Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA  

Broader source: Energy.gov (indexed) [DOE]

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA Energy Efficiency and Conservation Block Grant Program Location: Tribe ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND American Recovery and Reinvestment Act: Proposed Action or Project Description The Turtle Mountain Band of Chippewa Indians of North Dakota propose to 1) explore the potential for wind energy development on the Reservation by soliciting expertise from an engineering company to determine the best option for tapping wind energy on the reservation for its public buildings and seek legal expertise to study legal barriers that may exist; 2) conduct energy audits and a feasibility study to determine if several sizeable public buildings have the potential to be sites for either district heating or a

2

U.S. Department of Energy National Environmental Policy Act (NEPA) Categorical Exclusion Determination  

Broader source: Energy.gov (indexed) [DOE]

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA Energy Efficiency and Conservation Block Grant Program Location: Tribe ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND American Recovery and Reinvestment Act: Proposed Action or Project Description The Turtle Mountain Band of Chippewa Indians of North Dakota proposes to 1) develop an energy efficiency conservation strategy for buildings and facilities which would include understanding the issues involved with solar installation and, in addition, development of a pilot project (50 kV solar array installation) to train tribal members on solar installation; 2) conduct training programs for Tribes to become energy installers and auditors, conduct energy audits, and pay salaries of auditors; 3) examine the best approach

3

Energy Efficiency and Conservation Block Grant Program  

Broader source: Energy.gov (indexed) [DOE]

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA Energy Efficiency and Conservation Block Grant Program Location: Tribe ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND American Recovery and Reinvestment Act: Proposed Action or Project Description The Turtle Mountain Band of Chippewa Indians of North Dakota proposes to 1) conduct a study of a tribal solar energy partnership with Federal Prison Industries FPI and Infinergy and provide photovoltaic training and education to tribal men and women; 2) conduct training programs for Tribes to become energy installers and auditors, conduct energy audits, and pay salaries of auditors; 3) examine the best approach for tapping wind energy to serve local buildings, conduct research to find a local wind company with

4

Mountain  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" "(million gallons)" "Period","PADD",,,,,,,,,,"U.S." ,"East Coast (PADD 1)",,"Midwest (PADD 2)",,"Gulf Coast (PADD 3)",,"Rocky Mountain (PADD 4)",,"West Coast (PADD 5)" 2011 "January",3,,30,,1,,0,,1,,35.355469 "February",3,,32,,4,,0,,1,,40.342355 "March",3,,47,,6,,0,,2,,59.59017 "April",3,,54,,10,,0,,3,,71.0517 "May",4,,58,,11,,0,,4,,77.196652 "June",4,,56,,14,,0,,7,,81.39104 "July",5,,65,,17,,0,,5,,91.679738 "August",5,,66,,20,,0,,5,,95.484891 "September",6,,65,,20,,0,,6,,95.880151 "October",7,,73,,22,,0,,4,,105.342474

5

Yucca Mountain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yucca Mountain We are applying our unique scientific and engineering capabilities to ensure the safety of the nation's first high-level nuclear waste repository. 8 08 FACT SHEET...

6

Rocky Mountain's Home page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mountain Region service area The Rocky Mountain Region is one of four regions of the Western Area Power Administration. RM sells power in Colorado, most of Wyoming, Nebraska...

7

LOOKING PAST YUCCA MOUNTAIN  

Science Journals Connector (OSTI)

LOOKING PAST YUCCA MOUNTAIN ... NUCLEAR WASTE: Blue-ribbon panel calls for interim storage of spent fuel ...

GLENN HESS

2011-08-08T23:59:59.000Z

8

Blowup at Yucca Mountain  

Science Journals Connector (OSTI)

...States waste disposal Yucca Mountain GeoRef, Copyright...attracted enough funding for a proof-of-concept...ATMI id zero? Yucca Mountain, Nevada, Uk...pluto-nium disposal (Science...mate-rial-i.e., Yucca Mountain. He says he...

Gary Taubes

1995-06-30T23:59:59.000Z

9

About Rocky Mountain Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rates About the Rocky Mountain Region RM Office The Platte River Power Authority in Colorado, Nebraska Public Power District, Kansas Electric Power Cooperative and Wyoming...

10

Yucca Mountain Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yucca Mountain Engineering Based on the success of the National Spent Nuclear Fuel Program, INL secured a lead role to provide engineering design and operations support for the...

11

King Mountain | Open Energy Information  

Open Energy Info (EERE)

King Mountain Facility King Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy...

12

Mountainous | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mountainous Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mountainous Dictionary.png Mountainous: A geothermal areal located in terrain characterized by rugged and steep topography with high relief Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous geothermal areas, one of the more famous areas is landmannalaugar, Iceland. Photo by

13

Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

14

Yucca Mountain - SRSCRO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the federal government to accept defense waste and commercial spent fuel for long-term storage. When the waste finally reached the depths of Yucca Mountain, it would be safe and...

15

Bird Banding  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bird Banding Bird Banding Name: Matthew Location: N/A Country: N/A Date: N/A Question: I am researching why the US fish and wildlife agency bands ducks and what information is used to set hunting daily and possession limits. Replies: Matt, The USFW service has been doing this for decades to have statistical data on the population fluctuations of all birds. This information serves to warn when over hunting has taken a toll on a species or if a species is declining due to habitat loss or whatever. This information also indicates need for increased habitat areas as well as possible hunting restrictions. This organization has a formula for setting hunting limits based upon the data received from banding. It is important that all hunters return these bands for they are the ones who will suffer if the information is not there. Females of any species are the most important for reproduction and often they are protected over the males. This should explain the differences in what can be bagged.

16

Yucca Mountain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain Yucca Mountain Yucca Mountain Addthis Fuel assembly for production of nuclear power 1 of 13 Fuel assembly for production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north end of the Yucca Mountain crest in February 1993 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 4 of 13 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 Aerial view of the crest of Yucca Mountain 5 of 13 Aerial view of the crest of Yucca Mountain Location of Yucca Mountain, Nevada 6 of 13 Location of Yucca Mountain, Nevada A scientist uses ultra-violet light to study how fluids move through rock

17

Green Mountain Energy RFP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROPOSALS PROPOSALS GREEN MOUNTAIN ENERGY COMPANY TIM SMITH VP OF ORIGINATION AND BUSINESS DEVELOPMENT 550 WESTLAKE PARK BOULEVARD ROOM 172 HOUSTON, TEXAS 77079 281-366-5124 DATE ISSUED: JANUARY 21, 2005 DUE DATE & TIME FOR RESPONSES: FRIDAY, MARCH 3, 2005 @ 11:00 A.M. CENTRAL TIME RFP NOTICE GREEN MOUNTAIN ENERGY COMPANY IS REQUESTING PROPOSALS FROM GENERATORS AND MARKETERS OF RENEWABLE ENERGY CREDITS, RENEWABLE ENERGY ATTRIBUTES OR 'GREEN TAGS' ("RECs") ASSOCIATED WITH THE GENERATION OF ELECTRICITY FROM RENEWABLE RESOURCES. ANY QUESTIONS REGARDING THIS REQUEST FOR PROPOSAL SHOULD BE DIRECTED TO TIM SMITH, GREEN MOUNTAIN ENERGY COMPANY, 281-366-5124 or tim.smith@greenmountain.com. Upon signing this page the organization certifies that they have read and agree to

18

Mountain Home Well - Photos  

SciTech Connect (OSTI)

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

John Shervais

2012-01-11T23:59:59.000Z

19

Mountain Home Well - Photos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

20

Moving Beyond the Yucca Mountain  

E-Print Network [OSTI]

Moving Beyond the Yucca Mountain Viability Assessment U.S. Nuclear Waste Technical Review Board the Yucca Mountain site in Nevada as the sole location to be studied for possi- ble development of the Yucca Mountain site. The U.S. Department of Energy (DOE) recently published Viability As- sessment

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

POTENTAIL HABITAT MOUNTAIN PLOVERS  

E-Print Network [OSTI]

) is endemic to the Western Great Plains and Colorado Plateau (Mengel, 1970). The bird has become of greaterPOTENTAIL HABITAT FOR MOUNTAIN PLOVERS ON COLORADO SPRINGS UTILITIES PROPERTY A Report to Colorado Springs Utilities By The Colorado Natural Heritage Program Colorado State University January 2003 Martin

22

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesIN THE UNSATURATED ZONE AT YUCCA MOUNTAIN, NEVADA George J.

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

23

Evolution of the unsaturated zone testing at Yucca Mountain  

E-Print Network [OSTI]

INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

Wang, J.S.Y.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

24

Rocky Mountain Customers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RM Home About RM Contact RM Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates Rocky Mountain Region's Customer list Use the filters above the customer list to refine your search. Click the "Clear" to reset the list. Western's full list of customers is available on the Western's Customer Web page. Customer Name Customer Type State Region Project Arapahoe and Roosevelt National Forests Federal Agencies CO RM LAP Arkansas River Power Authority Municipalities CO RM/CRSP LAP/SLIP Burlington, City of Municipalities CO RM LAP Cheyenne Mountain Air Force Base Federal Agencies CO RM LAP Clay Center, City of Municipalities KS RM LAP Denver Water Board Municipalities CO RM LAP

25

Resonant Instability in Mountain Waves: Breaking at Subcritical Mountain Heights  

E-Print Network [OSTI]

Resonant Instability in Mountain Waves: Breaking at Subcritical Mountain Heights Kevin Viner1 and breaks subcritical critical Nh/U = 0.5 Nh/U = 0.8 #12;Subcritical Instability: An Example three peaks · Nh/U = 0.6 · U/NL = 0.1 · nonrotating · Time-dependent model initialized with subcritical steady wave

26

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

27

Georgia Mountain | Open Energy Information  

Open Energy Info (EERE)

Georgia Mountain Georgia Mountain Jump to: navigation, search Name Georgia Mountain Facility Georgia Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner All Earth Renewables Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351°, -73.067991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662351,"lon":-73.067991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

YUCCA MOUNTAIN PROJECT - A BRIEFING --  

SciTech Connect (OSTI)

This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

NA

2003-08-05T23:59:59.000Z

29

British wind band music.  

E-Print Network [OSTI]

??I have chosen to be assessed as an interpreter and conductor of British wind band music from the earliest writings for wind band up to, (more)

Jones, GO

2005-01-01T23:59:59.000Z

30

Back The Pico Mountain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photos Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores (fialho.paulo@gmail.com) Detlev Helmig, University of Colorado Gracioso Pico *Photos *Pubs summary *Status *Inside view *Go Back View from sea level; Station height 2225 m Winter Station is usually above the MBL [Kleissl et al., 2007] *Photos *Pubs summary *Status *Inside view *Go Back Ideal location to sample impacts on the remote atmosphere -160 -140 -120 -100 -80 -60 -40 -20 0 20 0 10 20 30 40 50 60 70 80 90 Note haze layer from Quebec wildfires * Dominant transport patterns bring - Aged North American anthropogenic emissions. - Aged biomass burning emissions from boreal North America and Siberia. - Tropical North Atlantic air. - (African, European flow). * Note haze layer from Quebec wildfires *Photos

31

mountain region | OpenEI  

Open Energy Info (EERE)

mountain region mountain region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

32

Spruce Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Spruce Mountain Facility Spruce Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Patriot Renewables Developer Patriot Renewables Energy Purchaser Energy New England Location Bryant Pond ME Coordinates 44.43443869°, -70.55286884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.43443869,"lon":-70.55286884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Laurel Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Laurel Mountain Facility Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington WV Coordinates 39.00702933°, -79.88500357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.00702933,"lon":-79.88500357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Mountain Health Choices Beneficiary Report  

E-Print Network [OSTI]

................................................................................................................ 42 I. Access to Health Care Mountain Health Choices Beneficiary Report A Report to the West Virginia Bureau for Medical of Health and Human Resources, Bureau for Medical Services. #12; 1 Table of Contents I. EXECUTIVE

Mohaghegh, Shahab

35

Yucca Mountain Project public interactions  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is committed to keeping the citizens of Nevada informed about activities that relate to the high-level nuclear waste repository program. This paper presents an overview of the Yucca Mountain Project`s public interaction philosophy, objectives, activities and experiences during the two years since Congress directed the DOE to conduct site characterization activities only for the Yucca Mountain site.

Reilly, B.E.

1990-04-01T23:59:59.000Z

36

April 25, 1997: Yucca Mountain exploratory drilling | Department...  

Office of Environmental Management (EM)

April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997 Workers...

37

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network [OSTI]

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

38

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network [OSTI]

to Fault Zones at Yucca Mountain, Nevada, International2003c. Calibration of Yucca Mountain Unsaturated Zone FlowUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

39

Pine Mountain Builders | Open Energy Information  

Open Energy Info (EERE)

Pine Mountain Builders Pine Mountain Builders Place Pine Mountain, GA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Pine Mountain Builders is a company located in Pine Mountain, GA. References Retrieved from "http://en.openei.org/w/index.php?title=Pine_Mountain_Builders&oldid=379448" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863719699

40

Information Request Yucca Mountain Site  

Broader source: Energy.gov (indexed) [DOE]

, 2008 , 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested last week regarding use of engineered barriers. Please let me know if you need additional information or have any questions. A,4- -/0 7 The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal Barriers for Demonstrating Safety This paper addresses two issues that are frequently raised concerning the suitability of the Yucca Mountain site for development as a repository. The first issue is that the Yucca Mountain site is technically unsound and that an engineered barrier system is required because the site is not capable of protecting public health and safety. The second issue is

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Yucca Mountain project prototype testing  

SciTech Connect (OSTI)

The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs.

Hughes, W.T.; Girdley, W.A.

1990-08-01T23:59:59.000Z

42

Timber Mountain Precipitation Monitoring Station  

SciTech Connect (OSTI)

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

43

Mountain Air | Open Energy Information  

Open Energy Info (EERE)

Air Air Jump to: navigation, search Name Mountain Air Facility Mountain Air Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terna Energy Developer Terna Energy Energy Purchaser Idaho Power Location Hammett ID Coordinates 42.98719519°, -115.3985024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.98719519,"lon":-115.3985024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

E-Print Network 3.0 - adrar mountains fishes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Canyon Summary: Hills Grass Valley Black Mountain Cleghorn Lakes North Algodones Dunes Fish Creek Mountains Coyote... Crater Mountain Sheep Ridge White Mountains Great Falls Basin...

45

Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain  

E-Print Network [OSTI]

of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

2002-01-01T23:59:59.000Z

46

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALLIED OIL & TOOL POWERJET SLOTTING TOOL ALLIED OIL & TOOL POWERJET SLOTTING TOOL JANUARY 10, 1996 FC9522 / 95DT3 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS ALLIED OIL & TOOL POWERJET SLOTTING TOOL Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer January 11, 1996 551103/9522:jb CONTENTS Page Summary .......................................................................................................................2 Introduction.....................................................................................................................2 Description of Operations...................................................................................................3 Figure 1 ..........................................................................................................5

47

Mapco's NGL Rocky Mountain pipeline  

SciTech Connect (OSTI)

The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

Isaacs, S.F.

1980-01-01T23:59:59.000Z

48

Thermal And-Or Near Infrared At Socorro Mountain Area (Owens, Et Al., 2005)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal And-Or Near Infrared At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes IR remote sensing has located elevated surface temperatures (<12 degrees C above background) near Socorro Peak). A four-year compellation of ASTER satellite IR imaging was used. These images work on a 5-band, TIR processor

49

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

50

NEPA Yucca Mountain Downloads | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads October 24, 2008 EIS-0250: Notice of Intent to Prepare a Supplement to the Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-level Radioactive Waste at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Floodplain Statement of Finding Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Record of Decision and Floodplain Statement of Findings Nevada Rail Alignment for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada June 2, 2008 EIS-0250-S2: Final Supplemental Environmental Impact Statement

51

Marketing the Mountains: An Environmental History of Tourism in Rocky Mountain National Park  

E-Print Network [OSTI]

Marketing the Mountains explores the impact of tourism upon the natural world of Rocky Mountain National Park. Moving beyond culutral analysis of the development of tourism in the American West, this dissertation seeks to understand both...

Frank, Jerritt

2008-09-05T23:59:59.000Z

52

Geothermal Energy Resource Investigations, Chocolate Mountains...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,...

53

Geohydrological models and earthquake effects at Yucca Mountain, Nevada  

Science Journals Connector (OSTI)

?Yucca Mountain, the proposed site for the high-level ... feature that extends for over 100?km. Yucca Mountain and its vicinity are underlain by faulted ... , and surrounding the core of the Timber Mountain Calde...

J. B. Davies; Charles B. Archambeau

1997-07-01T23:59:59.000Z

54

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network [OSTI]

2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

55

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network [OSTI]

Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

56

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

57

Yucca Mountain and The Environment  

SciTech Connect (OSTI)

The Yucca Mountain Project places a high priority on protecting the environment. To ensure compliance with all state and federal environmental laws and regulations, the Project established an Environmental Management System. Important elements of the Environmental Management System include the following: (1) monitoring air, water, and other natural resources; (2) protecting plant and animal species by minimizing land disturbance; (3) restoring vegetation and wildlife habitat in disturbed areas; (4) protecting cultural resources; (5) minimizing waste, preventing pollution, and promoting environmental awareness; and (6) managing of hazardous and non-hazardous waste. Reducing the impacts of Project activities on the environment will continue for the duration of the Project.

NA

2005-04-12T23:59:59.000Z

58

EA-1746: Blue Mountain Geothermal Development Project, Humboldt...  

Broader source: Energy.gov (indexed) [DOE]

NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal...

59

Statement from Ward Sproat on Yucca Mountain, Director of the...  

Energy Savers [EERE]

Ward Sproat on Yucca Mountain, Director of the Office of Civilian Radioactive Waste Management Statement from Ward Sproat on Yucca Mountain, Director of the Office of Civilian...

60

Dongbai Mountain Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name: Dongbai Mountain Wind Power Co Ltd Place: Zhejiang Province, China Sector: Wind energy Product: Dongyang-based...

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Microsoft Word - Interim Use of Scott Mountain Communications...  

Broader source: Energy.gov (indexed) [DOE]

PAC to use two vacant rack spaces within BPA's existing Scott Mountain Communications Building, and three antennas spaces on BPA's existing Scott Mountain communication tower in...

62

Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) |...  

Open Energy Info (EERE)

Blue Mountain Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Warpinski, Et Al.,...

63

Geothermal Literature Review At White Mountains Area (Goff &...  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area...

64

Midwest/Mountain Alternative Fuel Initiative | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

MidwestMountain Alternative Fuel Initiative MidwestMountain Alternative Fuel Initiative Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

65

PIA - Rocky Mountain OTC GSS | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rocky Mountain OTC GSS PIA - Rocky Mountain OTC GSS More Documents & Publications PIA - WEB Unclassified Business Operations General Support System Integrated Safety Management...

66

Kibby Mountain II | Open Energy Information  

Open Energy Info (EERE)

Kibby Mountain II Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Mountain ME Coordinates 45.354154°, -70.65412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.354154,"lon":-70.65412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Turtle Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turtle Mountain Wind Farm Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Turtle Mountain Chippewa Energy Purchaser Turtle Mountain Chippewa Location Belcourt ND Coordinates 48.839486°, -99.745145° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.839486,"lon":-99.745145,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

69

Cemex Black Mountain Quarry | Open Energy Information  

Open Energy Info (EERE)

Mountain Quarry Mountain Quarry Jump to: navigation, search Name Cemex Black Mountain Quarry Facility Cemex Black Mountain Quarry Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Cemex Black Mountain Quarry Location Apple Valley CA Coordinates 34.622028°, -117.111833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.622028,"lon":-117.111833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

Yucca Mountain Archival Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents From the Former Office of Civilian Radioactive Waste Management President Obama and the Department of Energy are working to restart America's nuclear industry to help meet our energy and climate challenges and create thousands of new jobs. The Administration is fully committed to ensuring that long-term storage obligations for nuclear waste are met. The President has made clear that Yucca Mountain is not an option for waste storage. The Blue Ribbon Commission on America's Nuclear Future, led by Congressman Lee Hamilton and General Brent Scowcroft, has conducted a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and has offered recommendations for developing a safe,

72

Yucca Mountain Press Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain Press Conference Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the NRC's rigorous review process will validate that the Yucca Mountain repository will provide for the safe disposal of spent nuclear fuel and high-level radioactive waste in a way that protects human health and our environment. This application represents the culmination of over 20 years of work by

73

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOVERFLO (SMART CABLE) NOVERFLO (SMART CABLE) LIQUID LEAK DETECTION SYSTEM FEBRUARY 12, 1996 FC9535/96ET3 RMOTC TEST REPORT NOVERFLO LIQUID LEAK DETECTION SYSTEM (SMART CABLE) Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer February 12, 1996 650200/9535:jb CONTENTS Page Summary 1 Introducation 1 NPR-3 Map 2 Description of Operations 3 1 st Test 3 2 nd Test 3 3 rd Test 4 4 th Test 5 Concluding Remarks 5 Acknowledgements 6 Rocky Mountain Oilfield Testing Center Technical Report Noverflo Liquid Leak Detection System (Smart Cable) Summary As part of RMOTC's continuing mission to support and strengthen the domestic oil and gas industry by allowing testing by individual inventors and commercial companies to evaluate their products and technology, RMOTC

74

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

75

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AUTOMATED THREE-PHASE CENTRIFUGE PROJECT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT MARCH 30, 1998 FC9535/96ET5 RMOTC TEST REPORT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT Centech, Inc. Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 30, 1998 850200/650200/650201:9583 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automated ThreePhase Centrifuge at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3). Centech, Inc. has manufactured a three-phase centrifuge which has been retrofitted with a PCbased, fuzzy-logic, automated control system, by Los Alamos National Laboratory. The equipment is designed to automatically process tank-bottom wastes within operator-prescribed limits of Basic

76

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

77

1. INTRODUCTION 1.1. Yucca Mountain Project  

E-Print Network [OSTI]

1. INTRODUCTION 1.1. Yucca Mountain Project The Yucca Mountain site in Nevada has been designated as United States choice for nuclear waste repository. Yucca Mountain is in a remote dry area, on federal has been made to characterize the nature of the discontinuities of the Yucca Mountain proposed nuclear

Maerz, Norbert H.

78

Banded electromagnetic stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

1996-01-01T23:59:59.000Z

79

Banded electromagnetic stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

1994-01-01T23:59:59.000Z

80

Banded electromagnetic stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1996-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Banded electromagnetic stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1994-04-05T23:59:59.000Z

82

Mountain Home Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mountain Home Wind Farm Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Elmore County ID Coordinates 43.268356°, -116.167939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.268356,"lon":-116.167939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Green Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Wind Farm Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power Energy Purchaser Green Mountain Energy Company Location Somerset County PA Coordinates 39.850753°, -79.066629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.850753,"lon":-79.066629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Pillar Mountain II | Open Energy Information  

Open Energy Info (EERE)

Pillar Mountain II Pillar Mountain II Jump to: navigation, search Name Pillar Mountain II Facility Pillar Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kodiak Electric Assoc. Developer Kodiak Electric Assoc. Energy Purchaser Kodiak Electric Assoc. Location Kodiak AK Coordinates 57.78667872°, -152.4434781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.78667872,"lon":-152.4434781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Microsoft Word - Yucca Mountain Press Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tuesday, June 3, 2008 Remarks as Prepared for Delivery for Energy Secretary Samuel Bodman Yucca Mountain Press Conference National Press Club Washington, D.C. Thank you all for...

