Sample records for ne carmeuse lime

  1. Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00 P.M.InnovationRADAGAST:Ne

  2. The Needs of Texas Soils for Lime.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1919-01-01T23:59:59.000Z

    Department of Agriculture. STS PAGE ............................................. What lime does 5 ............................................. Acidity of soils 7 ............................................. Sources of lime 8... of Texas soils for lime, as far as our present information permits. WHST LIME DOES Lime performs sereral functions in the soil, some of which are favor- able to increased crops and the maintenance of fertility, some favorable to certain crops...

  3. Climate VISION: Private Sector Initiatives: Lime

    Office of Scientific and Technical Information (OSTI)

    Lime Association (NLA), representing approximately 95% of U.S. commercial lime production, is very pleased to submit this letter in response to President Bush's challenge to...

  4. NE Pacific St. NE Pacific St.

    E-Print Network [OSTI]

    Lake W ashington Ship Canal NE Pacific St. NE Pacific St. NE Boat St. 15th Ave NE 15thAveNE UniversityWayNE BrooklynAveNE NE Pacific St. MontlakeBlvdNE MontlakeBlvdNE Pacific Place NE University Burke-Gilman Trail METRO NW A CD D EF F GHI H J RR BB CC EE AA Rotunda Cafe Ocean Sciences Hitchcock

  5. Effects of Lime and Carbonate of Lime on Acid Phosphate.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1917-01-01T23:59:59.000Z

    question whether part of the readion does not take place in the filter paper, when the fertilizer is being washed with water to re- move the water-soluble phosphoric acid. To test this, we mixed carbonate of lime with acid phosphate and determined... EXPERIMENTS. We made some pot experiments to test the effect of lime on acid phosphate, but we are not altogether ea'tisfied with the mgy some of these crops grew. Details: Soils 3653, 4643, 4580, 4596, 4581, 4589, 4591. Additions : Ac 1 gram acid...

  6. The Needs of Texas Soils for Lime.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1919-01-01T23:59:59.000Z

    drill or a lime spreader. Lime spreaders are sold by manufacturers of agricul- tural implements. Stone lime niay be placed in piles on the ground, covered with earth. allotred to .slake, and then spread, but this is not a very good method. The best..., clays and clay loams of East 1 Texas ancl the gulf coast section which experiments have shown to be acid. The chemist of tPfe Texas Experiment Station will test samples for aciclity free of charge. .As a rule, 1000 pounds per acre of lime-, stone...

  7. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-StateNovember 1997B β--Decay EvaluatedNe β+-Decay

  8. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-StateNovember 1997B β--Decay EvaluatedNe β+-Decay

  9. 15Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge EC β--DecayFNp,Ne

  10. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataarge EC15th1663ThermalNe

  11. Climate VISION: Private Sector Initiatives: Lime: Resources and...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations National Lime Association The National Lime Association is the trade association for U.S. and Canadian manufacturers of high calcium quicklime, dolomitic...

  12. Sulfate induced heave in lime stabilized soil

    E-Print Network [OSTI]

    Bredenkamp, Sanet

    1994-01-01T23:59:59.000Z

    The addition of hydrated lime to clay soils is one of the most common methods of soil stabilization. However, when sulfates are present in the soil, the calcium in the lime reacts with the sulfates to form ettringite, an expandable mineral...

  13. Climate VISION: Private Sector Initiatives: Lime: Results

    Office of Scientific and Technical Information (OSTI)

    Association (NLA) is pleased to report that between 2002 and 2008, the energy-related CO2 intensity of lime produced by NLA member companies has been reduced by an aggregate 5%....

  14. Climate VISION: Private Sector Initiatives: Lime: GHG Inventory...

    Office of Scientific and Technical Information (OSTI)

    GHG Inventory Protocols Read the CO2 Emissions Calculation Protocol for the Lime industry (PDF 229 KB) Download Acrobat Reader...

  15. acid lime plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acid lime plants First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Effects of Lime and Carbonate of Lime...

  16. Sulfate induced heave in lime stabilized soil

    E-Print Network [OSTI]

    Bredenkamp, Sanet

    1994-01-01T23:59:59.000Z

    . The electrical conductivity is then related to sulfate content in soils. Expansion tests were performed to determine the amount of expansion that occurs when lime is added to soils with different sulfate contents. A model that relates the amount of expansion...

  17. Effects of lime rate, lime ECCE, and B rate on rose clover and coastal bermudagrass dry matter yields

    E-Print Network [OSTI]

    Villavicencio Batres, Rodolfo

    1990-01-01T23:59:59.000Z

    that soil pH was only affected by lime rate at the soil surface after 5 months, indicates that CaCO3 andior the dissolution products of CaCO3 did not readily leach through the soil profile when the lime was surface applied. Lime ECCE Effects Soil pH (0...EFFECTS OF LIME RATE, LIME ECCE, AND B RATE ON ROSE CLOVER AND COASTAL BERMUDAGRASS DRY MATTER YIELDS A Thesis by RODOLFO VILLAVICENCIO BATRES Submitted to the Office of Graduate Studies of Texas A8 M University in partial fulfiliment...

  18. LimeAmps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City Yujiang RiverLijiangLimeAmps Jump to:

  19. Lime slurry use at the Industrial Wastewater Pretreatment Facility

    SciTech Connect (OSTI)

    Rice, L.E. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.; Hughes, R.W. [Professional Services Group, Inc., Kansas City, MO (United States); Baggett, G. [Genex/Praxair, Inc., Kansas City, MO (United States)

    1996-04-01T23:59:59.000Z

    The use of lime slurry at the IWPF demonstrated many benefits. Hazardous chemical use was reduced, solids handling was improved, water quality was enhanced and there has been a cost savings. The lime slurry also enabled the plant to begin treating the soluble oil waste, which we were not able to do in the past.

  20. Wood Residues as Fuel Source for Lime Kilns

    E-Print Network [OSTI]

    Azarniouch, M. K.; Philp, R. J.

    1984-01-01T23:59:59.000Z

    product discharge end of the lime kiln. Thus far we have carried out two series of tests using two different pilot-scale kilns and dry limestone in the first test series and mill produced lime mud in the second test series. Mill scale trials have just been...

  1. BooNE: About BooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousin -in-lawHomeAbout BooNE

  2. Mass of Ne-16

    E-Print Network [OSTI]

    Woodward, C. J.; Tribble, Robert E.; Tanner, D. M.

    1983-01-01T23:59:59.000Z

    . E. Tribble, J. D. Cossairt, D. P. May, and R. A. Kenefick, Phys. Rev. C 16, 1835 (1977). 4E. Kashy, W. Benenson, D. Mueller, R. G. H. Robert- son, and D. R. Goosman, Phys. Rev. C 11, 1959 (1975). 5For a review of the various calculations, see Ref...PHYSICAL REVIEWER C VOLUME 27, NUMBER 1 Mass of ' Ne JANUARY 1983 C. J. Woodward, * R. E. Tribble, and D. M. Tanner Cyclotron Institute, Texas A&M University, College Station, Texas 77843 (Received 23 August 1982) The mass of ' Ne has been...

  3. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess used in miningMicroBooNE MicroBooNE

  4. Lime kiln source characterization: Lime manufacturing industry Fourier transform infrared spectroscopy. Final report

    SciTech Connect (OSTI)

    Toney, M.L.

    1999-07-01T23:59:59.000Z

    The purpose of this testing program is to obtain uncontrolled and controlled hydrogen chloride (HCl) and speciated hydrocarbon Hazardous Air Pollutants (HAPs) emissions data from lime production plants to support a national emission standard for hazardous air pollutants (NESHAP). This report presents data from the Fourier Transform Infrared Spectroscopy (FTIR) measurements. FTIR source testing was conducted for the following purposes: Quantify HCl emission levels; and Gather screening (i.e., qualitative) data on other HAP emissions.

  5. The effect of additives on lime dissolution rates. Final report

    SciTech Connect (OSTI)

    Khang, S.J.

    1996-07-31T23:59:59.000Z

    Based on the previous years` studies concerning the efficiency of SO{sub 2} removal by spray dryers with high sulfur coal flue gas, the work for year five included investigations of lime dissolution rates at different slaking conditions and with the effect of additives. The prominent additives that have significant effects on lime dissolution rates were tested with the mini pilot spray drying absorber to see their effects on spray drying desulfurization applications. The mechanisms of these additive effects along with the properties of hygroscopic additives have been discussed and incorporated into the spray drying desulfurization model ``SPRAYMOD-M.`` Slaking conditions are very important factors in producing high quality lime slurry in spray drying desulfurization processes. At optimal slaking conditions, the slaked lime particles are very fine (3-5{mu}m) and the slaked lime has high BET surface areas which are beneficial to the desulfurization. The slaked lime dissolution rate experiments in our study are designed to determine how much lime can dissolve in a unit time if the initial lime surface area is kept constant. The purpose of the dissolution rate study for different additives is to find those effective additives that can enhance lime dissolution rates and to investigate the mechanisms of the dissolution rate enhancement properties for these additives. The applications of these additives on spray drying desulfurization are to further verify the theory that dissolution rate is a rate limiting step in the whole spray drying desulfurization process as well as to test the feasibility of these additives on enhancing SO{sub 2} removal in spray dryers.

  6. Regeneration of lime from sulfates for fluidized-bed combustion

    DOE Patents [OSTI]

    Yang, Ralph T. (Middle Island, NY); Steinberg, Meyer (Huntington Station, NY)

    1980-01-01T23:59:59.000Z

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  7. Precipitation kinetics in ultra-high lime softening

    E-Print Network [OSTI]

    Peacock, Edward Dale

    1986-01-01T23:59:59.000Z

    PRECIPITATION KINETICS IN ULTRA-HIGH LIME SOFTENING A Thesis EDWARD DALE PEACOCK Submitted to the Graduate College of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August l986 Major... Subject: Civil Engineering PRECIPITATION KINETICS IN ULTRA-HIGH LIME SOFTENING A Thesis by EDWARD DALE PEACOCK Approved as to style and content by: Bill Batchelor (Chair of Commi e) T D. eynol s (Member) Michael T. Lo necker (Member) Donald Mc...

  8. 19Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-StateNovember 1997B β--Decay EvaluatedNe β+-Decay

  9. 19Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-StateNovember 1997B β--Decay EvaluatedNe β+-Decay

  10. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    SciTech Connect (OSTI)

    Shen, M.; Yang, R.T.

    1980-09-30T23:59:59.000Z

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  11. Impacts of ocean acidification and mitigative hydrated lime addition on Pacific oyster larvae

    E-Print Network [OSTI]

    Impacts of ocean acidification and mitigative hydrated lime addition on Pacific oyster larvae, and for other species. Keywords: Ocean acidification; Pacific oyster; Larval stages; Hydrated lime; Shellfish No.: 577 Title of Project: Impacts of ocean acidification and mitigative hydrated lime addition

  12. Wood Residues as Fuel Source for Lime Kilns

    E-Print Network [OSTI]

    Azarniouch, M. K.; Philp, R. J.

    1984-01-01T23:59:59.000Z

    One of the main obstacles to total energy self sufficiency of kraft mills appears to be the fossil fuel requirements of the lime kilns. If an economical technology can be developed which allows fossil fuel to be replaced in whole or in part by wood...

  13. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    SciTech Connect (OSTI)

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL

    2012-01-01T23:59:59.000Z

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.

  14. Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2012-02-14T23:59:59.000Z

    biomass is one of the most promising feedstocks for producing biofuels through fermentation processes. Among lignocellulose choices, poplar wood is appealing because of high energy potential, above-average carbon mitigation potential, fast growth... KINETIC MODELING AND ASSESSMENT OF LIME PRETREATMENT OF POPLAR WOOD A Dissertation by ROCIO SIERRA RAMIREZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  15. High-surface-area hydrated lime for SO2 control

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Moran, D.L. (Illinois State Geological Survey, Champaign, IL (United States). Minerals Engineering Section)

    1993-03-01T23:59:59.000Z

    Since 1986, the Illinois State Geological Survey (ISGS), has been developing a process to produce high-surface-area hydrated lime (HSAHL) with more activity for adsorbing SO2 than commercially available hydrated lime. HSAHL prepared by the ISGS method as considerably higher surface area and porosity, and smaller mean particle diameter and crystallite size than commercial hydrated lime. The process has been optimized in a batch, bench-scale reactor and has been scaled-up to a 20--100 lb/hr process optimization unit (POU). Experiments have been conducted to optimize the ISGS hydration process and identify key parameters influencing hydrate properties for SO2 capture (surface area, porosity, particle size, and crystallite size). The known how is available to tailor properties of hydrated limes for specific SO2 removal applications. Pilot-scale tests conducted with the HSAHL under conditions typical of burning high-sulfur coals have achieved up to 90% SO2 capture in various DSI systems. The removal results are enough to bring most high-sulfur coals into compliance with acid rain legislation goals for the year 2000. The focus of the POU program is to generate critical engineering data necessary for the private sector to scale-up the process to a commercial level and provide estimates of the optimal cost of construction and operation of a commercial plant. ISGS is currently participating in a clean coal technology program (CCT-1) by providing 50 tons of HSAHL for a demonstration test at Illinois Power's Hennepin station in January 1993.

  16. A cement kiln flue-dust evaluated as a soil liming material

    E-Print Network [OSTI]

    Stacha, Raimund

    1973-01-01T23:59:59.000Z

    production. The present lime study includes several of the predominate acid soil types in Texas. They should aid in furnishing soil testing laboratories with information which would facilitate better lime recommendations to Texas farmers as well... not determined. The present studies which include several of the predominate acid soil types in Texas should evaluate the usefulness of this local material as well as to further lime research in Texas to benefit soil test recommendations. 14 MATERIALS...

  17. Ne pas confondre Absorption Adsorption

    E-Print Network [OSTI]

    Lige, Universit de

    Ne pas confondre Absorption Adsorption et Quand des molcules sont amenes en contact avec un'attachent simplement la surface du solide on parle d'adsorption. L'adsorption est donc le collage de molcules la surface d'un solide. Quand le charbon nettoie Principes physiques de l'adsorption Cdric Gommes

  18. Precipitation kinetics in ultra-high lime softening

    E-Print Network [OSTI]

    Peacock, Edward Dale

    1986-01-01T23:59:59.000Z

    was provided by two more tubing pumps. Fluid surfaces were protected from COE contamination by a constant pressure nftrogen blanket. The reactor was operated for a period of time greater than or equal to lD hydraulic retentfon times or 7 times the ratio..., the ultra-high lime process has been proposed as a method to eliminate the constituents of chemical scale which reduce the recycle capacity of water in cooling systems. Reported herein are the results of a bench scale reactor study designed to evaluate...

  19. The effects of lime and amines on the aging of asphalts and recycling agents

    E-Print Network [OSTI]

    Wisneski, Mary Luvola

    1995-01-01T23:59:59.000Z

    amounts of quick lime (CaO) and hydrated lime (Ca(OH),) on SHRP AAA-I and SHRP AAF-1. The second experiment was to determine the effects of three different amines and various amounts of CaO on aged SHRP AAA-I and SHRP AAF-I rejuvenated with ABM-F2, YBF-F2...

  20. Extension Bulletin E-1566 Revised September 2011 Facts About Soil Acidity and Lime

    E-Print Network [OSTI]

    materials to neutralize soil acidity. Pure calcium carbonate has a value of 100, and all other materials carbonate equivalent? Calcium carbonate equivalent (CCE) refers to the equivalent amount (pounds) of pure calcium carbonate in a ton or cubic yard of lime material. If a lime material has a NV of 85, it will have

  1. Sugarcane juice extraction and preservation, and long-term lime pretreatment of bagasse

    E-Print Network [OSTI]

    Granda Cotlear, Cesar Benigno

    2005-02-17T23:59:59.000Z

    New technologies, such as an efficient vapor-compression evaporator, a stationary lime kiln (SLK), and the MixAlco process, compelled us to re-evaluate methods for producing sugar from cane. These technologies allow more water and lime to be used...

  2. Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption

    E-Print Network [OSTI]

    Kramm, D. J.

    1982-01-01T23:59:59.000Z

    This article discusses the various heat loads in a pulp mill lime sludge kiln, pointing out which heat loads cannot be reduced and which heat loads can, and how a reduction in energy use can be achieved. In almost any existing rotary lime sludge...

  3. A study of the effects of repeated loadings and free water on the stability of a lime stabilized clay

    E-Print Network [OSTI]

    Jantos, Carl Thomas

    1959-01-01T23:59:59.000Z

    . Sere Percent Lime (Raw Soil) Triaxial Results . 9, Twe Percent Lime Triaxial Results . 10. Four Percent Lime Triaxial Results 37 37 40 LIST OF FIGURES 1. Triaxial Compression Device and Universal Testing Nachine . 2. Harvard Nlniature Compactor... Equipment 3. Typical Test Speoimens 4. Ltterberg Limits - Brasos River Clay 5. Modified JULS80 Compaction - Brasos River Clay 6. Nohr's Circles and Rupture Envelopes 7, 0 Percent Lime (Raw Soil) Triaxial Test, 15 psi 45 47 48 Lateral Pressure 49 S...

  4. Effective Thermal Conductivity of Soda-Lime Silicate Glassmelts with Different Iron Contents Between 1100C and 1500C

    E-Print Network [OSTI]

    Pilon, Laurent

    Effective Thermal Conductivity of Soda-Lime Silicate Glassmelts with Different Iron Contents collected for soda- lime silicate glasses with iron content ranging from 0.008 to 1.1 wt% and temperatures, refractory walls wear more rapidly for clear glassmelts compared with colored ones.1 Soda-lime silicate glass

  5. NE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - Fermilab atNovelNC

  6. INDEX OF REFRACTION OF SHOCK LOADED SODA-LIME GLASS

    SciTech Connect (OSTI)

    Alexander, C. S. [Sandia National Laboratories, Albuquerque NM 87185 (United States)

    2009-12-28T23:59:59.000Z

    Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.

  7. In What Form is Lime Present in Portland Cement

    E-Print Network [OSTI]

    Wright, Claude W.

    1910-01-01T23:59:59.000Z

    to obtain Si02.33a0, In his conclusions Hebuffat does not consider it of importance whether alit consists of pure Si02.3CaO or a crystalline compound of Si02.2CaO with 3a0 and an aluminate. He says the aluminate in Portland dement can not be Al 203.30a... Chemist follows: Si0 2, 23.20: A120 3, 8.10: P e 2 0 3 , 2.71: MgO, 1.00 S 0 3 > 1.20: CaO, 63.50. Total 100.71. On the basis of the calculation for uncombined lime given in a previous part of this paper, this cement con tains ? per cent...

  8. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023US Virgin120Mnt(N)NE MA

  9. Overview of NE Research Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of Bad CholesteroliManage Presentation3 DATE: March06-05-09 HSS/UnionNE

  10. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    SciTech Connect (OSTI)

    Wereszczak, Andrew A [ORNL; Fox, Ethan E [ORNL; Morrissey, Timothy G [ORNL; Vuono, Daniel J [ORNL

    2011-10-01T23:59:59.000Z

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  11. A study of the rate of gain of strength in lime stabilized soil

    E-Print Network [OSTI]

    Nichols, Sterling Ramsdell, Jr

    1960-01-01T23:59:59.000Z

    0 37 ~ o ~ 4'7 APPEEDIX C. Electron Nicrographs . . . . . . . . . . . 75 LIST OF TABLES Table Page i. Cation-Exchange Capacity of Clay Minerals 15 2. Results of pH Test on Lime Treate Clay a o o o o o 3. X-Ray Diffraction Data 4... Triaxial Compressi. on Test Results 12. Triaxisl Compression Test Results 13. Triaxial Compression Test Results 14. Triaxial Compression Test Results 15. Triaxial Compression Test Results Least Squares Raw Soil. 1$ Lime Content 2$ Lime Content 4...

  12. Equations for predicting the layer stiffness moduli in pavement systems containing lime-flyash stabilized materials

    E-Print Network [OSTI]

    Alam, Shah Manzoor

    1984-01-01T23:59:59.000Z

    . progressive stiffening of some of the test sections. For low PI clayey soils, the optimum lime-flyash ratios for long term stiff- ness gains were found to be 0. 08 to 0. 5 using a minimum of 2C lime. For very low PI coarse sandy soils, 20 to 405 flyash... Analysis Number 3 Effect of Time on Lime-flyash Stabilized Layers . CHAPTER V. CONCLUSIONS AND RECONNENDATIONS . . . , . . . REFERENCES APPENDIX A Typical layouts and sections of Test sites . . . . . 8 Fitted Dynaflect deflections results C Results...

  13. Validation of the new mixture design and testing protocol for lime stabilization

    E-Print Network [OSTI]

    Yusuf, Fateh Ul Anam Muhammad Shafee

    2001-01-01T23:59:59.000Z

    describes some pertinent findings of the study. In situ properties of lime stabilized subgrades are identified based on Falling Weight Deflectometer (FWD) deflection measurements, Ground Penetration Radar (GPR) profiles, and Dynamic Cone Penetrometer (DCP...

  14. Sulfate Induced Heave: Addressing Ettringite Behavior in Lime Treated Soils and in Cementitious Materials

    E-Print Network [OSTI]

    Kochyil Sasidharan Nair, Syam Kumar

    2012-02-14T23:59:59.000Z

    threshold level of soluble sulfates in soils that can trigger substantial ettringite growth. The third part of this dissertation identifies alternative, probable mechanisms of swelling when sulfate laden soils are stabilized with lime. The swelling distress...

  15. Validation of the new mixture design and testing protocol for lime stabilization

    E-Print Network [OSTI]

    Yusuf, Fateh Ul Anam Muhammad Shafee

    2001-01-01T23:59:59.000Z

    and testing protocol is presented for lime stabilized subgrades. Comparison of field test data and laboratory test data shows that laboratory design test properties were achieved in the field. These properties are used in a mechanistic analysis to assess...

  16. The effect of hydrated lime on Salmonella enteritidis survival in poultry litter and poult performance

    E-Print Network [OSTI]

    Stanush, Deborah Denise

    2000-01-01T23:59:59.000Z

    The presence of Salmonella and/or Campylobacter in poultry litter may contribute to contaminated processed carcasses. Initially in our first study, we evaluated the effect of 5, 10, or 20% added lime on in vitro survival of Salmonella enteritidis...

  17. Legume establishment, nodulation, and forage production as influenced by N, P, K fertilizers and lime

    E-Print Network [OSTI]

    Martillo Chalen, Eduardo Enrique

    1983-01-01T23:59:59.000Z

    LEGUME ESTABLISHMEJ'JT, NODL'LATION, AND FORAGE PRODUCTION AS INFLUE. 'JCZD BY N, P, K FERTILIZERS AND LIME A thesis by EDUARDO ENRIQUZ MARTII, 0 CHA EIJ Submitted to the Graduate College of Texas ASM University in partial fulfillment... of the requirement for tne degree of MASTER OF SCIENCE December 1983 Major Subject: Agronomy LEGUME ESTABLISHMENT, NODULATION, AND FORAGE PRODUCTION AS INFLUENCED BY N, P, K FERTILIZERS AND LIME A thesis EDUARDO ENRIQUE MARTILLO CHALEN Approved as to style...

  18. Equations for predicting the layer stiffness moduli in pavement systems containing lime-flyash stabilized materials

    E-Print Network [OSTI]

    Alam, Shah Manzoor

    1984-01-01T23:59:59.000Z

    EOUATIONS FOR PREDICTING THE LAYER STIFFNESS ' MODULI IN PAVEMENT SYSTEMS CONTAINING LIME-FLYASH STABILIZED MATERIALS A Thesis by SHAH MANZOOR ALAM Submitted to the Graduate College of Texas AN University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1984 Major Subject: Civil Engineering EI)UATIONS FOR PREDICTING THE LAYER STIFFNESS MDDULI IN PAVEMENT SYSTEMS CONTAINING LIME-FLYASH STABILIZED MATERIALS A Thesis by SHAH MANZOOR ALAM Approved...

  19. Liming effects on slash pine (Pinus elliottii Englm.) seedlings growing on acid soils

    E-Print Network [OSTI]

    Elzner, John Thomas

    1978-01-01T23:59:59.000Z

    . . . . . . . . . . lg Comparison of treatment means on selected soils using Duncan's New Nultiple Range Test . . . . . . . . . . . . . . . . , . , 20 pH and percent exchangeable Al neutralized with lime rates based on initial exchangeable Al content...* , 842* 95. 02* . 051 . 0060 . 0001 408. 0 . 0328 Error 33 . 072 . 053 . 155 . 004 . 147 . 018 . 0033 . 0002 336. 8 . 0151 *P~ 0. 05 Table 4. ? Comparison of treatment means on selected soils using Duncan's New Multiple Range Test. Lime rate, ! Exch...

  20. AEC Lowman Station - coal switching and magnesium-enhanced lime scrubbing to lower operating costs

    SciTech Connect (OSTI)

    Inkenhaus, W.; Babu, M.; Smith, K. [Dravo Lime Co., Pittsburgh, PA (United States); Loper, L. [Alabama Electric Coopreative, Leroy, AL (United States)

    1997-12-31T23:59:59.000Z

    AEC`s Lowman Station is located in Leroy, Alabama. There are three coal-fired boilers at this station. Unit 1 is capable of generating 85 MW without a flue gas desulfurization, FGD, system. Units 2 and 3, with a total of 516 MW output capacity, are equipped with FGD systems. The FGD plant was designed for wet limestone FGD with natural oxidation. Lowman Station burned low sulfur, 1.3 to 1.8% sulfur, coal. In January of 1996 AEC switched Units 2 and 3 from limestone to magnesium-enhanced lime FGD operation. It was determined that the plant could take advantage of the higher SO{sub 2} removal efficiency of the magnesium-enhanced lime system. Major benefits resulting from this conversion were AEC`s ability to switch to a lower cost high sulfur coal while meeting the stringent SO{sub 2} emission requirements. Power cost savings resulted from the lower liquid to gas ratio required by the magnesium-enhanced lime process. Three recirculation pumps per module were reduced to a single operating pump per module, lowering the scrubber pressure drop. Significant cost reduction in the operating costs of the ball mill was realized due to modifications made to slake lime instead of grinding limestone. Prior to switching, personnel from AEC and Dravo Lime Company ran a four week test on magnesium-enhanced lime to obtain scrubber performance data including SO{sub 2} removal efficiencies on the modules while burning a 1.8% sulfur coal. This paper discusses the plant modifications that were needed to make the switch, cost justifications due to coal switching, and AEC`s operating experiences to date. AEC and Dravo Lime Company working together as a team conducted detailed cost studies, followed by extensive field tests and implemented the plant modifications. This plant continues to operate burning higher sulfur coal with the magnesium-enhanced lime FGD system.

  1. An introduction to LIME 1.0 and its use in coupling codes for multiphysics simulations.

    SciTech Connect (OSTI)

    Belcourt, Noel; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-11-01T23:59:59.000Z

    LIME is a small software package for creating multiphysics simulation codes. The name was formed as an acronym denoting 'Lightweight Integrating Multiphysics Environment for coupling codes.' LIME is intended to be especially useful when separate computer codes (which may be written in any standard computer language) already exist to solve different parts of a multiphysics problem. LIME provides the key high-level software (written in C++), a well defined approach (with example templates), and interface requirements to enable the assembly of multiple physics codes into a single coupled-multiphysics simulation code. In this report we introduce important software design characteristics of LIME, describe key components of a typical multiphysics application that might be created using LIME, and provide basic examples of its use - including the customized software that must be written by a user. We also describe the types of modifications that may be needed to individual physics codes in order for them to be incorporated into a LIME-based multiphysics application.

