1999,"PEAKING","INTERNAL CO","01/01/69","01/01/78",13750,0,78,0,1082000,4737,38713,3032851,3076301,224,0,0,58499,0,0,0,0,45786,0,0,42833,0,0,0,0,147118,136,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"OIL",1983,138000,28.45,27.35,4.71,0.05,10622 "Sikeston City of",17177,1999,"SIKESTON POWER PLANT<","STEAM","01/01/81","01/01/81",235000,233000,8443,100,1773464000,2528654,38360820,167291312,208180786,886,3085679,204618,18720527,0,834479,0,0,232178,1031476,0,212026,97405,1771411,163729,1555715,24823564,14,"TONS",1085410,8260,16.81,16.81,1.02,0.01,10111,,0,0,0,0,0,0,0,"BARRELS",2150,141000,22.77,24.41,4.12,0,16.31 "PUD No 1 of Snohomish County",17470,1999,"Centralia Steam Plt","Steam",,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "South Carolina Pub Serv Auth",17543,1999,"WINYAH(1-4)","STEAM","01/01/75","01/01/81",1120000,1204000,31151,198,7364804000,2141000,80365000,380646000,463152000,414,12899000,1811000,102679000,0,2905000,0,0,1172000,4230000,0,835000,1709000,6368000,2320000,450000,124479000,17,"Tons",2805462,12906,35.38,36.6,1.42,1.39,9833,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "South Carolina Pub Serv Auth",17543,1999,"CROSS(1-2)","STEAM","01/01/84","01/01/94",1147115,1190000,14859,156,7031840000,149000,105829000,824295000,930273000,811,8568000,612000,95992000,0,3621000,0,0,562000,3226000,0,331000,462000,7502000,2902000,585000,115795000,16,"Tons",2609876,12811,36.41,36.78,1.44,1.37,9510,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Springfield City of",17828,1999,"INTERSTATE","NAT GAS/OIL","01/01/97","01/01/97",118000,114000,864,0,89431266,0,0,11583325,11583325,98,2178709,40002,2621094,0,91,0,0,0,0,0,38739,0,0,77237,0,2777163,31,,0,0,0,0,0,0,0,"DKTHRMS",1205210,100000,2.08,2.08,2.08,28.74,13806,"BARRELS",5093,138000,17.96,22.11,3.81,52.67,13806 "Springfield City of",17828,1999,"FACTORY","OIL TURBINE","01/01/73","01/01/73",23000,17000,155,0,3128000,0,29188,2322399,2351587,102,0,0,166375,0,0,0,0,0,0,0,0,0,0,11905,0,178280,57,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BARRELS",7959,138000,18.43,20.9,3.61,53.19,14747 "Springfield City of",17828,1999,"REYNOLDS","OIL TURBINE","01/01/70","01/01/70",18000,14000,98,0,1502000,0,155353,2975996,3131349,174,0,0,89354,0,539,0,0,0,0,0,0,0,0,13975,0,103868,69,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BARRELS",4241,138000,19.02,21.07,3.64,59.49,16366 "Springfield City of",17828,1999,"LAKESIDE","STEAM","01/01/60","01/01/64",76000,66000,4842,0,191454930,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"TONS",119179,10437,24.15,22.89,1.1,13.33,12994,,0,0,0,0,0,0,0,"BARRELS",784,138000,20.26,20.76,3.58,0,0 "Springfield City of",17828,1999,"DALLMAN","STEAM","01/01/68","01/01/78",441000,324000,8756,209,1931782345,2315629,22827681,167456590,192599900,437,2590219,1382828,24106633,0,7228992,0,0,0,0,224260,1367568,1520197,3381012,3887022,2944868,46043380,24,"TONS",947286,10415,24.07,22.37,1.07,11.37,11338,,0,0,0,0,0,0,0,"BARRELS",8185,138000,18.13,20.92,3.61,0,0 "Springfield City of",17833,1999,"James River Gas Turb¬ ","Gas Turbine","01/01/89","01/01/92",150000,162000,1707,2,112871000,0,0,38867000,38867000,259,0,0,3686000,0,0,0,0,0,0,0,0,5000,0,185000,0,3876000,34,,0,0,0,0,0,0,0,"Mcf",1413185,1005,2.58,2.58,2.56,32.66,12708,"Barrels",1933,138200,17.18,20.23,3.49,0,0 "Springfield City of",17833,1999,"Southwest Gas Turbin","Gas Turbine","01/01/83","01/01/83",88000,114000,740,2,33605000,0,77000,13480000,13557000,154,0,0,1234000,0,0,0,0,4000,0,0,0,0,0,160000,0,1398000,42,,0,0,0,0,0,0,0,"Mcf",467515,1005,2.6,2.6,2.59,36.7,14123,"Barrels",814,138200,17.21,19.54,3.37,0,0 "Springfield City of",17833,1999,"Main Avenue","Gas Turbine","01/01/68","01/01/68",12000,13000,55,1,680000,0,0,1538000,1538000,128,0,0,46000,0,0,0,0,0,0,0,0,0,0,4000,0,50000,74,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",1981,138200,24.82,23.44,4.03,68.28,16910 "Springfield City of",17833,1999,"James River","Steam","01/01/57","01/01/70",255000,237000,33862,81,1450754000,1659000,14631000,79255000,95545000,375,2850000,583000,20746000,0,2519000,0,0,408000,262000,0,130000,65000,3963000,646000,610000,29722000,20,"Tons",853266,9210,7.79,21.61,1.17,13.89,11312,"Mcf",689975,1005,2.49,2.49,2.47,0,0,,0,0,0,0,0,0,0 "Springfield City of",17833,1999,"Southwest","Steam","01/01/76","01/01/76",195000,183000,7556,65,1185498000,1856000,15406000,80315000,97577000,500,2690000,558000,14080000,0,1555000,0,0,366000,205000,0,581000,137000,2335000,656000,1027000,21332000,18,"Tons",693360,8794,4.54,18.33,1.08,11.66,10684,"Mcf",467597,1007,2.39,2.39,2.36,0,0,,0,0,0,0,0,0,0 "St George City of",17874,1999,"SUGARLOAF","2-Internal","01/01/86","01/01/86",14000,14000,1,6,626000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "St George City of",17874,1999,"Bloomington","7-Internal","01/01/98","01/01/98",12250,10500,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tacoma City of",18429,1999,"Centralia Steam Plntд","Steam","01/01/72","01/01/72",0,0,0,0,0,166897,4289405,25226129,29682431,0,73131,68311,11716542,0,112000,0,0,80230,140403,0,120346,80230,1008476,240691,26146,13593375,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tallahassee City of",18445,1999,"SAM O. PURDOM","STEAM","01/01/58","01/01/66",44000,48000,11136,38,209772978,15500,9202970,33194960,42413430,964,0,773581,8940370,0,537020,0,0,279940,1813670,2800,263170,105370,237360,129170,194990,13277441,63,,0,0,0,0,0,0,0,"Mcf",2462334,1148,3.22,3.22,3.07,0.04,13261,"bbl",31211,6300,20.25,20.25,3.21,0.08,20734 "Tallahassee City of",18445,1999,"SAM O. PURDOM","GAS