National Library of Energy BETA

Sample records for ne heat home

  1. Home Heating

    Broader source: Energy.gov [DOE]

    Your choice of heating technologies impacts your energy bill. Learn about the different options for heating your home.

  2. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  3. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) (3.31 MB) More Documents & Publications PIA - WEB Physical ...

  4. HIA 2015 DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas Homes Anna Model Omaha, NE DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give

  5. Home Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems Home Heating Systems Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source:

  6. Home Heating Systems | Department of Energy

    Office of Environmental Management (EM)

    separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental heat source. Electric...

  7. HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER...

    Office of Environmental Management (EM)

    HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER REPORTS HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER REPORTS Historical Northeast Home Heating Oil ...

  8. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM Historical Northeast Home Heating Oil Reserve Trigger Mechanism Charts ...

  9. Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release...

    Energy Savers [EERE]

    Heating Oil Reserve Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release The Energy Policy and ...

  10. Hillbrook Nursing Home Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility...

  11. Additional Storage Contracts Awarded for Northeast Home Heating...

    Broader source: Energy.gov (indexed) [DOE]

    storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). ... The Northeast Home Heating Oil Reserve was authorized by Congress in the Energy Policy Act ...

  12. STEO October 2012 - home heating supplies

    Gasoline and Diesel Fuel Update (EIA)

    Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home ... Inventories of propane, which heats about 5 percent of all U.S. households and is more ...

  13. Home Heating Hints | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Hints Home Heating Hints December 9, 2014 - 5:10pm Addthis Sealing air leaks can help you save energy and money this winter. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Sealing air leaks can help you save energy and money this winter. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy What are the key facts? Programmable

  14. The MicroBooNE Project - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    posted in the MicroBooNE DocDB, private access user-name is reviewer, password on request. ... Password access to these pages is necessary, user-name is reviewer, password on request. ...

  15. The Future of Home Heating

    Broader source: Energy.gov (indexed) [DOE]

    as B10 High heating efficiency Costly replacement for oil system Shale gas vs FRAC Act? ... Redistribution Via truck from Canada Via tanker from Canada, Venez., VI, And "Other" ...

  16. The MicroBooNE Experiment - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments LArIAT - Test Beam DUNE - Long Baseline ArgoNeuT More FNAL Neutrino Exps Fermilab Links FNAL Neutrino Division FNAL at Work FNAL Phone Book FNAL Indico FNAL Home...

  17. DOE to Purchase Heating Oil for the Northeast Home Heating Oil...

    Energy Savers [EERE]

    Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC ...

  18. Energy Saver 101: Home Heating | Department of Energy

    Energy Savers [EERE]

    Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That...

  19. Save on Home Water Heating | Department of Energy

    Energy Savers [EERE]

    on Home Water Heating Save on Home Water Heating August 19, 2014 - 10:46am Addthis Purchasing a water heater with the ENERGY STAR label ensures you are buying an energy ...

  20. Northeast Home Heating Oil Reserve (NEHHOR) Weekly Trigger Report...

    Office of Environmental Management (EM)

    Weekly Trigger Report Northeast Home Heating Oil Reserve (NEHHOR) Weekly Trigger Report The weekly report for the current heating oil season shows the differential levels required ...

  1. Energy Saver 101: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your

  2. #AskEnergySaver: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating #AskEnergySaver: Home Heating October 29, 2014 - 12:56pm Addthis This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs Looking for more ways to save energy? Check out Energy Saver for

  3. Northeast Home Heating Oil Reserve - Guidelines for Release | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Heating Oil Reserve » Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise dispose of petroleum distillate from the Reserve in order to maintain the quality or quantity of the petroleum distillate or to maintain the

  4. Table 26. Natural gas home customer-weighted heating degree...

    U.S. Energy Information Administration (EIA) Indexed Site

    6:14:01 PM Table 26. Natural gas home customer-weighted heating degree days MonthYear... Table 26 Created on: 4262016 6:14:07 PM Table 26. Natural gas home customer-weighted ...

  5. NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) QUESTIONS AND ANSWERS

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Questions and Answers document is a compilation of the most commonly asked questions (and answers) concerning the online auction system for the Northeast Home Heating Oil Reserve.

  6. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Office of Public Affairs Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That...

  7. Bio-Oil Deployment in the Home Heating Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Oil Deployment in the Home Heating Market March 23, 2015 Dr. Thomas A. Butcher ... and end user acceptance. * Heating oil and diesel transportation both use the same ...

  8. #HeatChat @Energy: Ask Us Your Home Heating Questions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy #HeatChat @Energy: Ask Us Your Home Heating Questions #HeatChat @Energy: Ask Us Your Home Heating Questions October 21, 2015 - 10:10am Addthis Check out our <a href="/node/780416">Energy Saver 101 infographic</a> for everything you need to know about home heating. Check out our Energy Saver 101 infographic for everything you need to know about home heating. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs How can I participate? Ask us

  9. #AskEnergySaver: Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating #AskEnergySaver: Home Water Heating March 24, 2014 - 11:35am Addthis Did you know: Water heaters account for nearly 17 percent of a home’s energy use, consuming more energy than all other household appliances combined. For more about water heaters, check out our <a href="/node/612476">Energy Saver 101 home water heating infographic</a>. | Photo by Eric Grigorian, U.S. Department of Energy Solar Decathlon. Did you know: Water heaters account for nearly 17

  10. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation

  11. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S.

  12. Northeast Home Heating Oil Reserve- Online Bidding System

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  13. Northeast Home Heating Oil Reserve (NEHHOR) Releases | Department of Energy

    Energy Savers [EERE]

    Releases Northeast Home Heating Oil Reserve (NEHHOR) Releases The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur distillate (diesel), was created to build a buffer to allow commercial companies to compensate for interruptions in supply during severe winter weather, The first emergency use of NEHHOR was in 2012. Emergency Loans after Hurricane Sandy In late October 2012, Hurricane Sandy made landfall on the northeastern shore of the United States,

  14. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Energy Saver 101 Infographic: Home Heating December 16, 2013 - 10:48am Addthis Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download a <a href="/node/784286">high-resolution version</a> of the infographic or individual sections. | Infographic by <a

  15. DOE ZERH Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 48 without PV, with 2x6 24” on center walls with R-23 blown fiberglass, ocsf at rim joists, basement with plus 2x4 stud walls with R-23 blown fiberglass, with R-20 around slab, R-38 under slab; a vented attic with R-100 blown cellulose; 95% AFUE furnace, 14 SEER AC, ERV; heat pump water heater.

  16. Guide to Home Heating and Cooling

    SciTech Connect (OSTI)

    2010-10-01

    Get the most out of your heating and cooling systems, including types, how to choose, and performing maintenance.

  17. STEO October 2012 - home heating use

    U.S. Energy Information Administration (EIA) Indexed Site

    Last year's warm U.S. winter temperatures to give way to normal, increasing household heating fuel use U.S. households will likely burn more heating fuels to stay warm this winter compared with last year Average household demand for natural gas, the most common primary heating fuel, is expected to be up 14 percent this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. Demand for electricity will be up 8 percent. And demand for heating oil, used mainly

  18. Home Heating Hints | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are not blocking heating registers. This will allow air to circulate more freely and save energy. Winter may mean colder weather is here, but it doesn't have to drain your...