  2. Advanced mineral calciner for regeneration of lime. Final report, March 1995--May 1997

    SciTech Connect (OSTI)

    Namazian, M.; Nickeson, R.; Lovas, B.; Miller, G.; Kelly, J.

    1997-12-31T23:59:59.000Z

    There are approximately 800 pulp, paper and paperboard mills in the United States. Pulp and paper is the ninth largest industry in US, uses 2.8 quads of energy per year and ranks third among all domestic US industries in the cost of energy consumed. A significant fraction of the energy consumed in pulp and paper plants is needed to recover chemicals that are used in breaking down the wood chips into pulp. In particular, 0.1 quads of energy per year are used to regenerate lime. Furthermore, pulp and paper plant operations generate 9,870 tons of NOx per year. Additionally over two million tons of spent lime are sent to landfills each year. In addition, growth in paper demand and changes in plant processes (e.g., bleaching), as a result of environmental pressures, will continue to drive the need for more lime regeneration capacity. Unless the increased capacity can be delivered productively and inexpensively, the growth in pulp and paper may occur in overseas markets. Furthermore, if new environmental constraints cannot be met at low cost, existing US pulp and paper production capacity may also move off-shore. The advanced mineral calciner (AMC) technology was developed to address this lime regeneration need. Prior to describing the technology, and the program of work that was used to test the concept, conventional lime regeneration systems and their limitations are described.

  3. MicroBooNE Detector Move

    SciTech Connect (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-06-25T23:59:59.000Z

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  4. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15T23:59:59.000Z

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  5. EFFECTS OF COMPOST AND LIME APPLICATION ON SOIL CHEMICAL PROPERTIES, SOIL MICROBIAL COMMUNITY, AND FUSARIUM WILT IN

    E-Print Network [OSTI]

    Ma, Lena

    1 EFFECTS OF COMPOST AND LIME APPLICATION ON SOIL CHEMICAL PROPERTIES, SOIL MICROBIAL COMMUNITY compost as an antagonistic suppression approach to combat soil-borne disease effects on crop yields the effect of compost and lime on soil chemical properties, the soil microbial community (including Fusarium

  6. A theory manual for multi-physics code coupling in LIME.

    SciTech Connect (OSTI)

    Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-03-01T23:59:59.000Z

    The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

  7. Evaluation of lime-fly ash stabilized bases and subgrades using static and dynamic deflection systems

    E-Print Network [OSTI]

    Raba, Gary W.

    1982-01-01T23:59:59.000Z

    structural evaluations of the subgrade and its overlying pavement layers for test sites in Texas. Six evaluations of the lime-fly ash stabilization technique, based on dual parametric results, are given in this thesis. ACKNOWLEDGMENTS The author wishes... FOR TEST SITE 5 H. DFFLECTION MEASUREMENTS FOR TEST SITE 8 VITA PAGE 141 141 154 160 160 172 181 181 195 202 213 213 213 215 220 227 231 238 245 252 259 268 275 LIST OF TABLES TABLE PAGE 10. 12. 13. 14. Lime-Fly Ash...

  8. Evaluation of methods of mixing lime in bituminous paving mixtures in batch and drum plants

    E-Print Network [OSTI]

    Button, Joseph Wade

    1984-01-01T23:59:59.000Z

    ) Joseph Wade Button, B. S. , Texas ASM University Co-Chairmen of Advisory Committee: Mr. Bob M. Gallaway and Dr. Dallas N. Little A field test was conducted to evaluate the use of hydrated lime as an antistrip additive in hot mix asphalt concrete.... Lime was added in the pugmill of the batch plant, on the cold feed belt, and through the fines feeder of the drum mix plant. The asphalt and aggregates used were characterized in the laboratory. Asphalt concrete mixture tests included laboratory...

  9. Cement kiln flue dust as a source of lime and potassium in four East Texas soils

    E-Print Network [OSTI]

    Poole, Warren David

    1975-01-01T23:59:59.000Z

    (18) a 5. 3 (84) a 4. 8 (76) a 4. 2 (66) a 3. 8 (61) a 5. 2 (82) a 4. 1 (64) a 5. 0 (80) a *Duncan's Multiple Range Test. ? = . 05. Differences in yield due to rate of applied lime material followed by the same letter are not significantly...CEMENT KILN FLUE DUST AS A SOURCE OF LIME AND POTASSIUM IN FOUR EAST TEXAS SOILS A Thesis by WARREN DAVID POOLE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER...

  10. NE5534, NE5534A, SA5534. SA5534A LOW-NOISE OPERATIONAL AMPLIFIERS

    E-Print Network [OSTI]

    Ravikumar, B.

    NE5534, NE5534A, SA5534. SA5534A LOW-NOISE OPERATIONAL AMPLIFIERS SLOS070C - JULY 1979 - REVISED5534. SA5534A LOW-NOISE OPERATIONAL AMPLIFIERS SLOS070C - JULY 1979 - REVISED SEPTEMBER 2004 3POST dc and ac characteristics. Some of the features include very low noise, high output-drive capability

  11. The effect of hydrated lime on Salmonella enteritidis survival in poultry litter and poult performance

    E-Print Network [OSTI]

    Stanush, Deborah Denise

    2000-01-01T23:59:59.000Z

    or negative samples. At 24 or 48 h, 10/10 (100%) of untreated (control) litter samples were positive for Salmonella. Addition of lime resulted in significantly reduced Salmonella recovery incidence at 24 h. These data suggest that the addition of hydrated...

  12. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect (OSTI)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10T23:59:59.000Z

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  13. An investigation of the use of lime as a soil additive to modify the detrimental effects of frost action

    E-Print Network [OSTI]

    Earnest, Clyde Talley

    1959-01-01T23:59:59.000Z

    OF LITERATURE Lime Stabilisation . B, Frost Action . C, Lime as a Frost Modifying Soil Additive IIX PURPOSE AND SCOPE OF THIS WORK IV METHOD OF TESTING A. General B. Selection of Materials C, Preliminary Tests D. Sample Preparation . E. Test Procedure... with the addition of lime . Figure 5. General view of the equipment Figure 6. Samples with insulation ready for testing Figure 7 Base plate and water reservoir shaving heat ex- 55 change coil Figure 8. Bquipment used in the preparation of samples . Figure Q...

  14. New MiniBooNE Results

    E-Print Network [OSTI]

    Zelimir Djurcic

    2009-07-22T23:59:59.000Z

    The MiniBooNE experiment at Fermilab was designed to be a definitive test of the LSND evidence for neutrino oscillations and has recently reported first results of a search for electron-neutrino appearance in a muon-neutrino Booster beam. No significant excess of events was observed at higher energies, but a sizable excess of events was observed at lower energies. The lack of the excess at higher energies allowed MiniBooNE to rule out simple two-neutrino oscillations as an explanation of the LSND signal. However, the excess at lower energies is presently unexplained. A new data set of neutrinos from the NuMI beam line measured with the MiniBooNE detector at Fermilab has been analyzed. The measurement of NuMI neutrino interactions in MiniBooNE provide a clear proof-of-principle of the off-axis beam concept that is planned to be used by future neutrino experiments such as T2K and NOvA. Moreover, it complements the first oscillation results and will help to determine whether the lower-energy excess is due to background or to new physics. New results from the re-analysis of low energy excess from the Booster beam line and the results from measurements of neutrino interactions from NuMI beam line are discussed. MiniBooNE observes an unexplained excess of $128.8 \\pm 20.4 \\pm 38.3$ electron-like events in the energy region $200 < E_{\

  15. Zinc Fertilization Plus Liming to Reduce Cadmium Uptake by Romaine Lettuce on Cd-Mineralized Lockwood Soil

    E-Print Network [OSTI]

    Chaney, Rufus L; Green, Carrie E.; Ajwa, Husein A; Smith, Richard F

    2009-01-01T23:59:59.000Z

    Cd accumulation by lettuce from biosolids amended soils withmine waste contaminated or biosolids-amended soils with Cd:of a highly Cd enriched biosolids also found that liming

  16. Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants

    E-Print Network [OSTI]

    Schwartz, M. H.

    1979-01-01T23:59:59.000Z

    pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime...

  17. Liming effects on slash pine (Pinus elliottii Englm.) seedlings growing on acid soils

    E-Print Network [OSTI]

    Elzner, John Thomas

    1978-01-01T23:59:59.000Z

    Growth Liming CHAPTER III. NETHODS Experimental Design Soil Treatments Greenhouse Care Laboratory Analysis Statistical Analysis . CHAPTER IV. RESULTS . Soils Exchangeable Aluminum Extractable Aluminum Exchangeable Acidity pH Calcium Page 1... growth; and under very acid conditions, phosphorus may be tied up with soluble aluminum (Shoulders and McKee, 1973). Solubility of aluminum is strongly influenced by pH and may interfere with the uptake of phosphorus and subsequent growth of southern...

  18. The Relation of Lime and Phosphoric Acid to the Growth and Bone Development of White Rats.

    E-Print Network [OSTI]

    Blum, J. K. (Joseph Kelly)

    1931-01-01T23:59:59.000Z

    LIBRARY, A & M COLLEGE. CAMPUS. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR College Station, Brazos County, Texas BULLETIN NO. 441 DECEMBER, 1931 DIVISION OF CHEMISTRY The Relation of Lime and Phosphoric Acid to the Growth... and Bone Development of White Rats 2 ., .t .I* .-. /.' AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS--. .. T. 0. WALTON, President ..- STATION STAFF+ ADMINISTRATION: VETERINARY SCIENCE: A B. CONNER M S. Director *M. FRANCIS, D. V. M., Chief. R: E...

  19. The ultra-high lime with aluminum process for removing chloride from recirculating cooling water

    E-Print Network [OSTI]

    Abdel-wahab, Ahmed Ibraheem Ali

    2004-09-30T23:59:59.000Z

    THE ULTRA-HIGH LIME WITH ALUMINUM PROCESS FOR REMOVING CHLORIDE FROM RECIRCULATING COOLING WATER A Dissertation by AHMED IBRAHEEM ALI ABDEL-WAHAB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...-WAHAB Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Bill Batchelor (Chair of Committee) Robin L. Autenrieth (Member...

  20. Sulfate Induced Heave: Addressing Ettringite Behavior in Lime Treated Soils and in Cementitious Materials

    E-Print Network [OSTI]

    Kochyil Sasidharan Nair, Syam Kumar

    2012-02-14T23:59:59.000Z

    , due to the formation of expansive minerals like ettringite and thaumasite, has been recognized as a problem in Portland cement concrete, stabilized soils, weathered cements, alkaline fly ashes, FGD wastes, chromite ore processing residues and cement... moles of Ca2+, 2 moles of Al3+, 3 moles of SO42-, and 32 moles of water are required. Calcium ions are provided by lime, Portland cement, or fly ash; alumina is supplied by dissolution of oxyhydroxides and phyllosilicates; and sulfates are supplied...

  1. MicroBooNE MicroBooNE Andrzej Szelc Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatra EngineeringMicroBooNE MicroBooNE

  2. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints of Fasterdata IPv6theMicroBooNE

  3. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatraMicroBooNE Proposal Addendum

  4. Prospects for Antineutrino Running at MiniBooNE

    E-Print Network [OSTI]

    M. O. Wascko

    2006-02-28T23:59:59.000Z

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like nuebar oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.

  5. A cement kiln flue-dust evaluated as a soil liming material

    E-Print Network [OSTI]

    Stacha, Raimund

    1973-01-01T23:59:59.000Z

    A CEMENT KILN FLUE-DUST EVALUATED AS A SOIl LIMING MATERIAL A Thesis by RAIMUND STACHA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE 1973 NJSbj t...:~StlCh tt A CEMENT KILN FLUE-DUST EVALUATED AS A SOIL I IMING MATERIAL A Thesis by RAIMUND STACHA Approved as to style and content by: (Chairman of Committee) (Head of Department) (Me er) (Member) (Member) (Member) (Member) 1973 ABSTRACT A...

  6. A study of the durability of lime as a stabilizing agent of clay soils

    E-Print Network [OSTI]

    Wise, Harvey Earl

    1958-01-01T23:59:59.000Z

    tested for their strength in a triaxLal testing 4ovioe, using lateral pressures of ths same order as those used bp the Texas Highwgr Seysrtsmnt (15), Thop mare tested for their Atterberg limits to asoertain if thep nero still ha- flienoad bp the lime... of thks factor Fox ths first ssi3. , tho yexeentagaxof kins used moxa too~ four& sirv eight, and ten, For the second soils the percentages vere tao, ~ and ton It uas shomn l8 the test of the first eamyle that the same information could be obtaLnek RF...

  7. The Relation of Lime and Phosphoric Acid to the Growth and Bone Development of White Rats.

    E-Print Network [OSTI]

    Blum, J. K. (Joseph Kelly)

    1931-01-01T23:59:59.000Z

    LIBRARY, A & M COLLEGE. CAMPUS. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR College Station, Brazos County, Texas BULLETIN NO. 441 DECEMBER, 1931 DIVISION OF CHEMISTRY The Relation of Lime and Phosphoric Acid to the Growth... SULLIVXN, 'As.hsfant Chief E. B. REYNOLDS, Ph. D., Chief S. D. PEARCE, Secretary R. E KARPER M S. Agronomist J. H. ROGERS Feed Inspector P. C: MANGE~SD~RF,'SC. D., Agrqnomist K. L. KIRKLAND, B. S., Feed Inspector I D T KILLOUGH M. S. Agronomzst S. D...

  8. Effects of the maximum soil aggregates size and cyclic wetting-drying on the stiffness of a lime-treated clayey soil

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Effects of the maximum soil aggregates size and cyclic wetting-drying on the stiffness of a lime-treated clayey soil Anh Minh TANG, BEng, PhD; Minh Ngoc VU, BEng; Yu-Jun CUI, BEng, PhD Ecole des Ponts Paris soils used for embankment. Several studies show that lime treatment significantly modifies the physical

  9. ICSE6 Paris -August 27-31, 2012 Herrier, Berger, Bonelli The Friant-Kern canal : a forgotten example of lime-treated structure

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : a forgotten example of lime-treated structure in hydraulic conditions Gontran HERRIER1 , Eric BERGER2 in the paper. The treated clay was replaced and compacted by a sheep- foot roller, to achieve a typical in the 70's . Despite the fact that the lime-treated soil has been in constant direct contact

  10. Physico-chemical modifications of the interactions between hemp fibres and a lime mineral matrix: impacts on mechanical properties of mortars

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Physico-chemical modifications of the interactions between hemp fibres and a lime mineral matrix interactions between hemp fibres and a lime-based mineral matrix, the consequences of various chemical treatments onto hemp fibres characteristics were measured using scanning electron microscopy, thermal

  11. NE Pacific Basin --Tagging Data Kate Myers, Ph.D.

    E-Print Network [OSTI]

    Ocean B: NE Pacific Basin --Tagging Data Kate Myers, Ph.D. Principal Investigator, High Seas Salmon ocean tagging research on Columbia River salmon and steelhead migrating in the NE Pacific Basin R. Basin in 1995-2004. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, B

  12. DA NE TECHNICAL NOTE INFN -LNF, Accelerator Division

    E-Print Network [OSTI]

    Istituto Nazionale di Fisica Nucleare (INFN)

    K K DA NE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, Sept. 2, 1991 Note: G-7 ENERGY LOSS DUE TO THE BROAD-BAND IMPEDANCE IN DA NE L. Palumbo, M. Serio 1. INTRODUCTION The Broad-Band (BB to simplify the evaluation of single-bunch instability thresholds and parasitic losses [1]. Lacking detailed

  13. DA NE TECHNICAL NOTE INFN -LNF, Accelerator Division

    E-Print Network [OSTI]

    Istituto Nazionale di Fisica Nucleare (INFN)

    K K DA NE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 6, 1992 Note: G-13 RF ENERGY LOSSES AND IMPEDANCE OF THE DA NE ACCUMULATOR RING VACUUM CHAMBER S. Bartalucci, L. Palumbo, M chamber. This field acts back on the beam and it is re- sponsible for energy losses and instabilities. We

  14. LimeSurvey -Crdit mobilit pour le PATGS http://survey2.ulb.ac.be/limesurvey/admin/admin.php?action=showprintablesurvey&sid=35186[4/10/2013 14:30:04

    E-Print Network [OSTI]

    Cerf, Nicolas

    TEMPLATE Dpartement Enseignement #12;LimeSurvey - Crdit mobilit pour le PATGS http://survey2.ulb dpenses prvues Informations sur le sjour TEMPLATE #12;LimeSurvey - Crdit mobilit pour le PATGS http://survey rponse ici : TEMPLATE #12;LimeSurvey - Crdit mobilit pour le PATGS http://survey2.ulb

  15. Analysis of volatile contaminants in US Navy fleet soda lime. Technical report, August 1992-May 1995

    SciTech Connect (OSTI)

    Lillo, R.S.; Ruby, R.; Gummin, D.D.; Porter, W.R.; Caldwell, J.M.

    1995-06-01T23:59:59.000Z

    Contamination was suspected of U.S. Navy Fleet soda lime (High Performance Sodasorb(R)) when an ammonia-like odor was reported during its use in August 1992. This material contained indicator dye and was used for carbon dioxide absorption during diving. This incident had a major impact on the U.S Navy diving program when the Navy temporarily banned use of Sodasorb(R) and authorized Sofnolime(R) as an interim replacement. The Naval Medical Research Institute was immediately assigned to investigate. Testing involved sampling from the headspace (gas space) inside closed buckets and from an apparatus simulating conditions during operational diving. Volatile organic compounds were analyzed by gas chromatography and mass spectrometry; ammonia and amines were measured by infrared spectroscopy. Significant amounts of ammonia (up to 30 ppm), ethyl and diethyl amines (up to several ppm), and various aliphatic hydrocarbons (up to 60 ppm) were detected during testing of both Sodasorb(R) and Sofnolime(R). Contaminants were slowly removed by gas flow and did not return. The source(s) of the ammonia and amines are unknown, although they may result from the breakdown of the indicator dye. Hydrocarbon contamination appeared to result from the materials of which the bucket is constructed. Based on these findings, the U.S. Navy is expected to phase in non-indicating soda lime that will be required to meet defined contaminant limits.

  16. Soil Acidity and Liming L. A. Redmon, M. L. McFarland, V. A. Haby, and D. H. Bade

    E-Print Network [OSTI]

    Soil Acidity and Liming L. A. Redmon, M. L. McFarland, V. A. Haby, and D. H. Bade Department of Soil and Crop Sciences The Agriculture Program The Texas A&M University System SCS-2001-06 What Causes SoilAcidity? Various environmental, climatic, and cultural factors can af- fect formation of acid soils

  17. Recent results from SciBooNE and MiniBooNE experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaisingRecent PublicationsSciTechSciBooNE and

  18. {alpha}-cluster states in N{ne}Z nuclei

    SciTech Connect (OSTI)

    Goldberg, V. Z.; Rogachev, G. V. [Cyclotron Institute, Texas A and M University, College Station, TX (United States); Department of Physics, Florida State University, Tallahassee, FL (United States) and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing (United States)

    2012-10-20T23:59:59.000Z

    The importance of studies of {alpha}-Cluster structure in N{ne}Z light nuclei is discussed. Spin-parity assignments for the low-lying levels in {sup 10}C are suggested.

  19. ReproducedfromJournalofEnvironmentalQuality.PublishedbyASA,CSSA,andSSSA.Allcopyrightsreserved. Ecosystem Function in Alluvial Tailings after Biosolids and Lime Addition

    E-Print Network [OSTI]

    Brown, Sally

    JournalofEnvironmentalQuality.PublishedbyASA,CSSA,andSSSA.Allcopyrightsreserved. Ecosystem Function in Alluvial Tailings after Biosolids and Lime Addition Sally Brown,* Mark Sprenger, this site requires an alternative assessment meth-Municipal biosolids and agricultural limestone were

  20. Investigation of the benefits of carbonate cementation due to addition of low percentage of hydrated lime in the base courses of pavements

    E-Print Network [OSTI]

    Bhuiyan, Jasim Uddin

    1994-01-01T23:59:59.000Z

    Texas, limestone and caliche soil, were tested extensively to examine the effect of carbonate cementation due to the addition of small percentages of lime. Testing included mineralogical analysis of the two materials, strength analysis in terms of texas...

  1. Technical status report development of lime based in-duct scrubbing - A cost effective SO/sub 2/ control technology

    SciTech Connect (OSTI)

    Shilling, N.Z.; Samuel, E.A.; Pennline, H.

    1986-04-01T23:59:59.000Z

    Lime Based In-Duct Scrubbing (LIBIDS) was one of the candidate technologies receiving contract awards for pilot demonstration by the U.S. Department of Energy under the Acid Rain Precurser program. The concept as developed by General Electric utilizes rotary atomization of lime slurry directly within flue gas carrying ductwork to remove SO/sub 2/. This promises to be a very low capital cost method of SO/sub 2/ control with capital plus levelized operating cost estimated to be $364/KW. Several significant technical milestones have been passed relative to proof of principle and ultimate commercialization. Based on positive results from a laboratory and supporting analytical work, a detailed engineering design has begun for a pilot plant.

  2. Triple photoionization of Ne and Ar near threshold

    SciTech Connect (OSTI)

    Bluett, J.B.; Wehlitz, R. [Synchrotron Radiation Center, UW-Madison, Stoughton, Wisconsin 53589 (United States); Lukic, D. [Institute of Physics, 11001 Belgrade (Serbia and Montenegro)

    2004-04-01T23:59:59.000Z

    The triple-photoionization cross section of neon and argon near threshold has been investigated by ion time-of-flight spectrometry. We applied the Wannier power law to our data and confirmed the theoretical Wannier exponent in the cases of Ne and Ar. Our data also agree with previous findings regarding the Wannier exponent and its range of validity for Ne. However, the Wannier power law exhibits a much smaller range of validity of 2 eV for Ar compared to 5 eV for Ne. Also, in contrast to a previous experiment, we do not find a 'second' power law but a gradual decrease of the exponent above the range of validity of the Wannier power law.

  3. Multiphoton Double Ionization of Ar and Ne Close to Threshold

    SciTech Connect (OSTI)

    Liu Yunquan [Max-Planck-Institut fuer Kernphysik, D-69117 Heidelberg (Germany); Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Ye Difa; Liu Jie [Center for Applied Physics and Technology, Peking University, 100084 Beijing (China); Institute of Applied Physics and Computational Mathematics, 100088 Beijing (China); Rudenko, A. [Max-Planck-Institut fuer Kernphysik, D-69117 Heidelberg (Germany); Max-Planck Advanced Study Group at CFEL, 22607 Hamburg (Germany); Tschuch, S.; Duerr, M.; Moshammer, R.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, D-69117 Heidelberg (Germany); Siegel, M.; Morgner, U. [Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover (Germany); Gong Qihuang [Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2010-04-30T23:59:59.000Z

    In kinematically complete studies we explore double ionization (DI) of Ne and Ar in the threshold regime (I>3x10{sup 13} W/cm{sup 2}) for 800 nm, 45 fs pulses. The basic differences are found in the two-electron momentum distributions - 'correlation' (CO) for Ne and 'anticorrelation' (ACO) for Ar - that can be partially explained theoretically within a 3D classical model including tunneling. Transverse electron momentum spectra provide insight into 'Coulomb focusing' and point to correlated nonclassical dynamics. Finally, DI threshold intensities, CO as well as ACO regimes are predicted for both targets.

  4. SSRS Summary for SSRS NE Steering Group 8 September 2011

    E-Print Network [OSTI]

    SSRS Summary for SSRS NE Steering Group 8 September 2011 1. Project Officer Hollie Walker left us modelling expert) to discuss the project monitoring and data analysis protocols that will be used to demonstrate the benefits of grey squirrel control under the Project. As a result of the discussions we revised

  5. High-frequency surface wave pumped He-Ne laser

    SciTech Connect (OSTI)

    Moutoulas, C.; Moisan, M.; Bertrand, L.; Hubert, J.; Lachambre, J.L.; Ricard, A.

    1985-02-15T23:59:59.000Z

    A new electrodeless He-Ne laser using a plasma produced by an electromagnetic surface wave as the active medium is described. Gain measurements are reported as a function of the pump wave frequency from 200 to 915 MHz. The dependence of laser performance on the gas mixture and pressure is also presented.

  6. EMPLOYMENT SUMMARY FOR 2012 GRADUATES Lincoln, NE 68583

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    EMPLOYMENT SUMMARY FOR 2012 GRADUATES Lincoln, NE 68583 Website : http://law.unl.edu/ Phone : 402 Full Time 1 / 1 % Unemployed - Not Seeking 0 / 0 % Employment Status Unknown 1 / 1 % Unemployed - Seeking 10 / 8 % Total graduates 128 Employed - Bar Passage Required 84 1 3 0 88 / 69 % Employed

  7. Motor Vehicle Administration 6601 Ritchie Highway, N.E.

    E-Print Network [OSTI]

    Miami, University of

    Motor Vehicle Administration 6601 Ritchie Highway, N.E. Glen Burnie, Maryland 21062 For more-Owner's Signature Vehicle Information Year Make Sticker No. Title No. Tag No. Vehicle Identification Number Car Multi-purpose vehicle Truck 1 ton or less Motorcycle Fees: Non Logo Organizational Tags: $15

  8. DA NE TECHNICAL NOTE INFN -LNF, Accelerator Division

    E-Print Network [OSTI]

    Istituto Nazionale di Fisica Nucleare (INFN)

    K K DA NE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, Sept. 2, 1991 Note: G-8 RF AND RESISTIVE ENERGY LOSS IN THE INTERACTION REGION VACUUM CHAMBER S. Bartalucci, L. Palumbo, M. Serio, B-section variation leads to sub- stantial energy losses localized in the IR vacuum chamber even if the steps in cross

  9. Plasma Diagnostics Through Analysis of Ne I Line Shape Characteristics

    SciTech Connect (OSTI)

    Milosavljevic, Vladimir [Faculty of Physics, University of Belgrade, P.O.B. 368, Belgrade (Serbia and Montenegro); School of Physics Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2004-12-01T23:59:59.000Z

    On the basis of the experimentally determined 26 prominent neutral neon (Ne I) line shapes (in the 3s-3p, 3s-3p', 3s'-3p', 3s'-3p and 3p-3d transitions) the basic plasma parameters i.e. electron temperature (T) and electron density (N) have been obtained using the line deconvolution procedure, in a plasma created in a linear, low-pressure, pulsed arc operated in pure neon. The mentioned plasma parameters have also been measured using independent experimental diagnostics techniques. Agreement has been found among the two sets of the obtained parameters. This recommends the deconvolution procedure for plasma diagnostical purposes. Self-confidence of the method has checked using Ne I spectral lines which originate from different energy levels. The advance used of the method has been done in the way to find energy level from which it does not existing any more assumption of LTE.This method may be of interest also in astrophysics where direct measurements of the main plasma parameters (T and N) are not possible. With the development of space born spectroscopy the good quality spectra will be enabling to use this method. The separate electron (We) and ion (Wi) contributions to the total Stark width (Wt), which have not been measured so far, have also been obtained for neon spectral lines. The measured and calculated We data are compared to available theoretical We values. It has found stronger influence of the ion contribution to the Ne I lines shape than the predicted ones calculated by the current theory. It has also tested the ion contribution to the Ne II lines shape. Small influence of the ion contribution to the some Ne II line shape has evidenced.

  10. CDC-INV4104 Optimal Control of A ne Connection Control Systems: A

    E-Print Network [OSTI]

    Murray, Richard M.