TURBINE","01/01/63","01/01/64",25000,20000,415,0,6838100,0,516700,3207630,3724330,149,0,37110,0,0,0,0,0,0,0,0,27080,0,0,0,0,64190,9,,0,0,0,0,0,0,0,"Mcf",135368,1047,3.22,3.22,3.08,0.06,20734,"bbl",0,0,0,0,0,0,0 "Tallahassee City of",18445,1999,"A.D. HOPKINS","STEAM","01/01/71","01/01/72",334350,314000,8760,54,1431868500,243700,15462840,61918010,77624550,232,0,365600,47652750,0,808720,0,0,334300,1440890,0,286010,23770,76650,588440,570760,52259040,36,,0,0,0,0,0,0,0,"Mcf",14643073,1052,3.16,3.16,3,0.03,10001,"bbl",31324,6300,20.39,20.39,3.24,0.03,10228 "Tallahassee City of",18445,1999,"A.D. HOPKINS","GAS Turbine","01/01/00","01/01/72",43320,36000,870,0,21124800,0,0,4237440,4237440,98,0,109010,0,0,0,0,0,0,0,0,117890,0,0,0,0,226900,11,,0,0,0,0,0,0,0,"Mcf",398330,1148,3.2,3.2,3.06,0.06,19763,"bbl",0,0,0,0,0,0,0 "Taunton City of",18488,1999,"Cleary-Flood","Steam-Gas T","01/01/71","01/01/76",110000,110000,3132,54,156001000,576884,4698715,37144991,42420590,386,791678,791678,5245790,0,1114114,0,0,533566,1685023,0,0,0,0,0,0,9370171,60,,0,0,0,0,0,0,0,"MCF",972473,1018,4.2,4.2,4.12,0.13,30320,"Barrels",75356,117188,16.96,15.46,3.14,0.01,3007 "Taunton City of",18488,1999,"W. Water Street","Steam","01/01/02","01/01/58",13500,0,0,0,0,24173,3733601,5419707,9177481,680,0,0,0,0,0,0,0,0,0,0,1188,0,0,0,0,1188,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Taunton City of",18488,1999,"Cleary-Flood","Steam","01/01/66","01/01/66",28300,25000,354,54,9067000,148310,2028703,7526961,9703974,343,0,249139,355473,0,342596,0,0,168675,368569,0,0,0,0,0,0,1484452,164,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",20281,95484,15,17.52,4.37,0.04,8970 "Texas Municipal Power Agency",18715,1999,"Gibbons Creek SES","Steam","01/01/83","01/01/83",493900,462000,6908,122,2602361000,25930000,158171000,425745000,609846000,1235,3957000,2960000,34144000,0,482000,0,0,300000,111000,0,1160000,322000,2989000,844000,734000,44046000,17,"Tons",1643836,8470,20.78,20.66,1.23,0.01,10711,"MCF",146379,1015,2.35,2.35,2.35,0,0,,0,0,0,0,0,0,0 "Traverse City City of",19125,1999,"Bayside Station","Steam","01/01/12","01/01/68",29000,14000,290,15,3250000,83612,1866905,7544366,9494883,327,0,626829,148366,0,0,0,0,23461,10829,42858,365474,17778,92524,76059,12931,1417109,436,"Tons",2113,12500,43.5,43.5,1.74,0.02,16253.85,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Turlock Irrigation District",19281,1999,"Walnut Power Plant","Gas Turbine","01/01/86","01/01/86",49900,45486,222,2,4176400,0,14724791,181069,14905860,299,0,9273,193510,0,0,0,0,45773,0,0,0,0,0,252574,0,501130,120,,0,0,0,0,0,0,0,"Mcf",70330,1,2.75,2.75,2.7,46.33,17145,"Bbl",0,0,0,0,0,0,0 "Turlock Irrigation District",19281,1999,"Almond Power Plant","Gas Turbine","01/01/95","01/01/95",49900,49900,3162,12,126500000,149270,24481629,30353821,54984720,1102,0,95458,3736849,0,79785,0,0,1827172,0,0,0,523257,0,640938,0,6903459,55,,0,0,0,0,0,0,0,"Mcf",1175749,1,3.18,2.48,2.38,29.54,9446,,0,0,0,0,0,0,0 "Vermont Public Pwr Supply Auth",19780,1999,"J.C. McNeil Station","Steam","01/01/84","01/01/84",50000,53000,5366,35,41562673,79627,4515588,12712285,17307500,346,119308,43331,1497213,0,229588,0,0,81441,92419,0,37321,14987,144967,145773,7437,2294477,55,"tons(wood)",283916,4750,23.48,24.64,2.59,0.03,13455,"mcf",252167,1012000,3.28,3.28,3.25,0.04,12556,"bbl",2124,136321,15.88,21.41,3.74,0,0 "Vernon City of",19798,1999,"Vernon power Plant","Internal Co","01/01/33","01/01/33",30000,19000,0,1,241160,0,0,0,0,0,0,0,18568,0,0,0,0,0,0,0,0,0,0,0,0,18568,77,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"42 gal",624,130952,0,29.75,5.41,0.07,14231 "Vernon City of",19798,1999,"Vernon Power Plant","Gas Turbine","01/01/87","01/01/87",14000,11250,1171150,1,117150,0,0,0,0,0,0,0,62378,0,0,0,0,0,0,0,0,0,0,0,0,62378,532,,0,0,0,0,0,0,0,"MCF",1031,0,22683.2,2.75,2.66,0.05,19986,,0,0,0,0,0,0,0 "Vero Beach City of",19804,1999,"City of Vero Beach","Steam","01/01/59","01/01/92",158000,151000,8804,41,224236,3059208,26587907,49708983,79356098,502,5414436,1818902,11418,0,0,0,0,647002,0,0,808280,685525,0,1428535,0,5399662,24080,,0,0,0,0,0,0,0,,2318953,1051,3.87,3.87,3.69,0.04,11858,,45055,144840,18.97,18.97,3.12,0.04,14119 "Vineland City of",19856,1999,"Harry M. Downs","Steam","01/01/00","01/01/70",66250,57100,5104,41,50663680,102765,6943679,34504958,41551402,627,0,194475,1693950,0,506222,0,0,630731,1378637,0,137240,12568,459914,91094,2412,5107243,101,"Tons",16966,12734,49.33,49.07,1.9,0.03,13621,,0,0,0,0,0,0,0,"Gallons",2206466,152654,0.35,0.35,2.49,0.03,12734 "Energy Northwest",20160,1999,"Nuclear Plant # 2","Nuclear","01/01/72","01/01/84",1200000,1163000,6519,1018,6975110000,0,1096311831,2199928002,3296239833,2747,38664908,18739254,30590701,2894774,12309953,0,0,75427,21147467,0,3819721,545674,1021005,2269200,18016550,111429726,16,"Grms U-235",726798,4.55e+10,32.01,42.09,41.9,4.39,10460.08,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Western Minnesota Mun Pwr Agny",20421,1999,"Watrtown Power Plant? ","Gas Turbin","01/01/78","01/01/78",60000,42,0,2,2254000,0,0,16335022,16335022,272,39000,17392,54938,0,0,0,0,0,3375,0,0,42360,0,102001,663,220729,98,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",7508,0,28.37,24.9,0,0.83,0 "Willmar Municipal Utils Comm",20737,1999,"WILLMAR","STEAM","01/01/00","01/01/70",29350,17500,6239,17,26618660,110447,878898,6858792,7848137,267,13984,40591,1085227,0,259713,0,0,318116,132083,5000,40431,2416,288530,102454,0,2020002,76,"TONS",32320,8600,26.74,33.58,1.95,0.04,17555,"MCF",28158,1022,2.4,2.4,2.4,0,0,,0,0,0,0,0,0,0 "Winfield City of",20813,1999,"EAST","STEAM","01/01/69","01/01/69",26500,0,0,12,24657,134138,2513749,6029328,8677215,327,1429863,315408,850195,0,0,0,0,0,152329,0,0,0,0,0,0,1317932,53451,,0,0,0,0,0,0,0,"Mcf",356043,1,2.39,2.39,2.39,0.03,0.01,,0,0,0,0,0,0,0 "Winfield City of",20813,1999,"WEST","GAS TURBINE","01/01/61","01/01/61",11500,0,0,1,2972500,0,157556,2719909,2877465,250,97445,56898,232145,0,0,0,0,0,31724,0,0,0,0,0,0,320767,108,,0,0,0,0,0,0,0,"Mcf",58535,1,2.39,2.39,2.39,0.03,0.01,".",0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Steam # 6","01/01/67",,7500,0,0,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Steam # 7","01/01/86",,32500,34500,0,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Total Plant","01/01/15","1/1/1986",74000,70000,17360,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Steam # 4","01/01/49",,11500,11000,1320,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Steam # 5","01/01/59",,22500,24500,8120,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Zeeland City of",21158,1999,"Zeeland Plant","Internal Co","01/01/36","01/01/80",22182,20100,6642,9,10671685,233107,958741,7490195,8682043,391,39130,160274,324998,0,0,0,0,0,0,0,130885,11183,123764,0,0,751104,70,,0,0,0,0,0,0,0,"Mcf",110179,1025,2.66,2.66,2.6,25.21,9704.09,"gals",63744,130,0.49,0.49,3.81,3.81,712.06 "Utah Associated Mun Power Sys",40575,1999,"Hunter - Unit II","Steam","01/01/80","01/01/80",62703,65000,8614,0,477394000,24130,12455094,36987524,49466748,789,196762,79885,5146144,0,247463,0,0,117117,474771,220,72026,45503,228073,39173,16505,6466880,14,"Tons",219787,11688,22.14,22.14,0.95,0.01,10767,,0,0,0,0,0,0,0,"Gallons",15134,139950,0,0,0,0,0 "Utah Associated Mun Power Sys",40575,1999,"San Juan - Unit IV","Steam","/ /","/ /",35000,36000,8087,0,277529800,0,6606911,34780439,41387350,1182,330940,146935,4915693,0,99850,0,0,107665,90002,0,45259,27595,322125,62872,54783,5872779,21,"Tons",156254,9223,31,31,1.68,0.02,10404,,0,0,0,0,0,0,0,"Gallons",37096,134772,0,0,0,0,0 "Intermountain Power Agency",40576,1999,,"Steam Inter","01/01/86","01/01/87",1640000,1600000,8760,472,13211071,95806000,859083000,1682967000,2637856000,1608,0,3439000,172897000,0,8441000,0,0,2062000,781000,0,3925000,2091000,9516000,3866000,3110000,210128000,15905,"Tons",5268671,11851,31.12,25.64,1.06,0.01,9457,,0,0,0,0,0,0,0,"Barrels",12309,137273,22.25,26.22,4.55,0,0 "American Mun Power-Ohio Inc",40577,1999,"Richard H. Gorsuch","STEAM","01/01/51","01/01/53",212000,194000,8760,106,1376874,822631,5383169,64333905,70539705,333,62261347,1032894,14712122,0,2153372,0,0,180146,1071556522,0,606713,341707,6319652,1253782,0,24415086,17732,"TON",869869,11581,23.16,23.16,0.88,0.01,13479,"MCF",72788,1040,3.65,3.65,3.5,0.04,13479,,0,0,0,0,0,0,0 "Northern Municipal Power Agny",40581,1999,"COYOTE","STEAM","01/01/81","01/01/81",414588000,0,8150,81,2913837000,0,0,420000000,420000000,1,0,863403,26074593,0,3373195,0,0,1267272,1238167,0,405837,334491,2651805,324789,643962,37177514,13,"TON",2425659,6947,10.64,10.64,0.77,0.89,11.57,"GAL.",236904,136552,0.56,0.56,0,0,0,,0,0,0,0,0,0,0 "Southern Minnesota Mun P Agny",40580,1999,"SHERCO #3","STEAM PLANT","01/01/87",,331954,357000,7219,0,2035404000,0,0,331434191,331434191,998,3571246,1376329,18703611,0,1905690,0,0,392953,4634715,9336,422268,415136,2261396,2483729,678192,33283355,16,"TONS",1161899,8701,16.34,15.53,0.89,0.01,9934,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Michigan Public Power Agency",40582,1999,"Belle River","Steam","01/01/84","01/01/85",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Michigan Public Power Agency",40582,1999,"Campbell #3","Steam","01/01/80","01/01/80",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Grand Island City of",40606,1999,"BURDICK","GAS TURBINE","01/01/68","01/01/68",14800,16,76,15,984760,0,0,1554976,1554976,105,0,2286,35784,0,5087,0,0,4586,3641,174,142,374,616,5648,0,58338,59,,0,0,0,0,0,0,0,"MCF",20055,1000,2.26,1.78,1.78,0.04,20365,,0,0,0,0,0,0,0 "Grand Island City of",40606,1999,"PGS","STEAM","/ /","/ /",100000,100000,8410,49,554461278,1708020,24075151,64351183,90134354,901,0,133740,4506550,0,718768,0,0,867378,199672,0,24187,229866,682366,387132,0,7749659,14,"TONS",358870,8391,10.89,12.56,0.75,0.01,10862,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Grand Island City of",40606,1999,"BURDICK","STEAM","01/01/57","01/01/72",92500,55000,2977,15,36138330,376970,3684704,31154613,35216287,381,0,102306,1368110,0,305181,0,0,256501,220102,7223,23106,51661,178024,228731,0,2740945,76,,0,0,0,0,0,0,0,"MCF",504548,1000,2.29,2.71,2.71,0.04,13962,,0,0,0,0,0,0,0 "Northern California Power Agny",40613,1999,"CT 1 (5 Units)","Combustion","01/01/86","01/01/86",124000,0,877,5,22025,981098,1465987,45464256,47911341,386,0,0,917842,0,0,0,0,208067,9810,0,95167,0,0,420321,0,1651207,74970,,0,0,0,0,0,0,0,"MCF",328153,0,2.7,2.7,2.44,0.04,15363,"gal",43800,0,0.43,0.43,0.43,0.04,15400 "Northern California Power Agny",40613,1999,"CT 2 (STIG)","Combustion","01/01/96","01/01/96",49900,0,1502,9,102136,0,0,62901868,62901868,1261,307564,0,2704183,0,0,0,0,120252,34596,0,411336,0,0,1176957,0,4447324,43543,,0,0,0,0,0,0,0,"MCF",914572,0,2.83,2.83,2.33,0.03,9135,,0,0,0,0,0,0,0 "Northern California Power Agny",40613,1999,"Geothermal One","Steam","01/01/83","01/01/83",110000,110540,8301,30,625621000,47873178,43427882,0,91301060,830,133458,764505,20092994,0,0,0,0,1317733,114299,0,286198,163870,39903,901827,786469,24467798,39,,0,0,0,0,0,0,0,"Steam",11071643,1210000,0.93,0.93,0.77,0.02,18504,,0,0,0,0,0,0,0 "Northern California Power Agny",40613,1999,"Geothermal Two","Steam","01/01/86","01/01/86",110000,110540,8207,30,627369000,58362769,52110952,0,110473721,1004,170987,681966,20079701,0,0,0,0,1433824,67816,0,36,101301,24056,451698,784863,23625261,38,,0,0,0,0,0,0,0,"Steam",10898373,1200000,0.93,0.93,0.78,0.02,19066,,0,0,0,0,0,0