  19. Energy Savings Week: Lowering Energy Bills with Efficient Home Heating

    Broader source: Energy.gov [DOE]

    With winter in full swing in many parts of the U.S., your thermostat may be getting more attention than usual. Whether you have a furnace, boiler, or heat pump system, you want to make sure your home stays warm—especially as holiday guests arrive. Fortunately, the Energy Department’s efforts to improve efficiency standards is paying dividends with energy bills associated with heating and appliances lower compared to past holiday seasons.

  20. Technology Solutions for New Homes Case Study: Indirect Solar Water Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems in Single-Family Homes | Department of Energy Indirect Solar Water Heating Systems in Single-Family Homes Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes In 2011, Rural Development, Inc. (RDI) completed the construction of Wisdom Way Solar Village (WWSV), which is a development of 20 very efficient homes in Greenfield, Massachusetts. The homes feature R-40 walls, triple-pane windows, R-50 attic insulation, and airtight

  1. Earth-sheltered compromise home saves on heating, cooling costs

    SciTech Connect (OSTI)

    Frankhauser, T.

    1985-02-01

    Building a home into the side of a hill to take advantage of the earth's temperature-neutralizing qualities and facing it to the south will reduce heating and cooling costs. A home in North Dakota based on these principles has never had two unheated rooms freeze and needs no air conditioning. Mutli-zoned thermostats are located in the south-facing rooms. Other features are a five-foot overhang, lower ceilings, aluminum foil deflectors beneath carpets and above the plasterboard in the ceiling, and extra insulation. By eliminating an earth covering that would require sturdier support, construction costs were competitive with regular frame construction.

  2. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR).  The Reserve...

  3. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect (OSTI)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  4. Passive solar heated energy conserving biosphere home. Final report

    SciTech Connect (OSTI)

    Piekarski, R.

    1985-01-01

    ''Warm Gold'' is an original design of a passive solar heated energy conserving biosphere home. It has been owner-built with financial help from the US Department of Energy through its Appropriate Technology Small Grants Program of 1980. The home incorporates the six major components of passive solar design: appropriate geometry and orientation, glazing, light levels and reflective surfaces, ventilation, thermal storage, and insulation. Warm Gold is an earth-sheltered home with earth cover on the roof as well as on the two opaque north leg walls. It is of durable and efficient masonry construction which included stone masonry with on-site materials and cement block and ready mix concrete. Excavation, backfill, and drainage were necessary aspects of earth sheltered construction together with the all-important Bentonite waterproofing system. Warm Gold is a house which meets all the national building code standards of HUD. The home has two bedrooms, one bathroom, living room, dining room-kitchen, greenhouse, and utility annex, all of which are incorporated with the earth-sheltered, passive solar systems to be a comfortable, energy-efficient living environment.

  5. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is

  6. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reserve | Department of Energy to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve. Offers are due

  7. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distillate | Department of Energy Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said

  8. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  9. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump ...

  10. #tipsEnergy: Saving on Home Heating Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving on Home Heating Costs #tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Saving on Home Heating Costs A feature on the Energy Department's Twitter account, #tipsEnergy highlights ways to save energy and money at home. Once a month, we ask you to share your energy-saving tips so the larger energy community can learn from you, and we feature some of the

  11. DOE Accepts Bids for Northeast Home Heating Oil Stocks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Accepts Bids for Northeast Home Heating Oil Stocks DOE Accepts Bids for Northeast Home Heating Oil Stocks February 3, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to three companies who successfully bid for the purchase of 984,253 barrels of heating oil from the Northeast Home Heating Oil Reserve. Awardee Amount Morgan Stanley 500,000 barrels Shell Trading U.S. Company 250,000 barrels George E. Warren Corporation 234,253

  12. DOE Completes Sale of Northeast Home Heating Oil Stocks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Completes Sale of Northeast Home Heating Oil Stocks DOE Completes Sale of Northeast Home Heating Oil Stocks February 10, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. Hess Groton Terminal, Groton, CT Shell Trading U.S. Company 150,000 barrels Sprague

  13. Efficient Solutions for Existing Homes Case Study: Solar Water Heating in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Buildings | Department of Energy Existing Homes Case Study: Solar Water Heating in Multifamily Buildings Efficient Solutions for Existing Homes Case Study: Solar Water Heating in Multifamily Buildings In spring 2014, Olive Street Development completed a major renovation project-converting an old school building in Greenfield, Massachusetts, into 12 high-performance apartments. The developer installed SDHW to reduce fossil-fuel consumption, and CARB has been monitoring the system

  14. Building America Whole-House Solutions for New Homes: Testing Ductless Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington | Department of Energy Testing Ductless Heat Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington Building America Whole-House Solutions for New Homes: Testing Ductless Heat Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for

  15. Measured heating system efficiency retrofits in eight manufactured (HUD-code) homes

    SciTech Connect (OSTI)

    Siegel, J.; Davis, B.; Francisco, P.; Palmiter, L.

    1998-07-01

    This report presents the results of field measurements of heating efficiency performed on eight all-electric manufactured homes sited in the Pacific Northwest with forced-air distribution systems. These homes, like more than four million existing manufactured homes in the US, were constructed to thermal specifications that were mandated by the US Department of Housing and Urban Development in 1976. The test protocol compares real-time measurements of furnace energy usage with energy usage during periods when zonal heaters heat the homes to the same internal temperature. By alternating between the furnace and zonal heaters on 2 hour cycles, a short-term coheat test is performed. Additional measurements, including blower door and duct tightness tests, are conducted to measure and characterize the home's tightness and duct leakage so that coheat test results might be linked to other measures of building performance. The testing was done at each home before and after an extensive duct sealing retrofit was performed. The average pre-retrofit system efficiency for these homes was 69%. After the retrofit, the average system efficiency increased to 83%. The average simple payback period for the retrofits ranges from 1 to 5 years in Western Oregon and 1 to 3 years in colder Eastern Oregon.

  16. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1939WH02: 19Ne. 1952SC15: 19Ne. 1954JO21: 19Ne. 1954NA29: 19Ne. 1957AL29: 19Ne. 1957PE12: 19Ne. 1958WE25: 19Ne. 1960JA12: 19Ne; measured not abstracted; deduced nuclear properties. 1960WA04: 19Ne; measured not abstracted; deduced nuclear properties. 1962EA02: 19Ne; measured not abstracted; deduced nuclear properties. 1964VA23: 19Ne; measured not abstracted; deduced nuclear properties. 1968GO10: 19Ne; measured T1/2. 1972LE33: 19Ne; measured K/β+ ratios.

  17. The Future of Home Heating | Department of Energy

    Office of Environmental Management (EM)

    Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Performance of Biofuels and Biofuel Blends A Life-Cycle ...