87

Green Mountain Energy Company | Open Energy Information  

Open Energy Info (EERE)

Energy Company Jump to: navigation, search Name: Green Mountain Energy Company Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

88

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

89

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

90

Microsoft Word - IceMountainFinal.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mason West Virginia's Ice Mountain: Where Science Meets Magic On August 6, 1918, the thermometer hit 109 degrees in Hampshire County, West Virginia. It's easy to believe that the...

91

Band crossing in a shears band of {sup 108}Cd  

SciTech Connect (OSTI)

The level lifetimes have been measured for a shears band of {sup 108}Cd that exhibits band crossing. The observed level energies and B(M1) rates have been successfully described by a semiclassical geometric model based on shear mechanism. In this geometric model, the band crossing in the shears band has been described as the reopening of the angle between the blades of a shear.

Roy, Santosh; Datta, Pradip; Pal, S.; Chattopadhyay, S.; Bhattacharya, S.; Goswami, A.; Jain, H. C.; Joshi, P. K.; Bhowmik, R. K.; Kumar, R.; Muralithar, S.; Singh, R. P.; Madhavan, N.; Rao, P. V. Madhusudhana [S. N. Bose National Centre for Basic Sciences. Block JD, Sector III, Saltlake City, Kolkata 700098 (India); iThemba Labs, Post Office Box 722, Somerset West 7129 (South Africa); Saha Institute of Nuclear Physics, 1/AF Bidhannager Kolkata, 700 064 (India); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Department of Physics, Andra University, Visakhapatnam 530 003 (India)

2010-05-15T23:59:59.000Z

92

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) SLIMHOLE DRILL STEM TESTER APRIL, 1995 FC9524/95DT4 MSTS Test in Casper Wyoming April 19,1995 Background MSTS EXP-2 was shipped back to SPT for modifications and re-testing. A 4-1/2" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were: Casper Well Deviation 0 Casing 4-1/2" 10.5#/ft Test depth 5380 ft BHT NOT Tubing 2-3/8" 4.7#/ft Formation Fluid Water & Oil Kill Fluid 10#/gal brine The MSTS was tested with a single 3.06" Dowell packer which was set at 5380 ft, approximately 80 off bottom. The test string was configured: MSTS EXP-2 with Inflate recorder - HPR-D Formation Gage - HPR-D Single packer, Dowell 3.06 TFV - 12 inch stroke no cam 900 ft of 2-3/8" 4.7 #/ft tubing (3000 #)

93

ADVANCES IN YUCCA MOUNTAIN DESIGN  

SciTech Connect (OSTI)

Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield.

Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

2003-02-27T23:59:59.000Z

94

Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data  

E-Print Network [OSTI]

of hydrogeologic units at Yucca Mountain, Nevada. U.S.infiltration for the Yucca Mountain Area, Nevada. Milestonethe unsaturated zone at Yucca Mountain, Nevada. J. Contam.

Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

2002-01-01T23:59:59.000Z

95

Experimental and numerical simulation of dissolution and precipitation: Implications for fracture sealing at Yucca Mountain, Nevada  

E-Print Network [OSTI]

FRACTURE SEALING AT YUCCA MOUNTAIN, NEVADA Patrick F. Dobsonpotential repository at Yucca Mountain, Nevada, would reducewas flowed through crushed Yucca Mountain tuff at 94C. The

Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

2001-01-01T23:59:59.000Z

96

Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain  

E-Print Network [OSTI]

Unsaturated Zone Model of Yucca Mountain, Nevada. Lawrencestudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

Wu, Yu-Shu; Pruess, Karsten

1998-01-01T23:59:59.000Z

97

Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada  

E-Print Network [OSTI]

Central Block Area, Yucca Mountain, Nye County, Nevada. Mapunsaturated zone, Yucca Mountain, Nevada. Water-Resourcesisotope distributions at Yucca Mountain. Sandia National

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

98

Development of discrete flow paths in unsaturated fractures at Yucca Mountain  

E-Print Network [OSTI]

into drifts at Yucca Mountain. Journal of Contaminantof infiltration for the Yucca Mountain Area, Nevada, U. S.matrix properties, Yucca Mountain, Nevada, U.S. Geological

Bodvarsson, G.S.; Wu, Yu-Shu; Zhang, Keni

2002-01-01T23:59:59.000Z

99

Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

100

Characterization and Prediction of Subsurface Pneumatic Pressure Variations at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Group Exposed at Yucca Mountain, Nevada, U. S. Geologicalunsaturated zone, Yucca Mountain, Nevada, Water Resourcesgeologic map of Yucca Mountain, Nye County, Nevada, with

Ahlers, C. Fredrik; Finsterle, Stefan; Bodvarsson, Gudmundur S.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Multiple-point statistical prediction on fracture networks at Yucca Mountain  

E-Print Network [OSTI]

on fracture networks at Yucca Mountain Xiaoyan Liu 1 ,systems, such as at Yucca Mountain, water flow rate andflow field behavior at the Yucca Mountain waste repository

Liu, X.Y

2010-01-01T23:59:59.000Z

102

Modeling water seepage into heated waste emplacement drifts at Yucca Mountain  

E-Print Network [OSTI]

into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

2003-01-01T23:59:59.000Z

103

Multiphysics processes in partially saturated fracture rock: Experiments and models from Yucca Mountain  

E-Print Network [OSTI]

Thermal Test at Yucca Mountain. ACC: MOL.19980507.0359,Unit Evaluation at Yucca Mountain, Nevada Test Site: SummaryEstimations for the Yucca Mountain Site Characterization

Rutqvist, J.

2014-01-01T23:59:59.000Z

104

Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Unsaturated Zone at Yucca Mountain, Nevada. U.S. Geologicalzone model at Yucca Mountain, Nevada. J. Contaminantinvesti- gations at Yucca Mountain - the potential

Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

2002-01-01T23:59:59.000Z

105

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network [OSTI]

zone site-scale model, Yucca Mountain Site Characterizationzone site- scale model, Yucca Mountain Project Milestonelateral diversion at Yucca Mountain, Nevada, Water Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

106

Temporal Damping Effect of the Yucca Mountain Fractured Unsaturated Rock on Transient Infiltration Pulses  

E-Print Network [OSTI]

unsaturated zone at Yucca Mountain. J. of Cont. Hydrol. ,2003b. Calibration of Yucca Mountain unsaturated zone flowthe unsaturated zone, Yucca Mountain, USGS Water Resources

Zhang, Keni; Wu, Yu-Shu; Pan, Lehua

2005-01-01T23:59:59.000Z

107

International Centre for Integrated Mountain Development (ICIMOD) | Open  

Open Energy Info (EERE)

Centre for Integrated Mountain Development (ICIMOD) Centre for Integrated Mountain Development (ICIMOD) Jump to: navigation, search Name International Centre for Integrated Mountain Development (ICIMOD) Agency/Company /Organization International Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learned/best practices Website http://www.icimod.org/ Country Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Pakistan UN Region Southern Asia, Western Asia References ICIMOD[1] International Centre for Integrated Mountain Development (ICIMOD) Screenshot "The International Centre for Integrated Mountain Development, ICIMOD, is a regional knowledge development and learning centre serving the eight regional member countries of the Hindu Kush-Himalayas - Afghanistan,

108

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Green Mountain Power Corp | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Power Corp Green Mountain Power Corp Jump to: navigation, search Name Green Mountain Power Corp Place Vermont Service Territory Vermont Website www.greenmountainpower.co Green Button Landing Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 7601 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

110

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

111

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

113

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

114

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

115

Sand Mountain Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Mountain Electric Coop Mountain Electric Coop Jump to: navigation, search Name Sand Mountain Electric Coop Place Alabama Utility Id 16629 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Drainage Pumping Station LS - Outdoor Lighting Service Lighting RS - Residential Service Residential Schedule GSA - General Power Service - Part 1 Commercial Schedule GSA - General Power Service - Part 2 Commercial Schedule GSA - General Power Service - Part 3 Commercial Schedule GSB Commercial Schedule GSD Commercial

116

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Bald Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Bald Mountain Geothermal Project Bald Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Bald Mountain Geothermal Project Project Location Information Coordinates 40.365833333333°, -120.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.365833333333,"lon":-120.2425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

New Yucca Mountain Repository Design to be Simpler, Safer and...  

Energy Savers [EERE]

New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective untitled More...

120

DOE Petitions for NRC Review in Yucca Mountain Proceeding | Department...  

Broader source: Energy.gov (indexed) [DOE]

Petitions for NRC Review in Yucca Mountain Proceeding DOE Petitions for NRC Review in Yucca Mountain Proceeding April 12, 2010 - 10:16am Addthis The United States Department of...

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

IMPACTS OF LANDSLIDE DAMS ON MOUNTAIN VALLEY MORPHOLOGY  

Science Journals Connector (OSTI)

Landslide dams can influence mountain-valley morphology significantly in the vicinity of the ... and their impoundments, and thus influence the long-term effects of these natural features on mountain-valley morph...

R.L. SCHUSTER

2006-01-01T23:59:59.000Z

122

Environment/Health/Safety (EHS): ISSM: Mountain Lion Sightings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Safeguards & Security Management Integrated Safeguards & Security Management Home ISSM Plan Security at LBNL Clearance Holders Export Control International Visitors Security Updates Contact Us CI Awareness Security and Emergency Operations Website Mountain Lion Sightings Mountain Lion Adult Mountain Lion Cub Mountain Lion Adult Mountain Lion Cub Updated 11/19/2012: Mountain lions generally exist where deer are found. Warning signs have been placed at walkways and gate entrances. As a precaution, the use of isolated stairs/walkways at dusk, night, or dawn is discouraged. To limit an interaction with a mountain lion, avoid hiking or jogging in the undeveloped areas of the lab alone or at dawn, dusk or night. If you see a mountain lion, immediately call 7-911 from any Lab phone or 911 from any cell phone. Go to http://www.dfg.ca.gov/keepmewild/lion.html

123

Mountain Home Well - Borehole Geophysics Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

124

Mountain Home Well - Borehole Geophysics Database  

SciTech Connect (OSTI)

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

John Shervais

2012-11-11T23:59:59.000Z

125

THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION  

E-Print Network [OSTI]

1974. 7. Atlantic Richfield Hanford Company, Research andGABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION L.

Martinez-Baez, L.F.

2011-01-01T23:59:59.000Z

126

Motion to Withdraw from Yucca Mountain application | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from Yucca Mountain application More Documents & Publications CERTIFIED REALTY SPECIALIST Greenpower Trap Mufflerl System Heating Ventilation and Air Conditioning Efficiency...

127

Magnetotellurics At Glass Mountain Area (Cumming And Mackie,...  

Open Energy Info (EERE)

Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass Mountain Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness useful...

128

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network [OSTI]

funding, Congress amended the NWPA to direct DOE to focus research of waste disposal only on Yucca Mountain.

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

129

TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA  

E-Print Network [OSTI]

TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA Eugene Smith 1 The determination of volcanic risk to the proposed high- level nuclear waste repository at Yucca Mountain requires, then volcanism in the future may not be a significant threat to Yucca Mountain. On the other hand, if melting

Conrad, Clint

130

Climate Change at Yucca Mountain: Lessons from Earth History  

E-Print Network [OSTI]

9 Climate Change at Yucca Mountain: Lessons from Earth History MaryLynn Musgrove and Daniel P. Schrag Yucca Mountain's suitability as a nuclear waste repository stems largely from its very dry climate the climate and hydrologic conditions at Yucca Mountain will be stable enough beyond the next ten millennia so

Schrag, Daniel

131

BULL MOUNTAIN BASIN, MONTANA By G.D. Stricker  

E-Print Network [OSTI]

Mountains and Great Plains region, U.S. Geological Survey Professional Paper 1625-A Click here or on this symbol Mountains and Great Plains region, U.S. Geological Survey Professional Paper 1625-A #12;SM-ii Contents in the Northern RockyMountains and Great Plains region, U.S. Geological Survey Professional Paper 1625-A Click

132

Mountain Fen Distribution, Types and Restoration Priorities, San Juan Mountains, Colorado, USA  

Science Journals Connector (OSTI)

Mountain fens are vital ecosystems for habitat, biodiversity, water and carbon cycling, but there is little comprehensive information on their distribution, abundance or condition in any region of the western U.S...

Rod A. Chimner; Joanna M. Lemly; David J. Cooper

2010-08-01T23:59:59.000Z

133

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area (Redirected from Tungsten Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Hueco Mountain Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Hueco Mountain Wind Ranch Hueco Mountain Wind Ranch Jump to: navigation, search Name Hueco Mountain Wind Ranch Facility Hueco Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner El Paso Electric Co Developer Cielo Wind Power Energy Purchaser El Paso Electric Co Location El Paso County TX Coordinates 31.6966°, -106.295° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.6966,"lon":-106.295,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Delaware Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delaware Mountain Wind Farm Delaware Mountain Wind Farm Jump to: navigation, search Name Delaware Mountain Wind Farm Facility Delaware Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer American National Wind Power/Orion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.670717°, -104.739534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.670717,"lon":-104.739534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Seeking Mountains Field Trip Jasper National Park  

E-Print Network [OSTI]

Seeking Mountains Field Trip Jasper National Park December 14-15, 2012 Jasper National Park of Jasper is one of only four communities located in a Canadian national park. We have arranged a special. The field trip includes as follows: a welcome reception at the Jasper Yellowhead Museum and Archives

MacMillan, Andrew

138

CITY OF MOUNTAIN VIEW April 12, 2011 .  

E-Print Network [OSTI]

Ordinance ordinance? Projected effective date: September 1, 2011 Green building or stand-alone energy Energy Ordinance in Combination with Green Building ordinance? Do minimum energy requirements increase No afterCITY OF MOUNTAIN VIEW April 12, 2011 . CaUfomia Energy Commission Attn: Joe Loyer 1516 Ninth

139

Sorption of radionuclides on Yucca Mountain tuffs  

SciTech Connect (OSTI)

A substantial database of sorption coefficients for important radionuclides on Yucca Mountain tuffs has been obtained by Los Alamos National Laboratory over the past ten years. Current sorption studies are focussed on validation questions and augmentation of the existing database. Validation questions concern the effects of the use of crushed instead of solid rock samples in the batch experiments, the use of oversaturated stock solutions, and variations in water/rock ratios. Sorption mechanisms are also being investigated. Database augmentation activities include determination of sorption coefficients for elements with low sorption potential, sorption on psuedocolloids, sorption on fracture lining minerals, and sorption kinetics. Sorption can provide an important barrier to the potential migration of radionuclides from the proposed repository within Yucca Mountain to the accessible environment. In order to quantify this barrier, sorption coefficients appropriate for the Yucca Mountain groundwater system must be obtained for each of the important radionuclides in nuclear waste. Los Alamos National Laboratories has conducted numerous batch (crushed-rock) sorption experiments over the past ten years to develop a sorption coefficient database for the Yucca Mountain site. In the present site characterization phase, the main goals of the sorption test program will be to validate critical sorption coefficients and to augment the existing database where important data are lacking. 11 refs., 1 fig., 3 tabs.

Meijer, A.; Triay, I.; Knight, S.; Cisneros, M.

1989-11-01T23:59:59.000Z

140

YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM  

SciTech Connect (OSTI)

The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

G. Housley; C. Shelton-davis; K. Skinner

2005-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SOLAR TODAY28 The Green Mountain Energysm  

E-Print Network [OSTI]

SOLAR TODAY28 The Green Mountain Energysm solar installation at The Winston School in Dallas, Texas use to light, heat and cool our homes and to power our appliances. And whether we realize it or not generated in whole or in part from renewable energy sources like wind, solar, geothermal and biomass

142

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blue Mountain Geothermal Area Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

GreenMountain Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

GreenMountain Engineering LLC GreenMountain Engineering LLC Jump to: navigation, search Name GreenMountain Engineering, LLC Place San Francisco, California Zip 94107 Product Consulting firm specializing in clean technology product design and manufacturing development. References GreenMountain Engineering, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. GreenMountain Engineering, LLC is a company located in San Francisco, California . References ↑ "GreenMountain Engineering, LLC" Retrieved from "http://en.openei.org/w/index.php?title=GreenMountain_Engineering_LLC&oldid=346101" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

144

Viability Assessment of a Repository at Yucca Mountain | Department of  

Broader source: Energy.gov (indexed) [DOE]

Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Summary The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution. The overview describes why the Unites States is considering Yucca Mountain and how a monitored geologic repository would work in the mountain. It presents a repository design, an assessment of its expected performance, and an evaluation of the possible effects on people living near Yucca Mountain. Also presented is the work remaining to be completed prior to a license application, along with the estimated cost of building and operating a

145

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

146

Rocky Mountain Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name Rocky Mountain Institute Address 1820 Folsom Street Place Boulder, Colorado Zip 80302 Region Rockies Area Coordinates 40.01838°, -105.262323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01838,"lon":-105.262323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Maine Mountain Power | Open Energy Information  

Open Energy Info (EERE)

Maine Mountain Power Maine Mountain Power Place Yarmouth, Maine Zip 4096 Sector Wind energy Product Wind farm development company focused on projects in Maine. It is a subsidiary of Endless Energy Corporation. Coordinates 41.663318°, -70.198987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663318,"lon":-70.198987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MICROTURBINE PROJECT MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC March 31, 1998 ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 980009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of gas-fired, integrated microturbine systems at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Stacy & Stacy Consulting, LLC (Stacy & Stacy). The project encompassed the testing of two gas microturbine systems at two oil-production wellsites. The microturbine-generators were fueled directly by casinghead gas to power their beam-pumping-unit motors. The system at well 47-A-34 utilized the casinghead sweet gas (0-ppm

149

East Mountain Area 1995 air sampling results  

SciTech Connect (OSTI)

Ambient air samples were taken at two locations in the East Mountain Area in conjunction with thermal testing at the Lurance Canyon Burn Site (LCBS). The samples were taken to provide measurements of particulate matter with a diameter less than or equal to 10 micrometers (PM{sub 10}) and volatile organic compounds (VOCs). This report summarizes the results of the sampling performed in 1995. The results from small-scale testing performed to determine the potentially produced air pollutants in the thermal tests are included in this report. Analytical results indicate few samples produced measurable concentrations of pollutants believed to be produced by thermal testing. Recommendations for future air sampling in the East Mountain Area are also noted.

Deola, R.A. [Sandia National Labs., Albuquerque, NM (United States). Air Quality Dept.

1996-09-01T23:59:59.000Z

150

DOE`s Yucca Mountain studies  

SciTech Connect (OSTI)

This booklet is about the disposal of high-level nuclear waste in the United States. It is for readers who have a general rather than a technical background. It discusses why scientists and engineers think high-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied as a potential repository site and provides basic information about those studies.

NONE

1992-12-01T23:59:59.000Z

151

The Yucca Mountain Project repository sealing program  

SciTech Connect (OSTI)

Yucca Mountain is being characterized for the development of a high-level nuclear waste repository. The repository is planned to be located in the unsaturated zone in fractured, welded tuff. Sealing of the repository is one element of the Yucca Mountain Project. This paper presents a description of the current sealing design options, design requirements, and the design constraints. Design options for the shafts include anchor-to-bedrock seals, shaft fill, and settlement plugs; in the underground facility, they include drift seals, drainage channels, sumps, and bulkheads. Design requirements are those quantitative requirements imposed on the sealing design options to achieve a desired level of performance. For example, a design requirement could be a restriction on the hydraulic conductivity of a design option. Constraints are restrictions placed on the repository design by the sealing design. An example of a constraint could be establishing the drainage pattern to direct flow from emplacement drifts to nonemplacement drifts. As (1) additional hydrogeologic data are obtained through site characterization, (2) approaches to allocating performance to various subsystems within the Yucca Mountain Project are refined, and (3) the exploratory shafts and the associated testing results are developed, the design requirements and constraints may be modified and used in developing the License Application Design.

Fernandez, J.A.; Hinkebein, T.E

1989-12-01T23:59:59.000Z

152

Modeling coupled thermal-hydrological-chemical processes in the unsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity and seepage  

E-Print Network [OSTI]

emplacement drift at Yucca Mountain. Journal of ContaminantScale Heater Test at Yucca Mountain. International Journalemplacement tunnels at Yucca Mountain, Nevada. Journal of

Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

2005-01-01T23:59:59.000Z

153

Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Scale Test at Yucca Mountain, Nevada S. Mukhopadhyay * , Y.waste repository at Yucca Mountain, Nevada. The Drift Scalerock; Radioactive waste; Yucca Mountain, Nevada Introduction

Mukhopadhyay, Sumitra; Tsang, Y.W.

2002-01-01T23:59:59.000Z

154

Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada  

E-Print Network [OSTI]

using matrix properties , Yucca Mountain, Nevada, USGS Waterof hydrogeologic units at Yucca Mountain, Nevada, U.S.Unsaturated Zone, Yucca Mountain, Nevada . Water-Resources

Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

2002-01-01T23:59:59.000Z

155

Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository  

E-Print Network [OSTI]

Repository at Yucca Mountain. In Materials Research Societystudies using the Yucca Mountain unsaturated zone model.Unsaturated Zone, Yucca Mountain, Nevada. Water Resources

Haukwa, C.B.; Wu, Yu-Shu; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

156

The use of TOUGH2/iTOUGH2 in support of the Yucca Mountain Project: Successes and limitations  

E-Print Network [OSTI]

emplace- ment drifts at Yucca Mountain, Proceedings: TOUGHLarge Block Test at Yucca Mountain, Nevada, Water Resourcesthe Unsaturated Zone, Yucca Mountain, Ne- vada. LBL-20553.

Bodvarsson, G.S.; Birkholzer, J.T.; Finsterle, S.; Liu, H.H.; Rutqvist, J.; Wu, Y.S.

2003-01-01T23:59:59.000Z

157

Sensitivity Analysis Of Hydrological Parameters In Modeling Flow And Transport In The Unsaturated Zone Of Yucca Mountain  

E-Print Network [OSTI]

Unsaturated Zone of Yucca Mountain Keni Zhang, Yu-Shu Wu,volcanic deposits at Yucca Mountain have been intensivelyhydraulic properties, Yucca Mountain Introduction Site

Zhang, Keni; Wu, Yu-Shu; Houseworth, James E

2006-01-01T23:59:59.000Z

158

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network [OSTI]

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

159

The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain  

E-Print Network [OSTI]

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadLarge Block Test at Yucca Mountain, Nevada, Water Resources

Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

160

Preliminary 3-D site-scale studies of radioactive colloid transort in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network [OSTI]

into drifts at Yucca Mountain. J. Contam. Hydrol. , 38(1investigations at Yucca Mountain - the potential repositorygroup exposed at Yucca Mountain, Nevada. USGS Open-File

Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

February 14, 2002: Yucca Mountain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

14, 2002: Yucca Mountain 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002 Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level radioactive waste. "I have considered whether sound science supports the determination that the Yucca Mountain site is scientifically and technically suitable for the development of a repository," the Secretary informs the President. "I am convinced that it does. The results of this extensive investigation and the external technical reviews of this body of scientific work give me confidence for the conclusion, based on sound scientific principles, that a repository at

162

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

163

Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Exploration Activity Details Location Blue Mountain Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

164

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

165

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

166

Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mcgee Mountain Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional...

167

Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979...  

Open Energy Info (EERE)

1979) Exploration Activity Details Location Jemez Mountain Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown References John C....

168

Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration...

169

Drift Natural Convection and Seepage at the Yucca Mountain Repository.  