  3. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    SciTech Connect (OSTI)

    Klobukowski, Erik

    2011-12-29

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and morpholinones and related analogues such as quinoxalinones and benzoxazin-2-ones.

  4. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Blue Ribbon Commission on America's Nuclear Future, co-chaired by former Congressman Lee Hamilton and former National Security Advisor General Brent Scowcroft, will hold its...

  5. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. May 28, 2010 Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab...

  6. NE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the...

  7. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and planning work for the Next Generation Nuclear Plant (NGNP). September 14, 2009 Dr. Peter Lyons Announced in Senior Nuclear Position Today, the United States Department of...

  8. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27, 2012 Energy Department Announces New Investments in University-Led Nuclear Energy Innovation Three University-Led Projects to Develop Next Generation Technologies, Train...

  9. SSL Demonstration: NE Cully Boulevard, Portland, OR

    SciTech Connect (OSTI)

    2012-11-01

    GATEWAY program report brief summarizing an SSL street lighting demonstration in a residential area of Portland, OR

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making Neutrinos The Booster Neutrino Experiment starts by producing a beam of neutrinos. In a multi-stage process, protons from one of the Fermilab proton accelerators -- the Booster -- are used to generate muon neutrinos, one of the three types of neutrinos presently known. In the first stage of the production, a pre-accelerator speeds hydrogen ions up to an energy of 750,000 electron volts. The ions then enter a linear accelerator; this device gives the particles even more energy before

  12. A=10Ne (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    79AJ01) (Not illustrated) Not observed: see (1975BE3

  13. A=10Ne (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (Not illustrated) Not observed: see (1979AJ01). (1985WA02) suggest 39.7 ± 0.4 MeV for the atomic mass excess of 10N. See also (1982KA1D, 1983ANZQ, 1987BL18, 1987SA15

  14. A=10Ne (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004TI06) (Not illustrated) Not observed: see (1979AJ01). See also (1988AJ01

  15. A=11Ne (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0AJ01) (Not illustrated) These nuclei have not been observed: see (1975BE31, 1976IR1B

  16. A=11Ne (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5AJ01) (Not illustrated) These nuclei have not been observed: see (1980AJ01) and (1982NG01, 1983ANZQ

  17. A=11Ne (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    90AJ01) (Not illustrated) These nuclei have not been observed: see (1980AJ01, 1985AJ01) and (1986AN07, 1987SA15

  18. A=11Ne (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012KE01) (Not illustrated) These nuclei have not been observed: see (1980AJ01, 1985AJ01

  19. A=12Ne (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0AJ01) (Not illustrated) This nucleus has not been observed: see (1975BE31

  20. A=12Ne (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5AJ01) (Not illustrated) These nuclei have not been observed: see (1980AJ01) and (1983ANZQ

  1. A=12Ne (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    90AJ01) (Not illustruated) This nuclei has not been observed: see (1980AJ01, 1985AJ01

  2. A=13Ne (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76AJ04

  3. A=13Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    81AJ01

  4. A=13Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) These nuclei have not been observed: see (1983ANZQ

  5. A=13Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) These nuclei have not been observed. See (1986AN07

  6. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  7. A=20Ne (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pn)18F Qm -18.533 Eb 4.753 See (TE47). 6. 16O(, )16O Eb 4.753 The elastic scattering has been studied in the range E 0.9 to 4.0 MeV by (CA53B) and from E 3.9 to...

  8. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    innovation, the Energy Department announced more than 60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. July 17,...

  9. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Takes First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors New Funding Opportunity Announcement Will Support SMR Design and Licensing for...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of light in the oil. image of laser light time components Muon Tracker Two hodoscope planes trigger muons that enter the tank. If the muon stops in one of 3 scintillation cubes,...

  11. A=10Ne (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84AJ01) (Not illustrated) Not observed: see (1979AJ01). A.H. Wapstra (private communication) suggests 39.5 MeV for the atomic mass excess of 10N. See also (1982NG0...

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on signal leaves as +1, -1 otherwise. This forms the PID variable. References: Hai-Jun Yang, Byron P. Roe, Ji Zhu(U. Michigan), "Studies of Stability and Robustness for Artificial...

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some neutrino interactions produce the neutrino's namesake lepton (electron, muon, or tau); this allows the type of neutrino to be tagged. Since neutrino oscillation searches...

  14. DOE-NE-STD-1004-92

    Broader source: Energy.gov [DOE]

    Root Cause Analysis Guidance Document Standard became Inactive This document is a guide for root cause analysis specified by DOE Order 5000.3A, "Occurrence Reporting and Processing of Operations Information." Causal factors identify program control deficiencies and guide early corrective actions. As such, root cause analysis is central to DOE Order 5000.3A.

  15. NE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator...

  16. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14.5 million to upgrade university level research reactors and purchase general scientific equipment and instrumentation. March 23, 2010 DOE Announces Cooperative...

  17. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University-Led Nuclear Energy Research and Development Projects Aim to Cut Carbon Pollution and Strengthen America's Nuclear Energy Industry September 19, 2011 U.S. Energy...