  18. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  19. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  20. Building America Case Studies for New Homes: Performance and Costs of Ductless Heat Pumps in Marine Climate High-Performance Homes

    Broader source: Energy.gov [DOE]

    The Woods is a sustainable community built by Habitat for Humanity in 2013. This community comprises 30 homes that are high-performance and energy-efficient. With support from Tacoma Public Utilities and the Bonneville Power Administration, the BA-PIRC team is researching the energy performance of these homes and the ductless heat pumps they employ.

  1. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    SciTech Connect (OSTI)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  2. Overall U-values and heating/cooling loads: Manufactured homes

    SciTech Connect (OSTI)

    Conner, C.C.; Taylor, Z.T.

    1992-02-01

    This manual specifies a method for calculating the overall thermal transmittance (also referred to as the overall U-value or U{sub o}), heating load, and cooling load of a manufactured (mobile) home. Rules, examples, and data required by the method are also presented. Compliance with the Department of Housing and Urban Development`s (HUD) U{sub o} and load calculation regulations contained in Sections 3280.506, 3280.510 and 3280.511 of the Manufactured Home Construction and Safety Standards must be demonstrated through the application of the method provided herein.

  3. System manual for the University of Pennsylvania retrofitted solar heated Philadelphia row home (SolaRow)

    SciTech Connect (OSTI)

    Zinnes, I.; Lior, N.

    1980-05-01

    The University of Pennsylvania SolaRow house, an urban row home retrofitted for comfort and domestic hot water heating, was extensively instrumented for performance monitoring and acquisition of weather and solar radiation data. This report describes the heating and instrumentation systems, provides the details for instrumentation, piping and valve identification, and specifies the operation and maintenance of the heating and data acquisition systems. The following are included: (1) system flow diagrams; (2) valve and cable identification tables; (3) wiring diagrams; and (4) start-up, normal operation, shut-down, maintenance and trouble-shooting procedures. It thus provides the necessary technical information to permit system operation and monitoring, overall system performance analysis and optimization, and acquisition of climatological data.

  4. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1954GO17: 18Ne. 1961BU05: 18Ne; measured not abstracted; deduced nuclear properties. 1961EC02: 18Ne; measured not abstracted; deduced nuclear properties. 1963FR10: 18Ne; measured not abstracted; deduced nuclear properties. 1965FR09: 18Ne; measured not abstracted; deduced nuclear properties. 1968GO05: 18Ne; measured Eγ, Iγ; deduced Iβ, log ft. 18F deduced levels, branching ratios. 1970AL11: 18Ne; measured T1/2; deduced log ft, β-branching. 1970AS06,

  5. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents: Pion Group Home Pion Group Members Pion References Colin's Cross Section Page MiniBooNE Internal Email M. Tzanov....

  6. Passive solar retrofit: how to add natural heating and cooling to your home

    SciTech Connect (OSTI)

    Strickler, D.J.

    1982-01-01

    This do-it-yourself guide includes information on planning and maintaining a passive retrofit home. Information is given on: evaluating an individual house; climate, and situation; deciding on most appropriate solar features; determining the need for outside help and locating it; applying for financial assistance and tax credits; choosing materials; and construction. Also covered are: house insulation, auxiliary heating and cooling, decorating the passive solar retrofit, essential weather data, construction guidelines, a list of manufacturers of solar materials, and a reference supplement are included.

  7. BooNE: About BooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE Collaboration BooNE Experiment BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles BooNE photo montage Technical Information BooNE...

  8. 15Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 15Ne Adopted value: 0.59 MeV (2014WA09) Measured Mass Excess for 15Ne Adopted value: 40215 ± 69 keV (2014WA09) Measurements 2014WA09: C(17Ne, 2p)15Ne, E = 500 MeV/nucleon; measured reaction products; deduced fractional energy spectra, J, π, energy levels, atomic mass excess. 15Ne(2p); measured decay products, Ep, Ip; deduced implications for 13O + p + p system. Back to Top Back to Ground-State Decays

  9. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  10. 17Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1964MC16: 17Ne; measured not abstracted; deduced nuclear properties. 1966HA22: 17Ne; deduced log ft. 1967ES02: 17Ne; measured not abstracted; deduced nuclear properties. 1967FI10: 17Ne. 1971ESZR, 1971HA05: 17Ne; measured β-delayed proton spectra, Eγ, Iγ, T1/2, pγ-coin; deduced log ft. 17F deduced levels, antianalog state, isospin mixing. 1988BO39: 17Ne(β+p), (β+α); measured T1/2, β-delayed E(p), E(α), I(p), I(α), β(particle)-coin. 17Ne deduced

  11. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  12. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 16Ne Adopted value: 122 ± 37 keV (1993TI07) Measured Mass Excess for 16Ne Adopted value: 23996 ± 20 keV (2003AU02) Measurements 1971MAXQ: 16O(π+, π-); measured particle spectra, σ. 1977HO13: 16O(π+, π-), E = 145 MeV; measured σ; deduced Q. 16Ne deduced mass excess. 1977KEZX: 20Ne(α, 8He), E = 118 MeV; measured σ. 16Ne deduced levels, mass excess. 1978BU09: 16O(π+, π-), E = 145 MeV; measured σ. 16Ne deduced mass

  13. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  14. Performance of a small underfed wood chip-fired stoker in a hot air-heated home

    SciTech Connect (OSTI)

    Schneider, M.H.

    1983-01-01

    The goal of the study was to provide space heat for a home using forest biomass presently not in demand by industry, and by using a convenient, automatic, low-emission heating system. A stoker firing wood chips was installed in a home, and chips were prepared for it from the residues of a softwood clearcut. Residues from 1 and a quarter acre provided enough fuel to heat the house for the heating season. The chip-fired heating system was convenient, maintained the house at whatever temperature was set on the room thermostat, and generated little creosote or wood smoke. It was better at converting fuel to heat than the previous combustion heating systems in the house, with steady-state combustion efficiency of approximately 75% and longer-term appliance efficiency of 69%. Electric energy required for heating hot water was reduced approximately 27% as a result of a preheating coil located in the chip-fired furnace. The major cause of heat interruptions was jamming of the stoker which occurred on the average of every 18 and a half days. Clearing such jams was simple. The system operated safely throughout the test period.

  15. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development

  16. Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvement Catalyst (HI-Cat) Home Improvement Catalyst (HI-Cat) The Home Improvement Catalyst (HI-Cat) is a new DOE initiative focused on high impact opportunities to achieve energy savings in home improvements already planned or being undertaken by homeowners. The home improvement market represents $150 billion in annual investment, with over 14 million projects that involve replacement or upgrades of heating and cooling systems, windows, siding and roofs, insulation and other measures.

  17. Effects on carbon monoxide levels in mobile homes using unvented kerosene heaters for residential heating

    SciTech Connect (OSTI)

    Williams, R.; Walsh, D.; White, J.; Jackson, M.; Mumford, J.

    1992-01-01

    Carbon monoxide (CO) emission levels were continuously monitored in 8 mobile trailer homes less than 10 years old. These homes were monitored in an US EPA study on indoor air quality as affected by unvented portable kerosene heaters. Respondents were asked to operate their heaters in a normal fashion. CO, air exchange and temperature values were measured during the study in each home. Results indicate that consumers using unvented kerosene heaters may be unknowingly exposed to high CO levels without taking proper precautions.

