National Library of Energy BETA

Sample records for ne ar ia

  1. Oscillations results from the MiniBooNE experiment Alexis Aguilar-Arévalo (ICN-UNAM),

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillations results from the MiniBooNE experiment Alexis Aguilar-Arévalo (ICN-UNAM), for the MiniBooNE collaboration SILAFAE 2010 10 December 2010, Valparaíso, Chile 2 Outlook MiniBooNE Motivation MiniBooNE Description Summary of past Results New Antineutrino Result Future outlook Conclusions A. Aguilar-Arévalo (ICN-UNAM) SILAFAE 2010, Valparaíso, Chile December 6-12, 2010 MiniBooNE Collaboration 3 MiniBooNE motivation ● LSND experiment (Los Alamos) ● Excess of  e in a  

  2. Rotational and angular distributions of NO products from NO-Rg(Rg = He, Ne, Ar) complex photodissociation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heather L. Holmes-Ross; Hall, Gregory E.; Valenti, Rebecca J.; Yu, Hua -Gen; Lawrance, Warren D.

    2016-01-29

    In this study, we present the results of an investigation into the rotational and angular distributions of the NO A~ state fragment following photodissociation of the NO-He, NO-Ne and NO-Ar van der Waals complexed excited via the A~ ← X~ transition. For each complex the dissociation is probed for several values of Ea, the available energy above the dissociation threshold.

  3. Theoretical investigation of HNgNH{sub 3}{sup +} ions (Ng = He, Ne, Ar, Kr, and Xe)

    SciTech Connect (OSTI)

    Gao, Kunqi; Sheng, Li

    2015-04-14

    The equilibrium geometries, harmonic frequencies, and dissociation energies of HNgNH{sub 3}{sup +} ions (Ng = He, Ne, Ar, Kr, and Xe) were investigated using the following method: Becke-3-parameter-Lee-Yang-Parr (B3LYP), Boese-Matrin for Kinetics (BMK), second-order Mller-Plesset perturbation theory (MP2), and coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)). The results indicate that HHeNH{sub 3}{sup +}, HArNH{sub 3}{sup +}, HKrNH{sub 3}{sup +}, and HXeNH{sub 3}{sup +} ions are metastable species that are protected from decomposition by high energy barriers, whereas the HNeNH{sub 3}{sup +} ion is unstable because of its relatively small energy barrier for decomposition. The bonding nature of noble-gas atoms in HNgNH{sub 3}{sup +} was also analyzed using the atoms in molecules approach, natural energy decomposition analysis, and natural bond orbital analysis.

  4. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that ... R. Dharmapalan et al. MiniBooNE Collaboration, arXiv:1211.2258 hep-ex (2012).

  5. Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N{sub 2}, Ar

    SciTech Connect (OSTI)

    Kozlova, Olga; Guerandel, Stephane; Clercq, Emeric de

    2011-06-15

    The ground-state hyperfine resonance line of alkali-metal atoms is frequency shifted in the presence of noble or molecular gases. The buffer gases used in vapor-cell atomic clocks thus induce a temperature-dependent shift of the clock transition frequency. We report on measurements of the pressure and temperature dependence of the Cs clock transition frequency in the presence of Ne, Ar, and N{sub 2} buffer gases. The pressure in the sealed glass vapor cells is measured by means of the shift of the Cs D{sub 1} line. We have also investigated the temperature dependence of the optical shift. From these measurements, we infer the pressure and temperature coefficients of the hyperfine frequency shift. It is then possible to predetermine gas mixture ratios that cancel the temperature sensitivity at a given temperature. This prediction is confirmed experimentally for Ar-N{sub 2} mixtures. These results can be useful for improving the long-term frequency stability of Cs vapor-cell clocks.

  6. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1939WH02: 19Ne. 1952SC15: 19Ne. 1954JO21: 19Ne. 1954NA29: 19Ne. 1957AL29: 19Ne. 1957PE12: 19Ne. 1958WE25: 19Ne. 1960JA12: 19Ne; measured not abstracted; deduced nuclear properties. 1960WA04: 19Ne; measured not abstracted; deduced nuclear properties. 1962EA02: 19Ne; measured not abstracted; deduced nuclear properties. 1964VA23: 19Ne; measured not abstracted; deduced nuclear properties. 1968GO10: 19Ne; measured T1/2. 1972LE33: 19Ne; measured K/β+ ratios.

  7. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Excess in the MiniBooNE Search for bar numu rightarrow bar nue Oscillations", arXiv:1007.1150 hep-ex,Phys.Rev.Lett.105,181801 (2010) The following MiniBooNE...

  8. Mutual neutralization of atomic rare-gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with atomic halide anions (Cl{sup −}, Br{sup −}, I{sup −})

    SciTech Connect (OSTI)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Johnsen, Rainer

    2014-01-28

    We report thermal rate coefficients for 12 reactions of rare gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with halide anions (Cl{sup −}, Br{sup −}, I{sup −}), comprising both mutual neutralization (MN) and transfer ionization. No rate coefficients have been previously reported for these reactions; however, the development of the Variable Electron and Neutral Density Attachment Mass Spectrometry technique makes it possible to measure the difference of the rate coefficients for pairs of parallel reactions in a Flowing Afterglow-Langmuir Probe apparatus. Measurements of 18 such combinations of competing reaction pairs yield an over-determined data set from which a consistent set of rate coefficients of the 12 MN reactions can be deduced. Unlike rate coefficients of MN reactions involving at least one polyatomic ion, which vary by at most a factor of ∼3, those of the atom-atom reactions vary by at least a factor 60 depending on the species. It is found that the rate coefficients involving light rare-gas ions are larger than those for the heavier rare-gas ions, but the opposite trend is observed in the progression from Cl{sup −} to I{sup −}. The largest rate coefficient is 6.5 × 10{sup −8} cm{sup 3} s{sup −1} for Ne{sup +} with I{sup −}. Rate coefficients for Ar{sup +}, Kr{sup +}, and Xe{sup +} reacting with Br{sub 2}{sup −} are also reported.

  9. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1954GO17: 18Ne. 1961BU05: 18Ne; measured not abstracted; deduced nuclear properties. 1961EC02: 18Ne; measured not abstracted; deduced nuclear properties. 1963FR10: 18Ne; measured not abstracted; deduced nuclear properties. 1965FR09: 18Ne; measured not abstracted; deduced nuclear properties. 1968GO05: 18Ne; measured Eγ, Iγ; deduced Iβ, log ft. 18F deduced levels, branching ratios. 1970AL11: 18Ne; measured T1/2; deduced log ft, β-branching. 1970AS06,

  10. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 hep-ex, Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu...

  11. BooNE: About BooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE Collaboration BooNE Experiment BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles BooNE photo montage Technical Information BooNE...

  12. 15Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 15Ne Adopted value: 0.59 MeV (2014WA09) Measured Mass Excess for 15Ne Adopted value: 40215 ± 69 keV (2014WA09) Measurements 2014WA09: C(17Ne, 2p)15Ne, E = 500 MeV/nucleon; measured reaction products; deduced fractional energy spectra, J, π, energy levels, atomic mass excess. 15Ne(2p); measured decay products, Ep, Ip; deduced implications for 13O + p + p system. Back to Top Back to Ground-State Decays

  13. 17Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1964MC16: 17Ne; measured not abstracted; deduced nuclear properties. 1966HA22: 17Ne; deduced log ft. 1967ES02: 17Ne; measured not abstracted; deduced nuclear properties. 1967FI10: 17Ne. 1971ESZR, 1971HA05: 17Ne; measured β-delayed proton spectra, Eγ, Iγ, T1/2, pγ-coin; deduced log ft. 17F deduced levels, antianalog state, isospin mixing. 1988BO39: 17Ne(β+p), (β+α); measured T1/2, β-delayed E(p), E(α), I(p), I(α), β(particle)-coin. 17Ne deduced

  14. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 16Ne Adopted value: 122 ± 37 keV (1993TI07) Measured Mass Excess for 16Ne Adopted value: 23996 ± 20 keV (2003AU02) Measurements 1971MAXQ: 16O(π+, π-); measured particle spectra, σ. 1977HO13: 16O(π+, π-), E = 145 MeV; measured σ; deduced Q. 16Ne deduced mass excess. 1977KEZX: 20Ne(α, 8He), E = 118 MeV; measured σ. 16Ne deduced levels, mass excess. 1978BU09: 16O(π+, π-), E = 145 MeV; measured σ. 16Ne deduced mass

  15. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the m2 1 eV2 Scale", arXiv:0704.1500 hep-ex, Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in...

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elastic cross-section paper is on the archive (arXiv:1309.7257) and has been published in Phys. Rev. D91, 012004 (2015). MiniBooNE's antineutrino charged current quasi-elastic...

  17. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Anti-Neutrino Appearance at the m2 1 eV2 Scale", arXiv:0904.1958 hep-ex, Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009...

  18. IA Experts Listing 2014 | Department of Energy

    Energy Savers [EERE]

    IA Experts Listing 2014 IA Experts Listing 2014 PDF icon IA Experts Listing January 2014 More Documents & Publications Office of International Affairs Organization Chart PI...

  19. Rolling Hills (IA) | Open Energy Information

    Open Energy Info (EERE)

    Rolling Hills (IA) Jump to: navigation, search Name Rolling Hills (IA) Facility Rolling Hills (IA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility...

  1. SciBooNE/MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ž. Pavlović Los Alamos National Laboratory Fermilab Users' Meeting, 2012 SciBooNE/MiniBooNE 2 Outline * Booster Neutrino Beamline * SciBooNE & MiniBooNE experiments * New results - MB Updated neutrino appearance analysis - MB Antineutrino appearance analysis - MB Joint Neutrino & Antineutrino appearance analysis - Joint SciBooNE/MiniBooNE numubar disappearance analysis * Future prospects 3 Booster Neutrino Beam * Horn focused beam/8GeV protons from Booster * Horn polarity → neutrino

  2. MicroBooNE Detector Stability MICROBOONE-NOTE-1013-PUB The MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Detector Stability MICROBOONE-NOTE-1013-PUB The MicroBooNE Collaboration June 30, 2016 Abstract The Micro Booster Neutrino Experiment (MicroBooNE) is designed to explore the low- energy excess in the ν e event spectrum reported by the MiniBooNE experiment [1] and to measure ν-Ar cross sections in the 1 GeV energy range. The detector is a liquid argon time projection chamber with wire readout, supplemented with a light detection system based on photo-multiplier tubes (PMTs). The

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flux The MiniBooNE neutrino flux calculations are described in detail in PRD 79, 072002 (2009) and arXiv:0806.1449 General neutrino fluxes vs true neutrino energy, for MiniBooNE: image:muon neutrino flux image:electron neutrino flux image:final muon and electron neutrino fluxes π+ production Data sets: M.G. Catanesi et al. [HARP Collaboration], ``Measurement of the production cross-section of positive pions in the collision of 8.9-GeV/c protons on beryllium,'', arXiv:hep-ex/0702024 E910

  4. NE-23:

    Office of Legacy Management (LM)

    1 , : -2 rn; NE-23: 4 Whitr%; Ms. Theresa Schaffer 3315 S. Emerald Avenue Chicago, Illinois 60616 Dear Ms. Schaffer: . -. r ;-, .4r.-,. , ' P?;c \ \ ; . EC.. ., . The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former General Services Administratlon 39th Street Werehouse, Chicago, Illincis, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan

  5. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 hep-ex, Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009...

  6. MiniBooNE QE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Quasielastic Double Differential Cross section", arXiv:1002:2680 hep-ex, Phys. Rev. D81, 092005 (2010) The following MiniBooNE information from the 2010 CCQE cross...

