Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Directly correlated transmission electron microscopy and atom...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary Directly correlated transmission electron microscopy...

2

BNL | CFN: Electron Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Catravas, J. M. Fang,Electron

3

Dynamic imaging with electron microscopy  

SciTech Connect (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-02-20T23:59:59.000Z

4

Dynamic imaging with electron microscopy  

ScienceCinema (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-05-30T23:59:59.000Z

5

Faculty Position in Materials Electron Microscopy  

E-Print Network [OSTI]

Faculty Position in Materials Electron Microscopy at the Ecole Polytechnique Fédérale de Lausanne in electron microscopy of materials within its Institute of Materials. We seek exceptional individuals who community. Top-level applications are invited from candidates at the cutting edge of electron microscopic

Candea, George

6

Fast electron microscopy via compressive sensing  

DOE Patents [OSTI]

Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

2014-12-09T23:59:59.000Z

7

In-situ Transmission Electron Microscopy and Spectroscopy Studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and In-situ Transmission Electron Microscopy and Spectroscopy Studies of...

8

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

9

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network [OSTI]

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

10

New Developments in Transmission Electron Microscopy for Nanotechnology**  

E-Print Network [OSTI]

New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

Wang, Zhong L.

11

Tomography and High-Resolution Electron Microscopy Study of Surfaces...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tomography and High-Resolution Electron Microscopy Study of Surfaces and Porosity in a Plate-Like ?-Al2O3. Tomography and High-Resolution Electron Microscopy Study of...

12

TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS  

E-Print Network [OSTI]

377 TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS H. STRUNK Max'importance croissante du durcissement de la solution solide. Abstract. 2014 Transmission electron microscopy (TEM Abstracts 7j66 - 7 I' 1. Introduction. - It is only some years ago that transmission electron microscopy

Boyer, Edmond

13

Electron Microscopy | Center for Functional Nanomaterials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the‹ See allElectrochemicalElectron Microscopy

14

Improved methods for high resolution electron microscopy  

SciTech Connect (OSTI)

Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

Taylor, J.R.

1987-04-01T23:59:59.000Z

15

Ion-induced electron emission microscopy  

DOE Patents [OSTI]

An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

Doyle, Barney L. (Albuquerque, NM); Vizkelethy, Gyorgy (Albuquerque, NM); Weller, Robert A. (Brentwood, TN)

2001-01-01T23:59:59.000Z

16

Image Resolution in Scanning Transmission Electron Microscopy  

SciTech Connect (OSTI)

Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

Pennycook, S. J.; Lupini, A.R.

2008-06-26T23:59:59.000Z

17

Entanglement-assisted electron microscopy based on a flux qubit  

SciTech Connect (OSTI)

A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

Okamoto, Hiroshi, E-mail: okamoto@akita-pu.ac.jp [Department of Electronics and Information Systems, Akita Prefectural University, Yurihonjo 015-0055 (Japan); Nagatani, Yukinori [National Institute for Physiological Sciences, Okazaki 444-8787 (Japan)

2014-02-10T23:59:59.000Z

18

Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy  

SciTech Connect (OSTI)

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

2011-02-01T23:59:59.000Z

19

Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy  

SciTech Connect (OSTI)

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

2011-01-01T23:59:59.000Z

20

Microfabricated high-bandpass foucault aperture for electron microscopy  

DOE Patents [OSTI]

A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

Glaeser, Robert; Cambie, Rossana; Jin, Jian

2014-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Confocal Microscopy for Modeling Electron Microbeam Irradiation of Skin  

SciTech Connect (OSTI)

For radiation exposures employing targeted sources such as particle microbeams, the deposition of energy and dose will depend on the spatial heterogeneity of the spample. Although cell structural variations are relatively minor for two-dimensional cell cultures, they can vary significantly for fully differential tissues. Employing high-resolution confocal microscopy, we have determined the spatial distribution, size, and shape of epidermal kerantinocyte nuclei for the full-thickness EpiDerm skin model (MatTek, Ashland, VA). Application of these data to claculate the microdosimetry and microdistribution of energy deposition by an electron microbeam is discussed.

Miller, John H.; Chrisler, William B.; Wang, Xihai; Sowa, Marianne B.

2011-08-01T23:59:59.000Z

22

Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series  

SciTech Connect (OSTI)

In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

2014-01-01T23:59:59.000Z

23

Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy  

SciTech Connect (OSTI)

Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

2011-01-01T23:59:59.000Z

24

In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry  

SciTech Connect (OSTI)

Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

2011-10-31T23:59:59.000Z

25

Transmission electron microscopy of whiskers and hillocks formed on Al films deposited onto a glass  

SciTech Connect (OSTI)

Whiskers and hillocks formed on an Al film deposited onto a glass substrate have been observed by means of a variety of transmission electron microscopy technique.

Saka, H.; Fujino, S.; Kuroda, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-01 (Japan); Tsujimoto, K.; Tsuji, S. [Display Technology, IBM Japan, Ltd., Shimotsuruma, Yamato, Kanagawa 242 (Japan); Takatsuji, H. [Display Technology, IBM Japan, Ltd., Ichimiyake, Yasu-gun, Shiga 520-23 (Japan)

1998-01-05T23:59:59.000Z

26

E-Print Network 3.0 - analytical electron microscopy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director Rutgers Research Showcase Summary: Electron Microscopy Nuclear Magnetic Resonance Spectroscopy X-Ray Diffraction Facility (XRD) Micro-Analytical... for...

27

Imaging doped silicon test structures using low energy electron microscopy.  

SciTech Connect (OSTI)

This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

2010-01-01T23:59:59.000Z

28

TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS  

SciTech Connect (OSTI)

A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similar in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.

Tosten, M; Michael Morgan, M

2008-12-12T23:59:59.000Z

29

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High-Efficiency Sub-5 keV Electron Detection  

E-Print Network [OSTI]

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High for Scanning Electron Microscopy, based on ultrashallow p+ n boron-layer photodiodes, features nm-thin anodes, closely-packed photodiodes and through-wafer apertures allow flexible configurations for optimal material

Technische Universiteit Delft

30

Slow positron annihilation spectroscopy and electron microscopy of electron beam evaporated cobalt and nickel silicides  

SciTech Connect (OSTI)

Metal silicide thin films on single-crystal silicon substrates are the subject of much research, due to their applications as electrical contacts and interconnects, diffusion barriers, low resistance gates, and field-assisted positron moderators, among others. Defects within the silicide layer and/or at the silicide/silicon interface are detrimental to device performance, since they can act as traps for charge carriers, as well as positrons. Pinholes penetrating the film are another detriment particularly for cobalt silicide films, since they allow electrons to permeate the film, rather than travel ballistically, in addition to greatly increasing surface area for recombination events. A series of epitaxial cobalt and nickel silicide thin films, deposited via electron-beam evaporation and annealed at various temperatures, have been grown on single-crystal silicon (111) substrates, in an effort to establish a relationship between deposition and processing parameters and film quality. The films have been analyzed by transmission and scanning electron microscopy, sputter depth profile Auger, and slow positron annihilation spectroscopy. The latter has been shown to both correlate and complement the traditional electron microscopy results.

Frost, R.L.; DeWald, A.B. (Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)); Zaluzec, M.; Rigsbee, J.M. (University of Illinois, Urbana, Illinois 61801 (USA)); Nielsen, B.; Lynn, K.G. (Brookhaven National Laboratory, Upton, New York 11973 (USA))

1990-07-01T23:59:59.000Z

31

Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy  

SciTech Connect (OSTI)

Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}from the substrate to the tops of the nanoparticleswas obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

Lansker, Pia C., E-mail: pia.lansaker@angstrom.uu.se; Niklasson, Gunnar A.; Granqvist, Claes G. [Department of Engineering Sciences, The ngstrm Laboratory, Uppsala University, P. O. Box 534, SE-751 21 Uppsala (Sweden); Halln, Anders [Royal Institute of Technology, KTH-ICT, Elektrum 229, Kista, SE-164 40 Stockholm (Sweden)

2014-10-15T23:59:59.000Z

32

Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site  

SciTech Connect (OSTI)

Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1993-02-01T23:59:59.000Z

33

Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report  

SciTech Connect (OSTI)

A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

1994-10-01T23:59:59.000Z

34

Microscopy with Slow Electrons: From LEEM to XPEEM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1 Micropulse Lidar TheMicroscopy

35

Characterization of multilayer nitride coatings by electron microscopy and modulus mapping  

SciTech Connect (OSTI)

This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: Microstructure of a triple layer nitride coating studied at multiple length scales. Phases identified by EDS, EBSD and SAED (TEM). Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. Modulus mapping identified moduli variation even in a nani-multilayer architecture.

Pemmasani, Sai Pramod [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad 500005 India (India); School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad 500046 India (India); Rajulapati, Koteswararao V. [School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad 500046 India (India); Ramakrishna, M.; Valleti, Krishna [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad 500005 India (India); Gundakaram, Ravi C., E-mail: ravi.gundakaram@arci.res.in [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad 500005 India (India); Joshi, Shrikant V. [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad 500005 India (India)

2013-07-15T23:59:59.000Z

36

Electron microscopy of phase and structural transformations in soft magnetic nanocrystalline Fe-Zr-N films  

SciTech Connect (OSTI)

The effect of deposition conditions (film thickness) on the structure of soft magnetic Fe{sub 80-78}Zr{sub 10}N{sub 10-12} films formed by reactive magnetron deposition on a heat-resistant glass substrate has been investigated by analytical transmission electron microscopy, high-resolution electron microscopy, and diffraction analysis. The processes of evolution of the phase and structural state of films and the film-substrate interface upon annealing in the temperature range of 200-650 Degree-Sign C have been analyzed taking into account the thermodynamic, kinetic, and structural factors and the specific features of the nanocrystalline state.

Zhigalina, O. M., E-mail: zhigal@ns.crys.ras.ru; Khmelenin, D. N. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Sheftel', E. N.; Usmanova, G. Sh. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation)] [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Vasil'ev, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Carlsson, A. [FEI Company (Netherlands)] [FEI Company (Netherlands)

2013-03-15T23:59:59.000Z

37

The application of reflected light microscopy, scanning electron microscopy-energy dispersive spectroscopy, Auger electron spectroscopy and electron microprobe analysis to the study of dusts  

SciTech Connect (OSTI)

Over 500,000 tons of electric arc furnace (EAF) dust is generated each year in the US. The mineralogy and characterization of this dust is being studied to determine the phases and relationships of the valuable zinc, the hazardous lead, cadmium, and chromium, and the deleterious chlorine and fluorine. EAF dust averages 15--20% zinc and is therefore a potential source for 100,000 tons of zinc per year. The major mineralogical phases of EAF dust are franklinite (ZnFe[sub 2]O[sub 4]), magnetite (FeFe[sub 2]O[sub 4]), jacobsite (MnFe[sub 2]O[sub 4]), solid solutions between franklinite-magnetite-jacobsite, and zincite (ZnO). Franklinite, magnetite, and jacobsite solid solutions commonly are cruciform or dendritic crystals in a Ca-Fe-Si matrix and contain up to 5% chromium. Magnetite also occurs as spheres partially oxidized to hematite (Fe[sub 2]O[sub 3]) along its octahedral planes. The dust particles are predominantly in the form of spheres and broken spheres, ranging in size from 200 [mu]m to less than 1 [mu]m. Although many spheres are in the size ranges of 40--50 [mu]m and 10--20 [mu]m, most are less than 1 [mu]m in diameter. Automated scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) probed 118 particles in search of chlorine phases. Chlorine-bearing lime (CaO) was identified by that SEM study. In addition, chlorine is present as hydrophylite (CaCl[sub 2]) and sylvite (KCl). Auger electron spectroscopy (AES) was used to sputter the outer 180[angstrom] layer of the dust particles to search for the possible presence of cotunnite (PbCl[sub 2]) coatings, but none were detected. Minor phases detected include chalcopyrite (CuFeS[sub 2]), sphalerite (ZnS), pyrite (FeS[sub 2]), and coke.

Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics)

1993-03-01T23:59:59.000Z

38

In Situ, Real-Time Characterization of Silicide Nanostructure Coarsening Dynamics by Photo-Electron Emission Microscopy.  

E-Print Network [OSTI]

??Photo-electron emission microscopy (PEEM) was used to observe the growth and coarsening dynamics of transition metal (TM) silicide and rare earth (RE) silicide nanostructures on (more)

Zeman, Matthew Casimir

2007-01-01T23:59:59.000Z

39

Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111)  

E-Print Network [OSTI]

Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111) S annealing of three-dimensional (3D) TiN(111) mounds, consisting of stacked 2D islands, at temperatures-limited decay of 2D TiN islands on atomically-flat TiN(111) terraces [Phys. Rev. Lett. 89 (2002) 176102

Israeli, Navot

40

FtsZ Condensates: An In Vitro Electron Microscopy Study David Popp,1  

E-Print Network [OSTI]

FtsZ Condensates: An In Vitro Electron Microscopy Study David Popp,1 Mitsusada Iwasa,1 Akihiro in vitro system of supramolecular condensates experimentally and theoretically is DNA, which also exists in highly condensed, tightly packed states in viruses and sperm cells in vivo.2 The principle morphologies

Erickson, Harold P.

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Transmission electron microscopy of oxide development on 9Cr ODS steel in supercritical water  

E-Print Network [OSTI]

Transmission electron microscopy of oxide development on 9Cr ODS steel in supercritical water A strengthened ferritic steel alloys during exposure to 600 C supercritical water for 2- and 4-weeks were cladding include austenitic stainless steels, solid solution and precipitation-hardened alloys, ferritic

Motta, Arthur T.

42

Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy  

E-Print Network [OSTI]

Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission of graphene on Ru(0001) was investigated by photoemission electron microscopy (PEEM) and scanning tunneling, we show that graphene overlayers with sizes ranging from nanometers to sub-millimeters have been

Bao, Xinhe

43

TheElectronMicroscopyCore(EMC) UniversityofMissouriColumbia,MO65211  

E-Print Network [OSTI]

TheElectronMicroscopyCore(EMC) UniversityofMissouriColumbia,MO65211 The. The EMC houses two field emission SEM's, a Hitachi cold-field SEM (S-4700) and a FEI thermal FE SEM imaging and chemical analysis from their SEM/EDS systems. AdditionalSupportby: FormoreInformationortoregistergoto:http://www.emc

Noble, James S.

44

Nano-mineralogy studies by advanced electron microscopy Chi Ma and George R. Rossman  

E-Print Network [OSTI]

Nano-mineralogy studies by advanced electron microscopy Chi Ma and George R. Rossman Division and planetary materials easier and faster down to nano-scales. Small but new minerals with important geological significance are being discovered. Nano-features are being discovered in many common minerals and gems, which

Ma, Chi

45

A method for the alignment of heterogeneous macromolecules from electron microscopy  

E-Print Network [OSTI]

dataset. ? 2009 Published by Elsevier Inc. 1. Introduction Single-particle electron microscopy (EM and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA b Physical Biosciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA a r t i c l e i n f o Article history: Received 13

46

Rumen microbial degradation of modified lignin plants observed by electron microscopy  

E-Print Network [OSTI]

Rumen microbial degradation of modified lignin plants observed by electron microscopy C Mign6, E-Genès-Champanelle, France The microbial degradation of modified lignin tobacco (Samson variety) plants (homozygous line 40 to the corresponding cinnamyl alcohols which are the direct monomeric precursors of the lignin. Only the stems were

Paris-Sud XI, Université de

47

New nanocrystalline manganese oxides as cathode materials for lithium batteries : electron microscopy, electrochemical and X-ray absorption studies  

E-Print Network [OSTI]

1 New nanocrystalline manganese oxides as cathode materials for lithium batteries : electron: manganese oxide, lithium batteries, nanomaterials Corresponding author: Pierre Strobel, tel. 33 476 887 940 with lithium iodide in aqueous medium at room temperature. Transmission electron microscopy (TEM) showed

Paris-Sud XI, Université de

48

Characterization of two-dimensional hexagonal boron nitride using scanning electron and scanning helium ion microscopy  

SciTech Connect (OSTI)

Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.

Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [Global Research Center for Environment and Energy Based on Nanomaterials Science National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Gao, Jianhua; Ishida, Nobuyuki [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng, E-mail: Guo.hongxuan@nims.go.jp, E-mail: msxu@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Fujita, Daisuke [Advanced Key Technologies Division, Global Research Center for Environment and Energy Based on Nanomaterials Science, and International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

2014-01-20T23:59:59.000Z

49

A new approach to nuclear microscopy: The ion-electron emission microscope  

SciTech Connect (OSTI)

A new multidimensional high lateral resolution ion beam analysis technique, Ion-Electron Emission Microscopy or IEEM is described. Using MeV energy ions, IEEM is shown to be capable of Ion Beam Induced Charge Collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IIEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion.

Doyle, B.L.; Vizkelethy, G.; Walsh, D.S. [Sandia National Labs., Albuquerque, NM (United States); Senftinger, B. [Staib Instrumente GmbH, Langenbach (Germany); Mellon, M. [Quantar Technologies Inc., Santa Cruz, CA (United States)

1998-11-01T23:59:59.000Z

50

Type of presentation: Oral IT-10-O-2435 Towards 4-D EEL spectroscopic scanning confocal electron microscopy  

E-Print Network [OSTI]

the entire energy loss range. References: [1] P.D. Nellist, P. Wang, Annual Review of Materials Research, 42 electron microscopy with electron energy-loss spectroscopy (STEM-EELS) has been widely used for materials-aberrations in the post-specimen optics, inelastically scattered electrons with different energy losses E are focused

Dunin-Borkowski, Rafal E.

51

Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles  

SciTech Connect (OSTI)

The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the antioxidant dependent release was measured. Finally, the biological interaction of the material was determined along with TEM measurements. An electron investigation proved that the pore openings of the MSN were indeed blocked by the Fe{sub 3}O{sub 4} nanoparticles. The biological interaction investigation demonstrated Fe{sub 3}O{sub 4}-capped MSN endocytosis into HeLa cells. Not only does the material enter the cells through endocytosis, but it seems that fluorescein was released from the pores most probably caused by disulfide bond reducing molecules, antioxidants. In addition to endocytosis and release, the Fe{sub 3}O{sub 4}-capped MSN propelled the cells across a cuvette upon induction of a magnet force. Finally, an important aspect of materials characterization is transmission electron microscopy. A TEM investigation demonstrated that incorporating different functional groups during the synthesis (co-condensation) changed the particle and pore morphologies.

Brian G. Trewyn

2006-05-01T23:59:59.000Z

52

Structural defects in GaN revealed by Transmission Electron Microscopy  

SciTech Connect (OSTI)

This paper reviews the various types of structural defects observed by Transmission Electron Microscopy in GaN heteroepitaxial layers grown on foreign substrates and homoepitaxial layers grown on bulk GaN substrates. The structural perfection of these layers is compared to the platelet self-standing crystals grown by High Nitrogen Pressure Solution. Defects in undoped and Mg doped GaN are discussed. Some models explaining the formation of inversion domains in heavily Mg doped layers that are possible defects responsible for the difficulties of p-doping in GaN are also reviewed.

Liliental-Weber, Zuzanna

2014-04-18T23:59:59.000Z

53

Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis  

SciTech Connect (OSTI)

In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

2003-10-01T23:59:59.000Z

54

Hetero-epitaxial EuO interfaces studied by analytic electron microscopy  

SciTech Connect (OSTI)

With nearly complete spin polarization, the ferromagnetic semiconductor europium monoxide could enable next-generation spintronic devices by providing efficient ohmic spin injection into silicon. Spin injection is greatly affected by the quality of the interface between the injector and silicon. Here, we use atomic-resolution scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy to directly image and chemically characterize a series of EuO|Si and EuO|YAlO{sub 3} interfaces fabricated using different growth conditions. We identify the presence of europium silicides and regions of disorder at the EuO|Si interfaces, imperfections that could significantly reduce spin injection efficiencies via spin-flip scattering.

Mundy, Julia A. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Hodash, Daniel; Melville, Alexander; Held, Rainer [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Mairoser, Thomas; Schmehl, Andreas [Zentrum fr Elektronische Korrelationen und Magnetismus, Universitt Augsburg, Universittsstrae 1, D-86159 Augsburg (Germany); Muller, David A.; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

2014-03-03T23:59:59.000Z

55

An electron microscopy study of the microstructure and microarchitecture of the Strombus gigas shell  

SciTech Connect (OSTI)

A scanning and transmission electron microscopy study is presented of the microstructure of the Strombus gigas shell. The hierarchical nature of this crossed-lamellar structure and the defect content of the mineral component are described. The mineral component consists of small single crystal grains of aragonite, the metastable orthorhombic polymorph of CaCO{sub 3}. The habit and morphology of the grains discussed here have not been determined previously. The observed habit and defect structure suggest that the organic matrix exerts a high degree of control over the crystal growth of the mineral phase and is responsible for the long range order in the microarhitecture. Electron beam heating of the mineral component leads to certain phase changes and these are discussed. 15 refs., 6 figs.

Rieke, P.C.; Laraia, V.J. (Pacific Northwest Lab., Richland, WA (USA)); Heuer, A.H. (Case Western Reserve Univ., Cleveland, OH (USA)); Aindow, M. (Ohio State Univ., Columbus, OH (USA))

1989-11-01T23:59:59.000Z

56

Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors  

SciTech Connect (OSTI)

We constructed an instrument for time-resolved photoemission electron microscopy (TR-PEEM) utilizing femtosecond (fs) laser pulses to visualize the dynamics of photogenerated electrons in semiconductors on ultrasmall and ultrafast scales. The spatial distribution of the excited electrons and their relaxation and/or recombination processes were imaged by the proposed TR-PEEM method with a spatial resolution about 100 nm and an ultrafast temporal resolution defined by the cross-correlation of the fs laser pulses (240 fs). A direct observation of the dynamical behavior of electrons on higher resistivity samples, such as semiconductors, by TR-PEEM has still been facing difficulties because of space and/or sample charging effects originating from the high photon flux of the ultrashort pulsed laser utilized for the photoemission process. Here, a regenerative amplified fs laser with a widely tunable repetition rate has been utilized, and with careful optimization of laser parameters, such as fluence and repetition rate, and consideration for carrier lifetimes, the electron dynamics in semiconductors were visualized. For demonstrating our newly developed TR-PEEM method, the photogenerated carrier lifetimes around a nanoscale defect on a GaAs surface were observed. The obtained lifetimes were on a sub-picosecond time scale, which is much shorter than the lifetimes of carriers observed in the non-defective surrounding regions. Our findings are consistent with the fact that structural defects induce mid-gap states in the forbidden band, and that the electrons captured in these states promptly relax into the ground state.

Fukumoto, Keiki, E-mail: fukumoto.k.ab@m.titech.ac.jp; Yamada, Yuki; Matsuki, Takashi; Koshihara, Shin-ya [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan); Japan Science and Technology Agency JST-CREST, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Onda, Ken [Interactive Research Center of Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Japan Science and Technology Agency JST-PRESTO, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Mukuta, Tatsuhiko; Tanaka, Sei-ichi [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan)

2014-08-15T23:59:59.000Z

57

Transmission electron microscopy investigation of acicular ferrite precipitation in {gamma}'-Fe{sub 4}N nitride  

SciTech Connect (OSTI)

Acicular-shaped crystals precipitate from {gamma}'-Fe{sub 4}N nitride in an iron-nitrogen alloy and were identified by electron microdiffraction as {alpha}-ferrite. Acicular ferrite develops both the Nishiyama-Wassermann and the Kurdjumov-Sachs orientation relationships with {gamma}'-Fe{sub 4}N nitride. These orientation relationships were discussed in terms of the symmetry theory. The driving force for acicular ferrite formation was related to the increasing nitrogen content of {gamma}'-Fe{sub 4}N, in equilibrium with {alpha}-ferrite, with decreasing temperature. The passage from lamellar to acicular structure in Fe-N system was proposed. - Research Highlights: {yields} Acicular crystals precipitate from pearlitic{gamma}'-Fe{sub 4}N nitride in an iron-nitrogen alloy and were identified by electron microdiffraction as acicular ferrite. {yields} The crystal structure, orientation relationships with the matrix and morphologies of acicular ferrite, were studied by transmission electron microscopy. {yields} The driving force for the formation of acicular ferrite is related to the temperature dependence of nitrogen content of {gamma}'-Fe{sub 4}N, in equilibrium with ferrite. {yields} The passage from the pearlitic structure to the acicular structure in the present iron-nitrogen alloy was proposed.

Xiong, X.C., E-mail: xiaochuan.xiong@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Institut Jean Lamour, UMR 7198 CNRS, Nancy-Universite, UPV-Metz, Ecole des Mines de Nancy, Parc de Saurupt CS 14234, F-54042 Nancy Cedex (France); Redjaimia, A. [Institut Jean Lamour, UMR 7198 CNRS, Nancy-Universite, UPV-Metz, Ecole des Mines de Nancy, Parc de Saurupt CS 14234, F-54042 Nancy Cedex (France); Goune, M. [Institut Jean Lamour, UMR 7198 CNRS, Nancy-Universite, UPV-Metz, Ecole des Mines de Nancy, Parc de Saurupt CS 14234, F-54042 Nancy Cedex (France); ArcelorMittal SA, Voie Romaine, BP 30320, F-57283 Maizieres-les-Metz (France)

2010-11-15T23:59:59.000Z

58

Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy  

SciTech Connect (OSTI)

Amorphous carbon films have been routinely used to enhance the preparation of frozen-hydrated samples for transmission electron microscopy (TEM), either in retaining protein concentration, providing mechanical stability or dissipating sample charge. However, strong background signal from the amorphous carbon support obstructs that of the sample, and the insulating properties of thin amorphous carbon films preclude any efficiency in dispersing charge. Graphene addresses the limitations of amorphous carbon. Graphene is a crystalline material with virtually no phase or amplitude contrast and unparalleled, high electrical carrier mobility. However, the hydrophobic properties of graphene have prevented its routine application in Cryo-TEM. This Letter reports a method for rendering graphene TEM supports hydrophilica convenient approach maintaining graphene's structural and electrical properties based on non-covalent, aromatic functionalization.

Pantelic, Radosav S., E-mail: pantelic@imbb.forth.gr [National Cancer Institute, 50 South Drive, Building 50, Room 4306, Bethesda, Maryland 20892 (United States); Fu, Wangyang; Schoenenberger, Christian [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056 (Switzerland); Stahlberg, Henning [Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, WRO-1058, Basel CH-4058 (Switzerland)

2014-03-31T23:59:59.000Z

59

Random vs realistic amorphous carbon models for high resolution microscopy and electron diffraction  

SciTech Connect (OSTI)

Amorphous carbon and amorphous materials in general are of particular importance for high resolution electron microscopy, either for bulk materials, generally covered with an amorphous layer when prepared by ion milling techniques, or for nanoscale objects deposited on amorphous substrates. In order to quantify the information of the high resolution images at the atomic scale, a structural modeling of the sample is necessary prior to the calculation of the electron wave function propagation. It is thus essential to be able to reproduce the carbon structure as close as possible to the real one. The approach we propose here is to simulate a realistic carbon from an energetic model based on the tight-binding approximation in order to reproduce the important structural properties of amorphous carbon. At first, we compare this carbon with the carbon obtained by randomly generating the carbon atom positions. In both cases, we discuss the limit thickness of the phase object approximation. In a second step, we show the influence of both carbons models on (i) the contrast of Cu, Ag, and Au single atoms deposited on carbon and (ii) the determination of the long-range order parameter in CoPt bimetallic nanoalloys.