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plots The plots/images found under the "Public" or "Restricted" headings are approved for public use. Plots listed as "Incoming" are not yet approved and may not be shown publicly. Plots marked PRELIMINARY are subject to change, and care should be taken to mention this fact during any public use. Plots marked TECHNICAL require detailed explanation and should only be used in contexts where it is possible to accompany them with a sufficient amount. In general they

  19. MPO.NE7Summit.120320.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPO.P4.03 High Fidelity Fuel Performance Model Development: Focus on Benchmark & Validation activities for PCI and CRUD Brian Wirth University of Tennessee-Knoxville (UT-K) Chris Stanek, Brian Kendrick Los Alamos National Laboratory (LANL) Robert Montgomery Pacific Northwest National Laboratory (PNNL) Richard Williamson, Jason Hales, Derek Gaston, Richard Martineau Idaho National Laboratory (INL) Dion Sunderland, Joe Rashid Anatech Michael Short Massachusetts Institute of Technology (MIT)

  20. MicroBooNE Project Monthly Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Monthly Reports Fiscal 2015 October 2014 November 2014 December 2014 Fiscal 2014 October 2013 November 2013 December 2013 January 2014 February 2014 March 2014 April 2014 May 2014 June 2014 July 2014 August 2014 September 2014 Fiscal 2013 October 2012 November 2012 December 2012 January 2013 February 2013 March 2013 April 2013 May 2013 June 2013 July 2013 August 2013 September 2013 Fiscal 2012 October 2011 November 2011 December 2011 January 2012 February 2012 March 2012 April 2012 May

  1. MicroBooNE Project Quarterly Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Quarterly Reports Fiscal 2010 Qtr-3 Apr-May-Jun Qtr-4 Jul-Aug-Sep Fiscal 2011 Qtr-1 Oct-Nov-Dec Qtr-2 Jan-Feb-Mar Qtr-3 Apr-May-Jun Qtr-4 Jul-Aug-Sep DOE Reviews CD-0 Mission Need Statement DOE CD-1 Review 03/2-3/2010 DOE CD-2 Review 8/10-11/2011 DOE CD-3 Review - no date Fermilab Director's Reviews Initial Director's Review 11/4-6/2009 Director's CD2 Requirements Progress 3/29-30-31/2011 Independent Design and Director's CD-2 Review 7/12-14/2011 CD-3 Readiness - no date

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrinos General Information Neutrinos Matter A colorful booklet presenting a general introduction to neutrinos, neutrino mass, and neutrino oscillations. Describes theory in a comprehensible way using graphs and diagrams. Neutrino Physics at Fermilab An introduction to the search for neutrino mass and the discovery of the tau neutrino produced by the Public Affairs office at Fermilab; also describes the neutrino experiments at Fermilab. Beam Line: Special Neutrino Issue A special issue of

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at work Most of the links on this page are password protected. Operational Operations Beam Line Detector Calibrations Analysis Teams Beam Dump Nue Nucleon-DarkMatter Electron-DarkMatter All Nu Run Analyses 2011- Oscillation Low E Events Alt Oscillation NuMI CCQE/NCEL pion (old) CC pi+ (old) NC/CC pi0 POT Summary Summaries Author Resources Publications Oscillation Analysis Worklist ToDo Review Analysis Beam X Factor Baseline X-Sections Final Fits Exotics Algorithms Data Quality LMC OM Fitting

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Milestones Latest Beam Progress

  5. A=20Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GENERAL: See also (1972AJ02) and Table 20.18 Table of Energy Levels (in PDF or PS). Shell model: (1970CR1A, 1971DE56, 1971RA1B, 1971ZO1A, 1972AB12, 1972AR1F, 1972AS13,...

  6. MicroBooNE First Neutrinos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrino event reconstruction identified. The images are below. collection plane: induction plane 1: induction plane 2: collection plane: induction plane 1: induction plane 2:...

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arXiv:hep-ex0702024 E910 @6.4,12.3 GeVc Parameterization: J.R. Sanford and C.L. Wang, BNL Internal Report BNL11479 image of + production cross section data, fit,...

  8. A=19Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF or PS). Shell model: (WI57H, TA60L, BH62, BO67K, GU67A, EL68, WA68E, AR71L, LE72). Cluster, collective and deformed models: (RA60B, BA69E, BA70F, LE72). Astrophysical...

  9. A=20Ne (1998TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (1988CS01), distribution of -particle strength (1988LE05), cluster formation in the cluster-orbital shell model (1990HA38), the microscopic complex effective interaction for...

  10. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pion Group

  11. A=18Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    also (1988CA26). 4. 14O(, p)17F Qm 1.190 This reaction is considered important in the generation of Z 10 nuclei from products in the hot CNO cycle. Microscopic multichannel...

  12. MiniBooNE Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ...rst oscillation result corresponds to 5:579 10 20 protons on target. The main ux of neutrinos is from pion and kaon decay to muon neutrinos but there is also an...

  13. NE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Curriculum Now Available A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear...

  14. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * No flux tuning based on MB data * Most important production measurements from HARP(at CERN) at 8.9 GeVc beam momentum (as MB), 5% int. length Be target (Eur.Phys.J.C52...

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost...

  16. DE-NE0000533 2015 final report

    SciTech Connect (OSTI)

    Nastasi, Michael; Demkowicz, Michael J.; Shao, Lin

    2015-11-09

    The objective of this work was to explore the development of advanced metal/ceramic composites with greatly improved radiation tolerance and stability above 500°C. Such composites combine the good properties of glasses (high strength and elastic limit, corrosion resistance) with those of crystals (high toughness, strain hardening). The ceramic component of the composite consisted of a high crystallization temperature amorphous material composed of Si-O-C while the metal component was Fe, chosen as a model material for steel. The potential impact of this work is the development of a new class of ceramic/metal composites that can be adapted for engineering applications, resulting in dramatically improved materials performance for advanced reactors. We observed that the combination of the composite constituents, as well as the interfaces between them, provided significantly enhanced radiation tolerance. Our research showed the SiOC materials to be extremely radiation tolerant up to 20 displacements per atom (dpa) at 600 °C. The composites of SiOC/Fe were also studies and found to be radiation tolerant up to 5 dpa at 300°C The approached used for the synthesis of these composites (physical vapor deposition) allowed for rapid alloy and composite prototype development and was therefore appropriate for the proposed exploratory study. It does not, however, limit the engineering applicability of the class of materials we have investigated because, in engineering practice, the amorphous ceramic can be made by a variety of chemical methods, including pyrolysis, and the amorphous-ceramic/steel composite can be manufactured by ball milling. The need to develop advanced cladding that does not react with hydrogen or other structural materials is urgent considering past accidents at Fukushima. Ceramic composites are therefore a strong option with stream reactions rates orders of magnitude lower than the Ziracloy currently in use. Different from its crystalline counterparts, the conventional concept of point defects does not apply to amorphous ceramics, so these materials are expect to have higher radiation tolerance. Furthermore, the interfaces created between amorphous-ceramics and metals represent a new type of defect sink that also improves the radiation resistance of the composite’s crystalline component. This project has shown that it is possible to develop high temperature irradiation resistant materials that are in critical need for nuclear applications under extreme conditions where in-core materials have to withstand neutron damage and high temperature.