  7. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D. 79, 072002 (2009) The following MiniBooNE information from the large flux paper in 2009 is made available to the public: Text files containing flux information for each neutrino species Positive horn polarity (neutrino-enhanced mode) Negative horn polarity (anti neutrino-enhanced mode) Contact Information For clarifications on how to use MiniBooNE public data or for enquiries about additional data not linked

  8. NE-20

    Office of Legacy Management (LM)

    hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is

  9. Alexis A. Aguilar-Arévalo Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the NuMI beam line in the MiniBooNE detector Alexis A. Aguilar-Arévalo Columbia University for the MiniBooNE/MINOS Collaborations Alexis A. Aguilar-Arévalo PANIC 2005 Santa Fe, New Mexico October 24, 2005 October 24, 2005 PANIC The NuMI beam line - NuMI beam: provides neutrinos for the MINOS experiment studying neutrino oscillations in the atmospheric oscillations regime (Super-K). - Other experiments will be users of this beam line (NOνA, MINERvA). MiniBooNE is "on the way" of NuMI

  10. Joint MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz Columbia University Los Alamos National Lab Fermilab 31 Aug 2012 Friday, August 31, 2012 Acknowledgements * Teppei Katori * Joe Grange * Zarko Pavlovic * Kendall Mahn and Yasuhiro Nakajima 2 * Muon Neutrino CCQE Cross Section Analysis (Phys. Rev. D81, 092005 (2010)) * Neutrino Contamination in Antineutrino Mode (Phys. Rev. D84, 072005 (2011) and arXiv: 1107.5327) * Electron Neutrino (Antineutrino) Appearance (Phys. Rev. Lett.

  11. BooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators The BooNE Collaboration The BooNE Collaboration...

  12. BooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  13. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0704.1500 [hep-ex], Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in 2007 is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) ntuple file of official MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron oscillation fit, and 90% and 3sigma confidence

  14. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search for Electron Anti-Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0904.1958 [hep-ex], Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009 nuebar appearance paper is made available to the public: Energy Range: 475 MeV - 3000 MeV reconstructed neutrino energy ntuple file of MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron antineutrino oscillation fit, and 90% and 3sigma confidence

  15. AR-CITE

    Energy Science and Technology Software Center (OSTI)

    003796MLTPL00 AR-CITE: Analysis of Search Results for the Clarification and Identification of Technology Emergence

  16. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email MicroBooNE schematic drawing Figure 1: A schematic drawing of the MicroBooNE liquid argon TPC detector. The main goals of the MicroBooNE experiment are: (1) to demonstrate the capabilities of a liquid argon TPC in the reconstruction of neutrino

  17. MiniBooNE NC 1?0 Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 production cross sections on mineral oil at EO(1 GeV)", arXiv:0911.2063 hep-ex, Phys. Rev. D81, 013005 (2010) The following MiniBooNE information from the 2009 NC 10...

  18. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Search for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 [hep-ex], Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu and numubar disappearance paper is made available to the public: Numu Disappearance ntuple file of MiniBooNE numu 90% confidence level sensitivity as a function of Dm2, for a 2-neutrino numu -> nux ocillation fit. The file contains 141 rows, with two columns: Dm2 value in the range 0.4 < Dm2 (eV2)

  19. Defining photometric peculiar type Ia supernovae

    SciTech Connect (OSTI)

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T.; Hsiao, E. Y.; Phillips, M. M.; Folatelli, G.; Anderson, J. P.

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  20. Category:Mason, IA | Open Energy Information

    Open Energy Info (EERE)

    Mason, IA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Mason, IA" The following 16 files are in this category, out of 16 total....

  1. BooNE: Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The MiniBooNE Detector Tracking the traces of neutrino interactions. Of Neutrino Mass, and Oscillation What oscillates in neutrino oscillations, and why it matters

  2. BooNE: Picture Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial progress of MiniBooNE detector installation BooNE Scrapbook A selection from BooNE Audio Gallery Horn Concerto The Horn Concerto is a recording of the BooNE horn and the NuMI horn sounding at the same time. The rat-a-tat is BooNE; the syncopated boom is NuMI.

  3. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'γ): σ for production of γ-rays threshold - 23 1.63-MeV γ-rays X4 03/15/2011 20Ne(p, pαγ): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1975RO08 20Ne(p, γ): S-factors 0.37 - 2.10 Direct Capture (DC) → 332-keV state, DC → 2425-keV state, tail of 2425-keV state X4 04/19/2011 20Ne(p, γ): differential σ at θγ = 90° DC → 332-keV state, 332-keV state →

  4. MiniBooNE

    SciTech Connect (OSTI)

    Mahn, Kendall Brianna Mcconnel; /Columbia U.

    2007-03-01

    MiniBooNE is a short baseline neutrino experiment designed to confirm or refute the LSND observed excess of electron anti neutrinos in a muon anti neutrino beam. The experimental setup, data samples, and oscillation fit method are discussed. Although the result was not public at the time of the talk, MiniBooNE has since published results, which are discussed briefly as well.

  5. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  6. IA Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blog Archive IA Blog Archive RSS May 31, 2016 IA Blog Archive Global Energy Leaders Gather in California to Drive Clean Energy Development and Deployment Goal of meetings will be to expand international collaboration in clean energy research, development, demonstration and deployment to combat climate change. May 18, 2016 IA Blog Archive 10 Ways the Clean Energy Ministerial Is Speeding Up the World's Clean Energy Revolution The world needs a lot more clean energy, and fast. Here are 10 ways the

  7. BooNE: Interesting Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the BooNE experiment: BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE will be ready to collect data in summer, 2002. The BooNE collaboration is small by high energy physics standards, having 65 physicists from 13 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to enlarge About the

  8. DOE - Office of Legacy Management -- Titus Metals - IA 04

    Office of Legacy Management (LM)

    Titus Metals - IA 04 FUSRAP Considered Sites Site: TITUS METALS ( IA.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Waterloo , Iowa IA.04-1 Evaluation Year: 1987 IA.04-2 Site Operations: Extruded uranium billets to produce fuel plates for the Argonaut reactor in June, 1956. IA.04-1 IA.04-2 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited scope of activities at the site and results of

  9. BooNE versus MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  10. NE-24 Unlverslty of Chicayo Remedial Action Plan

    Office of Legacy Management (LM)

    (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the

  11. New approaches for modeling type Ia supernovae (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Type Ia supernovae (SNe Ia) are the largest thermonuclearexplosions in the Universe. Their light output can be seen across greatstances and has led to the discovery that the ...

  12. Constraining Cosmic Evolution of Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    Constraining Cosmic Evolution of Type Ia Supernovae Citation Details In-Document Search Title: Constraining Cosmic Evolution of Type Ia Supernovae We present the first large-scale...

  13. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial...

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  16. US NE MA Site Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NE MA Site Consumption million Btu 0 500 1,000 1,500 2,000 2,500 3,000 US NE MA ... 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours 0 250 500 750 1,000 ...

  17. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original...

  18. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The DOE Tours MicroBooNE! - Nov. 27, 2012

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Delivering Beam to MiniBooNE

  20. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE In the News MicroBooNE internal newletters (password protected) National Lab Science Day (public debut of virtual MicroBooNE), Fermilab News, 042916 MicroBooNE Project ...

  1. UPdate THE NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPdate THE NE January 2014 Edition U.S. Department of Energy's Nuclear Energy University Programs It's not every day graduate students get to meet one of nuclear energy's most important decision makers. Integrated University Program (IUP) Fellows had this opportunity at the 2013 Winter American Nuclear Society (ANS) Meeting this past November in Washington, D.C. Department of Energy Assistant Secretary for Nuclear Energy, Dr. Pete Lyons, greeted IUP Fellows in a special meeting to discuss

  2. NE-23 W

    Office of Legacy Management (LM)

    >:-1. ,- '"CC3 . ' NE-23 .+ W h itm~ l-l& Mr. Victor 3. Canilov, Director Museum of Science and Industry East 57th Street and Lake Shore Drive Chicago, Illinois 60037 Dear kr. Danilov: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSPSIP), has reviewed information on the Museum cf Science and Industry, Chicago, Illinois, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the

  3. Type Ia Supernovae Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of star called a white dwarf. The majority of SN Ia explosions occur far away from our galaxy; yet, due to their enormous intrinsic brightness, outshining billions of stars, we can...

  4. IA Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "always be five years away." For four key clean energy technologies, that clean energy future has already arrived. August 21, 2013 IA Blog Archive ActOnClimate: Secretary...

  5. A=20Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 20Ne) GENERAL: See also (1972AJ02) and Table 20.18 [Table of Energy Levels] (in PDF or PS). Shell model: (1970CR1A, 1971DE56, 1971RA1B, 1971ZO1A, 1972AB12, 1972AR1F, 1972AS13, 1972BO38, 1972BR1G, 1972JA24, 1972KA39, 1972KA67, 1972KH08, 1972KR1D, 1972KU1F, 1972LE13, 1972LE38, 1972MA07, 1972NI14, 1972RE03, 1972SA1B, 1972VO09, 1972WH04, 1973CO03, 1973DH1A, 1973EL04, 1973EN1C, 1973GI09, 1973HA05, 1973HE1F, 1973IC01, 1973IR01, 1973MA1K, 1973MC06, 1973MC1E,

  6. MiniBooNE Anti-Neutrino CCQE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anti-Neutrino Double-Differential Charged Current Quasi-Elastic Cross Section", arXiv:1301.7067 [hep-ex] The following MiniBooNE information from the anti-neutrino CCQE cross section paper is made available to the public: νμ CCQE data: MiniBooNE flux table of MiniBooNE anti-neutrino mode flux by neutrino species (Figure 1 and Tables XI-XII). Note that, based on the constraints of the in situ measurements, the muon neutrino flux spectrum given here should be scaled by 0.77. flux-integrated

  7. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciBooNE Detector TargetHorn SciBooNE constraint reduces error at MiniBooNE * Flux errors become 1-2% level: negligible for this analysis * Cross-section errors reduced, but...

  8. Improved Distances to Type Ia Supernovae withMulticolor Light...

    Office of Scientific and Technical Information (OSTI)

    We present an updated version of the Multicolor Light Curve Shape method to measure distances to type Ia supernovae (SN Ia), incorporating new procedures for K-correction and ...

  9. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from MiniBooNE * MiniBooNE * Neutrino cross-sections * Quasielastic and elastic scattering * Hadron production channels * Neutrino Oscillations * Antineutrino Oscillations...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated 2008. from inspirehep.net Booster Neutrino...

  11. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated collaboration list for presentations: powerpoint pdf map collaboration photo MicroBooNE organizational chart MicroBooNE contact list (password required) (IB) ...

  12. Ideal bandpasses for type Ia supernova cosmology

    SciTech Connect (OSTI)

    Davis, Tamara M.; Schmidt, Brian P.; Kim, Alex G.

    2005-10-24

    To use type Ia supernovae as standard candles for cosmologywe need accurate broadband magnitudes. In practice the observed magnitudemay differ from the ideal magnitude-redshift relationship either throughintrinsic inhomogeneities in the type Ia supernova population or throughobservational error. Here we investigate how we can choose filterbandpasses to reduce the error caused by both these effects. We find thatbandpasses with large integral fluxes and sloping wings are best able tominimise several sources of observational error, and are also leastsensitive to intrinsic differences in type Ia supernovae. The mostimportant feature of a complete filter set for type Ia supernovacosmology is that each bandpass be a redshifted copy of the first. Wedesign practical sets of redshifted bandpasses that are matched totypical high resistivity CCD and HgCdTe infra-red detector sensitivities.These are designed to minimise systematic error in well observedsupernovae, final designs for specific missions should also considersignal-to-noise requirements and observing strategy. In addition wecalculate how accurately filters need to be calibrated in order toachieve the required photometric accuracy of future supernova cosmologyexperiments such as the SuperNova-Acceleration-Probe (SNAP), which is onepossible realisation of the Joint Dark-Energy mission (JDEM). We considerthe effect of possible periodic miscalibrations that may arise from theconstruction of an interference filter.