  18. Technology Solutions Case Study: Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California

    SciTech Connect (OSTI)

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  19. Building America Technology Solutions for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This case study introduces the foundation heat exchanger that can significantly reduce the cost of the ground source heat pump (GHSP).

  20. Go for the Gold in Energy-Efficient Home Heating | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in the crowd and the athletes as they vie for the coveted gold, silver, and bronze metals. ... Energy Department Resources Go for the Gold and Save Energy at Home 15 Blog Posts to ...

  1. SciBooNE/MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ž. Pavlović Los Alamos National Laboratory Fermilab Users' Meeting, 2012 SciBooNE/MiniBooNE 2 Outline * Booster Neutrino Beamline * SciBooNE & MiniBooNE experiments * New results - MB Updated neutrino appearance analysis - MB Antineutrino appearance analysis - MB Joint Neutrino & Antineutrino appearance analysis - Joint SciBooNE/MiniBooNE numubar disappearance analysis * Future prospects 3 Booster Neutrino Beam * Horn focused beam/8GeV protons from Booster * Horn polarity → neutrino

  2. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  3. NE-23:

    Office of Legacy Management (LM)

    1 , : -2 rn; NE-23: 4 Whitr%; Ms. Theresa Schaffer 3315 S. Emerald Avenue Chicago, Illinois 60616 Dear Ms. Schaffer: . -. r ;-, .4r.-,. , ' P?;c \ \ ; . EC.. ., . The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former General Services Administratlon 39th Street Werehouse, Chicago, Illincis, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan

  4. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Design for Efficiency Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but ...

  5. The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1998-03-01

    This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

  6. NE-20

    Office of Legacy Management (LM)

    hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is

  7. Measure Guideline. Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, Carl; Puttagunta, Srikanth; Owens, Douglas

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs

  8. Home Energy Score Sample Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADDRESS HOME SIZE YEAR BUILT AIR CONDITIONING Home Energy Score Score Home Facts Recommendations The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money.

  9. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  10. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  11. Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet),

    Broader source: Energy.gov [DOE]

    This case study describes the construction of a new test home in Atlanta, GA, that demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system.

  12. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that ... R. Dharmapalan et al. MiniBooNE Collaboration, arXiv:1211.2258 hep-ex (2012).

  13. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development

  14. BooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators The BooNE Collaboration The BooNE Collaboration...

  15. BooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  16. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Omaha, NE | Department of Energy Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 48 without PV, with 2x6 24" on center walls with R-23 blown fiberglass, ocsf at rim joists, basement with plus 2x4 stud walls with R-23 blown fiberglass, with R-20 around slab, R-38 under slab; a vented attic with R-100 blown

  17. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool Home Heating Systems Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of iStockphoto...

  18. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email MicroBooNE schematic drawing Figure 1: A schematic drawing of the MicroBooNE liquid argon TPC detector. The main goals of the MicroBooNE experiment are: (1) to demonstrate the capabilities of a liquid argon TPC in the reconstruction of neutrino

  19. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In...

  20. Building America Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    Broader source: Energy.gov [DOE]

    The ARIES Collaborative partnered with Homeowners' Rehab Inc., a nonprofit affordable housing owner, to upgrade the central hydronic heating system in a 42-unit housing development, reducing heating energy use by an average of 19%.

  1. DOE Zero Energy Ready Home Case Study: Amaris Homes, Fishers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    around slab, a vented attic with with 2" ccsf plus R-15 blown cellulose, a central heat pump and HRV. PDF icon DOE Zero Energy Ready Home Case Study: Amaris Homes, Vadnais ...

  2. Nebraska Preparing for the Upcoming Heating Season

    U.S. Energy Information Administration (EIA) Indexed Site

    Heating Oil Propane Residential Propane Price http:www.neo.ne.govstatshtml86.html Residential Heating Oil Price http:www.neo.ne.govstatshtml87.html Weekly Report Using ...

  3. Technology Solutions for New Homes Case Study: Indirect Solar...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes In 2011, ...

  4. Operating and Maintaining Your Heat Pump | Department of Energy

    Office of Environmental Management (EM)

    Like all heating and cooling systems, proper maintenance is key to efficient operation. ... Home Cooling Systems Home Heating Systems Heat Pump Systems Operation & Maintenance ...

  5. printed-circuit heat exchanger PCHE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printed-circuit heat exchanger PCHE - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers printed-circuit heat exchanger PCHE Home...

  6. BooNE: Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The MiniBooNE Detector Tracking the traces of neutrino interactions. Of Neutrino Mass, and Oscillation What oscillates in neutrino oscillations, and why it matters

  7. DOE Zero Ready Home Case Study: M Street Homes, Smartlux on Greenpark...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    built on a solid foundation of building science research. ... heating, and power production, is the first of its kind. ... This Home Standard New Home Zero Energy Home Less Energy ...

  8. Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes

    SciTech Connect (OSTI)

    Im, Piljae; Hughes, Patrick; Liu, Xiaobing

    2012-01-01

    The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

  9. BooNE: Picture Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial progress of MiniBooNE detector installation BooNE Scrapbook A selection from BooNE Audio Gallery Horn Concerto The Horn Concerto is a recording of the BooNE horn and the NuMI horn sounding at the same time. The rat-a-tat is BooNE; the syncopated boom is NuMI.

  10. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'γ): σ for production of γ-rays threshold - 23 1.63-MeV γ-rays X4 03/15/2011 20Ne(p, pαγ): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1975RO08 20Ne(p, γ): S-factors 0.37 - 2.10 Direct Capture (DC) → 332-keV state, DC → 2425-keV state, tail of 2425-keV state X4 04/19/2011 20Ne(p, γ): differential σ at θγ = 90° DC → 332-keV state, 332-keV state →

  11. MiniBooNE

    SciTech Connect (OSTI)

    Mahn, Kendall Brianna Mcconnel; /Columbia U.

    2007-03-01

    MiniBooNE is a short baseline neutrino experiment designed to confirm or refute the LSND observed excess of electron anti neutrinos in a muon anti neutrino beam. The experimental setup, data samples, and oscillation fit method are discussed. Although the result was not public at the time of the talk, MiniBooNE has since published results, which are discussed briefly as well.

  12. The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods

    SciTech Connect (OSTI)

    Dolealov, Markta; Beneov, Libue; Zvodsk, Anita

    2013-09-15

    Highlights: The character of household waste in the three different types of households were assesed. The quantity, density and composition of household waste were determined. The physicochemical characteristics were determined. The changing character of household waste during past 10 years was described. The potential of energy recovery of household waste in Czech republic was assesed. - Abstract: The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural

  13. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  14. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Broader source: Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  15. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of ... Assumptions of the RERH Solar Water Heating Specification ...