Ricolleau, C., E-mail: Christian.Ricolleau@univ-paris-diderot.fr; Alloyeau, D. [Laboratoire Matriaux et Phnomnes Quantiques, CNRS-UMR 7162, Universit Paris Diderot-Paris 7, Case 7021, 75205 Paris Cedex 13 (France); Le Bouar, Y.; Amara, H.; Landon-Cardinal, O. [Laboratoire d'Etude des Microstructures, UMR CNRS/Onera, 29, avenue de la Division Leclerc, 92322 Chtillon (France)

2013-12-07T23:59:59.000Z

60

Low-temperature scanning tunneling microscopy and transport measurements on adsorbate-induced two-dimensional electron systems  

SciTech Connect (OSTI)

We have performed not only magnetotransport measurements on two-dimensional electron systems (2DESs) formed at the cleaved surfaces of p-InAs but also observations of the surface morphology of the adsorbate atoms, which induced the 2DES at the surfaces of narrow band-gap semiconductors, with use of a scanning tunneling microscopy. The electron density of the 2DESs is compared to the atomic density of the isolated Ag adatoms on InAs surfaces.

Masutomi, Ryuichi; Triyama, Naotaka; Okamoto, Tohru [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2013-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a  

E-Print Network [OSTI]

This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell­57 Dye-sensitized solar cells (DSCs) have received wide-spread research attention due to their high power incorporated into solid-state dye-sensitized solar cells (ss-DSCs) by nanoimprint lithography. The reflectors

McGehee, Michael

62

Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report  

SciTech Connect (OSTI)

This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (s) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOEs research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

2012-07-25T23:59:59.000Z

63

Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan)] [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)] [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

2012-01-27T23:59:59.000Z

64

High resolution transmission electron microscopy of melamine-formaldehyde aerogels and silica aerogels  

SciTech Connect (OSTI)

The goal of the high resolution transmission electron microscopy (HRTEM) was to image the structure of two tetramethyl orthosilicate (TMOS) and two melamine-formaldehyde (MF) aerogels at the single polymer chain level{sup 1,2}. With this level of structural resolution we hoped to interrelate each aerogel's structure with its physical properties and its method of synthesis. Conventional single-step base catalysed TMOS aerogels show strings of spheroidal particles linked together with minimal necking. The spheroidal particles range from 86--132 {Angstrom} and average 113{plus minus}10 {Angstrom} in diameter{sup 2}. In contrast the TMOS aerogels reported on here were made by a two step method. After extended silica chains are grown in solution under acidic conditions with a substoichiometric amount of water, the reaction is stopped and the methanol hydrolysed from TMOS is removed. Then base catalysis and additional water are added to cause gel formation is a nonalcoholic solvent. The MF aerogels were prepared for HRTEM by fracturing them on a stereo microscope stage with razor knife so that fractured pieces with smooth flat surfaces could be selected for platinum-carbon replication. The two silica (TMOS) aerogels were both transparent and difficult to see. These aerogels were fractured on a stereo microscope stage with tweezers. 6 refs., 4 figs.

Ruben, G.C. (Dartmouth Coll., Hanover, NH (United States). Dept. of Biological Sciences)

1991-09-01T23:59:59.000Z

65

Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy  

SciTech Connect (OSTI)

This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

Behrens, R.G. [Los Alamos National Lab., NM (United States); Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J. [Argonne National Lab., IL (United States)

1995-09-01T23:59:59.000Z

66

Thermodynamic Prediction of Compositional Phases Confirmed by Transmission Electron Microscopy on Tantalum-Based Alloy Weldments  

SciTech Connect (OSTI)

Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for radioisotope based thermal to electrical power systems since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. Tantalum alloys have demonstrated sufficient high-temperature toughness to survive prolonged exposure to the radioisotope power-system working environment. Typically, the fabrication of power systems requires the welding of various components including the structural members made of tantalum alloys. Issues such as thermodynamics, lattice structure, weld pool dynamics, material purity and contamination, and welding atmosphere purity all potentially confound the understanding of the differences between the weldment properties of the different tantalum-based alloys. The objective of this paper is to outline the thermodynamically favorable material phases in tantalum alloys, with and without small amounts of hafnium, during and following solidification, based on the results derived from the FactSage(c) Integrated Thermodynamic Databank. In addition, Transition Electron Microscopy (TEM) data will show for the first time, the changes occurring in the HfC before and after welding, and the data will elucidate the role HfC plays in pinning grain boundaries.

Moddeman, William E.; Birkbeck, Janine C. [BWXT Pantex, Amarillo, Texas 79120-0020 (United States); Barklay, Chadwick D.; Kramer, Daniel P. [University of Dayton Research Institute, Dayton OH 45469-0102 (United States); Miller, Roger G.; Allard, Lawrence F. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6064 (United States)

2007-01-30T23:59:59.000Z

67

TRANSMISSION ELECTRON MICROSCOPY OF Al-RICH SILICATE STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS  

SciTech Connect (OSTI)

We report on transmission electron microscopy (TEM) investigations of two mineralogically unusual stardust silicates to constrain their circumstellar condensation conditions. Both grains were identified by high spatial resolution nano secondary ion mass spectrometry (NanoSIMS) in the Acfer 094 meteorite, one of the most pristine carbonaceous chondrites available for study. One grain is a highly crystalline, highly refractory (Fe content < 0.5 at%), structurally undisturbed orthopyroxene (MgSiO{sub 3}) with an unusually high Al content (1.8 {+-} 0.5 at%). This is the first TEM documentation of a single crystal pyroxene within the complete stardust silicate data set. We interpret the microstructure and chemistry of this grain as being a direct condensate from a gas of locally non-solar composition (i.e., with a higher-than-solar Al content and most likely also a lower-than-solar Mg/Si ratio) at (near)-equilibrium conditions. From the overabundance of crystalline olivine (six reported grains to date) compared to crystalline pyroxene (only documented as a single crystal in this work) we infer that formation of olivine over pyroxene is favored in circumstellar environments, in agreement with expectations from condensation theory and experiments. The second stardust silicate consists of an amorphous Ca-Si rich material which lacks any crystallinity based on TEM observations in which tiny (<20 nm) hibonite nanocrystallites are embedded. This complex assemblage therefore attests to the fast cooling and rapidly changing chemical environments under which dust grains in circumstellar shells form.

Vollmer, Christian [Institute for Mineralogy, University of Muenster, Correnssstr. 24, D-48149 Muenster (Germany); Hoppe, Peter [Max Planck Institute for Chemistry, Particle Chemistry Department, Hahn-Meitner-Weg 1, D-55128 Mainz (Germany); Brenker, Frank E., E-mail: christian.vollmer@wwu.de [Institute of Geoscience/Mineralogy, Goethe-University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany)

2013-05-20T23:59:59.000Z

68

XRD, Electron Microscopy and Vibrational Spectroscopy Characterization of Simulated SB6 HLW Glasses - 13028  

SciTech Connect (OSTI)

Sample glasses have been made using SB6 high level waste (HLW) simulant (high in both Al and Fe) with 12 different frit compositions at a constant waste loading of 36 wt.%. As follows from X-ray diffraction (XRD) and optical and scanning electron microscopy (SEM) data, all the samples are composed of primarily glass and minor concentration of spinel phases which form both isometric grains and fine cubic (?1 ?m) crystals. Infrared spectroscopy (IR) spectra of all the glasses within the range of 400-1600 cm{sup -1} consist of the bands due to stretching and bending modes in silicon-oxygen, boron-oxygen, aluminum-oxygen and iron-oxygen structural groups. Raman spectra showed that for the spectra of all the glasses within the range of 850-1200 cm{sup -1} the best fit is achieved by suggestion of overlapping of three major components with maxima at 911-936 cm{sup -1}, 988-996 cm{sup -1} and 1020-1045 cm{sup -1}. The structural network is primarily composed of metasilicate chains and rings with embedded AlO{sub 4} and FeO{sub 4} tetrahedra. Major BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and are present as separate constituents. (authors)

Stefanovsky, S.V. [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation) [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation); Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Moscow 119991 (Russian Federation); Nikonov, B.S.; Omelianenko, B.I. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetniy lane 35, Moscow 100117 (Russian Federation)] [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetniy lane 35, Moscow 100117 (Russian Federation); Choi, A.; Marra, J.C. [Savannah River National Laboratory, Building 773A, Aiken 29808 (United States)] [Savannah River National Laboratory, Building 773A, Aiken 29808 (United States)

2013-07-01T23:59:59.000Z

69

SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES  

SciTech Connect (OSTI)

The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

Hay, M.; O'Rourke, P.; Ajo, H.

2012-03-08T23:59:59.000Z

70

Characterization of an Irradiated RERTR-7 Fuel Plate Using Transmission Electron Microscopy  

SciTech Connect (OSTI)

Transmission electron microscopy (TEM) has been used to characterize an irradiated fuel plate with Al-2Si matrix from the RERTR-7 experiment that was irradiated under moderate reactor conditions. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behaviour during irradiation. Furthermore, TEM analysis showed that the Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation, and in regions of the interaction layer that have relatively high Si concentrations the fission gas bubbles remain small and contained within the layer but in areas with lower Si concentrations the bubbles grow in size. An important question that remains to be answered about the irradiation behaviour of U-Mo dispersion fuels, is how do more aggressive irradiation conditions affect the behaviour of fission gases within the U-7Mo fuel particles and in the amorphous interaction layers on the microstructural scale that can be characterized using TEM? This paper discusses the results of TEM analysis that was performed on a sample taken from an irradiated RERTR-7 fuel plate with Al-2Si matrix. This plate was exposed to more aggressive irradiation conditions than was the sample taken from the RERTR-6 plate. The microstructural features present within the U-7Mo and the amorphous interaction layers will be discussed. The results of this analysis will be compared to what was observed in the earlier RERTR-6 fuel plate characterization.

J. Gan; D. D. Keiser, Jr.; B. D. Miller; A. B. Robinson; P. Medvedev

2010-03-01T23:59:59.000Z

71

Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase  

SciTech Connect (OSTI)

The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2?} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2?} sandwiches are visible in the IFFT image. - Highlights: Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. Electrical analyses under argon gas show some increase in conductivity. The phase transition at 660 C is evidenced from electrical modification.

Taoufyq, A. [Institut Matriaux Microlectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Universit du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matriaux et Environnement LME, Facult des Sciences, Universit Ibn Zohr, BP 8106, Cit Dakhla, Agadir, Maroc (Morocco); Dpartement dtudes des Racteurs, Laboratoire Dosimtrie Capteurs Instrumentation, CEA Cadarache (France); Socit CESIGMASignals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matriaux et Environnement LME, Facult des Sciences, Universit Ibn Zohr, BP 8106, Cit Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matriaux Microlectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Universit du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matriaux et Environnement LME, Facult des Sciences, Universit Ibn Zohr, BP 8106, Cit Dakhla, Agadir, Maroc (Morocco); and others

2013-07-15T23:59:59.000Z

72

Demonstration of Ballistic Electron Emission Microscopy / Spectroscopy on the Au/Si (001) system  

E-Print Network [OSTI]

microscopy; hence, the analytical capabilities of BEEM are on a manometer scale. To use BEEM, low-noise Au/Si (001) Schottky diodes have been fabricated. The diodes were macroscopically tested for their electrical properties using conventional current...

Drummond, Mary Alyssa

2012-06-07T23:59:59.000Z

73

Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy  

SciTech Connect (OSTI)

The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn; Zhong, Jun, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)] [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)

2013-12-16T23:59:59.000Z

74

Microstructure of highly strained BiFeO{sub 3} thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies  

SciTech Connect (OSTI)

Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO{sub 3}) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

Heon Kim, Young, E-mail: young.h.kim@kriss.re.kr [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Bhatnagar, Akash; Pippel, Eckhard; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Alexe, Marin [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); University of Warwick, Coventry CV4 7AL, West Midlands (United Kingdom)

2014-01-28T23:59:59.000Z

75

Current Titles  

SciTech Connect (OSTI)

This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

Various

2006-06-01T23:59:59.000Z

76

Image formation modeling in cryo-electron microscopy Milos Vulovic a,b  

E-Print Network [OSTI]

dam- age which limits the integrated electron flux that can be used, resulting in a poor signal's scattering properties, microscope optics, and detector response. The specimen interaction potential contrast, changes due to the integrated electron flux, thickness, inelastic scattering, detective quantum

Rieger, Bernd

77

Reflection Electron Microscopy and Spectroscopy for Surface Analysis Georgia Institute of Technology  

E-Print Network [OSTI]

.4 Fourier transformation 1.5 Scattering factor and charge density function 1.6 Single scattering theory 1 Historical background Scope of the book Chapter 1. Kinematical electron diffraction 1.1 Electron wavelength 1.7 Reciprocal space and reciprocal lattice vector 1.8 Bragg's law and Ewald sphere 1.9 Abbe's imaging theory 1

Wang, Zhong L.

78

Laboratory-Based Cryogenic Soft X-ray Tomography with Correlative Cryo-Light and Electron Microscopy  

SciTech Connect (OSTI)

Here we present a novel laboratory-based cryogenic soft X-ray microscope for whole cell tomography of frozen hydrated samples. We demonstrate the capabilities of this compact cryogenic microscope by visualizing internal sub-cellular structures of Saccharomyces cerevisiae cells. The microscope is shown to achieve better than 50 nm spatial resolution with a Siemens star test sample. For whole biological cells, the microscope can image specimens up to 5 micrometers thick. Structures as small as 90 nm can be detected in tomographic reconstructions at roughly 70 nm spatial resolution following a low cumulative radiation dose of only 7.2 MGy. Furthermore, the design of the specimen chamber utilizes a standard sample support that permits multimodal correlative imaging of the exact same unstained yeast cell via cryo-fluorescence light microscopy, cryo-soft x-ray microscopy and cryo-transmission electron microscopy. This completely laboratory-based cryogenic soft x-ray microscope will therefore enable greater access to three-dimensional ultrastructure determination of biological whole cells without chemical fixation or physical sectioning.

Carlson, David B.; Gelb, Jeff; Palshin, Vadim; Evans, James E.

2013-02-01T23:59:59.000Z

79

Atomic-scale and three-dimensional transmission electron microscopy of nanoparticle morphology  

E-Print Network [OSTI]

nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach. Nano Letters, 11(11): 4666-4673, 2011. Peer reviewed conference proceedings R. Leary, Z. Saghi, P.A. Midgley, and D.J. Holland. Compressed Sensing Electron... algorithms, precision in component fabrication and stability of electrical components that AC optics yielded performance improvements in practice. First generation AC optics have addressed the major limiting aberration, third-order spherical aberration. In a...

Leary, Rowan Kendall

2015-02-03T23:59:59.000Z

80

Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 3) : a scanning tunneling microscopy study.  

E-Print Network [OSTI]

Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 3) : a scanning tunneling of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(33) (SiC(33)) surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene

Paris-Sud XI, Universit de

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Reactivity and Structural Dynamics of Supported Metal Nanoclusters Using Electron Microscopy, in situ X-Ray Spectroscopy, Electronic Structure Theories, and Molecular Dynamics Simulations.  

SciTech Connect (OSTI)

The distinguishing feature of our collaborative program of study is the focus it brings to emergent phenomena originating from the unique structural/electronic environments found in nanoscale materials. We exploit and develop frontier methods of atomic-scale materials characterization based on electron microscopy (Yang) and synchrotron X-ray absorption spectroscopy (Frenkel) that are in turn coupled innately with advanced first principles theory and methods of computational modeling (Johnson). In the past year we have made significant experimental advances that have led to important new understandings of the structural dynamics of what are unquestionably the most important classes of heterogeneous catalyststhe materials used to both produce and mitigate the consequences of the use of liquid hydrocarbon fuels.

Judith C. Yang; Ralph G. Nuzzo, Duane Johnson, Anatoly Frenkel

2008-07-01T23:59:59.000Z

82

Structural Transformations in self-assembled Semiconductor Quantum Dots as inferred by Transmission Electron Microscopy  

E-Print Network [OSTI]

electronic and optoelectronic devices.1-3 ZnO is a promising material for UV optoelectronics due to its of the results have been widely reproduced or resulted in stable optoelectronic devices. p-type ZnO NWs have also

Moeck, Peter

83

FEATURE ARTICLE Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies  

E-Print Network [OSTI]

/structure. 1. Structure of Nanocrystals and Physical Chemistry The unique chemical and physical properties the electronic structure, bonding, and possibly chemical reactivities. The sublimation activation energy of Au}, resulting in the sublimation of Au atoms from the surface at temperatures as low as 220 °C, much lower than

Wang, Zhong L.

84

Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses  

SciTech Connect (OSTI)

Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m{sup {minus}1} for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction.

Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

1993-12-31T23:59:59.000Z

85

Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy  

SciTech Connect (OSTI)

X-ray nanotomography and focused ion beam scanning electron microscopy (FIB?SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIBSEM enable elemental mapping within the microstructure. Using these methods, non?destructive 3D x-ray imaging and FIBSEM serial sectioning have been applied to compare three?dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

2011-01-01T23:59:59.000Z

86

Electron microscopy and small angle neutron scattering study of precipitation in low alloy steel submerged-arc welds  

SciTech Connect (OSTI)

In previous studies, submerged-arc welds with a range of compositions were irradiated in test reactors over a range of dose and dose-rates. The effect of irradiation was measured by Charpy V-notch and hardness tests, and an irradiation response model was developed. In this paper the authors report the results of a combined electron microscopy and small angle neutron scattering (SANS) study on material from some of the Charpy specimens. The results have been interpreted in terms of the Russell and Brown modulus hardening model. In general they have confirmed the predictions of the irradiation response model, and shown that the copper precipitation contribution to the observed macroscopic to the observed macroscopic hardening is strongly dependent on nickel, dose and dose-rate.

Williams, T.J. [Rolls-Royce and Associates Ltd., Raynesway (United Kingdom); Phythian, W.J. [AEA Reactors Services, Didcot (United Kingdom)

1996-12-31T23:59:59.000Z

87

Hot-stage transmission electron microscopy study of (Na, K)NbO{sub 3} based lead-free piezoceramics  

SciTech Connect (OSTI)

Hierarchical nanodomains assembled into micron-sized stripe domains, which is believed to be associated with outstanding piezoelectric properties, were observed at room temperature in a typical lead free piezoceramics, (Na{sub 0.52}K{sub 0.48?x})(Nb{sub 0.95?x}Ta{sub 0.05})-xLiSbO{sub 3}, with finely tuned polymorphic phase boundaries (x?=?0.0465) by transmission electron microscopy. The evolution of domain morphology and crystal structure under heating and cooling cycles in the ceramic was investigated by in-situ hot stage study. It is found that the nanodomains are irreversibly transformed into micron-sized rectangular domains during heating and cooling cycles, which lead to the thermal instability of piezoelectric properties of the materials.

Lu, Shengbo, E-mail: shengbo.lu@yahoo.com [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong); Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Xu, Zhengkui [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong); Kwok, K. W.; Chan, Helen L. W. [Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

2014-07-28T23:59:59.000Z

88

Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy  

SciTech Connect (OSTI)

A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

Akatay, M. Cem [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)] [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Zvinevich, Yury; Ribeiro, Fabio H., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Forney Hall of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Baumann, Philipp [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States)] [Computer Sciences, University of Applied Sciences of Northeastern Switzerland, 4132 Muttenz, Switzerland and Department of Physics, Yeshiva University, New York, New York 10016 (United States); Stach, Eric A., E-mail: fabio@purdue.edu, E-mail: estach@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2014-03-15T23:59:59.000Z

89

Quantification of nanoscale density fluctuations using electron microscopy: Light-localization properties of biological cells  

SciTech Connect (OSTI)

We report a study of the nanoscale mass-density fluctuations of heterogeneous optical dielectric media, including nanomaterials and biological cells, by quantifying their nanoscale light-localization properties. Transmission electron microscope images of the media are used to construct corresponding effective disordered optical lattices. Light-localization properties are studied by the statistical analysis of the inverse participation ratio (IPR) of the localized eigenfunctions of these optical lattices at the nanoscale. We validated IPR analysis using nanomaterials as models of disordered systems fabricated from dielectric nanoparticles. As an example, we then applied such analysis to distinguish between cells with different degrees of aggressive malignancy.

Pradhan, Prabhakar; Damania, Dhwanil; Turzhitsky, Vladimir; Subramanian, Hariharan; Backman, Vadim [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Joshi, Hrushikesh M.; Dravid, Vinayak P. [Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Roy, Hemant K. [Department of Internal Medicine, NorthShore University HealthSystem, Evanston, Illinois 60201 (United States); Taflove, Allen [Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States)

2010-12-13T23:59:59.000Z

90

Electron and Scanning Probe Microscopies | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJuneDocumenting the Life and DeathElectron and

91

Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy  

SciTech Connect (OSTI)

One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

2014-02-21T23:59:59.000Z

92

Cs-Exchange in Birnessite: Raction Mechanisms Inferred from Time-Resolved X-ray Diffraction and Transmission Electron Microscopy  

SciTech Connect (OSTI)

We have explored the exchange of Cs for interlayer Na in birnessite using several techniques, including transmission electron microscopy (TEM) and time-resolved synchrotron X-ray diffraction (XRD). Our goal was to test which of two possible exchange mechanisms is operative during the reaction: (1) diffusion of cations in and out of the interlayer or (2) dissolution of Na-birnessite and reprecipitation of Cs-birnessite. The appearance of distinct XRD peaks for Na- and Cs-rich phases in partially exchanged samples offered support for a simple diffusion model, but it was inconsistent with the compositional and crystallographic homogeneity of (Na,Cs)-birnessite platelets from core to rim as ascertained by TEM. Time-resolved XRD revealed systematic changes in the structure of the emergent Cs-rich birnessite phase during exchange, in conflict with a dissolution and reprecipitation model. Instead, we propose that exchange occurred by sequential delamination of Mn oxide octahedral sheets. Exfoliation of a given interlayer region allowed for wholesale replacement of Na by Cs and was rapidly followed by reassembly. This model accounts for the rapidity of metal exchange in birnessite, the co-existence of distinct Na- and Cs-birnessite phases during the process of exchange, and the uniformly mixed Na- and Cs-compositions ascertained from point analyses by selected area electron diffraction and energy dispersive spectroscopy of partially exchanged grains.

Lopano, C.; Heaney, P; Post, J

2009-01-01T23:59:59.000Z

93

Profile of Professor of High-Resolution Electron Microscopy for Nanomaterials in the Quantum Nanoscience department (Kavli Institute, faculty of Applied Sciences)  

E-Print Network [OSTI]

Nanoscience department (Kavli Institute, faculty of Applied Sciences) Workload and duration The Quantum Nanoscience department is planning to appoint a permanent full-time professor in the research area of High the High-Resolution Electron Microscopy (HREM) group in the Quantum Nanoscience department at TU Delft

94

Radiation damage of polyethylene single crystals in electron microscopy between 1 and 2.5 MV. II. The influence of temperature  

E-Print Network [OSTI]

1043 Radiation damage of polyethylene single crystals in electron microscopy between 1 and 2.5 MV mécanismes réels décrits par les chimistes. Abstract. 2014 The critical dose measured for polyethylene single. Introduction. Polyethylene single crystals, like every organic sub- stance, lose their crystallinity when

Paris-Sud XI, Université de

95

Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering  

SciTech Connect (OSTI)

We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

2006-06-05T23:59:59.000Z

96

Construction of the Magnetic Phase Diagram of FeMn/Ni/Cu(001) Using Photoemission Electron Microscopy  

SciTech Connect (OSTI)

Single crystalline FeMn/Ni bilayer was epitaxially grown on Cu(001) substrate and investigated by photoemission electron microscopy (PEEM). The FeMn and Ni films were grown into two cross wedges to facilitate an independent control of the FeMn (0-20 ML) and Ni (0-20 ML) film thicknesses. The Ni magnetic phases were determined by Ni domain images as a function of the Ni thickness (d{sub Ni}) and the FeMn thickness (d{sub FeMn}). The result shows that as the Ni thickness increases, the Ni film undergoes a paramagnetic-to-ferromagnetic state transition at a critical thickness of d{sub FM} and an in-plane to out-of-plane spin reorientation transition at a thicker thickness d{sub SRT}. The phase diagram shows that both d{sub FM} and d{sub SRT} increase as the FeMn film establishes its antiferromagnetic order.

Wu, J.; Scholl, A.; Arenholz, E.; Hwang, C.; Qiu, Z. Q.

2011-01-04T23:59:59.000Z

97

Atomic-resolution study of polarity reversal in GaSb grown on Si by scanning transmission electron microscopy  

SciTech Connect (OSTI)

The atomic-resolved reversal of the polarity across an antiphase boundary (APB) was observed in GaSb films grown on Si by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The investigation of the interface structure at the origin of the APB reveals that coalescence of two domains with Ga-prelayer and Sb-prelayer causes the sublattice reversal. The local strain and lattice rotation distributions of the APB, attributed to the discordant bonding length at the APB with the surrounding GaSb lattice, were further studied using the geometric phase analysis technique. The crystallographic characteristics of the APBs and their interaction with other planar defects were observed with HAADF-STEM. The quantitative agreement between experimental and simulated images confirms the observed polarities in the acquired HAADF-STEM data. The self-annihilation mechanism of the APBs is addressed based on the rotation induced by anti-site bonds and APBs' faceting.

Hosseini Vajargah, S.; Woo, S. Y.; Botton, G. A. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Brockhouse Institute for Material Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Ghanad-Tavakoli, S. [Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Kleiman, R. N.; Preston, J. S. [Brockhouse Institute for Material Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

2012-11-01T23:59:59.000Z

98

Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging  

SciTech Connect (OSTI)

Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M. [Leibniz-Institut fr Kristallzchtung, Max-Born-Strae 2, 12489 Berlin (Germany); Duff, A.; Lymperakis, L.; Neugebauer, J. [Max-Planck-Institut fr Eisenforschung, Max-Planck-Strae 1, 40237 Dsseldorf (Germany); Chze, C. [TopGaN Sp. z o.o., Sokolowska 29/37, 01-142 Warsaw (Poland); Skierbiszewski, C. [TopGaN Sp. z o.o., Sokolowska 29/37, 01-142 Warsaw (Poland); Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland)

2014-01-21T23:59:59.000Z

99

Electron Microscopy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|Upcoming Events and

100

Electron Microscopy Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the| CenterElectrolyte

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ORNL microscopy directly images problematic lithium dendrites...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

102

JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 16:160-166 11990) A Stopped-Flow/Rapid-Freezing Machine With Millisecond  

E-Print Network [OSTI]

in chemical kinetics (Johnson, 1986)with a propane jet freezing unit previously used to prepare static samples traversed an aging line of variable length before the intermediates were sprayed into liquid pro- pane microscopy. We have combined conventional rapid mixing stopped-flow procedures with propane jet rapid

103

Topography, complex refractive index, and conductivity of graphene layers measured by correlation of optical interference contrast, atomic force, and back scattered electron microscopy  

SciTech Connect (OSTI)

The optical phase shift by reflection on graphene is measured by interference contrast microscopy. The height profile across graphene layers on 300?nm thick SiO{sub 2} on silicon is derived from the phase profile. The complex refractive index and conductivity of graphene layers on silicon with 2?nm thin SiO{sub 2} are evaluated from a phase profile, while the height profile of the layers is measured by atomic force microscopy. It is observed that the conductivity measured on thin SiO{sub 2} is significantly greater than on thick SiO{sub 2}. Back scattered electron contrast of graphene layers is correlated to the height of graphene layers.