    CDC-INV4104 Optimal Control of A ne Connection Control Systems: A Variational Approach J. Alexander we investigate the optimal control of a ne connection control systems. The formalism of the a ne-dimensional second-order system as a 2n-dimensional rst-order system and applying the machinery of optimal control

  11. Production rate of cosmogenic 21 Ne in quartz estimated from 10

    E-Print Network [OSTI]

    Shuster, David L.

    Production rate of cosmogenic 21 Ne in quartz estimated from 10 Be, 26 Al, and 21 Ne concentrations Antarctica production rate calibration We estimated the production rate of 21 Ne in quartz using a set production rate. As the erosion rate can be determined from 10 Be and 26 Al concentrations, this allows

  12. Plate interaction in the NE Caribbean subduction zone from continuous GPS observations

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Plate interaction in the NE Caribbean subduction zone from continuous GPS observations Uri S. ten sites on NE Caribbean islands to evaluate strain accumulation along the North American (NA) ­ Caribbean-Venegas (2012), Plate interaction in the NE Caribbean subduction zone from continuous GPS observations, Geophys

  13. CONGESTION IN THE ISO-NE ELECTRICITY MARKETS ANNA BARBARA IHRIG

    E-Print Network [OSTI]

    Gross, George

    CONGESTION IN THE ISO-NE ELECTRICITY MARKETS BY ANNA BARBARA IHRIG THESIS Advisor: Prof. George in charge of operation and control, the ISO-NE. We describe how the ISO-NE administers the energy market in causing congestion is analyzed; no significant correlation was found. In addition, the impacts of the ISO

  14. A comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions

    SciTech Connect (OSTI)

    Deka, Angshuman; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore - 560012 (India)

    2013-06-15T23:59:59.000Z

    ZnO films have been grown via a vapour phase transport (VPT) on soda lime glass (SLG) and indium-tin oxide (ITO) coated glass. ZnO film on ITO had traces of Zn and C which gives them a dark appearance while that appears yellowish-white on SLG. X-ray photoelectron spectroscopy studies confirm the traces of C in the form of C-O. The photoluminescence studies reveal a prominent green luminescence band for ZnO film on ITO.

  15. Time-resolved measurement of photon emission during fast crack propagation in three-point bending fracture of silica glass and soda lime glass

    SciTech Connect (OSTI)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S7-13 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)] [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S7-13 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-10T23:59:59.000Z

    Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645655?nm) was observed during the entire crack propagation process, whereas intense PE (430490?nm and 500600?nm) was observed during the initial stages of propagation. In contrast, only weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.

  16. Response of rice to ammonium and nitrate nitrogen applied at various stages of plant growth on limed and unlimed Beaumont and Lake Charles clays

    E-Print Network [OSTI]

    Gay, William Blalock, III

    1962-01-01T23:59:59.000Z

    and Patna1k (1 ) partially support th1s explanation. They found that lime at ths rate of one percent of the weight of the so11 increased mineralisat1on of nitrogen, but most of the n1trogen in their tests accumulated as ammonia rather than nitrate under...RESPONSE OF RICE TO AMMONIUM AND NITRATE NITROGEN APPLIED AT VARIOUS STAGES OF PLANT GROWTH ON LIMED AND UNLINED BEAUNONT AND LAKE CHARLES CLAYS A Thesis By William B. Gay, III Submitted to the Graduate Sohool of the Agricultural...

  17. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    SciTech Connect (OSTI)

    Sadasivan, Pratap [Los Alamos National Laboratory

    2012-08-24T23:59:59.000Z

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

  18. MiniBooNE "Windows on the Universe"

    SciTech Connect (OSTI)

    Stefanski, Ray; /Fermilab

    2010-12-09T23:59:59.000Z

    Progress in the last few decades has left neutrino physics with several vexing issues. Among them are the following questions: (1) Why are lepton mixing angles so different from those in the quark sector? (2) What is the most probable range of the reactor mixing angle? (3) Is the atmospheric mixing angle maximal? (4) What is the number of fermion generations? These are some of the issues that neutrino science hopes to study; this article will explore these questions as part of a more general scientific landscape, and will discuss the part MiniBooNE might play in this exploration. We discuss the current state of measurements taken by MiniBooNE, and emphasize the uniqueness of neutrino oscillations as an important probe into the 'Windows on the Universe.'

  19. [NeII] emission line profiles from photoevaporative disc winds

    E-Print Network [OSTI]

    R. D. Alexander

    2008-09-01T23:59:59.000Z

    I model profiles of the [NeII] forbidden emission line at 12.81um, emitted by photoevaporative winds from discs around young, solar-mass stars. The predicted line luminosities (~ 1E-6 Lsun) are consistent with recent data, and the line profiles vary significantly with disc inclination. Edge-on discs show broad (30-40km/s) double-peaked profiles, due to the rotation of the disc, while in face-on discs the structure of the wind results in a narrower line (~10km/s) and a significant blue-shift (5-10km/s). These results suggest that observations of [NeII] line profiles can provide a direct test of models of protoplanetary disc photoevaporation.

  20. Neutrino and Antineutrino Cross sections at MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01T23:59:59.000Z

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  1. Time-Resolved Measurement of Interatomic Coulombic Decay in Ne_2

    E-Print Network [OSTI]

    Schnorr, K; Kurka, M; Rudenko, A; Foucar, L; Schmid, G; Broska, A; Pfeifer, T; Meyer, K; Anielski, D; Boll, R; Rolles, D; Kbel, M; Kling, M F; Jiang, Y H; Mondal, S; Tachibana, T; Ueda, K; Marchenko, T; Simon, M; Brenner, G; Treusch, R; Scheit, S; Averbukh, V; Ullrich, J; Schrter, C D; Moshammer, R

    2013-01-01T23:59:59.000Z

    The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al., Phys. Rev. Lett. 79, 4778 (1997)] in Ne_2 is determined via an extreme ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms, whereupon the ionized dimer undergoes ICD resulting in a repulsive Ne^{+}(2p^{-1}) - Ne^{+}(2p^{-1}) state, which is probed with a second pulse, removing a further electron. The yield of coincident Ne^{+} - Ne^{2+} pairs is recorded as a function of the pump-probe delay, allowing us to deduce the ICD lifetime of the Ne_{2}^{+}(2s^{-1}) state to be (150 +/- 50) fs in agreement with quantum calculations.

  2. {sup 18}Ne production for the Beta beams project

    SciTech Connect (OSTI)

    Hodk, Rastislav [Institute of Experimental and Applied Physics, CTU in Prague, Horsk 3/22a, CZ-12800 Prague (Czech Republic); Mendona, Tania M. [IFIMUP and IN - Institute of Nanosciences and Nanotechnologies, Rua do Campo Alegre 687, 4169-007 Porto, Portugal and CERN, CH-1211 Geneva 23 (Swaziland); Stora, Thierry [CERN, CH-1211 Geneva 23 (Switzerland)

    2013-12-30T23:59:59.000Z

    Intense relativistic (anti)neutrino beams are an unique tool required to study fundamental properties of neutrinos such as neutrino oscillation parameters, as well as their Majorana or Dirac nature, the lepton number conservation hypothesis and the absolute neutrino mass scale. Such beams originate from acceleration of ?-decaying radioactive ions (Beta beams). A molten fluoride salt target has been developed for the production of the required rates of low-Q baseline isotope {sup 18}Ne for the Beta beams project. The prototyped unit has been tested on-line at ISOLDE-CERN. In this contribution an overview of the prototyping and on-line tests is presented.

  3. The MicroBooNE Experiment - At Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints of Fasterdata IPv6theMicroBooNE at

  4. DOE NE Used Fuel Disposition FY2015 Working Group Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT SRM/ATY 1DepartmentNE

  5. Municipal Energy Agency of NE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountainMunicipal Energy Agency of NE Jump

  6. The MicroBooNE Experiment - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNewsOurADMicroBooNE The

  7. MicroBooNE Project Critical Decision Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatra EngineeringMicroBooNE

  8. MicroBooNE TPC Wires Image Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatraMicroBooNE Proposal AddendumImage

  9. MicroBooNE TPC Wires Image Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatraMicroBooNE Proposal

  10. NE-23 List of California Sites Hattie Carwell. SAN/NSQA Division

    Office of Legacy Management (LM)

    Andrew Wallo III, Designation and Certification Manager Division of Facilitv and Site Decommissioning Projects Dffice of Nuclear Energy bee: W. Murphie, NE-23 J. Wagoners,...

  11. A Case Study For Geothermal Exploration In The Ne German Basin...

    Open Energy Info (EERE)

    Study For Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Jump to:...

  12. Quasielastic Scattering at MiniBooNE Energies

    SciTech Connect (OSTI)

    Alvarez-Ruso, L. [Departamento de Fisica, Universidad de Murcia (Spain); Departamento de Fisica, Centro de Fisica Computacional, Universidade de Coimbra (Portugal); Buss, O.; Leitner, T.; Mosel, U. [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2009-11-25T23:59:59.000Z

    We present our description of neutrino induced charged current quasielastic scattering (CCQE) in nuclei at energies relevant for the MiniBooNE experiment. In our framework, the nucleons, with initial momentum distributions according to the Local Fermi Gas model, move in a density- and momentum-dependent mean field potential. The broadening of the outgoing nucleons due to nucleon-nucleon interactions is taken into account by spectral functions. Long range (RPA) correlations renormalizing the electroweak strength in the medium are also incorporated. The background from resonance excitation events that do not lead to pions in the final state is also predicted by propagating the outgoing hadrons with the Giessen semiclassical BUU model in coupled channels (GiBUU). We achieve a good description of the shape of the CCQE Q{sup 2} distribution extracted from data by MiniBooNE, thanks to the inclusion of RPA correlations, but underestimate the integrated cross section when the standard value of M{sub A} = 1 GeV is used. Possible reasons for this mismatch are discussed.

  13. Neutrino Cross Section Measurements @ SciBooNE

    SciTech Connect (OSTI)

    Mariani, C.; /Columbia U.

    2011-10-01T23:59:59.000Z

    We report measurements of cross sections of neutrinos of 0.7 GeV average energy scattering off a carbon target cross sections with by the SciBooNE experiment at Fermilab. These measurements are important inputs for current and future accelerator-based neutrino oscillation experiments in the interpretation of neutrino oscillation signals. The measurement of neutrino mixing angle {theta}{sub 13} is one of the most important goals in current neutrino experiments. For the current and next generation of long baseline neutrino oscillation experiments, T2K, NOvA and LBNE, the precise measurement of neutrino-nucleus cross sections in the few GeV energy range is an essential ingredient in the interpretation of neutrino oscillation signals.

  14. Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation physics

    E-Print Network [OSTI]

    Kroupp, Eyal

    Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation of Technology, Haifa, Israel 5 National Security Technologies, LLC, Las Vegas, Nevada 89144, USA (Received 23 thermal and effective temperatures is investigated through simulations of the Ne gas puff z-pinch reported

  15. N.E. Leonard U. Pisa 18-20 April 2007Slide 1 Cooperative Control

    E-Print Network [OSTI]

    Leonard, Naomi

    1 N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 1 Cooperative Control and Mobile Sensor Networks Application to Mobile Sensor Networks, Part II Naomi Ehrich Leonard Mechanical and Aerospace Engineering.princeton.edu/~naomi N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 2 Key References [1] Leonard, Paley, Lekien

  16. N.E. Leonard U. Pisa 18-20 April 2007Slide 1 Cooperative Control

    E-Print Network [OSTI]

    Leonard, Naomi

    1 N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 1 Cooperative Control and Mobile Sensor Networks Introduction Naomi Ehrich Leonard Mechanical and Aerospace Engineering Princeton University and Electrical Systems and Automation University of Pisa naomi@princeton.edu, www.princeton.edu/~naomi N.E. Leonard ­ U

  17. N.E. Leonard U. Pisa 18-20 April 2007Slide 1 Cooperative Control

    E-Print Network [OSTI]

    Leonard, Naomi

    1 N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 1 Cooperative Control and Mobile Sensor Networks Cooperative Control, Part I, A-C Naomi Ehrich Leonard Mechanical and Aerospace Engineering Princeton.princeton.edu/~naomi N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 2 Natural Groups Photo by Norbert Wu Exhibit

  18. N.E. Leonard U. Pisa 18-20 April 2007Slide 1 Cooperative Control

    E-Print Network [OSTI]

    Leonard, Naomi

    1 N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 1 Cooperative Control and Mobile Sensor Networks Cooperative Control, Part I, D-F Naomi Ehrich Leonard Mechanical and Aerospace Engineering Princeton.princeton.edu/~naomi N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 2 Outline and Key References A. Artificial Potentials

  19. N.E. Leonard U. Pisa 18-20 April 2007Slide 1 Cooperative Control

    E-Print Network [OSTI]

    Leonard, Naomi

    1 N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 1 Cooperative Control and Mobile Sensor Networks Application to Mobile Sensor Networks, Part I Naomi Ehrich Leonard Mechanical and Aerospace Engineering.princeton.edu/~naomi N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 2 Outline 1. Introduction to cooperative control

  20. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C. [Los Alamos National Laboratory; OLINGER, C. [Los Alamos National Laboratory; HEBER, V.S. [Los Alamos National Laboratory; REISENFELD, D.B. [Los Alamos National Laboratory; BURNETT, D.S. [Los Alamos National Laboratory; ALLTON, J.H. [Los Alamos National Laboratory; BAUR, H. [Los Alamos National Laboratory; WIECHERT, U. [Los Alamos National Laboratory; WIELER, R. [Los Alamos National Laboratory

    2007-01-02T23:59:59.000Z

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  1. Optogalvanic isotope enrichment of Cu ions in Cu-Ne positive column discharges

    E-Print Network [OSTI]

    Kushner, Mark

    Optogalvanic isotope enrichment of Cu ions in Cu-Ne positive column discharges M. J. Kushner The isotopic enrichment of copper ions in a positive column Cu-Ne discharge using optogalvanic excitation the 63-amu isotope of copper is enriched relative to the neutral abundance. Enrichment as large as 10

  2. ccsd00000561 Proton Zemach radius from measurements of the hyper ne

    E-Print Network [OSTI]

    ccsd00000561 (version 1) : 25 Aug 2003 Proton Zemach radius from measurements of the hyper#12;ne and discuss the information about the electromagnetic structure of protons that could be extracted from theoretical results on the proton polarizability e#11;ects and the experimental hydrogen hyper#12;ne splitting

  3. Extractors for LowWeight A#ne Sources Institute for Advanced Study

    E-Print Network [OSTI]

    Anderson, Richard

    to solve this problem. These are functions that are easy to invert given the en tire output, but very hardExtractors for LowWeight A#ne Sources Anup Rao # Institute for Advanced Study arao . An extractor for entropy k a#ne sources is a function A#Ext : F n # {0, 1} m such that for any such source X

  4. The Cretaceous/ Tertiary boundary: sedimentology and micropalaeontology at El Mulato section, NE Mexico

    E-Print Network [OSTI]

    Royer, Dana

    The Cretaceous/ Tertiary boundary: sedimentology and micropalaeontology at El Mulato section, NE and sedimentological analysis of this transition at the El Mulato section (NE Mexico), in order to infer the little Palaeogene Velasco Formation, there is a 2-m-thick Clastic Unit. Strati- graphical and sedimentological ana

  5. Response of rice to ammonium and nitrate nitrogen applied at various stages of plant growth on limed and unlimed Beaumont and Lake Charles clays

    E-Print Network [OSTI]

    Gay, William Blalock, III

    1962-01-01T23:59:59.000Z

    RESPONSE OF RICE TO AMMONIUM AND NITRATE NITROGEN APPLIED AT VARIOUS STAGES OF PLANT GROWTH ON LIMED AND UNLINED BEAUNONT AND LAKE CHARLES CLAYS A Thesis By William B. Gay, III Submitted to the Graduate Sohool of the Agricultural... BEAUMONT AND LAKE CHARLES CLAYS A Thesis By Nilliam B. Gay, III Chairman of Committee Head of the Department of Soil Sc Crop Sciences ACKNOWLEDGEMENTS I would like to express my appreciation to Dr. A. G. Caldwell for his 1nterest and guidance...

  6. Liquid Argon scintillation light quenching due to Nitrogen impurities : measurements performed for the MicroBooNE vertical slice test

    E-Print Network [OSTI]

    Chiu, Christie Shinglei

    2013-01-01T23:59:59.000Z

    The neutrino experiment MicroBooNE is currently under construction. To expedite the physics output of MicroBooNE, a smaller version of its optical detection system has been implemented. To demonstrate full operability of ...

  7. Coupling between JET Pedestal ne-Te and Outer Target Plate Recycling: Consequences for JET ITER-Like-Wall Operation

    E-Print Network [OSTI]

    Coupling between JET Pedestal ne-Te and Outer Target Plate Recycling: Consequences for JET ITER-Like-Wall Operation

  8. Mossbauer spectra of single-domain ne particle systems described using a multiple-level relaxation model for

    E-Print Network [OSTI]

    Ryan, Dominic

    Mossbauer spectra of single-domain #12;ne particle systems described using a multiple describes the Mossbauer spectra of real #12;ne particle systems at all temperatures of interest, and yields temperatures, when all moments are blocked, Mossbauer spectra can be described with static hyper#12;ne #12

  9. Reference Grant Holder Research Organisation Project Title NE/J005398/2 Professor Christopher Perry University of Exeter

    E-Print Network [OSTI]

    Grant Reference Grant Holder Research Organisation Project Title NE/J005398/2 Professor Christopher and resultant sediment records of the event. NE/J006122/1 Dr David Tappin NERC British Geological Survey Japan of severe wildfires on moorland carbon dynamics NE/J01141X/1 Dr Stephen G. Willis Durham University

  10. The MiniBooNE detector technical design report

    SciTech Connect (OSTI)

    I. Stancu et al.

    2003-04-18T23:59:59.000Z

    The MiniBooNE experiment [1] is motivated by the LSND observation, [2] which has been interpreted as {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, and by the atmospheric neutrino deficit, [3,4,5] which may be ascribed to {nu}{sub {mu}} oscillations into another type of neutrino. MiniBooNE is a single-detector experiment designed to: obtain {approx} 1000 {nu}{sub {mu}} {yields} {nu}{sub e} events if the LSND signal is due to {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, establishing the oscillation signal at the > 5{sigma} level as shown in Fig. 1.1; extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations significantly beyond what has been studied previously if no signal is observed; search for {nu}{sub {mu}} disappearance to address the atmospheric neutrino deficit with a signal that is a suppression of the rate of {nu}{sub {mu}}C {yields} {mu}N events from the expected 600,000 per year; measure the oscillation parameters as shown in Fig. 1.2 if oscillations are observed; and test CP conservation in the lepton sector if oscillations are observed by running with separate {nu}{sub {mu}} and {bar {nu}}{sub {mu}} beams. The detector will consist of a spherical tank 6.1 m (20 feet) in radius, as shown in Fig. 1.3, that stands in a 45-foot diameter cylindrical vault. An inner tank structure at 5.75 m radius will support 1280 8-inch phototubes (10% coverage) pointed inward and optically isolated from the outer region of the tank. The tank will be filled with 807 t of mineral oil, resulting in a 445 t fiducial volume. The outer tank volume will serve as a veto shield for identifying particles both entering and leaving the detector with 240 phototubes mounted on the tank wall. Above the detector tank will be an electronics enclosure that houses the fast electronics and data acquisition system and a utilities enclosure that houses the plumbing, overflow tank, and calibration laser. The detector will be located {approx} 550 m from the Booster neutrino source. The neutrino beam, produced using 8 GeV protons from the Booster at FNAL, will consist of a target within a focusing system, followed by a {approx}50 m long pion decay volume. The low energy, high intensity and 1 {micro}s time-structure of a neutrino beam produced from the Booster beam are ideal for this experiment. We assume that the Booster can reliably deliver protons for a typical run which is two-thirds of a calendar year. The sensitivities discussed above assume the experiment receives 5 x 10{sup 20} protons per year. This Booster experiment is compatible with the Fermilab collider and MI programs. The Booster must run at 7.5 Hz to accommodate the MiniBooNE and collider programs simultaneously. The current schedule calls for data-taking to begin by the end of calendar year 2001.

  11. Few-Photon Multiple Ionization of Ne and Ar by Strong Free-Electron-Laser Pulses

    SciTech Connect (OSTI)

    Moshammer, R.; Jiang, Y. H.; Rudenko, A.; Ergler, Th.; Schroeter, C. D.; Luedemann, S.; Zrost, K.; Dorn, A.; Ferger, T.; Kuehnel, K. U.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Foucar, L.; Titze, J.; Jahnke, T.; Schoeffler, M.; Doerner, R. [Institut fuer Kernphysik, Universitaet Frankfurt, D 60486 Frankfurt (Germany); Fischer, D. [Atomic Physics, Stockholm University, Alba Nova University Centrum, 10691 Stockholm (Sweden); Weber, T. [Institut fuer Kernphysik, Universitaet Frankfurt, D 60486 Frankfurt (Germany); DESY, Notkestrasse 85, 22607 Hamburg (Germany); Zouros, T. J. M. [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, P.O. Box 1527, 71110 Heraklion, Crete (Greece); Duesterer, S. [DESY, Notkestrasse 85, 22607 Hamburg (Germany)] (and others)

    2007-05-18T23:59:59.000Z

    Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne{sup 2+} production reveals the dominance of nonsequential two-photon double ionization at intensities of I<6x10{sup 12} W/cm{sup 2} and significant contributions of three-photon ionization as I increases. Ne{sup 2+} recoil-ion-momentum distributions suggest that two electrons absorbing ''instantaneously'' two photons are ejected most likely into opposite hemispheres with similar energies.

  12. Thomas-Ehrman effect in a three-body model: $^{16}$Ne case

    E-Print Network [OSTI]

    L. V. Grigorenko; T. A. Golubkova; M. V. Zhukov

    2014-12-17T23:59:59.000Z

    The dynamic mechanism of the Thomas-Ehrman shift is studied in three-cluster systems by example of $^{16}$Ne and $^{16}$C isobaric mirror partners. We predict configuration mixings for $0^+$ and $2^+$ states in $^{16}$Ne and $^{16}$C. Large isospin symmetry breaking on the level of wave function component weights is demonstrated for these states and discussed as three-body mechanism of Thomas-Ehrman shift. It is shown that the description of the Coulomb displacement energies requires a consistency among three parameters: the $^{16}$Ne decay energy $E_T$, the $^{15}$F ground state energy $E_r$, and the configuration mixing parameters for the $^{16}$Ne/$^{16}$C $0^+$ and $2^+$ states. Basing on this analysis we infer the $^{15}$F $1/2^+$ ground state energy to be $E_r=1.39-1.42$ MeV.

  13. Tests of Lorentz and CPT violation with MiniBooNE neutrino oscillation excesses

    E-Print Network [OSTI]

    Teppei Katori

    2014-04-28T23:59:59.000Z

    Violation of Lorentz invariance and CPT symmetry is a predicted phenomenon of Planck-scale physics. Various types of data are analyzed to search for Lorentz violation under the Standard-Model Extension (SME) framework, including neutrino oscillation data. MiniBooNE is a short-baseline neutrino oscillation experiment at Fermilab. The measured excesses from MiniBooNE cannot be reconciled within the neutrino Standard Model; thus it might be a signal of new physics, such as Lorentz violation. We have analyzed the sidereal time dependence of MiniBooNE data for signals of the possible breakdown of Lorentz invariance in neutrinos. In this brief review, we introduce Lorentz violation, the neutrino sector of the SME, and the analysis of short-baseline neutrino oscillation experiments. We then present the results of the search for Lorentz violation in MiniBooNE data. This review is based on the published result (ArXiv:1109.3480).

  14. Application for Presidential Permit PP-400 TDI-NE - New England...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Comments of the Vermont Department of Public Service - August 6, 2014 Application for Presidential Permit PP-400 TDI-NE - New England Clean Power Link Project - Motion to...

  15. Neutrino induced pion production at MiniBooNE and K2K energies

    SciTech Connect (OSTI)

    Leitner, T.; Buss, O.; Mosel, U. [Institut fuer Theoretische Physik, Universitaet Giessen (Germany); Alvarez-Ruso, L. [Departamento de Fisica, Centro de Fisica Computacional, Universidade de Coimbra (Portugal)

    2009-11-25T23:59:59.000Z

    We investigate charged and neutral current neutrino-induced incoherent pion production off nuclei within the GiBUU model at energies relevant for the MiniBooNE and K2K experiments. Special attention is paid to the entanglement between measured CCQE and CC1{pi}{sup +} cross sections. We further give predictions and compare to recent data measured at MiniBooNE.

  16. Combined SO{sub 2}/NO{sub x} control using ferrous{center_dot}EDTA and a secondary additive in a lime-based aqueous scrubber system

    SciTech Connect (OSTI)

    Mendelsohn, M.H.; Livengood, C.D.; Harkness, J.B.L.

    1991-12-01T23:59:59.000Z

    Integration of NO{sub x} control into existing flue-gas desulfurization (FGD) systems addresses site-specific control requirements while minimizing retrofit difficulties. Argonne has studied the use of the metal-chelate additives, such as ferrous{center_dot}EDTA in various wet FGD chemistries, to promote combined SO{sub 2}/NO{sub x} scrubbing. A major process problem is oxidation of the iron to the ferric species, leading to a significant decrease in NO{sub x}-removal capability. Argonne discovered a class of organic compounds that, when used with ferrous{center_dot}EDTA in a sodium carbonate chemistry, could maintain high levels of NO{sub x} removal. However, those antioxidant/reducing agents are not effective in a lime-based chemistry, and a broader investigation of antioxidants was initiated. This paper discusses results of that investigation, which found a practical antioxidant/reducing agent capable of maintaining NO{sub x} removals of about 50% (compared with about 15% without the agent) in a lime-based FGD chemistry with FE(II){center_dot}EDTA. 5 refs., 10 figs.

  17. Combined SO sub 2 /NO sub x control using ferrouster dot EDTA and a secondary additive in a lime-based aqueous scrubber system. [Sodium ascorbate

    SciTech Connect (OSTI)

    Mendelsohn, M.H.; Livengood, C.D.; Harkness, J.B.L.

    1991-01-01T23:59:59.000Z

    Integration of NO{sub x} control into existing flue-gas desulfurization (FGD) systems addresses site-specific control requirements while minimizing retrofit difficulties. Argonne has studied the use of the metal-chelate additives, such as ferrous{center dot}EDTA in various wet FGD chemistries, to promote combined SO{sub 2}/NO{sub x} scrubbing. A major process problem is oxidation of the iron to the ferric species, leading to a significant decrease in NO{sub x}-removal capability. Argonne discovered a class of organic compounds that, when used with ferrous{center dot}EDTA in a sodium carbonate chemistry, could maintain high levels of NO{sub x} removal. However, those antioxidant/reducing agents are not effective in a lime-based chemistry, and a broader investigation of antioxidants was initiated. This paper discusses results of that investigation, which found a practical antioxidant/reducing agent capable of maintaining NO{sub x} removals of about 50% (compared with about 15% without the agent) in a lime-based FGD chemistry with FE(II){center dot}EDTA. 5 refs., 10 figs.

  18. Analysis of ISO NE Balancing Requirements: Uncertainty-based Secure Ranges for ISO New England Dynamic Inerchange Adjustments

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di; Hou, Zhangshuan; Sun, Yannan; Maslennikov, S.; Luo, X.; Zheng, T.; George, S.; Knowland, T.; Litvinov, E.; Weaver, S.; Sanchez, E.