  17. Synthesis and crystal structure of a new open-framework iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}]: Novel linear trimer of corner-sharing Fe(III) octahedra

    SciTech Connect (OSTI)

    Mi, Jin-Xiao; Wang, Cheng-Xin; Chen, Ning; Li, Rong; Pan, Yuanming

    2010-12-15

    A new iron phosphate (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P2{sub 1}/n (No. 14), a=6.2614(13) A, b=9.844(2) A, c=14.271(3) A, {beta}=92.11(1){sup o}, V=879.0(3) A{sup 3}). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO{sub 4}) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2}], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below T{sub N}=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5{sup o}. -- Graphical abstract: The three-dimensional open-framework structure of (NH{sub 4}){sub 4}Fe{sub 3}(OH){sub 2}F{sub 2}[H{sub 3}(PO{sub 4}){sub 4}] is built from a novel isolated, linear (FeO{sub 4}){sub 3}(OH){sub 2}F{sub 2} trimer of corner-sharing Fe(III) octahedra linked by PO{sub 4} tetrahedra. Display Omitted

  18. Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2.61 2000's 4.07 4.01 3.37 6.08 6.44 10.88 7.26 7.52 9.72 5.04 2010's 5.48 5.45 4.08 6.63 10.55 5.18

  19. Pittsburg, NH Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 6.06 5.95 6.14 5.56 4.91 5.14 5.66 4.76 4.54 4.33 4.49 4.58 2012 4.22 3.79 3.14 2.55 2.72 3.49 3.75 3.52 3.30 3.80 5.65 6.66 2013 6.80 10.16 6.41 5.43 5.13 5.13 4.70 4.12 4.26 3.98 5.55 11.73 2014 19.82 25.10 12.88 5.74 5.10 5.68 4.55 3.74 3.29 3.53 5.53 9.52 2015 8.36 11.64 7.49 3.23 3.00 3.12 3.03 3.18 3.59 4.12 3.87 3.72

  20. Public Service Co of NH | Open Energy Information

    Open Energy Info (EERE)

    800-662-7764 Outage Map: www.eversource.comContentgen Green Button Access: Implemented Green Button Landing Page: www.psnh.comSaveEnergyMo Green Button Reference Page:...

  1. Recent results from SciBooNE and MiniBooNE experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detector * Main goal to study neutrino oscillations * Motivated by unexplained LSND signal (observed 3.8 excess of nuebar events in numubar beam) * Measure neutrino cross...

  2. MicroBooNE MicroBooNE Andrzej Szelc Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kreslo Michele Weber Christoph Rudolf von Rohr Thomas Strauss Istituto Nazionale di Fisica Nucleare, Italy Flavio Cavanna Ornella Palamara Virginia Tech Mindy Jen Leonidas...

  3. Joint MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particles * p separation using dEdx 2m 4m Used in K2K experiment Used in CHORUS, HARP and K2K Parts recycled from past experiments * Precise measurement of neutrino cross...

  4. Synthesis and crystal structure of (NH{sub 4}){sub 3}[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2}[UO{sub 2}(CH{sub 3}COO)(NCS){sub 2}(H{sub 2}O)

    SciTech Connect (OSTI)

    Serezhkina, L. B.; Peresypkina, E. V.; Virovets, A. V.; Karasev, M. O.

    2010-01-15

    Single crystals of the compound (NH{sub 4}){sub 3}[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2}[UO{sub 2}(CH{sub 3}COO)(NCS){sub 2}(H{sub 2}O)] (I) are synthesized, and their structure is investigated using X-ray diffraction. Compound I crystallizes in the monoclinic system with the unit cell parameters a = 18.3414(6) A, b = 16.3858(7) A, c = 12.4183(5) A, {beta} = 92.992(1){sup o}, space group C2/c, Z = 4, V = 3727.1(3) A{sup 3}, and R = 0.0253. The uranium-containing structural units of crystals I are mononuclear complexes of two types with an island structure, i.e., the [UO{sub 2}(CH{sub 3}COO){sub 3}]{sup -} anionic complexes belonging to the crystal-chemical group (AB{sub 3}{sup 01} = UO{sub 2}{sup 2+}, B{sup 01} = CH{sub 3}COO{sup -}) of the uranyl complexes and the [UO{sub 2}(CH{sub 3}COO)(NCS){sub 2}(H{sub 2}O)]{sup -} anionic complexes belonging to the crystal-chemical group AB{sup 01}M{sub 3}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = CH{sub 3}COO{sup -}, M{sup 1} = NCS{sup -} or H{sub 2}O).

  5. Boone County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bellefonte, Arkansas Bergman, Arkansas Diamond City, Arkansas Everton, Arkansas Harrison, Arkansas Lead Hill, Arkansas Omaha, Arkansas South Lead Hill, Arkansas Valley...

  6. Green Plains Renewable Energy Inc GPRE | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Inc GPRE Jump to: navigation, search Name: Green Plains Renewable Energy Inc (GPRE) Place: Omaha, Nebraska Zip: 68114 Product: Nebraska-based publicly traded...

  7. Case Study: Fuel Cells Increase Reliability at First National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase Reliability at First National Bank of Omaha Case Study: Fuel Cells Increase ... the use of four fuel cells, four rotary uninterruptible power supply ...

  8. Petersburg | Open Energy Information

    Open Energy Info (EERE)

    Petersburg Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Gestamp Wind Developer Third Planet Wind Power Energy Purchaser Omaha Public...

  9. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National Bank of Omaha...

  10. Presentation for Hydrogen State and Regional Workshop, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First National Bank of Omaha, Fresno CA Guaranteed Savings Buidling, Camp Pendleton Marine Corps Base spitznagel-fuelcellscriticalload.pdf More Documents & Publications...

  11. Microsoft Word - 2.8.12 NE Final Testimony

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peter Lyons Assistant Secretary for Nuclear Energy U.S. Department of Energy Before the Committee on Science, Space, and Technology U.S. House of Representatives Assessing...

  12. Aussie LNG players target NE Asia in expansion bid

    SciTech Connect (OSTI)

    Not Available

    1994-02-28

    Australia's natural gas players, keen to increase their presence in world liquefied natural gas trade, see Asia as their major LNG market in the decades to come. That's despite the fact that two spot cargoes of Australian Northwest Shelf LNG were shipped to Europe during the last 12 months and more are likely in 1994. Opportunities for growth are foreseen within the confines of the existing Northwest Shelf gas project for the rest of the 1990s. But the main focus for potential new grassroots project developers and expansions of the existing LNG plant in Australia is the expected shortfall in contract volumes of LNG to Japan, South Korea, and Taiwan during 2000--2010. Traditionally the price of crude oil has been used as a basis for calculating LNG prices. This means the economics of any new 21st century supply arrangements are delicately poised because of the current low world oil prices, a trend the market believes is likely to continue. In a bid to lessen the effect of high initial capital outlays and still meet projected demand using LNG from new projects and expansion of the existing plant, Australia's gas producers are working toward greater cooperation with prospective Asian buyers.

  13. File:EIA-Williston-NE-Gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    pdf) Description Williston Basin, Northeast Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  14. File:EIA-Williston-NE-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  15. File:EIA-Williston-NE-Liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  16. Numu_MicroBooNE_TrackLengthCut

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  17. MiniBooNE Nue & Nuebar Data Release 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Limits, Sensitivities, Data & MC events, ntuples, and error matrices: Neutrino only fit E_nu^QE>200 MeV E_nu^QE>475 MeV Antrineutrino only fit E_nu^QE>200 MeV E_nu^QE>475 MeV Combined fit E_nu^QE>200 MeV E_nu^QE>475 MeV e/gamma efficiences and event distributions

  18. Municipal Energy Agency of NE | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesNebraska-Municipal-Power-Pool198598933540030?skwall Outage Hotline: (800) 234-2595 References: EIA Form EIA-861 Final Data File for 2010 -...