Vaupel, Matthias, E-mail: Matthias.vaupel@zeiss.com; Dutschke, Anke [Training Application Support Center, Carl Zeiss Microscopy GmbH, Knigsallee 9-21, 37081 Gttingen (Germany); Wurstbauer, Ulrich; Pasupathy, Abhay [Department of Physics, Columbia University New York, 538 West 120th Street, New York, New York 10027 (United States); Hitzel, Frank [DME Nanotechnologie GmbH, Geysostr. 13, D-38106 Braunschweig (Germany)

2013-11-14T23:59:59.000Z

104

Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy  

E-Print Network [OSTI]

.1063/1.3475506 Direct observation of electron emission site on boron-doped polycrystalline diamond thin films using or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force

Bristol, University of

105

Direct observation of the intergrown {alpha}-phase in {beta}-TmAlB{sub 4} via high-resolution electron microscopy  

SciTech Connect (OSTI)

A TmAlB{sub 4} crystal with a ThMoB{sub 4}-type ({beta}-type) structure phase related to a hexagonal AlB{sub 2}-type structure was studied by electron diffraction and high-resolution electron microscopy. A high-resolution image clearly exhibits an intergrown lamellar structure of a YCrB{sub 4}-type ({alpha}-type) phase in the matrix of the {beta}-type phase in TmAlB{sub 4} crystal. The lamellar structure can be characterized by a tiling of deformed hexagons, which are a common structure unit in the {alpha}-type and {beta}-type structures. The intergrown nanostructure is considered to be attributed to the origin of low temperature anomalies in physical properties.

Yubuta, Kunio, E-mail: yubuta@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Mori, Takao [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); Leithe-Jasper, Andreas; Grin, Yuri [Max-Plank-Institut fuer Chemische Physik fester Stoeffe, 01187 Dresden (Germany); Okada, Shigeru [Department of Science and Engineering, Kokushikan University, Tokyo 154-8515 (Japan); Shishido, Toetsu [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan)

2009-08-05T23:59:59.000Z

106

Temperature-induced martensite in magnetic shape memory Fe{sub 2}MnGa observed by photoemission electron microscopy  

SciTech Connect (OSTI)

The magnetic domain structure in single crystals of a Heusler shape memory compound near the composition Fe{sub 2}MnGa was observed during phase transition by photoelectron emission microscopy at Beamline 11.0.1.1 of the Advanced Light Source. The behavior is comparable with recent observations of an adaptive martensite phase in prototype Ni{sub 2}MnGa, although the pinning in the recent work is an epitaxial interface and in this work the e#11;ective pinning plane is a boundary between martensitic variants that transform in a self-accommodating way from the single crystal austenite phase present at high temperatures. Temperature dependent observations of the twinning structure give information as to the coupling behavior between the magnetism and the structural evolution.

Jenkins, Catherine; Scholl, Andreas; Kainuma, R.; Elmers, Hans-Joachim; Omori, Toshihiro

2012-01-18T23:59:59.000Z

107

Electron microscopy study of NiW/Al{sub 2}O{sub 3}-F(x) sulfided catalysts prepared using oxisalt and thiosalt precursors  

SciTech Connect (OSTI)

Two different series of sulfided NiW catalysts supported on alumina modified with different amounts of fluoride, in the range 0.0-2.5 wt%, have been prepared by using two different tungsten precursor salts: ammonium metatungstate and ammonium tetrathiotungstate. Samples of both catalyst series have been examined by the use of high-resolution electron microscopy. For the oxisalt-prepared catalysts the results indicate that fluoride incorporation increases the size of WS{sub 2} crystallites but has little effect on the number of layers. On the other hand, the change of precursor salt significantly influences the stacking of WS{sub 2} crystallites without greatly affecting their size. The thiosalt method of preparation also leads to an excess of sulfur in the catalysts, which is distributed in a nonhomogeneous way. 16 refs., 13 figs., 2 tabs.

Ramirez, J.; Castillo, P.; Benitez, A. [Universidad Autonoma de Mexico City (Mexico)] [and others] [Universidad Autonoma de Mexico City (Mexico); and others

1996-01-01T23:59:59.000Z

108

A transmission electron microscopy study of the deformation behavior underneath nanoindents in nano-scale Al-TiN multilayered composites  

SciTech Connect (OSTI)

Nano-scale multilayered Al-TiN composites were deposited with DC magnetron sputtering technique in two different layer thickness ratios - Al:TiN = 1:1 and Al:TiN = 9:1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional Transmission Electron Microscopy (TEM) was carried out on samples extracted with Focused Ion Beam (FIB) from below the nanoindents. This paper presents the results of the hardness tests in the Al-TiN multilayers with the two different thickness ratios and the observations from the cross-sectional TEM studies of the regions underneath the indents. These studies showed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.

Bhattacharyya, Dhriti [Los Alamos National Laboratory; Mara, Nathan A [Los Alamos National Laboratory; Dickerson, Patricia O [Los Alamos National Laboratory; Misra, Amit [Los Alamos National Laboratory; Hoagland, R G [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

109

Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples  

E-Print Network [OSTI]

For single particle electron cryo-microscopy (cryoEM), contrast loss due to beam-induced charging and specimen movement is a serious problem, as the thin films of vitreous ice spanning the holes of a holey carbon film are particularly susceptible to beam-induced movement. We demonstrate that the problem is at least partially solved by carbon nanotechnology. Doping ice-embedded samples with single-walled carbon nanotubes (SWNT) in aqueous suspension or adding nanocrystalline graphene supports, obtained by thermal conversion of cross-linked self-assembled biphenyl precursors, significantly reduces contrast loss in high-resolution cryoEM due to the excellent electrical and mechanical properties of SWNTs and graphene.

Daniel Rhinow; Nils-Eike Weber; Andrey Turchanin; Armin Glzhuser; Werner Khlbrandt

2011-10-06T23:59:59.000Z

110

Electronic structures and bonding properties of chlorine-treated nitrogenated carbon nanotubes: X-ray absorption and scanning photoelectron microscopy studies  

SciTech Connect (OSTI)

The electronic and bonding properties of nitrogenated carbon nanotubes (N-CNTs) exposed to chlorine plasma were investigated using C and N K-edge x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy (SPEM). The C and N K-edge XANES spectra of chlorine-treated N-CNTs consistently reveal the formation of pyridinelike N-CNTs by the observation of 1s{yields}{pi}*(e{sub 2u}) antibonding and 1s{yields}{pi}*(b{sub 2g}) bonding states. The valence-band photoemission spectra obtained from SPEM images indicate that chlorination of the nanotubes enhances the C-N bonding. First-principles calculations of the partial densities of states in conjunction with C K-edge XANES data identify the presence of C-Cl bonding in chlorine treated N-CNTs.

Ray, S. C.; Pao, C. W.; Tsai, H. M.; Chiou, J. W.; Pong, W. F.; Chen, C. W.; Tsai, M.-H.; Papakonstantinou, P.; Chen, L. C.; Chen, K. H.; Graham, W. G. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); NRI, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, County Antrim BT37OQB, Northern Ireland (United Kingdom); Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics and Astronomy, Queens University of Belfast, Belfast, Antrim BT71NN, Northern Ireland (United Kingdom)

2007-05-07T23:59:59.000Z

111

Study of hard disk and slider surfaces using X-ray photoemission electron microscopy and near-edge X-ray absorption fine structure spectroscopy  

SciTech Connect (OSTI)

X-ray Photo Emission Electron Microscopy (X-PEEM) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy were applied to study the properties of amorphous hard carbon overcoats on disks and sliders, and the properties of the lubricant. The modification of lubricants after performing thermal desorption studies was measured by NEXAFS, and the results are compared to the thermal desorption data. The study of lubricant degradation in wear tracks is described. Sliders were investigated before and after wear test, and the modification of the slider coating as well as the transfer of lubricant to the slider was studied. The studies show that the lubricant is altered chemically during the wear. Fluorine is removed and carboxyl groups are formed.

Anders, S.; Stammler, T. [Lawrence Berkeley National lab., CA (United States). Advanced Light Source Div.; Bhatia, C.S. [SSD/IBM, San Jose, CA (United States); Stoehr, J. [IBM Research Div., San Jose, CA (United States). Almaden Research Center; Fong, W.; Chen, C.Y.; Bogy, D.B. [Univ. of California, Berkeley, CA (United States)

1998-04-01T23:59:59.000Z

112

In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter  

SciTech Connect (OSTI)

The Al/Ni formation reaction is highly exothermic and of both scientific and technological significance. In this report, we study the evolution of intermetallic phases in this reaction at a heating rate of 830 K/s. 100-nm-thick Al/Ni bilayers were deposited onto nanocalorimeter sensors that enable the measurement of temperature and heat flow during rapid heating. Time-resolved transmission electron diffraction patterns captured simultaneously with thermal measurements allow us to identify the intermetallic phases present and reconstruct the phase transformation sequence as a function of time and temperature. The results show a mostly unaltered phase transformation sequence compared to lower heating rates.

Grapes, Michael D., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Lawrence Livermore National Laboratory, Materials Science and Technology Division, Livermore, California 94550 (United States); Woll, Karsten [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute of Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); LaVan, David A., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

2014-11-01T23:59:59.000Z

113

Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy  

SciTech Connect (OSTI)

The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

Harumoto, T. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sawada, H. [Japan Electron Optics Laboratory (JEOL) Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Tanaka, T.; Tanishiro, Y.; Takayanagi, K. [Department of Physics, Tokyo Institute of Technology, 2-12-1-H-51 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

2013-02-28T23:59:59.000Z

114

Influence of Surface Preparation on Scanning Kelvin Probe Microscopy and Electron Backscatter Diffraction Analysis of Cross Sections of CdTe/CdS Solar Cells  

SciTech Connect (OSTI)

Electron backscatter diffraction (EBSD) provides information on the crystallographic structure of a sample, while scanning Kelvin probe microscopy (SKPM) provides information on its electrical properties. The advantage of these techniques is their high spatial resolution, which cannot be attained with any other techniques. However, because these techniques analyze the top layers of the sample, surface or cross section features directly influence the results of the measurements, and sample preparation is a main step in the analysis. In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe films. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.

Moutinho, H. R.; Dhere, R. G.; Jiang, C. S.; Al-Jassim, M. M.

2011-01-01T23:59:59.000Z

115

Elemental relationships in rock varnish as seen with SEM/EDX (scanning electron microscopy/energy dispersive x-ray) elemental line profiling  

SciTech Connect (OSTI)

The heterogeneous nature of rock varnish requires a thorough survey of elemental and mineralogic compositions before relating chemical variability of rock varnish to past geochemical environments. Elemental relationships in rock varnish can be examined using scanning electron microscopy (SEM) in conjunction with an elemental line profiling routine using semi-quantitative, energy dispersive x-ray (EDX) analysis. Results of SEM/EDX analysis suggest: variations in cation concentrations used in varnish cation ratio dating relate more specifically to variations in detritus within the varnish than to element mobility as defined by weathering indices; Mn concentration rather than Mn:Fe ratios may be a more appropriate indicator of paleoclimatic fluctuations; and the Mn-oxide phase existing in varnish is most likely a Ba-enriched phase rather than birnessite. Element line profiling offers great potential for gaining insights into geochemical processes affecting the deposition and diagenesis of rock varnish and for testing hypotheses relating to its chemical variability. 27 refs., 9 figs.

Raymond, R. Jr.; Reneau, S.L.; Harrington, C.D.

1990-01-01T23:59:59.000Z

116

Study of structural order in porphyrin-fullerene dyad ZnDHD6ee monolayers by electron diffraction and atomic force microscopy  

SciTech Connect (OSTI)

The structure of porphyrin-fullerene dyad ZnDHD6ee monolayers formed on the surface of aqueous subphase in a Langmuir trough and transferred onto solid substrates has been studied. The data obtained are interpreted using simulation of the structure of isolated molecules and their packing in monolayer and modeling of diffraction patterns from molecular aggregates having different sizes and degrees of order. Experiments on the formation of condensed ZnDHD6ee monolayers are described. The structure of these monolayers on a water surface is analyzed using {pi}-A isotherms. The structure of the monolayers transferred onto solid substrates is investigated by electron diffraction and atomic force microscopy. The unit-cell parameters of two-dimensional domains, which are characteristic of molecular packing in monolayers and deposited films, are determined. Domains are found to be organized into a texture (the molecular axes are oriented by the [001] direction perpendicular to the substrate). The monolayers contain a limited number of small 3D domains.

D'yakova, Yu. A.; Suvorova, E. I.; Orekhov, Andrei S.; Orekhov, Anton S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Alekseev, A. S. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gainutdinov, R. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Tereschenko, E. Yu. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Tkachenko, N. V.; Lemmetyinen, H. [Tampere University of Technology (Finland)] [Tampere University of Technology (Finland); Feigin, L. A.; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2013-11-15T23:59:59.000Z

117

Scanning Electron Microscopy Analysis of Fuel/Matrix Interaction Layers in Highly-Irradiated UMo Dispersion Fuel Plates with Al and AlSi Alloy Matrices  

SciTech Connect (OSTI)

In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U7Mo dispersion fuel elements with pure Al, Al2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission-gas bubbles. Additionally, solid-fission-product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with AlSi matrices.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Brandon D. Miller; Jian Gan; Adam B. Robinson; Pavel Medvedev; James Madden; Dan Wachs; Mitch Meyer

2014-04-01T23:59:59.000Z

118

Structural defects in epitaxial graphene layers synthesized on C-terminated 4H-SiC (0001{sup }) surfaceTransmission electron microscopy and density functional theory studies  

SciTech Connect (OSTI)

The principal structural defects in graphene multilayers synthesized on the carbon-terminated face of a 4H-SiC (0001{sup }) substrate were investigated using the high-resolution transmission electron microscopy. The analyzed systems include a wide variety of defected structures such as edge dislocations, rotational multilayers, and grain boundaries. It was shown that graphene layers are composed of grains of the size of several nanometres or larger; they differ in a relative rotation by large angles, close to 30. The structure of graphene multilayers results from the synthesis on a SiC (0001{sup }) surface, which proceeds via intensive nucleation of new graphene layers that coalesce under various angles creating an immense orientational disorder. Structural defects are associated with a built-in strain resulting from a lattice mismatch between the SiC substrate and the graphene layers. The density functional theory data show that the high-angular disorder of AB stacked bi-layers is not restoring the hexagonal symmetry of the lattice.

Borysiuk, J., E-mail: jolanta.borysiuk@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikw 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, Ho?a 69, 00-681 Warsaw (Poland); So?tys, J.; Piechota, J. [Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawi?skiego 5a, 02-106 Warsaw (Poland); Krukowski, S. [Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawi?skiego 5a, 02-106 Warsaw (Poland); Institute of High Pressure Physics, Polish Academy of Sciences, Soko?owska 29/37, 01-142 Warsaw (Poland); Baranowski, J. M. [Faculty of Physics, University of Warsaw, Ho?a 69, 00-681 Warsaw (Poland); Institute of Electronic Materials Technology, Wlczy?ska 133, 01-919 Warsaw (Poland); St?pniewski, R. [Faculty of Physics, University of Warsaw, Ho?a 69, 00-681 Warsaw (Poland)

2014-02-07T23:59:59.000Z

119

Thermal and structural stability of single- and multi-walled carbon nanotubes up to 1800 C in Argon studied by Raman spectroscopy and transmission electron microscopy  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? Structural stability of carbon nanotubes up to 1800 C in Argon (?0.05 MPa). ? Thorough TEM and Raman spectroscopy of as received and heat treated CNTs. ? Analyses on the extent of structural changes during high temperature exposure. ? Discussion on safe upper temperature limit for practical use of SWCNTs and MWCNTs. -- Abstract: Effect of high temperature exposure (up to 1800 C) on morphology of single- and multi-walled carbon nanotubes in Argon atmosphere has been studied using Raman spectroscopy and transmission electron microscopy. Although, as received nanotubes contained irregular graphene layers and other structural defects, microscopic observations revealed that heat treatment in Argon reduced the defect density and helped proper alignment of graphene layers. Raman spectra of as received and heat treated nanotubes strongly reinforced the microscopic observations. While, D-band to G-band intensity ratio in Raman spectra of 1800 C heat treated multiwalled nanotubes reduced by ?43% over as received one, this ratio for heat treated singlewalled nanotubes was ?27% lower than that of the untreated specimen. Present study suggested that although, multiwalled nanotubes were structurally stable up to 1800 C in an inert atmosphere having only a few nano-scale defects, singlewalled nanotubes suffered considerable damage at 1800 C due to much thinner dimension than the former.

Sarkar, Soumya [Non-oxide Ceramics and Composites Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CG and CRI), 196 Raja S.C. Mullick Road, Kolkata 700 032 (India)] [Non-oxide Ceramics and Composites Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CG and CRI), 196 Raja S.C. Mullick Road, Kolkata 700 032 (India); Das, Probal Kr., E-mail: probal@cgcri.res.in [Non-oxide Ceramics and Composites Division, CSIR-Central Glass and Ceramic Research Institute (CSIR-CG and CRI), 196 Raja S.C. Mullick Road, Kolkata 700 032 (India)

2013-01-15T23:59:59.000Z

120

Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation  

SciTech Connect (OSTI)

Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

2014-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

In-situ high resolution transmission electron microscopy observation of silicon nanocrystal nucleation in a SiO{sub 2} bilayered matrix  

SciTech Connect (OSTI)

Solid-state nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix was observed at temperatures as low as 450?C. This was achieved by aberration corrected high-resolution transmission electron microscopy (HRTEM) with real-time in-situ heating up to 600?C. This technique is a valuable characterization tool especially with the recent interest in Si nanostructures for light emitting devices, non-volatile memories, and third-generation photovoltaics which all typically require a heating step in their fabrication. The control of size, shape, and distribution of the Si nanocrystals are critical for these applications. This experimental study involves in-situ observation of the nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix fabricated through radio frequency co-sputtering. The results show that the shapes of Si nanocrystals in amorphous SiO{sub 2} bilayered matrices are irregular and not spherical, in contrast to many claims in the literature. Furthermore, the Si nanocrystals are well confined within their layers by the amorphous SiO{sub 2}. This study demonstrates the potential of in-situ HRTEM as a tool to observe the real time nucleation of Si nanocrystals in a SiO{sub 2} bilayered matrix. Furthermore, ideas for improvements on this in-situ heating HRTEM technique are discussed.

Yang, T. C.-J., E-mail: terry.yang@unsw.edu.au; Wu, L.; Lin, Z.; Jia, X.; Puthen-Veettil, B.; Zhang, T.; Conibeer, G.; Perez-Wurfl, I. [School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kauffmann, Y.; Rothschild, A. [Department of Materials Science and Engineering, Technion Israel Institute of Technology, Technion City, Haifa 32000 (Israel)

2014-08-04T23:59:59.000Z

122

Microscopy | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells InDioxideusingMicroscopy

123

Direct electron detection in transmission electron microscopy  

E-Print Network [OSTI]

overlay on the photo showed how the sensor chip was aligned40. Photo of the EM5 carrier board with mounted sensor40. Photo of the EM5 carrier board with mounted sensor chip.

Jin, Liang

2009-01-01T23:59:59.000Z

124

Direct electron detection in transmission electron microscopy  

E-Print Network [OSTI]

a three-stage thermoelectric cooling module was coupled withbetween the thermoelectric cooling module and the backside

Jin, Liang

2009-01-01T23:59:59.000Z

125

Direct electron detection in transmission electron microscopy  

E-Print Network [OSTI]

Duttweiler, J. Bouwer, S. Peltier, M. Ellisman, P. Denes, F.J. C. Bouwer, S. T. Peltier, M. Ellisman and N. -H. Xuong (J. C. Bouwer, S. T. Peltier, M. H. Ellisman and N. H.

Jin, Liang

2009-01-01T23:59:59.000Z

126

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy  

E-Print Network [OSTI]

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy Carolyn A. SuttonCarolyn A. Sutton PH 464PH 464 #12;OverviewOverview The OpticalThe Optical MicroscopeMicroscopy 4 Pi Microscopy4 Pi Microscopy Optical Microscope for Metallography #12;Optical Microscope: OriginsOptical

La Rosa, Andres H.

127

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

128

Scanning Probe Microscopy Studies of Carbon Nanotubes  

E-Print Network [OSTI]

Scanning Probe Microscopy Studies of Carbon Nanotubes Teri Wang Odom1 , Jason H. Hafner1 relationship between Single-Walled Carbon Nanotube (SWNT) atomic structure and electronic properties, (2, properties and application of carbon nanotube probe microscopy tips to ultrahigh resolution and chemically

Odom, Teri W.

129

Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy  

DOE Patents [OSTI]

Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

Thomas, Clarence E. (Knoxville, TN); Baylor, Larry R. (Farragut, TN); Voelkl, Edgar (Oak Ridge, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Whealton, John H. (Oak Ridge, TN); Whitson, John C. (Clinton, TN); Wilgen, John B. (Oak Ridge, TN)

2002-12-24T23:59:59.000Z

130

Transmission electron microscopy of RSP Fe/Cr/Mn/Mo/C alloy. [Fe-3 wt % Cr-2 wt % Mn-0. 5 wt % Mo, -0. 3 wt % C  

SciTech Connect (OSTI)

Rapid solidification processing (RSP) has been carried out on an Fe/Cr/Mn/Mo/C alloy using both electron-beam melting and piston-and-anvil techniques. Preliminary TEM results show RSP produces a refined duplex microstructure of ferrite and martensite, with a typical ferrite grain size of 0.50 - 3.0 microns. This RSP microstructure is significantly different from that observed in the conventionally austenitized and quenched alloys - a lath martensitic microstructure with thin films of retained interlath austenite. The morphological change produced by RSP is accompanied by an increase in hardness from 48R/sub c/ to 61R/sub c/ (approx. 480 to 720 VHN). It is intended to use electron-beam specimens to examine the potential beneficial effect of RSP upon sliding wear resistance and, by careful TEM studies, it will be possible to characterize the microstructure and its role in the hardness and wear behavior of the RSP alloy.

Rayment, J.J.; Thomas, G.

1982-03-01T23:59:59.000Z

131

Strain relief and AlSb buffer layer morphology in GaSb heteroepitaxial films grown on Si as revealed by high-angle annular dark-field scanning transmission electron microscopy  

SciTech Connect (OSTI)

The interfacial misfit (IMF) dislocation array of an epitaxial GaSb film on a Si substrate has been imaged with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The mismatch strain accommodation through dislocation formation has been investigated using geometric phase analysis (GPA) on HAADF-STEM images with atomic resolution to probe the defects' local strain distribution. These measurements indicate that the lattice parameter of the epitaxial film recovers its bulk value within three unit cells from the interface due to the relaxation through IMF dislocations. The atomic number contrast of the HAADF-STEM images and energy dispersive x-ray spectrometry illustrate the formation of islands of AlSb buffer layer along the interface. The role of the AlSb buffer layer in facilitating the GaSb film growth on Si is further elucidated by investigating the strain field of the islands with the GPA.

Vajargah, S. Hosseini; Couillard, M.; Cui, K. [Department of Material Science and Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1 (Canada); Tavakoli, S. Ghanad; Robinson, B.; Kleiman, R. N.; Preston, J. S. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Botton, G. A. [Department of Material Science and Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4M1 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2011-02-21T23:59:59.000Z

132

Current titles  

SciTech Connect (OSTI)

116 abstracts are presented of work done with the electron microscope. NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers (assess is controlled by a steering committee).

Not Available

1993-04-01T23:59:59.000Z

133

Analytical electron microscopy investigation of elemental composition and bonding structure at the Sb-doped Ni-fully-silicide/SiO{sub 2} interface  

SciTech Connect (OSTI)

It is very important to control the elemental composition and bonding structure at the gate electrode/gate dielectrics interface in metal-oxide-semiconductor transistor devices because this determines the threshold voltage of the gate electrode. In this study, we investigated the structure at the interface between the antimony (Sb)-doped nickel-fully-silicide gate electrode and SiO{sub 2} dielectrics by employing high-spatial resolution techniques such as energy dispersive x-ray spectroscopy and electron energy-loss spectroscopy using a scanning transmission electron microscope. In one region, we found a thin nickel layer at the NiSi/SiO{sub 2} interface originating from the migration of native oxide at the face of the poly-silicon. In another region, a Sb pileup was detected at the NiSi/SiO{sub 2} interface where the Ni L{sub 3}-edge spectrum showed Ni-Sb bonding, then it was suggested that Sb atoms exist at the bottom of NiSi, substituting for Si atoms in NiSi.

Kawasaki, Naohiko; Sugiyama, Naoyuki; Otsuka, Yuji; Hashimoto, Hideki [Morphological Research Laboratory, Toray Research Center Inc., Otsu, Shiga (Japan); Kurata, Hiroki; Isoda, Seiji [Institute for Chemical Research, Kyoto University, Uji, Kyoto (Japan)

2011-03-15T23:59:59.000Z

134

Dynamics of soft Nanomaterials captured by transmission electron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid water. Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid...

135

Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash  

SciTech Connect (OSTI)

Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

2013-01-21T23:59:59.000Z

136

Microscopy image segmentation tool: Robust image data analysis  

SciTech Connect (OSTI)

We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)] [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

2014-03-15T23:59:59.000Z

137

Analytical electron microscopy of rapidly solidified metals  

SciTech Connect (OSTI)

Examples of the need to characterize rapidly solidified metals on submicron scale are given for centrifugally atomized steel powder and electrohydrodynamically atomized submicron spheres. Materials studied include Fe-40wt% Ni, 304 SS, Fe-20at.%Co, and pure V.

Kelly, T.F.; Holzman, L.M.; Shin, K.; Kim, Y.W.; Bae, J.C.; Flinn, J.E.; Camus, P.P.; Melmed, A.J.

1991-12-31T23:59:59.000Z

138

Electron Microscopy Catalysis Projects: Success Stories from...  

Broader source: Energy.gov (indexed) [DOE]

interactive behavior of Pt-Re bimetallic clusters supported on multi-walled carbon nanotubes serving as model catalyst for aqueous phase reforming process (new)" * Prof....