E-Print Network [OSTI]

??The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the (more)

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

170

Material corrosion issues for nuclear waste disposition in Yucca Mountain  

Science Journals Connector (OSTI)

For more than two decades, an extensive scientific effort has been underway to determine whether Yucca Mountain, Nevada, is a suitable site for...

Raul B. Rebak

2008-01-01T23:59:59.000Z

171

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Manager Rocky Mountain Oilfield Testing Center March 31, 1998 RMOTC Test Report GMT Production Stimulation Test Executive Summary The sulfates in oilfield...

172

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

173

Modeling-Computer Simulations At Chocolate Mountains Area (Alm...  

Open Energy Info (EERE)

Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al.,...

174

Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin...  

Open Energy Info (EERE)

Calvin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Blue Mountain Geothermal Area (Calvin, Et Al.,...

175

Reflection Survey At Blue Mountain Geothermal Area (Melosh, Et...  

Open Energy Info (EERE)

Melosh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Blue Mountain Geothermal Area (Melosh, Et Al., 2010)...

176

Modeling-Computer Simulations At White Mountains Area (Goff ...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White...

177

Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...  

Open Energy Info (EERE)

White Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Facility...

178

Figure 3-11 South Table Mountain Utilities Map  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FTLB AMMO LEGEND Gas Existing Buildings Electrical Figure 3-11 South Table Mountain Utilities Map Sewer Communication Water Surface Drainage Storm Water WATER TANK FACILITIES...

179

Rocky Mountain Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Incentives are available for energy efficient...

180

Rocky Mountain Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in participating homes. Rebates are available for qualified appliances,...

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...  

Open Energy Info (EERE)

Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not...

182

Time-Domain Electromagnetics At Glass Mountain Area (Cumming...  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain...

183

Electrical Resistivity and Self-Potential Surveys Blue Mountain...  

Open Energy Info (EERE)

been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the...

184

Mountain Association for Community Economic Development - Solar Water  

Broader source: Energy.gov (indexed) [DOE]

Mountain Association for Community Economic Development - Solar Mountain Association for Community Economic Development - Solar Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info Funding Source Kentucky Solar Partnership (KSP) State Kentucky Program Type Local Loan Program Rebate Amount 100% of equipment and installation cost Provider Kentucky Solar Partnership The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans cover the full equipment and installation cost. Flexible rate loans and terms are available. They

185

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

186

Capinha et al.: Zonitoides in tropical mountain forests Susceptibility of tropical mountain forests to biological invasions  

E-Print Network [OSTI]

vegetation (e.g., Kappes, 2006; Kappes et al., 2009), and the (subsequent) use of alien plants modeling suggests that both taxa could be widely distributed in the mountains of tropical South America and Africa. Z. arboreus finds suitable climates in many places in SE Asia and especially at many conservation

Pereira, Henrique Miguel

187

Building America Whole-House Solutions for New Homes: Pine Mountain Builders, Pine Mountain, Georgia  

Broader source: Energy.gov [DOE]

Case study of Pine Mountain Builders who worked with Building America research partners IBACOS and Southface Energy Institute to design HERS-59 homes with air-tight 1.0-1.8 ACH50 construction, spray-foamed walls and attics, and high-efficiency heat pumps with fresh-air intake.

188

Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain  

E-Print Network [OSTI]

Single Heater Test at Yucca Mountain, LBNL-39789, E.O. LawSingle Heater Test at Yucca Mountain Jens T. Birkholzer andwaste repository at Yucca Mountain. The heating phase of the

Birkholzer, Jens T.; Tsang, Yvonne W.

1998-01-01T23:59:59.000Z

189

Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain  

E-Print Network [OSTI]

zone site-scale model, Yucca Mountain Site Characterizationsite-scale model, Yucca Mountain Project Milestone 3GLM105M,unsaturated zone, Yucca Mountain, Nevada. Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

190

Influence of faults on groundwater flow and transport at Yucca Mountain, Nevada  

E-Print Network [OSTI]

test well USW H- 6, Yucca Mountain area, Nye County, Nevada,by test well UE- 25p#1, Yucca Mountain Area, Nye County,assessment for Yucca Mountain-SNL second interation (TSPA-

Cohen, Andrew J.B.; Sitar, Nicholas

1999-01-01T23:59:59.000Z

191

A site scale model for modeling unsaturated zone processes at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Unsaturated Zone Model of Yucca Mountain, Nevada, for theZone Trocesses at yucca Mountain, N G. S. Bodvarsson, Y. S.unsaturated zone at Yucca Mountain, Nevada, as a permanent

1997-01-01T23:59:59.000Z

192

Yucca Mountain Site Characterization Project Plan  

SciTech Connect (OSTI)

The purpose of this document is to describe the Yucca Mountain Site Characterization Project (YMP) and establish an approved YMP baseline against which overall YMP progress and management effectiveness shall be measured. For the sake of brevity, this document will be referred to as the Project Plan throughout this document. This Project Plan only addresses activities up to the submittal of the repository license application (LA) to the Nuclear Regulatory Commission (NRC). A new Project Plan will be submitted to establish the technical, cost, and schedule baselines for the final design and construction phase of development extending through the start of repository operations, assuming that the site is determined to be suitable.

Gertz, C.P.; Bartlett, J.

1992-01-01T23:59:59.000Z

193

Yucca MountainTransportation: Private Sector Perspective  

Broader source: Energy.gov (indexed) [DOE]

Transportation: Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC) Working Group April 4, 2005 Phoenix, Arizona US Transport Council -- DOE TEC 4/4/05 2 US Transport Council Formed in 2002 during the Yucca Mountain Ratification debate to provide factual information on nuclear materials transportation, experience, safety & emergency planning Comprised of 24 member companies from the transport sector including suppliers and customers Principal focus is transport education, policy and business commerce related to nuclear materials transport US Transport Council -- DOE TEC 4/4/05 3 USTC Members AREVA BNFL, Inc Burns & Roe Cameco

194

Broad-band beam buncher  

DOE Patents [OSTI]

A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

1986-01-01T23:59:59.000Z

195

E-Print Network 3.0 - arbuckle mountains oklahoma Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arbuckle mountains oklahoma Search Powered by Explorit Topic List Advanced Search Sample search results for: arbuckle mountains oklahoma Page: << < 1 2 3 4 5 > >> 1 Characterizing...

196

E-Print Network 3.0 - appalachian mountain region Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-week learning and living experience in the Appalachian Mountains. Students conduct independent... Mountain Lake Biological Station SUMMER2009 APPLY ONLINE: W W W . M L B S ....

197

Using Seismic Reflection to Locate a Tracer Testing Complex South of Yucca Mountain, Nye County, Nevada.  

E-Print Network [OSTI]

??Tracer testing in the fractured volcanic aquifer near Yucca Mountain, and in the alluvial aquifer south of Yucca Mountain, Nevada has been conducted in the (more)

Kryder, Levi

2014-01-01T23:59:59.000Z

198

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration...

199

2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Rocky Mountain Oilfield Testing Center . The Rocky Mountain Oilfield Testing...

200

Geology of the Stairway Mountain Area, Brewster County, Texas  

E-Print Network [OSTI]

, beargrass, yucca, ocotillo, creosotebush, tasajillo, pitaya, pricklypear~ cholla, catclaw, and lechuguilla are the common plants in the Stairway Mountain Area ~ Candelilla, or waxplant, which has some economic importance, occurs in the area..., beargrass, yucca, ocotillo, creosotebush, tasajillo, pitaya, pricklypear~ cholla, catclaw, and lechuguilla are the common plants in the Stairway Mountain Area ~ Candelilla, or waxplant, which has some economic importance, occurs in the area...

Herring, Maxwell, Jr

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Climate Change in Mountain Ecosystems Areas of Current Research  

E-Print Network [OSTI]

Climate Change in Mountain Ecosystems Areas of Current Research · Glacier Research · Snow Initiative Glacier Research A Focus on Mountain Ecosystems Climate change is widely acknowledged to be having in the western U.S. and the Northern Rockies in particular are highly sensitive to climate change. In fact

202

Domestic campsites and cyber landscapes in the Rocky Mountains  

E-Print Network [OSTI]

Domestic campsites and cyber landscapes in the Rocky Mountains Laura L. Scheiber1 & Judson Byrd, Central Rocky Mountains, GIS, GPS, stone circles, architecture, multi-scalar, households, technology, tipis, horses and wagons occupying a flat clearing along a valley floor c. 1907. Photograph by Richard

Scheiber, Laura L.

203

Use of thermal data to estimate infiltration, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Temperature and pressure monitoring in a vertical borehole in Pagany Wash, Yucca Mountain, Nevada, measured disruptions of the natural gradients associated with the February, 1998, El Nino precipitation events. The temperature and pressure disruptions indicated infiltration and percolation through the 12.1 m of Pagany Wash alluvium and deep percolation to greater than 35.2 m into the Yucca Mountain Tuff.

LeCain, Gary D.; Kurzmack, Mark

2001-04-29T23:59:59.000Z

204

Yucca Mountain Climate Technical Support Representative  

SciTech Connect (OSTI)

The primary objective of Project Activity ORD-FY04-012, Yucca Mountain Climate Technical Support Representative, was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

205

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Blue Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Glass Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Glass Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7,"lon":-121.45,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

TBM tunneling on the Yucca Mountain Project  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity.

Morris, J.P.; Hansmire, W.H. [Kiewit Construction Co., Las Vegas, NV (United States)]|[Parsons, Brinckerhoff, Quade and Douglas, Inc., Las Vegas, NV (United States)

1995-03-01T23:59:59.000Z

208

DOE Announces Yucca Mountain License Application Schedule | Department of  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain License Application Schedule Yucca Mountain License Application Schedule DOE Announces Yucca Mountain License Application Schedule July 19, 2006 - 3:13pm Addthis New Director Ward Sproat Testifies on Revised Timeline WASHINGTON, DC - The Department of Energy (DOE) today announced that it will submit a license application to the Nuclear Regulatory Commission (NRC) for a nuclear waste repository at Yucca Mountain, Nevada, no later than June 30, 2008. The Department also announced that if requested legislative changes are enacted, the repository will be able to accept spent nuclear fuel and high-level waste starting in early 2017. Announcing a schedule for submitting a license application is another step in the Department's mission to provide stability, clarity and predictability in moving the Yucca Mountain Project forward as quickly as

209

Department of Energy Files Motion to Withdraw Yucca Mountain License  

Broader source: Energy.gov (indexed) [DOE]

Files Motion to Withdraw Yucca Mountain Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today filed a motion with the Nuclear Regulatory Commission to withdraw the license application for a high-level nuclear waste repository at Yucca Mountain with prejudice. "President Obama is fully committed to ensuring that the Nation meets our long-term storage obligations for nuclear waste," said Department of Energy General Counsel Scott Blake Harris. "In light of the decision not to proceed with the Yucca Mountain nuclear waste repository, the President directed Secretary Chu to establish the Blue Ribbon Commission on America's

210

Rocky Mountain Power - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

211

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

212

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

213

Yucca Mountain Science and Engineering Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

214

List of Yucca Mountain Archival Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents March 10, 2004 EIS-0250-SA-01: Supplement Analysis Geologic Repository for the Disposal of Spent Nuclear and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada March 1, 2004 Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. April 1, 2003 Final Report of theIgneous Consequences Peer Review Panel A report for the DOE on the Yucca Mountain Project.

215

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate Retrofit: 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Program Info State Utah Program Type Utility Rebate Program Rebate Amount 0.12/kWh annual energy savings + 50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve the efficiency of their existing facilities and build new facilities that are significantly

216

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Broader source: Energy.gov (indexed) [DOE]

Defends Its Motion to Withdraw Yucca Mountain Application Defends Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As today's filing details, the AEA vests the Department with broad authority over the disposal of spent nuclear fuel and high-level radioactive waste. The NWPA does not strip the Department of that authority or otherwise compel the Department to go forward with the construction of the Yucca Mountain repository. Rather, the

217

EIS-0445: American Electric Power Service Corporation's Mountaineer  

Broader source: Energy.gov (indexed) [DOE]

5: American Electric Power Service Corporation's Mountaineer 5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia Summary This EIS evaluates the environmental impacts of a proposal to provide financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale

218

Cuttings Analysis At Jemez Mountain Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area (1976) Jemez Mountain Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Jemez Mountain Geothermal Area (1976) Exploration Activity Details Location Jemez Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Jemez_Mountain_Geothermal_Area_(1976)&oldid=473910

219

DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -  

Office of Legacy Management (LM)

Rocky Mountain Research Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP CO.06-2 Also see Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject:

220

Green Mountain Energy Renewable Rewards Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mountain Energy Renewable Rewards Program Mountain Energy Renewable Rewards Program Green Mountain Energy Renewable Rewards Program < Back Eligibility Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State Texas Program Type Net Metering Provider Green Mountain Energy '''''Texas does not have statewide net metering as the term is generally understood. However, retail electricity providers in Texas are permitted, but not required, to compensate customers for electricity produced by distributed renewable energy generation systems and exported to the electric grid. The program described below operates in a fashion similar to net metering and has similar customer benefits up to a certain point.''''' Green Mountain Energy Company, a retail provider of green electricity,

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

List of Yucca Mountain Archival Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents March 3, 2010 Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. December 30, 2008 Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description A report detailling the requirements and description of the Quality Assurance program. December 9, 2008 The Report To The President And The Congress By The Secretary Of Energy On The Need For A Second Repository This report is prepared pursuant to Section 161 of the Nuclear Waste Policy Act of 1982, which requires the Secretary of Energy to report to the President and to the Congress on or after January 1, 2007, but not later

222

DOE Marks Milestone in Submitting Yucca Mountain License Application |  

Broader source: Energy.gov (indexed) [DOE]

Marks Milestone in Submitting Yucca Mountain License Marks Milestone in Submitting Yucca Mountain License Application DOE Marks Milestone in Submitting Yucca Mountain License Application June 3, 2008 - 12:51pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced submittal of a license application (LA) to the U.S. Nuclear Regulatory Commission (NRC) seeking authorization to construct America's first repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The 8,600 page application describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive waste in tunnels deep underground at Yucca Mountain, a remote ridge on federally controlled land in the Mojave Desert 90 miles northwest of Las Vegas. Currently, the waste is stored at 121 temporary locations in 39 states

223

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

224

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

225

Yucca Mountain Science and Engineering Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

226

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Broader source: Energy.gov (indexed) [DOE]

Its Motion to Withdraw Yucca Mountain Application Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As today's filing details, the AEA vests the Department with broad authority over the disposal of spent nuclear fuel and high-level radioactive waste. The NWPA does not strip the Department of that authority or otherwise compel the Department to go forward with the construction of the Yucca Mountain repository. Rather, the

227

BNL | S-band Linac  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S-band Linac S-band Linac Some experiments at the ATF require higher energies than what is available from the photoinjector. We use two traveling wave linac structures, known as 'SLAC sections' (from the famous 2-mile SLAC linac). Each section provides an acceleration given by: Energy gain (in MeV) = 10.8*SQRT(Power in MW)-39.5*Current(in amps) The current to be used is an equivalent steady state current. The microwave drive power, at a frequency of 2856 MHz, is provided by a single XK5 klystron tube (the old SLAC klystron). This tube can provide up to 25 MW. The ATF modulator can provide the XK5 klystron with high voltage for about 3 microseconds. This 3 microsecond pulse is called the macropulse. The repetition rate for the macropulses is from 1 to 6 per second. Within each

228

Mountain Parks Electric, Inc | Open Energy Information  

Open Energy Info (EERE)

Parks Electric, Inc Parks Electric, Inc Jump to: navigation, search Name Mountain Parks Electric, Inc Place Colorado Utility Id 13050 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Large Power Peak-Shaving Rate (Primary Service) Commercial Commercial: Large Power Peak-Shaving Rate (Secondary Service) Commercial Commercial: Large Power Rate Commercial Commercial: Small Power Rate Commercial General Service (Residential): Time-of-Use Rate Rate A Residential General Service (Residential): Time-of-Use Rate, Rate B Residential

229

Rocky Mountain Humane Investing | Open Energy Information  

Open Energy Info (EERE)

Humane Investing Humane Investing Jump to: navigation, search Name Rocky Mountain Humane Investing Place Allenspark, Colorado Zip 80510 Product Allenspark-based investment management firm prioritising Socially Responsible Investing (SRI). Coordinates 40.19472°, -105.525719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.19472,"lon":-105.525719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Mountain View IV | Open Energy Information  

Open Energy Info (EERE)

IV IV Facility Mountain View IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Wind Generation Developer AES Wind Generation Energy Purchaser Southern California Edison Co Location White Water CA Coordinates 33.95475187°, -116.7015839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.95475187,"lon":-116.7015839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Drum Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Testimony of Greg Friedman Yucca Mountain  

Broader source: Energy.gov (indexed) [DOE]

Environment and the Economy Environment and the Economy of the Committee on Energy and Commerce U.S. House of Representatives FOR RELEASE ON DELIVERY 1:00 PM Wednesday, June 1, 2011 1 Mr. Chairman and members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's Yucca Mountain Project. As you know, issues surrounding the termination of the Project have been widely publicized. They directly impact the Department's responsibilities to manage legacy waste generated from nuclear weapons production and to accept and dispose of spent nuclear fuel emanating from commercial nuclear reactors. The United States has invested nearly 30 years of effort and expended over $15 billion to

233

White Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: White Mountain Geothermal Project Project Location Information Coordinates 44.571666666667°, -114.47916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.571666666667,"lon":-114.47916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Repository site data report for unsaturated tuff, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

1985-11-01T23:59:59.000Z

235

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount '''New Construction/Major Renovation Only''' Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 CFL Wallpack (Exterior): $30 Lighting Control (Exterior): $70 '''Retrofit Only''' Fluorescent Fixture Upgrades: $5-$20/fixture

236

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding support from the DOE's Office of Geothermal Technology (DOE/OGT).

237

Rocky Mountain Power - New Homes Program for Builders | Department of  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount '''New Construction Whole Home Options''' Home Performance ENERGY STAR Version 3 Certified Home: $500 (Single Family); $200 (Multifamily) ENERGY STAR Version 3 Certified Home: $250 (Single Family); $150 (Multifamily)

238

Red Band Needle Blight TERMS OF REFERENCE  

E-Print Network [OSTI]

Red Band Needle Blight TERMS OF REFERENCE Purpose 1. The Programme Board has been formed to have an overview of the administration and science of Red Band Needle Blight (RBNB), to underpin decisions made

239

Vibration-Rotation Bands of Trideuteromethyl Iodide  

Science Journals Connector (OSTI)

5 October 1965 research-article Vibration-Rotation Bands of Trideuteromethyl...of six parallel and nine perpendicular vibration bands of trideuteromethyl iodide has...constants for the fundamental degenerate vibrations. The values for overtone and combination...

1965-01-01T23:59:59.000Z

240

Categorical Exclusion Determinations: Western Area Power Administration-Rocky Mountain Region  

Broader source: Energy.gov [DOE]

Categorical Exclusion Determinations issued by Western Area Power Administration-Rocky Mountain Region.

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Overview of Hydrogen and Fuel Cell Activities: September 2010 Mountain States Hydrogen Business Council  

Broader source: Energy.gov [DOE]

Presentation by Richard Farmer at the Mountain States Hydrogen Business Council on September 14, 2010.

242

Superdeformed bands in sup 194 Tl  

SciTech Connect (OSTI)

Superdeformation was first observed in the mass-190 region in {sup 191}Hg. Since then, SD bands have been found in {sup 190-194}Hg nuclei. Here we report the discovery of two such bands in {sup 194}Tl which are the first SD bands fond in this mass region that are not in Hg nuclei. Subsequently, bands have been found in two Pb nuclei. 5 refs., 1 fig.

Azaiez, F.; Kelly, W.H.; Korten, W.; Deleplanque, M.A.; Stephens, F.S.; Diamond, R.M.; Beausang, C.W.; Draper, J.E.; Rubel, E. (Lawrence Berkeley Lab., CA (USA)); Becker, J.A.; Henry, E.A.; Brinkman, M.J.; Yates, S.W.; Kuhnert, A. (Lawrence Livermore National Lab., CA (USA))

1990-05-01T23:59:59.000Z

243

UT-TRIBE-NORTHWESTERN BAND OF SHOSHONE  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title UT-TRIBE-NORTHWESTERN BAND OF SHOSHONE Location: Tribe UT-TRIBE- NORTHWESTERN BAND OF SHOSHONE UT American Recovery and Reinvestment Act: Proposed Action or Project Description The Northwestern Band of Shoshone Nation of Utah proposes to perform energy efficiency improvements

244

Low band gap polymers Organic Photovoltaics  

E-Print Network [OSTI]

Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

245

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

246

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2003) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Blue Mountain Area (Fairbank Engineering, 2003) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense

247

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

248

Technical Report Confirms Reliability of Yucca Mountain Technical Work |  

Broader source: Energy.gov (indexed) [DOE]

Technical Report Confirms Reliability of Yucca Mountain Technical Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis developed by the USGS has a strong conceptual foundation and is corroborated by independently-derived scientific conclusions, and provides a solid underpinning for the 2002 site recommendation," said OCRWM's Acting Director Paul Golan. "We are committed to opening Yucca Mountain based only on sound science. The work

249

Snowflake White Mountain Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Snowflake White Mountain Power Biomass Facility Snowflake White Mountain Power Biomass Facility Jump to: navigation, search Name Snowflake White Mountain Power Biomass Facility Facility Snowflake White Mountain Power Sector Biomass Owner Renegy Location Snowflake, Arizona Coordinates 34.5133698°, -110.0784491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5133698,"lon":-110.0784491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Corresponding Socorro caldera Carboniferous rocks were studied in the field in 1988-1992-Renault later completed geochemistry and silica-crystallite geothermometry, Armstrong petrographic analysis and cathodoluminescence, Oscarson SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The carbonate-rock classification used in this

251

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Broader source: Energy.gov (indexed) [DOE]

Two Independent Assessments Find the Department of Energy's Yucca Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca Mountain repository program. These assessments, which include an independent review of the OCRWM Quality Assurance (QA) Program and an independent review of its engineering processes and procedures, have concluded that the Yucca Mountain Project's current QA and engineering processes and procedures are consistent with standard nuclear industry

252

City of White Mountain, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain, Alaska (Utility Company) Mountain, Alaska (Utility Company) Jump to: navigation, search Name City of White Mountain Place Alaska Utility Id 20535 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Residential Rate Residential Average Rates Residential: $0.7230/kWh Commercial: $0.7470/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_White_Mountain,_Alaska_(Utility_Company)&oldid=410426"

253

Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Florida Mountains Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Florida Mountains Area (Brookins, 1982) Exploration Activity Details Location Florida Mountains Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa)

254

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Broader source: Energy.gov (indexed) [DOE]

Independent Assessments Find the Department of Energy's Yucca Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca Mountain repository program. These assessments, which include an independent review of the OCRWM Quality Assurance (QA) Program and an independent review of its engineering processes and procedures, have concluded that the Yucca Mountain Project's current QA and engineering processes and procedures are consistent with standard nuclear industry

255

Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) | Open  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Engineering, 2007) Blue Mountain Area (Fairbank Engineering, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) Exploration Activity Details Location Blue Mountain Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes A high-resolution seismic reflection survey was conducted by Utah Geophysical, Inc. (1990) along four widely spaced survey lines normal to range front fault sets. The survey was designed primarily to detect silicified zones or zones of argillic alteration, and faulting, to depths of about 300 meters (1000 feet), as part of the precious metals exploration program. One interpretation of the data showed discrete, high-angle faults

256

Error Analysis of Satellite Precipitation Products in Mountainous Basins  

Science Journals Connector (OSTI)

Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows, triggered by heavy precipitation events (HPEs). In ...