  19. The MicroBooNE Technical Design Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... required to monitor pressure, level, temperature, ... latest ASME boiler code requirements and stamped to indicate that it meets the code. The cryostat vessel features single-walled ...

  20. MicroBooNE Matthias Lthi Universitt Bern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detector * Short-baseline (30m from source) * only NC events * Found excess signal at low LE NS63CH03-Shaevitz ARI 27 September 2013 13:40 Lead shielding Beam Ac do...

  1. Property:BoundingCoordinatesNE | Open Energy Information

    Open Energy Info (EERE)

    + 39.7, -98.15 + Aurora Geothermal Area + 38.468856230108, -118.71640625 + B Bac-Man Laguna Geothermal Area + 13.112513717997, 124.00935153418 + Bad Blumau Geothermal...

  2. The MicroBooNE Project - PMG Call-In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thenn connect to 8862 (for 88-MB) on your videoconferencing device. We don't use a PIN, so if you're the first connection press at the prompt. From DOE Germantown:...

  3. Nu2010_MiniBooNE_Osc.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.66x10 20 POT Event count down by x5 Expect 150 LSND signal events Expect 30 LSND signal events 6 * Antineutrino rate down by a factor of 5 (reduced flux and cross section)...

  4. Microsoft Word - Hennessy Statement.NE Dominion.docx

    Broader source: Energy.gov (indexed) [DOE]

    is dedicated to serving our 2.5 million regulated electric customers in Virginia and North Carolina, we also operate almost 4,000 megawatts of merchant generation, heavily...

  5. The MicroBooNE Experiment - About the Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please click here if you prefer a simple page of photos. Assembly of the TPC began at Fermilab during the summer of 2012. Everyone is pitching in from summer students to...

  6. Microsoft PowerPoint - MiniBooNE Neutrino 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a few percent Critical input to oscillation result without it, 0 background errors would be 25% Neutrino 2008 Steve Brice (FNAL) 8 Two algorithms were used: -...

  7. The MicroBooNE Experiment - About the Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can be seen on the face of the cut-away (supported by the "X" braces). The sense and induction wires are on the left side of the vessel. Behind the wire planes is the support...

  8. The MicroBooNE Experiment Ryan Grosso

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Wire Installation 8256 Sense Wires: 3456 collection wires (vertical) 4800 induction wires (+- 60) Wires are 150m diameter SS CuAu plated All Wires Tensioned...

  9. Property:EIA/861/IsoNe | Open Energy Information

    Open Energy Info (EERE)

    Type Boolean Description Indicates that the organization conducts operations in the New England ISO region 1 References "EIA Form EIA-861 Final Data File for 2010 - 861...

  10. The MicroBooNE Experiment - About the Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    being moved to LArTF. One will be used for liquid nitrogen and the other will be an argon buffer tank. LArTF First Floor This is the ground floor of the new Liquid Argon Test...

  11. Microsoft Word - NE Brief#70 Summary (10-12)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2011, and data was received from all thirty-two programs. The data for two nuclear engineering programs include enrollments and degrees in health physics options that are also reported in the health physics enrollments and degrees data. Degree Trends. Bachelor degrees increased 18% in 2011 over 2010, matching the number of bachelor degrees in the

  12. Microsoft Word - NE Brief#72 (2-14)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SURVEY UNIVERSE The survey includes degrees granted between September 1, 2012 and August 31, 2013. Enrollment information refers to the fall term 2013. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2013, and data was received from all thirty-two programs. The data for two nuclear engineering programs include enrollments and degrees in

  13. NE-24 Designation of Universal Cyclops, Inc., Titusville Plant

    Office of Legacy Management (LM)

    Universal Cyclops, Inc., Titusville Plant Pennsylvania, for Remedial iiction under the Formerly Uti Remedial Action Program (FUSRAP) J. LaGrone, Manager Oak Ridge Operations Office Aliquippa, iized Sites pg!. " * 1 ' j---' R , 7. Based on the data in the attached report, it has been determined that the subject site is contaminated with radioactive residues as a result of Manhattan Engineer District/Atomic Energy Commission operations at the site. The contamination is in excess of acceptable

  14. NE-24 Gilman Hall, University of California, Certification Documentation

    Office of Legacy Management (LM)

    Gilman Hall, University of California, Certification Documentation Berkeley, California, Conditional Verlette Gatlin, MA-232 I am attaching for entry into the Public Document Room, two copies of the subject documentation. These documents are the backup data for the conditional certification that the site is radiologically acceptable for restricted use as noted in the certification statement published in the Federal Register. Inasmuch as the conditional certification is made public through the

  15. MicroBooNE TPC Wires Image Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aa 424 425 426 427 Bb 428 429 430 Cc 431 432 433 Dd 434 435 Ee 436 437 Ff 438 439 440 Gg 441 442 443 Hh 444 445 446 Ii 447 448 449 450 451 452 453 454 455 456 457 Jj 458 459 460 ...

  16. MiniBooNE_LoNu_Shaevitz.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    o f t he m easured e lectron s pectra t o a n:---neutrino s pectra. * R eactor fl ux p redic:on i ncreases b y 3 %. * R e---analysis o f r eactor e xperiments s how a d...

  17. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorber primary beam tertiary beam secondary beam (protons) (mesons) (neutrinos) e 2 HARP (CERN) measured the + production cross section - 5% Beryllium target - 8.9 GeV proton...

  18. PNM Resources 2401 Aztec NE, MS-Z100

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... please contact me either by phone, (505) 241-2025, or via email, douglas.campbell@pnmresources.com. Sincerely, Douglas G. Campbell Manager, Environmental Planning and Permitting

  19. MicroBooNE TPC Wires Image Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These are not the Raw photos - photos posted here have been processed through Photoshop: images are mirror-flipped and then rotated to an orientation similar to the...

  20. Microsoft Word - N01221_NE Site IRAP final.doc

    Office of Legacy Management (LM)

    Northeast Site August 2008 Office of Legacy Management LMS/PIN/N01221 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AM01-07LM00060 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank LMS/PIN/N01221 Pinellas Environmental Restoration Project Interim Remedial Action Plan for Source Removal at

  1. NE-20 ACTION: SSDP Project Charter Revision CONCURRENCES RTG SYMBOL

    Office of Legacy Management (LM)

    0 ACTION: SSDP Project Charter Revision CONCURRENCES RTG SYMBOL James W. Vaughan, Jr. N-923 Acting Assistant Secretary . for Nuclear Energy Murphi Attached for your signature is a revised Project Charter for the 1/ 86 Shippingport Station Decommissioning Project (SSDP). Since our original M determination in July that there was a need to revise the SSDP Charter, we N K23 have been in discussion with the Richland Operations Field Office (RL). INe Significant differences in management philosophy

  2. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the energy range of the reviewed experiments. Detailed theory - covered by L. Alvarez-Ruso. Martin Tzanov University of Colorado Neutrino 2010 Experiments E GeV Main goal...