139

HIGH STABILITY CURRENT SUPPLY FOR ELECTRON MICROSCOPY  

E-Print Network [OSTI]

the current regulator. The power losses through the powerFETs are (31): Power Loss = I drain V ds The drain current (by design to lower the power loss is the drain to source

Motamedi, Maryam Melani

2012-01-01T23:59:59.000Z

140

Scanning electron microscopy of intestinal villous structures  

E-Print Network [OSTI]

briefly in running water for 30 minutes and were dehydrated through graded ethanol series (1 hour each in 50, 70, 80, 95 and 100 %). Dehydrated specimens were dried in a carbon dioxide critical point drier to avoid exposure of the specimens to any surface tension forces when drying. The dried specimens were

Boyer, Edmond

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

In situ environmental transmission electron microscopy study...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adv. Mater., 2011, 23(37), 4248- 4253. 14 M. Naguib, et al., Two-dimensional transition metal carbides, ACS Nano, 2012, 6(2), 1322-1331. 15 M. Naguib, et al., One-step synthesis of...

142

HIGH STABILITY CURRENT SUPPLY FOR ELECTRON MICROSCOPY  

E-Print Network [OSTI]

Improvements. Dordrecht, The Netherland: Kluwer AcademicESSENTIALS. Dordrecht, The Netherland: Springer, pages 181-

Motamedi, Maryam Melani

2012-01-01T23:59:59.000Z

143

Scientific Achievement Analytical Transmission Electron Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights Nuclear Physics (NP) NPBiogenic Aerosols -eAnalytical

144

Photothermal imaging scanning microscopy  

DOE Patents [OSTI]

Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

2006-07-11T23:59:59.000Z

145

Computational microscopy for sample analysis  

E-Print Network [OSTI]

Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves ...

Ikoma, Hayato

2014-01-01T23:59:59.000Z

146

Nonlinear vibrational microscopy  

DOE Patents [OSTI]

The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

2000-01-01T23:59:59.000Z

147

Biological Imaging by Soft X-Ray Diffraction Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

148

1996, Journal of Microscopy 181, 225-237 (and vol 182, p 240.) Multimodal microscopy by digital image processing  

E-Print Network [OSTI]

, Blakistone and Kyryk 1990 compared applications of polarised light, bright eld, DIC and scanning electron microscopy SEM in the paper industry. Fluorescence microscopy adds further possible imaging modes to light. 1 #12;1 Introduction Di erent imaging modes with the light microscope convey complementary infor

Stone, J. V.

149

SUBMOLECULAR IMAGING OF EPITAXIALLY CRYSTALLIZED HELICAL POLYOLEFINS BY ATOMIC FORCE MICROSCOPY  

E-Print Network [OSTI]

Digital Instruments, Inc., Santa Barbara, Cal. USA. Images were taken with an A­type scan head (max. scan microscopy EM and electron diffraction ED. AFM pictures with high resolution could be obtained when using polypropylene has been determined by electron microscopy EM and electron diffraction ED: chain conformation

Peters, Achim

150

Electron microscopy and microanalysis Two transmission electron microscopes  

E-Print Network [OSTI]

distribution (laser scatter- ing) q Powder surface area by gas adsorption (BET) Commercially Available of a failed austenitic stainless steel tube. The failure type is identified as a fatigue failure, due

151

Microscopy (XSD-MIC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichaelGE1 Micropulse Lidar TheMicroscopy

152

Probing graphene defects and estimating graphene quality with optical microscopy  

SciTech Connect (OSTI)

We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

2014-01-27T23:59:59.000Z

153

Introduction to Photoelectron Emission Microscopy: Principles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction to Photoelectron Emission Microscopy: Principles and Applications. Introduction to Photoelectron Emission Microscopy: Principles and Applications. Abstract: In the...

154

Ultrafast scanning probe microscopy  

DOE Patents [OSTI]

An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

1995-01-01T23:59:59.000Z

155

Ultrafast scanning probe microscopy  

DOE Patents [OSTI]

An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

1995-05-16T23:59:59.000Z

156

Ultrafast scanning tunneling microscopy  

SciTech Connect (OSTI)

I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

1995-09-01T23:59:59.000Z

157

National High Magnetic Field Laboratory: Optical Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of materials (such as this metallic superlattice) are produced in Optical Microscopy. Web-based Education This department runs four microscopy Web sites that together comprise...

158

3D rotational diffusion microrheology using 2D video microscopy  

E-Print Network [OSTI]

We propose a simple way to perform three-dimensional (3D) rotational microrheology using two-dimensional (2D) video microscopy. The 3D rotational brownian motion of micrometric wires in a viscous fluid is deduced from their projection on the focal plane of an optical microscope objective. The rotational diffusion coefficient of the wires of length between 1-100 \\mu m is extracted, as well as their diameter distribution in good agreement with electron microscopy measurements. This is a promising way to characterize soft visco-elastic materials, and probe the dimensions of anisotropic objects.

Rmy Colin; Minhao Yan; Loudjy Chevry; Jean-Franois Berret; Brengre Abou

2012-01-05T23:59:59.000Z

159

Scanning photovoltage microscopy of potential modulations in carbon Marcus Freitag,a  

E-Print Network [OSTI]

Scanning photovoltage microscopy of potential modulations in carbon nanotubes Marcus Freitag generated photovoltage in carbon nanotubes to image potential modulations produced by defects are consistent with trapped electrons near the tube. An offset photovoltage is generated when the laser populates

Liu, Jie

160

THE IMPACT OF TRANSMISSION ELECTRON MICROSCOPY IN CERAMICS  

E-Print Network [OSTI]

Turbine Vanes", General Electric Report 74CRD040, Apriland Dr. S. Prochazka of General Electric Corporate Researcha process invented by General Electric Company20,2l in which

Thomas, Gareth

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Letters to ESEX High resolution transmission electron microscopy  

E-Print Network [OSTI]

), in south-eastern Libya (Haber- land, 1975), on gibbers (Jessup, 1960) and bedrock faces in Australia (Tratebas et al., 2004), and stone monuments (Paradise, 2005) and can act as an agent of rock art stability

Dorn, Ron

162

THE ELECTRON MICROSCOPY OF HYDROCARBON PRODUCTION IN PARTHENIUM ARGENTATUM (GUAYULE)  

E-Print Network [OSTI]

natural gas left, and oil reserves are variously estimatedlonger estimates for oil reserves depend upon the obtainingoil and gas often mentioned and cur- rently being developed is coal. The United States possesses coal reserves

Bauer, T.E.

2010-01-01T23:59:59.000Z

163

In Situ Transmission Electron Microscopy Characterization of Nanomaterials  

E-Print Network [OSTI]

on the grain boundary sliding and grain rotation while the grain boundary interacting with dislocations [7-9]. The discoveries of new nanomaterials such as carbon nanotubes, nanowires and graphene have shown large potential impacts in the developments... with nanometer sized width [18]. Next, graphene nanosheet or thin film can be explained as a two dimensional nanostructured material with nanosized thickness [12, 19]. And finally, bulk nanostructed material can be exampled as a three dimensional...

Lee, Joon Hwan 1977-

2012-11-27T23:59:59.000Z

164

Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

10012007 * Project end date: 09302012 * Percent complete: 80% * Development and optimization of catalyst- based aftertreatment systems are inhibited by the lack of...

165

Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

L. F. Allard Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge, TN 2009 DOE Merit Review Crystal City, MD May 22, 2009 Agreement PM-9105 Project ID:...

166

Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...  

Broader source: Energy.gov (indexed) [DOE]

Characterization Dr. Lawrence F. Allard Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge, TN DOE 2010 Vehicle Technologies Annual Merit Review...

167

Amplitude Contrast High-Resolution Transmission Electron Microscopy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Advanced Materials March 13, 2015 11:00AM to 12:00PM Presenter Jianguo Wen, (EMC) and (CNM) Location Building 203 Type Colloquium Series Physics Division Colloquium...

168

In-Situ Electron Microscopy of Electrical Energy Storage Materials  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

169

Directly correlated transmission electron microscopy and atom probe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation ofthe APS User Office New

170

Dynamics of soft Nanomaterials captured by transmission electron microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizes dynamics in polymer family Agatha

171

Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministration AlbumCoulomb repulsionTrimer. |

172

Environmental Transmission Electron Microscopy Study of the Origins of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance Environmental Policy andEnvironmentalAnomalous

173

Electron Microscopy Catalysis Projects: Success Stories from the High  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstruction andElectrolytes |in Support of

174

In Situ Electrochemical Transmission Electron Microscopy for Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219ImprovementsImprovingInInResearch. |

175

In Situ Transmission Electron Microscopy Observation of Microstructure and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300Aptamers and GraphenePhase Evolution in a

176

In-situ Transmission Electron Microscopy and Spectroscopy Studies of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300Aptamers andInSaturatedClimateInterfaces in

177

Iran Thomas Auditorium, 8600 Environmental Transmission Electron Microscopy for Catalysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface Reactions andOctober 5,

178

Los Alamos: MST-MTM: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLosAlamos, Sandia National

179

Los Alamos: MST-MTM: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLosAlamos, Sandia

180

Los Alamos: MST: MST-6: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLosAlamos, SandiaXL30

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Los Alamos: MST: MST-6: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLosAlamos, SandiaXL30Strata

182

Los Alamos: MST: MST-6: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLosAlamos,

183

Los Alamos: MST: MST-6: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLosAlamos,840 EPMA with

184

Los Alamos: MST: MST-6: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLosAlamos,840 EPMA withCM30

185

Los Alamos: MST: MST-6: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLosAlamos,840 EPMA withCM30XL30

186

Electron Microscopy > Analytical Resources > Research > The Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the| CenterElectrolyte Genome

187

CFN Operations and Safety Awareness (COSA) Checklist Electron Microscopy Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route SegmentsClean EnergyCERTIFICATE

188

In-Situ Electron Microscopy of Electrical Energy Storage Materials |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System PerformanceInDepartment ofDepartment

189

In-Situ Electron Microscopy of Electrical Energy Storage Materials |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System PerformanceInDepartment

190

Los Alamos: MST-MTM: EML: Electron Microscopy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las ConchasTrail of a martian2008

191

Scanning Transmission Electron Microscopy Investigations of Complex Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon Home WaterScanning Probe| Stanford

192

Ultra-High Resolution Electron Microscopy for Catalyst Characterization |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONSDepartment

193

Ultra-High Resolution Electron Microscopy for Catalyst Characterization |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONSDepartmentDepartment

194

Ultra-high Resolution Electron Microscopy for Catalyst Characterization |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENTEnergy Low Sulfur

195

Visual-servoing optical microscopy  

DOE Patents [OSTI]

The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

Callahan, Daniel E; Parvin, Bahram

2013-10-01T23:59:59.000Z

196

Visual-servoing optical microscopy  

DOE Patents [OSTI]

The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

2011-05-24T23:59:59.000Z

197

Uranium-contaminated soils: Ultramicrotomy and electron beam analysis  

SciTech Connect (OSTI)

Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1994-04-01T23:59:59.000Z

198

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

199

Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy  

SciTech Connect (OSTI)

Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

Unocic, Raymond R [ORNL; Baggetto, Loic [ORNL; Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL; More, Karren Leslie [ORNL

2012-01-01T23:59:59.000Z

200

Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy  

SciTech Connect (OSTI)

The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a ghosted effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

Ramrez-Salgado, J. [Instituto Mexicano del Petrleo, Direccin de Investigacin y Posgrado, Eje Central Norte Lzaro Crdenas, No. 152, 07730 D.F., Mxico (Mexico); Domnguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petrleo, Direccin de Investigacin y Posgrado, Eje Central Norte Lzaro Crdenas, No. 152, 07730 D.F., Mxico (Mexico); Castro-Domnguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1138656 (Japan); Hernndez-Hernndez, P. [Instituto Mexicano del Petrleo, Direccin de Investigacin y Posgrado, Eje Central Norte Lzaro Crdenas, No. 152, 07730 D.F., Mxico (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

2013-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Instrument Series: Microscopy Environmental Transmission  

E-Print Network [OSTI]

evaluation such as in situ observation of microstructural evolution during device operation (e.g., a battery nanoscale structure and properties correlation, local electronic structure, and chemical state with single ­ showcasing solid-liquid, solid-gas, and solid-solid interface structures Biogeoscience ­ detailing soft

202

In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)  

SciTech Connect (OSTI)

Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth [1] of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film [2]. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy.

Al-Mahboob A.; Vescovo, E.; Sadowski, J.T.

2013-08-18T23:59:59.000Z

203

Multiphoton microscopy with near infrared contrast  

E-Print Network [OSTI]

Multiphoton microscopy with near infrared contrast agents Siavash Yazdanfar,a, * Chulmin Joo,a Chun limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared NIR fluorescent Engineers. DOI: 10.1117/1.3420209 Keywords: two-photon microscopy; ultrafast fiber lasers; near-infrared

Larson-Prior, Linda

204

Nonlinear Dark-Field Microscopy Hayk Harutyunyan,  

E-Print Network [OSTI]

/20/2010 Published on Web: 11/16/2010 FIGURE 1. Illustration of the nonlinear dark-field imaging method. Two incidentNonlinear Dark-Field Microscopy Hayk Harutyunyan, Stefano Palomba, Jan Renger, Romain Quidant Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large

Novotny, Lukas

205

Phase modulation mode of scanning ion conductance microscopy  

SciTech Connect (OSTI)

This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

2014-08-04T23:59:59.000Z

206

High-resolution x-ray diffraction microscopy of specifically labeled yeast cells  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolu- tion limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (1113 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of mole- cular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lec- tin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

Nelson, J.; Huang, X.; Steinbrener, J.; Shapiro, D.; Kirz, J.; Marchesini, S.; Neiman, A. M.; Turner, J. J.; Jacobsen, C.

2010-04-20T23:59:59.000Z

207

Proposal for a High-Brightness Pulsed Electron Source  

SciTech Connect (OSTI)

We propose a novel scheme for a high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography. A description of the proposed scheme is presented.

Zolotorev, M.; Commins, E.D.; Heifets, S.; Sannibale, F.; /LBL, Berkeley /UC, Berkeley /SLAC

2006-10-16T23:59:59.000Z

208

Photon tunnelling microscopy of polyethylene single crystals  

E-Print Network [OSTI]

Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

Srinivasarao, Mohan

209

Subwavelength optical microscopy in the far field  

E-Print Network [OSTI]

We present a procedure for subwavelength optical microscopy. The identical atoms are distributed on a plane and shined with a standing wave. We rotate the plane to different angles and record the resonant fluorescence spectra in the far field, from...

Sun, Qingqing; Al-Amri, M.; Scully, Marlan O.; Zubairy, M. Suhail.

2011-01-01T23:59:59.000Z

210

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1  

E-Print Network [OSTI]

crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 e of biological electron microscopy [1­3]. Radiation damage precludes repeated imaging of live specimens [4 in their natural, hydrated state, without limitations imposed by x-ray optics. DOI: 10.1103/PhysRevLett.103

Mohseni, Hooman

211

In Situ Photoelectron Emission Microscopy of a Thermally Induced...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

212

DeepView: A collaborative framework for distributed microscopy  

SciTech Connect (OSTI)

This paper outlines the motivation, requirements, and architecture of a collaborative framework for distributed virtual microscopy. In this context, the requirements are specified in terms of (1) functionality, (2) scalability, (3) interactivity, and (4) safety and security. Functionality refers to what and how an instrument does something. Scalability refers to the number of instruments, vendor-specific desktop workstations, analysis programs, and collaborators that can be accessed. Interactivity refers to how well the system can be steered either for static or dynamic experiments. Safety and security refers to safe operation of an instrument coupled with user authentication, privacy, and integrity of data communication. To meet these requirements, we introduce three types of services in the architecture: Instrument Services (IS), Exchange Services (ES), and Computational Services (CS). These services may reside on any host in the distributed system. The IS provide an abstraction for manipulating different types of microscopes; the ES provide common services that are required between different resources; and the CS provide analytical capabilities for data analysis and simulation. These services are brought together through CORBA and its enabling services, e.g., Event Services, Time Services, Naming Services, and Security Services. Two unique applications have been introduced into the CS for analyzing scientific images either for instrument control or recovery of a model for objects of interest. These include: in-situ electron microscopy and recovery of 3D shape from holographic microscopy. The first application provides a near real-time processing of the video-stream for on-line quantitative analysis and the use of that information for closed-loop servo control. The second application reconstructs a 3D representation of an inclusion (a crystal structure in a matrix) from multiple views through holographic electron microscopy. These application require steering external stimuli or computational parameters for a particular result. In a sense, ''computational instruments'' (symmetric multiprocessors) interact closely with data generated from ''experimental instruments'' (unique microscopes) to conduct new experiments and bring new functionalities to these instruments. Both of these features exploit high-performance computing and low-latency networks to bring novel functionalities to unique scientific imaging instruments.

Parvin, B.; Taylor, J.; Cong, G.

1998-08-10T23:59:59.000Z

213

Uranium Analysis with X-ray Microscopy Research Team: Andrew Duffin, Jesse Ward, Gregory Eiden, Steven Smith, Bruce McNamara, Edgar Buck  

E-Print Network [OSTI]

Uranium Analysis with X-ray Microscopy Research Team: Andrew Duffin, Jesse Ward, Gregory Eiden Chemical fingerprinting of anthropogenic and mineral uranium leading to chemical age dating of reactive uranium samples Develop x-ray and/or electron microscopy protocol for non- destructive uranium sample

214

Potential applications of microscopy for steam coal  

SciTech Connect (OSTI)

Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

DeVanney, K.F.; Clarkson, R.J.

1995-08-01T23:59:59.000Z

215

Application of fluorescence microscopy to coal-derived resid characterization  

SciTech Connect (OSTI)

This study evaluates the usefulness of a fluorescence microscopy methodology to analyze coal-derived resids and interpret the data in the light of liquefaction processing conditions, process response, the inferred resid reactivity, and in relation to results of other analytical data. The fluorescence technique utilized has been widely applied to coal and kerogen characterization, albeit with some modifications, but is novel in its application to the characterization of coal liquids. Fluorescence is the emission of light energy which occurs when electrons, having been excited to a higher energy orbital, return to their lower energy ground state. The majority of organic molecules that fluoresce are those with conjugated double bonds (chromophores), such as aromatics, characterized by pi-electrons less strongly bound within the molecule than sigma electrons, that can be excited to anti-bonding pi-orbitals. Increasing the extent of pi-bond conjugation (i.e. larger molecular size) generally imparts a shift in absorption and emission spectra to longer wavelengths. Resid fluorescence largely depends on the concentration and degree of conjugation of aromatic chromophores in the high molecular weight liquids, possibly with ancillary effects from oxygen functionalities. In this context, fluorescence analysis of liquefaction resids can potentially evaluate process performance, since direct liquefaction processes endeavor to break down the macromolecular structure of coal, and reduce the molecular weight of polycondensed aromatics through hydrogenation, the opening of ring structures, and heteroatom removal.

Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

1991-01-01T23:59:59.000Z

216

Application of fluorescence microscopy to coal-derived resid characterization  

SciTech Connect (OSTI)

This study evaluates the usefulness of a fluorescence microscopy methodology to analyze coal-derived resids and interpret the data in the light of liquefaction processing conditions, process response, the inferred resid reactivity, and in relation to results of other analytical data. The fluorescence technique utilized has been widely applied to coal and kerogen characterization, albeit with some modifications, but is novel in its application to the characterization of coal liquids. Fluorescence is the emission of light energy which occurs when electrons, having been excited to a higher energy orbital, return to their lower energy ground state. The majority of organic molecules that fluoresce are those with conjugated double bonds (chromophores), such as aromatics, characterized by pi-electrons less strongly bound within the molecule than sigma electrons, that can be excited to anti-bonding pi-orbitals. Increasing the extent of pi-bond conjugation (i.e. larger molecular size) generally imparts a shift in absorption and emission spectra to longer wavelengths. Resid fluorescence largely depends on the concentration and degree of conjugation of aromatic chromophores in the high molecular weight liquids, possibly with ancillary effects from oxygen functionalities. In this context, fluorescence analysis of liquefaction resids can potentially evaluate process performance, since direct liquefaction processes endeavor to break down the macromolecular structure of coal, and reduce the molecular weight of polycondensed aromatics through hydrogenation, the opening of ring structures, and heteroatom removal.

Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

1991-12-31T23:59:59.000Z

217

Spatial resolution in vector potential photoelectron microscopy  

SciTech Connect (OSTI)

The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

Browning, R. [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)] [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)

2014-03-15T23:59:59.000Z

218

Mapping defects in a carbon nanotube by momentum transfer dependent electron energy loss spectromicroscopy  

E-Print Network [OSTI]

Mapping defects in a carbon nanotube by momentum transfer dependent electron energy loss nanotubes Electron microscopy Electron energy loss spectroscopy q-dependence Electron linear dichroism a b s t r a c t Momentum resolved electron energy loss (EELS) spectra of multi-walled carbon nanotubes

Hitchcock, Adam P.

219

Dispersion compensation for attosecond electron pulses  

SciTech Connect (OSTI)

We propose a device to compensate for the dispersion of attosecond electron pulses. The device uses only static electric and magnetic fields and therefore does not require synchronization to the pulsed electron source. Analogous to the well-known optical dispersion compensator, an electron dispersion compensator separates paths by energy in space. Magnetic fields are used as the dispersing element, while a Wien filter is used for compensation of the electron arrival times. We analyze a device with a size of centimeters, which can be applied to ultrafast electron diffraction and microscopy, and fundamental studies.

Hansen, Peter; Baumgarten, Cory; Batelaan, Herman; Centurion, Martin [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

2012-08-20T23:59:59.000Z

220

Single particle microscopy with nanometer resolution  

E-Print Network [OSTI]

We experimentally demonstrate nanoscopic transmission microscopy relying on a deterministic single particle source. This increases the signal-to-noise ratio with respect to conventional microscopy methods, which employ Poissonian particle sources. We use laser-cooled ions extracted from a Paul trap, and demonstrate remote imaging of transmissive objects with a resolution of 8.6 $\\pm$ 2.0nm and a minimum two-sample deviation of the beam position of 1.5nm. Detector dark counts can be suppressed by 6 orders of magnitudes through gating by the extraction event. The deterministic nature of our source enables an information-gain driven approach to imaging. We demonstrate this by performing efficient beam characterization based on a Bayes experiment design method.

Georg Jacob; Karin Groot-Berning; Sebastian Wolf; Stefan Ulm; Luc Couturier; Ulrich G. Poschinger; Ferdinand Schmidt-Kaler; Kilian Singer

2014-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Proposal for a High-Brightness Pulsed Electron Source  

SciTech Connect (OSTI)

We propose a novel scheme for a high-brightness pulsedelectron source, which has the potential for many useful applications inelectron microscopy, inverse photo-emission, low energy electronscattering experiments, and electron holography. A description of theproposed scheme is presented.

Zolotorev, Max; Commins, Eugene D.; Heifets, Sam; Sannibale,Fernando

2006-03-15T23:59:59.000Z

222

STM studies of the nanoscale electronic landscape of the cuprates  

E-Print Network [OSTI]

Scanning tunneling microscopy (STM) studies of the high-T superconductors have led to a number of important discoveries. In particular, STM has revealed spatial patterns in electronic density due to phenomena such as ...

Wise, William Douglas

2009-01-01T23:59:59.000Z

223

Dark Field Microscopy for Analytical Laboratory Courses  

SciTech Connect (OSTI)

An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

2014-06-10T23:59:59.000Z

224

Sandia National Laboratories: scanning tunneling microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving thereversetunneling microscopy

225

Defect and damage evolution quantification in dynamically-deformed metals using orientation-imaging microscopy  

SciTech Connect (OSTI)

Orientation-imaging microscopy offers unique capabilities to quantify the defects and damage evolution occurring in metals following dynamic and shock loading. Examples of the quantification of the types of deformation twins activated, volume fraction of twinning, and damage evolution as a function of shock loading in Ta are presented. Electron back-scatter diffraction (EBSD) examination of the damage evolution in sweeping-detonation-wave shock loading to study spallation in Cu is also presented.

Gray, George T., III [Los Alamos National Laboratory; Livescu, Veronica [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory

2010-03-18T23:59:59.000Z

226

Quantitative imaging of living cells by deep ultraviolet microscopy  

E-Print Network [OSTI]

Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

Zeskind, Benjamin J

2006-01-01T23:59:59.000Z

227

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

228

Chemically-selective imaging of brain structures with CARS microscopy  

E-Print Network [OSTI]

Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

Xie, Xiaoliang Sunney

229

Graphene on Ru(0001) Moire Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene/Ru(0001) Heterostructures  

E-Print Network [OSTI]

Graphene on Ru(0001) Moire Corrugation Studied by Scanning Tunneling Microscopy on Au/Graphene on graphene/Ru(0001) were used to study the corrugation of the moire structure of graphene/Ru(0001 for the graphene/Ru(0001) moire is of structural nature rather than electronic. STM showed a large value

Ciobanu, Cristian

230

NREL: Measurements and Characterization - Analytical Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResultsGeothermalAnalytical Microscopy

231

Direct observation of temperature dependent magnetic domain structure of the multiferroic La{sub 0.66}Sr{sub 0.34}MnO{sub 3}/BiFeO{sub 3} bilayer system by x-ray linear dichroism- and x-ray magnetic circular dichroism-photoemission electron microscopy  

SciTech Connect (OSTI)

Low-thickness La{sub 0.66}Sr{sub 0.34}MnO{sub 3} (LSMO)/BiFeO{sub 3} (BFO) thin film samples deposited on SrTiO{sub 3} were imaged by high resolution x-ray microscopy at different temperatures. The ultra-thin thickness of the top layer allows to image both the ferromagnetic domain structure of LSMO and the multiferroic domain structure of the buried BFO layer, opening a path to a direct observation of coupling at the interface on a microscopic level. By comparing the domain size and structure of the BFO and LSMO, we observed that, in contrast to LSMO single layers, LSMO/BFO multilayers show a strong temperature dependence of the ferromagnetic domain structure of the LSMO. Particularly, at 40?K, a similar domain size for BFO and LSMO is observed. This indicates a persistence of exchange coupling on the microscopic scale at a temperature, where the exchange bias as determined by magnetometer measurements is vanishing.

Mix, C.; Finizio, S.; Jakob, G.; Klui, M. [Institut fr Physik, Johannes Gutenberg Universitt Mainz, Staudingerweg 7, D-55128 Mainz (Germany); Buzzi, M.; Nolting, F. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Kronast, F. [Helmholtz-Zentrum-Berlin fr Materialien und Energie GmbH, Albert-Einstein Strae 15, D-12489 Berlin (Germany)

2014-05-21T23:59:59.000Z

232

Attachment of Salmonella on cantaloupe and effect of electron beam irradiation on quality and safety of sliced cantaloupe  

E-Print Network [OSTI]

effectively by irradiation but there was no significant effect on reduction of yeasts. Our results show that electron beam irradiation in combination with chemical sanitizers is effective in decontamination of fresh-cut produce. Electron microscopy images...