Yiwen Mei; Emmanouil N. Anagnostou; Efthymios I. Nikolopoulos; Marco Borga

2014-10-01T23:59:59.000Z

257

Volcanism in the western San Juan Mountains, Colorado  

Science Journals Connector (OSTI)

Three major cycles of volcanism during the Miocene and Pliocene formed a layered succession of calc-alkaline eruptive materials in the western San Juan Mountains nearly 1.5 miles thick and having a volume grea...

R. G. Luedke; W. S. Burbank

1966-01-01T23:59:59.000Z

258

Mixed Conifer Forests of the San Bernardino Mountains, California  

Science Journals Connector (OSTI)

The San Bernardino Mountains are part of the Transverse Range Province that extends from west to east across parts of Santa Barbara, Ventura, Los Angeles, San Bernardino, and Riverside counties, California (Ba...

P. R. Miller

1992-01-01T23:59:59.000Z

259

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Journals Connector (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressurevelocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

260

Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region  

E-Print Network [OSTI]

In Santa Barbara County, Santa Maria Pacific (an exploration and production company) is expanding their cyclic steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company...

Powell, Richard

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

geothermal activity which could be linked to faults that serve as pathways for geothermal fluids. Notes This survey was conducted on the western flank of Blue Mountain. SP Profile...

262

Mountain-Scale Coupled Processes (TH/THC/THM)  

SciTech Connect (OSTI)

The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods.

P. Dixon

2004-02-09T23:59:59.000Z

263

Geology of the Cedar Mountain area, Llano County, Texas  

E-Print Network [OSTI]

the west side of Cedar Mountain. Numerous minor faults branch off the major fractures. These "adjustment" faults are generally short and have relatively small displacements. The Llano uplift is the strongly uplifted and deformed south- eastern end... Mountain area. Geologic and cultural data were inscribed on the photographs and later trans- ferred to a transparent overlay from which the finished map was made. The photographs are of series DMH-7V, numbers 127-130, 178-184, and 191-198, dated...

Dewitt, Gary Ray

1966-01-01T23:59:59.000Z

264

Red Band Needle Blight Programme Red Band Needle Blight of Pine Programme Group  

E-Print Network [OSTI]

Red Band Needle Blight Programme Group Red Band Needle Blight of Pine Programme Group Minutes Support Welcome and introduction 1. Jim thanked everyone for attending the first meeting of the Red Band and that the private 1 | Paper 1 - Minutes | Debbie Erskine | 23/01/2009 #12;Red Band Needle Blight Programme Group

265

Metallic-nanoparticle assisted enhanced band-to-band tunneling current Deblina Sarkara)  

E-Print Network [OSTI]

Metallic-nanoparticle assisted enhanced band-to-band tunneling current Deblina Sarkara) and Kaustav) Metallic nanoparticle assisted band-to-band tunneling is proposed, and the impact of such nanoparticle that an asymmetric pinning is required to leverage maximum benefits from the insertion of metallic nanoparticles. VC

266

Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository  

SciTech Connect (OSTI)

The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

2006-07-01T23:59:59.000Z

267

Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work.

Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M. [Geomatrix Consultants, Inc., San Francisco, CA (United States); Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States)

1992-04-01T23:59:59.000Z

268

Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts  

E-Print Network [OSTI]

THE FRACTURED ROCK AT YUCCA MOUNTAIN: THE IMPACT OF NATURALgeologic repository at Yucca Mountain, Nevada, will stronglyWaste Emplacement Drifts at Yucca Mountain, Nevada, Nuclear

Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

269

Response to "Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky  

E-Print Network [OSTI]

Mineral Formation at Yucca Mountain, Nevada. Geochimica etand Heat Flow Near Yucca Mountain, Nevada: Some Tectonic andNuclear Waste Site, Yucca Mountain, Nevada, USA: Pedogenic,

Houseworth, J.E.

2010-01-01T23:59:59.000Z

270

Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a  

E-Print Network [OSTI]

Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andfractured rocks of Yucca Mountain have been extensivelyHydrothermal Flow at Yucca Mountain, Part I: Modeling and

Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

2008-01-01T23:59:59.000Z

271

Nuclear Band Structure in Sc41  

Science Journals Connector (OSTI)

Band structure predictions assuming the formation of proton single-particle states above the Ca40 core in the ground state or one of its excited states are compared with the available data on the elastic and inelastic scattering of protons from Ca40. The band expected above the 3.35-Mev state in Ca40 is confirmed by experimental results, and some evidence is found for bands above the higher core states.

R. H. Davis

1959-09-15T23:59:59.000Z

272

X-BAND KLYSTRON DEVELOPMENT AT SLAC  

SciTech Connect (OSTI)

The development of X-band klystrons at SLAC originated with the idea of building an X-band Linear Collider in the late 1980's. Since then much effort has been expended in developing a reliable X-band Power source capable of delivering >50 MW RF power in pulse widths >1.5 {micro}s. I will report on some of the technical issues and design strategies which have led to the current SLAC klystron designs.

Vlieks, Arnold E.; /SLAC

2009-08-03T23:59:59.000Z

273

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Area (Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Blue_Mountain_Area_(Fairbank_%26_Neggemann,_2004)&oldid=386709" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

274

Armenia Mountain Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Armenia Mountain Wind Energy Project Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Armenia Mountain Wind Developer AES Energy Purchaser Old Dominion Electric Location Tioga and Bradford Counties PA Coordinates 41.763272°, -76.842613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.763272,"lon":-76.842613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma  

SciTech Connect (OSTI)

The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

NONE

1991-11-17T23:59:59.000Z

276

Broad-band beam buncher  

DOE Patents [OSTI]

A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

1984-03-20T23:59:59.000Z

277

Factors limiting microbial growth and activity at a proposed high-level nuclear repository, yucca mountain, nevada.  

Science Journals Connector (OSTI)

...High-Level Nuclear Repository, Yucca Mountain, Nevada TL Kieft WP Kovacik Jr...part of the characterization of Yucca Mountain, Nev., as a potential repository...from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally...

T L Kieft; W P Kovacik; D B Ringelberg; D C White; D L Haldeman; P S Amy; L E Hersman

1997-08-01T23:59:59.000Z

278

A Conceptual and Numerical Model for Thermal-Hydrological-Chemical Processes in the Yucca Mountain Drift Scale Test  

E-Print Network [OSTI]

of the unsaturated zone at Yucca Mountain, NV from three-Scale Heater Test. Yucca Mountain Project Level 4 MilestoneReport, Chapter 6. Yucca Mountain Project Level 4 Milestone

Sonnenthal, Eric L.; Spycher, Nicolas F.; Conrad, Mark; Apps, John

2003-01-01T23:59:59.000Z

279

Evaluating Flake Assemblage and Stone Tool Distributions at a Large Western Stemmed Tradition Site Near Yucca Mountain, Nevada  

E-Print Network [OSTI]

investigations at Yucca Mountain for the U. S. Department ofTRADITION SITE NEAR YUCCA MOUNTAIN lo: Special PublicationsLithic Quarry Near Yucca Mountain, Nye Coimty, Nevada. Las

Haynes, Gregory M

1996-01-01T23:59:59.000Z

280

Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test  

E-Print Network [OSTI]

mechanical analysis of the Yucca Mountain Drift Scale Test scale heater test at Yucca Mountain, Nevada, USA. In.t J.and Cooling at the Yucca Mountain Drift Scale Test. In.t J.

Rutqvist, J.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

K=0 Rotational Bands in Yb174  

Science Journals Connector (OSTI)

The ? deexcitation of three excited K=0 rotational bands has been studied following population in the Yb173(n,?) reaction at resonant neutron energies of 4.53 and 17.7 eV. The ? rays were detected in singles and coincidence with Ge(Li) detectors. Analysis was also made of the primary radiation. The decay properties of these bands exhibit strong deviations from the Alaga ratios. For the lowest excited K=0 band the deexcitation branching ratios resemble those in the even-even Sm, Gd, Yb, and W nuclei. The higher-lying K=0 bands in Yb174 decay similarly to those in Yb172 but considerably differently from the lowest K=0 bands in this region. The pairing-vibrational character of the K=0 bands in Yb174, as shown by (p,t) and (t,p) reaction studies, apparently does not greatly alter the relative decay rates for these states. Two-band mixing of each K=0 band with the ground band cannot explain all the observed results, nor can three-band mixing involving the ? vibration. The presence of M1 components in the I?I transitions could explain some of the anomalous branching ratios but cannot be a complete explanation. It is suggested that multiband mixing including the excited K=0 bands themselves may have to be considered. The two-neutron-transfer-reaction data can also be interpreted in terms of such mixing. The observed similarities between Yb174 and other nuclei in this region suggest a corresponding similarity of mixing effects.

R. F. Casten; D. Breitig; W. R. Kane; S. F. Mughabghab

1973-09-01T23:59:59.000Z

282

Buffalo Mountain Wind Energy Center I | Open Energy Information  

Open Energy Info (EERE)

Buffalo Mountain Wind Energy Center I Buffalo Mountain Wind Energy Center I Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Tennessee Valley Authority Developer EnXco Energy Purchaser Tennessee Valley Authority Location Anderson County TN Coordinates 36.115822°, -84.333742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.115822,"lon":-84.333742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

284

Jemez Mountains Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountains Elec Coop, Inc Jemez Mountains Elec Coop, Inc Jump to: navigation, search Name Jemez Mountains Elec Coop, Inc Place New Mexico Utility Id 9699 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Power Service Industrial Large Power Service-TOU Industrial Municipal Service and Small School Service Commercial Municipal Service and Small School Service TOU Commercial Residential Service Residential Residential Time of Use Rates Residential Small Commercial Service Residential

285

Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open  

Open Energy Info (EERE)

Owens, Et Al., 2005) Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes magneto-telluric surveys are pending for the near future when geochemical and surface geophysical surveys are complete. Results of this survey should verify the occurrence of low-resisitivity fluids and alteration at depth. References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=388765

286

City of Kings Mountain, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain, North Carolina (Utility Company) Mountain, North Carolina (Utility Company) Jump to: navigation, search Name City of Kings Mountain Place North Carolina Utility Id 10324 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Housing Authority Industrial Large General Service (>500kW) Commercial Large Industrial Service (>500kW) Industrial Medium General Service (100-500kW) Commercial Medium Industrial Service (100-500kW) Industrial Outdoor Lighting Service- 150W High Pressure Sodium- Urban, Existing Pole

287

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

288

Zuni Mountains Nm Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Zuni Mountains Nm Geothermal Area Zuni Mountains Nm Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Zuni Mountains Nm Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

289

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Lighting Retrofit: 70% of project cost Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Custom: $0.10/annual kWh saved Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 Lighting Control (Exterior): $70 Air Conditioners and Heat Pumps: $50-$100/ton

290

Mountain View Electric Association, Inc - Energy Efficiency Credit Program  

Broader source: Energy.gov (indexed) [DOE]

Mountain View Electric Association, Inc - Energy Efficiency Credit Mountain View Electric Association, Inc - Energy Efficiency Credit Program Mountain View Electric Association, Inc - Energy Efficiency Credit Program < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate LED Street Lighting: $20,000 LED Refrigerated Case Lighting Retrofit: $3,000 Commercial Lighting Replacement: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pumps: $150/ton, additional $150 per unit for Energy Star units greater than 3 tons, additional $120 if attached to electric water heater Air-Source Heat Pump: $125 - $150/ton, additional $100 - $150 per unit for

291

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

70% project cost 70% project cost New Construction: 50% Lighting: 50%-75% of savings Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount $0.15/kWh annual energy savings + $50/kW average monthly demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet. Rocky Mountain Power will be involved from the beginning of the construction process. They will start by reviewing the facility plans and

292

Rocky Mountain Oilfield Testing Center | Open Energy Information  

Open Energy Info (EERE)

Oilfield Testing Center Oilfield Testing Center Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rocky Mountain Oilfield Testing Center General Information Name Rocky Mountain Oilfield Testing Center Facility Rocky Mountain Oilfield Testing Center Sector Geothermal energy Location Information Coordinates 42.9724567°, -106.3160188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9724567,"lon":-106.3160188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Cuttings Analysis At Marysville Mountain Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Geothermal Area (1976) Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Marysville Mountain Geothermal Area (1976) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Marysville_Mountain_Geothermal_Area_(1976)&oldid=473911"

294

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Multi-Family Residential Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount Interior Lighting: $0.08/kWh annual savings Induction Fixture (Exterior): $125/unit LED Outdoor/Roadway Fixture (Exterior): $100/unit CFL Wall Pack (Exterior): $30/unit Lighting Controls: $75/sensor Wall Insulation: $0.07/sq. ft. Roof Insulation: $0.05/sq. ft.

295

Interior Bureau of Land Management Battle Mountain District Office  

Broader source: Energy.gov (indexed) [DOE]

United States Department of the United States Department of the Interior Bureau of Land Management Battle Mountain District Office Battle Mountain Nevada November 19, 2010 Tonopah Field Office Tonopah, Nevada FES-10-57 N-86292 DOI-BLM-NVB020-2009-0104-EIS Tonopah Solar Energy, LLC Crescent Dunes Solar Energy Project Final Environmental Impact Statement Proposed Crescent Dunes Solar Energy Project: Final EIS| ii BLM Mission Statement It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/BM/EIS/10/30+1793 DOI No. FES 10-57 http://www.blm.gov/nv/stlenlfo/battle_mountain_field.html In Reply Refer To: N-86292 DOI-BLM-NVBO2O-2009-0 1 04-EIS 2800 (NVB0200) Dear

296

Rocky Mountain Power - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Clothes Washers: up to $50 Dishwashers: $20 Refrigerator: $40 Freezer: $20 Electric Water Heaters: $50 CFL/LED Light Fixtures: $20/fixture Insulation: $0.15 - $0.65/sq. ft., plus potential bonus Windows: $0.50 - $2/sq. ft. Room Air Conditioners: $30 Duct Sealing/Insulation/Weatherization (Electric): up to $300

297

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect (OSTI)

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

298

Preparing to Submit a License Application for Yucca Mountain  

SciTech Connect (OSTI)

In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

W.J. Arthur; M.D. Voegele

2005-03-14T23:59:59.000Z

299

Photogeologic reconnaissance of X-tunnel at Little Skull Mountain  

SciTech Connect (OSTI)

On June 29, 1992, a magnitude 5.6 earthquake occurred immediately to the south of Little Skull Mountain; the depth of the shock was about 9 kilometers (6 miles). It is the location of an underground structure known as X-tunnel, that once supported deep basing studies for the Air Force in the 1980s. The Nevada Operations Office of US DOE authorized access to the facility on several occasions to allow technical specialists from the Yucca Mountain Site Characterization Project, including geoscientists and engineers, to gather information about possible damage related to the earthquake. Examination of the underground facility in the vicinity of Yucca Mountain indicated little or no damage to the facility. Photogeologic reconnaissance affirmed that the potential for damage to underground facilities is moderated and attenuated by depth below the ground surface.

Voegele, M.D. [SAIC, Las Vegas, NV (United States)

1993-12-31T23:59:59.000Z

300

The terrestrial ecosystem program for the Yucca Mountain Project  

SciTech Connect (OSTI)

DOE has implemented a program to monitor and mitigate impacts associated with site Characterization Activities at Yucca Mountain on the environment. This program has a sound experimental and statistical base. Monitoring data has been collected for parts of the program since 1989. There have been numerous changes in the Terrestrial Ecosystems Program since 1989 that reflect changes in the design and locations of Site Characterization Activities. There have also been changes made in the mitigation techniques implemented to protect important environmental resources based on results from the research efforts at Yucca Mountain. These changes have strengthened DOE efforts to ensure protection of the environmental during Site Characterization. DOE,has developed and implemented an integrated environmental program that protects the biotic environment and will restore environmental quality at Yucca Mountain.

Ostler, W.K.; O`Farrell, T.P.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

City of Mountain Lake, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain Lake Mountain Lake Place Minnesota Utility Id 13048 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Rates Commercial Commercial Commercial Industrial Industrial Residential- Rural Residential Residential- Urban Residential Average Rates Residential: $0.0957/kWh Commercial: $0.0842/kWh Industrial: $0.0804/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_Lake,_Minnesota_(Utility_Company)&oldid=40998

302

City of Mountain View, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain View Mountain View Place Missouri Utility Id 13057 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.0810/kWh Commercial: $0.0807/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_View,_Missouri_(Utility_Company)&oldid=409985" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

303

Yucca Mountain biological resources monitoring program; Annual report FY92  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1993-02-01T23:59:59.000Z

304

Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1992-01-01T23:59:59.000Z

305

The Yucca Mountain Project drift scale test  

SciTech Connect (OSTI)

The Yucca Mountain Project is currently evaluating the coupled thermal-mechanical-hydrological-chemical (TMHC) response of the potential repository host rock through an in situ thermal testing program. A drift scale test (DST) was constructed during 1997 and heaters were turned on in December 1997. The DST includes nine canister-sized containers with thirty operating heaters each located within the heated drift (HD) and fifty wing heaters located in boreholes in both ribs with a total power output of nominally 210kW. A total of 147 boreholes (combined length of 3.3 km) houses most of the over 3700 TMHC sensors connected with 201 km of cabling to a central data acquisition system. The DST is located in the Exploratory Studies Facility in a 5-m diameter drift approximately 50 m in length. Heating will last up to four years and cooling will last another four years. The rock mass surrounding the DST will experience a harsh thermal environment with rock surface temperatures expected to reach a maximum of about 200 C. This paper describes the process of designing the DST. The first 38 m of the 50-m long Heated Drift (HD) is dedicated to collection of data that will lead to a better understanding of the complex coupled TMHC processes in the host rock of the proposed repository. The final 12 m is dedicated to evaluating the interactions between the heated rock mass and cast-in-place (CIP) concrete ground support systems at elevated temperatures. In addition to a description of the DST design, data from site characterization, and a general description of the analyses and analysis approach used to design the test and make pretest predictions are presented. Test-scoping and pretest numerical predictions of one way thermal-hydrologic, thermal-mechanical, and thermal-chemical behaviors have been completed (TRW, 1997a). These analyses suggest that a dry-out zone will be created around the DST and a 10,000 m{sup 3} volume of rock will experience temperatures above 100 C. The HD will experience large stress increases, particularly in the crown of the drift. Thermoelastic displacements of up to about 16 mm are predicted for some thermomechanical gages. Additional analyses using more complex models will be performed during the conduct of the DST and the results compared with measured data.

Finley, R.E. [Sandia National Labs., Albuquerque, NM (United States); Blair, S.C. [Lawrence Livermore National Labs., CA (United States); Boyle, W.J. [Dept. of Energy, Las Vegas, NV (United States)] [and others

1998-06-01T23:59:59.000Z

306

Possible quasimolecular bands in /sup 32/S  

SciTech Connect (OSTI)

Below the /sup 16/O+ /sup 16/O threshold, positive- and negative-parity bands at E/sub x/ = 11--17 MeV in /sup 32/S are identified, whose moments of inertia and ..cap alpha..-reduced widths indicate possible quasimolecular bands of /sup 16/O+ /sup 16/O and of some asymmetric configuration.

Morita, K.; Kubono, S.; Tanaka, M.H.; Utsunomiya, H.; Sugitani, M.; Kato, S.; Schimizu, J.; Tachikawa, T.; Takahashi, N.

1985-07-08T23:59:59.000Z

307

The interaction of katabatic winds and mountain waves  

SciTech Connect (OSTI)

The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

Poulos, G.S.

1997-01-01T23:59:59.000Z

308

A V-BAND MMIC OSCILLATOR ARRAY USING WIDE BAND MICROSTRIP PATCH ANTENNA  

E-Print Network [OSTI]

A V-BAND MMIC OSCILLATOR ARRAY USING WIDE BAND MICROSTRIP PATCH ANTENNA HONG-TUEK KIM, WOOYEOL CHOI in a push-pull mode was implemented using two 2-port patch antennas. When measured in a closed over]. In this paper, to improve this problem, we develop a modified wide band microstrip patch antenna and use

Kwon, Youngwoo

309

Narrow band gap amorphous silicon semiconductors  

DOE Patents [OSTI]

Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

Madan, A.; Mahan, A.H.

1985-01-10T23:59:59.000Z

310

Wildfire Risk Assessment and Community Wildfire Protection in the Chilhowee Mountain Area of Blount County, East Tennessee.  

E-Print Network [OSTI]

??The growing Wildland Urban Interface community in the Chilhowee Mountain area of Blount County, Tennessee, like many other forested areas in the mountains and hills (more)

Chimchome, Piyarat

2008-01-01T23:59:59.000Z

311

Yucca Mountain - U.S. Department of Energy's Brief in Support...  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's...

312

Multiple-point statistical prediction on fracture networks at Yucca Mountain  

Science Journals Connector (OSTI)

In many underground nuclear waste repository systems, such as Yucca Mountain project, water flow rate and amount of ... fracture data to study flow field behavior at Yucca Mountain waste repository system. First,...

Xiaoyan Liu; Chengyuan Zhang; Quansheng Liu; Jens Birkholzer

2009-05-01T23:59:59.000Z

313

Yucca Mountain - U.S. Department of Energy's Response to the...  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain - U.S. Department of Energy's Response to the Motion for RecusalDisqualification Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal...

314

Multiphysics processes in partially saturated fracture rock: Experiments and models from Yucca Mountain  

E-Print Network [OSTI]

in the G-Tunnel underground facility. in Proceedings of theYucca Mountain showing underground facilities for the siteYucca Mountain showing underground facilities for the site

Rutqvist, J.

2014-01-01T23:59:59.000Z

315

Mountain Weather Research and Forecasting Chapter 12: Bridging the Gap between Operations and Research to  

E-Print Network [OSTI]

and Research to Improve Weather Prediction in Mountainous Regions W. James Steenburgh Department of Atmospheric tools, and numerical models, and inhibits researchers from fully evaluating weaknesses in current integrated collaboration to address critical challenges for weather prediction in mountainous regions

Steenburgh, Jim

316

Weather observations on Whistler Mountain during five storms JULIE M. THERIAULT,1  

E-Print Network [OSTI]

, local hydrology, transportation, and winter sport competition. The phase of precipitation is difficult projections over mountainous regions. Key words: Precipitation, winter storms, mountain meteorology, weather. ISAAC 4 Abstract--A greater understanding of precipitation formation processes over complex terrain near

Houze Jr., Robert A.

317

Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Great Smoky Mountains Great Smoky Mountains National Park Turns to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on AddThis.com...

318

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TANK LEVEL GAUGING SYSTEM TANK LEVEL GAUGING SYSTEM JULY 25, 1996 FC9519 / 95PT7 ROCKY MOUNTAIN OILFIELD TESTING CENTER TANK LEVEL GAUGING SYSTEM DOUBLE M ELECTRIC Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer July 25, 1996 551103/9519:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Tank Level Gauging System at the Naval Petroleum Reserve No. 3 (NPR-3). Double M. Electric manufactures the equipment that incorporates an optical-encoder sending unit, cellular communications, and software interface. The system effectively displayed its capabilities for remote monitoring and recording of tank levels.