  16. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design for Efficiency » Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a

  17. Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealing Your Home Sealing Your Home Caulking can reduce heating and cooling costs and improve comfort in your home. Caulking can reduce heating and cooling costs and improve comfort in your home. Air leakage, or infiltration, occurs when outside air enters a house uncontrollably through cracks and openings. Properly air sealing can significantly reduce heating and cooling costs, improve building durability, and create a healthier indoor environment. In addition to air sealing, you'll also want

  18. H. R. 3856: A Bill to amend the Internal Revenue Code of 1986 to impose an excise tax on windfall profits derived from home heating oil, and for other purposes. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, January 23, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The tax would be imposed on the producer or importer of the home heating oil. The amount of the tax would be 90 percent of the windfall profit on each barrel, which is defined as the gross profit over the producer's or importer's average gross profit per barrel from home heating oil sold during November 1989. If significant sales were not made by any person during November 1989, the amount will be determined by the Secretary based on national averages. The bill also establishes a Home Heating Oil Trust Fund to finance grants under the Low-Income Home Energy Assistance Act of 1981.

  19. Coast Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Coast Electric Power Association (CEPA) provides rebates on heat pumps for new homes which meet certain weatherization standards. To qualify for this rebate the home must have:

  20. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production Home

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in San Marcos, CA that scored HERS 52 without PV, -4 with PV. This 52,778-square-foot production home has R-20 advanced framed walls with batts plus rigid foam sheathing, an air-source heat pump for central air in sealed attic, solar water heating and 100% LED lighting.

  1. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-12-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development

  2. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Update to Include Evaluation of Impact of Including a Humidifier Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-02-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes

  3. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, WA, Systems Home

    Broader source: Energy.gov [DOE]

    Case-study of a DOE Zero Energy Ready Home on Whidbey Island, WA, that scored HERS 45 without PV. This 2,908-square-foot custom/system home has a SIP roof and walls, R-20 rigid foam under slab, triple-pane windows, ground source heat pump for radiant floor heat, and a unique balanced ventilation system using separate exhaust fans to bring air into and out of home.

  4. Nebraska Preparing for the Upcoming Heating Season

    U.S. Energy Information Administration (EIA) Indexed Site

    N E B R A S K A Nebraska "Preparing for the Upcoming Heating Season" E N E R G Y O F F I C E State Heating Oil and Propane Conference October 8, 2014 Profile of Nebraska Population - 1,868,516 Occupied Housing Units - 733,570 Occupied Housing by Fuel Used for Home Heating in 2012 Natural Gas 63% Fuel Oil and Kerosene 0.50% Electricity 26% Propane 8% Wood 1.60% All Other Fuels 0.09% Coal or Coke 0.01% Solar Energy 0.04% No Fuel Used 0.20% http://www.neo.ne.gov/statshtml/75.html History

  5. BooNE: Interesting Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the BooNE experiment: BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE will be ready to collect data in summer, 2002. The BooNE collaboration is small by high energy physics standards, having 65 physicists from 13 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to enlarge About the

  6. BooNE versus MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  7. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer Visualization CAVE...

  8. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View all events >> x CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer...

  9. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User ID: Password: Log In Forgot your password? CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  12. Heat

    U.S. Energy Information Administration (EIA) Indexed Site

    Release date: April 2015 Revised date: May 2016 Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 87,093 80,078 11,846 8,654 20,766 5,925 22,443 49,188 1,574 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 868 1,091 1,747 Q 400 3,809 Q 5,001 to 10,000 8,900 7,590 1,038 1,416 2,025 Q 734 4,622 Q 10,001 to 25,000 14,105 12,744 1,477 2,233 3,115 Q 2,008 8,246 Q 25,001 to 50,000 11,917 10,911 1,642 1,439 3,021 213 2,707

  13. Characterization of emissions from a fluidized-bed wood chip home heating furnace. Final report Apr 82-May 83

    SciTech Connect (OSTI)

    Truesdale, R.S.

    1984-03-01

    The report gives results of measurements of emissions from a residential wood-chip combustor, operated in both a fluidized-bed and cyclone-fired mode, and their comparison with those from a conventional woodstove and industrial wood-fired boilers. In general, the combustion efficiency of the fluidized-bed and cyclone-fired wood-chip burner is higher than that of conventional woodstoves. Concomitant with this increase in efficiency is a decrease in most emissions. For the fluidized-bed tests, significant reductions of total hydrocarbons and CO were observed, compared to woodstove emissions. The cyclone test showed PAH levels far below those of conventional woodstoves, approaching levels measured in industrial wood-fired boilers. A baghouse, installed during two fluidized-bed tests, was extremely effective in reducing both particulate and PAH emissions. Method 5 samples from above the fluid bed suggest that appreciable PAH is formed in the upper region of the furnace or in the watertube heat exchangers. In general, the cyclone-fired mode was more effective in reducing emissions from residential wood combustion than the fluidized-bed mode.

  14. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes | Department of Energy e2 Homes, Winter Park, FL, Custom Homes DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes Case study of a DOE Zero Energy Ready Home in Winter Park, FL, that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps. DOE ZERH case study: e2 Homes (1.07 MB) More Documents & Publications Building

  15. Microsoft Word - Heating Oil Season.docx

    Broader source: Energy.gov (indexed) [DOE]

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price ...

  16. Building America Whole-House Solutions for New Homes: Urbane Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisville, Kentucky | Department of Energy Urbane Homes, Louisville, Kentucky Building America Whole-House Solutions for New Homes: Urbane Homes, Louisville, Kentucky Case study of Urbane Homes who worked with Building America research partner NAHBRC to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed walls, high-efficiency heat pumps, and ducts in conditioned space. Urbane Homes - Louisville, KY (668.24 KB) More Documents & Publications High

  17. Buildng America Whole-House Solutions for New Homes: William Ryan Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tampa, Florida | Department of Energy Buildng America Whole-House Solutions for New Homes: William Ryan Homes, Tampa, Florida Buildng America Whole-House Solutions for New Homes: William Ryan Homes, Tampa, Florida Case study of William Ryan Homes, who worked with Building America research partner CARB to design HERS-65 homes with energy-efficient heat pumps and programmable thermostats with humidity controls, foam-filled concrete block walls, draining house wrap, and airsealed kneewalls.

  18. DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Study, Nexus EnergyHomes, Frederick, MD, Production DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD, Production This urban infill community features a package of SIP walls, geothermal heat pumps, solar PV, and a proprietary energy management system. Nexus EnergyHomes - Frederick, MD (1.56 MB) More Documents & Publications Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, Maryland DOE Zero Energy

  19. US NE MA Site Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NE MA Site Consumption million Btu 0 500 1,000 1,500 2,000 2,500 3,000 US NE MA ... 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours 0 250 500 750 1,000 ...

  20. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original...

  2. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The DOE Tours MicroBooNE! - Nov. 27, 2012

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Delivering Beam to MiniBooNE

  4. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE In the News MicroBooNE internal newletters (password protected) National Lab Science Day (public debut of virtual MicroBooNE), Fermilab News, 042916 MicroBooNE Project ...