  13. A threat-based definition of IA- and IA-enabled products.

    SciTech Connect (OSTI)

    Shakamuri, Mayuri; Schaefer, Mark A.; Campbell, Philip LaRoche

    2010-07-01

    This paper proposes a definition of 'IA and IA-enabled products' based on threat, as opposed to 'security services' (i.e., 'confidentiality, authentication, integrity, access control or non-repudiation of data'), as provided by Department of Defense (DoD) Instruction 8500.2, 'Information Assurance (IA) Implementation.' The DoDI 8500.2 definition is too broad, making it difficult to distinguish products that need higher protection from those that do not. As a consequence the products that need higher protection do not receive it, increasing risk. The threat-based definition proposed in this paper solves those problems by focusing attention on threats, thereby moving beyond compliance to risk management. (DoDI 8500.2 provides the definitions and controls that form the basis for IA across the DoD.) Familiarity with 8500.2 is assumed.

  14. A threat-based definition of IA and IA-enabled products.

    SciTech Connect (OSTI)

    Shakamuri, Mayuri; Schaefer, Mark A.; Campbell, Philip LaRoche

    2010-09-01

    This paper proposes a definition of 'IA and IA-enabled products' based on threat, as opposed to 'security services' (i.e., 'confidentiality, authentication, integrity, access control or non-repudiation of data'), as provided by Department of Defense (DoD) Instruction 8500.2, 'Information Assurance (IA) Implementation.' The DoDI 8500.2 definition is too broad, making it difficult to distinguish products that need higher protection from those that do not. As a consequence the products that need higher protection do not receive it, increasing risk. The threat-based definition proposed in this paper solves those problems by focusing attention on threats, thereby moving beyond compliance to risk management. (DoDI 8500.2 provides the definitions and controls that form the basis for IA across the DoD.) Familiarity with 8500.2 is assumed.

  15. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexplained Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 [hep-ex], Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009 updated nue oscillation paper is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) 1D array of bin boundaries in electron neutrino reconstructed neutrino energy 1D array of observed electron neutrino candidate events per reconstructed

  16. A=14Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 14Ne has not been observed. See (1976BE1V

  17. IA News Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News Archive IA News Archive RSS July 22, 2016 Energy Department Selects Argonne National Laboratory to Lead U.S. Consortium for New CERC Medium- and Heavy-Duty Truck Technical Track The New Consortium of University, Private Sector and National Laboratory Partners will Advance Collaboration between the U.S. and China on Truck Efficiency Technologies June 10, 2016 Energy Department Invests More than $10 Million in Efficient Lighting Research and Development New projects designed to save consumers

  18. PRODUCTION OF THE p-PROCESS NUCLEI IN THE CARBON-DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2011-01-01

    We calculate the nucleosynthesis of proton-rich isotopes in the carbon-deflagration model for Type Ia supernovae (SNe Ia). The seed abundances are obtained by calculating the s-process nucleosynthesis that is expected to occur in the repeating helium shell flashes on the carbon-oxygen (CO) white dwarf (WD) during mass accretion from a binary companion. When the deflagration wave passes through the outer layer of the CO WD, p-nuclei are produced by photodisintegration reactions on s-nuclei in a region where the peak temperature ranges from 1.9 to 3.6 x 10{sup 9} K. We confirm the sensitivity of the p-process on the initial distribution of s-nuclei. We show that the initial C/O ratio in the WD does not affect much the yield of p-nuclei. On the other hand, the abundance of {sup 22}Ne left after s-processing has a large influence on the p-process via the {sup 22}Ne({alpha},n) reaction. We find that about 50% of p-nuclides are co-produced when normalized to their solar abundances in all adopted cases of seed distribution. Mo and Ru, which are largely underproduced in Type II supernovae (SNe II), are produced more than in SNe II although they are underproduced with respect to the yield levels of other p-nuclides. The ratios between p-nuclei and iron in the ejecta are larger than the solar ratios by a factor of 1.2. We also compare the yields of oxygen, iron, and p-nuclides in SNe Ia and SNe II and suggest that SNe Ia could make a larger contribution than SNe II to the solar system content of p-nuclei.

  19. MiniBooNE Charged Current Charged Pion Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muon Neutrino-Induced Charged-Current Charged Pion Production Cross Sections on Mineral Oil at Enu~1 GeV", arXiv:1011.3572 [hep-ex], submitted to Phys. Rev. D. The following MiniBooNE information for the 2010 CC π+ cross section paper is made available to the public. Tables A root file containing histograms of all of the cross section results in the paper can be found here. A text file of the cross section results can be found here. The MiniBooNE muon neutrino flux distribution can be

  20. MiniBooNE Neutral Current Elastic Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Neutrino Neutral-Current Elastic Differential Cross Section",arXiv:1007.4730 [hep-ex], Phys. Rev. D82, 092005 (2010) The following MiniBooNE information for the 2010 neutral current elastic cross section paper is made available to the public. MiniBooNE neutral current elastic cross-section results in the "paper" are reported in the true energy after the unsmearing of detector resolution and efficiency effects. In addition, here we present alternative results in the

  1. Ar-40/Ar-39 Age Constraints for the Jaramillo Normal Subchron...

    Open Energy Info (EERE)

    oxygen isotope, climate record calibration of the astronomical timescale proposed by Johnson (1982) and Shackleton et al. (1990). Ar-40Ar-39 ages of a normally magnetized...

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the Booster Neutrino Experiment (BooNE): BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE has been collecting data since August 2002. The BooNE collaboration is small by high energy physics standards, comprising 75 physicists from 16 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to

  3. Constraining Cosmic Evolution of Type Ia Supernovae

    SciTech Connect (OSTI)

    Foley, Ryan J.; Filippenko, Alexei V.; Aguilera, C.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Garnavich, P.M.; Jha, S.; Kirshner, R.P.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miceli, A.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; /UC, Berkeley, Astron. Dept. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Harvard-Smithsonian Ctr. Astrophys. /Chile U., Catolica /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /NOAO, Tucson /Fermilab /Chile U., Santiago /Harvard U., Phys. Dept. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Res. Sch. Astron. Astrophys., Weston Creek /Stockholm U. /Hawaii U. /Illinois U., Urbana, Astron. Dept.

    2008-02-13

    We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 ultraviolet spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with similar slit widths, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be {approx}0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of {approx}3% in the optical and growing toward the ultraviolet. The difference between the maximum-light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.

  4. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS...

    Office of Scientific and Technical Information (OSTI)

    CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT ... Country of Publication: United States Language: English Subject: 79 ASTROPHYSICS, ...

  5. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Type Ia Supernova Hubble Residuals and ... as distinguished from previous works that use magnitude corrections as a ...

  6. ICARUS/MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) ICARUS/MicroBooNE ν ( Φ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 µ ν µ ν e ν e ν

  7. Agricultural Research Service (ARS) Research Participation Program -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managed by ORAU Agricultural Research Service (ARS) Research Participation Program Home About USDA ARS About ORISE Current Research Opportunities Site Map Contact ORISE Facebook Twitter Applicants Welcome to the Agricultural Research Service (ARS) Research Participation Program The Agricultural Research Service (ARS) Research Participation Program will serve as the next step in the educational and professional development of scientists and engineers interested in agricultural related

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (505) 695 8364 BooNE Experiment: contact-boone@fnal.gov Current Shifter: (505) 500 5511 Detector Enclosure: (630) 840 6881 or 6081 BooNE Collaborators and Associates:...

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995,...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sept. 3, 1999 - The MiniBooNE Detector: The Teletubby Design 1998: Oct. 30, 1998 - Good Physics in a Small Package June 5, 1998 - MiniBooNE Faces the PAC May 1, 1998 - The...

  12. About the MicroBooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE The MicroBooNE collaboration is currently operating a large 170-ton liquid Argon Time Projection Chamber (LArTPC) that is located on the Booster neutrino beam line at...

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  14. A=14Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1983ANZQ

  15. A=14Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1986AN07

  16. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Collaboration Photos Click on image to view larger version April 2016 October 2014

  17. Search for surviving companions in type Ia supernova remnants

    SciTech Connect (OSTI)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu E-mail: taam@asiaa.sinica.edu.tw

    2014-09-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  18. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    SciTech Connect (OSTI)

    Brown, Peter J., E-mail: pbrown@physics.tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States)

    2014-11-20

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the TypeIa supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observedmore than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 10{sup 13} cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia.

  19. Influence of gas pressure on high-order-harmonic generation of Ar and Ne

    SciTech Connect (OSTI)

    Wang Guoli; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2011-11-15

    We study the effect of gas pressure on the generation of high-order harmonics where harmonics due to individual atoms are calculated using the recently developed quantitative rescattering theory, and the propagation of the laser and harmonics in the medium is calculated by solving the Maxwell's wave equation. We illustrate that the simulated spectra are very sensitive to the laser focusing conditions at high laser intensity and high pressure since the fundamental laser field is severely reshaped during the propagation. By comparing the simulated results with several experiments we show that the pressure dependence can be qualitatively explained. The lack of quantitative agreement is tentatively attributed to the failure of the complete knowledge of the experimental conditions.

  20. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (Not illustrated) Theory: See (RA57). 1. 18Ne(β+)18F Qm = 4.227 The maximum energy of the positrons is 3.2 ± 0.2 MeV, the half-life is 1.6 ± 0.2 sec: log ft = 2.9 ± 0.2 (GO54D). See also (DZ56). 2. 16O(3He, n)18Ne Qm = -2.966 See (KU53A). 3. 19F(p, 2n)18Ne Qm = -15.424 See (GO54D). 4. 20Ne(p, t)18Ne Qm = -19.812 Not reported

  1. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-12-01

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  2. DOE - Office of Legacy Management -- Bendix Aviation Corp Pioneer Div - IA

    Office of Legacy Management (LM)

    05 Corp Pioneer Div - IA 05 FUSRAP Considered Sites Site: BENDIX AVIATION CORP., PIONEER DIV. (IA.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Pioneer Division, Bendix Aviation Corporation Bendix Aviation Corporation Bendix Pioneer Division IA.05-1 IA.05-2 IA.05-3 Location: Davenport , Iowa IA.05-1 Evaluation Year: 1990 IA.05-2 IA.05-4 Site Operations: Conducted studies to investigate the feasibility of using sonic cleaning equipment to

  3. A=17Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See the Isobar Diagram for 17Ne) GENERAL: See also (1971AJ02) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1971HA1Y, 1973HA77, 1973RE17, 1975BE31). Mass of 17Ne: The mass excess of 17Ne, determined from a measurement of the Q-value of 20Ne(3He, 6He)17Ne is 16.48 ± 0.05 MeV (1970ME11, 1972CE1A). Then 17Ne - 17F = 14.53 MeV and Eb for p, 3He and α are, respectively, 1.50, 6.46 and 9.05 MeV. See also (1971AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93

  4. Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m er of 2002, the cross sections for an 8 GeV proton beam on Be were m easured by the HARP ex perim ent at CERN. Harp Setup Intro ductio n Im po rtant s te ps s ince las t re v...