    2013-01-31T23:59:59.000Z

    The document describes detailed uncertainty quantification (UQ) methodology developed by PNNL to estimate secure ranges of potential dynamic intra-hour interchange adjustments in the ISO-NE system and provides description of the dynamic interchange adjustment (DINA) tool developed under the same contract. The overall system ramping up and down capability, spinning reserve requirements, interchange schedules, load variations and uncertainties from various sources that are relevant to the ISO-NE system are incorporated into the methodology and the tool. The DINA tool has been tested by PNNL and ISO-NE staff engineers using ISO-NE data.

  19. Liming Terminology and Analysis

    E-Print Network [OSTI]

    Balser, Teri C.

    Neutralizing power per weight of material relative to pure CaCO3 CaCO3 + 2H+ Ca2+ + CO2 + H2O Ca(OH)2 + 2H+ Ca2 Recommendation in IA 6 inch incorporation depth Buffer pH Target pH 6.5 Target pH 6.9 ----- CaCO3 to apply (lb

  20. Postcollisional decay in Ne multiple ionization by H{sub 2}{sup +} ions in breakup collisions

    SciTech Connect (OSTI)

    Sant'Anna, M.M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21941-972 (Brazil); Luna, H.; Cavalcanti, E.G.; Sigaud, G. M.; Montenegro, E. C. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Caixa Postal 38071, Rio de Janeiro 22452-970 (Brazil); Santos, A.C.F. [Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65401 (United States); McGrath, C.; Shah, M.B. [Department of Pure and Applied Physics, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2003-10-01T23:59:59.000Z

    We measured the Ne{sup q+} charge-state yield distribution for Ne atoms multiply ionized by 1-MeV/amu H{sub 2}{sup +}, in coincidence with the final state of the projectile, for both breakup and nonbreakup channels. Measurements with 1-MeV H{sup +} projectiles were also performed. While the H{sub 2}{sup +} nonbreakup channel produces results similar to equal-velocity proton or electron projectiles, the breakup channels lead to a charge-state yield distribution very close to the known Ne 2s{sup -1} postcollisional decay distribution, measured through photoionization [T. A. Carlson, W. E. Hunt, and M. O. Krause, Phys. Rev. 151, 41 (1966)]. This behavior suggests that, in the breakup channels, contributions to multiple ionization from mechanisms that are usually considered to be dominant in ion-atom collisions are less important than the postcollisional decay.

  1. MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package

    E-Print Network [OSTI]

    Lin, Jiao Y Y; Granroth, Garrett E; Abernathy, Douglas L; Lumsden, Mark D; Winn, Barry; Aczel, Adam A; Aivazis, Michael; Fultz, Brent

    2015-01-01T23:59:59.000Z

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adopting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scatteri...

  2. Characterization of fragment emission in ^{20}Ne (7 - 10 MeV/nucleon) + ^{12}C reactions

    E-Print Network [OSTI]

    Aparajita Dey; C. Bhattacharya; S. Bhattacharya; S. Kundu; K. Banerjee; S. Mukhopadhyay; D. Gupta; T. Bhattacharjee; S. R. Banerjee; S. Bhattacharyya; T. K. Rana; S. K. Basu; R. Saha; K. Krishan; A. Mukherjee; D. Bandopadhyay; C. Beck

    2007-07-23T23:59:59.000Z

    The inclusive energy distributions of the complex fragments (3 $\\leq$ Z $\\leq$ 7) emitted from the bombardment of ^{12}C by ^{20}Ne beams with incident energies between 145 and 200 MeV have been measured in the angular range 10$^{o} \\leq \\theta_{lab} \\leq$ 50^{o}. Damped fragment yields in all the cases have been found to be the characteristic of emission from fully energy equilibrated composites. The binary fragment yields are compared with the standard statistical model predictions. Enhanced yields of entrance channel fragments (5 $\\leq$ Z $\\leq$ 7) indicate the survival of orbiting-like process in ^{20}Ne + ^{12}C system at these energies.

  3. Spectroscopy and intruder configurations of $^{33}$Mg and $^{31}$Ne studied with antisymmetrized molecular dynamics

    E-Print Network [OSTI]

    M. Kimura

    2011-05-17T23:59:59.000Z

    Excitation spectra and neutron single particle configurations of $^{33}$Mg and $^{31}$Ne are investigated by using antisymmetrized molecular dynamics combined with generator coordinate method. It is shown that both nuclei have strongly deformed $3/2^-$ ground state with a $3p2h$ configuration. The excitation spectra are qualitatively understood in terms of the Nilsson model and the calculation has shown the coexistence of different intruder configurations within small excitation energy. The calculated one neutron separation energy of $^{31}$Ne is rather small ($S_n=250$ keV) and implies a p-wave one neutron halo with a strongly deformed core.

  4. Proton-proton correlations observed in two-proton decay of $^{19}$Mg and $^{16}$Ne

    E-Print Network [OSTI]

    I. Mukha; L. Grigorenko; K. Summerer; L. Acosta; M. A. G. Alvarez; E. Casarejos; A. Chatillon; D. Cortina-Gil; J. Espino; A. Fomichev; J. E. Garcia-Ramos; H. Geissel; J. Gomez-Camacho; J. Hofmann; O. Kiselev; A. Korsheninnikov; N. Kurz; Yu. Litvinov; I. Martel; C. Nociforo; W. Ott; M. Pfutzner; C. Rodriguez-Tajes; E. Roeckl; M. Stanoiu; H. Weick; P. J. Woods

    2008-02-28T23:59:59.000Z

    Proton-proton correlations were observed for the two-proton decays of the ground states of $^{19}$Mg and $^{16}$Ne. The trajectories of the respective decay products, $^{17}$Ne+p+p and $^{14}$O+p+p, were measured by using a tracking technique with microstrip detectors. These data were used to reconstruct the angular correlations of fragments projected on planes transverse to the precursor momenta. The measured three-particle correlations reflect a genuine three-body decay mechanism and allowed us to obtain spectroscopic information on the precursors with valence protons in the $sd$ shell.

  5. MiniBooNE as related to Windows on the Universe

    SciTech Connect (OSTI)

    Stefanski, Ray; /Fermilab

    2009-12-01T23:59:59.000Z

    The measurement of absolute neutrino and anti-neutrino cross-sections, the observation of a 'low energy anomaly' in the neutrino sector, the constraints placed on the LSND effect by a non-observation of neutrino oscillations, the search for neutrino and anti-neutrino appearance, and for the possible existence of new heavy particles makes MiniBooNE a major contributor to the current view of the Universe. This paper addresses specific model constraints set by the MiniBooNE data, and explores expectations for further remaining analysis of the data.

  6. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect (OSTI)

    Katori, Teppei

    2011-07-01T23:59:59.000Z

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  7. N.E. Leonard U. Pisa 18-20 April 2007Slide 1 Cooperative Control

    E-Print Network [OSTI]

    Leonard, Naomi

    1 N.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 1 Cooperative Control and Mobile Sensor Networks Cooperative Control, Part II Naomi Ehrich Leonard Mechanical and Aerospace Engineering Princeton University.E. Leonard ­ U. Pisa ­ 18-20 April 2007Slide 2 Collective Motion Stabilization Problem · Achieve synchrony

  8. Magnetostratigraphy and small mammals of the Late Oligocene Banovii basin in NE Bosnia and Herzegovina

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Magnetostratigraphy and small mammals of the Late Oligocene Banovii basin in NE Bosnia Rudnici mrkog uglja Banovii d.d., Branilaca Banovia 36, 71290 Banovii, Bosnia and Herzegovina a b s t r in Bosnia and Herzegovina. Although the Dinarides occupy a crucial paleogeographic position bridging Central

  9. Living Longer on Less THe neW economic (in)securiTy of seniors

    E-Print Network [OSTI]

    Snider, Barry B.

    Living Longer on Less THe neW economic (in)securiTy of seniors INSTITUTE ON ASSETS & SOCIAL POLICY to measuring economic security applied in this report builds on previous work on middle class economic security for Social Policy and Manage- ment at Brandeis University, is dedicated to the economic well-being and social

  10. COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 700 NE Multnomah Street, Suite 1200

    E-Print Network [OSTI]

    COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 700 NE Multnomah Street, Suite 1200 Portland, Oregon 97232 F (503) 235-4228 (503) 238-0667 F (503) 235-4228 www.critfc.org Putting fish back in the rivers and protecting the watersheds where fish live September 17, 2013 Bill Bradbury, Chairman Northwest Power

  11. Astronomical forcing of sedimentary cycles in the middle to late Miocene continental Calatayud Basin (NE Spain)

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Basin (NE Spain) H. Abdul Aziz aY *, F. Hilgen a , W. Krijgsman b , E. Sanz c , J.P. Calvo d, Spain d Departemento de Petrologia y Geoqu|¨mica, Fac. CC. Geolo¨gicas, Universidad Complutense, 28040 Madrid, Spain Received 16 August 1999; received in revised form 28 January 2000; accepted 29 January 2000

  12. Come to Norway Experience the World JuNE 20-July 31

    E-Print Network [OSTI]

    Johansen, Tom Henning

    Come to Norway ­ Experience the World 2015 JuNE 20-July 31 #12;An Academic Experience The ISS of Bergen and the fjords of Western Norway. Studying and living with fellow students from all over the world School PO Box 1082 Blindern NO 0317 Oslo Norway uio.no/summerschool Tel: +47 22 85 63 85 iss

  13. Oil and Gas CDT Cenomanian-Turonian Palaeoenvironments of NE Brazil

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Cenomanian-Turonian Palaeoenvironments of NE Brazil Margin University of Birmingham, biostratigraphy, Brazil, Cretaceous Overview The Late Cretaceous stratigraphy of the Equatorial margin of North East Brazil holds a unique record of the final stages of the opening of the South Atlantic. During

  14. U ne rapide recension bibliographique sur la Tunisie et le Maroc laisse

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    U ne rapide recension bibliographique sur la Tunisie et le Maroc laisse apparaître que tradition et. La France moderne serait là au secours d'une Tunisie et d'un Maroc traditionnels incapables de s) affirme par exemple qu'au Maroc, 1. Nombreux sont les auteurs qui convoquent l'une ou l'autre dans le

  15. The LSND puzzle in the light of MiniBooNE results

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-05-15T23:59:59.000Z

    I give a brief overview over various attempts to reconcile the LSND evidence for oscillations with all other global neutrino data, including the results from MiniBooNE. I discuss the status of oscillation schemes with one or more sterile neutrinos and comment on various exotic proposals.

  16. Searches for new physics at MiniBooNE : sterile neutrinos and mixing freedom

    E-Print Network [OSTI]

    Karagiorgi, Georgia S. (Georgia Stelios)

    2010-01-01T23:59:59.000Z

    The MiniBooNE experiment was designed to perform a search for Vu --> Ve oscillations in a region of A[delta]sin 2 20very different from that allowed by standard, three neutrino oscillations, as determined by solar and ...

  17. Thermodynamics and equilibrium structure of Ne38 cluster: Quantum mechanics versus classical

    E-Print Network [OSTI]

    Mandelshtam, Vladimir A.

    . For example, although the heat capacity Cv T around the "solid-liquid" transition temperature T 10 K MC simulations are implemented in the parallel tempering framework. The classical heat capacity Cv do not play an essential role in the thermodynamics of Ne38, the quantum heat capacity

  18. Search for core-collapse supernovae using the MiniBooNE neutrino detector

    E-Print Network [OSTI]

    Karagiorgi, Georgia Stelios

    We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, ...

  19. 36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY

    E-Print Network [OSTI]

    Kusiak, Andrew

    36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

  20. PI Research Organisation Project Title NE/J024678/1 Dr Christopher Davis University of Reading Driving space weather forecasts with real data

    E-Print Network [OSTI]

    University of Southampton NE/J021075/1 Where did all the CO2 go? Insights from boron isotopes in deep University of Leeds NE/J02371X/1 Did the Southern Ocean drive deglacial atmospheric CO2 rise?Dr Raja of Leeds NE/J023310/1 Spectrally High resolution Infrared measurements for the characterisation of Volcanic

  1. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Kimberlyn C. Mousseau

    2011-10-01T23:59:59.000Z

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well-defined, well-characterized data. Element 3. Standards will be established for the design and operation of experiments for the generation of new validation data sets that are to be submitted to NE-CAMS that addresses the completeness and characterization of the dataset. Element 4. Standards will be developed for performing verification and validation (V&V) to establish confidence levels in CFD analyses of nuclear reactor processes; such processes will be acceptable and recognized by both CFD experts and the NRC.

  2. Searches for New Physics at MiniBooNE: Sterile Neutrinos and Mixing Freedom

    SciTech Connect (OSTI)

    Karagiorgi, Georgia S.; /MIT

    2010-07-01T23:59:59.000Z

    The MiniBooNE experiment was designed to perform a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations in a region of {Delta}m{sup 2} and sin{sup 2} 2{theta} very different from that allowed by standard, three-neutrino oscillations, as determined by solar and atmospheric neutrino experiments. This search was motivated by the LSND experimental observation of an excess of {bar {nu}}{sub e} events in a {bar {nu}}{sub {mu}} beam which was found compatible with two-neutrino oscillations at {Delta}m{sup 2} {approx} 1 eV{sup 2} and sin{sup 2} 2{theta} < 1%. If confirmed, such oscillation signature could be attributed to the existence of a light, mostly-sterile neutrino, containing small admixtures of weak neutrino eigenstates. In addition to a search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations, MiniBooNE has also performed a search for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations, which provides a test of the LSND two-neutrino oscillation interpretation that is independent of CP or CPT violation assumptions. This dissertation presents the MiniBooNE {nu}{sub {mu}} {yields} {nu}{sub e} and {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} analyses and results, with emphasis on the latter. While the neutrino search excludes the two-neutrino oscillation interpretation of LSND at 98% C.L., the antineutrino search shows an excess of events which is in agreement with the two-neutrino {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillation interpretation of LSND, and excludes the no oscillations hypothesis at 96% C.L. Even though the neutrino and antineutrino oscillation results from MiniBooNE disagree under the single sterile neutrino oscillation hypothesis, a simple extension to the model to include additional sterile neutrino states and the possibility of CP violation allows for differences between neutrino and antineutrino oscillation signatures. In view of that, the viability of oscillation models with one or two sterile neutrinos is investigated in global fits to MiniBooNE and LSND data, with and without constraints from other oscillation experiments with similar sensitivities to those models. A general search for new physics scenarios which would lead to effective non-unitarity of the standard 3 x 3 neutrino mixing matrix, or mixing freedom, is also performed using neutrino and antineutrino data available from MiniBooNE.

  3. Survival of orbiting in $^{20}$Ne (7 - 10 MeV/nucleon) + $^{12}$C reactions

    E-Print Network [OSTI]

    C. Bhattacharya; A. Dey; S. Kundu; K. Banerjee; S. Bhattacharya; S. Mukhopadhyay; D. Gupta; T. Bhattacharjee; S. R. Banerjee; S. Bhattacharyya; T. Rana; S. K. Basu; R. Saha; S. Bhattacharjee; K. Krishan; A. Mukherjee; D. Bandopadhyay; C. Beck

    2005-07-20T23:59:59.000Z

    The inclusive energy distributions of fragments with Z $\\geq$ 3 emitted from the bombardment of $^{12}$C by $^{20}$Ne beams with incident energies between 145 and 200 MeV have been measured in the angular range $\\theta_{lab} \\sim$ 10$^\\circ$ - 50$^\\circ$. Damped fragment yields in all cases have been found to be characteristic of emission from fully energy equilibrated composites; for B, C fragments, average Q-values, $$, were independent of the centre of mass emission angle ($\\theta_{c.m}$), and the angular distributions followed $\\sim$1/sin$\\theta_{c.m}$ like variation, signifying long life times of the emitting di-nuclear systems. Total yields of these fragments have been found to be much larger compared to the standard statistical model predictions of the same. This may be indicative of the survival of orbiting like process in $^{12}$C + $^{20}$Ne system at these energies.

  4. Conical Emission from Shock Waves in Ne(1-20 AGeV)+U Collisions

    E-Print Network [OSTI]

    Philip Rau; Jan Steinheimer; Barbara Betz; Hannah Petersen; Marcus Bleicher; Horst Stcker

    2010-03-05T23:59:59.000Z

    The formation and propagation of high-density compression waves, e.g. Mach shock waves, in cold nuclear matter is studied by simulating high-energy nucleus-nucleus collisions of Ne with U in the energy range from E_lab = 0.5 AGeV to 20 AGeV. In an ideal hydrodynamic approach, the high-density shock wave created by the small Ne nucleus passing through the heavy U nucleus is followed by a slower and more dilute Mach shock wave which causes conical emission of particles at the Mach cone angle. The conical emission originates from low-density regions with a small flow velocity comparable to the speed of sound. Moreover, it is shown that the angular distributions of emitted baryons clearly distinguish between a hydrodynamic approach and binary cascade processes used in the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport model.

  5. The thermonuclear rate for the 19F(a,p)22Ne reaction at stellar temperatures

    E-Print Network [OSTI]

    Claudio Ugalde; Richard Azuma; Aaron Couture; Joachim Grres; Hye-Young Lee; Edward Stech; Elizabeth Strandberg; Wanpeng Tan; Michael Wiescher

    2008-03-04T23:59:59.000Z

    The $^{19}$F($\\alpha$,p)$^{22}$Ne reaction is considered to be one of the main sources of fluorine depletion in AGB and Wolf-Rayet stars. The reaction rate still retains large uncertainties due to the lack of experimental studies available. In this work the yields for both exit channels to the ground state and first excited state of $^{22}$Ne have been measured and several previously unobserved resonances have been found in the energy range E$_{lab}$=792-1993 keV. The level parameters have been determined through a detailed R-matrix analysis of the reaction data and a new reaction rate is provided on the basis of the available experimental information.

  6. Neutrino and Anti-neutrino Cross Sections at MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan [University of Alabama Department of Physics and Astronomy, Tuscaloosa, AL-35487 (United States)

    2011-10-06T23:59:59.000Z

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH{sub 2}). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  7. A sterile neutrino at MiniBooNE and IceCube

    SciTech Connect (OSTI)

    Masip, Manuel [CAFPE and Depto. Fsica Terica y del Cosmos, Universidad de Granada, 18071 Granada (Spain)

    2014-07-23T23:59:59.000Z

    We discuss the possibility that a sterile neutrino of mass around 50 MeV slightly mixed with the muon flavor may be the origin of the MiniBooNE anomaly. We show that its production in the atmosphere in a fraction of kaon decays would imply an excess of contained showers at IceCube from down-going and near-horizontal directions.

  8. The Photomultiplier Tube Calibration System of the MicroBooNE Experiment

    E-Print Network [OSTI]

    Conrad, J; Moss, Z; Strauss, T; Toups, M

    2015-01-01T23:59:59.000Z

    We report on the design and construction of an LED-based fiber calibration system for large liquid argon time projection detectors. This system was developed to calibrate the optical systems of the MicroBooNE experiment. As well as detailing the materials and installation procedure, we provide technical drawings and specifications so that the system may be easily replicated in future LArTPC detectors.

  9. Quasiparticle and Optical Excitations in Solid Ne and Ar: GW and BSE Approximations

    SciTech Connect (OSTI)

    Patterson, Charles H.; Galamic-Mulaomerovic, S. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2007-12-26T23:59:59.000Z

    The GW approximation and the Bethe-Salpeter equation (BSE) have been used to calculate quasiparticle and optical excitations in solid Ne and Ar. Absolute positions of quasiparticle and quasihole energies are found to be in very good agreement with experimental values. Binding energies of Frenkel excitons for these systems calculated using the BSE are also in good agreement with experiment. Splitting of excitons into longitudinal and transverse modes is calculated and found to be approximately twice the experimentally measured value.

  10. Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)

    E-Print Network [OSTI]

    Levin, Lisa

    (Pakistan margin, NE Arabian Sea) Gregory L. Cowie a,, Lisa A. Levin b a The Sir John Murray Laboratories), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin

  11. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01T23:59:59.000Z

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear reactor systems, components and processes, and will later expand to include materials, fuel system performance and other areas of M&S as time and funding allow.

  12. Generation of alkali-free and high-proton concentration layer in a soda lime glass using non-contact corona discharge

    SciTech Connect (OSTI)

    Ikeda, Hiroshi; Sakai, Daisuke; Nishii, Junji [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)] [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Funatsu, Shiro [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan)] [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan); Yamamoto, Kiyoshi; Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan)] [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan)] [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan)

    2013-08-14T23:59:59.000Z

    Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na{sub 2}CO{sub 3} powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. The concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.

  13. 20Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay EvaluatedMgNNa

  14. NE-23

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TACi+J-UN 2DCTt-tJOF

  15. NE-23,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TACi+J-UN>:-1.

  16. NE-23:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TACi+J-UN>:-1.1 , : -2

  17. NE-24

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TACi+J-UN>:-1.1 , :

  18. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X)p, X)83BCFMgNNe

  19. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X)p, X)83BCFMgNNe

  20. NE-20

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 + PROJECT

  1. NE-24

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 + PROJECTpi/L +3 *3L 52.the

  2. 17Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X) (CurrentBCFNNe

  3. Impact of the uncertainty in ?-captures on {sup 22}Ne on the weak s-process in massive stars

    SciTech Connect (OSTI)

    Nishimura, N. [Astrophysics group, EPSAM, Keele University, Keele, ST5 1BH, UK and NuGrid Project (United Kingdom); Hirschi, R. [Astrophysics group, EPSAM, Keele University, Keele, ST5 1BH, UK and Kavli IPMU (WPI), University of Tokyo, Kashiwa, 277-8583 (Japan); Pignatari, M. [NuGrid Project and Department of Physics, University of Basel, Basel, CH-4056 (Switzerland); Herwig, F. [NuGrid Project and Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Beard, M. [NuGrid Project and Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Imbriani, G. [Dipartiment di Scienze Fisiche, Universita di Napoli Federico II, Napoli (Italy); Grres, J.; Boer, R. J. de; Wiescher, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-05-02T23:59:59.000Z

    Massive stars at solar metallicity contribute to the production of heavy elements with atomic masses between A = 60 and A = 90 via the so-called weak s-process (which takes place during core He and shell C burning phases). Furthermore, recent studies have shown that rotation boosts the s-process production in massive stars at low metallicities, with a production that may reach the barium neutron-magic peak. These results are very sensitive to neutron source and neutron poison reaction rates. For the weak s-process, the main neutron source is the reaction {sup 22}Ne(?,n){sup 25}Mg, which is in competition with {sup 22}Ne(?,?){sup 26}Mg. The uncertainty of both rates strongly affects the nucleosynthesis predictions from stellar model calculations. In this study, we investigate the impact of the uncertainty in ?-captures on {sup 22}Ne on the s-process nucleosynthesis in massive stars both at solar and at very low metallicity. For this purpose, we post-process, with the Nugrid mppnp code, non-rotating and rotating evolutionary models 25M{sub ?} stars at two different metallicities: Z = Z{sub ?} and Z = 10{sup ?5}Z{sub ?}, respectively. Our results show that uncertainty of {sup 22}Ne(?,n){sup 25}Mg and {sup 22}Ne(?,?){sup 26}Mg rates have a significant impact on the final elemental production especially for metal poor rotating models. Beside uncertainties in the neutron source reactions, for fast rotating massive stars at low metallicity we revisit the impact of the neutron poisoning effect by the reaction chain {sup 16}O(n,?){sup 17}O(?,?){sup 21}Ne, in competition with the {sup 17}O(?,n){sup 20}Ne, recycling the neutrons captured by {sup 16}O.

  4. The response of NE 102 to 2.6-28.0 MeV neutrons

    E-Print Network [OSTI]

    Martin, Stephen Dobie

    1979-01-01T23:59:59.000Z

    y(c), (b) the location of T, and (c) the location of a time channel T in the 0 n neutron continuum. 16 6. H vs. E spectrum for the first data run, Ed ? 12. 5 NeV. . . 20 n Proton recoil spectrum for tine channel 35 (E = 23. 5 MeV) from... Page calculated data points of Gocding and Pugh and with the measured data points of Evans and Eellamy, Nadey et al. , and Nadey and Waterman . 42 17. Zero extrapolated ~ given in table 7 fitted to the present data and to the data of refs. 5 and 6...

  5. DOE-NE Proliferation and Terrorism Risk Assessment: FY12 Plans Update

    SciTech Connect (OSTI)

    Sadasivan, Pratap [Los Alamos National Laboratory

    2012-06-21T23:59:59.000Z

    This presentation provides background information on FY12 plans for the DOE Office of Nuclear Energy Proliferation and Terrorism Risk Assessment program. Program plans, organization, and individual project elements are described. Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism - Goal is to enable the use of risk information to inform NE R&D program planning.

  6. Horn Operational Experience in K2K, MiniBooNE, NuMI and CNGS

    E-Print Network [OSTI]

    Pardons, A

    2008-01-01T23:59:59.000Z

    This paper gives an overview of the operation and experience gained in the running of magnetic horns in conventional neutrino beam lines (K2K, MiniBooNE, NuMI and CNGS) over the last decade. Increasing beam power puts higher demands on horn conductors but even more on their hydraulic and electrical systems, while the horn environment itself becomes more hostile due to radiation. Experience shows that designing horns for remote handling and testing them extensively without beam become prerequisites for successful future neutrino beam lines.

  7. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    SciTech Connect (OSTI)

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21945-970 RJ (Brazil); DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, C1428EGA, Buenos Aires (Argentina)

    2011-10-15T23:59:59.000Z

    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  8. Two-color CO{sub 2}/HeNe laser interferometer for C-2 experiment

    SciTech Connect (OSTI)

    Gornostaeva, O.; Deng, B. H.; Garate, E.; Gota, H.; Kinley, J.; Schroeder, J.; Tuszewski, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2010-10-15T23:59:59.000Z

    A six-channel two-color interferometer has been developed for plasma electron density measurements in the C-2 field reversed configuration experiment. A CO{sub 2} laser is utilized as the main probe beams, while copropagating visible HeNe laser beams are mainly sensitive to vibration. Density measurements in C-2 plasmas have shown that this is a reliable turn-key system. The maximum residual phase noise after vibration compensation is less than {+-}5 deg., corresponding to a line integral density of 3x10{sup 18} m{sup -2}. The time resolution for routine operation is 2 {mu}s.

  9. LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-01-25T23:59:59.000Z

    Standard active--sterile neutrino oscillations do not provide a satisfactory description of the LSND evidence for neutrino oscillations together with the constraints from MiniBooNE and other null-result short-baseline oscillation experiments. However, if the mass or the mixing of the sterile neutrino depends in an exotic way on its energy all data become consistent. I explore the phenomenological consequences of the assumption that either the mass or the mixing scales with the neutrino energy as $1/E_\

  10. MiniBooNE Neutrino Physics at the University of Alabama

    SciTech Connect (OSTI)

    Stancu, Ion

    2007-04-27T23:59:59.000Z

    This report summarizes the activities conducted by the UA group under the auspices of the DoE/EPSCoR grant number DE--FG02--04ER46112 since the date of the previous progress report, i.e., since November 2005. It also provides a final report of the accomplishments achieved during the entire period of this grant (February 2004 to January 2007). The grant has fully supported the work of Dr. Yong Liu (postdoctoral research assistant -- in residence at Fermilab) on the MiniBooNE reconstruction and particle identification (PID) algorithms.

  11. Thermonuclear reaction rate of $^{18}$Ne($?$,$p$)$^{21}$Na from Monte-Carlo calculations

    E-Print Network [OSTI]

    P. Mohr; R. Longland; C. Iliadis

    2014-12-14T23:59:59.000Z

    The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction impacts the break-out from the hot CNO-cycles to the $rp$-process in type I X-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte-Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.