  5. Home and Building Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's buildings consume more energy than any other sector of the U.S. economy, including transportation and industry. Learn more about: Heating and Cooling Passive Solar Design Water Heating Lighting and Daylighting Energy Basics Home Renewable Energy Homes & Buildings Lighting

  6. UPdate THE NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPdate THE NE January 2014 Edition U.S. Department of Energy's Nuclear Energy University Programs It's not every day graduate students get to meet one of nuclear energy's most important decision makers. Integrated University Program (IUP) Fellows had this opportunity at the 2013 Winter American Nuclear Society (ANS) Meeting this past November in Washington, D.C. Department of Energy Assistant Secretary for Nuclear Energy, Dr. Pete Lyons, greeted IUP Fellows in a special meeting to discuss

  7. NE-23 W

    Office of Legacy Management (LM)

    >:-1. ,- '"CC3 . ' NE-23 .+ W h itm~ l-l& Mr. Victor 3. Canilov, Director Museum of Science and Industry East 57th Street and Lake Shore Drive Chicago, Illinois 60037 Dear kr. Danilov: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSPSIP), has reviewed information on the Museum cf Science and Industry, Chicago, Illinois, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the

  8. Air Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home Air Sealing Your Home Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing

  9. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey...

    Energy Savers [EERE]

    SIP above-grade walls, a 10.25-in. SIP roof, and triple-pane windows. The home has a ground-source heat pump provides radiant floor heat plus passive solar heating from large...

  10. Energy Savers: Tips on Saving Money & Energy at Home

    SciTech Connect (OSTI)

    2014-05-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  11. Energy Savers: Tips on Saving Money & Energy at Home

    SciTech Connect (OSTI)

    2011-12-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  12. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump ...

  13. Building America Whole-House Solutions for New Homes: Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and heat recovery ventilation (HRV) system; Evaluate the thermal performance and cost benefit of DHPhybrid heating systems in these homes from the perspective of homeowners; ...

  14. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Integrated Space and Water Heating-Field Assessment Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field ...

  15. Combi Systems for Low Load homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Context Technical Approach * A condensing water heater and hydronic air handler will used to provide space and water heating loads in almost 300 weatherized homes. * System ...

  16. Landscaping for Energy-Efficient Homes

    Broader source: Energy.gov [DOE]

    A well-designed landscape not only can add beauty to your home but also can reduce your heating and cooling costs.

  17. Wood and Pellet Heating

    Broader source: Energy.gov [DOE]

    Looking for an efficient, renewable way to heat your home? Wood or pellets are renewable fuel sources, and modern wood and pellet stoves are efficient heaters.

  18. Your Home Fire Safety Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YourHome FireSafety Checklist U.S. Consumer Product Safety Commission Washington, D.C. 20207 Table of Contents About the Commission Introduction Sources Of Fire Supplemental Home Heating Equipment . . . . . . . . . . 1 Cooking Equipment . . . . . . . . . . . . 4 Cigarette Lighters and Matches . . . 4 Materials That Burn Upholstered Furniture . . . . . . . . . . 5 Mattresses and Bedding . . . . . . . . . 6 Wearing Apparel . . . . . . . . . . . . . . 6 Flammable Liquids . . . . . . . . . . . . 7

  19. DEMCO- Touchstone Energy Home Program

    Broader source: Energy.gov [DOE]

    DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps...

  20. DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD, Production This urban infill community features a package of SIP walls, geothermal heat pumps, solar PV, ...

  1. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Winter Park, FL that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps.

  2. Active Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating

  3. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WA | Department of Energy Whidbey Island, WA DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island, WA Case study of a DOE Zero Energy Ready home on Whidbey Island, WA, that scores HERS 37 without PV or HERS -13 with 10 kW PV, enough to power the home and an electric car. The two-story custom home has ICF below-grade walls, 6.5-inch SIP above-grade walls, a 10.25-in. SIP roof, and triple-pane windows. The home has a ground-source heat pump provides radiant floor heat

  4. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA Case study of a DOE Zero Energy Ready home in Bellingham, WA, that achieves HERS 43 without PV or HERS 13 with 3.2 kW of PV. The 1,055-ft2 two-story production home has 6-in. SIP walls, a 10-in. SIP roof, and ICF foundation walls with R-20 high-density rigid EPS foam under the slab. A single ductless heat pump heats

  5. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Home: Near Zero Maine Home II, Vassalboro, Maine DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine Case study of a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar

  6. New energy-conserving passive solar single-family homes. Cycle 5, Category 2 HUD solar heating and cooling demonstration program

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The 91 new single-family, energy-conserving passive solar homes described represent award winning designs of the series of five demonstration cycles of the HUD program. Information is presented to help builders and lenders to understand passive solar design, to recognize passive solar buildings, and to provide specific design, construction, and marketing suggestions and details. The first section describes the concept of passive solar energy, explains the various functions which passive solar systems must perform, and discusses the various types of passive systems found in the Cycle 5 projects. The second section discusses each of the 91 solar homes. The third section details the issues of climate requirements and site design concerns, gives examples of building construction, and suggests how to market solar homes. The appendices address more technical aspects of the design and evaluation of passive solar homes.

  7. Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Home Cooling Energy Saver 101 Energy Saver 101 We're covering everything you need to know about home cooling to help you save energy and money. Read more Ventilation Systems for Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read

  8. DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NM, Production | Department of Energy Homes Inc., Albuquerque, NM, Production DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque, NM, Production Case study of a DOE Zero Energy Ready Home in Aztec, NM, that scored HERS 49 without PV. This 2,064-square-foot production home has advance framed walls, a spray foamed attic, an air source heat pump, and an HRV. Palo Duro Homes, Inc.- Albuquerque, NM (2.03 MB) More Documents & Publications DOE Zero Energy Ready Home Case

  9. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciBooNE Detector TargetHorn SciBooNE constraint reduces error at MiniBooNE * Flux errors become 1-2% level: negligible for this analysis * Cross-section errors reduced, but...

  10. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User ID: Password: Log In Forgot your password? Working in CAES WIC Home Request Facility Use Conduct Research Flowchart Process Rad Info and Tools Chemical Requisition Guide...

  11. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working in CAES WIC Home Request Facility Use Conduct Research Flowchart Process Rad Info and Tools Chemical Requisition Guide Chemical and Supply Order Form Training Access...

  12. Challenge Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Dir. & NZEH Coalition Develop and disseminate CH sales training to builder partners Generate media content with builder awards, case studies, and articles Challenge Home Locator ...

  13. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from MiniBooNE * MiniBooNE * Neutrino cross-sections * Quasielastic and elastic scattering * Hadron production channels * Neutrino Oscillations * Antineutrino Oscillations...

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated 2008. from inspirehep.net Booster Neutrino...

  15. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated collaboration list for presentations: powerpoint pdf map collaboration photo MicroBooNE organizational chart MicroBooNE contact list (password required) (IB) ...

  16. Releases from the Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases from the Heating Oil Reserve Releases from the Heating Oil Reserve The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur ...

  17. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Heating Oil Reserve The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies occur. The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies

  18. Electric Resistance Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in homes or...

  19. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    home has R-20 advanced framed walls with batts plus rigid foam sheathing, an air-source heat pump for central air in sealed attic, solar water heating and 100% LED lighting. ...