319

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

320

Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount In-Home Energy Evaluation Program Windows: $500 Duct Repair: $500 Rehabilitation Work: $250 HVAC Replacement: $250/unit HVAC Tune-up: $150/unit Insulation: $500 Water Heater and Pipe Insulation: $50 Air Sealing: $500 Energy Right Program

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Proposed Yucca Mountain Repository From A Corrosion Perspective  

SciTech Connect (OSTI)

Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

J.H. Payer

2005-03-10T23:59:59.000Z

322

Basaltic volcanic episodes of the Yucca Mountain region  

SciTech Connect (OSTI)

The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs.

Crowe, B.M.

1990-03-01T23:59:59.000Z

323

Two-dimensional velocity models for paths from Pahute Mesa and Yucca Flat to Yucca Mountain; Yucca Mountain Project  

SciTech Connect (OSTI)

Vertical acceleration recordings of 21 underground nuclear explosions recorded at stations at Yucca Mountain provide the data for development of three two-dimensional crystal velocity profiles for portions of the Nevada Test Site. Paths from Area 19, Area 20 (both Pahute Mesa), and Yucca Flat to Yucca Mountain have been modeled using asymptotic ray theory travel time and synthetic seismogram techniques. Significant travel time differences exist between the Yucca Flat and Pahute Mesa source areas; relative amplitude patterns at Yucca Mountain also shift with changing source azimuth. The three models, UNEPM1, UNEPM2, and UNEYF1, successfully predict the travel time and amplitude data for all three paths. 24 refs., 34 figs., 8 tabs.

Walck, M.C.; Phillips, J.S.

1990-11-01T23:59:59.000Z

324

Field evidence in the Koryak Mountains Lake Mainitz region of far eastern Russia  

E-Print Network [OSTI]

ABSTRACT Field evidence in the Koryak Mountains­ Lake Mainitz region of far eastern Russia supports

Ingólfsson, ?lafur

325

Board Oversight of the DOE's Scientific and Technical Activities at Yucca Mountain  

E-Print Network [OSTI]

Chapter 1 Board Oversight of the DOE's Scientific and Technical Activities at Yucca Mountain The DOE is characterizing Yucca Mountain in Nevada to evaluate the suitability of the site for con. In addi- tion, individual Board members attended DOE workshops and traveled to Yucca Mountain. I

326

Nuclear Waste Technical Review Board Thermal-Response Evaluation of Yucca Mountain  

E-Print Network [OSTI]

Nuclear Waste Technical Review Board Thermal-Response Evaluation of Yucca Mountain During the Preclosure and Postclosure Phases July 2008 #12;Thermal Response Evaluation of Yucca Mountain July 2008 Page of the thermal response of the proposed Yucca Mountain repository for various thermal loadings. The U. S. Nuclear

327

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network  

E-Print Network [OSTI]

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN June 2006; published 19 July 2006. [1] Data from BARGEN GPS stations around Yucca Mountain (YM) have at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network, Geophys. Res. Lett., 33

Blewitt, Geoffrey

328

Prepared in cooperation with the Inyo County, California, Yucca Mountain Repository Assessment Office  

E-Print Network [OSTI]

Prepared in cooperation with the Inyo County, California, Yucca Mountain Repository Assessment County, California, Yucca Mountain Repository Assessment Office #12;U.S. Department of the Interior KEN Office Geologic Map of the southern Funeral Mountains including nearby Groundwater Discharge Sites

Fleskes, Joe

329

Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada  

E-Print Network [OSTI]

Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada for a Crater Flat cation-leaching curve. This curve differs somewhat from a previous Yucca Mountain curve­10 from a previous ``surficial deposits'' stratigraphy used in the Yucca Mountain area. Although

Dorn, Ron

330

Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and  

E-Print Network [OSTI]

designed to measure the strain rate across the region around Yucca Mountain. The LSM earthquake complicates parameters; 7260 Seismology: Theory and modeling; KEYWORDS: InSAR, joint inversion, seismic, Yucca Mountain 1. Introduction [2] Yucca Mountain, a proposed long-term (103 ­105 years) disposal site for high-level radioactive

331

A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson  

E-Print Network [OSTI]

A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson Zhiming model calculations for radionuclide transport in the unsaturated zone at Yucca Mountain. The model developed by the Yucca Mountain Project based on calibrations to site data. The particle-tracking technique

Lu, Zhiming

332

Dynamic rupture through a branched fault2 configuration at Yucca Mountain and resulting3  

E-Print Network [OSTI]

Dynamic rupture through a branched fault2 configuration at Yucca Mountain and resulting3 ground analyses. This is motivated by the normal faults in the vicinity10 of Yucca Mountain, NV, a potential site fault12 located approximately 1 km west of the crest of Yucca Mountain, is the13 most active

Dmowska, Renata

333

Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain  

E-Print Network [OSTI]

Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain by Benchun Duan and Steven at Yucca Mountain, Nevada, and assess sensitivities due to uncertainties in fault geometry, off-fault rock ground-motion parameters (e.g., Bommer, 2002; Bommer et al., 2004). The 1998 PSHA for Yucca Mountain

Duan, Benchun

334

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground Motions  

E-Print Network [OSTI]

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience

335

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF

Korneev, Valeri A.

336

Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain  

E-Print Network [OSTI]

1 Sensitivity Study of Physical Limits on Ground Motion at Yucca Mountain Benchun Duan1 and Steven investigate physical3 limits at Yucca Mountain, Nevada, and assess sensitivities due to uncertainties in fault (e.g.,28 Bommer, 2002; Bommer et al., 2004).29 The 1998 PSHA for Yucca Mountain, a potential high

Duan, Benchun

337

Effect of viscoelastic postseismic relaxation on estimates of interseismic crustal strain accumulation at Yucca Mountain,  

E-Print Network [OSTI]

of interseismic crustal strain accumulation at Yucca Mountain, Nevada William C. Hammond,1 Corné Kreemer,1 March 2010. [1] We estimate the longterm crustal strain rate at Yucca Mountain (YM), Nevada from GPS crustal strain accumulation at Yucca Mountain, Nevada, Geophys. Res. Lett., 37, L06307, doi:10.1029/2010GL

Tingley, Joseph V.

338

The long runout of the Heart Mountain landslide: Heating, pressurization, and carbonate decomposition  

E-Print Network [OSTI]

The long runout of the Heart Mountain landslide: Heating, pressurization, and carbonate; accepted 8 July 2010; published 29 October 2010. [1] The Heart Mountain landslide of northwestern Wyoming emplacement of the Heart Mountain landslide that is independent of slide triggering. The mechanism

Einat, Aharonov

339

A Seismic Refraction Survey in the Northern Rocky Mountains: More Evidence for an Intermediate Crustal Layer  

Science Journals Connector (OSTI)

......from the P,,arrivals of the Rocky Mountain profile. The observations...sistent with those for the Rocky Mountain profile. The amplitudesof...decrease as sharply as on the Rocky Mountain profile, but in this...sediments is 3kms-' and using flat earth theory, the thicknesses......

A. L. Hales; J. B. Nation

1973-12-01T23:59:59.000Z

340

Goat Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase I Wind Farm Goat Mountain Phase I Wind Farm Jump to: navigation, search Name Goat Mountain Phase I Wind Farm Facility Goat Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.908696°, -100.824122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.908696,"lon":-100.824122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Goat Mountain Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase II Wind Farm Goat Mountain Phase II Wind Farm Jump to: navigation, search Name Goat Mountain Phase II Wind Farm Facility Goat Mountain Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.910008°, -100.869355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.910008,"lon":-100.869355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PETRO-PLUG PETRO-PLUG BENTONITE PLUGGING JANUARY 27, 1998 Report No. RMOTC/97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by: Michael R. Tyler RMOTC Project Manager January 27, 1998 Report No. RMOTC/96ET4 CONTENTS Page Technical Description ...................................................................................................... 1 Problem ............................................................................................................................ 1 Solution ............................................................................................................................ 2 Operation..........................................................................................................................

343

Turtle Mountain Community College Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Community College Wind Farm Community College Wind Farm Jump to: navigation, search Name Turtle Mountain Community College Wind Farm Facility Turtle Mountain Community College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Turtle Mountain Community College Developer Distributed Gen Energy Purchaser Turtle Mountain Community College Location St. John ND Coordinates 48.884703°, -99.751936° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.884703,"lon":-99.751936,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

SciTech Connect (OSTI)

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31T23:59:59.000Z

345

Uranium and Neptunium Desorption from Yucca Mountain Alluvium  

SciTech Connect (OSTI)

Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

2006-03-16T23:59:59.000Z

346

Sustaining mobile pastoralists in the mountains of northern Pakistan  

E-Print Network [OSTI]

Sustaining mobile pastoralists in the mountains of northern Pakistan Mobile pastoralism According' average prolificacy and mortality rates (89% and 30% respec- tively), the landless mobile pastoral- ists do not own land, so mobile pastoralism is central to their livelihoods. They move their animals

Richner, Heinz

347

Overprinting Deformations in Mantle Rocks, Dun Mountain, New Zealand  

E-Print Network [OSTI]

sliding DMOB Dun Mountain Ophiolite Belt EBSD Electron backscatter diffraction HREE Heavy rare earth element ICP-MS Inductively coupled plasma-mass spectrometry LPO Lattice preferred orientation LREE Light rare earth element P Pressure PBS Phase... boundary sliding REE Rare earth element SEM Scanning electron microscopy SPO Shape preferred orientation T Temperature vi TABLE OF CONTENTS Page ABSTRACT...

Donnelly, Sara

2014-04-25T23:59:59.000Z

348

Mountain building in the Nepal Himalaya: Thermal and kinematic model  

E-Print Network [OSTI]

Mountain building in the Nepal Himalaya: Thermal and kinematic model L. Bollinger a,, P. Henry b. Courtillot Abstract We model crustal deformation and the resulting thermal structure across the Nepal: thermal model; temperature-time paths; inverted metamorphism; underplating; Himalayan orogen; Nepal

Avouac, Jean-Philippe

349

Ediacaran (Precambrian) Fossils from the Wernecke Mountains, Northwestern Canada  

Science Journals Connector (OSTI)

...Gordia Emmons and Torrowangea Webby, and problematic remains. We now confirm the presence of additional representatives of the Edia-caran fauna in the post-tillite, Late Pre-cambrian sequence of the the Wernecke Mountains. These comprise the medu-soids...

H. J. HOFMANN; W. H. FRITZ; G. M. NARBONNE

1983-07-29T23:59:59.000Z

350

Dialogs on the Yucca Mountain controversy. Special report No. 10  

SciTech Connect (OSTI)

In an attempt to resolve the controversial issue of tectonic and hydrologic stability of the Yucca Mountain region, the National Academy of Sciences established a Panel on Coupled Hydrologic/Tectonic/HydrothermaI Systems. The Panel has recently released it`s findings in a report entitled Ground Water at Yucca Mountain: How High Can It Rise? The representation of data and the scientific validity of this report was the subject of comprehensive evaluations and reviews which has led to correspondence between Dr. Charles Archarnbeau and Dr. Frank Press, the President of the National Academy of Sciences. All such correspondence prior to April 9, 1993 is covered by TRAC Special Report No. 5, {open_quotes}Dialogs on the Yucca Mountain Controversy.{close_quotes} The present report represents a continuation of the dialog between Dr. Archambeau and Dr. Press; specifically the letter from Dr. Press to Dr. Archambeau dated April 9, 1993 and Archambeau`s response to Press, dated August 19, 1993. In addition to the correspondence between Press and Archambeau, a series of recent reports by other investigators, referred to in the correspondence from Archambeau, are included in this report and document new data and inferences of importance for resolution of the question of suitability of the Yucca Mountain site as a high level nuclear waste repository. These reports also demonstrate that other scientists, not previously associated with the government`s program at Yucca Mountain or the National Academy review of an aspect of that program, have arrived at conclusions that are different than those stated by the Academy review and DOE program scientists.

Schluter, C.M.; Szymanski, J.S.

1993-08-01T23:59:59.000Z

351

ARM - Campaign Instrument - s-band-profiler  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentss-band-profiler govInstrumentss-band-profiler Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA S-band (2835 Mhz) Profiler (S-BAND-PROFILER) Instrument Categories Cloud Properties, Atmospheric Profiling Campaigns CRYSTAL-FACE [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.06.26 - 2002.08.01 Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers [ Download Data ] Southern Great Plains, 2011.04.22 - 2011.06.06 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific, 2006.01.21 - 2006.02.13 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available

352

Rotational band properties in {sup 165}Er  

SciTech Connect (OSTI)

High-spin states in {sup 165}Er have been studied experimentally using the {sup 160}Gd({sup 9}Be, 4n) reaction at beam energies of 42 and 45 MeV. The previously known bands based on the 5/2{sup +}[642], 5/2{sup -}[523], and 11/2{sup -}[505] configurations are extended to (49/2{sup +}), (45/2{sup -}), and (31/2{sup -}) states, respectively. The rotational bands in {sup 165}Er generally show gradual alignment processes, indicating strong band interactions associated with the i{sub 13/2} neutron alignments. The band properties are compared with those in the neighboring nuclei and discussed within the framework of the cranked shell model.

Wang, S. T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, X. H.; Zhang, Y. H.; Zheng, Y.; Liu, M. L.; Chen, L.; Zhang, N. T.; Hua, W.; Guo, S.; Qiang, Y. H.; Li, G. S.; Ding, B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shi, Y.; Xu, F. R. [School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

2011-07-15T23:59:59.000Z

353

Precipitation Banding in Idealized Baroclinic Waves  

Science Journals Connector (OSTI)

Moist idealized baroclinic-wave simulations show the development of precipitation bands from a zonally uniform initial midlatitude jet. For a frictionless lower boundary, and with no latent-heat release or surface heat and moisture fluxes, warm ...

Jesse Norris; Geraint Vaughan; David M. Schultz

2014-09-01T23:59:59.000Z

354

Efficient Band Gap Prediction for Solids  

E-Print Network [OSTI]

An efficient method for the prediction of fundamental band gaps in solids using density functional theory (DFT) is proposed. Generalizing the Delta self-consistent-field (?SCF [delta SCF]) method to infinite solids, the ...

Chan, Maria K.

355

Control Banding and Nanotechnology Synergist  

SciTech Connect (OSTI)

The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with uncertainty, that attracted international NM experts to recommend this qualitative risk assessment approach for NM. However, since their CB recommendation was only in theory, we took on the challenge of developing a working toolkit, the CB Nanotool (see Zalk et al. 2009 and Paik et al. 2008), as a means to perform a risk assessment and protect researchers at the Lawrence Livermore National Laboratory. While it's been acknowledged that engineered NM have potentially endless benefits for society, it became clear to us that the very properties that make nanotechnology so useful to industry could also make them dangerous to humans and the environment. Among the uncertainties and unknowns with NM are: the contribution of their physical structure to their toxicity, significant differences in their deposition and clearance in the lungs when compared to their parent material (PM), a lack of agreement on the appropriate indices for exposure to NM, and very little background information on exposure scenarios or populations at risk. Part of this lack of background information can be traced to the lack of risk assessments historically performed in the industry, with a recent survey indicating that 65% of companies working with NM are not doing any kind of NM-specific risk assessment as they focus on traditional PM methods for IH (Helland et al. 2009). The good news is that the amount of peer-reviewed publications that address environmental, health and safety aspects of NM has been increasing over the last few years; however, the percentage of these that address practical methods to reduce exposure and protect workers is orders of magnitude lower. Our intent in developing the CB Nanotool was to create a simplified approach that would protect workers while unraveling the mysteries of NM for experts and non-experts alike. Since such a large part of the toxicological effects of both the physical and chemical properties of NM were unknown, not to mention changing logarithmically as new NM research continues growing, we needed to account for this lack of information as part of the CB Nano

Zalk, D; Paik, S

2009-12-15T23:59:59.000Z

356

High Field W-Band (95 GHz) EPR | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field W-Band (95 GHz) EPR High Field W-Band (95 GHz) EPR The W-band pulsed EPR spectrometer, introduced in 2011, is one of only two of its design worldwide. It uses a Quasi-optical...

357

Systematic Study of Electronic Phases, Band Gaps and Band Overlaps of Bismuth Antimony Nanowires  

E-Print Network [OSTI]

We have developed an iterative one dimensional model to study the narrow band-gap and the associated non-parabolic dispersion relations for bismuth antimony nanowires. An analytical approximation has also been developed. Based on the general model, we have developed, we have calculated and analyzed the electronic phase diagrams and the band-gap/band-overlap map for bismuth antimony nanowires, as a function of stoichiometry, growth orientation, and wire width.

Shuang Tang; Mildred Dresselhaus

2013-12-03T23:59:59.000Z

358

Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Abstract: Structure and electronic properties of...

359

Highly Mismatched Alloys for Intermediate Band Solar Cells  

E-Print Network [OSTI]

single-junction intermediate band solar cells. Figure 5:conversion efficiency for a solar cell fabricated from a Znfor Intermediate Band Solar Cells W. Walukiewicz 1 , K. M.

2005-01-01T23:59:59.000Z

360

Geomorphology and morphometric characteristics of alluvial fans, Guadalupe Mountains National Park and adjacent areas, west Texas and New Mexico  

E-Print Network [OSTI]

............................................................ 29 14 Alluvial fans along the Guadalupe Mountains in Big Dog Canyon........ 31 15 Alluvial fans along the Brokeoff Mountains in Big Dog Canyon........... 35 16 View of alluvial fans from their drainage basins.................................. 75 27 Salt Basin-Brokeoff Mountains alluvial fan group ................................. 76 28 Big Dog Canyon-Brokeoff Mountains alluvial fan group....................... 77 29 Big Dog Canyon-Guadalupe Mountains alluvial fan group...

Given, Jeffrey Lyle

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Antiferromagnetism in Narrow-Band Solids  

Science Journals Connector (OSTI)

The single-band Hubbard Hamiltonian is examined in the limit of bandwidth much less than intraatomic Coulomb interaction of electrons. We make use of the canonical transformation and "spectral decomposition" of the electron creation operators proposed by Harris and Lange to write down a Green's function which describes electrons in the lower of the split bands of Hubbard's solution. The equation of motion is solved using the moment-conserving decoupling approximation of Tahir-Kheli and Jarrett. We find within our approximation that it is impossible to have an antiferromagnetic state for other than one electron per site. To remedy this defect of the single-band model, we investigate a simplified two-band model in the limit of intra-atomic Coulomb and exchange interaction much greater than the bandwidth, and find that antiferromagnetism is possible for the two nearly half-filled bands. We also discuss effects of the antiferromagnetic ordering on the conductivity in our simplified model and discuss applicability of the theory to real transition metals and transition-metal oxides.

J. B. Sokoloff

1970-02-01T23:59:59.000Z

362

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

50% of eligible measure cost 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Payback Cap: 1 year; if incentive brings the simple payback below one year, the incenive is reduced so the simple payback equals one year Program Info State Idaho Program Type Utility Rebate Program Rebate Amount $0.12/kWh annual energy savings + $50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet.

363

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PERMANENT DOWNHOLE PRESSURE GAUGE PERMANENT DOWNHOLE PRESSURE GAUGE MARCH 15, 1998 FC9553/96PT16 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sperry-Sun Permanent Downhole Pressure Gauge PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Sperry-Sun Downhole Permanent Pressure Gauge (DPPG) is a pressure gauge that is designed to remain in the well for long periods of time providing real time surface data on borehole pressures. The DPPG was field tested at the Rocky Mountain Oilfield Testing Center in well 63-TPX-10. The instrument was attached to the production string directly above a submersible pump. It was expected to monitor pressure draw-down and build-ups during normal production cycles. During the first two months of the test, the tool worked fine providing a pressure up survey that

364

Drum Mountain Geothermal Project (3) | Open Energy Information  

Open Energy Info (EERE)

Development Project: Drum Mountain Geothermal Project (3) Development Project: Drum Mountain Geothermal Project (3) Project Location Information Coordinates The following coordinate was not recognized: 39.32.41" N, 112°55'1" W.The following coordinate was not recognized: 39.32.41" N, 112°55'1" W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

365

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS APRIL 4,1995 FC9511 / 95PT5 ROCKY MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9511:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Mag-Well Downhole Magnetic Fluid Conditioners (MFCs), at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. Mag-Well, Inc., manufactures the MFCs, that are designed to reduce scale and paraffin buildup on the rods, tubing and downhole pump of producing oil wells. The Mag-Well magnetic tools failed to

366

Squirrel Mountain Valley, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Squirrel Mountain Valley, California: Energy Resources Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866°, -118.4098058° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6232866,"lon":-118.4098058,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Mountain View Elec Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Mountain View Elec Assn, Inc Mountain View Elec Assn, Inc Place Colorado Utility Id 13058 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 16.01 RESIDENTIAL RATE Residential 16.05 RESIDENTIAL TIME OF DAY SERVICE RATE Residential 18.40 SMALL POWER RATE Commercial 18.60 LARGE POWER RATE Commercial 18.61 LARGE POWER - PRIMARY METERING RATE Commercial 18.62 LARGE POWER - LOAD MANAGEMENT RATE Commercial 18.63 LARGE POWER - LOAD MANAGEMENT - PRIMARY METERING RATE Commercial 18.64 GENERAL POWER RATE Industrial

368

The National Repository at Yucca Mountain, Russ Dyer  

Broader source: Energy.gov (indexed) [DOE]

Repository at Repository at Yucca Mountain Presented to: EM High Level Waste Corporate Board Presented by: Russ Dyer Chief Scientist Office of Civilian Radioactive Waste Management July 24, 2008 Idaho National Laboratory 2 SBBB-GeneralBriefing_070808Rev1.ppt Solving a national problem now * On June 3, 2008, the U.S. Department of Energy submitted an application to the U.S. Nuclear Regulatory Commission for a license to construct a repository at Yucca Mountain 3 SBBB-GeneralBriefing_070808Rev1.ppt Repository license application * The LA seeks authorization to construct the nation's first geologic repository * It is a culmination of more than 25 years of scientific research and engineering * The LA describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive

369

Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal  

Open Energy Info (EERE)

Tilapia Aquaculture Low Temperature Geothermal Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Facility Rocky Mountain White Tilapia Sector Geothermal energy Type Aquaculture Location Alamosa, Colorado Coordinates 37.4694491°, -105.8700214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

370

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2004) |  

Open Energy Info (EERE)

4) 4) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense hydrothermal alteration associated with the prominent north-south range

371

NETL: Ambient Monitoring - Great Smoky Mountains National Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Great Smoky Mountains Project (GSMP) Great Smoky Mountains Project (GSMP) Background Fine particle annual mass concentrations in the Tennessee Valley range from 14 to20 micrograms per cubic meter. All seven urban/suburban sites exceeded the annual PM2.5 standard; only the rural Lawrence County TN site remained below the 15 µg/m3 annual standard. None of the stations exceeded the 65 µg/m3 level of the 24-hour PM2.5 standard. Summer high-winter low seasonality is evident. The current FRM PM2.5 mass measurements under-estimate the contribution of volatile/semi-volatile nitrates and organic carbon species. The semi-volatile organic fraction is both highly variable and significant, and assessments of semi-volatile and non-volatile organic carbon fractions are needed when particle composition measurements are made, especially at urban sites.