  12. Thermonuclear reaction rate of $^{18}$Ne($\\alpha$,$p$)$^{21}$Na from Monte-Carlo calculations

    E-Print Network [OSTI]

    Mohr, P; Iliadis, C

    2014-01-01T23:59:59.000Z

    The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction impacts the break-out from the hot CNO-cycles to the $rp$-process in type I X-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte-Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.

  13. Skåne County, Sweden: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish, Washington: EnergySkåne County,

  14. 2015 Annual EM/NE/SC SQA Support Group Meeting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery5 Annual EM/NE/SC SQA Support Group

  15. Contacts for MicroBooNE plots and other data representations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution And Bylaws |Contact UsContacts for MicroBooNE plots

  16. 2010 Annual Planning Summary for Nuclear Energy (NE) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09 SPRofNuclear Energy (NE) 2010

  17. Introduction to MiniBooNE and Charged Current Quasi-Elastic (CCQE) Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn OtherEnergyBPA-Film-Collection Sign In About |MiniBooNE

  18. Microsoft PowerPoint - TAUP_07_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPA / SPRA / USACE MarshallWeEarlWe28MinibooNE

  19. NE-23 Disposal of Offsite-Generated Defense Radioactive Waste, Ventron

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 + PROJECTpi/L +3 *3L 52. NE-23

  20. Lead Ref Project Title Institution NE/I001794/1 Dr C Wilson The structure and stability of transport and mixing barriers

    E-Print Network [OSTI]

    adjoints: how much do we really know about the source of the Indian Ocean Tsunami? NE/I001395/1 Dr R Hager of genome-environment interactions for host- parasite evolution NE/I001816/1 Dr J Biggs Active Development for the evolution of mid-ocean ridge basalt NE/I002030/1 Dr DM Scantlebury Energetics of a super

  1. $^{22}Ne$ a primary source of neutron for the s-process and a major neutron poison in CEMP AGB stars

    E-Print Network [OSTI]

    Gallino, R; Husti, L; Kppeler, F; Cristallo, S; Straniero, O

    2006-01-01T23:59:59.000Z

    $^{22}Ne$ a primary source of neutron for the s-process and a major neutron poison in CEMP AGB stars

  2. Light charged particle emission from hot $^{32}$S$^{*}$ formed in $^{20}$Ne + $^{12}$C reaction

    E-Print Network [OSTI]

    Aparajita Dey; S. Bhattacharya; C. Bhattacharya; K. Banerjee; T. K. Rana; S. Kundu; S. R. Banerjee; S. Mukhopadhyay; D. Gupta; R. Saha

    2008-11-11T23:59:59.000Z

    Inclusive energy distributions for light charged particles ($p, d, t$ and $\\alpha$) have been measured in the $^{20}$Ne (158, 170, 180, 200 MeV) + $^{12}$C reactions in the angular range 10$^{o}$ -- 50$^{o}$. Exclusive light charged particle energy distribution measurements were also done for the same system at 158 MeV bombarding energy by in-plane light charged particle -- fragment coincidence. Pre-equilibrium components have been separated out from proton energy spectra using moving source model considering two sources. The data have been compared with the predictions of the statistical model code CASCADE. It has been observed that significant deformation effects were needed to be introduced in the compound nucleus in order to explain the shape of the evaporated $d, t$ energy spectra. For protons, evaporated energy spectra were rather insensitive to nuclear deformation, though angular distributions could not be explained without deformation. Decay sequence of the hot $^{32}$S nucleus has been investigated through exclusive light charged particle measurements using the $^{20}$Ne (158 MeV) + $^{12}$C reaction. Information on the sequential decay chain has been extracted through comparison of the experimental data with the predictions of the statistical model. It is observed from the present analysis that exclusive light charged particle data may be used as a powerful tool to probe the decay sequence of hot light compound systems.

  3. Wave packet and statistical quantum calculations for the He + NeH{sup +} ? HeH{sup +} + Ne reaction on the ground electronic state

    SciTech Connect (OSTI)

    Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Barrios, Lizandra; Gonzlez-Lezana, Toms, E-mail: t.gonzalez.lezana@csic.es [Instituto de Fsica Fundamental, C.S.I.C., Serrano 123, Madrid 28006 (Spain)

    2014-09-21T23:59:59.000Z

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  4. Search for a Direct Large-Cluster-Transfer Process in the C-12,c-13(ne-20,a) Reaction

    E-Print Network [OSTI]

    Murakami, T.; Takahashi, N.; Lui, YW; Takada, E.; Tanner, D. M.; Tribble, Robert E.; Ungricht, E.; Nagatani, K.

    1985-01-01T23:59:59.000Z

    2.0 1.5 I I x&Q I I I I I "c("Ne,n) K~=140.2 MeV (g 1.0 0.0 1.5 o 1.0 W 0. 8 /tg C I V=~ ~&~&+. x&Q c( Nen) K~=140.8 hf:eV HE=4' (c) ~ 0.0 b 1.5 1.0 I, I I I .Io "c("Ne,a) K~=1,19.6 hf:eV 8~b=8.75' the molecular...Si) =35.3-39.4 MeV] (Ref. 18) and 16O(I2C sBe) Ne(g s ) [E ( Si) =28.2-35.2 MeV] (Ref. 19) reactions using arbitrary units. Present address: Nuclear Physics Laboratory, University of Washington, Seattle, WA 98195. 'tPresent address: Sumitomo Heavy...

  5. Neutrino-induced pion production at energies relevant for the MiniBooNE and K2K experiments

    SciTech Connect (OSTI)

    Leitner, T.; Buss, O.; Mosel, U. [Institut fuer Theoretische Physik, Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Alvarez-Ruso, L. [Departamento de Fisica, Universidad de Murcia, E-30100 Murcia (Spain)

    2009-03-15T23:59:59.000Z

    We investigate charged and neutral current neutrino induced incoherent pion production off nuclei at MiniBooNE and K2K energies within the GiBUU model. We assume impulse approximation and treat the nucleus as a local Fermi gas of nucleons bound in a mean-field potential. In-medium spectral functions are also taken into account. The outcome of the initial neutrino nucleon reaction undergoes complex hadronic final state interactions. We present results for neutral current {pi}{sup 0} and charged current {pi}{sup +} production and compare to MiniBooNE and K2K data.

  6. LSND and MiniBooNE within (3+1) plus NSI

    SciTech Connect (OSTI)

    Akhmedov, Evgeny; Schwetz, Thomas [Max-Planck-Institute for Nuclear Physics, PO Box 103980, 69029 Heidelberg (Germany)

    2011-10-06T23:59:59.000Z

    The recently observed event excess in MiniBooNE anti-neutrino data is in agreement with the LSND evidence for electron anti-neutrino appearance. We propose an explanation of these data in terms of a (3+1) scheme with a sterile neutrino including non-standard neutrino interactions (NSI) at neutrino production and detection. The interference between oscillations and NSI provides a source for CP violation which we use to reconcile different results from neutrino and anti-neutrino data. Our best fit results imply NSI at the level of a few percent relative to the standard weak interaction, in agreement with current bounds. We compare the quality of the NSI fit to the one obtained within the (3+1) and (3+2) pure oscillation frameworks.

  7. An improved Neutrino Oscillations Analysis of the MiniBooNE Data

    SciTech Connect (OSTI)

    Aguilar-Arevalo, Alexis Armando; /Columbia U.

    2008-01-01T23:59:59.000Z

    We calculate the exclusion region in the parameter space of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations of the LSND type using a combined fit to the reconstructed energy distributions of neutrino candidate samples from the MiniBooNE data obtained with two different particle identification methods. The two {nu}{sub e} candidate samples are included together with a high statistics sample of {nu}{sub {mu}} events in the definition of a {chi}{sup 2} statistic which includes the correlations between the energy intervals of all three samples and handles the event overlap between the {nu}{sub e} samples. The {nu}{sub {mu}} sample is introduced to constrain the effect of systematic uncertainties. This analysis increases the exclusion limit in the region {Delta}m{sup 2} {approx}< 1eV{sup 2} when compared with the result previously published by the collaboration, which used a different technique.

  8. Studies of the $?$ meson with WASA at COSY and KLOE-2 at DA$?$NE

    E-Print Network [OSTI]

    P. Moskal

    2011-02-27T23:59:59.000Z

    One of the basic motivations of the KLOE-2 and WASA-at-COSY experiments is the test of fundamental symmetries and the search for phenomena beyond the Standard Model in the hadronic and leptonic decays of ground-state mesons and in particular in decays of the $\\eta$ meson. At COSY these mesons are produced in collisions of proton or deuteron beam with hydrogen or deuterium pellet target, and at DA$\\Phi$NE $\\eta$ mesons originate from radiative decays of $\\phi$ meson or from the fusion of virtual gamma quanta exchanged between colliding electrons and positrons. This contribution includes brief description of experimental techniques used by KLOE-2 and WASA-at-COSY as well as some of physics aspects motivating investigations of production and decays of $\\eta$ mesons.

  9. Deep sea tests of a prototype of the KM3NeT digital optical module

    E-Print Network [OSTI]

    Adrin-Martnez, S; Aharonian, F; Aiello, S; Albert, A; Ameli, F; Anassontzis, E G; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; de Asmundis, R; Band, H; Barbarino, G; Barbarito, E; Barbato, F; Baret, B; Baron, S; Belias, A; Berbee, E; Berg, A M van den; Berkien, A; Bertin, V; Beurthey, S; van Beveren, V; Beverini, N; Biagi, S; Bianucci, S; Billault, M; Birbas, A; Rookhuizen, H Boer; Bormuth, R; Bouche, V; Bouhadef, B; Bourlis, G; Bouwhuis, M; Bozza, C; Bruijn, R; Brunner, J; Cacopardo, G; Caillat, L; Calamai, M; Calvo, D; Capone, A; Caramete, L; Caruso, F; Cecchini, S; Ceres, A; Cereseto, R; Champion, C; Chateau, F; Chiarusi, T; Christopoulou, B; Circella, M; Classen, L; Cocimano, R; Colonges, S; Coniglione, R; Cosquer, A; Costa, M; Coyle, P; Creusot, A; Curtil, C; Cuttone, G; D'Amato, C; D'Amico, A; De Bonis, G; De Rosa, G; Deniskina, N; Destelle, J -J; Distefano, C; Donzaud, C; Dornic, D; Dorosti-Hasankiadeh, Q; Drakopoulou7, E; Drouhin, D; Drury, L; Durand, D; Eberl, T; Eleftheriadis, C; Elsaesser, D; Enzenhofer, A; Fermani, P; Fusco, L A; Gajana, D; Gal, T; Galata, S; Gallo, F; Garufi, F; Gebyehu, M; Giordano, V; Gizani, N; Ruiz, R Gracia; Graf, K; Grasso, R; Grella, G; Grmek, A; Habel, R; van Haren, H; Heid, T; Heijboer, A; Heine, E; Henry, S; Hernandez-Rey, J J; Herold, B; Hevinga, M A; van der Hoek, M; Hofestadt, J; Hogenbirk, J; Hugon, C; Hosl, J; Imbesi, M; James, C; Jansweijer, P; Jochum, J; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Kappos, E; Katz, U; Kavatsyuk, O; Keller, P; Kieft, G; Koffeman, E; Kok, H; Kooijman, P; Koopstra, J; Korporaal, A; Kouchner, A; Koutsoukos, S; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Provost, H Le; Leisos, A; Lenis, D; Leonora, E; Clark, M Lindsey; Liolios, A; Alvarez, C D Llorens; Lohner, H; Presti, D Lo; Louis, F; Maccioni, E; Mannheim, K; Manolopoulos, K; Margiotta, A; Maris, O; Markou, C; Martinez-Mora, J A; Martini, A; Masullo, R; Michael, T; Migliozzi, P; Migneco, E; Miraglia, A; Mollo, C; Mongelli, M; Morganti, M; Mos, S; Moudden, Y; Musico, P; Musumeci, M; Nicolaou, C; Nicolau, C A; Orlando, A; Orzelli, A; Papageorgiou, K; Papaikonomou, A; Papaleo, R; Pavalas, G E; Peek, H; Pellegrino, C; Pellegriti, M G; Perrina, C; Petridou, C; Piattelli, P; Popa, V; Pradier, Th; Priede, M; Puhlhofer, G; Pulvirenti, S; Racca, C; Raffaelli, F; Randazzo, N; Rapidis, P A; Razis, P; Real, D; Resvanis, L; Reubelt, J; Riccobene, G; Rovelli, A; Royon, J; Saldana, M; Samtleben, D F E; Sanguineti, M; Santangelo, A; Sapienza, P; Savvidis, I; Schmelling, J; Schnabel, J; Sedita, M; Seitz, T; Sgura, I; Simeone, F; Siotis, I; Sipala, V; Solazzo, M; Spitaleri, A; Spurio, M; Steijger, J; Stolarczyk, T; Stransky, D; Taiuti, M; Terreni, G; Tezier, D; Theraube, S; Thompson, L F; Timmer, P; Trapierakis, H I; Trasatti, L; Trovato, A; Tselengidou, M; Tsirigotis, A; Tzamarias, S; Tzamariudaki, E; Vallage, B; Van Elewyck, V; Vermeulen, J; Vernin, P; Viola, S; Vivolo, D; Werneke, P; Wiggers, L; Wilms, J; de Wolf, E; van Wooning, R H L; Yatkin, K; Zachariadou, K; Zonca, E; Zornoza, J D; Ziga, J; Zwart, A

    2014-01-01T23:59:59.000Z

    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40}$K decay and the localization bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions.

  10. BP Studentship* in the Department of Earth Sciences of the University of Oxford Tectonic evolution of the Parnaiba cratonic basin, NE Brazil

    E-Print Network [OSTI]

    of the Parnaiba cratonic basin, NE Brazil Supervisors: Prof. A. B. Watts and Dr. M. Daly (BP) * Subject to funding structure and petroleum play. The focus will be on the Parnaiba basin in NE Brazil, one of the world in Brazil and the UK, will involve the acquisition of seismic reflection and refraction profile data along

  11. Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation physics

    SciTech Connect (OSTI)

    Giuliani, J. L.; Thornhill, J. W.; Dasgupta, A.; Velikovich, A. L.; Chong, Y. K.; Mehlhorn, T. A. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)] [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Kroupp, E.; Osin, D.; Maron, Y.; Starobinets, A.; Fisher, V.; Zarnitsky, Yu.; Bernshtam, V. [Weizmann Institute of Science, Rehovot 76100 (Israel)] [Weizmann Institute of Science, Rehovot 76100 (Israel); Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States)] [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States); Fisher, A. [Falculty of Physics, Technion-Israeli Institute of Technology, Haifa (Israel)] [Falculty of Physics, Technion-Israeli Institute of Technology, Haifa (Israel); Deeney, C. [National Security Technologies, LLC, Las Vegas, Nevada 89144 (United States)] [National Security Technologies, LLC, Las Vegas, Nevada 89144 (United States)

    2014-03-15T23:59:59.000Z

    The difference between the ion thermal and effective temperatures is investigated through simulations of the Ne gas puff z-pinch reported by Kroupp et al. [Phys. Rev. Lett. 107, 105001 (2011)]. Calculations are performed using a 2D, radiation-magnetohydrodynamic code with Tabular Collisional-Radiative Equilibrium, namely Mach2-TCRE [Thornhill et al., Phys. Plasmas 8, 3480 (2001)]. The extensive data set of imaging and K-shell spectroscopy from the experiments provides a challenging validation test for z-pinch simulations. Synthetic visible images of the implosion phase match the observed large scale structure if the breakdown occurs at the density corresponding to the Paschen minimum. At the beginning of stagnation (?4?ns), computed plasma conditions change rapidly showing a rising electron density and a peak in the ion thermal temperature of ?1.8?keV. This is larger than the ion thermal temperature (<400?eV) inferred from the experiment. By the time of peak K-shell power (0?ns), the calculated electron density is similar to the data and the electron and ion thermal temperatures are equilibrated, as is observed. Effective ion temperatures are obtained from calculated emission line widths accounting for thermal broadening and Doppler velocity shifts. The observed, large effective ion temperatures (?4?keV) early in the stagnation of this Ne pinch can be explained solely as a combination of compressional ion heating and steep radial velocity gradients near the axis. Approximations in the modeling are discussed in regard to the higher ion thermal temperature and lower electron density early in the stagnation compared to the experimental results.

  12. Measurements of nuclear $?$-ray line emission in interactions of protons and $?$ particles with N, O, Ne and Si

    E-Print Network [OSTI]

    H. Benhabiles-Mezhoud; J. Kiener; J. -P. Thibaud; V. Tatischeff; I. Deloncle; A. Coc; J. Duprat; C. Hamadache; A. Lefebvre-Schuhl; J. -C. Dalouzy; F. De Grancey; F. De Oliveira; F. Dayras; N. De Srville; M. -G. Pellegriti; L. Lamia; S. Ouichaoui

    2010-11-11T23:59:59.000Z

    $\\gamma$-ray production cross sections have been measured in proton irradiations of N, Ne and Si and $\\alpha$-particle irradiations of N and Ne. In the same experiment we extracted also line shapes for strong $\\gamma$-ray lines of $^{16}$O produced in proton and $\\alpha$-particle irradiations of O. For the measurements gas targets were used for N, O and Ne and a thick foil was used for Si. All targets were of natural isotopic composition. Beams in the energy range up to 26 MeV for protons and 39 MeV for $\\alpha$-particles have been delivered by the IPN-Orsay tandem accelerator. The $\\gamma$ rays have been detected with four HP-Ge detectors in the angular range 30$^{\\circ}$ to 135$^{\\circ}$. We extracted 36 cross section excitation functions for proton reactions and 14 for $\\alpha$-particle reactions. For the majority of the excitation functions no other data exist to our knowledge. Where comparison with existing data was possible usually a very good agreement was found. It is shown that these data are very interesting for constraining nuclear reaction models. In particular the agreement of cross section calculations in the nuclear reaction code TALYS with the measured data could be improved by adjusting the coupling schemes of collective levels in the target nuclei $^{14}$N, $^{20,22}$Ne and $^{28}$Si. The importance of these results for the modeling of nuclear $\\gamma$-ray line emission in astrophysical sites is discussed.

  13. 6 JUNE 2014 VOL 344 ISSUE 6188 1095SCIENCE sciencemag.org ne reason for the use of biofuels is

    E-Print Network [OSTI]

    Napp, Nils

    6 JUNE 2014 VOL 344 ISSUE 6188 1095SCIENCE sciencemag.org O ne reason for the use of biofuels good and bad outcomes, depending on the approach (1). Thus, comments about biofuels in recent reports of indirect land-use change on GHG emissions (5) identified the possibility that biofuels may endan- ger

  14. INELASTIC PROCESSES IN 0.11000 keV/u COLLISIONS OF Ne q+ (q=710) IONS WITH ATOMIC HYDROGEN

    E-Print Network [OSTI]

    4 INELASTIC PROCESSES IN 0.1­1000 keV/u COLLISIONS OF Ne q+ (q=7­10) IONS WITH ATOMIC HYDROGEN D to recycle hydrogen, and how to remove heat from the plasma. Cooling is required both to extract heat to run transfer, hydrogen and impurity radiation, ionization, and elastic collisions between the recycling gas

  15. The Neoproterozoic Keraf Suture in NE Sudan: Sinistral Transpression along the Eastern Margin of West Gondwana1

    E-Print Network [OSTI]

    Stern, Robert J.

    The Neoproterozoic Keraf Suture in NE Sudan: Sinistral Transpression along the Eastern Margin Sudan remains poorly under-2 University of Houston Department of Geosciences, Hous- stood because of its Geological Research Authority of the Sudan, Regional Ge- ology Administration, Box 410, Khartoum, Sudan

  16. Effects of Lime and Carbonate of Lime on Acid Phosphate.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1917-01-01T23:59:59.000Z

    .50 .58 .05 -05 .36 .34 .56 .41 .45 day. 12.96 12 86 12:40 7.55 1.14 14 .14 .I5 .21 .32 1.17 4.08 2.80 1.40 .58 .05 .05 .30 .46 .56 1.34 .98 .81 days. 12.98 13 00 12:23 7.58 1.06 .OO days. --- 1.3.10 13 08 12... .03 .03 .41 .GO.. 1.84 1.13 1.06 16 14 .15 .17 .23 .28 .4P, 2.26 3.90 2.65 1.28 .53 .03 .03 .23 .34 .41 1.39 1.03 .76 .20 .25 .32 323 3.95 2.55 1.10 .53 .05 .05 .25 .34 -40 1.61 .93 .76 As was to be expected...

  17. EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF PROGENITOR {sup 22}Ne CONTENT ON DYNAMICS

    SciTech Connect (OSTI)

    Townsley, Dean M. [Department of Astronomy/Steward Observatory, University of Arizona, Tucson, AZ (United States); Jackson, Aaron P.; Calder, Alan C. [Department of Physics and Astronomy, State University of New York - Stony Brook, Stony Brook, NY (United States); Chamulak, David A.; Brown, Edward F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Timmes, F. X. [Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States)], E-mail: townsley@as.arizona.edu

    2009-08-20T23:59:59.000Z

    We present a theoretical framework for formal study of systematic effects in supernovae Type Ia (SNe Ia) that utilizes two-dimensional simulations to implement a form of the deflagration-detonation transition (DDT) explosion scenario. The framework is developed from a randomized initial condition that leads to a sample of simulated SNe Ia whose {sup 56}Ni masses have a similar average and range to those observed, and have many other modestly realistic features such as the velocity extent of intermediate-mass elements. The intended purpose is to enable statistically well defined studies of both physical and theoretical parameters of the SNe Ia explosion simulation. We present here a thorough description of the outcome of the SNe Ia explosions produced by our current simulations. A first application of this framework is utilized to study the dependence of the SNe Ia on the {sup 22}Ne content, which is known to be directly influenced by the progenitor stellar population's metallicity. Our study is very specifically tailored to measure how the {sup 22}Ne content influences the competition between the rise of plumes of burned material and the expansion of the star before these plumes reach DDT conditions. This influence arises from the dependence of the energy release, progenitor structure, and laminar flame speed on {sup 22}Ne content. For this study, we explore these three effects for a fixed carbon content and DDT density. By setting the density at which nucleosynthesis takes place during the detonation phase of the explosion, the competition between plume rise and stellar expansion controls the amount of material in nuclear statistical equilibrium (NSE) and therefore {sup 56}Ni produced. Of particular interest is how this influence of {sup 22}Ne content compares to the direct modification of the {sup 56}Ni mass via the inherent neutron excess as discussed by Timmes et al. Although the outcome following from any particular ignition condition can change dramatically with {sup 22}Ne content, with a sample of 20 ignition conditions we find that the systematic change in the expansion of the star prior to detonation is not large enough to compete with the dependence discussed by Timmes et al. In fact, our results show no statistically significant dependence of the predetonation expansion on {sup 22}Ne content, pointing to the morphology of the ignition condition as being the dominant dynamical driver of the {sup 56}Ni yield of the explosion. However, variations in the DDT density, which were specifically excluded here, are also expected to be important and to depend systematically on {sup 22}Ne content.

  18. Unidade Qtd Solicitao Valor Unidade Solic. Atendida N Empenho Valor Unitrio em R$Valor Total em R$ Vr Gasto Unidade Saldo 9 (nove) Computadores "Perfil 1"; OK 2008 NE911222 1.450,00 13.050,00

    E-Print Network [OSTI]

    Maier, Rudolf Richard

    R$ Vr Gasto Unidade Saldo 9 (nove) Computadores "Perfil 1"; OK 2008 NE911222 1.450,00 13.050,00 17.964,00 3.928,00 4 (quatro) Computadores "Perfil 1"; OK 2008 NE911295 1.450,00 5.800,00 10 (dez) Nobreaks de 1000VA; OK 2008 NE911531 510,00 5.100,00 30 (trinta) Computadores "Perfil 1"; OK 2008 NE911296 1.450

  19. Vortfarado en Esperanto. Pao 2 (15.02.2013) uvaoj ne dancas ardaon en ikago. a b c d e f g h i j k l m n o p r s t u v z1.

    E-Print Network [OSTI]

    Pentus, Mati

    ekzistas verdaj steloj (Adaptita teksto) Liven Dek Li deliris: -- Mi ne timas la morton, ar mi plu vidos

  20. SOIL INFORMATION Last Lime Application

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    production. Send samples, forms, and payment to Virginia Tech Soil Testing Lab, 145 Smyth Hall (MC 0465), 185 Industrial Lawns - Bermudagrass Routine (soil pH, P, K, Ca, Mg, Zn, Mn, Cu, Fe, B, and estimated CEC) $10, Virginia Tech." COST PER SAMPLE IN-STATE OUT-OF-STATE SOIL TEST DESIRED AND FEES SAMPLE IDENTIFICATION Your

  1. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouse Solar Westchester

  2. Lead Grant Reference Lead Grant RO Grant Holder Last Name, First Name Project Title NE/K000071/1 Newcastle University Mr R Gaulton Dual-wavelength laser scanning for forest health

    E-Print Network [OSTI]

    Newcastle University Mr R Gaulton Dual-wavelength laser scanning for forest health monitoring. NE/K000381/1Lead Grant Reference Lead Grant RO Grant Holder Last Name, First Name Project Title NE/K000071/1 and sensory mechanisms in bat navigation NE/K000403/1 University of Southampton Dr S Watt Emplacement dynamics

  3. Data Reduction Processes Using FPGA for MicroBooNE Liquid Argon Time Projection Chamber

    SciTech Connect (OSTI)

    Wu, Jinyuan

    2010-05-26T23:59:59.000Z

    MicroBooNE is a liquid Argon time projection chamber to be built at Fermilab for an accelerator-based neutrino physics experiment and as part of the R&D strategy for a large liquid argon detector at DUSEL. The waveforms of the {approx}9000 sense wires in the chamber are continuously digitized at 2 M samples/s - which results in a large volume of data coming off the TPC. We have developed a lossless data reduction scheme based on Huffman Coding and have tested the scheme on cosmic ray data taken from a small liquid Argon time projection chamber, the BO detector. For sense wire waveforms produced by cosmic ray tracks, the Huffman Coding scheme compresses the data by a factor of approximately 10. The compressed data can be fully recovered back to the original data since the compression is lossless. In addition to accelerator neutrino data, which comes with small duty cycle in sync with the accelerator beam spill, continuous digitized waveforms are to be temporarily stored in the MicroBooNE data-acquisition system for about an hour, long enough for an external alert from possible supernova events. Another scheme, Dynamic Decimation, has been developed to compress further the potential supernova data so that the storage can be implemented within a reasonable budget. In the Dynamic Decimation scheme, data are sampled at the full sampling rate in the regions-of-interest (ROI) containing waveforms of track-hits and are decimated down to lower sampling rate outside the ROI. Note that unlike in typical zerosuppression schemes, in Dynamic Decimation, the data in the pedestal region are not thrown away but kept at a lower sampling rate. An additional factor of 10 compression ratio is achieved using the Dynamic Decimation scheme on the BO detector data, making a total compression rate of approximate 100 when the Dynamic Decimation and the Huffman Coding functional blocks are cascaded. Both of the blocks are compiled in low-cost FPGA and their silicon resource usages are low.

  4. Demonstration Assessment of LED Roadway Lighting: NE Cully Boulevard Portland, OR

    SciTech Connect (OSTI)

    Royer, Michael P.; Poplawski, Michael E.; Tuenge, Jason R.