Palekar, Mangesh Prafull

2006-04-12T23:59:59.000Z

233

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect (OSTI)

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martnez, O. E. [Facultad de Ingeniera, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniera, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

234

Domain switching by electron beam irradiation of Z{sup +}-polar surface in Mg-doped lithium niobate  

SciTech Connect (OSTI)

The appearance of the static domains with depth above 200??m in the bulk of MgO-doped lithium niobate single crystals as a result of focused electron beam irradiation of Z{sup +}-polar surface was demonstrated. The created domain patterns were visualized by high-resolution methods including piezoresponse force microscopy, scanning electron microscopy, and confocal Raman microscopy. The main stages of the domain structure formation were revealed and explained in terms of the original model.

Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Chezganov, D. S.; Smirnov, M. M.; Alikin, D. O.; Neradovskiy, M. M.; Kuznetsov, D. K. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

2014-08-04T23:59:59.000Z

235

X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging  

SciTech Connect (OSTI)

The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/{delta}E = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses.

Schneider, G.; Heim, S.; Rehbein, S.; Eichert, D. [BESSY GmbH, Albert Einstein Strasse 15, 12489 Berlin (Germany); Guttmann, P. [IRP, c/o BESSY m.b.H., Albert Einstein Strasse 15, 12489 Berlin (Germany); Niemann, B. [IRP, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

2007-01-19T23:59:59.000Z

236

Uranium-contaminated soils: Ultramicrotomy and electron beam analysis  

SciTech Connect (OSTI)

Uranium-contaminated soils from the U.S. Department of Energy (DOE) Fernald Site, Ohio, have been examined by a combination of scanning electron microscopy with backscattered electron imaging (SEM/BSE) and analytical electron microscopy (AEM). The inhomogeneous distribution of particulate uranium phases in the soil required the development of a method for using ultramicrotomy to prepare transmission electron microscopy (TEM) thin sections of the SEM mounts. A water-miscible resin was selected that allowed comparison between SEM and TEM images, permitting representative sampling of the soil. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite (UO{sub 2}). No uranium was detected in association with phyllosilicates in the soil.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1994-02-01T23:59:59.000Z

237

NATIONAL CENTRE FOR SENSOR RESEARCH (NCSR) Research Engineer Fluorescence Microscopy  

E-Print Network [OSTI]

manuals, prepare standard operating procedures and ensure documentation is maintained. Manage online projects. Undertake the commissioning and maintenance of microscopy equipment. Collate operations

Humphrys, Mark

238

Atom chip microscopy: A novel probe for strongly correlated materials  

SciTech Connect (OSTI)

Improved measurements of strongly correlated systems will enable the predicative design of the next generation of supermaterials. In this program, we are harnessing recent advances in the quantum manipulation of ultracold atomic gases to expand our ability to probe these technologically important materials in heretofore unexplored regions of temperature, resolution, and sensitivity parameter space. We are working to demonstrate the use of atom chips to enable single-shot, large area detection of magnetic flux at the 10^-7 flux quantum level and below. By harnessing the extreme sensitivity of atomic clocks and Bose-Einstein condensates (BECs) to external perturbations, the cryogenic atom chip technology developed here will provide a magnetic flux detection capability that surpasses other techniques---such as scanning SQUIDs---by a factor of 10--1000. We are testing the utility of this technique by using rubidium BECs to image the magnetic fields emanating from charge transport and magnetic domain percolation in strongly correlated materials as they undergo temperature-tuned metal--to--insulator phase transitions. Cryogenic atom chip microscopy introduces three very important features to the toolbox of high-resolution, strongly correlated material microscopy: simultaneous detection of magnetic and electric fields (down to the sub-single electron charge level); no invasive large magnetic fields or gradients; simultaneous micro- and macroscopic spatial resolution; freedom from 1/f flicker noise at low frequencies; and, perhaps most importantly, the complete decoupling of probe and sample temperatures. The first of these features will play an important role in studying the interplay between magnetic and electric domain structure. The last two are crucial for low frequency magnetic noise detection in, e.g., the cuprate pseudogap region and for precision measurements of transport in the high temperature, technologically relevant regime inaccessible to other techniques based on superconducting scanning probes. In periods 1--3 of this grant, which we now close at the University of Illinois at Urbana-Champaign and restart at Stanford University where our new lab is being built, we have demonstrated the ability to rapidly create Rb BECs and trap them within microns of a surface ina cryostat. Period 4 of this grant, to be performed at Stanford, will demonstrate the feasibility of using atom chips with a BEC to image transport features on a cryogenically cooled surface. Successful demonstration, in future funding cycles, will lead directly to the use of system for studies of transport in exotic and technologically relevant materials such as cuprate superconductors and topological insulators.

Lev, Benjamin L

2011-11-03T23:59:59.000Z

239

Video Article Three-dimensional Optical-resolution Photoacoustic Microscopy  

E-Print Network [OSTI]

of optical microscopy optical-resolution photoacoustic microscopy (OR-PAM)1, where the optical irradiation © 2011 Journal of Visualized Experiments 1. Optical irradiation 1. Optical irradiation source: a diode for ultrasonic detection, which is aligned coaxially with the diffraction-limited optical irradiation. 3

Wang, Lihong

240

Photoacoustic microscopy of tyrosinase reporter gene in vivo  

E-Print Network [OSTI]

Photoacoustic microscopy of tyrosinase reporter gene in vivo Arie Krumholz Sarah J. Van microscopy of tyrosinase reporter gene in vivo Arie Krumholz,a Sarah J. VanVickle-Chavez,b Junjie Yao for tyrosinase, the primary enzyme responsible for expression of melanin in melanogenic cells. Optical res

Wang, Lihong

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Infrared near-field microscopy of materials motivation: ,,chemical nanoscope"  

E-Print Network [OSTI]

Infrared near-field microscopy of materials motivation: ,,chemical nanoscope" scattering principle) topography s-SNOM infrared: = 9.7 µm visible: = 633 nm #12; Ein Near-field interaction is nonlinear in z resolution /2000000 !! 700 MHz 7 MHz #12;Apertureless near-field microscopy chances wavelength

242

Optimized cobalt nanowires for domain wall manipulation imaged by in situ Lorentz microscopy  

SciTech Connect (OSTI)

Direct observation of domain wall (DW) nucleation and propagation in focused electron beam induced deposited Co nanowires as a function of their dimensions was carried out by Lorentz microscopy (LTEM) upon in situ application of magnetic field. Optimal dimensions favoring the unambiguous DW nucleation/propagation required for applications were found in 500-nm-wide and 13-nm-thick Co nanowires, with a maximum nucleation field and the largest gap between nucleation and propagation fields. The internal DW structures were resolved using the transport-of-intensity equation formalism in LTEM images and showed that the optimal nanowire dimensions correspond to the crossover between the nucleation of transverse and vortex walls.

Rodriguez, L. A. [Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain) [Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); CEMES-CNRS 29, rue Jeanne Marvig, B.P. 94347 F-31055, Toulouse Cedex (France); Magen, C. [Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain) [Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); Fundacion ARAID, 50004 Zaragoza (Spain)] [Spain; Snoeck, E.; Gatel, C. [Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France) [Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); CEMES-CNRS 29, rue Jeanne Marvig, B.P. 94347 F-31055, Toulouse Cedex (France); Serrano-Ramon, L. [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain) [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragon (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza (Spain); and others

2013-01-14T23:59:59.000Z

243

Modulated microwave microscopy and probes used therewith  

DOE Patents [OSTI]

A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

2012-09-11T23:59:59.000Z

244

An atomic force microscopy-based method for line edge roughness measurement  

SciTech Connect (OSTI)

With the constant decrease of semiconductor device dimensions, line edge roughness (LER) becomes one of the most important sources of device variability and needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. LER control at the nanometer scale requires accurate measurements. We introduce a technique for LER measurement based upon the atomic force microscope (AFM). In this technique, the sample is tilted at about 45 Degree-Sign and feature sidewalls are scanned along their length with the AFM tip to obtain three-dimensional images. The small radius of curvature of the tip together with the low noise level of a laboratory AFM result in high resolution images. Half profiles and LER values on all the height of the sidewalls are extracted from the 3D images using a procedure that we developed. The influence of sample angle variations on the measurements is shown to be small. The technique is applied to the study of a full pattern transfer into a simplified gate stack. The images obtained are qualitatively consistent with cross-section scanning electron microscopy images and the average LER values agree with that obtained by critical dimension scanning electron microscopy. In addition to its high resolution, this technique presents several advantages such as the ability to image the foot of photoresist lines, complex multi-layer stacks regardless of the materials, and deep re-entrant profiles.

Fouchier, M.; Pargon, E.; Bardet, B. [CNRS/UJF-Grenoble1/CEA LTM, 17 avenue des Martyrs, 38054 Grenoble cedex 9 (France)

2013-03-14T23:59:59.000Z

245

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

SciTech Connect (OSTI)

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL) [Center for Nanophase Materials Sciences, ORNL

2010-10-19T23:59:59.000Z

246

Simulation of electron-matter interaction during wet-STEM electron tomography  

SciTech Connect (OSTI)

Tomography is an efficient tool to probe the 3 dimensional (3D) structure of materials. In the laboratory, a device has been developed to perform electron tomography in an environmental scanning electron microscopy (ESEM). The configuration of Scanning Transmission Electron Microscopy (STEM) in Environmental Scanning Electron Microscopy (ESEM) provides a novel approach for the characterization of the 3D structure of materials and optimizes a compromise between the resolution level of a few nm and the large tomogram due to the high thickness of transparency. Moreover, STEM allows the observation in 2D of wet samples in an ESEM by finely controlling the sample temperature and the water pressure of the sample environment. It has been recently demonstrated that it was possible to acquire image series of hydrated objects and thus to attain 3D characterization of wet samples. In order to get reliable and quantitative data, the present study deals with the simulation of electron-matter interactions. From such simulation on the MCM-41 material, we determine the minimum quantity of water layer which can be detected on wet materials.

Septiyanto, Rahmat Firman, E-mail: karine.masenelli-varlot@insa-lyon.fr [MATEIS, INSA-Lyon, CNRS UMR5510, F-69621, France and Physics of Electronic Material, Departement of Physics, Faculty of Mathematic and Natural Sciences, ITB Jalan Ganesha No. 10, Bandung 40132 (Indonesia); Masenelli-Varlot, Karine [MATEIS, INSA-Lyon, CNRS UMR5510, F-69621 (France); Iskandar, Ferry [Physics of Electronic Material, Departement of Physics, Faculty of Mathematic and Natural Sciences, ITB Jalan Ganesha No. 10, Bandung 40132 (Indonesia)

2014-02-24T23:59:59.000Z

247

Target-specific contrast agents for magnetic resonance microscopy  

E-Print Network [OSTI]

High-resolution ex vivo magnetic resonance microscopy (MRM) can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. The goal ...

Hepler Blackwell, Megan Leticia

2007-01-01T23:59:59.000Z

248

X-Ray Diffraction Microscopy of Magnetic Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys. Rev. Lett. 107, 033904 (2011). Web: http:prl.aps.orgpdfPRLv107i3e033904...

249

Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy  

E-Print Network [OSTI]

Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around a laser generating...

Larson, Adam Michael

2009-05-15T23:59:59.000Z

250

Doppler optical coherence microscopy for studies of cochlear mechanics  

E-Print Network [OSTI]

The possibility of measuring subnanometer motions with micron scale spatial resolution in the intact mammalian cochlea using Doppler optical coherence microscopy (DOCM) is demonstrated. A novel DOCM system is described ...

Hong, Stanley S.

251

Estimating Geometric Dislocation Densities in Polycrystalline Materialsfrom Orientation Imaging Microscopy  

SciTech Connect (OSTI)

Herein we consider polycrystalline materials which can be taken as statistically homogeneous and whose grains can be adequately modeled as rigid-plastic. Our objective is to obtain, from orientation imaging microscopy (OIM), estimates of geometrically necessary dislocation (GND) densities.

Man, Chi-Sing [University of Kentucky; Gao, Xiang [University of Kentucky; Godefroy, Scott [University of Kentucky; Kenik, Edward A [ORNL

2010-01-01T23:59:59.000Z

252

Carmichael's Concise Review Microscopy is Only Skin Deep  

E-Print Network [OSTI]

Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

Heller, Eric

253

Toward single cell traction microscopy within 3D collagen matrices  

SciTech Connect (OSTI)

Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cellECM and cellcell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: Review of the current state of the art in 3D cell traction force microscopy. Bulk and micro-characterization of remodelable fibrous collagen gels. Strategies for performing 3D cell traction microscopy within collagen gels.

Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

2013-10-01T23:59:59.000Z

254

Final Report: Algorithms for Diffractive Microscopy  

SciTech Connect (OSTI)

The phenomenal coherence and brightness of x-ray free-electron laser light sources, such as the LCLS at SLAC, have the potential of revolutionizing the investigation of structure and dynamics in the nano-domain. However, this potential will go unrealized without a similar revolution in the way the data are analyzed. While it is true that the ambitious design parameters of the LCLS have been achieved, the prospects of realizing the most publicized goal of this instrument the imaging of individual bio-particles remains daunting. Even with 10{sup 12} photons per x-ray pulse, the feebleness of the scattering process represents a fundamental limit that no amount of engineering ingenuity can overcome. Large bio-molecules will scatter on the order of only 10{sup 3} photons per pulse into a detector with 106 pixels; the diffraction images will be virtually indistinguishable from noise. Averaging such noisy signals over many pulses is not possible because the particle orientation cannot be controlled. Each noisy laser snapshot is thus confounded by the unknown viewpoint of the particle. Given the heavy DOE investment in LCLS and the profound technical challenges facing single-particle imaging, the final two years of this project have concentrated on this effort. We are happy to report that we succeeded in developing an extremely efficient algorithm that can reconstruct the shapes of particles at even the extremes of noise expected in future LCLS experiments with single bio-particles. Since this is the most important outcome of this project, the major part of this report documents this accomplishment. The theoretical techniques that were developed for the single-particle imaging project have proved useful in other imaging problems that are described at the end of the report.

Elser, Veit

2010-10-08T23:59:59.000Z

255

Magnetic spectroscopy and microscopy of functional materials  

SciTech Connect (OSTI)

Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).

Jenkins, C.A.

2011-01-28T23:59:59.000Z

256

Electron Impedances  

SciTech Connect (OSTI)

It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

P Cameron

2011-12-31T23:59:59.000Z

257

Ultra-bright pulsed electron beam with low longitudinal emittance  

DOE Patents [OSTI]

A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.

Zolotorev, Max (Oakland, CA)

2010-07-13T23:59:59.000Z

258

E-Print Network 3.0 - advanced electron microscopy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methods for analyzing the beam sensitive materials; Expert in advanced... of thin films, powders and bulk materials. Characterization skills comprise of advanced...

259

A technique for quantitative and qualitative viewing of aquatic bacteria using scanning electron microscopy  

E-Print Network [OSTI]

microscopic enumeration techniques. Water samples are concentrated on pre-wetted (Triton X-100) Nuclepore filters (0. 2 um pore size) to prov1de a uniform distri- bution of bacteria on the filter surface and vacuum filtered (660 Torr). The filter... is transferred to a petri dish containing filter paper soaked 1n 2% glutaraldehyde and the bacter1a are fixed for one hour. Dehydration 1s performed by transferr1ng the filters through a series of petri dishes conta1ning filter paper saturated with 25, 50, 75...

Dreier, Thomas Michael

2012-06-07T23:59:59.000Z

260

A revision of generic concepts in the subfamily Acetabularieae (Acetabulariaceae, dasycladales) based on scanning electron microscopy  

E-Print Network [OSTI]

by Eiseman (1970) in Lake Surprise, Florida. He reported a variety of phenotypes which formed a continuum between Chalmasia antillana Solms-Laubach, 1895 (calcified cysts} and Acetabularia farlowii Solms-Laubach, 1895 (uncalcified cysts). He concluded... lime matrix between adjacent cysts similar to the type of calcification in the genus Acicularia. He also reported a difference in crystal habits produced by species of Acetabularia anti liana. found in two different habitats, again indicating...

Bailey, Glenn Paul

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY  

E-Print Network [OSTI]

from W. R. Grace, General Electric and Lniun Carbide Co:apa!2 G3 WITH 0..1 WT. % MgG GENERAL ELECTRIC Co. GREEN DENSITYcompacts. WITH 0.1 WT. GENERAL ELECTRIC CO. EEN DENSITY: 40

Wang, D.N.-K.

2010-01-01T23:59:59.000Z

262

3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy  

E-Print Network [OSTI]

structural details from the laborious sample preparations of a system frozen in vitrified ice,2 which of an ensemble of artificially fixated samples in their native liquid environment, each sample exhibiting one

Zettl, Alex

263

Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy  

E-Print Network [OSTI]

. Corbin1 , Niklas Dellby1 , Matthew F. Murfitt1 , Christopher S. Own1 , Zoltan S. Szilagyi1 , Mark P

Pennycook, Steve

264

Proceedings of the seventh international conference on high voltage electron microscopy  

SciTech Connect (OSTI)

Eight-four papers are arranged under the following headings: high resolution, techniques and instrumentation, radiation effects, in-situ and phase transformations, minerals and ceramics, and semiconductors and thin films. Twenty-three papers were abstracted separately for the data base; three of the remainder had previously been abstracted. (DLC)

Fisher, R.M.; Gronsky, R.; Westmacott, K.H. (eds.)

1983-01-01T23:59:59.000Z

265

Electron Microscopy Characterization of Tc-Bearing Metallic Waste Forms- Final Report FY10  

SciTech Connect (OSTI)

The DOE Fuel Cycle Research & Development (FCR&D) Program is developing aqueous and electrochemical approaches to the processing of used nuclear fuel that will generate technetium-bearing waste streams. This final report presents Pacific Northwest National Laboratory (PNNL) research in FY10 to evaluate an iron-based alloy waste form for Tc that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal.

Buck, Edgar C.; Neiner, Doinita

2010-09-30T23:59:59.000Z

266

AUTOMATED CELL NUCLEUS DETECTION FOR LARGE-VOLUME ELECTRON MICROSCOPY OF NEURAL TISSUE  

E-Print Network [OSTI]

indicator of cell type; and nuclear locations make it possible to gather cellular spatial statistics of neurites for morphological and circuit reconstructions. Furthermore, nuclear structure is a useful and perform quantitative cytoarchitectonics for objective regional parcellations. while visiting

Hamprecht, Fred A.

267

SINTERING OF A12O3 POWDER COMPACT BY HOT STAGE SCANNING ELECTRON MICROSCOPY  

E-Print Network [OSTI]

2 G3 WITH 0..1 WT. % MgG GENERAL ELECTRIC Co. GREEN DENSITYcompacts. WITH 0.1 WT. GENERAL ELECTRIC CO. EEN DENSITY: 40R. Grace, General Electric and Lniun Carbide Co:apa! lic,,~

Wang, D.N.-K.

2010-01-01T23:59:59.000Z

268

Four-Wave Mixing Microscopy with Electronic Contrast of Individual Carbon Nanotubes  

E-Print Network [OSTI]

and J. Jiang, in Carbon Nanotubes, edited by A. Jorio, G.V. Perebeinos, in Carbon Nanotubes, edited by A. Jorio, G.and P. Finnie, in Carbon Nanotubes, edited by A. Jorio, G.

Collins, Philip G

2012-01-01T23:59:59.000Z

269

Isolation methods and electron microscopy of the Internal Cork Virus of sweet potatoes  

E-Print Network [OSTI]

and then diluting to 100 milli- liters with distilled water to make the buffered solution that was used during grinding of the lesions. After grinding was completed the slurry was squeezed through cheese cloth to remove the gross material. The slurry passing... in each of' the three tubes was resuspended in one milliliter of solution containing 0. 5 grams of sodium bromide per milliliter (14). Each of the three, one milliliter suspensions was transferred to a centrifuge tube for the SW39 rotor designed f...

Pickens, Edgar Eugene

1967-01-01T23:59:59.000Z

270

SCANNING ELECTRON MICROSCOPY AND PORE CASTING: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH  

SciTech Connect (OSTI)

Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

Thomas C. Chidsey Jr; David E. Eby; Louis H. Taylor

2003-12-01T23:59:59.000Z

271

Situs: A Package for Docking Crystal Structures into Low-Resolution Maps from Electron Microscopy  

E-Print Network [OSTI]

of the underlying structural data. 1999 Academic Press Key Words: topology representing neural net- works of visualization in structural biology is currently expanding, as novel modeling and graphics tools begin

Wriggers, Willy

272

Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy  

SciTech Connect (OSTI)

The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solving the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.

Gregerova, Miroslava, E-mail: mirka@sci.muni.cz [Masaryk University in Brno, Faculty of Science, Institute of Geological Sciences, Kotlarska 2, 611 37 Brno (Czech Republic); Vsiansky, Dalibor, E-mail: daliborv@centrum.cz [Research Institute of Building Materials, JSC., Hnevkovskeho 65, 617 00 Brno (Czech Republic)

2009-07-15T23:59:59.000Z

273

Scanning Electron Microscopy of Squid, Loligo peale;: Raw, Cooked, and Frozen Mantle  

E-Print Network [OSTI]

OTWELL and GEORGE G. GIDDINGS W. Steven Otwell is with the Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611. George G. Gid- dings is with the Fundacion Chile, Avda Santa, but cooking caused gross distortions in all mantle tissues. North Carolina, and cleaned for use (skin, head

274

Study of perineal patterns of four species of Meloidogyne (Nematoda:Heteroderoidea) using scanning electron microscopy  

E-Print Network [OSTI]

the perineal pattern, terms originated by Esser et al. (8) were utilized (Fig. 48). The pattern was divided into 4 zones and a tail area. Zone 1 is the rough'ty circular area in the center of the pattern, within which the peri ni um occurs . The perinium...

Khan, Zainab Najafali

2012-06-07T23:59:59.000Z

275

Validation of Pisum sativum agglutinin fluorescent marker for stallion spermatozoal acrosomes with transmission electron microscopy  

E-Print Network [OSTI]

. Either 1 uM or 10 uM A23187 (a calcium ionophore) was added to each ejaculate and incubated for 1,2 and 3 hours at two different temperatures (37C? and 22C?). Raw semen or extender were fixed at time zero to serve as baseline controls. Other untreated...

Carrell, Betty Pauline

2012-06-07T23:59:59.000Z

276

Developing a denoising filter for electron microscopy and tomography data in the cloud  

E-Print Network [OSTI]

of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin St., Houston, TX 77030, USA Present Address: M

Wriggers, Willy

277

Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy  

E-Print Network [OSTI]

Commonly used preparation method for thin diamond membranes by focused ion beam (FIB) techniques results in surface damage. Here, the authors introduce an alternative method based on reactive ion etching (RIE). To compare ...

Li, Luozhou

278

Development of a large format direct detection device for three dimensional transmission electron microscopy  

E-Print Network [OSTI]

F. Duttweiler, J.C. Bouwer, S.T. Peltier, M.H. Ellisman, andDuttweiler, J.C. Bouwer, S.T. Peltier, M. Ellisman, and N.H.Duttweiler, J.C. Bouwer, S.T. Peltier, A.C. Milazzo, and M.

Milazzo, Anna-Clare

2009-01-01T23:59:59.000Z

279

Morphological properties of pillared layered materials investigated by electron microscopy technique  

E-Print Network [OSTI]

. REFERENCES. 92 93 VITA 98 LIST OF FIGURES Figure Page 1 A model for the pillaring of smectite clays by hydrolyzed cations 2 Idealized structure of o-Zrp showing arrangement of the layers. 15 3 X-ray diffraction powder pattern of the nickel... intercalate a-ZrP product. . . . . . . . 16 4 SEM picture at 20, 000 of the nickel intecalate a-ZrP product 17 5 X-ray diffraction powder pattern of the nickel pillared a-ZrP product. 19 6 SEM picture at 20, 000x of the nickel pillared a-ZrP product. 20...

Navas de Mascianglioli, Margarit

1993-01-01T23:59:59.000Z

280

TRANSMISSION ELECTRON MICROSCOPY AND RUTHERFORD BACKSCATTERING STUDIES OF DIFFERENT DAMAGE STRUCTURES IN p+ IMPLANTED Si  

E-Print Network [OSTI]

Peregainus, Stevenage) )970 and AERE Report R 6496 (1970).Jim Stephens and D. Chivers of AERE Harewell (England) for

Sadana, D.K.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assembly of Large Three-Dimensional Volumes from Serial-Section Transmission Electron Microscopy  

E-Print Network [OSTI]

Pavel Koshevoy1, Tolga Tasdizen1, Ross Whitaker1, Bryan Jones2 and Robert Marc2 1Scientific Computing size and limited field of view: each section must be assembled from many overlapping tiles, a process, data-driven descriptions of microscopic structures are very important in neurobiology. While neural

Utah, University of

282

An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air  

E-Print Network [OSTI]

in bulk silicon, can severely impact the durability and reliability of microelectromechanical system in the multiuser microelectromechanical system process MUMPs foundry and Sandia Ultra-planar, Multi-level MEMS

Ritchie, Robert

283

Computational methods for constructing protein structure models from 3D electron microscopy maps  

E-Print Network [OSTI]

into a low-res- olution EM map. A list of available computational tools is also provided. ? 2013 Elsevier Inc, Purdue University, West Lafayette, IN 47907, USA b Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN 47907, USA c Markey Center for Structural Biology, College

Kihara, Daisuke

284

Investigation of bone response to implant materials by electron microscopy and computer simulation  

E-Print Network [OSTI]

(cont.) implementation of this scintigraphic method for quantitative studies of osteoblast-mediated mineralization in vitro. A 2-D truss finite element model is used to study the remodeling of trabecular bone. Using strain ...

Wang, Hao, 1974-

2004-01-01T23:59:59.000Z

285

Photoemission Electron Microscopy of TiO2 Anatase Films Embedded with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministration AlbumCoulomb repulsion

286

An electron microscopy study of ground-nut poisoning in turkey poults  

E-Print Network [OSTI]

etiology. In the eat'Ly papers the condition was known by the name of Turkey ' X" disease. However, this name was quickly changed when in L961 Blount (7) concluded that toxic Brasilian ground-nut meal was responsible for the outbreaks of this new... condition. Similar toxic effects in ducklings, chickens, rats, guinea pigs, cows and pigs have also been reported. In general, there is little available information about how and where tbe toxic principles of any kind act in the cells structures. Also...

Martin, Alcides Amilcar

1963-01-01T23:59:59.000Z

287

Photoemission Electron Microscopy of TiO2 Anatase Films Embedded...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

densities between the two phases near the Fermi level. This assertion is confirmed by UPS data that shows the rutile work function to be 0.2 eV lower and a greater occupied...