  20. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) | Department of Energy Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Researchers from Alliance for Residential Building Initiative worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump

  1. Energy-Efficient Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Energy-Efficient Home Design Energy-Efficient Home Design The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. The Home Energy Score is a

  2. A=14Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 14Ne has not been observed. See (1976BE1V

  3. DOE Announces Award of a Contract to Repurchase Heating Oil for...

    Energy Savers [EERE]

    Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating ...

  4. WIPP Home Page Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Page Search Enter word(s) to search for on the WIPP Home Page: Search

  5. Building America Whole-House Solutions for New Homes: Tommy Williams Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gainesville, Florida | Department of Energy Tommy Williams Homes, Gainesville, Florida Building America Whole-House Solutions for New Homes: Tommy Williams Homes, Gainesville, Florida Case study of Tommy Williams Homes who partnered with Building America to build HERS-58 homes with foam gaskets at sill and top plates, fresh air intakes, SEER 16/HSPF 9.5 heat pumps, and tight air sealing of 2.7 ACH50. Tommy Williams Homes: Longleaf Village & Belmont - Gainesville, FL (671.55 KB) More

  6. Building America Technology Solutions for New and Existing Homes: Replacing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resistance Heating with Mini-Split Heat Pumps | Department of Energy Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In this project, the Advanced Residential Integrated Solutions team investigated the suitability of mini-split heat pumps for multifamily retrofits. Replacing Resistance Heating with Mini-Split Heat Pumps (638.84 KB) More Documents &

  7. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  8. Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Home Enter your keywords Search

  9. Keeping the home fires burning

    SciTech Connect (OSTI)

    Valenti, M.

    1993-07-01

    Some utilities and thermal researchers are devising thermoelectric and thermophotovoltaic technologies to convert furnace heat to electricity and keep home heating systems functioning during extended power failures. Storms that damage power lines often leave homes without heat, since the electricity supplied to furnace blowers is cut along with all other electricity. One case in points is the March 1991 ice storm that left nearly 200,000 Rochester Gas and Electric Corp. customers without electrical power, some for up to two weeks. This led the Rochester, N.Y., utility, RG and E, to search for an independent power source that could provide homes with heat during prolonged outages. RG and E funded development of a continuous gas furnace by the GE Research and Development Center in Schenectady, N.Y., that would keep its customers' homes heated and provide some electricity during power outages. Since natural gas lines are rarely interrupted during a power outage, the furnace is still a potential source of heat, but only if there is some way to supply electricity that is independent of the grid, said Bruce Snow, manager and chief engineer of the technical services division at RG and E. The electricity would power the furnace blower, which blows hot air through air ducts, or run the motor that pumps water through a piping system to keep the house warm. Such a thermoelectrical system involves heating the two junctions of thermocouples, which are made of dissimilar wires, at two different temperatures in order to create electricity. A newer technology, thermophoto-voltaics, also converts heat to electricity. In this process described here, the heat causes an emitter to radiate a wavelength of light, which is converted into electricity by a photovoltaic unit.

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the Booster Neutrino Experiment (BooNE): BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE has been collecting data since August 2002. The BooNE collaboration is small by high energy physics standards, comprising 75 physicists from 16 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to

  11. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  12. Builders Challenge High Performance Builder Spotlight: Tim O'Brien Homes, Waukesha, Wisconsin

    SciTech Connect (OSTI)

    2009-12-22

    This Building America Builders Challenge home features efficiency upgrades of geothermal heat pump, PV, solar hot water, and added insulation.

  13. DOE Zero Energy Ready Home Case Study: Southern Energy Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes, ...

  14. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evolutionary Home Builders, The Adaptation Home, Geneva, IL DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders, The Adaptation Home, Geneva, IL DOE Zero Energy Ready ...

  15. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott ...

  16. DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesvil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promethean Homes, Charlottesville, VA DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville, VA DOE Zero Energy Ready Home Case Study: Promethean Homes, ...

  17. Heating & Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Homes » Heating & Cooling Heating & Cooling Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. <a href="/energysaver/principles-heating-and-cooling">Learn more about the principles of heating and cooling</a>. Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for

  18. HOMEe | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: HOMEe Place: Denmark Product: Denmark-based maker of home automation products, including devices to manage lighting and climate. References: HOMEe1...

  19. Home Front Inc.: Hot, Humid Climate Region 40+% Energy Savings

    SciTech Connect (OSTI)

    2009-08-13

    This case study describes a model prototype home kit that is efficient and affordable and includes high-performance mechanical systems, HVAC, and solar water heating.

  20. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The package of measures reduces energy used for space conditioning, water heating and lighting by 50% percent over typical manufactured homes. Technology Solutions for New ...

  1. Home Improvement Catalyst: Bringing Energy Efficiency to More...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The home improvement market represents 150 billion in annual investment, with more than 14 million projects that involve replacement or upgrades of heating and cooling systems, ...

  2. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Improve Performance of Combination Space- and Water-Heating Systems Building America Technology Solutions for New and Existing Homes: Advanced Controls Improve Performance ...

  3. Singing River Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet Comfort Advantage weatherization standards. To qualify for this rebate...

  4. Building America Case Studies for Existing Homes: Supplemental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Building America Partnership for Improved Residential Construction team that studied the effects of mini-split heat pumps in six central Florida homes. Supplemental Ductless ...

  5. Building America Efficient Solutions for Existing Homes Case...

    Energy Savers [EERE]

    BUILDING TECHNOLOGIES OFFICE Building America Efficient Solutions for Existing Homes Case ... Switching to an efficient heat pump with zonal controls was the best solution to save ...

  6. ICARUS/MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) ICARUS/MicroBooNE ν ( Φ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 µ ν µ ν e ν e ν

  7. Home Energy Score Sample Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sample Report Home Energy Score Sample Report The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. Home Energy Score: Sample Report (1.98 MB) More

  8. REFLECT HOME

    Broader source: Energy.gov [DOE]

    Sacramento is nicknamed the City of Trees, so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team’s Reflect Home does just that by embracing the city’s sense of expansive greenery.

  9. Passive Solar Home Design | Department of Energy

    Energy Savers [EERE]

    well-designed passive solar home first reduces heating and cooling loads through energy-efficiency strategies and then meets those reduced loads in whole or part with solar energy. ...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (505) 695 8364 BooNE Experiment: contact-boone@fnal.gov Current Shifter: (505) 500 5511 Detector Enclosure: (630) 840 6881 or 6081 BooNE Collaborators and Associates:...

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995,...

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sept. 3, 1999 - The MiniBooNE Detector: The Teletubby Design 1998: Oct. 30, 1998 - Good Physics in a Small Package June 5, 1998 - MiniBooNE Faces the PAC May 1, 1998 - The...

  14. About the MicroBooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE The MicroBooNE collaboration is currently operating a large 170-ton liquid Argon Time Projection Chamber (LArTPC) that is located on the Booster neutrino beam line at...

  15. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Excess in the MiniBooNE Search for bar numu rightarrow bar nue Oscillations", arXiv:1007.1150 hep-ex,Phys.Rev.Lett.105,181801 (2010) The following MiniBooNE...