  5. MicroBooNE MicroBooNE Andrzej Szelc Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Andrzej Szelc Yale University 2 Outline ● The LArTPC. ● Physics with MicroBooNE. ● The MicroBooNE detector. 3 LArTPC Operation ● Charged particles in argon create electron-ion pairs and scintillation light. ● Electrons are drifted towards the anode wires. ● Multiple anode planes together with drift time allow 3D reconstruction. ● Collected charge allows calorimetric reconstruction. time 4 US LAr R&D Program 5 MicroBooNE Physics Goals 6 MiniBooNE

  6. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents: Pion Group Home Pion Group Members Pion References Colin's Cross Section Page MiniBooNE Internal Email M. Tzanov....

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers with released data are listed here. Refer to the Publications page for a complete list of MiniBooNE publications. Other MiniBooNE Data Releases: Data Released with A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Antineutrino Double-Differential Charged-Current Quasielastic Cross section",

  8. A=19Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 19Ne) GENERAL: See (1972AJ02) and Table 19.24 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1972EN03, 1972NE1B, 1972WE01, 1973DE13, 1977BU05). Electromagnetic transitions: (1972EN03, 1972LE06, 1973HA53, 1973PE09, 1977BU05). Special states: (1972EN03, 1972GA14, 1972HI17, 1972NE1B, 1972WE01, 1977BU05, 1977SC08). Complex reactions involving 19Ne: (1976HI05, 1977BU05). Astrophsyical questions: (1973CL1E). Muon capture: (1972MI11). Pion capture and

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scrapbook Page 2 The BooNE collaboration in winter. A tour of the construction site. Working with the BooNE Horn. BooNE in the winter A tour of the construction site. A day with the Horn Janet, Bonnie, and Jen in the Tank. Janet and Bill: the early years. Bill, Richard, Jeff, and Shawn in the midst of discussion. Preparing the tubes Janet and Bill: the early days Discussion in progress The oil tanker arrives. The final stages of oil filling. The BooNE Collaboration in the summer. The oil tanker

  10. 244-AR Vault Interim Stabilization Project Plan

    SciTech Connect (OSTI)

    LANEY, T.

    2000-03-24

    The 244-AR Vault Facility, constructed between 1966 and 1968, was designed to provide lag storage and treatment for the Plutonium-Uranium Extraction Facility (PUREX) tank farm sludges. Tank farm personnel transferred the waste from the 244-AR Vault Facility to B Plant for recovery of cesium and strontium. B Plant personnel then transferred the treatment residuals back to the tank farms for storage of the sludge and liquids. The last process operations, which transferred waste supporting the cesium/strontium recovery mission, occurred in April 1978. After the final transfer in 1978, the 244-AR facility underwent a cleanout. However, 2,271 L (600 gal) of sludge were left in Tank 004AR from an earlier transfer from Tank 241-AX-104. When the cleanout was completed, the facility was placed in a standby status. The sludge had been transferred to Tank 004AR to support Pacific Northwest National Laboratory [PNNL] vitrification work. Documentation of waste transfers suggests that a portion of the sludge may have been moved from Tank 004AR to Tank 002AR in preparation for transfer back to the AX Tank Farm; however, quantities of the sludge that were moved to Tank 002AR from that transfer must be estimated.

  11. DOE - Office of Legacy Management -- Iowa Army Ammunition Plant - IA 02

    Office of Legacy Management (LM)

    Army Ammunition Plant - IA 02 FUSRAP Considered Sites Iowa Army Ammunition Plant, IA Alternate Name(s): Burlington Ordnance Plant Iowa Ordnance Plant Silas Mason Company IA.02-3 Location: Located in Township 70 North, Range 3 West, Section 32, 5th Principal Meridian, Des Moines County, Burlington, Iowa IA.02-1 IA.02-5 Historical Operations: Assembled nuclear weapons, primarily high explosive components and conducted explosives testing using the high explosive components and depleted uranium. AEC

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Details This page provides information on the MiniBooNE experiment. Images are linked in their own page with captions. Additional resources are the Talks, Slides and Posters page, Publications page, and Data Release page Beamline Flux Detector Cross sections Light Propagation (Optical Model) Calibration Particle Identification BooNE photo montage

  13. A=16Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 16Ne) GENERAL: See also (1977AJ02) and Table 16.27 [Table of Energy Levels] (in PDF or PS). Theoretical work: (1978GU10, 1978SP1C, 1981LI1M). Reviews: (1977CE05, 1979AL1J, 1980TR1E). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to an atomic mass excess of 24.02 ± 0.04 MeV for 16Ne. 16Ne is then unbound with respect to decay into 14O + 2p by 1.43 MeV and is bound with respect to decay into 15F + p by 0.04 MeV. 1. 16O(π+,

  14. A=17Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 17Ne) GENERAL: See Table Prev. Table 17.26 preview 17.26 [Table of Energy Levels] (in PDF or PS). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.928 (b) 17Ne(β+)17F → 13N + α Qm = 8.711 (c) 17Ne(β+)17F Qm = 14.529 The half-life of 17Ne has been reported as 109.0 ± 1.0 msec (1971HA05) and 109.3 ± 0.6 msec (1988BO39): the weighted mean is 109.2 ± 0.6 and we adopt it. The decay is primarily to the proton unstable states of 17F at 4.65, 5.49, 6.04 and 8.08 MeV

  15. FY16 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget ...

  16. 2011 Annual Planning Summary for Nuclear Energy (NE) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy (NE) 2011 Annual Planning Summary for Nuclear Energy (NE) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 ...

  17. Mueller Systems ArKion | Open Energy Information

    Open Energy Info (EERE)

    Mueller Systems ArKion Jump to: navigation, search Name: Mueller Systems (ArKion) Place: Middleboro, Massachusetts Zip: MA 02346 Product: Massachusetts-based energy management...

  18. NE - Nuclear Energy - Energy Conservation Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible.

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings This page contains links to conference proceedings submitted by members of the MiniBooNE collaboration New Guidelines for Submitting Proceedings at MiniBooNE: As of June 2007, we have changed the rules on conference proceedings. Proceedings must be read by one other MiniBooNE person (besides the author) of postdoc level or above before being submitted. Proceedings should also be sent to boone-talks@fnal.gov for archiving on this website. back to Talks page Speaker Proceedings Info

  20. The MicroBooNE Experiment - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents and Publications Public Notes See the Public Notes Page for a list of notes with results made public by the MicroBooNE collaboration. Presentations See the Talks Page for copies of slides and posters presented at conferences and workshops. MicroBooNE DocDB Like most experiments at Fermilab, MicroBooNE uses DocDB - a documents database. Much of the contents of the DocDB are restricted to members of the collaboration, but some items are public. Use the link below to enter the public

  1. The NeXus data format

    SciTech Connect (OSTI)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; Osborn, Raymond; Peterson, Peter F.; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitions for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.

  2. A=16Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 16Ne) GENERAL: See also (1982AJ01) and Table 16.26 [Table of Energy Levels] (in PDF or PS) here. See (1981SE1B, 1983ANZQ, 1985AN28, 1985MA1X). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is 23.989 ± 0.020 MeV which is

  3. A=16Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 16Ne) GENERAL: See Table Prev. Table 16.29 preview 16.29 [General Table] (in PDF or PS) and Table Prev. Table 16.32 preview 16.32 [Table of Energy Levels] (in PDF or PS). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is

  4. A=17Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 17Ne) GENERAL: See (1977AJ02) and Table 17.22 [Table of Energy Levels] (in PDF or PS). Theory and reviews:(1975BE56, 1977CE05, 1978GU10, 1978WO1E, 1979BE1H). Other topics:(1981GR08). Mass of 17Ne: The mass excess adopted by (1977WA08) is 16.478 ± 0.026 MeV, based on unpublished data. We retain the mass excess 16.48 ± 0.05 MeV based on the evidence reviewed in (1977AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of

  5. A=17Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 17Ne) GENERAL: See (1982AJ01) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1983ANZQ, 1983AU1B, 1985AN28). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of 17Ne is 109.0 ± 1.0 msec (1971HA05). Earlier values (see (1971AJ02)) gave a mean value of 108.0 ± 2.7 msec. The decay is primarily to the proton unstable states of 17F at 4.70, 5.52 and 6.04 MeV with Jπ = 3/2-, 3/2- and 1/2-: see

  6. UCB-NE-107 user's manual

    SciTech Connect (OSTI)

    Lee, W.W.L.

    1989-03-01

    The purpose of this manual is to provide users of UCB-NE-107 with the information necessary to use UCB-NE-107 effectively. UCB-NE-107 is a computer code for calculating the fractional rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. However, for readily soluble species such as /sup 135/Cs, /sup 137/Cs, and /sup 129/I, it has been observed that their dissolution rates are rapid. UCB-NE-107 is a code for calculating the release rate at the waste/rock interface, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 5 refs., 2 figs.

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (numbers, plots, details) of the MiniBooNE experiment and analysis pieces. Images are linked in their own page with captions. Additional resources are the Talks, Slides and...

  8. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on how to use MiniBooNE public data or for enquiries about additional data not linked from this page, please contact: Steve Brice or Richard Van de Water Acknowledgments If...

  9. The NeXus data format

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; et al

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less

  10. MiniBooNE Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSECTIONS(AT)fnal.gov convenors: Alessandro Curioni (alessandro.curioni(AT)yale.edu) and Sam Zeller (gzeller(AT)fnal.gov) Cross Sections at MiniBooNE, Meetings, Reference Articles,...

  11. A=20Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) elastic scattering. It is interpreted in terms of a quasi-molecular -particle cluster model (CO69S). See also (WA65M). 18. 17O(, n)20Ne Qm 0.588 Angular...

  12. A=18Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 18Ne) GENERAL: See Table Prev. Table 18.35 preview 18.35 [General Table] (in PDF or PS) and Table Prev. Table 18.36 preview 18.36 [Table of Energy Levels] (in PDF or PS). For B(E2) of 18Ne*(1.89) and other parameters see (1987RA01) and Table Prev. Table 2 preview 2 in the Introduction. 1. 18Ne(β+)18F Qm = 4.446 The half-life of 18Ne is 1672 ± 8 ms: see (1978AJ03) and (1983AD03). The decay is primarily to 18F*(0, 1.04, 1.70 MeV). In addition there is an

  13. A=20Ne (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 20Ne) GENERAL: See also Table 20.6 [Table of Energy Levels] (in PDF or PS). Theory: See (GA55B, HE55F, MO56, BA57, RA57). 1. 9Be(14N, t)20Ne Qm = 6.323 See (GO58E). 2. 16O(α, γ)20Ne Qm = 4.753 An unsuccessful attempt has been made to observe the isobaric spin-forbidden transition between the T = 0 states at 7.19 MeV (J = 3-) and 1.63 MeV (J = 2+). The radiative width is < 6 x 10-3 eV, indicating an admixture of T = 1 of < 1.3 x 10-3 in 20Ne*(7.19)

  14. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam...

  16. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact MicroBooNE Spokespeople: Bonnie Fleming, Yale email: bonnie.fleming(AT)yale.edu phone: (203) 432-3235 Sam Zeller, FNAL email: gzeller(AT)fnal.gov phone: (630) 840-6879 Collaboration Members

  17. {beta} decay of {sup 26}Ne

    SciTech Connect (OSTI)

    Weissman, L.; Lisetskiy, A.F.; Arndt, O.; Dillmann, I.; Hallmann, O.; Kratz, K.L.; Pfeiffer, B.; Bergmann, U.; Cederkall, J.; Fraile, L.; Koester, U.; Franchoo, S.; Gaudefroy, L.; Sorlin, O.; Tabor, S.

    2004-11-01

    A pure neutron-rich {sup 26}Ne beam was obtained at the ISOLDE facility using isobaric selectivity. This was achieved by a combination of a plasma ion source with a cooled transfer line and subsequent mass separation. The high quality of the beam and good statistics allowed us to obtain new experimental information on the {sup 26}Ne {beta}-decay properties and resolve a contradiction between earlier experimental data and prediction of shell-model calculations.