    2012-06-29T23:59:59.000Z

    A new roadway lighting demonstration project was initiated in late 2010, which was planned in conjunction with other upgrades to NE Cully Boulevard, a residential collector road in the northeast area of Portland, OR. With the NE Cully Boulevard project, the Portland Bureau of Transportation hoped to demonstrate different light source technologies and different luminaires side-by-side. This report documents the initial performance of six different newly installed luminaires, including three LED products, one induction product, one ceramic metal halide product, and one high-pressure sodium (HPS) product that represented the baseline solution. It includes reported, calculated, and measured performance; evaluates the economic feasibility of each of the alternative luminaires; and documents user feedback collected from a group of local Illuminating Engineering Society (IES) members that toured the site. This report does not contain any long-term performance evaluations or laboratory measurements of luminaire performance. Although not all of the installed products performed equally, the alternative luminaires generally offered higher efficacy, more appropriate luminous intensity distributions, and favorable color quality when compared to the baseline HPS luminaire. However, some products did not provide sufficient illumination to all areasvehicular drive lanes, bicycle lanes, and sidewalksor would likely fail to meet design criteria over the life of the installation due to expected depreciation in lumen output. While the overall performance of the alternative luminaires was generally better than the baseline HPS luminaire, cost remains a significant barrier to widespread adoption. Based on the cost of the small quantity of luminaires purchased for this demonstration, the shortest calculated payback period for one of the alternative luminaire types was 17.3 years. The luminaire prices were notably higher than typical prices for currently available luminaires purchased in larger quantities. At prices that are more typical, the payback would be less than 10 years. In addition to the demonstration luminaires, a networked control system was installed for additional evaluation and demonstration purposes. The capability of control system to measure luminaire input power was explored in this study. A more exhaustive demonstration and evaluation of the control system will be the subject of future GATEWAY report(s).

  5. Improved Search for ??????e Oscillations in the MiniBooNE Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; et al

    2013-04-01T23:59:59.000Z

    The MiniBooNE experiment at Fermilab reports results from an analysis of ?e appearance data from 11.2710? protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.428.5 events (2.8?) is observed in the energy range 200QE????e, the best oscillation fit to the excess has a probability of 66% while the background-only fit has a ? probability of 0.5% relative to the best fit. The data are consistent with antineutrino oscillations in the 0.01moresome overlap with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector. All of the major backgrounds are constrained by in situ event measurements so nonoscillation explanations would need to invoke new anomalous background processes. The neutrino mode running also shows an excess at low energy of 162.047.8 events (3.4?) but the energy distribution of the excess is marginally compatible with a simple two neutrino oscillation formalism. Expanded models with several sterile neutrinos can reduce the incompatibility by allowing for CP violating effects between neutrino and antineutrino oscillations.less

  6. Particle decay branching ratios for states of astrophysical importance in 19Ne

    E-Print Network [OSTI]

    D. W. Visser; J. A. Caggiano; R. Lewis; W. B. Handler; A. Parikh; P. D. Parker

    2004-02-26T23:59:59.000Z

    We have measured proton and alpha-particle branching ratios of excited states in 19Ne formed using the 19F(3He,t) reaction at a beam energy of 25 MeV. These ratios have a large impact on the astrophysical reaction rates of 15O(alpha,gamma), 18F(p,gamma) and 18F(p,alpha), which are of interest in understanding energy generation in x-ray bursts and in interpreting anticipated gamma-ray observations of novae. We detect decay protons and alpha-particles using a silicon detector array in coincidence with tritons measured in the focal plane detector of our Enge split-pole spectrograph. The silicon array consists of five strip detectors of the type used in the Louvain-Edinburgh Detector Array, subtending angles from 130 degrees to 165 degrees with approximately 14% lab efficiency. The correlation angular distributions give additional confidence in some prior spin-parity assignments that were based on gamma branchings. We measure Gamma_p/Gamma=0.387+-0.016 for the 665 keV proton resonance, which agrees well with the direct measurement of Bardayan et al.

  7. Color transparency after the NE18 and E665 experiments: Outllok and perspectives at CEBAF

    E-Print Network [OSTI]

    J. Nemchik; N. N. Nikolaev; B. G. Zakharov

    1994-06-06T23:59:59.000Z

    CEBAF is a high-luminocity factory of virtual photons with variable virtuality $Q^{2}$ and transverse size. This makes CEBAF, in particular after the energy upgrade to (8-12)GeV, an ideal facility for uncovering new phenomena, and opening new windows, at the interface of the perturbative and nonperturbative QCD. We discuss color transparency as the case for a broad program on electroproduction of vector mesons $\\rho^{0},\\,\\omega^{0},\\,\\phi^{0}$ and their radial excitations $\\rho',\\,\\omega',\\,\\phi'$ at CEBAF. We also comment on the second generation of experiments on color transparency in $^{4}He(e,e'p)$ scattering, which are also feasible at CEBAF. In 1994, we can make more reliable projections into future because our understanding of the onset of color transparency has greatly been augmented by two experiments completed in 1993:\\\\ i) no effect of CT was seen in the SLAC NE18 experiment on $A(e,e'p)$ scattering at virtualities of the exchanged photon $Q^{2} \\lsim 7$ GeV$^{2}$, \\\\ ii) strong signal of CT was observed in the FNAL E665 experiment on exclusive $\\rho^{0}$- meson production in deep inelastic scattering in the same range of $Q^{2}$. \\\\ We discuss the impact of these observations on the CEBAF experimental program. We argue they both are good news, both were anticipated theoretically, and both rule in the correct QCD mechanism of the onset of CT.

  8. Improved Search for ??????e Oscillations in the MiniBooNE Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.

    2013-04-01T23:59:59.000Z

    The MiniBooNE experiment at Fermilab reports results from an analysis of ?e appearance data from 11.2710? protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.428.5 events (2.8?) is observed in the energy range 200QE????e, the best oscillation fit to the excess has a probability of 66% while the background-only fit has a ? probability of 0.5% relative to the best fit. The data are consistent with antineutrino oscillations in the 0.01

  9. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01T23:59:59.000Z

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

  10. Comment on "15O(alpha,gamma)19Ne Breakout Reaction and Impact on X-Ray Bursts"

    E-Print Network [OSTI]

    B. Davids

    2008-04-12T23:59:59.000Z

    A recently published letter reports a measurement of alpha decay from states in 19Ne at excitation energies below 4.5 MeV. The measured alpha decay branching ratios B_alpha are used to calculate the astrophysical rate of the 15O(alpha,gamma)19Ne reaction and to draw conclusions regarding the transition between steady state and unstable nuclear burning on accreting neutron stars. Here I show that the calculated astrophysical reaction rate is based on an unreliable value of B_alpha for the 4.03 MeV state and point out a serious internal inconsistency in the letter's treatment of low statistics alpha decay measurements.

  11. Investigation of complete and incomplete fusion dynamics of {sup 20}Ne induced reactions at energies above the Coulomb barrier

    SciTech Connect (OSTI)

    Singh, D., E-mail: dsinghiuac@gmail.com [Centre for Applied Physics, Central University of Jharkhand, Ranchi-835 205 (India); Ali, R. [Department of Physics, G.F.(P.G.), College, Shahjahanpur-242 001 (India); Kumar, Harish; Ansari, M. Afzal [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Rashid, M. H.; Guin, R. [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata-700 064 (India)

    2014-08-14T23:59:59.000Z

    Experiment has been performed to explore the complete and incomplete fusion dynamics in heavy ion collisions using stacked foil activation technique. The measurement of excitation functions of the evaporation residues produced in the {sup 20}Ne+{sup 165}Ho system at projectile energies ranges ? 4-8 MeV/nucleon have been done. Measured cumulative and direct cross-sections have been compared with the theoretical model code PACE-2, which takes into account only the complete fusion process. The analysis indicates the presence of contributions from incomplete fusion processes in some ?-emission channels following the break-up of the projectile {sup 20}Ne in the nuclear field of the target nucleus {sup 165}Ho.

  12. Detailed microscopic calculation of stellar electron and positron capture rates on $^{24}$Mg for O+Ne+Mg core simulations

    E-Print Network [OSTI]

    Jameel-Un Nabi

    2014-08-15T23:59:59.000Z

    Few white dwarfs, located in binary systems, may acquire sufficiently high mass accretion rates resulting in the burning of carbon and oxygen under nondegenerate conditions forming a O+Ne+Mg core. These O+Ne+Mg cores are gravitationally less bound than more massive progenitor stars and can release more energy due to the nuclear burning. They are also amongst the probable candidates for low entropy r-process sites. Recent observations of subluminous Type II-P supernovae (e.g., 2005cs, 2003gd, 1999br, 1997D) were able to rekindle the interest in 8 -- 10 M$_{\\odot}$ which develop O+Ne+Mg cores. Microscopic calculations of capture rates on $^{24}$Mg, which may contribute significantly to the collapse of O+Ne+Mg cores, using shell model and proton-neutron quasiparticle random phase approximation (pn-QRPA) theory, were performed earlier and comparisons made. Simulators, however, may require these capture rates on a fine scale. For the first time a detailed microscopic calculation of the electron and positron capture rates on $^{24}$Mg on an extensive temperature-density scale is presented here. This type of scale is more appropriate for interpolation purposes and of greater utility for simulation codes. The calculations are done using the pn-QRPA theory using a separable interaction. The deformation parameter, believed to be a key parameter in QRPA calculations, is adopted from experimental data to further increase the reliability of the QRPA results. The resulting calculated rates are up to a factor of 14 or more enhanced as compared to shell model rates and may lead to some interesting scenario for core collapse simulators.

  13. Using MiniBooNE NCEL and CCQE cross section results to constrain 3+1 sterile neutrino models

    E-Print Network [OSTI]

    Callum Wilkinson; Susan Cartwright; Lee Thompson

    2014-12-01T23:59:59.000Z

    The MiniBooNE NCEL and CCQE cross-section measurements (neutrino running) are used to set limits in the $\\Delta m^{2}-\\sin^{2}\\vartheta_{\\mu s}$ plane for a 3+1 sterile neutrino model with a mass splitting $0.1 \\leq \\Delta m^{2} \\leq 10.0$ eV$^{2}$. GENIE is used, with a relativistic Fermi gas model, to relate $E_{\

  14. Experimental study of a Ne-H{sub 2} Penning Recombination Laser in a helical hollow cathode discharge

    SciTech Connect (OSTI)

    Pramatarov, P.M.; Stefanova, M.S.; Petrov, G.M. [Georgy Nadjakov Institute of Solid State Physics, Sofia (Bulgaria)

    1995-12-31T23:59:59.000Z

    Penning recombination lasers (PRL), as first proposed in, operate in non-equilibrium recombination plasma where the upper laser level (ULL) is populated by the recombination flux and the lower laser level (LLL) is depopulated by Penning reactions. The lack of chemical activity and degradation of the laser mixture, lasing in the visible spectral region and high output power obtained attract the attention to the Ne-H{sub 2} PRL operating on the NeI 585.3 nm line (the 2p{sub 1}-1s{sub 2} transition). Despite the most powerful PRL are pumped by electron beams of relativistic energies, it is of practical interest to realize PRL pumped in a hollow cathode discharge where beam of high energy primary electrons exists. In this study a detailed experimental investigation of a Ne-H{sub 2} PRL operating in a helical hollow cathode discharge is carried out. The obtained data are compared with the results of the theoretical model. The laser tube design is similar to that used in our previous work. The cathode is made of Mo band 10 mm wide, helically wound with a 15 mm pitch to form a cylindrical hollow. Five laser tubes with different cathode diameters (5.5-12 mm) and lengths (110-280 mm) are investigated.

  15. Are oxygen and neon enriched in PNe and is the current solar Ne/O abundance ratio underestimated?

    E-Print Network [OSTI]

    W. Wang; X. -W. Liu

    2008-06-13T23:59:59.000Z

    A thorough critical literature survey has been carried out for reliable measurements of oxygen and neon abundances of planetary nebulae (PNe) and HII regions. By contrasting the results of PNe and of HII regions, we aim to address the issues of the evolution of oxygen and neon in the interstellar medium (ISM) and in the late evolutionary phases of low- and intermediate-mass stars (LIMS), as well as the currently hotly disputed solar Ne/O abundance ratio. Through the comparisons, we find that neon abundance and Ne/O ratio increase with increasing oxygen abundance in both types of nebulae, with positive correlation coefficients larger than 0.75. The correlations suggest different enrichment mechanisms for oxygen and neon in the ISM, in the sense that the growth of neon is delayed compared to oxygen. The differences of abundances between PNe and HII regions, are mainly attributed to the results of nucleosynthesis and dredge-up processes that occurred in the progenitor stars of PNe. We find that both these alpha-elements are significantly enriched at low metallicity (initial oxygen abundance oxygen in intermediate mass stars (IMS) of low initial metallicities and in more massive stars, a conjecture that requires verification by further theoretical studies. This result also strongly suggests that both the solar neon abundance and the Ne/O ratio should be revised upwards by ~0.22 dex from the Asplund, Grevesse & Sauval values or by ~0.14 dex from the Grevesse & Sauval values.

  16. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect (OSTI)

    Muir, B. R., E-mail: bmuir@physics.carleton.ca; Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Physics Department, Carleton Laboratory for Radiotherapy Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)] [Physics Department, Carleton Laboratory for Radiotherapy Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2013-12-15T23:59:59.000Z

    Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  17. Investigation of thermonuclear $^{18}$Ne($?$,$p$)$^{21}$Na rate via resonant elastic scattering of $^{21}$Na+$p$

    E-Print Network [OSTI]

    L. Y. Zhang; J. J. He; A. Parikh; S. W. Xu; H. Yamaguchi; D. Kahl; S. Kubono; P. Mohr; J. Hu; P. Ma; S. Z. Chen; Y. Wakabayashi; H. W. Wang; W. D. Tian; R. F. Chen; B. Guo; T. Hashimoto; Y. Togano; S. Hayakawa; T. Teranishi; N. Iwasa; T. Yamada; T. Komatsubara; Y. H. Zhang; X. H. Zhou

    2014-03-19T23:59:59.000Z

    The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction is thought to be one of the key breakout reactions from the hot CNO cycles to the rp-process in type I x-ray bursts. In this work, the resonant properties of the compound nucleus $^{22}$Mg have been investigated by measuring the resonant elastic scattering of $^{21}$Na+$p$. An 89 MeV $^{21}$Na radioactive beam delivered from the CNS Radioactive Ion Beam Separator bombarded an 8.8 mg/cm$^2$ thick polyethylene (CH$_{2}$)$_{n}$ target. The $^{21}$Na beam intensity was about 2$\\times$10$^{5}$ pps, with a purity of about 70% on target. The recoiled protons were measured at the center-of-mass scattering angles of $\\theta_{c.m.}$$\\approx$175.2${^\\circ}$, 152.2${^\\circ}$, and 150.5${^\\circ}$ by three sets of $\\Delta E$-$E$ telescopes, respectively. The excitation function was obtained with the thick-target method over energies $E_x$($^{22}$Mg)=5.5--9.2 MeV. In total, 23 states above the proton-threshold in $^{22}$Mg were observed, and their resonant parameters were determined via an $R$-matrix analysis of the excitation functions. We have made several new $J^{\\pi}$ assignments and confirmed some tentative assignments made in previous work. The thermonuclear $^{18}$Ne($\\alpha$,$p$)$^{21}$Na rate has been recalculated based on our recommended spin-parity assignments. The astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the $^{18}$Ne($\\alpha$,$p$)$^{21}$Na rate significantly affects the peak nuclear energy generation rate, reaction fluxes, as well as the onset temperature of this breakout reaction in these astrophysical phenomena.

  18. Numerical analysis of similarity of barrier discharges in the 0.95 Ne/0.05 Xe mixture

    SciTech Connect (OSTI)

    Avtaeva, S. V.; Kulumbaev, E. B. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2009-04-15T23:59:59.000Z

    Established dynamic regimes of similar (with a scale factor of 10) barrier discharges in the 0.95 Ne/0.05 Xe mixture are simulated in a one-dimensional drift-diffusion model. The similarity is examined of barrier discharges excited in gaps of lengths 0.4 and 4 mm at gas pressures of 350 and 35 Torr and dielectric layer thicknesses of 0.2 and 2 mm, the frequencies of the 400-V ac voltage applied to the discharge electrodes being 100 and 10 kHz, respectively.

  19. The Uncertainties in the 22Ne + alpha-capture Reaction Rates and the Production of the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars of Intermediate Mass

    E-Print Network [OSTI]

    A. Karakas; M. Lugaro; M. Wiescher; J. Goerres; C. Ugalde

    2006-01-27T23:59:59.000Z

    We present new rates for the 22Ne(alpha, n)25Mg and 22Ne(alpha,gamma)26Mg reactions, with uncertainties that have been considerably reduced compared to previous estimates, and we study how these new rates affect the production of the heavy magnesium isotopes in models of intermediate mass Asymptotic Giant Branch (AGB) stars of different initial compositions. All the models have deep third dredge-up, hot bottom burning and mass loss. Calculations have been performed using the two most commonly used estimates of the 22Ne + alpha rates as well as the new recommended rates, and with combinations of their upper and lower limits. The main result of the present study is that with the new rates, uncertainties on the production of isotopes from Mg to P coming from the 22Ne + alpha-capture rates have been considerably reduced. We have therefore removed one of the important sources of uncertainty to effect models of AGB stars. We have studied the effects of varying the mass-loss rate on nucleosynthesis and discuss other uncertainties related to the physics employed in the computation of stellar structure, such as the modeling of convection, the inclusion of a partial mixing zone and the definition of convective borders. These uncertainties are found to be much larger than those coming from 22Ne + alpha-capture rates, when using our new estimates. Much effort is needed to improve the situation for AGB models.

  20. Dissociative-recombination product states and the dissociation energy D0 of Ne2+

    SciTech Connect (OSTI)

    Hardy, K. A.; Peterson, J. R.; Ramos, G.; Sheldon, J. W.

    1998-02-28T23:59:59.000Z

    Final product states of Ne2+ dissociative recombination were studied using time-of-flight spectroscopy to determine the kinetic energies released. The dissociative recombination occurred in a sustained discharge in the presence of a variable magnetic field and discharge voltage, at pressures of 5-15 mTorr. Under different conditions various excited states were observed ranging from the lowest 3s metastable states to higher Rydbcrg states within 0.000 54 eV of the dissociation limit. From their narrow widths, it is deduced that these higher states arose from Ne2+ ions with subthermal energies. From two of these narrow distributions, we obtain an improved value for the dissociation limit D0(Ne2+)= 1.260.02 eV.

  1. Forward fitting of experimental data from a NE213 neutron detector installed with the magnetic proton recoil upgraded spectrometer at JET

    SciTech Connect (OSTI)

    Binda, F., E-mail: federico.binda@physics.uu.se; Ericsson, G.; Eriksson, J.; Hellesen, C.; Conroy, S.; Sundn, E. Andersson [Department of Physics and Astronomy, EURATOM-VR Association, Uppsala University, Uppsala (Sweden); Collaboration: JET-EFDA Team

    2014-11-15T23:59:59.000Z

    In this paper, we present the results obtained from the data analysis of neutron spectra measured with a NE213 liquid scintillator at JET. We calculated the neutron response matrix of the instrument combining MCNPX simulations, a generic proton light output function measured with another detector and the fit of data from ohmic pulses. For the analysis, we selected a set of pulses with neutral beam injection heating (NBI) only and we applied a forward fitting procedure of modeled spectral components to extract the fraction of thermal neutron emission. The results showed the same trend of the ones obtained with the dedicated spectrometer TOFOR, even though the values from the NE213 analysis were systematically higher. This discrepancy is probably due to the different lines of sight of the two spectrometers (tangential for the NE213, vertical for TOFOR). The uncertainties on the thermal fraction estimates were from 4 to 7 times higher than the ones from the TOFOR analysis.

  2. Discovery of the high--ionization emission line [Ne V] 3426 in the blue compact dwarf galaxy Tol 1214-277

    E-Print Network [OSTI]

    Y. I. Izotov; K. G. Noeske; N. G. Guseva; P. Papaderos; T. X. Thuan; K. J. Fricke

    2004-01-10T23:59:59.000Z

    The discovery of the high-ionization [Ne V] 3426A emission line in the spectrum of the blue compact dwarf (BCD) galaxy Tol 1214-277 is reported. The detection of this line implies the presence of intense ionizing X-ray emission with a luminosity in the range 10^39-10^40 erg/s. Such a high X-ray luminosity cannot be reproduced by models of massive stellar populations. Other mechanisms, such as fast shocks or accretion of gas in high-mass X-ray binaries need to be invoked to account for the high intensity of the [Ne V] 3426A emission line.

  3. Towards secondary ion mass spectrometry on the helium ion microscope: An experimental and simulation based feasibility study with He{sup +} and Ne{sup +} bombardment

    SciTech Connect (OSTI)

    Wirtz, T.; Vanhove, N.; Pillatsch, L.; Dowsett, D. [Department of Science and Analysis of Materials (SAM), Centre de Recherche Public - Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Sijbrandij, S.; Notte, J. [Carl Zeiss NTS LLC, One Corporation Way, Peabody, Massachusetts 01960 (United States)

    2012-07-23T23:59:59.000Z

    The combination of the high-brightness He{sup +}/Ne{sup +} atomic level ion source with secondary ion mass spectrometry detection capabilities opens up the prospect of obtaining chemical information with high lateral resolution and high sensitivity on the Zeiss ORION helium ion microscope. The analytical performance in terms of sputtering yield, useful yield, and detection limit is studied and subsequently optimized by oxygen and cesium flooding. Detection limits down to 10{sup -6} and 10{sup -5} can be obtained for silicon using Ne{sup +} and He{sup +}, respectively. A simulation based study reveals furthermore that a lateral resolution <10 nm can be obtained.

  4. Charge-state-correlated cross sections for electron loss, capture, and ionization in C{sup 3+}-Ne collisions

    SciTech Connect (OSTI)

    Kirchner, T. [Institut fuer Theoretische Physik, TU Clausthal, Leibnizstrasse 10, D-38678 Clausthal-Zellerfeld (Germany); Santos, A.C.F.; Sant'Anna, M.M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro 21941-972 (Brazil); Luna, H.; Sigaud, G.M.; Montenegro, E.C. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, RJ 22452-970 (Brazil); Melo, W.S. [Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-330 (Brazil)

    2005-07-15T23:59:59.000Z

    Charge-state-correlated total cross sections for projectile-electron loss, capture, and target ionization in C{sup 3+}-Ne collisions have been measured and calculated at absolute energies in the few MeV regime. The calculations are based on a recently proposed coupled mean-field approach which combines a set of nonperturbative single-particle calculations for the initial projectile electrons with another one for the initial target electrons. The basis generator method has been used to solve these equations. Very good overall agreement between experimental and theoretical data is found, which provides further evidence for the applicability of the approach to rather complex many-electron collision systems. One notable exception is the cross section for elastic projectile-electron loss associated with no change of the target charge state. In this case, the theoretical and experimental results differ qualitatively.

  5. Studies of the $\\eta$ meson with WASA at COSY and KLOE-2 at DA$\\Phi$NE

    E-Print Network [OSTI]

    Moskal, P

    2011-01-01T23:59:59.000Z

    One of the basic motivations of the KLOE-2 and WASA-at-COSY experiments is the test of fundamental symmetries and the search for phenomena beyond the Standard Model in the hadronic and leptonic decays of ground-state mesons and in particular in decays of the $\\eta$ meson. At COSY these mesons are produced in collisions of proton or deuteron beam with hydrogen or deuterium pellet target, and at DA$\\Phi$NE $\\eta$ mesons originate from radiative decays of $\\phi$ meson or from the fusion of virtual gamma quanta exchanged between colliding electrons and positrons. This contribution includes brief description of experimental techniques used by KLOE-2 and WASA-at-COSY as well as some of physics aspects motivating investigations of production and decays of $\\eta$ mesons.

  6. Grant Reference Grant Holder Research Organisation Project Title NE/I015299/1 Robert Upstill-Goddard Newcastle University Surfactant control of air-sea gas exchange in coastal waters

    E-Print Network [OSTI]

    Grant Reference Grant Holder Research Organisation Project Title NE/I015299/1 Robert Upstill NE/I015361/1 Timothy Heaton NERC British Geological Survey The oxygen isotope composition's University of Belfast 14C as a tool to trace terrestrial carbon in a complex lake: implications for food

  7. VOLUME 87, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 12 NOVEMBER 2001 Evidence Concerning Drying Behavior of Ne near a Cs Surface

    E-Print Network [OSTI]

    Curtarolo, Stefano

    Drying Behavior of Ne near a Cs Surface Francesco Ancilotto,1 Stefano Curtarolo,2 Flavio Toigo,1) Using density functional and Monte Carlo methods, we have studied the properties of Ne adsorbed on a Cs and grand canonical Monte Carlo (GCMC) simulations; we have im- proved somewhat upon techniques used in our

  8. Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne

    SciTech Connect (OSTI)

    Nilsen, J; Rohringer, N

    2011-08-30T23:59:59.000Z

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

  9. Grant Holder Research Organisation Project Title Grant Reference Peter Bernath University of York Satellite Observations of Halogen-Containing Molecules NE/I022663/1

    E-Print Network [OSTI]

    Grant Holder Research Organisation Project Title Grant Reference Peter Bernath University of York, Ice and Super-cooled Water Particles. NE/I023058/1 Gareth Chisham NERC British Antarctic Survey The University of Manchester Effects of a warming climate on the key organic carbon cycle processes

  10. Gear selectivity for catching catfish (Ictaluridae) throughout the Lower Platte River, NE Jeremy J. L. Hammen, Tony J. Barada, Aaron Blank, and Mark A. Pegg

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Gear selectivity for catching catfish (Ictaluridae) throughout the Lower Platte River, NE Jeremy J anglers can total nearly 50% of the all anglers and much of this pressure is focused on the Lower Platte Platte River will offer vital information needed to provide appropriate management techniques for catfish

  11. Quantum-fluid-dynamics approach for strong-field processes: Application to the study of multiphoton ionization and high-order harmonic generation of He and Ne atoms

    E-Print Network [OSTI]

    Chu, Shih-I

    of the hydrodynamical density and wave function in space and time. The procedure is applied to the study of multiphoton for Ne, good agreement is achieved. Four different exchange-correlation energy functionals are used systems. Among these novel high-intensity phenomena, multiple high-order har- monic generation HHG

  12. de la cicatrice. La guri son tait complote 1 mois aprs le dbut du traitement. 1u 40, jour, on ne con-

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    , on ne con- statait plus qu'une cicatrice fine et lisse dans toute son tendue. L'uranium, ou mieux le charge par l'intermdiaire d'une grande rsistance, l'autre ple tant la tcrre. Si Eo est la charge

  13. RE SONANT PHO NON -A 8 8 IS TE D 6E NE HA TION. . . not observed, presumably because either the

    E-Print Network [OSTI]

    Glyde, Henry R.

    , for example, A. Yariv, Quantum Electronics (Wiley, New York, 1967), Chap. 21; N. Bloembergen, Nonlinear OpticsRE SONANT PHO NON -A 8 8 IS TE D 6E NE HA TION. . . not observed, presumably because either cussions. *Present address: Hasler A. G. , Bern, Switzerland. ~P. A. Franken, A. E. Hill, C. %'. Peters

  14. Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: The stable isotope record

    E-Print Network [OSTI]

    Garzione, Carmala N.