372

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AJUST A PUMP BEAM PUMPING UNIT AJUST A PUMP BEAM PUMPING UNIT FEBRUARY 19, 1997 FC9532 / 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager February 19, 1997 650200/551107:9532 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Model-2000 Ajust A Pump system at the Naval Petroleum Reserve No. 3 (NPR-3). Rosemond Manufacturing, Inc. (RMI) manufactures compact beam-pumping units that incorporate energy-efficient gear boxes. The equipment is designed to reduce operating costs and minimize maintenance labor. This report documents the equipment performance and the results of the Ajust A Pump test. The purpose of the test was to demonstrate claims of energy efficiency and reduced labor requirements. The test showed

373

Signal Mountain, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Signal Mountain, Tennessee: Energy Resources Signal Mountain, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1225727°, -85.3438488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1225727,"lon":-85.3438488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Examining Repository Loading Options to Expand Yucca Mountain Repository Capacity  

SciTech Connect (OSTI)

Siting a high level nuclear waste repository entails high economic, social, and political costs. Given the difficulty in siting the Yucca Mountain repository and the already identified need for additional capacity, the concept of expanding the capacity of the Yucca Mountain repository is of significant interest to the nuclear industry and the Department of Energy (DOE). As the capacity of the repository is limited by the decay heat inventory of the spent nuclear fuel in relation to the thermal design limits, expanding the capacity requires appropriate schemes for decay heat and spent fuel loading management. The current Yucca Mountain repository is based on a single level, fixed drift spacing design for a fixed area or footprint. Studies performed to date investigating the capacity of Yucca Mountain often assume that the loading of spent fuel is uniform throughout the repository and use the concept of a linear loading or areal power density (APD). However, use of linear loading or APD can be problematic with the various cooling times involved. The temperature within the repository at any point in time is controlled by the integral of the heat deposited in the repository. The integral of the decay heat varies as a function of pre-loading cooling periods even for a fixed linear loading. A meaningful repository capacity analysis requires the use of a computer model that describes the time-dependent temperature distributions of the rock from the dissipation of the heat through the repository system. If variations from the current Yucca Mountain repository design were to be considered, expanding the capacity of the repository would be pursued in several ways including: (1) increase the footprint size; (2) implement multiple-levels in the repository for the given footprint; (3) allow the drift distance to vary within thermal limits; and, (4) allow non-uniform loading of wastes into the drifts within thermal limits. Options (1) and (2) have been investigated by other researchers. This paper investigates options (3) and (4) for possible expansion of the Yucca Mountain repository capacity. To support the work, a thermal analysis model was needed to describe the temperature changes in the rock around the waste packages against the thermal design limits as a function of spent fuel characteristics and composition. Under the high temperature operating mode (HTOM), the relevant thermal design limits are: (1) the rock temperature midway between adjacent drifts must remain below the local boiling point (96 deg. C); and (2) the rock temperature at drift walls must remain below 200 deg. C. As the work involves a large number of calculations, examining the compliance within thermal design limits, the capability to perform efficient mountain-scale heat-transfer analyses was necessary. A related topic of importance in this investigation was also the effect of uncertainty. As the modeling exercise relies on the use of computational models, uncertainties are unavoidable and understanding the uncertainty in the interpretation of the results is important. The concept of variable drift spacing and variable drift thermal loading was investigated with respect to possible capacity expansion of the Yucca Mountain repository. Also, a computer model was developed for efficient repository heat transfer calculations and sensitivity and uncertainty analyses were performed to identify key parameters and to estimate the uncertainty in the results and understand how the repository capacity estimation would be affected by the uncertainty. (authors)

Li, Jun; Nicholson, Mark; Proctor, W. Cyrus; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States)

2007-07-01T23:59:59.000Z

375

Geophysical investigation of concealed faults near Yucca Mountain, southwest Nevada  

SciTech Connect (OSTI)

Detailed gravity and ground magnetic data collected along surveyed traverses across Midway Valley, on the eastern flank of Yucca Mountain, Nevada reveal that these methods can be used to delineate concealed faults. These studies are part of an effort to evaluate faulting in the vicinity of the proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. The largest gravity and magnetic anomaly in the vicinity of Midway Valley is associated with the Paintbrush fault on the west flank of Alice Ridge. Geophysical data infer a vertical offset of about 200 m (650 ft). Another prominent gravity and magnetic anomaly is associated with the Bow Ridge fault in the western part of Midway Valley.

Ponce, D.A. [Geological Survey, Menlo Park, CA (United States)

1993-12-31T23:59:59.000Z

376

Pine Mountain, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Pine Mountain, GA) (Redirected from Pine Mountain, GA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6759423°, -84.1149163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6759423,"lon":-84.1149163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Casper Mountain, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mountain, Wyoming: Energy Resources Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199°, -106.3266921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7330199,"lon":-106.3266921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Mountain Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Facility Mountain Wind II Facility Mountain Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location WY Coordinates 41.275629°, -110.539488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.275629,"lon":-110.539488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

TBM tunneling on the Yucca Mountain Project: Proceedings  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long term, high level nuclear waste repository in the United States. Status of this long-term project form the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF), which is being excavated with a 7. 6 m(25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3 to 7.6 m(10 to 25 ft). Prior to construction, extensive constructibility reviews were an interactive part of the final design. Intent was to establish a constructible design that met the long-term stability requirements for radiological safety of a future repository while maintaining flexibility for the scientific investigations and acceptable tunneling productivity.

Williamson, G.E.; Gowring, I.M. [ed.

1995-07-01T23:59:59.000Z

380

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described earlier in an e-mail, in an  

E-Print Network [OSTI]

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described billion gallons of toxic coal sludge located directly above Marsh Fork Elementary School. (No word yet on their campus a couple of years ago. Underground Appalachian coal mining is being replaced in recent years

Hansen, James E.

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D-JAX PUMP-OFF CONTROLLER D-JAX PUMP-OFF CONTROLLER APRIL 4,1995 FC9510 / 95PT4 ROCKY MOUNTAIN OILFIELD TESTING CENTER D-JAX PUMP-OFF CONTROLLER PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer April 4, 1995 55103/9510:jb CONTENTS Page Introduction........................................................................................1 NPR-3 Map........................................................................................2 Benefits of D-JAX Pump-Off Controller.....................................................3 Test Results.......................................................................................3 Production Information..........................................................................4

382

Stratigraphy of the Yucca Formation, Indio Mountains, west Texas  

SciTech Connect (OSTI)

The Indio Mountains are located 25 miles south of Van Horn, Texas, on the northwestern margin of the Chihuahua Tectonic Belt. The Indio Mountains are composed of Cretaceous sedimentary rocks deposited on the edge of the Chihuahua trough. The focus of this study, the Yucca conglomerate, is the oldest known Mesozoic rock in the region, although its unconformable base is not exposed within the Indio Mountains. This area has been affected by faulting associated with both the Chihuahua tectonic belt and the Rio Grande Rift. During summer 1992, the authors measured a stratigraphic section through the Yucca conglomerate, using a custom made Jacob's staff. The measured section is over 500 meters thick and was measured and described in 3 meter intervals. The section was measured up a single valley, and did contain some minor faults. This project had three objectives: (1) to examine variations in the sand/conglomerate ratio throughout the Yucca Fm.; (2) to examine variations in conglomerate clast composition using outcrop and thin section analysis; and, (3) ultimately, to compare this stratigraphic section with sections measured by Underwood (1962) in the Eagle Mountains and Devil's Ridge to the northwest. The sand/conglomerate ratio varies, with the proportion of sand increasing up section. At the base of the section, the rocks are mostly clast supported conglomerate interbedded with thin (12 cm) sand layers. The top of the section is dominated by sandstones with pebble stringers, with some massive sand layers over 6m thick. Few truly conglomeratic layers are present near the top of the section. The composition of clasts within the conglomerate also varies. The carbonate clasts are often preferentially eroded. The carbonate content increases up section.

Smith, D.E.; Julian, F.E. (Univ. of Texas, El Paso, TX (United States). Dept. of Geological Sciences)

1993-02-01T23:59:59.000Z

383

Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming  

E-Print Network [OSTI]

throughout the periphery of the Bighorn Basin. Major folds within the study are basement-cored, asymmetric, doubly-plunging structures that trend subparallel to the adjacent Bighorn Mountain uplift. Subsidiary disharmonic folds are found on the flanks.... Bedding plane slip and related minor thrusting are pervasive throughout the fold and are observed to operate as mechanisms for subsidiary disharmonic folding on its steep flank. Predominant assemblages of mesoscopic fracture sets measured...

Hennier, Jeffrey Hugh

2012-06-07T23:59:59.000Z

384

Ute Mountain Ute Tribe Community-Scale Solar Feasibility Study  

SciTech Connect (OSTI)

Parametrix Inc. conducted a feasibility study for the Ute Mountain Ute Tribe to determine whether or not a community-scale solar farm would be feasible for the community. The important part of the study was to find where the best fit for the solar farm could be. In the end, a 3MW community-scale solar farm was found best fit with the location of two hayfield sites.

Rapp, Jim [Parametrix; Knight, Tawnie [Ute Mountain Ute Tribe

2014-01-30T23:59:59.000Z

385

Rocky Mountain Power - Solar Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 Small Non-Residential (up to 25 kW): $25,000 Large Non-Residential (greater than 25 kW, up to 1,000 kW): $800,000 Program Info Funding Source Rate-payer funds Start Date 9/1/2007 Expiration Date 12/31/2017 State Utah Program Type Utility Rebate Program Rebate Amount Program Year 2012/2013 (application period is closed): Residential: $1.25/W-AC Small Non-Residential (up to 25 kW): $1.00/W-AC Large Non-Residential (greater than 25 kW, up to 1,000 kW): $0.80/W-AC '''''Note: Applications for 2013 were accepted during a two-week period

386

Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel.

G. Patterson; P. Striffler

2007-02-17T23:59:59.000Z

387

Draft reclamation program plan for site characterization; Yucca Mountain project  

SciTech Connect (OSTI)

As part of its obligations under the Nuclear Waste Policy Act, as amended, the US Department of Energy (DOE) has developed an environmental program that is to be implemented during site characterization at the Yucca Mountain site. This site is proposed for the location of the nation`s first high-level radioactive waste repository. A program for the reclamation of areas disturbed by site characterization is part of the overall environmental program for that site. This Reclamation Program Plan (RPP) describes the reclamation policy of the DOE for the Yucca Mountain site and presents an overview of the reclamation program. The RPP also provides an overview of the reclamation needs relative to site characterization; a review of legislation and requirements pertinent to reclamation; and a review of previous commitments made by the DOE to certain types of reclamation activities. The objective of the DOE reclamation program at Yucca Mountain is to return land disturbed by site-characterization activities to a stable ecological state with a form and productivity similar to the predisturbance state. The DOE will take all reasonable and necessary steps to achieve this objective. 19 refs., 2 tabs.

NONE

1989-08-01T23:59:59.000Z

388

Deformation bands in nonwelded ignimbrites: Petrophysical controls on fault-zone deformation and evidence of preferential fluid flow  

Science Journals Connector (OSTI)

...map of Jemez Mountains, modified...additional funding from the Wyoming...in the Jemez Mountains and Rio Grande...minerals at Yucca Mountain...rocks waste disposal GeoRef, Copyright...additional funding from the Wy-oming...in the Jemez Mountains and Rio Grande...minerals at Yucca Mountain...

389

Energy Band Model Based on Effective Mass  

E-Print Network [OSTI]

In this work, we demonstrate an alternative method of deriving an isotropic energy band model using a one-dimensional definition of the effective mass and experimentally observed dependence of mass on energy. We extend the effective mass definition to anti-particles and particles with zero rest mass. We assume an often observed linear dependence of mass on energy and derive a generalized non-parabolic energy-momentum relation. The resulting non-parabolicity leads to velocity saturation at high particle energies. We apply the energy band model to free relativistic particles and carriers in solid state materials and obtain commonly used dispersion relations and experimentally confirmed effective masses. We apply the model to zero rest mass particles in graphene and propose using the effective mass for photons. Therefore, it appears that the new energy band model based on the effective mass can be applied to relativistic particles and carriers in solid state materials.

Viktor Ariel

2012-09-06T23:59:59.000Z

390

Radiative Heating in Underexplored Bands Campaign (RHUBC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bands Campaign (RHUBC) D. Turner and E. Mlawer RHUBC Breakout Session 2008 ARM Science Team Meeting 13 March, 2008 Norfolk, Virginia Motivation * Radiative heating/cooling in the mid-troposphere modulate the vertical motions of the atmosphere - This heating/cooling occurs primarily in water vapor absorption bands that are opaque at the surface * Approximately 40% of the OLR comes from the far-IR * Until recently, the observational tools were not available to evaluate the accuracy of the far-IR radiative transfer models - Spectrally resolved far-IR radiances, accurate PWV * Need to validate both clear sky (WV) absorption and cirrus scattering properties in these normally opaque bands Scientific Objectives * Conduct clear sky radiative closure studies in order to reduce uncertainties

391

System-level, Unified In-band and Out-of-band Dynamic Thermal Control  

E-Print Network [OSTI]

and improve the reliability of systems. Our thermal control framework unifies temperature control mechanisms supply, etc.) to operate less efficiently. Third, high temperatures can trigger thermal emergenciesSystem-level, Unified In-band and Out-of-band Dynamic Thermal Control Dong Li* , Rong Ge** , Kirk

392

Reply to "Commentary: Assessment of past infiltration fluxes through Yucca Mountain on the basis of the secondary mineral record-is it a viable methodology?", by Y.V. Dublyansky and S.Z. Smirnov  

E-Print Network [OSTI]

infiltration fluxes through Yucca Mountain on the basis ofdata for the unsaturated zone at Yucca Mountain (Nevada).AMR U0085, Yucca Mountain Nuclear Waste Disposal Project,

Sonnenthal, Eric; Xu, Tianfu; Bodvarrson, Gudmundur

2005-01-01T23:59:59.000Z

393

Band structure of doubly-odd nuclei around mass 130  

SciTech Connect (OSTI)

Nuclear structure of the doublet bands in the doubly-odd nuclei with mass A{approx}130 is studied in terms of a pair-truncated shell model. The model reproduces quite well the energy levels of the doublet bands and the electromagnetic transitions. The analysis of the electromagnetic transitions reveals new band structure of the doublet bands.

Higashiyama, Koji [Department of Physics, Chiba Institute of Technology, Narashino, Chiba 275-0023 (Japan); Yoshinaga, Naotaka [Department of Physics, Saitama University, Saitama City 338-8570 (Japan)

2011-05-06T23:59:59.000Z

394

VEE-0076 - In the Matter of Green Mountain Energy Company | Department of  

Broader source: Energy.gov (indexed) [DOE]

76 - In the Matter of Green Mountain Energy Company 76 - In the Matter of Green Mountain Energy Company VEE-0076 - In the Matter of Green Mountain Energy Company On August 23, 2000, the Green Mountain Energy Company (Green Mountain) of Austin, Texas, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy (DOE). In its application, Green Mountain requests an exception, pursuant to 10 C.F.R. § 1003, which, if granted, would have the effect of withholding from public release - either through regular publication by the Energy Information Administration (EIA) or through the Freedom of Information Act (FOIA), 5 U.S.C. § 552 -- data which the firm files with the DOE Energy Information Administration on Forms EIA-826 and EIA- 861. These Forms are, respectively, the "Monthly

395

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Citation BRIAN D. FAIRBANK. 2012. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=STATEMENT_OF_BRIAN_D._FAIRBANK_Nevada_Geothermal_Power_Inc.%27s_Blue_Mountain_Geothermal_Power_Facility&oldid=682760

396

Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain - U.S. Department of Energy's Brief in Support of Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Proceeding before the Nuclear Regulatory Commission on DOE's application for a license to construct a high-level waste repository at Yucca Mountain, Nevada; DOE brief arguing that the NRC should review and reverse the order of the Atomic Safety and Licensing Board denying DOE's motion to withdraw its application. Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw More Documents & Publications Yucca Mountain - U.S. Department of Energy's Reply to the Responses to the

397

Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

Zuni Mountains Nm Area (Brookins, 1982) Zuni Mountains Nm Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) Exploration Activity Details Location Zuni Mountains Nm Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Retrieved from "http://en.openei.org/w/index.php?title=Rock_Sampling_At_Zuni_Mountains_Nm_Area_(Brookins,_1982)&oldid=387056" Category: Exploration Activities

398

Stepout-Deepening Wells At Blue Mountain Area (Niggemann Et Al, 2005) |  

Open Energy Info (EERE)

Blue Mountain Area (Niggemann Et Al, 2005) Blue Mountain Area (Niggemann Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Step-out Well At Blue Mountain Area (Niggemann Et Al, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Step-out Well Activity Date Usefulness not indicated DOE-funding Unknown Notes Deep Blue No. 2 was sited as a step out t5 meters.5o Deep Blue No. 1 which measured 145oC at a depth of 645 m. Max temp recorded in Deep Blue No. 2 while drilling was 167.5oC at References Kim Niggemann, Brian Fairbank, Susan Petty (2005) Deep Blue No 2- A Resource In The Making At Blue Mountain Retrieved from "http://en.openei.org/w/index.php?title=Stepout-Deepening_Wells_At_Blue_Mountain_Area_(Niggemann_Et_Al,_2005)&oldid=687863"

399

model strongly interacting particles as rubber bands.  

E-Print Network [OSTI]

model strongly interacting particles as rubber bands. Nothing is perfect, of course. Some relativity, there is a tempta- tion to carry intelligent design to an ex- treme in which God wrote (recall Bohr's admonition, "Stop telling God what to do!"). The landscape picture derails this thinking

Hughes, Kim

400

The Wave Band' Theory of Wireless Transmission  

Science Journals Connector (OSTI)

... the tuned circuit, namely, that the really selective circuit does cut off the higher audio frequencies, generally explained by the cutting of the side bands What is actually ... its excitation has ceased. If it is excited by a carrier modulated by a high audio frequency, the persistence of its vibrations will not allow the amplitude of these to ...

A. A. NEWBOLD

1930-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE/EA-1644: Kildeer to Mountain Transmission Project Pre-Decisional Environmental Assessment (May 2009)  

Broader source: Energy.gov (indexed) [DOE]

KILLDEER TO MOUNTAIN KILLDEER TO MOUNTAIN TRANSMISSION PROJECT PRE-DECISIONAL ENVIRONMENTAL ASSESSMENT MAY 5, 2009 DOE/EA-1644 PRE-DECISIONAL ENVIRONMENTAL ASSESSMENT KILLDEER TO MOUNTAIN PAGE i MAY 2009 TRANSMISSION PROJECT DOE/EA -1644 TABLE OF CONTENTS 1.0 INTRODUCTION .............................................................................................. 1-1 1.1 Purpose of and Need for Action ........................................................................................... 1-1 1.1.1 Project Purpose ............................................................................................................ 1-1 1.1.2 Western's Purpose and Need ..................................................................................... 1-1

402

X-Band Photoinjector Beam Dynamics  

SciTech Connect (OSTI)

SLAC is studying the feasibility of using an X-band RF photocathode gun to produce low emittance bunches for applications such as a mono-energetic MeV {gamma} ray source (in collaboration with LLNL) and a photoinjector for a compact FEL. Beam dynamics studies are being done for a configuration consisting of a 5.5-cell X-band gun followed by several 53-cell high-gradient X-band accelerator structures. A fully 3D program, ImpactT, is used to track particles taking into account space charge forces, short-range longitudinal and transverse wakefields, and the 3D rf fields in the structures, including the quadrupole component of the couplers. The effect of misalignments of the various elements, including the drive-laser, gun, solenoid and accelerator structures, are evaluated. This paper presents these results and estimates of the expected bunch emittance vs cathode gradient, and the effects of mixing between the fundamental and off-frequency longitudinal modes. An X-band gun at SLAC has been shown to operate reliably with a 200 MV/m acceleration gradient at the cathode, which is nearly twice the 115 MV/m acceleration gradient in the LCLS gun. The higher gradient should roughly balance the space charge related transverse emittance growth for the same bunch charge but provide a 3-4 times shorter bunch length. The shorter length would make the subsequent bunch compression easier and allow for a more effective use of emittance exchange. Such a gun can also be used with an X-band linac to produce a compact FEL or g ray source that would require rf sources of only one frequency for beam generation and acceleration. The feasibility of using an X-band rf photocathode gun and accelerator structures to generate high quality electron beams for compact FELs and g ray sources is being studied at SLAC. Results from the X-band photoinjector beam dynamics studies are reported in this paper.

Zhou, Feng; /SLAC; Adolphsen, Chris; /SLAC; Ding, Yuantao; /SLAC; Li, Zenghai; /SLAC; Vlieks, Arnold; /SLAC

2011-12-13T23:59:59.000Z

403

Kalsilite, Diopside and Melilite in a Sedimentary Xenolith from Brome Mountain, Quebec  

Science Journals Connector (OSTI)

... 10.1038/2141322a0 Kalsilite, Diopside and Melilite in a Sedimentary Xenolith from Brome Mountain, Quebec A. R.PHILPOTTSA. R.

A. R. PHILPOTTS; E. F. PATTISON; J. S. Fox

1967-06-24T23:59:59.000Z

404

E-Print Network 3.0 - analysis yucca mountain Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: polyacantha), and yucca(Yucca glauca), and in juniper scatter vegetation with <10% canopy closure with shrub... cover of mountain mahogany, skunkbrush (Rhus trilobata),...

405

E-Print Network 3.0 - assessment yucca mountain Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: polyacantha), and yucca(Yucca glauca), and in juniper scatter vegetation with <10% canopy closure with shrub... cover of mountain mahogany, skunkbrush (Rhus trilobata),...

406

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect (OSTI)

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

407

Gas Flux Sampling At Socorro Mountain Area (Owens, Et Al., 2005...  

Open Energy Info (EERE)

2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity...

408

Microsoft Word - CX-MountainAvenueDispositionFY12_WEB.doc  

Broader source: Energy.gov (indexed) [DOE]

1, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Joan Kendall Realty Specialist - TERR-3 Proposed Action: Disposition of Mountain Avenue Substation and...

409

THE DOMINANT ROLE OF "LOCAL" INFORMATION IN USER INNOVATION: THE CASE OF MOUNTAIN BIKING  

E-Print Network [OSTI]

In a study of innovations developed by mountain bikers, we find that user-innovators almost always utilize "local" information - information already in their possession or ...

Luthje, Christian

2003-01-27T23:59:59.000Z

410

Calculations supporting evaluation of potential environmental standards for Yucca Mountain  

SciTech Connect (OSTI)

The Energy Policy Act of 1992, Section 801 (US Congress, 1992) provides for the US Environmental Protection Agency (EPA) to contract the National Academy of Sciences (NAS) to conduct a study and provide findings and recommendations on reasonable standards for the disposal of high-level wastes at the Yucca Mountain site. The NAS study is to provide findings and recommendations which include, among other things, whether a health-based standard based on dose to individual members of the public from releases to the accessible environment will provide a reasonable standard for the protection of the health and safety of the public. The EPA, based upon and consistent with the findings and recommendations of the NAS, is required to promulgate standards for protection of the public from releases from radioactive materials stored or disposed of in a repository at the Yucca Mountain site. This document presents a number of different ``simple`` analyses of undisturbed repository performance that are intended to provide input to those responsible for setting appropriate environmental standards for a potential repository at the Yucca Mountain site in Nevada. Each of the processes included in the analyses has been simplified to capture the primary significance of that process in containing or isolating the waste from the biosphere. In these simplified analyses, the complex waste package interactions were approximated by a simple waste package ``failure`` distribution which is defined by the initiation and rate of waste package ``failures``. Similarly, releases from the waste package and the engineered barrier system are controlled by the very near field environment and the presence and rate of advective and diffusive release processes. Release was approximated by either a simple alteration-controlled release for the high solubility radionuclides and either a diffusive or advective-controlled release for the solubility-limited radionuclides.