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  17. Building America Whole-House Solutions for Existing Homes: Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Individual Heating and Ventilation Systems | Department of Energy Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems in multifamily buildings. Multifamily Individual Heating and Ventilation Systems - Lawrence,

  18. The New Affordable Zero Homes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TransfOrmaTiOn frOm TyPiCaL duPLex TO new affOrdabLe ZerO hOmes: sOuTh eLevaTiOn: Typical ... Pv dOubLe sided CeLL: Pv LighT absOrPTiOn: Double Sided Cell. Digital image. LG NeON 2 ...

  19. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This house incorporates slab-on-grade, EPS roof, and radiant heating with an air-to-water heat pump that also preheats domestic hot water. Without counting in the solar panels, the home earns a home energy rating system (HERS) score of 37, with projected utility bills of about $740 a year. With the 6.4-kW photovoltaic power system installed on the roof, the home’s HERS scores drops to -1 and utility bills for the all-electric home drop to zero. This home was awarded a 2013 Housing Innovation Award in the affordable builder category.

  20. A=14Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1983ANZQ

  1. A=14Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1986AN07

  2. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Collaboration Photos Click on image to view larger version April 2016 October 2014

  3. Building America Case Study: Solar Water Heating in Multifamily Buildings, Greenfield, Massachusetts (Fact Sheet), Efficient Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating in Multifamily Buildings Greenfield, Massachusetts PROJECT INFORMATION Construction: Gut rehab Type: Multifamily Builder: Olive Street Development Partner: Consortium for Advanced Residential Buildings, carb-swa.com Size: 372 ft 2 evacuated tube, 330 gallons storage Price: $31,000 before incentives Incentives Used: * Commonwealth Solar Hot Water Program * 30% Federal tax credit * Modified Accelerated Cost Recovery System (MACRS) * MassSave New Construction program Date

  4. Home Energy Assessments

    Broader source: Energy.gov [DOE]

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy...

  5. DOE Zero Energy Ready Home Case Study: Amerisips Homes, Charleston, SC |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Case Study: Amerisips Homes, Charleston, SC DOE Zero Energy Ready Home Case Study: Amerisips Homes, Charleston, SC Case study of a DOE Zero Energy Ready home on Johns Island in Charleston, SC, that scored HERS 30 without PV, or HERS 1 with 6-kW of PV. This custom 2-story, 2,085 ft2, home is constructed of structural insulated panels, with 6.5-in. SIPs in the walls and 8.25-in. SIPs in the floor and roof. The HVAC system includes an air-to-water heat pump with fan coil

  6. Home Energy Score

    SciTech Connect (OSTI)

    2011-12-16

    The Home Energy Score allows a homeowner to compare her or his home's energy consumption to that of other homes, similar to a vehicle's mile-per-gallon rating. A home energy assessor will collect energy information during a brief home walk-through and then score that home on a scale of 1 to 10.

  7. TRACC Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    TRACC Home About TRACC Transportation Research Computing Resources Training & Workshops image image image image image image image image Previous Next Welcome To The Transportation Research And Analysis Computing Center (TRACC) Chartered in 1946 as the nation's first national laboratory, Argonne enters the 21st century focused on solving the major scientific and engineering challenges of our time: sustainable energy, a clean environment, economic competitiveness and national security. Argonne

  8. Buildings and Homes Success Stories | Department of Energy

    Energy Savers [EERE]

    ... The coating increases the window's energy efficiency by reflecting radiant heat. Installing a low-e storm window over a low performing window can reduce a home's heating and ...

  9. DOE Tour of Zero: Cobbler Lane by Addison Homes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The home's fresh air system utilizes an outdoor air intake that is ducted to the return side of the heat pump air handler through a high-capture filter. Even when the heat pump is ...

  10. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (Not illustrated) Theory: See (RA57). 1. 18Ne(β+)18F Qm = 4.227 The maximum energy of the positrons is 3.2 ± 0.2 MeV, the half-life is 1.6 ± 0.2 sec: log ft = 2.9 ± 0.2 (GO54D). See also (DZ56). 2. 16O(3He, n)18Ne Qm = -2.966 See (KU53A). 3. 19F(p, 2n)18Ne Qm = -15.424 See (GO54D). 4. 20Ne(p, t)18Ne Qm = -19.812 Not reported

  11. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  12. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  13. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  14. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  15. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  16. NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

  17. Combined Heat And Power Installation Market Analysis | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Analysis Home There are currently no posts in this category. Syndicate...

  18. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  19. Guide to Geothermal Heat Pumps

    SciTech Connect (OSTI)

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  20. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is $2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.35 per gallon. This is Marcela Rourk with EIA, in Washington.

  1. Home Energy Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Checklist Home Energy Checklist This checklist outlines actions that conserve energy within homes. Today Checkbox Turn down the temperature of your water heater to the warm setting (120°F). You'll save energy and avoid scalding your hands. Checkbox Check if your water heater has an insulating blanket. An insulating blanket will pay for itself in one year or less! Checkbox Heating can account for almost half of the average family's winter energy bill. Make sure your furnace or heat

  2. Heat and Cool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver » Heat and Cool Heat and Cool Programmable thermostats and apps make it easy to control the temperature of your home and save energy and money. Programmable thermostats and apps make it easy to control the temperature of your home and save energy and money. Space heating and cooling account for almost half of a home's energy use, while water heating accounts for 18%, making these some of the largest energy expenses in any home. Space Heating and Cooling A variety of technologies

  3. Regional Variation in Residential Heat Pump Water Heater Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Water Heating Systems Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, ...

  4. Data-Driven Mailing Helps Heat Up Untapped Seattle Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... next winter. * Heating a Seattle home with oil produces more carbon emissions and air pollution than other heating systems. * Upgrading from oil to an efficient gas furnace or ...

  5. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  6. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  7. Demonstration and Performance Monitoring of Foundation Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration and Performance Monitoring of Foundation Heat Exchangers in Low Load, High Performance Research Homes Demonstration and Performance Monitoring of Foundation Heat ...

  8. Heat Pump Water Heater Using Solid-State Energy Converters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heater Using Solid-State Energy Converters 2015 Building Technologies ... Home Water Heaters with Affordable, Reliable Solid-State Heat Pumps Key Partners: ...

  9. A=17Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See the Isobar Diagram for 17Ne) GENERAL: See also (1971AJ02) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1971HA1Y, 1973HA77, 1973RE17, 1975BE31). Mass of 17Ne: The mass excess of 17Ne, determined from a measurement of the Q-value of 20Ne(3He, 6He)17Ne is 16.48 ± 0.05 MeV (1970ME11, 1972CE1A). Then 17Ne - 17F = 14.53 MeV and Eb for p, 3He and α are, respectively, 1.50, 6.46 and 9.05 MeV. See also (1971AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93

  10. Secretary Chu Announces More Stringent Appliance Standards for Home Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters and Other Heating Products | Department of Energy Stringent Appliance Standards for Home Water Heaters and Other Heating Products Secretary Chu Announces More Stringent Appliance Standards for Home Water Heaters and Other Heating Products April 1, 2010 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu announced today that the Department has finalized higher energy efficiency standards for a key group of heating appliances that will together save consumers