  18. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Releases NE Press Releases RSS July 6, 2016 Energy Department To Fund Radiochemistry Traineeship Program The Energy Department's offices of Nuclear Energy (NE) and Environmental Management (EM) are co-funding a new traineeship program in radiochemistry at Washington State University (WSU) in Pullman. June 14, 2016 Energy Department Invests $82 Million to Advanced Nuclear Technology In total, 93 projects were selected to receive funding that will help push innovative nuclear technologies

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost Particles": Interview with Janet Conrad Columbia Magazine "The Nature of the Neutrino": MiniBooNE and neutrinos The Los Angeles Times "It's No Small Matter": K. C. Cole's article detailing her summer 2003 stint at Fermilab working on MiniBooNE [text only]

  20. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  1. A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA (Journal...

    Office of Scientific and Technical Information (OSTI)

    A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA Citation Details In-Document Search Title: A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA One of the major ...

  2. FY17 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY17 NE Budget Request Presentation FY17 NE Budget Request Presentation FY17 NE Budget Request Presentation (2.07 MB) More Documents & Publications FY16 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request Assessment of Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600

  3. MiniBooNE at All Experimenter's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100807 MiniBooNE Status Report R.G. Van de Water 100107 MiniBooNE Status Report R.G. Van de Water 080607 MiniBooNE Status Report Steve Brice 073007 MiniBooNE Status...

  4. Hazard evaluation for 244-AR vault facility

    SciTech Connect (OSTI)

    BRAUN, D.J.

    1999-08-25

    This document presents the results of a hazard identification and evaluation performed on the 244-AR Vault Facility to close a USQ (USQ No.TF-98-0785, Potential Inadequacy in Authorization Basis (PIAB): To Evaluate Miscellaneous Facilities Listed In HNF-2503 And Not Addressed In The TWRS Authorization Basis) that was generated as part of an evaluation of inactive TWRS facilities. A hazard evaluation for the Hanford Site 244-AR Vault Facility was performed. The process and results of the hazard evaluation are provided in this document. A previous hazard evaluation was performed for the 244-AR Vault Facility in 1996 in support of the Basis for Interim Operation (BIO) (HNF-SD-WM-BIO-001, 1998, Revision 1) of the Tank Waste Remediation System (TWRS). The results of that evaluation are provided in the BIO. Upon review of those results it was determined that hazardous conditions that could lead to the release of radiological and toxicological material from the 244-AR vaults due to flooding was not addressed in the original hazards evaluation. This supplemental hazard evaluation addresses this oversight of the original hazard evaluation. The results of the hazard evaluation were compared to the current TWRS BIO to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. This document is not part of the AB and is not a vehicle for requesting changes to the AB. It is only intended to provide information about hazardous conditions associated with the condition and configuration of the 244-AR vault facility. The AB Control Decision process could be used to determine the applicability and adequacy of existing AB controls as well as any new controls that may be needed for the identified hazardous conditions associated with 244-AR vault flooding. This hazard evaluation does not constitute an accident analysis.

  5. Cross section analyses in MiniBooNE and SciBooNE experiments

    SciTech Connect (OSTI)

    Katori, Teppei

    2015-05-15

    The MiniBooNE experiment (2002-2012) and the SciBooNE experiment (2007-2008) are modern high statistics neutrino experiments, and they developed many new ideas in neutrino cross section analyses. In this note, I discuss selected topics of these analyses.

  6. Microsoft Word - AR VR rev.1.wpd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EA15PC3041-1-0 August 18, 2003 Rev. 1 Page 1 of 1 Working Copy AR/VR Transmittal Register 1. Page 1 of 2. PR/PO Number: 3. Supplier: 4. Buyer: 5. STR or Cognizant Engineer: 6. Project, System, or Equipment Description: 7. AR/VR No. 8. SOW or Spec. No. 9. Description of Submittal or Special Conditions 10. For Approval/ Record 11. Date Due to WTS or Prior to 12. Date Rec. 13. Date to STR 14. Date from STR 15. Disposition A, C, D 16. Resubmittal Required? 17. Date to Supplier 1. Facility Compliance

  7. A=19Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 19Ne) GENERAL: See Table Prev. Table 19.26 preview 19.26 [General Table] (in PDF or PS) and Table Prev. Table 19.27 preview 19.27 [Table of Energy Levels] (in PDF or PS) here. μg.s. = -1.88542 (8) nm (1982MA39) μ0.239 = -0.740 (8) nm (1978LEZA) 1. 19Ne(β+)19F Qm = 3.238 We adopt the half-life of 19Ne suggested by (1983AD03): 17.34 ± 0.09 s. See also (1978AJ03). The decay is principally to 19Fg.s.: see Table Prev. Table 19.29 preview 19.29 (in PDF or

  8. An Analysis of Department of Defense Instruction 8500.2 'Information Assurance (IA) Implementation.'

    SciTech Connect (OSTI)

    Campbell, Philip LaRoche

    2012-01-01

    The Department of Defense (DoD) provides its standard for information assurance in its Instruction 8500.2, dated February 6, 2003. This Instruction lists 157 'IA Controls' for nine 'baseline IA levels.' Aside from distinguishing IA Controls that call for elevated levels of 'robustness' and grouping the IA Controls into eight 'subject areas' 8500.2 does not examine the nature of this set of controls, determining, for example, which controls do not vary in robustness, how this set of controls compares with other such sets, or even which controls are required for all nine baseline IA levels. This report analyzes (1) the IA Controls, (2) the subject areas, and (3) the Baseline IA levels. For example, this report notes that there are only 109 core IA Controls (which this report refers to as 'ICGs'), that 43 of these core IA Controls apply without variation to all nine baseline IA levels and that an additional 31 apply with variations. This report maps the IA Controls of 8500.2 to the controls in NIST 800-53 and ITGI's CoBIT. The result of this analysis and mapping, as shown in this report, serves as a companion to 8500.2. (An electronic spreadsheet accompanies this report.)

  9. MiniBooNE Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Results and Implications Michael H. Shaevitz for the MiniBooNE Collaboration Abstract. The MiniBooNE Collaboration has reported ...rst results of a search for e appearance in a beam. With two largely independent analyses, no signi...cant excess was observed of events above background for reconstructed neutrino energies above 475 MeV and the data are consistent with no oscillations within a two neutrino appearance-only oscillation model. An excess of events (186 27 33 events) is

  10. MiniBooNE Steve Brice Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 May 2006 1 MiniBooNE Steve Brice Fermilab * Oscillation Analysis * Issues of the Past Year - Normalization - Optical Model -  0 MisIDs * Summary * Future DOE Review 17 May 2006 2 MiniBooNE Goal * Search for  e appearance in a   beam at the ~0.3% level - L=540 m ~10x LSND - E~500 MeV ~10x LSND DOE Review 17 May 2006 3 Particle ID * Identify electrons (and thus candidate  e events) from characteristic hit topology * Non-neutrino background easily removed     n p W

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestones 2008: January 1 1E21 protons on target recorded by MiniBooNE 2007: April 10 25m absorber repaired 2006: August 23 9e16 protons delivered in a single hour (Booster champagne goal) January 18 first antineutrino beam 2004: April 26 Record week (04/19-04/26) 6.83E18 protons delivered. 2003: March 28 Record day: 9.6E17 protons delivered March 18 Record day: 8.18E17 protons delivered March 06 5.5E17 protons delivered to MiniBooNE in 1 hour. (passed the official BD 5E16 milestone) March 01

  12. MicroBooNE First Cosmic Tracks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Tracks in MicroBooNE (August 6, 2015) On August 6, 2015, we started to turn on the drift high voltage in the MicroBooNE detector for the very first time. We paused at 58 kV (this is about 1/2 of our design voltage) and immediately started to see tracks across the entire TPC. Below are some of our first images of cosmic rays and UV laser tracks (last picture) recorded by the TPC! Collection plane images: And here is one of the first images of a UV laser track in the TPC. You can tell which

  13. A=18Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1978AJ03) and Table 18.21 [Table of Energy Levels] (in PDF or PS). Model calculations: (1979DA15, 1979SA31, 1980ZH01). Electromagnetic transitions: (1977HA1Z, 1979SA31, 1982LA26). Special states: (1977HE18, 1978KR1G, 1979DA15, 1979SA31, 1980OK01, 1982ZH1D). Astrophysical questions: (1978WO1E). Complex reactions involving 18Ne: (1979HE1D). Pion-induced capture and reactions (See also reaction 6.): (1977PE12, 1977SP1B, 1978BU09,

  14. A=18Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See (1983AJ01) and Table 18.22 [Table of Energy Levels] (in PDF or PS). Model calculations:(1982ZH01, 1983BR29, 1984SA37, 1985RO1G). Special states:(1982ZH01, 1983BI1C, 1983BR29, 1984SA37, 1985RO1G, 1986AN10, 1986AN07). Electromagnetic transitions:(1982BR24, 1982RI04, 1983BR29, 1985AL21, 1986AN10). Astrophysical questions:(1982WI1B, 1987WI11). Complex reactions involving 18Ne:(1986HA1B). Pion capture and reactions (See also reaction

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections MiniBooNE's neutrino flux (with a mean energy of ~700 MeV) dictates the type of neutrino interactions the experiment sees. At these energies, quasi-elastic (QE) and single pion production processes dominate. For MiniBooNE, the contributions from multi-pion production and deep inelastic scattering (DIS) are small. image: neutrino cross sections vs energy There are several cross sections which contribute at these energies. Here is a plot of the charged current (CC) cross section

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detector The MiniBooNE tank is 12 m diameter sphere, filled with approximately 800 tons of mineral oil, CH2, which has a density of 0.845 ± 0.001 g/cm3. 1280 PMTs provide about 10% coverage of the inner tank region, and 240 PMTs cover the outer, optically isolated "veto" region in the last 1.3 m in the tank. Most of the tubes were recovered from LSND, and are 'old' tubes, some additional ones were bought for MiniBooNE, and are 'new'; differences in the new vs the old tube function are

  17. Type Ia Supernova Spectral Line Ratios as LuminosityIndicators

    SciTech Connect (OSTI)

    Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

    2005-12-07

    Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

  18. Next-Generation Petascale Simulations of Type Ia Supernovae | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility deflagration to detonation transition model Deflagration to detonation transition model. Min lOng, Dan van Rossum, Sean Couch, George Jordan, Brad Gallagher, Don Lamb, University of Chicago; Michael E. Papka, Argonne National Laboratory/University of Chicago Next-Generation Petascale Simulations of Type Ia Supernovae PI Name: Don Lamb PI Email: lamb@oddjob.uchicago.edu Institution: The University of Chicago Allocation Program: INCITE Allocation Hours at ALCF:

  19. Power-law cosmology, SN Ia, and BAO

    SciTech Connect (OSTI)

    Dolgov, Aleksander; Halenka, Vitali; Tkachev, Igor E-mail: vithal@umich.edu

    2014-10-01

    We revise observational constraints on the class of models of modified gravity which at low redshifts lead to a power-law cosmology. To this end we use available public data on Supernova Ia and on baryon acoustic oscillations. We show that the expansion regime a(t)?t{sup ?} with ? close to 3/2 in a spatially flat universe is a good fit to these data.