  3. F-5 U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Figure F4. Oil and Gas Supply Model Regions Atlantic WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT ME RI MA NH VA WI MI OH NE...

  4. Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 336 2012 0 138 55 5 2013 21 75 2014 185 76 64 25 23 2015 214 146 92 48 50 181 2

  5. Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,804 3,798 865 295 2,790 248 792 242 144 126 655 4,066 2012 6,044 5,109 1,927 2,629 2,692 3,438 3,976 3,786 4,614 3,630 4,452 5,155 2013 6,664 6,797 6,522 5,574 4,956 4,182 5,538 4,209 3,136 2,256 6,141 7,471 2014 7,089 5,624 6,224 4,169 1,568 2,080 1,855 1,458 4,627 4,137 6,480 6,847 2015 8,000 7,546 8,124 6,273 4,777 4,491 6,616 6,172 6,339 7,583 6,587 5,359

  6. Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst

    DOE Patents [OSTI]

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  7. Update and Improve Subsection NH - Simplified Elastic and Inelastic Design Analysis Methods

    SciTech Connect (OSTI)

    Jeries J. Abou-Hanna; Douglas L. Marriott; Timothy E. McGreevy

    2009-06-27

    The objective of this subtask is to develop a template for the 'Ideal' high temperature design Code, in which individual topics can be identified and worked on separately in order to provide the detail necessary to comprise a comprehensive Code. Like all ideals, this one may not be attainable as a practical matter. The purpose is to set a goal for what is believed the 'Ideal' design Code should address, recognizing that some elements are not mutually exclusive and that the same objectives can be achieved in different way. Most, if not all existing Codes may therefore be found to be lacking in some respects, but this does not mean necessarily that they are not comprehensive. While this subtask does attempt to list the elements which individually or in combination are considered essential in such a Code, the authors do not presume to recommend how these elements should be implemented or even, that they should all be implemented at all. The scope of this subtask is limited to compiling the list of elements thought to be necessary or at minimum, useful in such an 'Ideal' Code; suggestions are provided as to their relationship to one another. Except for brief descriptions, where these are needed for clarification, neither this repot, nor Task 9 as a whole, attempts to address details of the contents of all these elements. Some, namely primary load limits (elastic, limit load, reference stress), and ratcheting (elastic, e-p, reference stress) are dealt with specifically in other subtasks of Task 9. All others are merely listed; the expectation is that they will either be the focus of attention of other active DOE-ASME GenIV Materials Tasks, e.g. creep-fatigue, or to be considered in future DOE-ASME GenIV Materials Tasks. Since the focus of this Task is specifically approximate methods, the authors have deemed it necessary to include some discussion on what is meant by 'approximate'. However, the topic will be addressed in one or more later subtasks. This report describes work conducted toward developing a template for what might be the 'Ideal' high temperature design Code. While attempting to be as comprehensive as possible as to subject matter, it does not presume to recommend what individual components of a Code should be implemented, some of which is the focus of other Tasks in the DOE-ASME Gen IV/NGNP Materials Projects. This report does serve as a basis for construction of an attribute chart which is being prepared as part of Task 9.2; the intention for which is to provide a uniform format and concise means for summarizing and comparing other high temperature Codes currently in use around the world.

  8. Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon deer10rohart.pdf More Documents & Publications Lean NOx Reduction with Dual Layer LNTSCR Catalysts Development of Optimal Catalyst Designs and Operating...

  9. Pittsburg, NH Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 7.61 -- 2010's -- 7.54 2.62 6.65 4.06 2.96

  10. Pittsburg, NH Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 7.54 2012 2.20 2.65 2.46 3.48 2013 14.87 4.39 2014 4.06 4.09 4.01 5.00 3.08 2015 2.81 3.05 2.90 2.95 3.03 3.09 2.09

  11. Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 64 0 2010's 0 336 199 95 373 735

  12. Pittsburg, NH Natural Gas Pipeline Exports to Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 336 2012 0 138 55 5 2013 21 75 2014 185 76 64 25 23 2015 214 146 92 48 50 181 2

  13. Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 22,820 2000's 38,289 45,808 29,014 34,983 17,257 28,041 31,853 56,879 39,438 26,767 2010's 18,297 19,826 47,451 63,446 52,160 77,866

  14. Pittsburg, NH Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,804 3,798 865 295 2,790 248 792 242 144 126 655 4,066 2012 6,044 5,109 1,927 2,629 2,692 3,438 3,976 3,786 4,614 3,630 4,452 5,155 2013 6,664 6,797 6,522 5,574 4,956 4,182 5,538 4,209 3,136 2,256 6,141 7,471 2014 7,089 5,624 6,224 4,169 1,568 2,080 1,855 1,458 4,627 4,137 6,480 6,847 2015 8,000 7,546 8,124 6,273 4,777 4,491 6,616 6,172 6,339 7,583 6,587 5,359

  15. EECBG Success Story: Grants to Help N.H. Towns Conserve Energy

    Broader source: Energy.gov [DOE]

    New Hampshire has a plan to lower expenses and create jobs, all while conserving energy. The state has received $17.3 million in Energy Efficiency and Conservation Block Grant (EECBG) funding. Learn more.

  16. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems...

  17. 2010 MARINE MICROBES GORDON RESEARCH CONFERENCE (JULY 4-9, 2010 - TILTON SCHOOL, TILTON NH)

    SciTech Connect (OSTI)

    David Kirchman

    2010-04-09

    Marine microbes include representatives from all three kingdoms of life and collectively carry out virtually all forms of metabolisms found on the planet. Because of this metabolic and genetic diversity, these microbes mediate many of the reactions making up global biogeochemical cycles which govern the flow of energy and material in the biosphere. The goal of this conference is to bring together approaches and concepts from studies of microbial evolution, genomics, ecology, and oceanography in order to gain new insights into marine microbes and their biogeochemical functions. The integration of scales, from genes to global cycles, will result in a better understanding of marine microbes and of their contribution to the carbon cycle and other biogeochemical processes.

  18. Year Month U.S. Average PAD District I Average CT ME MA NH RI

    Gasoline and Diesel Fuel Update (EIA)

    1994 January ... 89.6 91.0 90.2 83.8 88.4 80.4 87.3 88.8 92.1 102.5 February ... 92.9 94.6 93.8 90.4 91.3 86.6 91.4 92.3 91.5 105.5...

  19. Year Month U.S. Average PAD District I Average CT ME MA NH RI

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1993 January ... 94.3 95.7 94.9 85.2 94.0 87.1 91.7 93.4 91.2 105.2 February ... 94.6 95.9 96.2 85.4 94.4 86.9 91.8 93.3 90.8 106.8...

  20. Year Month U.S. Average PAD District I Average CT ME MA NH RI

    U.S. Energy Information Administration (EIA) Indexed Site

    1995 January ... 86.9 87.6 86.7 77.8 84.8 78.4 87.3 85.7 88.4 102.4 February ... 87.4 88.2 87.8 77.4 84.9 78.5 87.3 85.9 88.5 103.4...