    (Lear et al., 2000; Zachos et al., 2001; Billups and Schrag, 2002). In East Asia, climate change sinceClimatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: The stable isotope record Majie Fan a,b,, David L. Dettman a , Chunhui Song b , Xiaomin Fang b,c , Carmala N. Garzione d

  15. This work was sponsored by the Department of Energy Grant DE-FG02-86NE37969 1991 IEEE. Reprinted with permission, from

    E-Print Network [OSTI]

    Borenstein, Johann

    This work was sponsored by the Department of Energy Grant DE-FG02-86NE37969 1991 IEEE. Reprinted is updated continuously with range data sampled by on-board range sensors. The VFH method subsequently the robot's momentary location. Each sector in the polar histogramcontains a value representing the polar

  16. Spring 2009 PSY 362: Cognitive Neuroscience Quick Overview Classes: WED 4-6:40pm, NE-060 Prerequisites: Psy 101, 260

    E-Print Network [OSTI]

    Gallo, Linda C.

    Spring 2009 PSY 362: Cognitive Neuroscience Quick Overview Classes: WED 4-6:40pm, NE-060. #225E Textbook: Gazzaniga, Ivry & Mangun: Cognitive Neuroscience. 3rd ed. Norton 2009. Tips and Details. 1 [optional] Feb 4 2 Cells and Neuroanatomy I Ch. 2: 18-25; Ch. 3: 50-77 Feb 11 3 Neuroanatomy II

  17. SciBooNE/MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanketPlease contact the beamlineAugŽ.

  18. Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO{sub 2} at low temperatures: effects of the presence of CO{sub 2}, O{sub 2}, and NOx

    SciTech Connect (OSTI)

    Liu, C.F.; Shih, S.M. [Industrial Technological Research Institute, Hsinchu (Taiwan)

    2009-09-15T23:59:59.000Z

    The effects of the presence of CO{sub 2}, O{sub 2}, and NOx in the flue gas on the kinetics of the sulfation of blast furnace slag/hydrated lime sorbents at low temperatures were studied using a differential fixed-bed reactor. When O{sub 2} and NOx were not present simultaneously, the reaction kinetics was about the same as that under the gas mixtures containing SO{sub 2}, H{sub 2}O, and N{sub 2} only, being affected mainly by the relative humidity. The sulfation of sorbents can be described by the surface coverage model and the model equations derived for the latter case. When both O{sub 2} and NOx, were present, the sulfation of sorbents was greatly enhanced, forming a great amount of sulfate in addition to sulfite. The surface coverage model is still valid in this case, but the model equations obtained show a more marked effect of relative humidity and negligible effects of SO{sub 2} concentration and temperature on the reaction. The effect of sorbent composition on the reaction kinetics was entirely represented by the effects of the initial specific surface area (S{sub g0}) and the Ca molar content (M{sup -1}) of sorbent. The initial conversion rate of sorbent increased linearly with increasing S{sub g0}, and the ultimate conversion increased linearly with increasing S{sub g0}M{sup -1}. The model equations obtained in this work are applicable to describe the kinetics of the sulfation of the sorbents in the low-temperature dry and semidry fine gas desulfurization processes either with an upstream NOx, removal unit or without.111

  19. Neutral current quasielastic (anti)neutrino scattering beyond the Fermi gas model at MiniBooNE and BNL kinematics

    E-Print Network [OSTI]

    M. V. Ivanov; A. N. Antonov; M. B. Barbaro; C. Giusti; A. Meucci; J. A. Caballero; R. Gonzalez-Jimenez; E. Moya de Guerra; J. M. Udias

    2015-03-14T23:59:59.000Z

    Neutral current quasielastic (anti)neutrino scattering cross sections on a $^{12}$C target are analyzed using a realistic spectral function $S(p,E)$ that gives a scaling function in accordance with the ($e,e'$) scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals (NOs) from the Jastrow correlation method and has a realistic energy dependence. The standard value of the axial mass $M_A= 1.032$ GeV is used in all calculations. The role of the final-state interaction (FSI) on the spectral and scaling functions, as well as on the cross sections is accounted for. A comparison of the calculations with the empirical data of the MiniBooNE and BNL experiments is performed. Our results are analyzed in comparison with those when NN correlations are not included, and also with results from other theoretical approaches, such as the relativistic Fermi gas (RFG), the relativistic mean field (RMF), the relativistic Green's function (RGF), as well as with the SuperScaling Approach (SuSA) based on the analysis of quasielastic electron scattering.

  20. Investigation of thermonuclear $^{18}$Ne($\\alpha$,$p$)$^{21}$Na rate via resonant elastic scattering of $^{21}$Na+$p$

    E-Print Network [OSTI]

    Zhang, L Y; Parikh, A; Xu, S W; Yamaguchi, H; Kahl, D; Kubono, S; Mohr, P; Hu, J; Ma, P; Chen, S Z; Wakabayashi, Y; Wang, H W; Tian, W D; Chen, R F; Guo, B; Hashimoto, T; Togano, Y; Hayakawa, S; Teranishi, T; Iwasa, N; Yamada, T; Komatsubara, T; Zhang, Y H; Zhou, X H

    2014-01-01T23:59:59.000Z

    The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction is thought to be one of the key breakout reactions from the hot CNO cycles to the rp-process in type I x-ray bursts. In this work, the resonant properties of the compound nucleus $^{22}$Mg have been investigated by measuring the resonant elastic scattering of $^{21}$Na+$p$. An 89 MeV $^{21}$Na radioactive beam delivered from the CNS Radioactive Ion Beam Separator bombarded an 8.8 mg/cm$^2$ thick polyethylene (CH$_{2}$)$_{n}$ target. The $^{21}$Na beam intensity was about 2$\\times$10$^{5}$ pps, with a purity of about 70% on target. The recoiled protons were measured at the center-of-mass scattering angles of $\\theta_{c.m.}$$\\approx$175.2${^\\circ}$, 152.2${^\\circ}$, and 150.5${^\\circ}$ by three sets of $\\Delta E$-$E$ telescopes, respectively. The excitation function was obtained with the thick-target method over energies $E_x$($^{22}$Mg)=5.5--9.2 MeV. In total, 23 states above the proton-threshold in $^{22}$Mg were observed, and their resonant parameters were determ...

  1. Improved Search for ??????e Oscillations in the MiniBooNE Experiment

    SciTech Connect (OSTI)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.

    2013-04-01T23:59:59.000Z

    The MiniBooNE experiment at Fermilab reports results from an analysis of ?e appearance data from 11.2710? protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.428.5 events (2.8?) is observed in the energy range 200QE?<1250 MeV. If interpreted in a two-neutrino oscillation model, ????e, the best oscillation fit to the excess has a probability of 66% while the background-only fit has a ? probability of 0.5% relative to the best fit. The data are consistent with antineutrino oscillations in the 0.01

  2. NE]NL~GY r. ORNL/Sub/80-1 386/ &02 C)aS^" B ~Assessment of Internal Combustion

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    NE]NL~GY r. ORNL/Sub/80-1 386/ &02 C)aS^" B ~Assessment of Internal Combustion LAnM~~l~Engines COMBUSTION ENGINES AS DRIVERS FOR HEAT PUMPS FINAL REPORT Date Published: January 1984 Report Prepared Government or any agency thereof. #12;ORNL/Sub/80-13836/1&02 Dist. Category UC-95d ASSESSMENT OF INTERNAL

  3. THE INFLUENCE OF UNCERTAINTIES IN THE {sup 15}O({alpha}, {gamma}){sup 19}Ne REACTION RATE ON MODELS OF TYPE I X-RAY BURSTS

    SciTech Connect (OSTI)

    Davids, Barry [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Cyburt, Richard H. [Joint Institute for Nuclear Astrophysics and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Jose, Jordi [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya and Institut d'Estudis Espacials de Catalunya, Barcelona (Spain); Mythili, Subramanian [Physics Department, George Mason University, Fairfax, VA (United States)

    2011-07-01T23:59:59.000Z

    We present a Monte Carlo calculation of the astrophysical rate of the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction based on an evaluation of published experimental data. By considering the likelihood distributions of individual resonance parameters derived from measurements, estimates of upper and lower limits on the reaction rate at the 99.73% confidence level are derived in addition to the recommended, median value. These three reaction rates are used as input for three separate calculations of Type I X-ray bursts (XRBs) using spherically symmetric, hydrodynamic simulations of an accreting neutron star. In this way the influence of the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction rate on the peak luminosity, recurrence time, and associated nucleosynthesis in models of Type I XRBs is studied. Contrary to previous findings, no substantial effect on any of these quantities is observed in a sequence of four bursts when varying the reaction rate between its lower and upper limits. Rather, the differences in these quantities are comparable to the burst-to-burst variations with a fixed reaction rate, indicating that uncertainties in the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction rate do not strongly affect the predictions of this Type I XRB model.

  4. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G; Mariani, C; Alcaraz-Aunion, J L; Brice, S J; Bugel, L; Catala-Perez, J; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; et al

    2011-07-28T23:59:59.000Z

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomoreMonte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.less

  5. Two-chord interferometry using 3.39 {mu}m He-Ne laser on a flux-coil-generated FRC

    SciTech Connect (OSTI)

    Gota, H.; Deng, B. H.; Gupta, D.; Kiyashko, V.; Knapp, K.; Mendoza, R.; Morehouse, M. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N.; Roche, T.; Wessel, F. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2010-10-15T23:59:59.000Z

    A two-chord {lambda}{sub IR}{approx}3.39 {mu}m He-Ne laser interferometer system was developed for a flux-coil-generated field-reversed configuration to estimate the electron density and the total temperature of the field-reversed configuration (FRC) plasma. This two-chord heterodyne interferometer system consists of a single {approx}2 mW infrared He-Ne laser, a visible ({lambda}{sub vis}{approx}632.8 nm) He-Ne laser for the alignment, a 40 MHz acousto-optic modulator, photodetectors, and quadrature phase detectors. Initial measurement was performed and the measured average electron densities were 2-10x10{sup 19} m{sup -3} at two different radial positions in the midplane. A time shift in density was observed as the FRC expands radially. The time evolution of the line-averaged density agrees with the density estimated from the in situ internal magnetic probes, based on a rigid-rotor profile model.

  6. Strengths of the resonances at 436, 479, 639, 661, and 1279 keV in the $^{22}$Ne(p,$\\gamma$)$^{23}$Na reaction

    E-Print Network [OSTI]

    Depalo, Rosanna; Ferraro, Federico; Slemer, Alessandra; Al-Abdullah, Tariq; Akhmadaliev, Shavkat; Anders, Michael; Bemmerer, Daniel; Elekes, Zoltn; Mattei, Giovanni; Reinicke, Stefan; Schmidt, Konrad; Scian, Carlo; Wagner, Louis

    2015-01-01T23:59:59.000Z

    The $^{22}$Ne(p,$\\gamma$)$^{23}$Na reaction is included in the neon-sodium cycle of hydrogen burning. A number of narrow resonances in the Gamow window dominates the thermonuclear reaction rate. Several resonance strengths are only poorly known. As a result, the $^{22}$Ne(p,$\\gamma$)$^{23}$Na thermonuclear reaction rate is the most uncertain rate of the cycle. Here, a new experimental study of the strengths of the resonances at 436, 479, 639, 661, and 1279 keV proton beam energy is reported. The data have been obtained using a tantalum target implanted with $^{22}$Ne. The strengths $\\omega\\gamma$ of the resonances at 436, 639, and 661 keV have been determined with a relative approach, using the 479 and 1279 keV resonances for normalization. Subsequently, the ratio of resonance strengths of the 479 and 1279 keV resonances was determined, improving the precision of these two standards. The new data are consistent with, but more precise than, the literature with the exception of the resonance at 661 keV, which i...

  7. Strengths of the resonances at 436, 479, 639, 661, and 1279 keV in the $^{22}$Ne(p,$?$)$^{23}$Na reaction

    E-Print Network [OSTI]

    Rosanna Depalo; Francesca Cavanna; Federico Ferraro; Alessandra Slemer; Tariq Al-Abdullah; Shavkat Akhmadaliev; Michael Anders; Daniel Bemmerer; Zoltn Elekes; Giovanni Mattei; Stefan Reinicke; Konrad Schmidt; Carlo Scian; Louis Wagner

    2015-07-14T23:59:59.000Z

    The $^{22}$Ne(p,$\\gamma$)$^{23}$Na reaction is included in the neon-sodium cycle of hydrogen burning. A number of narrow resonances in the Gamow window dominates the thermonuclear reaction rate. Several resonance strengths are only poorly known. As a result, the $^{22}$Ne(p,$\\gamma$)$^{23}$Na thermonuclear reaction rate is the most uncertain rate of the cycle. Here, a new experimental study of the strengths of the resonances at 436, 479, 639, 661, and 1279 keV proton beam energy is reported. The data have been obtained using a tantalum target implanted with $^{22}$Ne. The strengths $\\omega\\gamma$ of the resonances at 436, 639, and 661 keV have been determined with a relative approach, using the 479 and 1279 keV resonances for normalization. Subsequently, the ratio of resonance strengths of the 479 and 1279 keV resonances was determined, improving the precision of these two standards. The new data are consistent with, but more precise than, the literature with the exception of the resonance at 661 keV, which is found to be less intense by one order of magnitude. In addition, improved branching ratios have been determined for the gamma decay of the resonances at 436, 479, and 639 keV.

  8. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G [Columbia U.; Mariani, C [Columbia U.; Alcaraz-Aunion, J L [Barcelona, IFAE; Brice, S J [Fermilab; Bugel, L [MIT; Catala-Perez, J [Valencia U.; Conrad, J M [MIT; Djurcic, Z [Columbia U.; Dore, U [Banca di Roma; INFN, Rome; Finley, D A [Fermilab; Franke, A J [Columbia U.; Banca di Roma; INFN, Rome

    2011-07-28T23:59:59.000Z

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  9. Description of $?$-cluster tail in $^{8}$Be and $^{20}$Ne: Delocalization of $?$ cluster because of quantum penetration

    E-Print Network [OSTI]

    Yoshiko Kanada-En'yo

    2014-07-11T23:59:59.000Z

    We analyze the $\\alpha$-cluster wave functions in cluster states of $^8$Be and $^{20}$Ne by comparing the exact relative wave function obtained by the generator coordinate method (GCM) with various types of trial functions. For the trial functions, we adopt the fixed range shifted Gaussian of the Brink-Bloch (BB) wave function, the spherical Gaussian with the adjustable range parameter of the spherical Thosaki-Horiuchi-Schuck-R\\"opke (sTHSR), the deformed Gaussian of the deformed THSR (dTHSR), and a function with the Yukawa tail (YT). The quality of the description of the exact wave function with a trial function is judged by the squared overlap between the trial function and the GCM wave function. The better result is obtained with the sTHSR wave function than the BB wave function, and further improvement can be done with the dTHSR wave function because these wave functions can describe the outer tail better. The YT wave function gives almost the equal quality to or even better quality than the dTHSR wave function indicating that the outer tail of $\\alpha$ cluster states is characterized by the Yukawa-like tail rather than the Gaussian tail. In the weakly bound $\\alpha$ cluster states with the small $\\alpha$ separation energy and the low centrifugal and Coulomb barriers, the outer tail part is the slowly damping function described well by the quantum penetration through the effective barrier. This outer tail characterizes the almost zero-energy free $\\alpha$ gas behavior, i.e., the delocalization of cluster.

  10. A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

    2011-12-01T23:59:59.000Z

    The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

  11. Using the new lime recommendations in

    E-Print Network [OSTI]

    Balser, Teri C.

    of reagent grade CaCO3 added to each soil (3x) 2. Soil and CaCO3 were thoroughly mixed 3. Water added 4. Soil

  12. Lime and Phosphoric Acid Requirements for Chicks.

    E-Print Network [OSTI]

    Sherwood, R. M. (Ross Madison)

    1932-01-01T23:59:59.000Z

    . Magee, M. S., Farm Management Jeanne F. DeMottier, Asst. Chemist Rural Home Research : R. L. Schwartz, B. S., Asst. Chemist Jesse Wh'itacre, Ph. D., Chief C. M. Pounders. B. S., Asst. Chemist Mary Anna Grimes, M. S.. Textiles Horticulture : Elizabeth...

  13. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    antielectron-neutrino candidate events in antineutrino mode that is quite consistent with neutrino oscillations at m2 1 eV2 and with the LSND oscillation signal 2. In...

  14. Interconnect Issues in NE

    Broader source: Energy.gov [DOE]

    Presentation covers interconnect issues in the Northeast and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  15. MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625Data ShowCDevelopment33.0Minesν µ Charged

  16. MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625Data ShowCDevelopment33.0Minesν µ

  17. MiniBooNE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino mode fit in 200 MeV6 Months Later

  18. UPdate THE NE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity3

  19. NE Blog Archive

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology ProjectEnergyNAICSblog-archive 1000

  20. NE Press Releases

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 Mars Science

  1. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay EvaluatedMgNNap,

  2. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay

  3. 20Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay

  4. 20Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014Energy,F β--Decay

  5. 625 Marion St. NE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 U . S . D E 25 Marion

  6. NE-23 W

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TACi+J-UN>:-1. ,-

  7. BooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5, 2011

  8. BooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5, 2011Experiment

  9. BooNE: Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewindParticle Identification (PID)

  10. 18Ne.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X)p, X)83BCFMgNNe

  11. 18Ne_78.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isN Ground-State Decay Evaluated Dataargeα, X)p, X)83BCFMgNNe

  12. Alpha-Transfer Reaction O-16(c-12,be-8gs)ne-20 - Key Process in the C-12(o-16,alpha) Reaction

    E-Print Network [OSTI]

    Murakami, T.; Ungricht, E.; Lui, YW; Mihara, Y.; Takada, E.; Tribble, Robert E.

    1985-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 32, NUMBER 5 NOVEMBER 1985 Alpha transfer reaction '60(' C,SBes, )20Ne: Key process in the ' C('60,a) reaction T. Murakami, * E. Ungricht, Y.-Vf. Lui, Y. Mihara, ~ E. Takada, ~ and R. E. Tribble Cyclotron Institute.... ~T. Murakami, E. Ungricht, N. Takahashi, Y.-W. Lui, Y. Mihara, R. E. Neese, E. Takada, D. M. Tanner, R. E. Trib- ble, and K. Nagatani, Phys. Lett. 1208, 319 (1983); Phys. Rev. C 29, 847 (1984). K. Nagatani, T. Shimoda, D. Tanner, R. Tribble, and T...

  13. A First Comparison of the responses of a He4-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

    E-Print Network [OSTI]

    Jebali, R; Annand, J R M; Chandra, R; Davatz, G; Fissum, K G; Friederich, H; Gendotti, U; Hall-Wilton, R; Hkansson, E; Kanaki, K; Lundin, M; Murer, D; Nilsson, B; Rosborg, A; Svensson, H

    2015-01-01T23:59:59.000Z

    A first comparison has been made between the pulse-shape discrimination characteristics of a novel He4-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, the He4-based detector registered a maximum scintillation-light yield of 750 keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750 keVee was excellent in the case of the He4-based detector, and above 750 keVee its signal was unambiguously neutron.

  14. A First Comparison of the responses of a He4-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

    E-Print Network [OSTI]

    R. Jebali; J. Scherzinger; J. R. M. Annand; R. Chandra; G. Davatz; K. G. Fissum; H. Friederich; U. Gendotti; R. Hall-Wilton; E. Hkansson; K. Kanaki; M. Lundin; D. Murer; B. Nilsson; A. Rosborg; H. Svensson

    2015-02-13T23:59:59.000Z

    A first comparison has been made between the pulse-shape discrimination characteristics of a novel He4-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, the He4-based detector registered a maximum scintillation-light yield of 750 keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750 keVee was excellent in the case of the He4-based detector, and above 750 keVee its signal was unambiguously neutron.

  15. Experimental measurements of the O15(alpha,gamma)Ne19 reaction rate and the stability of thermonuclear burning on accreting neutron stars

    E-Print Network [OSTI]

    Jacob Lund Fisker; Wanpeng Tan; Joachim Goerres; Michael Wiescher; Randall L. Cooper

    2007-05-07T23:59:59.000Z

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the accretion rate of the fuel supply and its depletion rate by nuclear burning in the hot CNO cycle and the rp-process. For accretion rates close to stable burning the burst ignition therefore depends critically on the hot CNO breakout reaction, O15(alpha,gamma)Ne19, that regulates the flow between the hot CNO cycle and the rapid proton capture process. Until recently, the O15(alpha,gamma)Ne19-reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we perform a parameter study of the uncertainty of this reaction rate and determine the astrophysical consequences of the first measurement of this reaction rate. Our results corroborate earlier predictions and show that theoretically burning remains unstable up to accretion rates near the Eddington limit, in contrast to astronomical observations.

  16. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    None

    2009-06-08T23:59:59.000Z

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  17. Dynamic screening x-ray energy shifts and collisional line broadening of 2p-1s transitions in 2 MeV/AMU H- and He-like Ne, Mg, and S ions traveling in solids

    E-Print Network [OSTI]

    Maurer, Richard Jay

    1983-01-01T23:59:59.000Z

    for reflectivity) of the np-1s and 1snp-ls peaks vs quantum number for n 2 to 6. . . . ~ . . . . . 130 CHAPTER I INTRODUCTION The earliest report of Ku x-rays from few-electron heavy iona was found in the pioneering work of Edlen and Tyzen ~ Using a vacuum.... Hopkins et al. 2 also observed line broadening when they measured x-rays emitted from 4 ' 0 NeV Ne moving in solid targets. The line broadening is thought to arise because of the large cross-sections for ionization, excitation, and decay processes...

  18. Recoil-Ion Momentum Distributions for Two-Photon Double Ionization of He and Ne by 44 eV Free-Electron Laser Radiation

    SciTech Connect (OSTI)

    Rudenko, A.; Moshammer, R.; Ullrich, J. [Max-Planck Advanced Study Group at CFEL, Notkestrasse 85, 22607 Hamburg (Germany); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Foucar, L.; Havermeier, T.; Smolarski, M.; Schoessler, S.; Cole, K.; Schoeffler, M.; Doerner, R. [Institut fuer Kernphysik, Universitaet Frankfurt, 60486 Frankfurt (Germany); Kurka, M.; Ergler, Th.; Kuehnel, K. U.; Jiang, Y. H.; Voitkiv, A.; Najjari, B.; Luedemann, S.; Schroeter, C. D. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kheifets, A. [Research School of Physical Sciences, Australian University, Canberra, ACT 0200 (Australia); Duesterer, S. [DESY, Notkestrasse 85, 22607 Hamburg (Germany)] (and others)

    2008-08-15T23:59:59.000Z

    Recoil-ion momentum distributions for two-photon double ionization of He and Ne (({Dirac_h}/2{pi}){omega}=44 eV) have been recorded with a reaction microscope at FLASH (the free-electron laser at Hamburg) at an intensity of {approx}1x10{sup 14} W/cm{sup 2} exploring the dynamics of the two fundamental two-photon-two-electron reaction pathways, namely, sequential and direct (or nonsequential) absorption of the photons. We find strong differences in the recoil-ion momentum patterns for the two mechanisms pointing to the significantly different two-electron emission dynamics and thus provide serious constraints for theoretical models.

  19. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01T23:59:59.000Z

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  20. Please cite this article in press as: Otero, I., et al., Loss of water availability and stream biodiversity under land abandonment and climate change in a Mediterranean catchment (Olzinelles, NE Spain). Land Use Policy (2010), doi:10.1016/j.landusepol.201

    E-Print Network [OSTI]

    Gracia, Carlos

    biodiversity under land abandonment and climate change in a Mediterranean catchment (Olzinelles, NE Spain under land abandonment and climate change in a Mediterranean catchment (Olzinelles, NE Spain) Iago-cover change Warming Mediterranean catchment Water courses Aquatic fauna a b s t r a c t In the north rim

  1. Properties of resonant states in 18Ne relevant to key 14O(alpha,p)17F breakout reaction in type I x-ray bursts

    E-Print Network [OSTI]

    J. Hu; J. J. He; A. Parikh; S. W. Xu; H. Yamaguchi; D. Kahl; P. Ma; J. Su; H. W. Wang; T. Nakao; Y. Wakabayashi; T. Teranishi; K. I. Hahn; J. Y. Moon; H. S. Sung; T. Hashimoto; A. A. Chen; D. Irvine; C. S. Lee; S. Kubono

    2014-03-10T23:59:59.000Z

    The $^{14}$O($\\alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts. The resonant properties in the compound nucleus $^{18}$Ne have been investigated through resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by using three ${\\Delta}$E-E silicon telescopes at laboratory angles of $\\theta$$_{lab}$$\\approx$3$^\\circ$, 10$^\\circ$ and 18$^\\circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions. Based on an $R$-matrix analysis, $J^{\\pi}$=1$^-$ was firmly assigned to the 6.15-MeV state. This state dominates the thermonuclear $^{14}$O($\\alpha$,$p$)$^{17}$F rate below 1 GK. We have also confirmed the existence and spin-parities of three states between 6.1 and 6.4 MeV. As well, a possible new excited state in $^{18}$Ne was observed at $E_{x}$=6.85$\\pm$0.11 MeV and tentatively assigned as $J$=0. This state could be the analog state of the 6.880 MeV (0$^{-}$) level in the mirror nucleus $^{18}$O, or a bandhead state (0$^+$) of the six-particle four-hole (6$p$-4$h$) band. A new thermonuclear rate of the $^{14}$O($\\alpha$,$p$)$^{17}$F reaction has been determined, and its astrophysical impact has been examined within the framework of one-zone x-ray burst postprocessing calculations.

  2. Meeting Name Score Rank Grant Reference Grant Holder Research Organisation Project Title Call Panel A 10 1 NE/L011328/1 Christopher Davies University of Leeds A New Energy Budget for Earth's Core and

    E-Print Network [OSTI]

    Meeting Name Score Rank Grant Reference Grant Holder Research Organisation Project Title Call Panel Rethinking carbonate diagenesis: clues to past carbon cycling from an overlooked carbon sink IRF OCT13 Panel of Criegee Biradical Chemistry IRF OCT13 Panel B 8 3 NE/L011166/1 James Brearley NERC British Antarctic

  3. Multiphoton ionization and high-order harmonic generation of He, Ne, and Ar atoms in intense pulsed laser fields: Self-interaction-free time-dependent density-functional theoretical approach

    E-Print Network [OSTI]

    Chu, Shih-I; Tong, Xiao-Min

    2001-06-12T23:59:59.000Z

    We present a detailed study of the multiphoton ionization and high-order harmonic generation (HHG) processes of rare-gas atoms (He, Ne, and Ar) in intense pulsed laser fields by means of a self-interaction-free time-dependent density...

  4. This work was sponsored by the Department of Energy Grant DE-FG02-86NE379691 Reprint of Proceedings of the 1990 IEEE International Conference on Robotics and Automation,

    E-Print Network [OSTI]

    Borenstein, Johann

    This work was sponsored by the Department of Energy Grant DE-FG02-86NE379691 Page 572 Reprint uses a two-dimensional Cartesian Histogram Grid as a world model. This world model is updated that is constructed around the robot's momentary location. Each sector in the Polar Histogram holds the polar obstacle

  5. Extracting the asymptotic normalization coefficients in neutron transfer reactions to determine the reaction rates for 22Mg(p,gamma)23AL and 17F(p,gamma)18Ne

    E-Print Network [OSTI]

    Al-Abdullah, Tariq Abdalhamed

    2009-05-15T23:59:59.000Z

    side of the scintillator (PMR) signal are shown in the left and middle pictures, respec- tively. At right, the two dimensional ?E-Er spectrum shows the quality of the particle identification obtained. The position of 23Ne is identified by the circle...