Duguid, J.O.; Andrews, R.W.; Brandstetter, E.; Dale, T.F.; Reeves, M. [INTERA, Inc., Las Vegas, NV (United States)

1994-04-01T23:59:59.000Z

411

Quantum-Dot Intermediate-Band Solar Cells with Inverted Band Alignment  

SciTech Connect (OSTI)

The intermediate-band concept was proposed over a decade ago as a possible route to increase the efficiency of single-junction solar cells. Despite a number of experimental attempts to realize this concept, no efficiency improvement over conventional single-junction solar cells has so far been demonstrated. This is likely due to the fact that the intermediate band itself acts to enhance electron-hole recombination. In this work we propose a novel intermediate-band solar-cell architecture based on doped semiconductor nanostructures having an inverted type-I band alignment with the surrounding host. The recombination of carriers in the nanostructures is prevented by ultra-fast charge transfer to the host, thereby removing the main obstacle to achieve high conversion efficiency.

Francheschetti, A.; Lany, S.; Bester, G.

2008-01-01T23:59:59.000Z

412

Coupled thermal-hydrological-mechanical analyses of the Yucca Mountain Drift Scale Test - Comparison of field measurements to predictions of four different numerical models  

E-Print Network [OSTI]

mechanical analyses of the Yucca Mountain Drift Scale Test Chemical Responses in the Yucca Mountain Drift Scale Test.Heating Phase of the Yucca Mountain Drift Scale Test. In:

2004-01-01T23:59:59.000Z

413

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

E-Print Network [OSTI]

and Cooling at the Yucca Mountain Drift Scale Test J.mechanical analysis of the Yucca Mountain Drift Scale Test scale heater test at Yucca Mountain, Nevada, USA. Int J Rock

Rutqvist, J.

2008-01-01T23:59:59.000Z

414

Precipitation-Front Modeling: Issues Relating to Nucleation and Metastable Precipitation in the Planned Nuclear Waste Repository at Yucca Mountain, Nevada  

E-Print Network [OSTI]

Mineralogic Model of Yucca Mountain, Nevada, Rev. 1. Reportfor fracture sealing at Yucca Mountain, Nevada. Journal ofWaste Repository at Yucca Mountain, Nevada J.A. Apps and

Apps, J.A.; Sonnenthal, E.L.

2004-01-01T23:59:59.000Z

415

SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone  

Broader source: Energy.gov (indexed) [DOE]

WYOMING WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Solid Waste Collection 562111 Hazardous Waste Collection 562112 Other Waste Collection 562119 Hazardous Waste Treatment and Disposal 562211 Solid Waste Landfill 562212 Solid Waste Combustors and Incinerators 562213 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998

416

Implementation of NUREG-1318 guidance within the Yucca Mountain Project  

SciTech Connect (OSTI)

The US Department of Energy`s Yucca Mountain Project is implementing a quality assurance program that fulfills the requirements of the US Nuclear Regulatory Commission (NRC). Additional guidance for this program was provided in NUREG 1318, ``Technical Position on Items and Activities in the High-Level Waste Geologic Repository Program Subject to Quality Assurance Requirements`` for identification of items and activities important to public radiological safety and waste isolation. The process and organization for implementing this guidance is discussed. 3 refs., 2 figs.

La Monica, L.B.; Waddell, J.D.; Hardin, E.L.

1990-04-01T23:59:59.000Z

417

Evidence for Gropun-Water Stratification Near Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

K. Futa; B.D. Marshall; Z.E. Peterman

2006-03-24T23:59:59.000Z

418

Food reserves in mountain longleaf pine roots during shoot elongation.  

SciTech Connect (OSTI)

Roots of saplings appear to be models for healthy tissues in longleaf pines. Results show that roots of mountain longleaf pine have a normal anatomy, but also have unusual amounts of starch when compared to loblolly pine roots growing during phenologiexecy equal time periods. Roots appear large in diameter and grow much nearer the soil surface than roots observed from Coastal Plain longleaf pine. Starch grains are large in size and uniformly filled root cells. These results yield methodology potentially useful in assessment of health and productivity of longleaf pine.

Walkinshaw, C.H.; W.J. Otrosina

2001-03-20T23:59:59.000Z

419

Eagle Mountain Watershed: Calibration, Validation, and Best Management Practices  

E-Print Network [OSTI]

to be represented in a computationally efficient manner, in turn providing greater spatial detail. SWAT is a combination of applications, ROTO (Routing Outputs to Outlets (Arnold et al., 1995b) and the SWRRB (Simulator for Water Resources in Rural Basins... to Eagle Mountain Lake (Baseline condition) from 1971 to 2004 Sediment (t/y)* Total N (kg/y) Total P (kg/y) Calibrated model estimation (baseline) 296,400 1,055,220 173,020 * Units are metric units ANALYSES 1. Average annual load by landuse...

Lee, Taesoo; Narasimhan, Balaji; Srinivasan, Raqhavan

420

X-Band RF Gun Development  

SciTech Connect (OSTI)

In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami; /SLAC; Anderson, Scott; Hartemann, Fred; Marsh, Roark; /LLNL, Livermore

2012-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

S-Band Loads for SLAC Linac  

SciTech Connect (OSTI)

The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

Krasnykh, A.; Decker, F.-J.; /SLAC; LeClair, R.; /INTA Technologies, Santa Clara

2012-08-28T23:59:59.000Z

422

Anomalous Doppler effects in phononic band gaps  

Science Journals Connector (OSTI)

Doppler effects in periodic acoustic media were studied theoretically and experimentally. Analytical formulas are derived using the Greens function formalism. We found that a far field observer cannot hear the sound inside a band gap from a stationary source, but a moving source can be heard even if the frequency is inside the gap, and the Doppler shifts can be inverted or anomalously large.

Xinhua Hu; Zhihong Hang; Jensen Li; Jian Zi; C. T. Chan

2006-01-30T23:59:59.000Z

423

Permanent magnet focused X-band photoinjector  

DOE Patents [OSTI]

A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

Yu, David U. L. (Rancho Palos Verdes, CA); Rosenzweig, James (Los Angeles, CA)

2002-09-10T23:59:59.000Z

424

Alternating parity bands in 87218Fr  

Science Journals Connector (OSTI)

States in doubly odd 218Fr have been studied using in-beam spectroscopy ?-?-? coincidence techniques mainly through the 209Bi(18O, 2?n) reaction at 94 MeV bombarding energy, using the 8? GASP-ISIS spectrometer at Legnaro. 218Fr shows a band structure, with interleaved states of alternating parities connected by enhanced E1 transitions. Tentative spin assignment and the relation between the structure of 218Fr and its isotone 220Ac is discussed.

M. E. Debray; M. A. Cardona; D. Hojman; A. J. Kreiner; M. Davidson; J. Davidson; H. Somacal; G. Levinton; D. R. Napoli; S. Lenzi; G. de Angelis; M. De Poli; A. Gadea; D. Bazzacco; C. Rossi-Alvarez; N. Medina

2000-07-10T23:59:59.000Z

425

Fabrication of photonic band gap materials  

DOE Patents [OSTI]

A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

Constant, Kristen (Ames, IA); Subramania, Ganapathi S. (Ames, IA); Biswas, Rana (Ames, IA); Ho, Kai-Ming (Ames, IA)

2002-01-15T23:59:59.000Z

426

The Negative Parity Bands in $^{156}$Gd  

E-Print Network [OSTI]

The high flux reactor of the Institut Laue-Langevin is the world most intense neutron source for research. Using the ultra high-resolution crystal spectrometers GAMS installed at the in-pile target position H6/H7 it is possible to measure nuclear state lifetimes using the Gamma Ray Induced Recoil (GRID) technique. In bent crystal mode, the spectrometers allow to perform spectroscopy with a dynamic range of up to six orders magnitude. At a very well collimated external neutron beam it is possible to install a highly efficient germanium detector array to obtain coincidences and angular correlations. The mentioned techniques were used to study the first two negative parity bands in $^{156}$Gd. These bands have been in the focus of interest since they seem to show signatures of a tetrahedral symmetry. A surprisingly high B(E2) value of about 1000 W.u. for the $4^- \\rightarrow 2^-$ transition was discovered. It indicates that the two first negative parity bands cannot be considered to be signature partners.

Michael Jentschel; Loic Sengele; Dominique Curien; Jerzy Dudek; Florent Haas

2014-04-23T23:59:59.000Z

427

Broad Band Photon Harvesting Biomolecules for Photovoltaics  

E-Print Network [OSTI]

We discuss the key principles of artificial photosynthesis for photovoltaic energy conversion. We demonstrate these principles by examining the operation of the so-called "dye sensitized solar cell" (DSSC) - a photoelectrochemical device which simulates the charge separation process across a nano-structured membrane that is characteristic of natural systems. These type of devices have great potential to challenge silicon semiconductor technology in the low cost, medium efficiency segment of the PV market. Ruthenium charge transfer complexes are currently used as the photon harvesting components in DSSCs. They produce a relatively broad band UV and visible response, but have long term stability problems and are expensive to manufacture. We suggest that a class of biological macromolecules called the melanins may be suitable replacements for the ruthenium complexes. They have strong, broad band absorption, are chemically and photochemically very stable, can be cheaply and easily synthesized, and are also bio-available and bio-compatible. We demonstrate a melanin-based regenerative solar cell, and discuss the key properties that are necessary for an effective broad band photon harvesting system.

P. Meredith; B. J. Powell; J. Riesz; R. Vogel; D. Blake; I. Kartini; G. Will; S. Subianto

2004-06-04T23:59:59.000Z

428

Latest Neoproterozoic to Mid-Cambrian age for the main deformation phases of the Transantarctic Mountains: new stratigraphic and isotopic constraints from the Pensacola Mountains, Antarctica  

E-Print Network [OSTI]

New isotopic ages and a fresh understanding of stratigraphic relations among siliciclastic strata in the Pensacola Mountains along the northern margin of the East Antarctic craton result in removal of some constraints for ...

Rowell, A. J.; Van Schmus, W. R.; Storey, B. C.; Fetter, A. H.; Evans, K. R.

2001-03-01T23:59:59.000Z

429

Animist Intersubjectivity as Argumentation: Western Shoshone and Southern Paiute Arguments Against a Nuclear Waste Site at Yucca Mountain  

Science Journals Connector (OSTI)

My focus in this essay is Shoshone and Paiute arguments against the Yucca Mountain site that claim that because Yucca Mountain is a culturally significant sacred place it ... set of arguments for the cultural val...

Danielle Endres

2013-05-01T23:59:59.000Z

430

Mesoscale energetics and ows induced by sea-land and mountain-valley contrasts  

E-Print Network [OSTI]

Mesoscale energetics and ¯ows induced by sea-land and mountain-valley contrasts S. Federico1 , G. A October 1999 Abstract. We study the relative importance of sea-land and mountain-valley thermal contrasts and the west-facing slopes in the afternoon. The local thermally driven winds follow the development

Paris-Sud XI, Université de

431

Glaci-tectonic deformation of proglacial lake sediments in the Cairngorm Mountains  

Science Journals Connector (OSTI)

...lake sediments in the Cairngorm Mountains Nick Golledge British Geological Survey, Murchison...lake sediments in the Cairngorm Mountains NICK GOLLEDGE British Geological Survey, Murchison...particularly like to thank Cherrie Glass, Jon Merritt and Ness Kirkbride for assistance and advice...

Nick Golledge

432

Numerical modeling of mountain building: Interplay between erosion law and crustal rheology  

E-Print Network [OSTI]

Numerical modeling of mountain building: Interplay between erosion law and crustal rheology V. Cattin, and J. Lave´ (2004), Numerical modeling of mountain building: Interplay between erosion law by a 2D finite element model that incorporates the rheological layering of the crust and the main

Demouchy, Sylvie

433

How does trench coupling lead to mountain building in the Subandes? A viscoelastoplastic finite element model  

E-Print Network [OSTI]

How does trench coupling lead to mountain building in the Subandes? A viscoelastoplastic finite element model Gang Luo1 and Mian Liu1 Received 10 June 2008; revised 3 December 2008; accepted 2 February cause of the Andean mountain building. The present-day crustal shortening in the Andes is clear from

Liu, Mian

434

Selected Studies in Mountain Meteorology From Downslope Windstorms to Air Pollution Transport  

E-Print Network [OSTI]

strong wind shear and triggers shear-flow instability, which leads to the formation of a turbulent wake of Innsbruck by Alexander Gohm Innsbruck, April 2010 #12;#12;To Eva mountain wind i #12;ii #12;Preface in the field of mountain meteorology form the basis of this habilitation thesis. The overall goal is to improve

Gohm, Alexander

435

Reactive transport model for the ambient unsaturated hydrogeochemical system at Yucca mountain, Nevada  

Science Journals Connector (OSTI)

To assist a technical review of a potential application for a geologic repository, a reactive transport model is presented for the ambient hydrogeochemical system at Yucca Mountain (YM). The model simulates two-phase, nonisothermal, advective and diffusive ... Keywords: Yucca mountain, geochemistry, groundwater chemistry, groundwater flow and transport, hydrology, reactive transport model, unsaturated zone

Lauren Browning; William M. Murphy; Chandrika Manepally; Randall Fedors

2003-04-01T23:59:59.000Z

436

INTER-MOUNTAIN BASINS MIXED SALT DESERT SCRUB extent exaggerated for display  

E-Print Network [OSTI]

INTER-MOUNTAIN BASINS MIXED SALT DESERT SCRUB R.Rondeau extent exaggerated for display ATRIPLEX., Lycium ssp., Suaeda spp., Yucca glauca, and Tetradymia spinosa. Dwarf- shrubs include Gutierrezia and Holmgren 1984). Forb cover is generally sparse. Perennial forbs that might occur include INTER-MOUNTAIN

437

Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX)  

E-Print Network [OSTI]

Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX) for BC and Metro.thegoodman.com November 10, 2014 #12;SCHOOL OF PUBLIC POLICY Economic Costs and Benefits of the Trans Mountain Expansion Project (TMX) for BC and Metro Vancouver ii Table of Contents 1 Executive Summary

438

Mountaineers comments on BPA Energy Planning & Marketing 1 October 18, 2002  

E-Print Network [OSTI]

Mountaineers comments on BPA Energy Planning & Marketing 1 October 18, 2002 Stephen J. Wright BPA recreation and conservation clubs in the Pacific Northwest. Founded in 1906, the Mountaineers antedate BPA. BPA currently markets and controls approximately 45% of the electric power in the Pacific Northwest

439

Review of river discharge records and gauging stations in the Rwenzori Mountains of Uganda  

E-Print Network [OSTI]

Review of river discharge records and gauging stations in the Rwenzori Mountains of Uganda Richard Department Directorate of Water Development Entebbe, Uganda November 2004 Review of river discharge records and gauging stations in the Rwenzori Mountains of Uganda 1 #12;Summary This report provides an overview

Jones, Peter JS

440

Supplemental Oxygen and Mountaineer Death Rates on Everest and K2  

E-Print Network [OSTI]

Supplemental Oxygen and Mountaineer Death Rates on Everest and K2 To the Editor: The use of supplemental oxygen by Hima- layan mountaineers has been debated for more than 8 de- cades.1 Although sometimes viewed as unsporting, supplemen- tal-oxygen use may improve survival rates by increasing performance

Huey, Raymond B.

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessing the protective effect of mountain forests against rockfall using a 3D simulation model  

E-Print Network [OSTI]

Assessing the protective effect of mountain forests against rockfall using a 3D simulation model and compared the results obtained with the 3D simulation model RockyFor with empirical data on tree impacts; Rockfall; 3D simulation model; Swiss Alps 1. Introduction Many mountain forests effectively protect people

Stoffel, Markus

442

Mountain Bicycling in the Urban-Wildland Interface1 Arthur W. MagiII2  

E-Print Network [OSTI]

Mountain Bicycling in the Urban-Wildland Interface1 Arthur W. MagiII2 Abstract: Mountain bicycling to bicyclists, increased income for resorts from summer bicycling, and potential income for rural communities from bicycling. The research will investigate activities on both sides of the country through

Standiford, Richard B.

443

Parametric analysis of a 1-D infiltration model for Yucca Mountain  

SciTech Connect (OSTI)

Hydrogeological properties of the formations at Yucca Mountain have been previously characterized by log-normal distributions. Different realizations of the randomly described formation may assume different hydrological behaviors, and different property variations may exert influences of different significance levels. This study presents a parametric sensitivity and uncertainty analyses of steady-state infiltration through a representative column of the formations at Yucca Mountain.

Xiang, Yangyong; Mishra, S.

1996-08-01T23:59:59.000Z

444

Mountain View Power Partners I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I Wind Farm I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MDU Resources Developer SeaWest Energy Purchaser L.A. Department of Water Resources Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

King Mountain Wind Ranch I | Open Energy Information  

Open Energy Info (EERE)

Ranch I Ranch I Jump to: navigation, search Name King Mountain Wind Ranch I Facility King Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power/Renewable Energy Systems Energy Purchaser Texas-New Mexico Power- Reliant Energy- Austin Energy Location Upton County TX Coordinates 31.280873°, -102.195861° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.280873,"lon":-102.195861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Kibby Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase I Wind Farm Phase I Wind Farm Jump to: navigation, search Name Kibby Mountain Phase I Wind Farm Facility Kibby Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Township ME Coordinates 43.973144°, -71.030844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.973144,"lon":-71.030844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Woodward Mountain I & II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I & II Wind Farm I & II Wind Farm Jump to: navigation, search Name Woodward Mountain I & II Wind Farm Facility Woodward Mountain Wind Ranch I and II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power/Renewable Energy Systems Energy Purchaser TXU Electric & Gas Location Pecos County TX Coordinates 30.970703°, -102.396491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.970703,"lon":-102.396491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Advanced fuel cycles and impacts On The Yucca Mountain Repository  

SciTech Connect (OSTI)

One of the goals identified for advanced fuel cycles, such as that proposed by the Global Nuclear Energy Partnership, is to reduce the volume of wastes that would ultimately have to be disposed in a geologic repository. Besides reducing volume, techniques that recycle the vast majority of actinides along with the removal of key fission products also reduce the inventory of radionuclides that must ultimately be disposed and the thermal output of the wastes. Advanced recycling techniques may also generate waste forms having different characteristics than those that have been considered for disposal in a repository at Yucca Mountain to-date. These all have a potential impact on several aspects of a repository, such as the proposed repository at Yucca Mountain, including surface and subsurface facility design, pre-closure and post-closure safety analyses, and ultimately licensing. These changes would all have to be performed in accordance with the requirements at 10 CFR 63 and approved by the U.S. Nuclear Regulatory Commission in a license amendment prior to the disposal of any wastes from an advanced fuel cycle. (authors)

Nutt, W.M.; Peters, M.T. [Argonne National Laboratory, Argonne, IL (United States); Swift, P.N. [Sandia National Laboratories, New Mexico, Albuquerque, NM (United States)

2007-07-01T23:59:59.000Z

449

Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis  

SciTech Connect (OSTI)

Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

1994-12-31T23:59:59.000Z

450

Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983)  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White Mountains Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_White_Mountains_Area_(Goff_%26_Decker,_1983)&oldid=510828

451

Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Pre-existing evidence includes heat gradients of upwards of 490mW/m2 from thermal-gradient wells, tepid spring waters (32oC) and silica geochemistry indicating thermal waters with a minimum of 82oC at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=389518

452

Yucca Mountain - The Department of Energy's Status Report on Its Archiving  

Broader source: Energy.gov (indexed) [DOE]

The Department of Energy's Status Report on Its The Department of Energy's Status Report on Its Archiving Plan Yucca Mountain - The Department of Energy's Status Report on Its Archiving Plan Proceeding before the Nuclear Regulatory Commission on DOE's application for a license to construct a high-level waste repository at Yucca Mountain, Nevada; DOE provides answers to the questions of the Atomic Safety and Licensing Board regarding its plans to archive its document collection on the Licensing Support Network. Yucca Mountain - The Department of Energy's Status Report on Its Archiving Plan More Documents & Publications U.S. Department of Energy's Response to Petitions to Intervene Yucca Mountain - U.S. Department of Energy's Reply to the Responses to the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and

453

Rocky Mountain Power - Self-Direction Credit Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rocky Mountain Power - Self-Direction Credit Program Rocky Mountain Power - Self-Direction Credit Program Rocky Mountain Power - Self-Direction Credit Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Maximum Rebate 80% Credit: $400,000 per calendar year 50% Credit: $50,000 per calendar year Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Customers receive credits equal to 50% or 80% of eligible expenses Provider Rocky Mountain Power Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through this program, customers who pursue self-investments in energy efficiency and related demand-side management projects can receive credits of up to 80% of

454

Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al., 2010) |  

Open Energy Info (EERE)

Chocolate Mountains Area (Alm, Et Al., 2010) Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Gravity and ground-based magnetics surveys were conducted during the summer of 2008. This data was acquired to aid in the identification of structures without fair surface expression, obscured by recent deposition. References Steve Alm, S. Bjornstad, M. Lazaro, A. Sabin1, D. Meade, J. Shoffner, W. C. Huang, J. Unruh, M. Strane, H. Ross (2010) Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,

455

Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983)  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White Mountains Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_White_Mountains_Area_(Goff_%26_Decker,_1983)&oldid=387355"

456

Yucca Mountain - U.S. Department of Energy's Response to the Motion for  

Broader source: Energy.gov (indexed) [DOE]

Yucca Mountain - U.S. Department of Energy's Response to the Motion Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal/Disqualification Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal/Disqualification Brief filed before the Nuclear Regulatory Commission in the proceeding on DOE's applciation to construct a high-level waste repository at Yucca Mountain, Nevada; DOE opposes the motion of Washington, South Carolina, Aiken County, and White Pine County to disqualify Commissioners Magwood and Ostendorff from voting on the appeal of the Atomic Safety and Licensing Board's denial of DOE's motion to withdraw its application. Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal/Disqualification More Documents & Publications 3116 Public Meeting Summaries - November 2006

457

Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Chocolate Mountains Area Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A. Tiedeman, W. C. Huang (2010) Navy's Geothermal Program Office: Overview

458

Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010) | Open  

Open Energy Info (EERE)

Chocolate Mountains Area (Alm, Et Al., 2010) Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Gravity and ground-based magnetics surveys were conducted during the summer of 2008. This data was acquired to aid in the identification of structures without fair surface expression, obscured by recent deposition. References Steve Alm, S. Bjornstad, M. Lazaro, A. Sabin1, D. Meade, J. Shoffner, W. C. Huang, J. Unruh, M. Strane, H. Ross (2010) Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,

459

Final Environmental Assessment of the National Renewable Energy Laboratory's (NREL) South Table Mountain Complex (DOE/EA 1440)  

Office of Energy Efficiency and Renewable Energy (EERE)

Final Environmental Assessment of the National Renewable Energy Laboratory's (NREL) South Table Mountain Complex (DOE/EA 1440)

460

Pennsylvanian-Permian deformation at 1,000-5,000 feet of overburden, Sacramento Mountains, New Mexico  

E-Print Network [OSTI]

, B. S. , Texas ABM University Chairman of Advisory Corrvnittee: Dr. Melvin Friedman The Sacramento Mountains of south central New Mexico provide a unique opportunity to study a style of Ancestral Rocky Mountain folding and faulting which occurred...). . 5 Fracture Station Map (Dihedral Angle). . . (pocket) (pocket) (pocket) (pocket) INTRODUCTION Nature of the Problem The Sacramento Mountains provide a unique opportunity to study a style of Ancestral Rocky Mountain folding and faulting which...