288

Hall effect and transmission electron microscopy of epitaxial MnSi thin films  

E-Print Network [OSTI]

(2011). 20 S. X. Huang and C. L. Chien, Phys. Rev. Lett. 108, 267201 (2012). 21 M. N. Wilson, E. A. Karhu, A. S. Quigley, U. K. Roler, A. B. Butenko, A. N. Bogdanov, M. D. Robertson, and T. L. Monchesky, Phys. Rev. B 86, 144420 (2012). 22 H. Du, J. P... . Karhu, D. P. Lake, A. S. Quigley, S. Meynell, A. N. Bogdanov, H. Fritzsche, U. K. Roler, and T. L. Monchesky, Phys. Rev. B 88, 214420 (2013). 32 E. A. Karhu, U. K. Roler, A. N. Bogdanov, S. Kahwaji, B. J. Kirby, H. Fritzsche, M. D. Robertson, C. F...

Meynell, S. A.; Wilson, M. N.; Loudon, J. C.; Spitzig, A.; Rybakov, F. N.; Johnson, M. B.; Monchesky, T. L.

2014-12-22T23:59:59.000Z

289

Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy  

E-Print Network [OSTI]

Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock,2 Timothy D. Raub,3,4 Dirk Schumann,5 Hojatollah Vali,5 Alexei V. Smirnov,3,6 and Joseph L. Kirschvink1 controversial hypothesis that a cometary impact triggered the PETM. Here we present ferromagnetic resonance (FMR

290

In-Situ Transmission Electron Microscopy Probing of Native Oxide and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300Aptamers andInSaturated PorousTo

291

Tomography and High-Resolution Electron Microscopy Study of Surfaces and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B OTom D'AgostinoTomstudy

292

E-Print Network 3.0 - advanced microscopy techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

microscopy techniques and their practice in relationship to materials structure characterization... of Microscopy", Edited by P.W. Hawkes and J.C.H. Spence, Springer, 2006 (An...

293

E-Print Network 3.0 - atomic force microscopy-based Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrochemical strain microscopy... -ion kinetics without changing the charging state of the battery. An atomic force microscopy tip in contact Source: Pint, Bruce A. -...

294

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

295

Swept source optical coherence microscopy for pathological assessment of cancerous tissues  

E-Print Network [OSTI]

Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

Ahsen, Osman Oguz

2013-01-01T23:59:59.000Z

296

Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data  

E-Print Network [OSTI]

Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks, even when the fluorescent signals of the particles overlap considerably. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level.

T. H. Besseling; M. Hermes; A. Kuijk; B. de Nijs; T. -S. Deng; M. Dijkstra; A. Imhof; A. van Blaaderen

2014-06-19T23:59:59.000Z

297

Field mapping by off-axis electron holography: from devices to the detection of single dopant atoms.  

E-Print Network [OSTI]

Field mapping by off-axis electron holography: from devices to the detection of single dopant atoms. 3. Ernst-Ruska Center for Microscopy and Spectroscopy with Electrons, Research Centre Julich, D-52425 Julich, Germany. david.cooper@cea.fr Keywords: electron holography, dopant potentials, strain

Dunin-Borkowski, Rafal E.

298

Electron CoolingElectron Cooling Sergei Nagaitsev  

E-Print Network [OSTI]

Electron CoolingElectron Cooling Sergei Nagaitsev FNAL - AD April 28, 2005 #12;Electron Cooling methods must "get around the theorem" e.g. by pushing phase-space around. #12;Electron Cooling - Nagaitsev 3 TodayToday''s Menus Menu What is cooling? Types of beam cooling Electron cooling Conclusions #12

Fermilab

299

SHORT REPORT Open Access Nuclear lipid droplets identified by electron  

E-Print Network [OSTI]

SHORT REPORT Open Access Nuclear lipid droplets identified by electron microscopy of serial that nuclear lipid droplets (LDs) are organized into domains similar to those of cytoplasmic LDs with the nuclear envelope, it could be suggested however that nuclear LDs are cytoplamic LDs trapped within

Boyer, Edmond

300

Single Atom Electron and Ion Sources and Their Applications  

E-Print Network [OSTI]

- energy electron point projection microscope, PPM) (37, 38) 1. (shadow microscopy) (shadow image-walled carbon nanotubes, SWNTs) (111) (pizeo-scanner) X- Y-Z (scanning tunneling microscope) 3. (a on the screen (mm) Intensity(Arb.Units) (c) (a) (b) Q FWHM P (a) (b)Dd sample holder detector-MCP #12;13 98

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)  

SciTech Connect (OSTI)

Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112{sup }] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11{sup }0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular ? stacking. Two-dimensional delocalized electronic states are found on the K-deposited ? stacking structure.

Yoshida, Yasuo, E-mail: yyoshida@issp.u-tokyo.ac.jp; Yokosuka, Takuya; Hasegawa, Yukio, E-mail: hasegawa@issp.u-tokyo.ac.jp [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Yang, Hung-Hsiang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Huang, Hsu-Sheng; Guan, Shu-You; Su, Wei-Bin; Chang, Chia-Seng [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yanagisawa, Susumu [Department of Physics and Earth Science Department, University of the Ryukyus, 1 Nishihara, Okinawa 903-0213 (Japan); Lin, Minn-Tsong [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Hoffmann, Germar [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

2014-09-21T23:59:59.000Z

302

Atom probe field ion microscopy and related topics: A bibliography 1992  

SciTech Connect (OSTI)

This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

Russell, K.F.; Godfrey, R.D.; Miller, M.K.

1993-12-01T23:59:59.000Z

303

Generative Models for Super-Resolution Single Molecule Microscopy Images of Biological Structures  

E-Print Network [OSTI]

an information bridge between super-resolution microscopy and structural biology by using generative models

Matsuda, Noboru

304

Atomic-force microscopy and photoluminescence of nanostructured CdTe  

SciTech Connect (OSTI)

Low-dimensional CdTe nanorods with a diameter of 10-30 nm and a high aspect ratio that reaches 100 are studied. The nanorods are grown by the physical vapor transport method with the use of Bi precipitates on the substrates. In addition, thin films of closely packed CdTe nanorods with the transverse dimensions {approx}(100-200) nm are grown. Atomic-force microscopy shows that the cross sections of all of the nanorods were hexagonally shaped. By photoluminescence measurements, the inference about the wurtzite structure of CdTe is supported, and the structural quality, electron-phonon coupling, and defects are analyzed. On the basis of recent ab initio calculations, the nature of defects responsible for the formation of deep levels in the CdTe layers and bulk crystals are analyzed.

Babentsov, V.; Sizov, F. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine)] [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine); Franc, J. [Charles University, Institute of Physics, Faculty of Mathematics and Physics (Czech Republic)] [Charles University, Institute of Physics, Faculty of Mathematics and Physics (Czech Republic); Luchenko, A.; Svezhentsova, E., E-mail: svezhentsova@ukr.net; Tsybrii, Z. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine)] [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine)

2013-09-15T23:59:59.000Z

305

Characterization of microstructure and crack propagation in alumina using orientation imaging microscopy (OIM). December 1996  

SciTech Connect (OSTI)

A more complete description requires the lattice orientations of a statistically significant number of grains, coupled with morphology such as grain size and shape; this can be obtained using orientation imaging microscopy (OIM), which uses crystallographic orientation data from Backscattered Electron Kikuchi patterns (BEKP) collected using a SEM. This report describes the OIM results for alumina; these include image quality maps, grain boundary maps, pole figures, and lattice misorientations depicted on MacKenzie plot and in Rodrigues space. High quality BEKP were obtained and the images and data readily reveal the grain morphology, texture, and grain boundary misorientations, including those for cracked boundaries. A larger number of grains should be measured to make statistical comparisons between materials with different processing histories.

Glass, S.J.; Michael, J.R. [Sandia National Labs., Albuquerque, NM (United States); Readey, M.J. [Caterpillar, Inc., Peoria, IL (United States); Wright, S.I.; Field, D.P. [TSL, Inc., Provo, UT (United States)

1996-12-01T23:59:59.000Z

306

High-resolution ab initio three-dimensional x-ray diffraction microscopy  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

2006-01-01T23:59:59.000Z

307

ELECTRONIC WARFARE NOVEMBER 2012  

E-Print Network [OSTI]

FM 3-36 ELECTRONIC WARFARE NOVEMBER 2012 DISTRIBUTION RESTRICTION: Approved for public release Electronic Warfare Contents Page PREFACE..............................................................................................................iv Chapter 1 ELECTRONIC WARFARE OVERVIEW ............................................................ 1

US Army Corps of Engineers

308

Sample heating in near-field scanning optical microscopy  

E-Print Network [OSTI]

Heating near the aperture of aluminumcoated,fiber opticnear-field scanning optical microscopy probes was studied as a function of input and output powers. Using the shear-force feedback method, near-field probes were positioned nanometers above a...

Erickson, Elizabeth S.; Dunn, Robert C.

2005-10-05T23:59:59.000Z

309

Ecological and agricultural applications of synchrotron IR microscopy  

E-Print Network [OSTI]

Ecological and agricultural applications of synchrotron IR microscopy T.K. Raab a,*, J.P. Vogel b factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes to pro- liferate when environmental conditions and re- sources are optimum. Cellulose, an abundant

310

Laser scanning third-harmonic-generation microscopy in biology  

E-Print Network [OSTI]

. Denk, J. H. Stricker and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). 3. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel and W. W. Webb, "Measuring-214 (1996). 6. R. Hellwarth and P. Christensen, "Nonlinear optical microscopic examination of structure

Silberberg, Yaron

311

Mechanics of hydrogenated amorphous carbon deposits from electron-beam-induced deposition of a paraffin precursor  

E-Print Network [OSTI]

, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation approach employs the high surface energy of nanostructures. Cuenot et al.1 and Salvetat et al.2 used of hydrocarbon near the area where the EBID deposits were made. High-resolution transmission electron microscopy

312

Observation of Materials Processes in Liquids in the Electron Microscope  

SciTech Connect (OSTI)

Materials synthesis and the functioning of devices often indispensably involve liquid media. But direct visualization of dynamic process in liquids, especially with high spatial and temporal resolution, has been challenging. For solid materials, advances in aberration corrected electron microscopy have made observation of atomic level features a routine practice. Here we discuss the extent to which one can take advantage of the resolution of modern electron microscopes to image phenomenon occuring in liquids. We will describe the fundamentals of two different experimental approaches, closed and open liquid cells. We will illustrate the capabilities of each approach by considering processes in batteries and nucleation and growth of nanoparticles from solution. We conclude that liquid cell electron microscopy appears to be duly fulfilling its role for in situ studies of nanoscale processes in liquids, revealing physical and chemical processes otherwise difficult to observe.

Wang, Chong M.; Liao, Honggang; Ross, Frances M.

2015-01-01T23:59:59.000Z

313

Foucault imaging by using non-dedicated transmission electron microscope  

SciTech Connect (OSTI)

An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

2012-08-27T23:59:59.000Z

314

In-situ and ex-situ observations of lithium de-intercalation from LiCoO? : atomic force microscopy and transmission electron microscopy studies  

E-Print Network [OSTI]

Lithium cobalt dioxide is the most commonly used material for positive electrodes in lithium rechargeable batteries. During lithium de-intercalation from this material, ... undergoes a number of phase transitions, which ...

Clmenon, Anne

2005-01-01T23:59:59.000Z

315

Scanning probe microscopy: Sulfate minerals in scales and cements  

SciTech Connect (OSTI)

The principles of scanning probe microscopy (SPM) are illustrated with examples from oilfield mineralogy, particularly emphasizing sulfate minerals involved in scale formation and cement hydration chemistry. The topography of the (010) cleavage surface of gypsum observed by atomic force microscopy shows atomically flat terraces separated by shallow steps often only one unit cell high. SPM allows direct observation of processes on mineral surfaces while they are in contact with solutions. The dissolution etching and crystal growth of gypsum and barite are discussed and rates of step migration estimated. The orientation of steps is related to the crystallographic axes. The action of phosphonate crystal growth inhibitor on gypsum and of a chelating scale solvent on barite are also shown. The multiphase microstructure of an oilwell cement clinker is described in relation to its hydration chemistry in contact with water and its reaction with sulfate ions.

Hall, C. [Schlumberger Cambridge Research (United Kingdom)

1995-11-01T23:59:59.000Z

316

Biological imaging by soft x-ray diffraction microscopy  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

2005-10-25T23:59:59.000Z

317

Scanning acoustic microscopy for mapping the microstructure of soft materials  

E-Print Network [OSTI]

Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

N. G. Parker; M. J. W. Povey

2009-04-30T23:59:59.000Z

318

Single beam Fourier transform digital holographic quantitative phase microscopy  

SciTech Connect (OSTI)

Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India)] [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut fr Technische Optik, Universitt Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany)] [Institut fr Technische Optik, Universitt Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate TechnologyResearch and Technology Centre, Bangalore 560100 (India)] [Siemens Technology and Services Pvt. Ltd, Corporate TechnologyResearch and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)] [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

2014-03-10T23:59:59.000Z

319

Electronic transport in graphene-based heterostructures  

SciTech Connect (OSTI)

While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS{sub 2}) and molybdenum disulfide (MoS{sub 2})) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ?0.1?nm) compared to conventional SiO{sub 2} substrate. While our results confirm that graphene devices exhibit very high electronic mobility (?) on BN substrates, graphene devices on WS{sub 2} substrates (G/WS{sub 2}) are equally promising for high quality electronic transport (????38?000 cm{sup 2}/V s at room temperature), followed by G/MoS{sub 2} (????10?000 cm{sup 2}/V s) and G/GaSe (????2200 cm{sup 2}/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS{sub 2} and G/MoS{sub 2} heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.

Tan, J. Y.; Avsar, A.; Balakrishnan, J.; Taychatanapat, T.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H. [Graphene Research Center, National University of Singapore, Singapore 117542 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Koon, G. K. W.; zyilmaz, B., E-mail: barbaros@nus.edu.sg [Graphene Research Center, National University of Singapore, Singapore 117542 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); NanoCore, National University of Singapore, Singapore 117576 (Singapore); Watanabe, K.; Taniguchi, T. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

2014-05-05T23:59:59.000Z

320

Optically pulsed electron accelerator  

DOE Patents [OSTI]

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electron beam generation in Tevatron electron lenses  

SciTech Connect (OSTI)

New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; /Fermilab; Tiunov, M.; /Novosibirsk, IYF

2006-08-01T23:59:59.000Z

322

Heavy d-electron Quasiparticle Interference and Real-space Electronic Structure of Sr3Ru2O7  

SciTech Connect (OSTI)

The intriguing idea that strongly interacting electrons can generate spatially inhomogeneous electronic liquid-crystalline phases is over a decade old, but these systems still represent an unexplored frontier of condensed-matter physics. One reason is that visualization of the many-body quantum states generated by the strong interactions, and of the resulting electronic phases, has not been achieved. Soft condensed-matter physics was transformed by microscopies that enabled imaging of real-space structures and patterns. A candidate technique for obtaining equivalent data in the purely electronic systems is spectroscopic imaging scanning tunnelling microscopy (SI-STM). The core challenge is to detect the tenuous but 'heavy' momentum (k)-space components of the many-body electronic state simultaneously with its real-space constituents. Sr{sub 3}Ru{sub 2}O{sub 7} provides a particularly exciting opportunity to address these issues. It possesses a very strongly renormalized 'heavy' d-electron Fermi liquid and exhibits a field-induced transition to an electronic liquid-crystalline phase. Finally, as a layered compound, it can be cleaved to present an excellent surface for SI-STM.

Lee, J.; Allan, M.P.; Wang, M.A.; Farrell, J.; Grigera, S.A.; Baumberger, F.; Davis, J.C.; Mackenzie, A.P.

2009-09-13T23:59:59.000Z

323

Atom probe field ion microscopy and related topics: A bibliography 1991  

SciTech Connect (OSTI)

This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory.

Russell, K.F.; Miller, M.K.

1993-01-01T23:59:59.000Z

324

High throughput 3D optical microscopy : from image cytometry to endomicroscopy  

E-Print Network [OSTI]

Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

Choi, Heejin

2014-01-01T23:59:59.000Z

325

Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications  

E-Print Network [OSTI]

Spectrally encoded confocal microscopy (SECM) is a technique that facilitates the incorporation of confocal microscopy into small, portable clinical instruments. This would allow in vivo evaluation of cellular and sub-cellular ...

Boudoux, Caroline

2007-01-01T23:59:59.000Z

326

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00...

327

Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction  

SciTech Connect (OSTI)

Various microscopic techniques (cathodoluminescence, polarizing and electron microscopy) were combined with image analysis with the aim to determine a) the modal composition and degradation features within concrete, and b) the petrographic characteristics and the geological types (rocks, and their provenance) of the aggregates. Concrete samples were taken from five different portions of Highway Nos. D1, D11, and D5 (the Czech Republic). Coarse and fine aggregates were found to be primarily composed of volcanic, plutonic, metamorphic and sedimentary rocks, as well as of quartz and feldspar aggregates of variable origins. The alkali-silica reaction was observed to be the main degradation mechanism, based upon the presence of microcracks and alkali-silica gels in the concrete. Use of cathodoluminescence enabled the identification of the source materials of the quartz aggregates, based upon their CL characteristics (i.e., color, intensity, microfractures, deformation, and zoning), which is difficult to distinguish only employing polarizing and electron microscopy. - Highlights: Black-Right-Pointing-Pointer ASR in concrete pavements on the Highways Nos. D1, D5 and D11 (Czech Republic). Black-Right-Pointing-Pointer Cathodoluminescence was combined with various microscopic techniques and image analysis. Black-Right-Pointing-Pointer ASR was attributed to aggregates. Black-Right-Pointing-Pointer Source materials of aggregates were identified based on cathodoluminescence characteristics. Black-Right-Pointing-Pointer Quartz comes from different volcanic, plutonic and metamorphic parent rocks.

Stastna, A., E-mail: astastna@gmail.com [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Sachlova, S.; Pertold, Z.; Prikryl, R. [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Leichmann, J. [Department of Geological Sciences, Faculty of Science, Masaryk University in Brno, Kotlarska 267/2, 611 37 Brno (Czech Republic)

2012-03-15T23:59:59.000Z

328

Towards automatic cell identi cation in DIC microscopy , C.A. Glasbey2y  

E-Print Network [OSTI]

1998. Journal of Microscopy, 192, 186-193. #12;a b c Figure 1: DIC microscope images: a Chlorella algal

Stone, J. V.

329

Integrating Experiment and Theory in Electrochemical Surface Science: Studies on the Molecular Adsorption on Noble-Metal Electrode Surfaces by Density Functional Theory, Electron Spectroscopy, and Electrochemistry  

E-Print Network [OSTI]

Computational techniques based on density functional theory (DFT) and experimental methods based on electrochemistry (EC), electrochemical scanning tunneling microscopy (EC-STM), and high-resolution electron energy loss spectroscopy (HREELS) were...

Javier, Alnald Caintic

2013-08-05T23:59:59.000Z

330

Invited Review Article: Advanced light microscopy for biological space research  

SciTech Connect (OSTI)

As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

2014-10-15T23:59:59.000Z

331

In-situ scanning probe microscopy of electrodeposited nickel.  

SciTech Connect (OSTI)

The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

Kelly, James J.; Dibble, Dean C.

2004-10-01T23:59:59.000Z

332

Record-Setting Microscopy Illuminates Energy Storage Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SREL Reprints BackRecord-Setting Microscopy

333

Controlling Graphene's Electronic Structure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controlling Graphene's Electronic Structure Print Wednesday, 25 April 2007 00:00 Graphene, because of its unusual electron properties, reduced dimensionality, and scale, has...

334

Advanced Confocal Microscopy An Essential Technique for Microfluidics Development  

E-Print Network [OSTI]

Many believe that microfluidics has the potential to do for chemistry and biology what the integrated circuit has done for electronics integrating tremendously complex chemical and biological processes into simple easy-to-use devices that will eventually pervade

Terence Lundy

335

Journal of Electron Spectroscopy and Related Phenomena 144147 (2005) 259269 Soft X-ray spectromicroscopy of biological  

E-Print Network [OSTI]

in the case of electron beam based techniques; radiation damage in the case of electron microscopy; lack. This requires a source of bright, continu- ouslytunablesoftX-rays(50­2000 eV),andthussynchrotron radiation spatial reso- lution in the case of IR, NMR and optical techniques; inabil- ity to couple to wet specimens

Hitchcock, Adam P.

336

Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures  

SciTech Connect (OSTI)

We demonstrate the existence and control of inter-particle magnetic exchange coupling in densely packed nanostructures fabricated by focused electron beam induced deposition. With Xe beam post-processing, we have achieved the controlled reduction and eventual elimination of the parasitic halo-like cobalt deposits formed in the proximity of intended nanostructures, which are the identified source of the magnetic exchange coupling. The elimination of the halo-mediated exchange coupling is demonstrated by magnetic measurements using Kerr microscopy on Co pillar arrays. Electron microscopy studies allowed us to identify the mechanisms underlying this process and to verify the efficiency and opportunities of the described nano-scale fabrication approach.

Nikulina, E.; Idigoras, O.; Porro, J. M.; Berger, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian (Spain)] [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian (Spain); Vavassori, P.; Chuvilin, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian (Spain) [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian (Spain); Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, 48011 Bilbao (Spain)

2013-09-16T23:59:59.000Z

337

Electronics, Electrical Engineering  

E-Print Network [OSTI]

SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World

338

ELECTRONIC CHARTS INTRODUCTION  

E-Print Network [OSTI]

199 CHAPTER 14 ELECTRONIC CHARTS INTRODUCTION 1400. The Importance of Electronic Charts Since. Electronic charts automate the process of integrating real-time positions with the chart display and allow is expected to take and plot a fix every three minutes. An electronic chart system can do it once per second

New Hampshire, University of

339

Photoionization microscopy in terms of local frame transformation theory  

E-Print Network [OSTI]

Two-photon ionization of an alkali-metal atom in the presence of a uniform electric field is investigated using a standardized form of local frame transformation and generalized quantum defect theory. The relevant long-range quantum defect parameters in the combined Coulombic plus Stark potential is calculated with eigenchannel R-matrix theory applied in the downstream parabolic coordinate $\\eta$. The present formulation permits us to express the corresponding microscopy observables in terms of the local frame transformation, and it gives a critical test of the accuracy of the Harmin-Fano theory permitting a scholastic investigation of the claims presented in Zhao {\\it et al.} [Phys. Rev. A 86, 053413 (2012)].

P. Giannakeas; F. Robicheaux; Chris H. Greene

2014-10-27T23:59:59.000Z

340

Calibration of fluorescence resonance energy transfer in microscopy  

DOE Patents [OSTI]

Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

2003-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Handheld and low-cost digital holographic microscopy  

E-Print Network [OSTI]

This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

2012-01-01T23:59:59.000Z

342

Integrated fiducial sample mount and software for correlated microscopy  

SciTech Connect (OSTI)

A novel design sample mount with integrated fiducials and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location.

Timothy R McJunkin; Jill R. Scott; Tammy L. Trowbridge; Karen E. Wright

2014-02-01T23:59:59.000Z

343

Calibration of fluorescence resonance energy transfer in microscopy  

DOE Patents [OSTI]

Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

2002-09-24T23:59:59.000Z

344

Cryo diffraction microscopy: Ice conditions and finite supports  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

Miao, H; Downing, K; Huang, X; Kirz, J; Marchesini, S; Nelson, J; Shapiro, D; Steinbrener, J; Stewart, A; Jacobsen, C

2009-09-01T23:59:59.000Z

345

Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy  

SciTech Connect (OSTI)

The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called intrinsic friction analysis (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, Ren M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

2014-10-28T23:59:59.000Z

346

Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy  

SciTech Connect (OSTI)

This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

Tittmann, B. R. [Penn State; Xi, X. [Penn State

2014-09-01T23:59:59.000Z

347

In Situ Electron Energy Loss Spectroscopy in Liquids  

E-Print Network [OSTI]

In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the holder shadows the detector, and electron energy loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS for studying chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap and thickness of the liquid layer by valence EELS is demonstrated for liquids. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio as demonstrated for LiFePO4 in aqueous solution. The potential for using...

Holtz, Megan E; Gao, Jie; Abrua, Hctor D; Muller, David A

2012-01-01T23:59:59.000Z

348

Electron energy loss spectroscopy of gold nanoparticles on graphene  

SciTech Connect (OSTI)

Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

DeJarnette, Drew [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Roper, D. Keith, E-mail: dkroper@uark.edu [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States)

2014-08-07T23:59:59.000Z

349

Imaging of ferromagnetic domains using photoelectrons: Photoelectron emission microscopy of neodymium-iron-boron (Nd{sub 2}Fe{sub 14}B)  

SciTech Connect (OSTI)

Ferromagnetic domains of a single crystal of neodymium-iron-boron, Nd{sub 2}Fe{sub 14}B (one of the strongest permanent magnetic materials known) are imaged by focusing a beam of photoelectrons with electrostatic optics in a photoelectron emission microscope. Photoelectrons emitted from the surface are deflected laterally into two opposite directions by stray magnetic fields that exist above the domains. The photoelectron beam is partially split into two. Magnetic contrast is produced by blocking part of the beam and imaging with an edge of the beam. The magnetic contrast mechanism appears to be similar to the type I magnetic contrast mechanism known from scanning electron microscopy, in which stray magnetic fields above the ferromagnetic domains deflect secondary electrons either towards or away from the electron detector. Upon heating the sample above the Curie temperature, the ferromagnetic domains gradually disappear, as expected for a second order phase transition. They reappear upon cooling. {copyright} {ital 1996 American Vacuum Society}

Mundschau, M.; Romanowicz, J. [Center for Materials Science, Bowling Green State University, Bowling Green, Ohio 43403-0213 (United States)] [Center for Materials Science, Bowling Green State University, Bowling Green, Ohio 43403-0213 (United States); Wang, J.Y.; Sun, D.L.; Chen, H.C. [Institute of Crystal Materials, Shandong University, Jinan 250100, People`s Republic of (China)] [Institute of Crystal Materials, Shandong University, Jinan 250100, People`s Republic of (China)

1996-07-01T23:59:59.000Z

350

Instrument Series: Microscopy Ultra-High Vacuum, Low-  

E-Print Network [OSTI]

techniques) to examine the molecular-level details of heterogeneous catalysis and photocatalysis. Among them range of surface analytical techniques at low temperature enables ultra-violet/X-ray photoelectron electron diffraction (LEED). In situ sample preparation offers heating up to 1500 K, cooling down to 50 K

351

Atom probe field ion microscopy and related topics: A bibliography 1989  

SciTech Connect (OSTI)

This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

Miller, M.K.; Hawkins, A.R.; Russell, K.F.

1990-12-01T23:59:59.000Z

352

E-Print Network 3.0 - absorption spectroscopic microscopy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

version of scanning near-field optical microscopy (SNOM). The tunable infrared radiation... the l 3.5 mm, CH vibrational stretch mode absorption band. ... Source:...

353

Matter & Energy Electronics  

E-Print Network [OSTI]

See also: Matter & Energy Electronics· Detectors· Technology· Construction· Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

Suslick, Kenneth S.

354

Catalac free electron laser  

DOE Patents [OSTI]

A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

355

Neutrinos in the Electron  

E-Print Network [OSTI]

We will show that one half of the rest mass of the electron is equal to the sum of the rest masses of electron neutrinos and that the other half of the rest mass of the electron is given by the energy in the sum of electric oscillations. With this composition we can explain the rest mass, the electric charge, the spin and the magnetic moment of the electron.