  20. Microsoft PowerPoint - IEEE IAS PES 102313.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's ARRA Smart Grid Program Steve Bossart, Senior Energy Analyst IEEE IAS/PES Pittsburgh Section October 23, 2013 # Topics * OE ARRA Smart Grid Program * OE ARRA Smart Grid Progress * Results and Case Studies * Life After ARRA Smart Grid # DOE OE ARRA Smart Grid Program # American Recovery and Reinvestment Act ($4.5B) * Smart Grid Investment Grants (99 projects) - $3.4 billion Federal; $4.7 billion private sector - > 800 PMUs covering almost 100% of transmission - ~ 8000 distribution

  1. Signatures of a companion star in type Ia supernovae

    SciTech Connect (OSTI)

    Maeda, Keiichi; Kutsuna, Masamichi; Shigeyama, Toshikazu

    2014-10-10

    Although type Ia supernovae (SNe Ia) have been used as precise cosmological distance indicators, their progenitor systems remain unresolved. One of the key questions is whether there is a nondegenerate companion star at the time of a thermonuclear explosion of a white dwarf. In this paper, we investigate whether an interaction between the SN ejecta and the companion star may result in observable footprints around the maximum brightness and thereafter, by performing multidimensional radiation transfer simulations based on hydrodynamic simulations of the interaction. We find that such systems result in variations in various observational characteristics due to different viewing directions, and the predicted behaviors (redder and fainter for the companion direction) are the opposite of what were suggested by the previous study. The variations are generally modest and within observed scatters. However, the model predicts trends between some observables different from those observationally derived, so a large sample of SNe Ia with small calibration errors may be used to constrain the existence of such a companion star. The variations in different colors in optical band passes can be mimicked by external extinctions, so such an effect could be a source of scatter in the peak luminosity and derived distance. After the peak, hydrogen-rich materials expelled from the companion will manifest themselves in hydrogen lines, but Hα is extremely difficult to identify. Alternatively, we find that P{sub β} in postmaximum near-infrared spectra can potentially provide a powerful diagnostic.

  2. UCB-NE-108 user's manual

    SciTech Connect (OSTI)

    Kang, C.H.; Lee, W.W.L.

    1989-04-01

    The purpose of this manual is to provide users of UCB-NE-108 with the information necessary to use UCB-NE-108 effectively. UCB-NE-108 is a computer code for calculating the fractional release rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media, and transported through layers of porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. In a spent-fuel waste package the soluble cesium and iodine accumulated in fuel-cladding gaps, voids, and grain boundaries of spent fuel rods are expected to dissolve rapidly when groundwater penetrates the fuel cladding. UCB-NE-108 is a code for calculating the release rate at the interface of two layers of porous material, such as the backfill around a high-level waste package and natural rock, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 6 refs., 2 figs.

  3. MiniBooNE darkmatter collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-DM Collaboration A.A. Aguilar-Arevalo,1 B. Batell,2 B.C. Brown,3 R. Carr,4 R. Cooper,5 P. deNiverville,6 R. Dharmapalan,7 R. Ford,3 F.G. Garcia,3 G. T. Garvey,8 J....

  4. A=16Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (CE68A: 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV. See also (GO60K, GO60P, BA61F, GO61N, GO62N, GO62O, GA64A,...

  5. A=16Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (1968CE1A); 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV: see (1971AJ02) for the earlier work. See also (1972WA07)...

  6. A=17Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagram for 17Ne) GENERAL: See also Table 17.22 Table of Energy Levels (in PDF or PS). Theory: (WI64E, MA65J, MA66BB). Reviews: (BA60Q, GO60P, BA61F, GO62N, GO64J, GO66J, GO66L,...

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civil Construction Pictures The civil construction required for the MiniBooNE experiment consists of two independent construction projects. The Detector Construction: This project was started on October 15, 1999. The 8-GeV Beamline and Target Hall: This project started on June 7, 2000.

  8. MiniBooNE Results / MicroBooNE Status! Eric Church, Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trigger ReconstructionpID: LArSoft LAr fill w.o. evacuation Surface Running UV Laser Calibration System Spring-Summer, 2014 16 February 22, 2014 MicroBooNE ...

  9. Category:Little Rock, AR | Open Energy Information

    Open Energy Info (EERE)

    71 KB SVMediumOffice Little Rock AR Entergy Arkansas Inc.png SVMediumOffice Little ... 68 KB SVMidriseApartment Little Rock AR Entergy Arkansas Inc.png SVMidriseApartment Lit......

  10. ARS 12 - Courts and Civil Proceedings | Open Energy Information

    Open Energy Info (EERE)

    ARS 12 - Courts and Civil Proceedings Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ARS 12 - Courts and Civil ProceedingsLegal...

  11. A.R.S. 11-801 | Open Energy Information

    Open Energy Info (EERE)

    A.R.S. 11-801 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 11-801Legal Abstract County Planning: Definitions...

  12. A.R.S. 41-865 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 41-865Legal Published NA Year Signed or Took Effect 2015 Legal Citation A.R.S. ...

  13. A.R.S. 11-802 | Open Energy Information

    Open Energy Info (EERE)

    A.R.S. 11-802 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 11-802Legal Abstract County Planning: County planning...

  14. A.R.S. 40-281 | Open Energy Information

    Open Energy Info (EERE)

    A.R.S. 40-281 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 40-281Legal Abstract Power Plant and Transmission Line...

  15. A.R.S. 40-360 | Open Energy Information

    Open Energy Info (EERE)

    A.R.S. 40-360 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 40-360Legal Published NA Year Signed or Took Effect...

  16. A.R.S. 40-282 | Open Energy Information

    Open Energy Info (EERE)

    A.R.S. 40-282 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 40-282Legal Abstract Power Plant and Transmission Line...

  17. A.R.S. 9-462 | Open Energy Information

    Open Energy Info (EERE)

    A.R.S. 9-462 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 9-462Legal Published NA Year Signed or Took Effect...

  18. Beta decay of 32Ar for fundamental tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monte-Carlo calculation of proton energy scalar vector Experimental set-up Super-conducting solenoid B3.5 Tesla Simultaneous fit of 32 Ar and 33 Ar data 1999 result: 0.9980(52) ...

  19. A=19Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF or PS). Shell model: (WI57H, TA60L, BH62, BO67K, GU67A, EL68, WA68E, AR71L, LE72). Cluster, collective and deformed models: (RA60B, BA69E, BA70F, LE72). Astrophysical...

  20. Paleotemperatures at the lunar surfaces from open system behavior of cosmogenic 38Ar and radiogenic 40Ar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shuster, David L.; Cassata, William S.

    2015-02-10

    The simultaneous diffusion of both cosmogenic 38Ar and radiogenic 40Ar from solid phases is controlled by the thermal conditions of rocks while residing near planetary surfaces. Combined observations of 38Ar/37Ar and 40Ar/39Ar ratios during stepwise degassing analyses of neutron-irradiated Apollo samples can distinguish between diffusive loss of Ar due to solar heating of the rocks and that associated with elevated temperatures during or following impact events; the data provide quantitative constraints on the durations and temperatures of each process. From sequentially degassed 38Ar/37Ar ratios can be calculated a spectrum of apparent 38Ar exposure ages versus the cumulative release fraction ofmore » 37Ar, which is particularly sensitive to conditions at the lunar surface typically over ~106–108 year timescales. Due to variable proportions of K- and Ca-bearing glass, plagioclase and pyroxene, with variability in the grain sizes of these phases, each sample will have distinct sensitivity to, and therefore different resolving power on, past near-surface thermal conditions. Furthermore, we present the underlying assumptions, and the analytical and numerical methods used to quantify the Ar diffusion kinetics in multi-phase whole-rock analyses that provide these constraints.« less

  1. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Citation Details In-Document Search Title: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized

  2. A=18Ne (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See Table 18.23 [Table of Energy Levels] (in PDF or PS). Shell and cluster model calculations: (1957WI1E, 1969BE1T, 1970BA2E, 1970EL08, 1970HA49, 1972KA01). Electromagnetic transitions: (1970EL08, 1970HA49). Special levels: (1966MI1G, 1969KA29, 1972KA01). Pion reactions: (1965PA1F). Other theoretical calculations: (1965GO1F, 1966KE16, 1968BA2H, 1968BE1V, 1968MU1B, 1968NE1C, 1968VA1J, 1968VA24, 1969BA1Z, 1969GA1G, 1969KA29, 1969MU09, 1969RA28,

  3. A=19Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 19Ne) GENERAL: See (1978AJ03) and Table 19.23 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1978MA2H, 1978PE09, 1978PI06, 1979DA15, 1979MA27, 1979PE16, 1982KI02). Electromagnetic transitions: (1978PE09, 1978SC19, 1979MA27, 1979PE16). Special states: (1978MA2H, 1978PE09, 1978PI06, 1978SC19, 1979DA15, 1980OK01, 1982KI02). Astrophysical questions: (1977SI1D, 1978WO1E, 1979RA1C). Applied topics: (1979AL1Q). Complex reactions involving 19Ne:

  4. A=19Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 19Ne) GENERAL: See (1983AJ01) and Table 19.21 [Table of Energy Levels] (in PDF or PS). Nuclear models:(1983BR29, 1983PO02). Special states: (1983BI1C, 1983BR29, 1983PO02, 1986AN07). Electromagnetic transitions: (1982BR24, 1983BR29, 1985AL21). Astrophysical questions: (1981WA1Q, 1982WI1B, 1986LA07). Applications:(1982BO1N). Complex reactions involving 19Ne:(1981DE1P, 1983JA05, 1984GR08, 1985BE40, 1986GR1A, 1986HA1B, 1987RI03). Pion capture and reactions (See

  5. Djurcic_MiniBooNE_NuFact2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Results Zelimir Djurcic Zelimir Djurcic Argonne National Laboratory Argonne National Laboratory NuFact2010: 12th International Workshop on Neutrino Factories, NuFact2010: 12th International Workshop on Neutrino Factories, Superbeams Superbeams and and Beta Beams Beta Beams October 20-25, 2010. Mumbai, India October 20-25, 2010. Mumbai, India Outline Outline * * MiniBooNE MiniBooNE Experiment Description Experiment Description * * MiniBooNE MiniBooNE ' ' s s Neutrino Results Neutrino

  6. M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 7117-03.87.cdy.43 23 September 1987 M r. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordi with your suggestion during our meeting on 22 September. The reconu includes 26 colleges and universities

  7. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Proposal Addendum March 3, 2008 H. Chen, G. de Geronimo, J. Farrell, A. Kandasamy, F. Lanni, D. Lissauer, D. Makowiecki, J. Mead, V. Radeka, S. Rescia, J. Sondericker, B. Yu Brookhaven National Laboratory, Upton, NY L. Bugel, J. M. Conrad, Z. Djurcic, V. Nguyen, M. Shaevitz, W. Willis ‡ Columbia University, New York, NY C. James, S. Pordes, G. Rameika Fermi National Accelerator Laboratory, Batavia, IL C. Bromberg, D. Edmunds Michigan State University, Lansing, MI P. Nienaber St.

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light propagation in mineral oil Though the dominant light observed in MiniBooNE is Cherenkov light, scintillation and fluorescence (here, reabsorbed Cherenkov light re-emitted) account for about 25% of the light. We model: scintillation light (yield, decay times, spectrum), fluorescence, scattering (Rayleigh, Raman), absorption, reflection (off tank walls, PMT faces) and PMT effects (single pe charge response). External measurements Scintillation from p beam (IUCF) Scintillation from cosmic mu

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Identification (PID) We use hit topology and timing to identify events. Particles produce Cherenkov light in our tank, as well as some scintillation light, dependent on particle type. Two independent methods to identify electron neutrinos in MiniBooNE: Boosted Decision Trees, and Track Based. The two methods use different event reconstruction fitters. Boosted Decision Trees (BDT) Decision trees are similar to neural nets, but don't suffer from the same pathologies. To form a decision

  10. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    SciTech Connect (OSTI)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stritzinger, Maximilian; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castelln, Sergio; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B V), such that larger E(B V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  11. THE HYBRID CONe WD + He STAR SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Wang, B.; Meng, X.; Liu, D.-D.; Han, Z.; Liu, Z.-W.