  6. Some conclusive considerations on the comparison of the ICARUS nu_mu to nu_e oscillation search with the MiniBooNE low-energy event excess

    E-Print Network [OSTI]

    M. Antonello; B. Baibussinov; P. Benetti; F. Boffelli; A. Bubak; E. Calligarich; S. Centro; A. Cesana; K. Cieslik; D. B. Cline; A. G. Cocco; A. Dabrowska; A. Dermenev; A. Falcone; C. Farnese; A. Fava; A. Ferrari; D. Gibin; S. Gninenko; A. Guglielmi; M. Haranczyk; J. Holeczek; M. Kirsanov; J. Kisiel; I. Kochanek; J. Lagoda; S. Mania; A. Menegolli; G. Meng; C. Montanari; S. Otwinowski; P. Picchi; F. Pietropaolo; P. Plonski; A. Rappoldi; G. L. Raselli; M. Rossella; C. Rubbia; P. Sala; A. Scaramelli; F. Sergiampietri; D. Stefan; R. Sulej; M. Szarska; M. Terrani; M. Torti; F. Varanini; S. Ventura; C. Vignoli; H. Wang; X. Yang; A. Zalewska; A. Zani; K. Zaremba

    2015-02-17T23:59:59.000Z

    A sensitive search for anomalous LSND-like nu_mu to nu_e oscillations has been performed by the ICARUS Collaboration exposing the T600 LAr-TPC to the CERN to Gran Sasso (CNGS) neutrino beam. The result is compatible with the absence of additional anomalous contributions giving a limit to oscillation probability of 3.4E-3 and 7.6E-3 at 90% and 99% confidence levels respectively showing a tension between these new limits and the low-energy event excess (200 < E_nu QE < 475 MeV) reported by MiniBooNE Collaboration. A more detailed comparison of the ICARUS data with the MiniBooNE low-energy excess has been performed, including the energy resolution as obtained from the official MiniBooNE data release. As a result the previously reported tension is confirmed at 90% C.L., suggesting an unexplained nature or an otherwise instrumental effect for the MiniBooNE low energy event excess

  7. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    SciTech Connect (OSTI)

    Greg Weirs; Hyung Lee

    2011-09-01T23:59:59.000Z

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors.

  8. MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses

    E-Print Network [OSTI]

    Srubabati Goswami; Werner Rodejohann

    2007-10-08T23:59:59.000Z

    The MiniBooNE and LSND experiments are compatible with each other when two sterile neutrinos are added to the three active ones. In this case there are eight possible mass orderings. In two of them both sterile neutrinos are heavier than the three active ones. In the next two scenarios both sterile neutrinos are lighter than the three active ones. The remaining four scenarios have one sterile neutrino heavier and another lighter than the three active ones. We analyze all scenarios with respect to their predictions for mass-related observables. These are the sum of neutrino masses as constrained by cosmological observations, the kinematic mass parameter as measurable in the KATRIN experiment, and the effective mass governing neutrinoless double beta decay. It is investigated how these non-oscillation probes can distinguish between the eight scenarios. Six of the eight possible mass orderings predict positive signals in the KATRIN and future neutrinoless double beta decay experiments. We also remark on scenarios with three sterile neutrinos. In addition we make some comments on the possibility of using decays of high energy astrophysical neutrinos to discriminate between the mass orderings in presence of two sterile neutrinos.

  9. Production of cold beams of ND{sub 3} with variable rotational state distributions by electrostatic extraction of He and Ne buffer-gas-cooled beams

    SciTech Connect (OSTI)

    Twyman, Kathryn S.; Bell, Martin T.; Heazlewood, Brianna R.; Softley, Timothy P., E-mail: tim.softley@chem.ox.ac.uk [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA (United Kingdom)

    2014-07-14T23:59:59.000Z

    The measurement of the rotational state distribution of a velocity-selected, buffer-gas-cooled beam of ND{sub 3} is described. In an apparatus recently constructed to study cold ion-molecule collisions, the ND{sub 3} beam is extracted from a cryogenically cooled buffer-gas cell using a 2.15 m long electrostatic quadrupole guide with three 90 bends. (2+1) resonance enhanced multiphoton ionization spectra of molecules exiting the guide show that beams of ND{sub 3} can be produced with rotational state populations corresponding to approximately T{sub rot} = 918 K, achieved through manipulation of the temperature of the buffer-gas cell (operated at 6 K or 17 K), the identity of the buffer gas (He or Ne), or the relative densities of the buffer gas and ND{sub 3}. The translational temperature of the guided ND{sub 3} is found to be similar in a 6 K helium and 17 K neon buffer-gas cell (peak kinetic energies of 6.92(0.13) K and 5.90(0.01) K, respectively). The characterization of this cold-molecule source provides an opportunity for the first experimental investigations into the rotational dependence of reaction cross sections in low temperature collisions.

  10. Speed limit of frozen pellets (H{sub 2}, D{sub 2}, and Ne) through single-loop and multiloop tubes and implications for fusion plasma research

    SciTech Connect (OSTI)

    Combs, S. K.; Griffith, A. E.; Foust, C. R.

    2001-01-01T23:59:59.000Z

    Frozen pellets (H{sub 2}, D{sub 2}, and Ne at 8 K) of nominal 2.7 mm diam were shot through a coiled tube (single loop of {approx}0.6 m diam and 8.5 mm bore), and the speed limit for survival was recorded for each pellet type. Intact H{sub 2} pellets were observed at speeds approaching 500 m/s; but neon pellets could not survive much more than 100 m/s. The speed limit for D{sub 2} pellets fell in the middle at {approx}300 m/s. Some D{sub 2} pellets were also shot through a 30 m coiled tube consisting of 11 loops (average loop diameter of {approx}0.8 m), and a speed limit of {approx}100 m/s was observed. Injection of frozen H{sub 2} or D{sub 2} pellets is commonly used for core fueling of magnetically confined plasmas, and frozen neon pellets are sometimes used for impurity transport studies in similar experiments. The results from these tests add to a pellet database for injection lines with single- and complex multiple-curved guide tubes. All of the information to date suggests that frozen pellets can be delivered reliably from a pellet source to any accessible plasma location on a fusion device via ''roller-coaster'' tubes as long as the pellet speed is maintained below a threshold limit.

  11. Configuration studies for a cubic-kilometre deep-sea neutrino telescope - KM3NeT - with NESSY, a fast and flexible approach

    E-Print Network [OSTI]

    J. Carr; D. Dornic; F. Jouvenot; G. Maurin; for the KM3NeT consortium

    2007-11-14T23:59:59.000Z

    Theoretical predictions for neutrino fluxes indicate that km$^{3}$ scale detectors are needed to detect certain astrophysical sources. The three Mediterranean experiments, ANTARES, NEMO and NESTOR are working together on a design study, KM3NeT, for a large deep-sea neutrino telescope. A detector placed in the Mediterranean Sea will survey a large part of the Galactic disc, including the Galactic Centre. It will complement the IceCube telescope currently under construction at the South Pole. Furthermore, the improved optical properties of sea water, compared to Antarctic ice, will allow a better angular resolution and hence better background rejection. The main work presented in this paper is to evaluate different km$^{3}$ scale detector geometries in order to optimize the muon neutrino sensitivity between 1 and 100 TeV. For this purpose, we have developed a detailed simulation based on the {\\it Mathematica} software - for the muon track production, the light transmission in water, the environmental background and the detector response. To compare different geometries, we have mainly used the effective neutrino area obtained after the full standard reconstruction chain.}

  12. TARGET FRAGMENT ENERGIES AND MOMENTA IN THE REACTION OF 4.8 GeV {sup 12}C AND 5.0 GeV {sup 20}Ne WITH {sup 238}U

    SciTech Connect (OSTI)

    Loveland, W.; Luo, Cheng; McGaughey, P. L.; Morrissey, D. J.; Seaborg, G. T.

    1980-10-01T23:59:59.000Z

    Target fragment recoil properties were measured using the thick target-thick catcher technique for the interaction of 4.8 GeV {sup 12}C and 5.0 GeV {sup 20}Ne with {sup 238}U. The target fragment energies and momenta are very similar for the reaction of 4.8 GeV (400 MeV/A) {sup 12}C and 5.0 GeV (250 MeV/A) {sup 20}Ne with {sup 238}U. In the complex variation of fragment momenta with their N/Z ratio, one finds evidence suggesting the existence of several mechanisms leading to the formation of the target fragments. Comparison of these results with the predictions of the intranuclear cascade model of Yariv and Fraenkel and the firestreak model shows that both model predictions grossly overestimate the target fragment momenta.

  13. Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy

    E-Print Network [OSTI]

    Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy edited by MoRteN JastRup #12;Energy for the future #12;Energy for the future with Ris from nuclear power to sustainable energy Translated from 'Energi til fremtiden med Ris fra

  14. BooNE versus MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5,

  15. et 19 octob NE (Observa

    E-Print Network [OSTI]

    van Tiggelen, Bart

    recomm sur la p préfére mécanis sont les OPALIN mère/e enfants temps compor l'enviro entretie Le collo vie afin d leur impact a impliqué dès le 7e mo temps jusq utils ont é entaires, le cipants (se

  16. Topographic Map Index NE Longitude

    E-Print Network [OSTI]

    Groppi, Christopher

    15' Aiquina Toconce Cerros de Tocorpuri 2230' Aguada de la Teca Barros Arana Ro Grande Putana 2245' Llano

  17. BIBLIOGRAPHIE GE NE RALE MONOGRAPHIES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Michel (dir.), Normes, normes juridiques, normes pénales, pour une sociologie des frontières, Paris, L'Harmattan van Outrive, L'Harmattan, 1998, p. 143. DELMAS-MARTY Mireille, Union Européenne et droit pénal

  18. MiniBooNE Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino mode fit in 200 MeV -Requires

  19. BooNE Neutrino Oscillations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuel RetreatsforBoard of

  20. BooNE News Articles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5, 2011ExperimentNews

  1. BooNE: Interesting Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewindParticle Identification (PID) We

  2. BooNE: Picture Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewindParticle Identification (PID) WePicture

  3. ICARUS/MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall CInby J. Stöhr

  4. Research Needs for Fusion-Fission Hybrid Systems. Report of the Research Needs Workshop (ReNeW) Gaithersburg, Maryland, September 30 - October 2, 2009

    SciTech Connect (OSTI)

    None

    2009-09-30T23:59:59.000Z

    Largely in anticipation of a possible nuclear renaissance, there has been an enthusiastic renewal of interest in the fusion-fission hybrid concept, driven primarily by some members of the fusion community. A fusion-fission hybrid consists of a neutron-producing fusion core surrounded by a fission blanket. Hybrids are of interest because of their potential to address the main long-term sustainability issues related to nuclear power: fuel supply, energy production, and waste management. As a result of this renewed interest, the U.S. Department of Energy (DOE), with the participation of the Office of Fusion Energy Sciences (OFES), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA), organized a three-day workshop in Gaithersburg, Maryland, from September 30 through October 2, 2009. Participants identified several goals. At the highest level, it was recognized that DOE does not currently support any R&D in the area of fusion-fission hybrids. The question to be addressed was whether or not hybrids offer sufficient promise to motivate DOE to initiate an R&D program in this area. At the next level, the workshop participants were asked to define the research needs and resources required to move the fusion-fission concept forward. The answer to the high-level question was given in two ways. On the one hand, when viewed as a standalone concept, the fusion-fission hybrid does indeed offer the promise of being able to address the sustainability issues associated with conventional nuclear power. On the other hand, when participants were asked whether these hybrid solutions are potentially more attractive than contemplated pure fission solutions (that is, fast burners and fast breeders), there was general consensus that this question could not be quantitatively answered based on the known technical information. Pure fission solutions are based largely on existing both fusion and nuclear technology, thereby prohibiting a fair side-by-side comparison. Another important issue addressed at the conference was the time scale on which long-term sustainability issues must be solved. There was a wide diversity of opinion and no consensus was possible. One group, primarily composed of members of the fission community, argued that the present strategies with respect to waste management (on-site storage) and fuel supply (from natural uranium) would suffice for at least 50 years, with the main short-term problem being the economics of light water reactors (LWRs). Many from the fusion community believed that the problems, particularly waste management, were of a more urgent nature and that we needed to address them sooner rather than later. There was rigorous debate on all the issues before, during, and after the workshop. Based on this debate, the workshop participants developed a set of high-level Findings and Research Needs and a companion set of Technical Findings and Research Needs. In the context of the Executive Summary it is sufficient to focus on the high-level findings which are summarized.

  5. Climate VISION: Private Sector Initiatives: Lime: Work Plans

    Office of Scientific and Technical Information (OSTI)

    implementation actions to reduce greenhouse gas emission intensity from fuel combustion per ton of product by 8% between 2002 and 2012. NLA members, with the assistance of...

  6. Climate VISION: Private Sector Initiatives: Lime - Energy Management

    Office of Scientific and Technical Information (OSTI)

    upgrades, and savings and effectiveness of energy efficiency measures. Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey...

  7. Original article Effects of liming and gypsum regimes on chemical

    E-Print Network [OSTI]

    Boyer, Edmond

    chemistry. The natural soil was reconstituted in columns equipped with zero tension lysimeters. CaCO3, CaCO3 traitements sous forme CaCO3, CaCO3 + MgO et CaSO4, 2H2O sont appoits aux doses quivalentes en CaO de 0, 0

  8. agricultural liming techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 31 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  9. Enhancement of phosphogypsum with high lime fly ash

    E-Print Network [OSTI]

    Gregory, Chuck Alan

    1983-01-01T23:59:59.000Z

    , the effects of source size and background soil radiation were included. The quantity of radon released fzom the pile depended on the following (26): 1. The specific activity of Ra-226 in the phosphogypsum 2. The eminating power of the radon (the amount... of radon released per unit generated). 3. The atmospheric pressure 4 ~ The di f fus ion coef f ic ient, which includes the effects of 23 moisture, for the radon in the phosphogypsum. For example, high moisture content or water standing on the pile...

  10. Lime pretreatment and enzymatic hydrolysis of corn stover

    E-Print Network [OSTI]

    Kim, Se Hoon

    2005-08-29T23:59:59.000Z

    Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock...

  11. Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2012-02-14T23:59:59.000Z

    Because of widespread availability, low cost, sustainability, and potential supply far greater than that of food crops, lignocellulosic biomass is one of the most promising feedstocks for producing biofuels through fermentation processes. Among...

  12. Long-term lime pretreatment of poplar wood

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2006-04-12T23:59:59.000Z

    Lignocellulosic biomass (e.g., poplar wood) provides a unique and sustainable resource for environmentally safe organic fuels and chemicals. The core of this study is the pretreatment step involved in bioconversion processes. Pretreatment...

  13. Long-term lime pretreatment of poplar wood

    E-Print Network [OSTI]

    Sierra Ramirez, Rocio

    2006-04-12T23:59:59.000Z

    Lignocellulosic biomass (e.g., poplar wood) provides a unique and sustainable resource for environmentally safe organic fuels and chemicals. The core of this study is the pretreatment step involved in bioconversion processes. Pretreatment...

  14. Lime pretreatment and enzymatic hydrolysis of corn stover

    E-Print Network [OSTI]

    Kim, Se Hoon

    2005-08-29T23:59:59.000Z

    Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock...

  15. Climate VISION: Private Sector Initiatives: Lime: Resources and...

    Office of Scientific and Technical Information (OSTI)

    Resources & Links Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's...

  16. Enhancement of phosphogypsum with high lime fly ash

    E-Print Network [OSTI]

    Gregory, Chuck Alan

    1983-01-01T23:59:59.000Z

    Investigation. Detailed Investigation. 51 58 IV CONCLUSIONS V RECOMMENDATIONS 114 REFERENCES 115 APPENDIX A APPENDIX B APPENDIX C Historical Summary of the Wet Process Phosphoric Acid Industry. . . . . . . . . . . . . . . Hemihydrate and Hemihydrate-Dihydrate... generally exist in three different forms. 1. dihydrous (CaSO& 2H20) 2 . hemihydrous (CaSOd 1/2 H20) 3. anhydrous (CaSO ) It is these crystals, called phosphogypsum, that are filtered from the acid solution and piped to stockpiles in slurry form...

  17. Lime Energy formerly Electric City Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting Control Design Jump to:PhotonicsLihirLilyNewEnergy

  18. Effects of lime rate, lime ECCE, and B rate on rose clover and coastal bermudagrass dry matter yields

    E-Print Network [OSTI]

    Villavicencio Batres, Rodolfo

    1990-01-01T23:59:59.000Z

    and is frequently observed in Al-treated plants (Alam and Adams, 1979). Plant P concentration was greater in the roots but lower in tops of AI-treated plants (0. 2 and 0. 6 mM of AI2(SO4)3) than the control. The roots of Al-treated plants were thick and brown...

  19. UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE

    E-Print Network [OSTI]

    of quicklime, the destructi,e effect of which is produced by direct cantact. Particles of the chemicaI pread usually follow in a short time. Once spread o,er the oyster beds. the lime retains its effectiveness- ne_ to oysters and many other commercial species all indicate that it is a practical weapon for use

  20. Nucleosynthesis in O-Ne-Mg Supernovae

    SciTech Connect (OSTI)

    Hoffman, R D; Janka, H; Muller, B

    2007-12-18T23:59:59.000Z

    We have studied detailed nucleosynthesis in the shocked surface layers of an oxygen-neon-magnesium core collapse supernova with an eye to determining whether the conditions are suitable for r-process nucleosynthesis. We find no such conditions in an unmodified model, but do find overproduction of N=50 nuclei (previously seen in early neutron-rich neutrino winds) in amounts that, if ejected, would pose serious problems for Galactic chemical evolution.

  1. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 6, 2009 Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects U.S. Energy Secretary Steven Chu today announced the selection of 71...

  2. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy's Office of Nuclear Energy today announced two new fiscal year 2012 Funding Opportunity Announcements to support university and college efforts to build or...

  3. Microsoft PowerPoint - NE- Milton

    Broader source: Energy.gov (indexed) [DOE]

    from aging nuclear workforce to next generation of workers. 195725 (4) Nuclear Energy University Program - Funding Opportunities Support R&D activities at universities and...

  4. NE Oregon Wildlife Project "Precious Lands"

    E-Print Network [OSTI]

    Agricultural Aspen Cliff/Talus Federally Listed Species: Snake River Steelhead, Spalding's Catchfly. Additional Grasslands: Western Meadowlark Canyon Shrublands: Bighorn Sheep Quaking Aspen: None Aquatic (Joseph Cr

  5. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    122 million over five years to establish and operate a new Nuclear Energy Modeling and Simulation Energy Innovation Hub. May 20, 2010 Secretary Chu Announces 38 Million for 42...

  6. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of U.S. Nuclear Reactors The Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will...

  7. Microsoft Word - CoyoteCreekNE_CX

    Broader source: Energy.gov (indexed) [DOE]

    Project Manager - KEWM-4 Proposed Action: Coyote Creek Property Acquisition Funding Fish and Wildlife Project No.: 2011-003-00, Contract BPA-007521 Categorical Exclusion...

  8. neWorldWeek DebatInformation&

    E-Print Network [OSTI]

    Sussex, University of

    lives of bumblebees. Save our Bumblebees Talk 2-3pm Jubilee LT Celebrate Holi with Rangoli, music global poverty and its relationship with international trade and migra- tion. Globalisation and Global Poverty 6-7pm Jubilee 144 A showcase of our student groups' hard work from throughout the year. Ticketed

  9. DOE/NE robotics for advanced reactors

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document details activities during this reporting period. The Michigan group has developed, built, and tested a general purpose interface circuit for DC motors and encoders. This interface is based on an advanced microchip, the HCTL 1100 manufactured by Hewlett Packard. The HCTL 1100 can be programmed by a host computer in real-time, allowing sophisticated motion control for DC motors. At the University of Florida, work on modeling the details of the seismic isolators and the jack mechanism has been completed. A separate 3D solid view of the seismic isolator floor, with the full set of isolators shown in detail, has been constructed within IGRIP. ORNL led the robotics team at the ALMR review meeting. Discussions were held with General Electric (GE) engineers and contractors on the robotic needs for the ALMR program. The Tennessee group has completed geometric modeling of the Andros Mark VI mobile platform with two fixed tracks and for articulated tracks, the give degree-of-freedom manipulator and its end-effector, and two cameras. A graphical control of panel was developed which allow the user to operate the simulated robot. The University of Texas team visited ORNL to complete the implementation of computed-torque controller on the CESARm manipulator. This controller was previously developed and computer simulations were carried out specifically for the CESARm robot.

  10. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Research Grants and Next Steps on Used Fuel Recommendations January 31, 2012 New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants The U.S. Department of...

  11. CRISTINA L. ARCHER (ne Cristina Lozej)

    E-Print Network [OSTI]

    Firestone, Jeremy

    : Saturation wind power potential and its implications for wind energy. Proceedings of the National Academy: California offshore wind energy potential. Renewable Energy, doi:10.1016/j.renene.2009.11.022. Archer, C. L: Exploring wind energy potential off the California Coast. Geophysical Research Letters, doi:10.1029/2008GL

  12. NE Blog Archive | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMissionofofProjectBlog Archive

  13. NE Press Releases | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMissionofofProjectBlog

  14. A=16Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07) (See77AJ02) (See the Isobar Diagram

  15. A=16Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07) (See77AJ02) (See the Isobar

  16. A=16Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07) (See77AJ02) (See the Isobar6AJ04)

  17. A=16Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07) (See77AJ02) (See the

  18. A=16Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07) (See77AJ02) (See the71AJ02) (See

  19. A=17Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02) (See93TI07)77AJ02)

  20. A=17Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02)

  1. A=17Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02)6AJ04) (See the Isobar

  2. A=17Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02)6AJ04) (See the

  3. A=17Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01)93TI07)71AJ02)71AJ02)6AJ04) (See the71AJ02)

  4. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07) (See1959AJ76) (Not

  5. A=18Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07) (See1959AJ76)

  6. A=18Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07) (See1959AJ76)83AJ01)

  7. A=18Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07)

  8. A=18Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07)95TI07) (See Energy Level

  9. A=18Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07)95TI07) (See Energy

  10. A=19Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02) (Not72AJ02)Mg,3AJ01)1959AJ76) (See

  11. A=19Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02) (Not72AJ02)Mg,3AJ01)1959AJ76)

  12. A=19Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02)

  13. A=19Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02)7AJ02) (See Energy Level Diagrams

  14. A=19Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02)7AJ02) (See Energy Level

  15. A=19Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not87AJ02)7AJ02) (See Energy Level72AJ02)

  16. A=20Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar72AJ02) (See Energy

  17. A=20Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar72AJ02) (See Energy3AJ01)

  18. A=20Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar72AJ02) (See

  19. A=20Ne (1998TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar72AJ02) (See98TI06) (See

  20. A=20Ne (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar72AJ02) (See98TI06)

  1. A=20Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07)7AJ02) (See the Isobar72AJ02)

  2. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625Data ShowCDevelopment33.0Minesν µMoriond

  3. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625Data ShowCDevelopment33.0Minesν

  4. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625Data ShowCDevelopment33.0MinesνNNN'10 Recent

  5. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino mode fit in 200 MeV - 3000

  6. MiniBooNE Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino mode fit in 200 MeV -

  7. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino mode fit in 200 MeV -

  8. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino mode fit in 200 MeV -

  9. MiniBooNE Steve Brice Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino mode fit in 200 MeV 17 May 2006 1

  10. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints of Fasterdata

  11. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints of FasterdataCollaboration (*) The

  12. The MicroBooNE Experiment - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPoints of

  13. NE - Nuclear Energy - Energy Conservation Plan

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology ProjectEnergyNAICS

  14. NE Blog Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology ProjectEnergyNAICSblog-archive

  15. NE Blog Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology

  16. NE Blog Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 Mars Science Laboratory,

  17. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 Mars ScienceJune 12,

  18. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 Mars ScienceJune

  19. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 Mars ScienceJuneOctober

  20. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 Mars

  1. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 MarsJuly 14, 2010 U.S.,

  2. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 MarsJuly 14, 2010

  3. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 MarsJuly 14,

  4. NE Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - TechnologyJanuary 29, 2008 MarsJuly 14,May 7, 2009

  5. A=10Ne (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober2004TI06) (See8AJ01)2004TI06)8AJ01)79AJ01)

  6. A=10Ne (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober2004TI06)

  7. A=10Ne (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober2004TI06)8AJ01) (Not illustrated) Not

  8. A=10Ne (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober2004TI06)8AJ01) (Not illustrated)

  9. A=11Ne (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not illustrated) 11He has not85AJ01)0AJ01) (Not

  10. A=11Ne (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not illustrated) 11He has not85AJ01)0AJ01)

  11. A=11Ne (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not illustrated) 11He has not85AJ01)0AJ01)90AJ01)

  12. A=11Ne (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not illustrated) 11He has

  13. A=12Ne (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not illustrated)0AJ01) (Not illustrated) This

  14. A=12Ne (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not illustrated)0AJ01) (Not illustrated) This5AJ01)

  15. A=12Ne (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not illustrated)0AJ01) (Not illustrated)

  16. A=13Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See Energy Level Diagrams91AJ01)

  17. A=13Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See Energy Level Diagrams91AJ01)6AJ01)

  18. A=13Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See Energy Level

  19. A=13Ne (76AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See Energy Level76AJ04) (Not illustrated)

  20. A=14Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See0AJ04) (See Energy Level91AJ01)

  1. A=14Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See0AJ04) (See Energy Level91AJ01)6AJ01)

  2. A=14Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01) (Not6AJ01) (See0AJ04) (See Energy

  3. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TAC U.S.4

  4. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TAC U.S.4 9% L'Enfam Plaza,

  5. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 August 2008 Office7-TAC U.S.4 9% L'Enfam

  6. REPLY TO ATTN OF NE-301

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct :

  7. About the MicroBooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome toAboutAboutUs AboutAbout

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuel RetreatsforBoard

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuel

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuelcollaboration Find here

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuelcollaboration Find

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuelcollaboration FindFor

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuelcollaboration FindForat

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorABisfuelcollaboration

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtual Tour This series of pages

  17. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5,

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5,Detecting Neutrinos

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5,Detecting

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5,DetectingGoals of

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5,DetectingGoals

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5,DetectingGoalsin a

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December 5,DetectingGoalsin

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|December

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|DecemberCalibration methods

  6. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|DecemberCalibration

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|DecemberCalibrationDetector The

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator|DecemberCalibrationDetector

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewindParticle Identification (PID) We use hit

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewindParticle Identification (PID) We use

  12. Recent Results from MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaisingRecent Publications Recent

  13. MPO.NE7Summit.120320.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, InaprilU . S . D e p aAND

  14. MicroBooNE Project Monthly Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatra EngineeringMicroBooNEProject

  15. MicroBooNE Project Quarterly Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatra

  16. CA Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5 L' E&nt plom.

  17. M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m\Ll 1vr*M O

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousin -in-lawHomeAbout BooNEvs

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousin -in-lawHomeAbout

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousin -in-lawHomeAboutBooster

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousin

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticles FermiNews

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticles FermiNewsPicture

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticles

  5. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticlesData Releases This

  6. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticlesData Releases

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticlesData ReleasesPlots

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticlesData

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticlesDataProgress in

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticlesDataProgress

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar energy(cousinArticlesDataProgressAuthor

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Site MapSolar

  13. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe Future isThePlease clickThe DOE

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here Western PagesPages home SignA

  15. Djurcic_MiniBooNE_PANIC2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers SubfoldersU.S.PVDividendReport Zelimir

  16. MiniBooNE Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7, atMineralMuonSections Group

  17. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7, atMineralMuonSections GroupThe

  18. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7, atMineralMuonSectionsνμNeutrino

  19. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,

  20. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,A Search for muon neutrino and