E. L. Koschmieder

2006-09-26T23:59:59.000Z

356

Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

357

Dark Energy and Electrons  

E-Print Network [OSTI]

In the light of recent developments in Dark Energy, we consider the electron in a such a background field and show that at the Compton wavelength the electron is stable, in that the Cassini inward pressure exactly counterbalances the outward Coulomb repulsive pressure thus answering a problem of the earlier electron theory.

Burra G. Sidharth

2008-08-05T23:59:59.000Z

358

Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy  

SciTech Connect (OSTI)

We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

2011-05-26T23:59:59.000Z

359

Refractive Optics for Hard X-ray Transmission Microscopy  

SciTech Connect (OSTI)

For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E. [Institute for Microstructure Technology, Karlsruhe Institute of Technology Kaiserstrasse 12, 76131 Karlsruhe (Germany); Ahrens, G.; Voigt, A. [Microresist Technology, Koepenikerstrasse 325, 12555 Berlin (Germany)

2011-09-09T23:59:59.000Z

360

Microrheological Studies of Regenerated Silk Fibroin Solution by Video Microscopy  

E-Print Network [OSTI]

We have carried out studies on the rheological properties of regenerated silk fibroin (RSF) solution using video microscopy. The degummed silk from the Bombyx mori silkworm was used to prepare RSF solution by dissolving it in calcium nitrate tetrahydrate-methanol solvent. Measurements were carried out by tracking the position of an embedded micron-sized polystyrene bead within the RSF solution through video imaging. The time dependent mean squared displacement (MSD) of the bead in solution and hence, the complex shear modulus of this solution was calculated from the bead's position information. An optical tweezer was used to transport and locate the bead at any desired site within the micro-volume of the sample, to facilitate the subsequent free-bead video analysis. We present here the results of rheological measurements of the silk polymer network in solution over a frequency range, whose upper limit is the frame capture rate of our camera, at full resolution. By examining the distribution of MSD of beads at different locations within the sample volume, we demonstrate that this probe technique enables us to detect local inhomogeneties at micrometer length scales, not detectable either by a rheometer or from diffusing wave spectroscopy.

Raghu A; Somashekar R; Sharath Ananthamurthy

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

JLAB Electron Driver Capabilities  

SciTech Connect (OSTI)

Several schemes have been proposed for adding a positron beam option at the Continuous Electron Beam Facility (CEBAF) at Jefferson Laboratory (JLAB). They involve using a primary beam of electrons or gamma rays striking a target to produce a positron beam. At JLAB electron beams are produced and used in two different accelerators, CEBAF and the JLAB FEL (Free Electron Laser). Both have low emittance and energy spread. The CEBAF beam is polarized. The FEL beam is unpolarized but the injector can produce a higher current electron beam. In this paper we describe the characteristics of these beams and the parameters relevant for positron production.

Kazimi, Reza [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

2009-09-02T23:59:59.000Z

362

Combined Application of QEM-SEM and Hard X-ray Microscopy to Determine Mineralogical Associations and Chemcial Speciation of Trace Metals  

SciTech Connect (OSTI)

We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e.g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mXANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mXANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure.

M Grafe; M Landers; R Tappero; P Austin; B Gan; A Grabsch; C Klauber

2011-12-31T23:59:59.000Z

363

J. Phys III FFance 7 (1997) 1451-1467 JULY 1997, PAGE 1451 High Resolution Electron Microscopic Studies of the Atomistic  

E-Print Network [OSTI]

of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo l13, Japan (~) Institute for Solid State Physics Mechanical properties of solids PACS.61.18.-j Other methods of structure determination Abstract. Direct attempted by using high resolution electron microscopy with the electron beam incident normal

Boyer, Edmond

364

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE-EDGE SCANNING MICROSCOPY  

E-Print Network [OSTI]

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis Science #12;ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis) ______________________________ ______________________________ Ergun Akleman Valerie Taylor (Member) (Head of Department) December 2003 Major Subject: Computer Science

Keyser, John

365

High spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a)  

E-Print Network [OSTI]

a total optical power proportional to its absolute temperature to the fourth power. An object that hasHigh spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a) S. A. Thorne, M. G increasing lens technique to subsurface thermal emission microscopy of Si integrated circuits. We achieve

366

Imaging Lignin-Downregulated Alfalfa Using Coherent Anti-Stokes Raman Scattering Microscopy  

E-Print Network [OSTI]

Imaging Lignin-Downregulated Alfalfa Using Coherent Anti-Stokes Raman Scattering Microscopy Yining-downregulated alfalfa lines were imaged using coherent anti-Stokes Raman scattering (CARS) microscopy. The 1,600-cm-1 (CARS) . Lignin-downregulated alfalfa Introduction Lignocellulosic biomass is under consideration

Xie, Xiaoliang Sunney

367

Technical note: Characterizing individual milk fat globules with holographic video microscopy  

E-Print Network [OSTI]

Technical note: Characterizing individual milk fat globules with holographic video microscopy Fook representation of holographic video microscopy. The sample scatters light from a collimated laser beam. Both to a video camera, which records their interference as a hologram. A typical example of one fat droplet

Grier, David

368

Size effects in bimetallic nickelgold nanowires: Insight from atomic force microscopy nanoindentation  

E-Print Network [OSTI]

Size effects in bimetallic nickelgold nanowires: Insight from atomic force microscopy the local plastic behavior and hardness properties of electrodeposited bimetallic NiAu NWs ranging from 60 rights reserved. Keywords: Atomic force microscopy (AFM); Nanowire; Nickel; Gold; Nanoindentation 1

Sansoz, Frederic

369

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices  

E-Print Network [OSTI]

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene; accepted 24 July 2007; published online 15 August 2007 Raman microscopy of graphene was carried out over-band frequencies extracted from Raman spectra of the single-layer graphene are - 1.6±0.2 10-2 cm-1 /K and - 3

370

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology  

E-Print Network [OSTI]

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

Xie, Xiaoliang Sunney

371

Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone  

E-Print Network [OSTI]

on the identification of surviving collagen in bulk bonebulk regions of bone. This fact might prove exceptionally true if the identification

Boatman, Elizabeth

2012-01-01T23:59:59.000Z

372

PHILOSOPHICAL MAGAZINE LETTERS, 2000, VOL. 80, NO. 6, 381 386 High-resolution electron microscopy of a microporous  

E-Print Network [OSTI]

/ISSN 1362± 3036 online # 2000 Taylor & Francis Ltd http://www.tandf.co.uk/journals } Email: p.j.f.harris of a microporous carbon P.J. F. HARRISy}, A.BURIANz} and S. DUBERk y Department of Chemistry, University of Reading (Harris 1997). Recently, it has been suggested that microporous, non-graphitizing carbons might have

Harris, Peter J F

373

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY  

E-Print Network [OSTI]

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION, A. N. Tiwari Thin Film Physics Group, Laboratory for Solid State Physics, Technopark ETH-Building, Technoparkstr. 1, CH-8005 Zurich, Switzerland ABSTRACT: CdTe/CdS thin £lm solar cells have been grown by closed

Romeo, Alessandro

374

In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries  

SciTech Connect (OSTI)

Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

2014-10-27T23:59:59.000Z

375

ELECTRON MICROSCOPY ANALYSIS OF SILICON ISLANDS AND LINE STRUC-TURES FORMED ON SCREEN-PRINTED AL-DOPED P+  

E-Print Network [OSTI]

silicon wafers are mainly used as back surface field (BSF) in p-type crystalline silicon solar cells [1,2] and as rear side emitter in screen-printed back junction n-type crystalline silicon solar cells [3]. From dop in an infrared conveyor belt furnace at 900°C for 13 seconds. In order to investigate the p + surface

376

Aberration-corrected electron microscopy of MnAs and As nanocrystals and voids in annealed (Ga,Mn)As  

E-Print Network [OSTI]

were grown at 270 °C using an As2 flux generated by a DCA valve cracker effusion cell with an As aberration coefficient (Cs) was used. The beam convergence semi-angle used for STEM was 15.7 mrad. The inner

Dunin-Borkowski, Rafal E.

377

Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy  

E-Print Network [OSTI]

The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

Kuo, Dave Ta Fu, 1978-

2010-01-01T23:59:59.000Z

378

Thin Film Morphology Control by Mechanical, Electronic and Chemical Interactions: a Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study  

E-Print Network [OSTI]

of the formation of Anthraquinone self-assembled honeycombsizes are the same. Anthraquinone (AQ) molecules adsorb on

Sun, Dezheng

2012-01-01T23:59:59.000Z

379

Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography  

SciTech Connect (OSTI)

We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (?90?C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

Zhang, D., E-mail: dzhang28@asu.edu [School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106 (United States); Ray, N. M.; Petuskey, W. T. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States); Smith, D. J.; McCartney, M. R. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

2014-08-28T23:59:59.000Z

380

Polymers For Advanced Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

Barriers: -(1) Energy density -(2) Safety -(3) Low cycle fife. * Partners: ANL, ALS (at LBNL) and NCEM (at LBNL) Objectives * A) Develop cost-effective method for creating...

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Phase Behavior and Solid State Chemistry in Olivines  

Broader source: Energy.gov (indexed) [DOE]

500K * FY10 TBD Partners * Collaborations: Grey (Stony Brook) Kostecki, Doeff, Cabana (LBNL) Gabrisch (UNO), NCEM, ALS * Interactions: Zaghib (HQ) * Project lead: John Newman...

382

Development of Polymer Electrolytes for Advanced Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

* Barriers: (1) Energy density (2) Safety (3) Low cycle life * Partners: * ANL, ALS (at LBNL) and NCEM (at LBNL) Objectives * A) Develop cost-effective method for creating...

383

Field emission electron source  

DOE Patents [OSTI]

A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

2000-01-01T23:59:59.000Z

384

Ceramic Electron Multiplier  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

Comby, G.

1996-10-01T23:59:59.000Z

385

Surface Science Analysis of GaAs Photocathodes Following Sustained Electron Beam Delivery  

SciTech Connect (OSTI)

Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Several photocathode degradation processes are suspected, including defect formation by ion back bombardment, photochemistry of surface adsorbed species and irradiation-induced surface defect formation. To better understand the mechanisms of photocathode degradation, we have conducted surface and bulk analysis studies of two GaAs photocathodes removed from the FEL photoinjector after delivering electron beam for a few years. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, strained super-lattice GaAs photocathode samples, removed from the CEBAF photoinjector were analyzed using Transmission Electron Microscopy (TEM) and SIMS. This analysis of photocathode degradation during nominal photoinjector operating conditions represents first steps towards developing robust new photocathode designs necessary for generating sub-micron emittance electron beams required for both fourth generation light sources and intense polarized CW electron beams for nuclear and high energy physics facilities.

Shutthanandan, V.; Zhu, Zihua; Stutzman, Marcy L.; Hannon, Fay; Hernandez-Garcia, Carlos; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai; Hess, Wayne P.

2012-06-12T23:59:59.000Z

386

Environment assisted electron capture  

E-Print Network [OSTI]

Electron capture by {\\it isolated} atoms and ions proceeds by photorecombination. In this process a species captures a free electron by emitting a photon which carries away the excess energy. It is shown here that in the presence of an {\\it environment} a competing non-radiative electron capture process can take place due to long range electron correlation. In this interatomic (intermolecular) process the excess energy is transferred to neighboring species. The asymptotic expression for the cross section of this process is derived. We demonstrate by explicit examples that under realizable conditions the cross section of this interatomic process can clearly dominate that of photorecombination.

Kirill Gokhberg; Lorenz S. Cederbaum

2009-11-09T23:59:59.000Z

387

Radiological Electron Microprobe | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from the Hanford Site provide complementary data to ongoing activities in EMSL's microfluidics and Subsurface Flow and Transport capabilities. User Portal Name: Electron...

388

Monte Carlo simulation study of scanning Auger electron images  

SciTech Connect (OSTI)

Simulation of contrast formation in Auger electron imaging of surfaces is helpful for analyzing scanning Auger microscopy/microanalysis (SAM) images. In this work, we have extended our previous Monte Carlo model and the simulation method for calculation of scanning electron microscopy (SEM) images to SAM images of complex structures. The essentials of the simulation method are as follows. (1) We use a constructive solid geometry modeling for a sample geometry, which is complex in elemental distribution, as well as in topographical configuration and a ray-tracing technique in the calculation procedure of electron flight steps that across the different element zones. The combination of the basic objects filled with elements, alloys, or compounds enables the simulation to a variety of sample geometries. (2) Sampled Auger signal electrons with a characteristic energy are generated in the simulation following an inner-shell ionization event, whose description is based on the Castani's inner-shell ionization cross section. This paper discusses in detail the features of simulated SAM images and of line scans for structured samples, i.e., the objects embedded in a matrix, under various experimental conditions (object size, location depth, beam energy, and the incident angle). Several effects are predicted and explained, such as the contrast reversion for nanoparticles in sizes of 10-60 nm, the contrast enhancement for particles made of different elements and wholly embedded in a matrix, and the artifact contrast due to nearby objects containing different elements. The simulated SAM images are also compared with the simulated SEM images of secondary electrons and of backscattered electrons. The results indicate that the Monte Carlo simulation can play an important role in quantitative SAM mapping.

Li, Y. G.; Ding, Z. J. [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Z. M. [Department of Astronomy and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2009-07-15T23:59:59.000Z

389

Electron crystallography as an informative method for studying the structure of nanoparticles  

SciTech Connect (OSTI)

The overwhelming majority of modern nanotechnologies deal with nanoparticles owing to the great variety of their unusual properties, which make them irreplaceable in various fields of science and technology. Since the physical properties of nanoparticles depend on their composition, structure, and shape, the problem of monitoring these parameters both after and during formation of nanoparticles is very important. Methods of electron crystallography are most informative and appropriate for studying and monitoring nanoparticle parameters. In this review, we briefly report the main modern methods based on the use of electron diffraction and electron microscopy, along with examples of their applications for nanoparticles, to solve a number of urgent structural problems of nanomaterials science.

Avilov, A. S., E-mail: avilovanatoly@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Gubin, S. P. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)] [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Zaporozhets, M. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2013-11-15T23:59:59.000Z

390

Electronic Structure and Chemical Bonding of Amorphous Chromium Carbide Thin Films  

E-Print Network [OSTI]

The microstructure, electronic structure, and chemical bonding of chromium carbide thin films with different carbon contents have been investigated with high-resolution transmission electron microscopy, electron energy loss spectroscopy and soft x-ray absorption-emission spectroscopies. Most of the films can be described as amorphous nanocomposites with non-crystalline CrCx in an amorphous carbon matrix. At high carbon contents, graphene-like structures are formed in the amorphous carbon matrix. At 47 at% carbon content, randomly oriented nanocrystallites are formed creating a complex microstructure of three components. The soft x-ray absorption-emission study shows additional peak structures exhibiting non-octahedral coordination and bonding.

Magnuson, Martin; Lu, Jun; Hultman, Lars; Jansson, Ulf; 10.1088/0953-8984/24/22/225004

2012-01-01T23:59:59.000Z

391

Microelectrode for energy and current control of nanotip field electron emitters  

SciTech Connect (OSTI)

Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 1030??m. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

Lneburg, S.; Mller, M., E-mail: m.mueller@fhi-berlin.mpg.de; Paarmann, A., E-mail: alexander.paarmann@fhi-berlin.mpg.de; Ernstorfer, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)] [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

2013-11-18T23:59:59.000Z

392

Advanced electron microscopic techniques applied to the characterization of irradiation effects and fission product identification of irradiated TRISO coated particles from the AGR-1 experiment  

SciTech Connect (OSTI)

Preliminary electron microscopy of coated fuel particles from the AGR-1 experiment was conducted using characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and wavelength dispersive spectroscopy (WDS). Microscopic quantification of fission-product precipitates was performed. Although numerous micro- and nano-sized precipitates observed in the coating layers during initial SEM characterization of the cross-sections, and in subsequent TEM diffraction patterns, were indexed as UPd{sub 2}Si{sub 2}, no Ag was conclusively found. Additionally, characterization of these precipitates highlighted the difficulty of measuring low concentrations of Ag in precipitates in the presence of significantly higher concentrations of Pd and U. The electron microscopy team followed a multi-directional and phased approach in the identification of fission products in irradiated TRISO fuel. The advanced electron microscopy techniques discussed in this paper, not only demonstrate the usefulness of the equipment (methods) as relevant research tools, but also provide relevant scientific results which increase the knowledge about TRISO fuel particles microstructure and fission products transport.

Rooyen, I.J. van; Lillo, T.M.; Trowbridge, T.L.; Madden, J.M. [Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Wu, Y.Q. [Boise State University, Boise, ID 83725-2090 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Goran, D. [Brucker Nano Gmbh, Berlin, 12489 (Germany)

2013-07-01T23:59:59.000Z

393

Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies  

SciTech Connect (OSTI)

Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Ievlev, Anton [ORNL] [ORNL; Balke, Nina [ORNL] [ORNL; Maksymovych, Petro [ORNL] [ORNL; Tselev, Alexander [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

2014-01-01T23:59:59.000Z

394

Atom probe field ion microscopy and related topics: A bibliography 1990  

SciTech Connect (OSTI)

This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

Russell, K.F.; Miller, M.K.

1991-12-01T23:59:59.000Z

395

Anti-contamination device for cryogenic soft X-ray diffraction microscopy  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

2011-05-01T23:59:59.000Z

396

Alpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force microscopy  

E-Print Network [OSTI]

-differential-interference-contrast microscopy; Scanning force microscopy; Natural radiation damage 1. Introduction Alpha-recoil tracks (ARTsAlpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force

397

Electronic Mail Analysis Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes the pilot program to test the Department of Energy (DOE) Electronic Mail Analysis Capability (EMAC), which will be used to monitor and analyze outgoing and incoming electronic mail (e-mail) from the National Nuclear Security Administration (NNSA) and DOE laboratories that are engaged in nuclear weapons design or work involving special nuclear material. No cancellation.

2001-01-08T23:59:59.000Z

398

Electrons and Mirror Symmetry  

SciTech Connect (OSTI)

The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

Kumar, Krishna (University of Massachusetts, Amherst) [University of Massachusetts, Amherst

2007-04-04T23:59:59.000Z

399

Effect of Electronic Excitation on Thin Film Growth  

SciTech Connect (OSTI)

The effect of nanosecond pulsed laser excitation on surface diffusion during growth of Ge on Si(100) at 250 degrees C was studied. In Situ reflection high-energy electron diffraction (RHEED) was used to measure the surface diffusion coefficient while ex situ atomic force microscopy (AFM) was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during growth of Ge on Si(100), changes the growth morphology, improves crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface diffusion of the deposited Ge is proposed. Ge quantum dots were grown on Si(100)-(2x1) by pulsed laser deposition at various substrate temperatures using a femtosecond Ti:sapphire laser. In-situ reflection high-energy electron diffraction and ex-situ atomic force microscopy were used to analyze the fim structure and morphology. The morphology of germanium islands on silicon was studied at differect coverages. The results show that femtosecond pulsed laser depositon reduces the minimum temperature for epitaxial growth of Ge quantum dots to ~280 degrees C, which is 120 degrees C lower then previously observed in nanosecond pulsed laser deposition and more than 200 degrees C lower than that reported for molecular beam epitaxy and chemical vapor deposition.

Elsayed-Ali, Hani E. [Old Dominion University

2011-01-31T23:59:59.000Z

400

Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience  

E-Print Network [OSTI]

A number of questions in systems biology such as understanding how dynamics of neuronal networks are related to brain function require the ability to capture the functional dynamics of large cellular populations at high speed. Recently, this has driven the development of a number of parallel and high speed imaging techniques such as light-sculpting microscopy, which has been used to capture neuronal dynamics at the whole brain and single cell level in small model organism. However, the broader applicability of light-sculpting microscopy is limited by the size of volumes for which high speed imaging can be obtained and scattering in brain tissue. Here, we present strategies for optimizing the present tradeoffs in light-sculpting microscopy. Various scanning modalities in light-sculpting microscopy are theoretically and experimentally evaluated, and strategies to maximize the obtainable volume speeds, and depth penetration in brain tissue using different laser systems are provided. Design-choices, important par...

Rupprecht, Peter; Groessl, Florian; Haubensak, Wulf E; Vaziri, Alipasha

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Industrial Affiliates Day 2006, April 21, 2006 ULTRAFAST NONLINEAR OPTICAL MICROSCOPY  

E-Print Network [OSTI]

of studies, including photochemical reactions, molecular dynamics, micropharmacology and optical memory. History of Two-Photon Molecular Excitation 1905 First Conception: A. Einstein: Creation and Conversion for data storage. Combined with fluorescence microscopy, multiphoton excitation (MPE) provides 3D

Van Stryland, Eric

402

Super-resolution wide-field optical microscopy by use of Evanescent standing waves  

E-Print Network [OSTI]

The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Optical fluorescence microscopy is an essential tool for investigations in many disciplines ...

Chung, Euiheon

2007-01-01T23:59:59.000Z

403

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

Fisher, Frank

404

Improving the delivery and efficacy of molecular medicine via extracellular matrix modulation : insights from intravital microscopy  

E-Print Network [OSTI]

The extracellular matrix of tumors is a major barrier to the delivery of molecular medicine. We used fluorescence recovery after photobleaching combined with intravital microscopy to quantitate the transport properties of ...

McKee, Trevor David

2005-01-01T23:59:59.000Z

405

Application of magnetic resonance microscopy to tissue engineering: A polylactide model  

E-Print Network [OSTI]

Application of magnetic resonance microscopy to tissue engineering: A polylactide model K. J. L seeding; magnetic resonance mi- croscopy; polylactide; tissue engineering INTRODUCTION Absorbable polymers Engineering Research Center, Clemson University, Clemson, South Carolina 29634-0905 2 Department of Radiology

406

Thermal and Optical Characterization of Photonic Integrated Circuits by Thermoreflectance Microscopy  

E-Print Network [OSTI]

We report high resolution, non-invasive, thermal and optical characterization of semiconductor optical amplifiers (SOAs) and SOA-based photonic integrated circuits (PICs) using thermoreflectance microscopy. Chip-scale ...

Hudgings, Janice A.

407

Supervised Machine Learning Algorithms for Early Detection of Oral Epithelial Cancer Using Fluorescence Lifetime Imaging Microscopy  

E-Print Network [OSTI]

In this study, the clinical potential of the endogenous multispectral Fluorescence lifetime imaging microscopy (FLIM) was investigated to objectively detect oral cancer. To this end, in vivo FLIM imaging was performed on a hamster cheek pouch model...

Lee, Joohyung

2014-08-06T23:59:59.000Z

408

Method of detecting cancer in a single cell using mitochondrial correlation microscopy  

DOE Patents [OSTI]

A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

Gourley, Paul L

2013-06-25T23:59:59.000Z

409

Method for detecting cancer in a single cell using mitochondrial correlation microscopy  

DOE Patents [OSTI]

A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

Gourley, Paul L. (Albuquerque, NM)

2012-03-06T23:59:59.000Z

410

The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems  

E-Print Network [OSTI]

The technique of Fluorescence Lifetime Imaging Microscopy (FLIM) has been employed to quantitatively and spatially map the fluid composition and temperature within microfluidic systems. A molecular probe with a ...

Graham, Emmelyn M

2008-01-01T23:59:59.000Z

411

Design and implementation of a fiber optic doppler optical coherence microscopy system for cochlear imaging  

E-Print Network [OSTI]

In this thesis, the design and implementation of a fiber optic Doppler optical coherence microscopy (FO-DOCM) system for cochlear imaging applications is presented. The use of a fiber optic design significantly reduces ...

Williams, Logan P

2014-01-01T23:59:59.000Z

412

Shack-Hartmann wavefront-sensor-based adaptive optics system for microscopy  

E-Print Network [OSTI]

The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the ...

So, Peter T. C.

413

Development of the Ultrashort Pulse Nonlinear Optical Microscopy Spectral Imaging System  

E-Print Network [OSTI]

DEVELOPMENT OF THE ULTRASHORT PULSE NONLINEAR OPTICAL MICROSCOPY SPECTRAL IMAGING SYSTEM A Dissertation by ANTHONY CHIEN-DER LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Anthony Chien-der Lee DEVELOPMENT OF THE ULTRASHORT PULSE NONLINEAR OPTICAL MICROSCOPY SPECTRAL IMAGING SYSTEM A Dissertation by ANTHONY CHIEN-DER LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial...

Lee, Anthony Chien-der

2012-10-19T23:59:59.000Z

414

Half-harmonic Kelvin probe force microscopy with transfer function correction  

SciTech Connect (OSTI)

An approach for surface potential imaging based on half-harmonic band excitation (BE) in Kelvin probe force microscopy is demonstrated. Using linear and half-harmonic BE enables quantitative correction of the cantilever transfer function. Half-harmonic band excitation Kelvin probe force microscopy (HBE KPFM) thus allows quantitative separation of surface potential and topographic contributions to the signal, obviating the primary sources of topographic cross-talk. HBE KPFM imaging and voltage spectroscopy methods are illustrated for several model systems.

Guo, Senli [ORNL] [ORNL; Jesse, Stephen [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

2012-01-01T23:59:59.000Z

415

Aerogels for electronics  

SciTech Connect (OSTI)

In addition to their other exceptional properties, aerogels also exhibit unusual dielectric and electronic properties due to their nano-sized structures and high porosities. For example, aerogels have the lowest dielectric constants measured for a solid material (having values approaching 1.0); they have exceptionally high dielectric resistivities and strengths (i.e., ability to insulate very high voltages); they exhibit low dielectric loss at microwave frequencies; and some aerogels are electrically conductive and photoconductive. These properties are being exploited to provide the next generation of materials for energy storage, low power consumption, and ultra-fast electronics. We are working toward adapting these unusual materials for microelectronic applications, particularly, making thin aerogel films for dielectric substrates and for energy storage devices such as supercapacitors. Measurements are presented in this paper for the dielectric and electronic properties of aerogels, including the dielectric constant, loss factor, dielectric and electrical conductivity, volume resistivity, and dielectric strength. We also describe methods to form and characterize thin aerogel films which are being developed for numerous electronic applications. Finally, some of the electronic applications proposed for aerogels are presented. Commercialization of aerogels for electronics must await further feasibility, prototype development, and cost studies, but they are one of the key materials and are sure to have a major impact on future electronics.

Hrubesh, L.W.

1994-10-01T23:59:59.000Z

416

Electron Proton Hydrogen Deuterium Tritium Neutron Fusion Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the‹ See allElectrochemicalElectron Microscopy

417

Electron Microscope Facility  

ScienceCinema (OSTI)

Brookhaven Lab is home to one of only a few Scanning Transmision Electron Microscope (STEM) machines in the world and one of the few that can image single heavy atoms.