    2014-10-20

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ∼0.033-0.539 × 10{sup –3} yr{sup –1}, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ∼28 Myr-178 Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  12. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light

    Office of Scientific and Technical Information (OSTI)

    Curves (Journal Article) | SciTech Connect Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the

  13. MEIS1 functions as a potential AR negative regulator

    SciTech Connect (OSTI)

    Cui, Liang; Yang, Yutao; Hang, Xingyi; Cui, Jiajun; Gao, Jiangping

    2014-10-15

    The androgen receptor (AR) plays critical roles in human prostate carcinoma progression and transformation. However, the activation of AR is regulated by co-regulators. MEIS1 protein, the homeodomain transcription factor, exhibited a decreased level in poor-prognosis prostate tumors. In this study, we investigated a potential interaction between MEIS1 and AR. We found that overexpression of MEIS1 inhibited the AR transcriptional activity and reduced the expression of AR target gene. A potential proteinprotein interaction between AR and MEIS1 was identified by the immunoprecipitation and GST pull-down assays. Furthermore, MEIS1 modulated AR cytoplasm/nucleus translocation and the recruitment to androgen response element in prostate specific antigen (PSA) gene promoter sequences. In addition, MEIS1 promoted the recruitment of NCoR and SMRT in the presence of R1881. Finally, MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells. Taken together, our data suggests that MEIS1 functions as a novel AR co-repressor. - Highlights: A potential interaction was identified between MEIS1 and AR signaling. Overexpression of MEIS1 reduced the expression of AR target gene. MEIS1 modulated AR cytoplasm/nucleus translocation. MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells.

  14. MiniBooNE NC 1π0 Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    νμ and ν̅μ induced neutral current single π0 production cross sections on mineral oil at Eν~O(1 GeV)", arXiv:0911.2063 [hep-ex], Phys. Rev. D81, 013005 (2010) The following MiniBooNE information from the 2009 NC 1π0 cross section paper is made available to the public: Neutrino Mode Running νμ NC 1π0 pπ0 Differential Cross Section 1D array of bin boundaries partitioning the momentum of the π0 1D array of the value of the differential cross section in each bin in units of 10-40

  15. Grouping normal type Ia supernovae by UV to optical color differences

    SciTech Connect (OSTI)

    Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.; Bufano, Filomena; Gehrels, Neil

    2013-12-10

    Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with the broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u v and uvw1 v) to the level of the scatter in b v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II ?6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.

  16. THE BIRTH RATE OF SNe Ia FROM HYBRID CONe WHITE DWARFS

    SciTech Connect (OSTI)

    Meng, Xiangcun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Podsiadlowski, Philipp, E-mail: xiangcunmeng@ynao.ac.cn [Department of Astronomy, Oxford University, Oxford OX1 3RH (United Kingdom)

    2014-07-10

    Considering the uncertainties of the C-burning rate (CBR) and the treatment of convective boundaries, Chen et al. found that there is a regime where it is possible to form hybrid CONe white dwarfs (WDs), i.e., ONe WDs with carbon-rich cores. As these hybrid WDs can be as massive as 1.30 M {sub ?}, not much mass needs to be accreted for these objects to reach the Chandrasekhar limit and to explode as Type Ia supernovae (SNe Ia). We have investigated their contribution to the overall SN Ia birth rate and found that such SNe Ia tend to be relatively young with typical time delays between 0.1 and 1 Gyr, where some may be as young as 30 Myr. SNe Ia from hybrid CONe WDs may contribute several percent to all SNe Ia, depending on the common-envelope ejection efficiency and the CBR. We suggest that these SNe Ia may produce part of the 2002cx-like SN Ia class.

  17. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M/).0-05 pl 0.0% The attached elimination recommendation was prepared in accordance ML.05 with your suggestion during our meeting on 22 September. The recommendation flD.o-02

  18. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 7117-03.87.cdy.'i3 23 September 1967 ~ s ~ Mr. Andrew Wallo, III, NE-23 Oivision of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND IJNIVFRSITIES , The attached elimination reconnnendation was prepar!ad in accordance with your suggestion during our meeting on 22 September! The recommendation includes 26 colleges and

  19. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 7117~03.87.dy.43 23 September 1987 I j / Dear Mr. Wallo: I ELIMINATION RECOMMENDATION -- COLLEGES AND UN&ITIES I . The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September!. The recommend includes 26

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Author Resources The following is a randomly ordered set of useful resources for people writing MiniBooNE publications:- Have a journal in mind when first putting together the paper. Each journal has LaTeX style files that can be downloaded from their web pages. There is a nice little LaTeX macro that will put line numbers by each line of your document. This makes it much easier for people to feedback comments on the paper. To use it just put \RequirePackage{lineno} just before the

  1. A=18Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1972AJ02) and Table 18.22 [Table of Energy Levels] (in PDF or PS). Model calculations: (1972EN03, 1974LO04). Electromagnetic transitions: (1970SI1J, 1972EN03, 1974LO04, 1976SH04, 1977BR03, 1977SA13). Special states: (1972EN03, 1972RA08). Muon- and pion-induced capture and reactions (See also reaction 5.): (1972MI11, 1974LI1N, 1975LI04, 1976HE1G, 1977MA2Q, 1977RO1U). Other theoretical calculations: (1970SI1J, 1972CA37, 1972RA08,

  2. CA Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    ?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO 7117-03.B7.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Oepartment of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES zh/ ! o-01 lM!tl5 ML)!o-05 PI 77!0> The attached elimination recoannendation was prepared in accordance . -1 rlL.0~ with your suggestion during our meeting on

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline Proton beam 8.89 GeV/c protons from the Fermilab Booster are incident on a beryllium target. The beam is modeled with measured mean position and angle with Gaussian smearing. MiniBooNE simulates the effects of varying the spread in the beam and different focus points of the beam. The typical proton beam contains 4 x 10¹² protons delivered in a spill approximately 1.6 µs in duration. The absolute number of protons on target (p.o.t) is measured by two toroids upstream of the target.

  4. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect (OSTI)

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  5. http://www.ars.usda.gov/research/publications/Publications.htm...

    National Nuclear Security Administration (NNSA)

    - Ed Wagner, Larry Tatarko, John Publications Publications Related National Programs Air Quality (203) Soil Resource Management (202) Page 1 of 2 ARS | Publication request:...

  6. Bimodal Energy Distributions in the Scattering of Ar+ Ions from...

    Office of Scientific and Technical Information (OSTI)

    Bimodal Energy Distributions in the Scattering of Ar+ Ions from Modified Surfaces at Hyperthermal Energies Citation Details In-Document Search Title: Bimodal Energy Distributions ...

  7. Prospects for antineutrino running at MiniBooNE

    SciTech Connect (OSTI)

    Wascko, M.O.; /Louisiana State U.

    2006-02-01

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like {bar {nu}}{sub e} oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.

  8. The MicroBooNE Experiment - About the Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Goals MicroBooNE will collect neutrino interactions using the Booster Neutrino Beam at Fermilab and produce the first neutrino cross section measurements on argon in the 1 GeV energy range. MicroBooNE will also explore the currently unexplained excess of low energy electromagnetic events observed in the MiniBooNE experiment. Click here for public plots and physics distributions.

  9. A=19Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 19Ne) GENERAL: See also Table 19.9 [Table of Energy Levels] (in PDF or PS). Theory: See (EL55A, RE55, RE55B, RA57, RE58). 1. 19Ne(β+)19F Qm = 3.256 The positron end point is 2.18 ± 0.03 (SC52A), 2.23 ± 0.05 (AL57), 2.24 ± 0.01 MeV (WE58B). The half-life is 17.4 ± 0.2 sec (HE59), 17.7 ± 0.1 (PE57), 18.3 ± 0.5 (AL57), 18.5 ± 0.5 (SC52A), 19 ± 1 (NA54B), 19.5 ± 1.0 (WE58B), 20.3 ± 0.5 sec (WH39). The absence of low-energy γ-rays (see 19F) indicates

  10. The MicroBooNE Experiment - Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on MicroBooNE Welcome to MicroBooNE! This page is designed to help new MicroBooNE collaborators find their way around the experiment and Fermilab. Table of Contents Fermilab ID, Computing Accounts, and Required Training Visas for non-US Citizens Traveling to Fermilab Housing/Hotels Getting Around Communication within the Collaboration Software Getting Help Step One First, make sure the PI of your institution has sent an email to the MicroBooNE spokespeople letting them know that

  11. On silicon group elements ejected by supernovae type IA

    SciTech Connect (OSTI)

    De, Soma; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Brown, Edward F. [Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN 46556 (United States); Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL (United States); Athanassiadou, Themis [Swiss National Supercomputing Centre, Via Trevano 131, 6900 Lugano (Switzerland); Chamulak, David A. [Physics Division, Argonne National Laboratory, Argonne, IL (United States); Hawley, Wendy [Laboratoire d'Astrophysique de Marseille, Marseille cedex 13 F-13388 (France); Jack, Dennis, E-mail: somad@asu.edu [Departamento de Astronoma, Universidad de Guanajuato, Apartado Postal 144, 36000 Guanajuato (Mexico)

    2014-06-01

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.

  12. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA

    SciTech Connect (OSTI)

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Cho, Richard; Contreras, Maria; Jha, Saurabh; Matheson, Tom; Modjaz, Maryam; Rest, Armin; Michael Wood-Vasey, W.; Barton, Elizabeth J.; Bragg, Ann; Briceno, Cesar; Ciupik, Larry; Dendy, Kristi-Concannon E-mail: kirshner@cfa.harvard.edu

    2009-07-20

    We present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously observed and reduced nearby SNe Ia (z {approx}< 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of {approx}<0.02 mag in BVRIr'i' and {approx}<0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SNe Ia are sufficiently distinct from other SNe Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.

  13. U.S. Energy Information Administration | Annual Energy Outlook...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP...

  14. NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division

    Office of Legacy Management (LM)

    NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are

  15. Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U. ECT workshop Trento, Italy, 1211 Outline: introduction, motivation MiniBooNE experiment MiniBooNE ...

  16. Type Ia supernovae yielding distances with 3-4% precision (Journal...

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. The luminosities of Type Ia ...

  17. File:USDA-CE-Production-GIFmaps-IA.pdf | Open Energy Information

    Open Energy Info (EERE)

    IA.pdf Jump to: navigation, search File File history File usage Iowa Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  18. Low Mach Number Modeling of Type Ia Supernovae

    SciTech Connect (OSTI)

    Almgren, Ann S.; Bell, John B.; Rendleman, Charles A.; Zingale,Michael

    2005-08-05

    We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and savings in computer time compared with frequently used compressible codes. Our equation set is derived from the fully compressible equations using low Mach number asymptotics, but without any restriction on the size of perturbations in density or temperature. Comparisons with simulations that use the fully compressible equations validate the low Mach number model in regimes where both are applicable. Comparisons to simulations based on the more traditional an elastic approximation also demonstrate the agreement of these models in the regime for which the anelastic approximation is valid. For low Mach number flows with potentially finite amplitude variations in density and temperature, the low Mach number model overcomes the limitations of each of the more traditional models and can serve as the basis for an accurate and efficient simulation tool.