Johnson, Mark Ryan

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Potential ways of thinking about the shear-banding phenomenon  

E-Print Network [OSTI]

Shear-banding is a curious but ubiquitous phenomenon occurring in soft matter. The phenomenological similarities between the shear-banding transition and phase transitions has pushed some researchers to adopt a thermodynamical ...

Fardin, M. A.

462

Substrate-Induced Band-Gap Opening in Epitaxial Graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to...

463

Going Beyond 10,000 Years at Yucca Mountain P.F. Peterson, W.E. Kastenberg  

E-Print Network [OSTI]

Going Beyond 10,000 Years at Yucca Mountain P.F. Peterson, W.E. Kastenberg University of California the federal government's Yucca Mountain (YM) nuclear waste repository project. The successful challenge at Yucca Mountain Currently, the best available understanding of potential long-term performance at YM

464

Bulletin of the Seismological Society of America, 91, 6, pp. 15951606, December 2001 The 1992 Little Skull Mountain Earthquake Sequence,  

E-Print Network [OSTI]

(NTS) approximately 20 km from Yucca Mountain, a potential site for a high-level radioactive waste Little Skull Mountain Earthquake Sequence, Southern Nevada Test Site by Kenneth D. Smith, James N. Brune Skull Mountain, Nevada, 29 June 1992 earth- quake occurred in the southwest portion of Nevada Test Site

Sheehan, Anne F.

465

Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River  

E-Print Network [OSTI]

Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River Mountain. We need Dickens to describe the local situation, but you can glean the practice of mountaintop removal. Vernon Haltom vernoncrmw@gmail.com, head of Coal River Mountain Watch

Hansen, James E.

466

Ground magnetic studies along a regional seismic-reflection profile across Bare Mountain, Crater Flat and Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Ground magnetic data were collected along a 26-km-long regional seismic-reflection profile in southwest Nevada that starts in the Amargosa Desert, crosses Bare Mountain, Crater Flat and Yucca Mountain, and ends in Midway Valley. Parallel ground magnetic profiles were also collected about 100 m to either side of the western half of the seismic-reflection line. The magnetic data indicate that the eastern half of Crater Flat is characterized by closely-spaced faulting (1--2 km) in contrast to the western half of Crater Flat. Modeling of the data indicates that the Topopah Spring Tuff is offset about 250 m on the Solitario Canyon fault and about 50 m on the Ghost Dance fault. These estimates of fault offset are consistent with seismic-reflection data and geologic mapping. A broad magnetic high of about 500--600 nT is centered over Crater Flat. Modeling of the magnetic data indicates that the source of this high is not thickening and doming of the Bullfrog Tuff, but more likely lies below the Bullfrog Tuff. Possible source lithologies for this magnetic high include altered argillite of the Eleana Formation, Cretaceous or Tertiary intrusions, and mafic sills.

Langenheim, V.E.; Ponce, D.A.

1995-12-31T23:59:59.000Z

467

Excitation of Banded Whistler Waves in the Magnetosphere  

SciTech Connect (OSTI)

Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.

Gary, S. Peter [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

468

Coriolis Interaction Between Three Nilsson Bands in Pa  

Science Journals Connector (OSTI)

By comparing new experimental results with calculations, it is shown that the levels above the [5,- 3, 0] ground-state band in Pa233 and Pa231 may be interpreted as resulting from the +[6, 6, 0], the 32+[6,5,1], and the 52+[6,4,2] bands involved in a three-band Coriolis interaction.

W. Hoekstra and A. H. Wapstra

1969-04-21T23:59:59.000Z

469

An X-band overmoded relativistic klystron  

SciTech Connect (OSTI)

An X-band overmoded relativistic klystron is proposed, the operation mode of which is the TM{sub 02} mode. The drift tube could not cut off the TM{sub 01} mode; isolating the buncher cavity from the input cavity is achieved by introducing a sectional RF lossy material. Microwaves are extracted from the modulated electron beam using a cylindrical waveguide, rather than a coaxial waveguide; thereby, the output structure is significantly simplified. Particle-in-cell simulations show that microwaves with power of 1.28?GW and frequency of 9.30?GHz can be obtained, corresponding to an efficiency of 32% and relative bandwidth of about 8%.

Xiao, Renzhen; Chen, Changhua; Li, Jiawei; Bai, Xianchen [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Deng, Yuqun [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

2014-11-15T23:59:59.000Z

470

W-Band Sheet Beam Klystron Design  

SciTech Connect (OSTI)

Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

2011-11-11T23:59:59.000Z

471

Band magnetism in the Hubbard model  

Science Journals Connector (OSTI)

A self-consistent moment method is applied to the Hubbard model in order to find out under what circumstances spontaneous band magnetism may occur. The theory is formulated for a two-sublattice structure to treat simultaneously para-, ferro-, and antiferromagnetic systems. The starting point is a two-pole ansatz for the one-electron spectral density, the free parameters of which are fitted by equating exactly calculated spectral moments. All correlation functions appearing in the moments can be expressed by the spectral density, guaranteeing therewith a closed system of equations, which can be solved self-consistently for the average particle numbers ?ni?? and ?ni??. A T=0 phase diagram is presented in terms of band occupation n (0?n?2) and Coulomb interaction U. Ferromagnetic solutions appear only if n exceeds a critical occupation ncFM and U a minimum value Umin. For antiferromagnetic solutions a critical U does not exist, but a critical band occupation ncAFM does.Antiferromagnetism is stable in a restricted region of n around n=1, which is broadest for intermediate couplings (U/W?1, W being the Bloch bandwidth) and shrinks to the n=1 axis for strong couplings (U/W??). For smaller n, but n>ncFM and sufficiently high U (U>W), ferromagnetism is stable, while for low band occupations the system is paramagnetic irrespective of U. The critical temperatures TC and TN are strongly U and n dependent. For fixed n, TC increases with U, but saturates for U?? at finite values (500800 K), while TN has a maximum at an intermediate U value (U?W). First-order as well as second-order transitions are observed. Ferromagnetic order arises mainly because of a shift of ? and ? quasiparticle subbands. In antiferromagnets, corresponding ? and ? subbands occupy exactly the same energy regions, but with different state densities. The magnetic behavior of the Hubbard model can be understood as a direct consequence of the sensitive (T,n,U) dependence of the quasiparticle density of states, which is therefore discussed in detail.

W. Nolting and W. Borgiel/

1989-04-01T23:59:59.000Z

472

Band Structure of {sup 85}Sr  

SciTech Connect (OSTI)

High spin states in {sup 85}Sr were populated using the reaction {sup 76}Ge({sup 13}C, 4n) at a beam energy of 52 MeV. Gamma-gamma coincidence measurements along with investigation of directional correlation ratios were utilized to establish the extended level scheme upto I{sup {pi}}= (35/2{sup -}). One of the positive parity states observed at 3383.3 keV ((I{sup {pi}}= 19/2{sup (+)}) may be considered as a magnetic rotational ({Delta}I = 1) band, the negative parity states built on 3028.0 level show an irregular behaviour and does not exhibit magnetic rotation.

Kumar, Suresh; Mandal, S. K. [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Jain, A. K. [Department of Physics, Indian Institute of Technology, Roorkee-247667 (India); Chaturvedi, L. [Guru Ghasidas University, Bilaspur, Chhattisgarh-495009 (India); Sinha, Rishi Kumar [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Negi, Dinesh; Dhal, Ankul; Kumar, R.; Singh, R. P.; Muralithar, S.; Bhowmik, R. K.; Pancholi, S. C. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Delhi-110067 (India)

2010-11-24T23:59:59.000Z

473

Ideal Soliton Environment Using Parametric Band Gaps  

Science Journals Connector (OSTI)

Simultaneous solitary wave solutions for laser propagation in nonlinear parametric media with up to ( 3+1) dimensions are proved to exist. The combination of the large dispersion of a Bragg grating and the strong nonlinearity of ?(2) optical material results in stable behavior with short interaction distances and low power requirements. The solutions are obtained by using the effective mass approximation to reduce the coupled propagation equations to those describing a dispersive parametric nonlinear waveguide, and are verified by solving the complete set of coupled band-gap equations numerically.

H. He and P. D. Drummond

1997-06-09T23:59:59.000Z

474

The effects of enforcement on the behavior of citizen band and non-citizen band radio equipped vehicles  

E-Print Network [OSTI]

THE EFFECTS OF ENFORCEMENT ON 1HE BEHAVIOR OF CITIZEN BAND AND NON-CITIZEN BAND RADIO EQUIPPED VEHICLES A Thesis by Donald Ray Harrison Submitted to the Graduate College of Texas ASM University i n partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1978 Major Subject: Industrial Engineering THE EFFECTS OF ENFORCEMENT ON THE BEHAVIOR OF CITIZEN BAND AND NON ? CITIZEN BAND RADIO EQUIPPED VEHICLES A Thesis by DONALD RAY HARRISON Approved as to style and content...

Harrison, Donald Ray

2012-06-07T23:59:59.000Z

475

Rich Mountain Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Elec Coop, Inc Elec Coop, Inc Place Arkansas Utility Id 15811 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Power Service Industrial Large Power Service Commercial Single Phase Service Residential Three Phase Service- 50 kW or less Residential Average Rates Residential: $0.0939/kWh Commercial: $0.0808/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Rich_Mountain_Elec_Coop,_Inc&oldid=411446

476

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DYNAMOTER DYNAMOTER Sandia National Laboratories FEBRUARY 10, 1998 FC9542 / 96PT11 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-off state.

477

Rocky Mountain Sustainable Enterprises LLC | Open Energy Information  

Open Energy Info (EERE)

Enterprises LLC Enterprises LLC Jump to: navigation, search Name Rocky Mountain Sustainable Enterprises LLC Place Boulder, Colorado Zip 80302 Product Colorado-based biofuel producer, liquid waste recycler, and distributed resource consultancy. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Blue Ridge Mountain E M C | Open Energy Information  

Open Energy Info (EERE)

E M C E M C Jump to: navigation, search Name Blue Ridge Mountain E M C Place Georgia Utility Id 1891 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate (GSA 1) Commercial General Power Rate (GSA 2)* Commercial General Power Rate (GSA 3)* Industrial Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 250 W Lighting Outdoor Lighting MV 175 W Lighting Outdoor Lighting MV 400 W Lighting Residential Residential Average Rates Residential: $0.1110/kWh Commercial: $0.1220/kWh

479

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEAM MOUNTED GAS COMPRESSOR BEAM MOUNTED GAS COMPRESSOR (JACGAS COMPRESSOR) MARCH 3, 1998 FC970004/97PT23 RMOTC Test Report Number 97PT23 Jacgas Compressor Morrison International Iron Horse Compression Ltd. 9852-33 Avenue Edmonton, Alberta T6N 1C6 (403) 462-6847 David H. Doyle, Project Manager Rocky Mountain Oilfield Testing Center March 3, 1998 Introduction Gas compressors that mount on the walking beam of an oil well pumping unit have been tried with mixed success for many years. Gas compression at the wellhead instead of further downstream can 'increase both oil and gas production by reducing the casinghead gas pressure. Excess pressure on the annulus of the well reduces fluid inflow and restricts production. In old, shallow wells, the small amount of pressure (50 psi) may be sufficient to prevent the well from producing economically. Other applications include the unloading of water

480

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHEMICAL & MICROBIAL CHEMICAL & MICROBIAL PARAFFIN CONTROL PROJECT DECEMBER 17, 1997 FC9544 / 96PT12 RMOTC Test Report Paraffin Control Project BDM Oklahoma/NIPER 220 N. Virginia Bartlesville, OK 4003 918-336-2400, FAX 918-337-4365 Leo Giangiacomo, Project Manager Rocky Mountain Oilfield Testing Center December 17. 1997 Abstract This report summarizes the field performance results of a comparison of chemical and microbial paraffin control systems. The two systems were selected from laboratory screening work. Well selection was based on production rates, produced fluids, and prior paraffin treatments. The treatments were performed on similar groups of wells over the same period of time, using quantities and techniques recommended by the supplier specifically for the wells to be treated. The tests were conducted by the U. S. Department of

Note: This page contains sample records for the topic "nd-tribe-turtle mountain band" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Mountain View Power Partners III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Power Partners III Wind Farm Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser San Diego Gas & Electric Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Buffalo Mountain Wind Energy Center II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Tennessee Valley Authority Location Anderson County TN Coordinates 36.115822°, -84.333742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.115822,"lon":-84.333742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LOW COST REFRACTURING LOW COST REFRACTURING JANUARY 23, 1998 FC9550/96PT14 RMOTC Test Report Number 96PT14 Low Cost Refracturing Rock Creek Enterprises 980 Rock Creek Road Buffalo, Wyoming 82834 (307) 684-5243 (307) 684-0902 (fax) David H. Doyle, Acting Project Manager Rocky Mountain Oilfield Testing Center January 23, 1998 Introduction There are relatively few stimulation options available to owners of marginal or stripper wells. These wells are commonly restricted in their production rates because of formation or wellbore damage near the wellbore. Current services available to remove this damage are compared to the small gains possible from old, marginal wells. Over time, several things can occur that cause the flow of oil into the wellbore to be restricted. First, carbonate or sulfate scale can accumulate around the well or in the perforations. The accumulated scale will block oil from

484

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

06/97DT15 06/97DT15 RMOTC Test Report Rotary Steerable Stabilizer Smith Drilling and Completions 16740 Hardy Street P. 0. Box 60068 Houston, Texas, 77205-0068 281-443-3370 Leo Giangiacorno, Acting Project Manager Rocky Mountain Oilfield Testing Center December 17, 1997 Introduction Directional drilling is more expensive than vertical drilling. This is due to the high maintenance cost of downhole motors and MWD systems required to control hole trajectory. In addition, directional holes have lower penetration rates due to the poor hole cleaning with a non-rotating string. Down time is often spent orienting tool face to obtain the desired trajectory after tile weight is placed on the bit and the reactive torque of the motor is absorbed by the drill string. Holes drilled in this manner often have a tortuous profile compared to holes drilled with a rotary system, increasing the torque

485

City of Mountain Iron, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name City of Mountain Iron Place Minnesota Utility Id 13044 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Rate Commercial Municipal Service Rate: No Demand meter Commercial Municipal Service Rate: With Demand meter Industrial Off-Peak Water Heating Commercial Power Service Rate Industrial Residential Service Rate Residential Average Rates Residential: $0.0948/kWh Commercial: $0.1180/kWh Industrial: $0.1300/kWh

486

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IMPROVED ELASTOMER COMPOUND FOR IMPROVED ELASTOMER COMPOUND FOR PROGRESSIVE CAVITY PUMPS Cameron Elastomer Technology MARCH 23, 1998 FC9563/96PT17 RMOTC Test Report Number 96PT17 Improved Elastomer Compound for Progressive Cavity Pumps Cameron Elastomer Technology 29501 Katy Fwy Katy, Texas 77494-7801 (281) 391-4615 (281) 391-4640 (fax) David H. Doyle, PE, Project Manager Rocky Mountain Oilfield Testing Center March 23, 1998 Introduction The purpose of this project was to evaluate improved progressing cavity (PC) pump stator elastomer materials in NPR-3 crude under field conditions. The goal of the project was to test an elastomer material that can be used in high API-gravity (greater than 38' API) crude oils. Currently available materials used for the construction of pump stators swell and fail in contact with such crude oils. This limits the applicability of progressing cavity

487

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DYNAMOMETER DYNAMOMETER Sandia National Laboratories FEBRUARY 10, 1998 FC9514 / 95PT6 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sandia Lab Downhole Dynamometer PROJECT TEST RESULTS February 10, 1998 Michael R. Tyler Project Manager Abstract This test involved the use of Downhole Dynamometer Tools (DDT) that were developed by Albert Engineering and the Sandia National Laboratory. The five (5) Downhole Dynamometers (DDT) were installed in the rod string of well 13-A-21 at predetermined intervals. The DDT tools are equipped with strain gauges and programmable clocks. The tools were place in the well and removed after the data had been gathered. The data gathering is pre-programmed to occur when pumped-off conditions are obtained in the well. This information then reflects the true conditions found downhole in a well in a pumped-

488

Drum Mountain Geothermal Project (2) | Open Energy Information  

Open Energy Info (EERE)

Project (2) Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project (2) Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain  

SciTech Connect (OSTI)

This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

2006-02-14T23:59:59.000Z

490

Technical Data Catalog: Yucca Mountain Site Characterization Project. Quarterly supplement  

SciTech Connect (OSTI)

This report presents reference information contained in the Yucca Mountain Project Automated Technical Data Tracking System. The Department of Energy is seeking to design and maintain a geologic repository for the disposal of high-level radioactive wastes. However, before this repository can be built, the DOE must first do a comprehensive site evaluation. This evaluation is subject to many regulations. This report fulfills the reporting requirements of the Site-Specific Procedural Agreement for Geologic Repository to develop and maintain a catalog of data which will be updated and provided to the Nuclear Regulatory Commission on a quarterly basis. This catalog contains: description of data; time, place, and method of acquisition; and where data may be examined.

NONE

1995-06-30T23:59:59.000Z

491

Design considerations for the Yucca Mountain project exploratory shaft facility  

SciTech Connect (OSTI)

This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements.

Bullock, R.L. Sr. [Fenix and Scisson of Nevada, NV (US)

1990-12-31T23:59:59.000Z

492

Mountain View Power Partners II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Power Partners II Wind Farm Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MDU Resources Developer SeaWest Energy Purchaser L.A. Department of Water Resources Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

493

Green Mountain Energy Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

II II Facility AMP-Ohio/Green Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ohio Municipal Electric Generation Agency Joint Venture 6 Developer AMP Ohio Energy Purchaser Ohio Municipal Electric Generation Agency Joint Venture 6 Location Bowling Green OH Coordinates 41.374909°, -83.738093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.374909,"lon":-83.738093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

494

Green Mountain Energy Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

I I Facility AMP-Ohio/Green Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Bowling Green Developer AMP Ohio Energy Purchaser Bowling Green Location Bowling Green OH Coordinates 41.374909°, -83.738093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.374909,"lon":-83.738093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Mountain Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I Wind Farm I Wind Farm Facility Mountain Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location WY Coordinates 41.275629°, -110.539488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.275629,"lon":-110.539488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

Illuminating the Decision Path: The Yucca Mountain Site Recommendation  

SciTech Connect (OSTI)

On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context.

Knox, E.; Slothouber, L.

2003-02-25T23:59:59.000Z

497

Rotational bands with identical transition energies in actinide nuclei  

SciTech Connect (OSTI)

We point out the existence of ground-state rotational bands with identical transition energies (up to spin 8{h bar}) in {sup 240}Pu, {sup 244}Cm, {sup 246}Cm, and {sup 250}Cf. The corresponding transitions in the ground-state bands of {sup 236}U and {sup 238}U have identical energies (within {similar to}2 keV) up to spin 24{h bar}. These features are very similar to those recently observed for superdeformed bands in the mass-150 and mass-190 regions and suggest that the phenomenon of identical bands is not restricted to superdeformed bands.

Ahmad, I.; Carpenter, M.P.; Chasman, R.R.; Janssens, R.V.F.; Khoo, T.L. (Argonne National Laboratory, Argonne, Illinois (USA))

1991-09-01T23:59:59.000Z

498

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste  

SciTech Connect (OSTI)

Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

J.S. Stuckless; D. O'Leary

2006-09-25T23:59:59.000Z

499

Dialogs on the Yucca Mountain controversy. Special report No. 5  

SciTech Connect (OSTI)

The recent, 1992, report prepared by the Panel on Coupled Hydrologic/Tectonic/Hydrothermal Systems at Yucca Mountain for the National Research Council of the National Academy of Sciences, entitled Ground Water at Yucca Mountain: How High Can It Rise? has generated critical reviews by Somerville et al. (1992) and by Archambeau (1992). These reviews were submitted as reports to the Nuclear Waste Project Office, State of Nevada by Technology and Resource Assessment Corporation under Contract No. 92/94.0004. A copy of the review report by C. B. Archambeau was also sent to Dr. Frank Press, President of the National Academy of Sciences, along with a cover letter from Dr. Archambeau expressing his concerns with the NRC report and his suggestion that the Academy President consider a re-evaluation of the issues covered by the NRC report. Dr. Press responded in a letter to Dr. Archambeau in February of this year which stated that, based on his staff recommendations and a review report by Dr. J. F. Evernden of the United States Geological Survey, he declined to initiate any further investigations and that, in his view, the NRC report was a valid scientific evaluation which was corroborated by Evernden`s report. He also enclosed, with his letter, a copy of the report he received from his staff. In March of this year Dr. Archambeau replied to the letter and NRC staff report sent by Dr. Press with a detailed point-by-point rebuttal of the NRC staff report to Press. Also, in March, a critical review of Dr. Evernden`s report by M. Somerville was submitted to the Nuclear Waste Project Office of the State of Nevada and this report, along with the earlier review of the NRC report by Somerville et al., was included as attachments to the letter sent to Dr. Press.

Archambeau, C.B.; Szymanski, J.S.

1993-03-01T23:59:59.000Z

500

Constructing the Exploratory Studies Facility at Yucca Mountain  

SciTech Connect (OSTI)

Yucca Mountain Site Characterization Office of the US Department of Energy (DOE) is constructing an underground Exploratory Studies Facility (ESF), approximately 160 km (100 miles) northwest of Las Vegas, Nevada. This facility is being used to obtain geological, hydrological, geomechanical, thermomechanical and geochemical information to characterize, Yucca Mountain as a potential site to isolate High-Level Radioactive Waste from the accessible environment. The ESF, when completed, will consist of two ramps from surface (North and South ramp) to the potential repository horizon formations, a drift connecting the two ramps, test alcoves, and above and below ground operational support facilities. The ramps and connecting drift are being mined by a 7.62 m (25 ft) diameter, fully shielded, Tunnel Boring Machine (TBM). This paper describes the current status of the construction of the ESF and test alcoves. At the time of this writing, the following has been accomplished: North Ramp excavation is complete; four test alcoves have been excavated and are in use for scientific experiments; the excavation has reached the potential repository horizon; the drift connecting the two ramps is being excavated, and the excavation of a test alcove for thermal testing is in progress. The mining operations are ahead of schedule, and to date March 26, 1996, the TBM has excavated over 4623 m(15,160 ft.) without any major breakdowns or accidents. The average advance for a three shift (two mining shifts) production day has been 33.46 m (110 ft.). Maximum advance for a week was 218.3 m (716 ft.). An Alpine Miner (AM 75) roadheader is being used to excavate test alcoves. The major ground support system consists of Supper Swellex rock bolts, steel sets as required, Williams rock bolts and channels, and welded wire fabric. Various sections of the tunnel have been instrumented, and the entire excavation has been geologically mapped. To date, the site conditions have been those predicted.

Kalia, H.N. [Los Alamos National Lab., NM (United States); Replogle, J.M. [USDOE Yucca Mountain Site Characterization Project Office, Las Vegas, NV (United States)

1996-05-01T23:59:59.000Z