  19. Ars Technica Visits GE's China Technology Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technica visits GE's China Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Ars Technica visits GE's China Technology Center Ars Technica visited GE's China Technology Center in Shanghai to discover what type of research is being conducted at the facility. The visit was a part of Ars Technica's Chasing

  20. An accumulator/compressor ring for Ne+ ions (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    An accumulatorcompressor ring for Ne+ ions Citation Details In-Document Search Title: An accumulatorcompressor ring for Ne+ ions The primary goal of the High Energy Density ...

  1. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    SciTech Connect (OSTI)

    Mosher, J.; Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N. [LPNHE, CNRS/IN2P3, Universit Pierre et Marie Curie Paris 6, Universi Denis Diderot Paris 7, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Marriner, J. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Biswas, R.; Kuhlmann, S. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Schneider, D. P., E-mail: kessler@kicp.chicago.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ?120 low-redshift (z < 0.1) SNe Ia, ?255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ?290 SNLS SNe Ia (z ? 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} w {sub recovered}) ranging from 0.005 0.012 to 0.024 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is 0.014 0.007.

  2. Djurcic_MiniBooNE_NuFact2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Zelimir Djurcic Argonne National Laboratory NuFact2011: 13th International Workshop on Neutrino Factories, Super Beams and Beta Beams August 1-6, 2011. Geneva, Switzerland 1 Outline * MiniBooNE Experiment Description * MiniBooNE s Neutrino Results * (New) MiniBooNE s Anti-neutrino Results * Summary 2 This signal looks very different from the others... * Much higher !m 2 = 0.1 - 10 eV 2 * Much smaller mixing angle * Only one experiment! In SM there are only 3 neutrinos !m 13 !m 12 !m 23 2

  3. DOE-NE-STD-1004-92 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NE-STD-1004-92 DOE-NE-STD-1004-92 July 27, 2005 Root Cause Analysis Guidance Document Standard became Inactive This document is a guide for root cause analysis specified by DOE Order 5000.3A, "Occurrence Reporting and Processing of Operations Information." Causal factors identify program control deficiencies and guide early corrective actions. As such, root cause analysis is central to DOE Order 5000.3A. DOE-NE-STD-1004-92, Root Cause Analysis Guidance Document (689.62 KB) More

  4. ARS 41-1072 Licensing Time Frames | Open Energy Information

    Open Energy Info (EERE)

    1-1072 Licensing Time Frames Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ARS 41-1072 Licensing Time FramesLegal Abstract...

  5. A.R.S. 11-804 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 11-804Legal Abstract This section authorizes counties to develop and adopt...

  6. A.R.S. 41-841 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 41-841Legal Abstract Archaeological Discoveries Published NA Year Signed or Took...

  7. A.R.S. 41-842 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 41-842Legal Abstract Discusses the requirement of prior authorization in order to...

  8. A.R.S. 41-861 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 41-861Legal Abstract This section discusses agency responsibility for the...

  9. A.R.S. 41-843 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 41-843Legal Abstract Prohibits the unnecessary defacing of an archaeological and...

  10. 49 A.R.S. 201: Definitions | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 49 A.R.S. 201: DefinitionsLegal Abstract This section contains definitions that relate to water...

  11. A.R.S. 11-811 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: A.R.S. 11-811Legal Abstract This section authorizes counties to adopt zoning ordinances....

  12. ARS 40 - Public Utilities and Carriers | Open Energy Information

    Open Energy Info (EERE)

    StatuteStatute: ARS 40 - Public Utilities and CarriersLegal Abstract This title sets forth the statutes for public utilities and carriers in Arizona. Published NA Year Signed...

  13. Xe and Ar nanobubbles in Al studied by photoemission spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Xe and Ar bombardment is observed by low energy electron diffraction, but this does not ... Road, Indore 452001, Madhya Pradesh (India) (India) Publication Date: 2008-03-01 OSTI ...

  14. ARS 41-1092 Uniform Administrative Hearing Procedures | Open...

    Open Energy Info (EERE)

    92 Uniform Administrative Hearing Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ARS 41-1092 Uniform Administrative...

  15. New Oscillation Results From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic e 20 Background prediction Intrinsic nue External measurements - HARP p+Be for - Sanford-Wang fits to world K + K 0 data MiniBooNE data...

  16. {alpha}-cluster states in N{ne}Z nuclei

    SciTech Connect (OSTI)

    Goldberg, V. Z.; Rogachev, G. V.

    2012-10-20

    The importance of studies of {alpha}-Cluster structure in N{ne}Z light nuclei is discussed. Spin-parity assignments for the low-lying levels in {sup 10}C are suggested.

  17. MiniBooNE/LSND Neutrino Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Sorel (IFIC - CSIC & U. Valencia) Workshop on Beyond Three Family Neutrino Oscillations May 3-4, 2011, LNGS (Italy) 1. LSND e (1993-2001) 2. MiniBooNE ...

  18. MicroBooNE Project Critical Decision Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Decisions for MicroBooNE Documents CD-0 Mission Need CD-1 Selection of Alternatives CD-2/3a Performance Baseline and Long Lead Procurements CD-3b Start of Construction

  19. The MicroBooNE Project - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    posted in the MicroBooNE DocDB, private access user-name is reviewer, password on request. ... Password access to these pages is necessary, user-name is reviewer, password on request. ...

  20. Combined U-Th/He and 40Ar/39Ar geochronology of post-shield lavas from the Mauna Kea and Kohala volcanoes, Hawaii

    SciTech Connect (OSTI)

    Aciego, S.M.; Jourdan, F.; DePaolo, D.J.; Kennedy, B.M.; Renne, P.R.; Sims, K.W.W.

    2009-10-01

    Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the Big Island of Hawaii have been dated using the {sup 40}Ar/{sup 39}Ar and U-Th/He methods. The objective of the study is to compare the recently demonstrated U-Th/He age method, which uses basaltic olivine phenocrysts, with {sup 40}Ar/{sup 39}Ar ages measured on groundmass from the same samples. As a corollary, the age data also increase the precision of the chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He concentrations and isotopes were measured to account for U-series disequilibrium and initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are 87 {+-} 40 ka to 119 {+-} 23 ka (2{sigma} uncertainties), which are in general equal to or younger than {sup 40}Ar/{sup 39}Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age of 354 {+-} 54 ka and a {sup 40}Ar/{sup 39}Ar age of 450 {+-} 40 ka. All of the U-Th/He ages, and all but one spurious {sup 40}Ar/{sup 39}Ar ages conform to the previously proposed stratigraphy and published {sup 14}C and K-Ar ages. The ages also compare favorably to U-Th whole rock-olivine ages calculated from {sup 238}U - {sup 230}Th disequilibria. The U-Th/He and {sup 40}Ar/{sup 39}Ar results agree best where there is a relatively large amount of radiogenic {sup 40}Ar (>10%), and where the {sup 40}Ar/{sup 36}Ar intercept calculated from the Ar isochron diagram is close to the atmospheric value. In two cases, it is not clear why U-Th/He and {sup 40}Ar/{sup 39}Ar ages do not agree within uncertainty. U-Th/He and {sup 40}Ar/{sup 39}Ar results diverge the most on a low-K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with negligible olivine phenocrysts, U-Th/He ages were unattainable while {sup 40}Ar/{sup 39}Ar results provide good precision even on ages as low as 19 {+-} 4 ka. Hence, the strengths and weaknesses of the U-Th/He and {sup 40}Ar/{sup 39}Ar methods are

  1. NE NEET-Reactor Materials Award Summaries May 2016.pdf

    Office of Environmental Management (EM)

    Idaho National Laboratory | Department of Energy NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory April 24, 2014 - 5:57pm Addthis The Energy Innovation Laboratory at the Energy Department’s Idaho National Laboratory was dedicated earlier this week. The new facility enables researchers to tackle some of the most pressing

  2. MiniBooNE_LoNu_Shaevitz.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE MiniBooNE Oscillation Results Oscillation Results and Future and Future Prospects Prospects Mike Mike Shaevitz Shaevitz - Columbia University - Columbia University 6th International Workshop on Low Energy Neutrino Physics 6th International Workshop on Low Energy Neutrino Physics Seoul National University Seoul National University ( ( Nov. 9 - 12, 2011) Nov. 9 - 12, 2011) 2 Neutrino Oscillation Summary Confirmed by K2K and Minos accelerator neutrino exps Confirmed by Kamland reactor

  3. Neutral Current Elastic Interactions in MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01

    Neutral Current Elastic (NCE) interactions in MiniBooNE are discussed. In the neutrino mode MiniBooNE reported: the flux averaged NCE differential cross section as a function of four-momentum transferred squared, an axial mass (M{sub A}) measurement, and a measurement of the strange quark spin content of the nucleon, {Delta}s. In the antineutrino mode we present the background-subtracted data which is compared with the Monte Carlo predictions.

  4. High Precision Measurement of the 19Ne Lifetime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics Duke University Date: Approved: Albert Young Calvin Howell Kate Scholberg Berndt Mueller John Thomas Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2012 Abstract (Nuclear physics) High Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics

  5. The MicroBooNE LArTPC Sarah Lockwitz, FNAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Prompt light emission by Ar 2 * + starts clock Anode W ire P lanes U V Y t 0 PMT 6 DPF: ... Prompt light emission by Ar 2 * + starts clock * Electrons drift to the anode (Ar + ions ...

  6. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect (OSTI)

    Raskin, Cody; Kasen, Daniel; Moll, Rainer; Woosley, Stan; Schwab, Josiah

    2014-06-10

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  7. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect (OSTI)

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan; Kuin, Paul; De Pasquale, Massimiliano; Scalzo, Richard; Holland, Stephen; Milne, Peter

    2014-05-20

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe—2009dc, 2011aa, and 2012dn—observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Å) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  8. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    SciTech Connect (OSTI)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A.; Antonsson, E.; Neville, J. J.; Miron, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  9. New Rydberg-Rydberg transitions of the ArH and ArD molecules: Bands involving the 4f complex of ArD

    SciTech Connect (OSTI)

    Dabrowski, I.; Tokaryk, D.; Watson, J.K.G.; Lipson, R.H.

    1995-12-31

    The 4f {r_arrow} 5s transition of ArD is observed in Ar/D{sub 2} discharges as a band near 4830 {Angstrom}1 (v{sub 00} = 20682 cm{sup -1}) with O, Q and S-form branches. On the basis of a preliminary rotational analysis of this band, the transitions 4f {r_arrow} 3d{sigma}, 4f {r_arrow} 3d{pi}, and 4f {r_arrow} 3d{delta} to the three components of the 3d complex could be assigned to bands at 4371, 7666 and 6045 cm{sup -1}, respectively. These bands give information on components of the 4f complex not seen in the 4f {r_arrow} 5s band. The 4f complex is found to be a good example of Hund`s case (d), with R = 0 splittings that are predominantly of second-rank tensor type with the coefficient of {lambda}{sup 2} equal to 16.5 cm{sup -1}. A number of small perturbations are probably due to vibrational levels of other electronic states, but two larger perturbations near R = 11 and R = 24 are attributed to v = 0 of the 4d{delta} and 4d{sigma} states, respectively. The quantum defects of the 4f and other states will be discussed in terms of the properties of the ArH{sup +} or ArD{sup +} core, including the I-mixing effects of the core electric dipole moment.

  10. MiniBooNE Antineutrino Data Van Nguyen Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moriond EW 2008 Coherent NC π 0 Production in the MiniBooNE Antineutrino Data Van Nguyen Columbia University for the MiniBooNE collaboration Moriond EW 2008 2 Moriond EW 2008 At low energy, NC π 0 's can be created through resonant and coherent production:  Resonant NC π 0 production:  Coherent NC π 0 production: (Signature: π 0 which is highly forward-going) NC π 0 Production 3 Moriond EW 2008 Why study coherent NC π 0 production? ➔ NC π 0 events are the dominant bgd to osc