None

2010-01-08T23:59:59.000Z

418

VIA ELECTRONIC MAIL  

Energy Savers [EERE]

VIA ELECTRONIC MAIL U.S. Department of Energy (FE-34) Office of Fossil Energy Office of Oil and Gas Global Security and Supply Attn: Natural Gas Reports P.O. Box 44375...

419

Linkping University Electronic Press  

E-Print Network [OSTI]

do so. Beyond Ph.D. theses, 41 Licentiate theses (of 61 in total) were published electronically-Press to 640, 208 and 4794 Ph.D., Licentiate and Undergraduate theses, respectively. Conference Proceedings

Zhao, Yuxiao

420

Toward pure electronic spectroscopy  

E-Print Network [OSTI]

In this thesis is summarized the progress toward completing our understanding of the Rydberg system of CaF and developing Pure Electronic Spectroscopy. The Rydberg system of CaF possesses a paradigmatic character due to ...

Petrovi?, Vladimir, 1978-

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

3D Printing Electronics  

E-Print Network [OSTI]

Login Register Home Videos Jobs Games 3D Printing Electronics Design Software Designer Edge for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

Stryk, Oskar von

422

electronic reprint Synchrotron  

E-Print Network [OSTI]

electronic reprint Journal of Synchrotron Radiation ISSN 0909-0495 Editor: G. Ice Accurate dose required to produce a defined outcome, following the Grotthuss­Draper law (King & Laidler, 1984

Hitchcock, Adam P.

423

Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible  

SciTech Connect (OSTI)

The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a non-focusing optoacoustic microscope instrument (POAM), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (SOAM) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide computational models of the focusing of multi-GHz acoustic waves to the nanometer scale and innovated a series fabrication approaches for a new type of broadband high-frequency acoustic focusing microscope objective by applying methods on nanoimprinting and focused-ion beam techniques. In the following, the Phase I and Phase II instrument development is reported as Section II. The first segment of this section describes the POAM instrument and its development, while including much of the underlying ultrafast acoustic physics which is common to all of our work for this grant. Then, the science and engineering of the SOAM instrument is described, including the methods of fabricating new types of acoustic microlenses. The results section is followed by reports on publications (Section III), Participants (Section IV), and statement of full use of the allocated grant funds (Section V).

Nurmikko, Arto; Humphrey, Maris

2014-07-10T23:59:59.000Z

424

Free electron laser  

DOE Patents [OSTI]

A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

Villa, Francesco (Alameda, CA)

1990-01-01T23:59:59.000Z

425

Fabrication and electronic transport studies of single nanocrystal systems  

SciTech Connect (OSTI)

Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

Klein, D L [Univ. of California, Berkeley, CA (United States). Dept. of Physics

1997-05-01T23:59:59.000Z

426

Vehicle Electronics Exponential growth in automotive electronics as  

E-Print Network [OSTI]

1 Vehicle Electronics #12; Exponential growth in automotive electronics as measured by: 2 ­ Number from now: Factor of 10,000 Vehicle Electronics ­ Strategic Drivers #12;Vehicle Electronics ­ Strategic probability of causing a fatal accident translates to thousands of fatal accidents in a popular vehicle model

Duchowski, Andrew T.

427

Roadmap: Electronic Media Electronic Media Sports Production Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Electronic Media ­ Electronic Media Sports Production ­ Bachelor of Science [CI­2013 Page 1 of 4 | Last Updated: 23-May-12/LNHD This roadmap is a recommended semester-by-semester plan requirement #12;Roadmap: Electronic Media ­ Electronic Media Sports Production ­ Bachelor of Science [CI

Sheridan, Scott

428

An electronic radiation of blackbody: Cosmic electron background  

E-Print Network [OSTI]

The Universe owns the electronic radiation of blackbody at temperature 2.725 K, which we call the cosmic electron background. We calculate its radiation spectrum. The energy distribution of number density of electrons in the cosmic electron background becomes zero as energy goes to both zero and infinity. It has one maximum peak near the energy level of 10**(-23) J.

Jian-Miin Liu

2008-02-23T23:59:59.000Z

429

Electronic Survey Methodology Page 1 Electronic Survey Methodology  

E-Print Network [OSTI]

Electronic Survey Methodology Page 1 Electronic Survey Methodology: A Case Study in Reaching Hard, Maryland preece@umbc.edu 2002 © Andrews, Nonnecke and Preece #12;Electronic Survey Methodology Page 2 Conducting Research on the Internet: Electronic survey Design, Development and Implementation Guidelines

Nonnecke, Blair

430

Vacancies in Al after pulsed electron beam melting  

SciTech Connect (OSTI)

We have used transmission electron microscopy (TEM) to study the retention of vacancies in Al after rapid melting and resolidification of a thin (approx. 3 ..mu..m) surface layer using a pulsed (approx.50 ns) electron beam. After pulsing and aging at room temperature, TEM examination showed dislocation loops, which are interpreted to be due to the coalescence of the quenched-in vacancies on )111) planes as is the case for the loops observed in earlier furnace quenching studies. Our results indicate that the rapid melting and resolidification leaves a high vacancy concentration (approx.100 ppm) in the resolidified Al. Heat transport calculations show that cooling rates for the pulse heated samples (approx.10/sup 8/ K/s) are much higher than those achieved by conventional quenching techniques (approx. 10/sup 4/ K/s).

Follstaedt, D.M.; Wampler, W.R.

1981-02-01T23:59:59.000Z

431

Space charge effects in ultrafast electron diffraction and imaging  

SciTech Connect (OSTI)

Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

Tao Zhensheng; Zhang He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824-2320 (United States)

2012-02-15T23:59:59.000Z

432

Electronic Spectroscopy & Dynamics  

SciTech Connect (OSTI)

The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

Mark Maroncelli, Nancy Ryan Gray

2010-06-08T23:59:59.000Z

433

Electron-electron interactions in fast neutral-neutral collisions  

SciTech Connect (OSTI)

Differential electron emission is studied for 50--500 keV H[sup +] and H atom impact on helium. Using the first Born formulation, it is shown that projectile electron-target electron interactions are expected to dominate the differential cross sections for low energy target electron emission induced by fast neutral projectile impact on any target. Measurements of the 15[degrees] electron emission were made in order to investigate this prediction. For low impact energies, a constant ratio between the hydrogen atom and proton impact cross sections was found for emitted electron velocities less than half the projectile velocity, V[sub p] But as the collision energy increased, for electron velocities less than 0.25 V[sub p], the cross section ratio increased as the emitted electron velocity decreased. This is interpreted as a signature of projectile electron-target electron interactions becoming dominant for distant collisions between neutral particles.

DuBois, R.D. (Pacific Northwest Lab., Richland, WA (United States)); Manson, S.T. (Georgia State Univ., Atlanta, GA (United States). Dept. of Physics and Astronomy)

1992-11-01T23:59:59.000Z

434

Electron-electron interactions in fast neutral-neutral collisions  

SciTech Connect (OSTI)

Differential electron emission is studied for 50--500 keV H{sup +} and H atom impact on helium. Using the first Born formulation, it is shown that projectile electron-target electron interactions are expected to dominate the differential cross sections for low energy target electron emission induced by fast neutral projectile impact on any target. Measurements of the 15{degrees} electron emission were made in order to investigate this prediction. For low impact energies, a constant ratio between the hydrogen atom and proton impact cross sections was found for emitted electron velocities less than half the projectile velocity, V{sub p} But as the collision energy increased, for electron velocities less than 0.25 V{sub p}, the cross section ratio increased as the emitted electron velocity decreased. This is interpreted as a signature of projectile electron-target electron interactions becoming dominant for distant collisions between neutral particles.

DuBois, R.D. [Pacific Northwest Lab., Richland, WA (United States); Manson, S.T. [Georgia State Univ., Atlanta, GA (United States). Dept. of Physics and Astronomy

1992-11-01T23:59:59.000Z

435

In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy  

SciTech Connect (OSTI)

Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900?C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Ihlefeld, J. [Electronic, Optical, and Nanomaterials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2014-10-28T23:59:59.000Z

436

Electron launching voltage monitor  

DOE Patents [OSTI]

An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

Mendel, C.W.; Savage, M.E.

1992-03-17T23:59:59.000Z

437

Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy  

SciTech Connect (OSTI)

Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

2007-01-01T23:59:59.000Z

438

Precision electron polarimetry  

SciTech Connect (OSTI)

A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry.

Chudakov, E. [Jefferson Lab 12000 Jefferson Ave, STE 16, Newport News, VA 23606 (United States)

2013-11-07T23:59:59.000Z

439

A graphene electron lens  

SciTech Connect (OSTI)

An epitaxial layer of graphene was grown on a pre patterned 6H-SiC(0001) crystal. The graphene smoothly covers the hexagonal nano-holes in the substrate without the introduction of small angle grain boundaries or dislocations. This is achieved by an elastic deformation of the graphene by {approx_equal}0.3% in accordance to its large elastic strain limit. This elastic stretching of the graphene leads to a modification of the band structure and to a local lowering of the electron group velocity of the graphene. We propose to use this effect to focus two-dimensional electrons in analogy to simple optical lenses.

Gerhard, L.; Balashov, T.; Wulfhekel, W. [Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany); Moyen, E.; Ozerov, I.; Sahaf, H.; Masson, L.; Hanbuecken, M. [CINaM-CNRS, Aix-Marseille University, Campus Luminy - Case 913, 18288 Marseille (France); Portail, M. [CRHEA-CNRS, Parc de Sophia - Antipolis, rue B. Gregory, 06560 Valbonne (France)

2012-04-09T23:59:59.000Z

440

Precision electron polarimetry  

SciTech Connect (OSTI)

A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. M{\\o}ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at ~300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100\\%-polarized electron target for M{\\o}ller polarimetry.

Chudakov, Eugene A. [JLAB

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Structure and electronic properties of mixed (a?+?c) dislocation cores in GaN  

SciTech Connect (OSTI)

Classical atomistic models and atomic-resolution scanning transmission electron microscopy studies of GaN films reveal that mixed (a?+?c)-type dislocations have multiple different core structures, including a dissociated structure consisting of a planar fault on one of the (12{sup }10) planes terminated by two different partial dislocations. Density functional theory calculations show that all cores introduce localized states into the band gap, which affects device performance.

Horton, M. K., E-mail: m.horton11@imperial.ac.uk [Department Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Rhode, S. L. [Department Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moram, M. A. [Department Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

2014-08-14T23:59:59.000Z

442

Diamondoid monolayers as electron emitters  

DOE Patents [OSTI]

Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

Yang, Wanli (El Cerrito, CA); Fabbri, Jason D. (San Francisco, CA); Melosh, Nicholas A. (Menlo Park, CA); Hussain, Zahid (Orinda, CA); Shen, Zhi-Xun (Stanford, CA)

2012-04-10T23:59:59.000Z

443

Hyperspectral Microscopy of Explosives Particles Using an External Cavity Quantum Cascade Laser  

SciTech Connect (OSTI)

Using infrared hyperspectral imaging, we demonstrate microscopy of small particles of the explosives compounds RDX, tetryl, and PETN with near diffraction-limited performance. The custom microscope apparatus includes an external cavity quantum cascade laser illuminator scanned over its tuning range of 9.13-10.53 m in four seconds, coupled with a microbolometer focal plane array to record infrared transmission images. We use the hyperspectral microscopy technique to study the infrared absorption spectra of individual explosives particles, and demonstrate sub-nanogram detection limits.

Phillips, Mark C.; Bernacki, Bruce E.

2012-12-26T23:59:59.000Z

444

Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy  

SciTech Connect (OSTI)

We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

2014-09-08T23:59:59.000Z

445

Calorimeter Electronics Jim Pilcher  

E-Print Network [OSTI]

Incident particles deposit their energy in a medium Tank of liquid (water or scintillator), dense medium is produced Electronics converts this signal to digital information For signal processing to calculate produced in these air showers #12;December 11, 2008 J. Pilcher6 Photo-detectors Role is to convert optical

446

Linkping University Electronic Press  

E-Print Network [OSTI]

.D. (and Licentiate) examination process. The details vary a little from faculty to faculty, but in general in the electronic publication of at least 95% of LiU Ph.D. and Licentiate theses. Furthermore, 40 Licentiate theses undergraduate reports, 293 Ph.D. theses and 122 Licentiate theses. Beyond theses, LiU E-Press also publishes

Zhao, Yuxiao

447

GRAPHENE: ELECTRON PROPERTIES AND  

E-Print Network [OSTI]

GRAPHENE: ELECTRON PROPERTIES AND TRANSPORT PHENOMENA Leonid Levitov MIT Lecture notes and HW and magnetoresistance Quantum Hall effect reminder The half-integer QHE in graphene Energy gaps and splitting of Landau levels QHE in p-n and p-n-p junctions Spin transport at graphene edge Fine structure constant

Gabrieli, John

448

RESOURCE GUIDE RECYCLING ELECTRONICS  

E-Print Network [OSTI]

://www.thesoftlanding.com/ AVOIDING BISPHENOL-A Eden Organics Beans http://www.edenfoods.com/ CD and DVD recycling httpRESOURCE GUIDE RECYCLING ELECTRONICS Batteries and Accessories Office Depot Cell Phones Any Verizon Plastics Call your local Solid Waste Management Facility eCycling resource (EPA) http

Danforth, Bryan Nicholas

449

TRANSFORM a electronics  

E-Print Network [OSTI]

THE DISCRETE FRACTIONAL FOURIER TRANSFORM a thesis submitted to the department of electrical TRANSFORM C ¸a~ gatay Candan M.S. in Electrical and Electronics Engineering Supervisor: Haldun M. ¨ Ozakta Transform (FrFT) is proposed, discussed and consolidated. The discrete trans­ form generalizes the Discrete

Candan, Cagatay

450

The development of optical microscopy techniques for the advancement of single-particle studies  

SciTech Connect (OSTI)

Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called non-blinking quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

Marchuk, Kyle

2013-05-15T23:59:59.000Z

451

2005The Royal Microscopical Society Journal of Microscopy,Vol. 219, Pt 2 August 2005, pp. 4349  

E-Print Network [OSTI]

resolutions, practical limitations, such as avoiding radiation damage, as well as 3D optical microscopy specimens. Introduction The conventional wisdom in modern structural

Agard, David

452

Electronic properties and morphology of Cu-phthalocyanineC{sub 60} composite mixtures  

SciTech Connect (OSTI)

Phthalocyanines in combination with C{sub 60} are benchmark materials for organic solar cells. Here, we have studied the morphology and electronic properties of co-deposited mixtures (blends) of these materials forming a bulk heterojunction as a function of the concentration of the two constituents. For a concentration of 1:1 of Cu-Phthalocyanine (CuPc):C{sub 60}, a phase separation into about 100?nm size domains is observed, which results in electronic properties similar to layered systems. For low C{sub 60} concentrations (10:1 CuPc:C{sub 60}), the morphology, as indicated by Low-Energy Electron Microscopy images, suggests a growth mode characterized by (amorphous) domains of CuPC, whereby the domain boundaries are decorated with C{sub 60}. Despite of these markedly different growth modes, the electronic properties of the heterojunction films are essentially unchanged.

Roth, Friedrich [Center for Free-Electron Laser Science/DESY, Notkestrae 85, D-22607 Hamburg (Germany); Lupulescu, Cosmin [Institute of Optics and Atomic Physics, TU Berlin, Strae des 17. Juni 135, D-10623 Berlin (Germany); Arion, Tiberiu [Center for Free-Electron Laser Science/DESY, Notkestrae 85, D-22607 Hamburg (Germany); Institut fr Experimentalphysik, Universitt Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Darlatt, Erik; Gottwald, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Abbestrae 2-12, D-10587 Berlin (Germany); Eberhardt, Wolfgang [Center for Free-Electron Laser Science/DESY, Notkestrae 85, D-22607 Hamburg (Germany); Institute of Optics and Atomic Physics, TU Berlin, Strae des 17. Juni 135, D-10623 Berlin (Germany)

2014-01-21T23:59:59.000Z

453

Investigation of wettability by NMR microscopy and spin-lattice relaxation  

SciTech Connect (OSTI)

The wettability of reservoir rock has an important impact on the efficiency of oil recovery processes and the distribution of oil and water within the reservoir. One of the potentially useful tools for wettability measurements is nuclear magnetic resonance (NMR) and spin-lattice relaxation. More recently using NMR microscopy NIPER has developed the capability of imaging one- and two-phase fluid systems in reservoir rock at resolutions to 25 microns. Effects seen in the images of fluids within the pore space of rocks near the rock grain surfaces hinted at the possibility of using NMR microscopy to map the wettability variations at grain sites within the pore space. Investigations were begun using NMR microscopy and spin-lattice relaxation time measurements on rock/fluid systems and on well-defined fractional wet model systems to study these effects. Relaxation data has been modelled using the stretched exponential relationship recently introduced. Comparisons of the NMR microscopy results of the model system with the rock results indicate that the observed effects probably do not reflect actual wettability variations within the pore space. The results of the relaxation time measurements reveal that even in the simple model studied, the behavior of two phases is somewhat ambiguous and much more complex and requires more study.

Doughty, D.A.; Tomutsa, Liviu

1993-11-01T23:59:59.000Z

454

Noncovalent Cross-Linking of Casein by Epigallocatechin Gallate Characterized by Single Molecule Force Microscopy  

E-Print Network [OSTI]

force microscopy; astrin- gency; compaction INTRODUCTION Green tea contains a large amount is produced from green tea by fermentation, which oxidizes many of the tea polyphenols into higher molecular, Sheffield S3 7RH, United Kingdom Interaction of the tea polyphenol epigallocatechin gallate (EGCG

Williamson, Mike P.

455

Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling Microscopy  

E-Print Network [OSTI]

Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling propargylglycine unnatural functional groups 20 apart and an alkanethiol self-assembled monolayer (SAM) on a gold-terminated surfaces were imaged by scanning tunneling microscopy (STM) using a low tunneling current of 10 p

Webb, Lauren J.

456

Bioelectrical SPMs (G. Gomila, UB-IBEC) Bioelectric Scanning Probe Microscopies  

E-Print Network [OSTI]

-ups: Micropippete based electrodes Measurements of cell membrane ion transport on single cells 2. Scanning Ion (SNOM),Scanning Tunneling Microscope (STM), Scanning Ion Conductance Microscope (SICM), Scanning Conductance Microscopy #12;7 Bioelectrical SPMs (G. Gomila, UB-IBEC) Single ion channels recordings Average

Ritort, Felix

457

Thermal calibration of photodiode sensitivity for atomic force microscopy Phil Attarda  

E-Print Network [OSTI]

Thermal calibration of photodiode sensitivity for atomic force microscopy Phil Attarda School 21 November 2006 The photodiode sensitivity in the atomic force microscope is calibrated by relating measurement with the atomic force microscope AFM requires the sensitivity of the photodiode, which re- lates

Attard, Phil

458

NREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions and identify  

E-Print Network [OSTI]

and Characterization team examined local junction breakdown in silicon and thin-film solar cells by electroluminescenceNREL scientists develop near-field optical microscopy techniques for imaging solar cell junctions is an increasingly important issue for silicon solar cells. The issue has taken center stage now that the solar

459

Thermal emission microscopy measures the spa-tial distribution of temperature in a sample. Thermal  

E-Print Network [OSTI]

per unit area emitted by an object is proportional to its absolute temperature to the fourth powerThermal emission microscopy measures the spa- tial distribution of temperature in a sample. Thermal- cause the optical power emitted by the sample is a function of its local temperature. The optical power

460

FEATURE ARTICLE Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and  

E-Print Network [OSTI]

probes fast diffusion dynamics with vibrational selectivity. 1. Introduction Investigation of molecular-photon fluorescence microscopy a useful tool for in vivo imaging. Chemical imaging by use of inherent molecular is, however, limited by the long excitation wavelength (several micrometers) and the IR absorption

Xie, Xiaoliang Sunney

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore-Polymer Composite Materials  

E-Print Network [OSTI]

Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore-Polymer Composite electrooptic devices based on chromophore-polymer composite materials is to improve chromophore ordering of susceptibility.16 Chromophore-polymer composite materials lack inherent non- centrosymmetry, which is required

Reid, Philip J.

462

Contribution to crystallographic slip assessment by means of topographic measurements achieved with atomic force microscopy  

SciTech Connect (OSTI)

In this paper, atomic force microscopy (AFM) is used to quantitatively characterize the plastic glide occurring during tensile deformation of a duplex 2205 stainless steel sample. We demonstrate that an appropriate treatment of the topographic image issued from AFM measurements allows precise and quantitative information about the characteristics of plastic deformation and especially the amount of crystallographic slip.

Kahloun, C. [LPMTM - CNRS, Universite Paris 13, 99 av. J.B. Clement, 93430 Villetaneuse (France); Badji, R. [LPMTM - CNRS, Universite Paris 13, 99 av. J.B. Clement, 93430 Villetaneuse (France); Welding and NDT Research Centre, B. P. 64, Cheraga (Algeria); Bacroix, B., E-mail: bacroix@lpmtm.univ-paris13.fr [LPMTM - CNRS, Universite Paris 13, 99 av. J.B. Clement, 93430 Villetaneuse (France); Bouabdallah, M. [E.N.P, 10 av. Hassan Badi, 16200 El Harrah Alger (Algeria)

2010-09-15T23:59:59.000Z

463

In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries  

E-Print Network [OSTI]

In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high of these batteries for commercial use. The two primary obstacles are the solubility of long chain lithium

Cui, Yi

464

Methods of Digital Video Microscopy for Colloidal Studies John C. Crocker and David G. Grier  

E-Print Network [OSTI]

Methods of Digital Video Microscopy for Colloidal Studies John C. Crocker and David G. Grier digitized video microscope images of colloidal suspensions. In a typical application, these direct imaging information from a sequence of video images into single­particle trajectories makes pos­ sible measurements

Grier, David

465

Methods of Digital Video Microscopy for Colloidal Studies John C. Crocker and David G. Grier  

E-Print Network [OSTI]

Methods of Digital Video Microscopy for Colloidal Studies John C. Crocker and David G. Grier digitized video microscope images of colloidal suspensions. In a typical application, these direct imaging information from a sequence of video images into single-particle trajectories makes pos- sible measurements

Grier, David

466

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons  

E-Print Network [OSTI]

Video-Rate Scanning Two-Photon Excitation Fluorescence Microscopy and Ratio Imaging with Cameleons ABSTRACT A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video

Tsien, Roger Y.

467

Methods of Digital Video Microscopy for Colloidal Studies John C. Crocker and David G. Grier  

E-Print Network [OSTI]

Methods of Digital Video Microscopy for Colloidal Studies John C. Crocker and David G. Grier digitized video microscope im­ ages of colloidal suspensions. In a typical application, these direct imaging information from a sequence of video images into single­ particle trajectories makes possible measurements

Grier, David

468

Tracking molecules at video rate Scientists push SRS microscopy to new levels of spatial precision  

E-Print Network [OSTI]

Tracking molecules at video rate Scientists push SRS microscopy to new levels of spatial precision at Harvard University, is so fast and sensitive it can capture "video" of blood cells squeezing through at the subcellular level, catching video of proteins, lipids, and water within cells. "When we started this project

Heller, Eric

469

Two-photon microscopy to measure blood flow and concurrent brain cell activity  

E-Print Network [OSTI]

fluorescent molecules occurs only at the laser focus. Past studies have made use of two-photon microscopy-27) and the olfactory bulb (6, 28-31), down to depths of 600 µm, which is sufficient to resolve vessels and neurons and endogenous fluorescence-based functional reporters to observe cellular activity, such as changes

Kleinfeld, David

470

Polymerization kinetics of ADP-and ADP-Pi-actin determined by fluorescence microscopy  

E-Print Network [OSTI]

Polymerization kinetics of ADP- and ADP-Pi-actin determined by fluorescence microscopy Ikuko of depolymerizing filaments, we measured the polymerization rate constants of ADP-actin and ADP-Pi-actin. Saturating phosphate reduces the critical concentra- tion for polymerization of Mg-ADP-actin from 1.8 to 0.06 M almost

471

High-resolution friction force microscopy under electrochemical control Aleksander Labuda,1  

E-Print Network [OSTI]

High-resolution friction force microscopy under electrochemical control Aleksander Labuda,1 William and development of a friction force microscope for high-resolution studies in electrochemical environments in liquids. The noise of the system is analyzed based on a methodology for the quantification of all

Grütter, Peter

472

Postdoctoral Positions In-vivo Optical Imaging and Microscopy of the Living Brain  

E-Print Network [OSTI]

Postdoctoral Positions In-vivo Optical Imaging and Microscopy of the Living Brain Columbia insight into the function and physiology of the living brain. We are particularly interested in exploring brain. Neurovascular coupling is important both because it is the basis of the fMRI BOLD signal

Adams, Mark

473

Oxygen driven reconstruction dynamics of Ni,,977... measured by time-lapse scanning tunneling microscopy  

E-Print Network [OSTI]

Oxygen driven reconstruction dynamics of Ni,,977... measured by time-lapse scanning tunneling-lapse scanning tunneling microscopy STM has been used to observe the oxygen induced reconstruction behavior of Ni for the merging of steps in the presence of small amounts of adsorbed oxygen, less than 2% of a monolayer. Point

Sibener, Steven

474

Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies  

E-Print Network [OSTI]

Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies Arkady V STM images of both metallic and semiconducting single-wall carbon nanotubes with atomic vacancies predict that vacancies should result in the formation of hillock-like features in STM images of metallic

Krasheninnikov, Arkady V.

475

Defect production in tungsten: A comparison between field-ion microscopy and molecular-dynamics simulations  

E-Print Network [OSTI]

Defect production in tungsten: A comparison between field-ion microscopy and molecular defect production efficiencies obtained by FIM are a consequence of a surface effect, which greatly enhances defect production compared to that in the crystal interior. Comparison of clustering of vacancies

Nordlund, Kai

476

Electronic structure and transport in molecular and nanoscale electronics  

E-Print Network [OSTI]

Two approaches based on first-principles method are developed to qualitatively and quantitatively study electronic structure and phase-coherent transport in molecular and nanoscale electronics, where both quantum mechanical ...

Qian, Xiaofeng

2008-01-01T23:59:59.000Z

477

Complete radiative terms for the electron/electronic energy equation  

SciTech Connect (OSTI)

A derivation of the radiative terms in the electron/electronic energy equation is presented, properly accounting for the effects of absorption and emission of radiation on the individual energy modes of the gas. This electron/electronic energy equation with the complete radiative terms has successfully been used to model the radiation-dominated precursor ahead of the bow shock of a hypersonic vehicle entering the Earth`s atmosphere. 8 refs.

Stanley, S.A.; Carlson, L.A. [Univ of California, San Diego, CA (United States)

1994-10-01T23:59:59.000Z

478

Single electron beam rf feedback free electron laser  

DOE Patents [OSTI]

A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

Brau, C.A.; Stein, W.E.; Rockwood, S.D.

1981-02-11T23:59:59.000Z

479

Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams  

SciTech Connect (OSTI)

An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

Hastings, J.B.; /SLAC; Rudakov, F.M.; /Brown U.; Dowell, D.H.; Schmerge, J.F.; /SLAC; Cardoza, J.D.; /Brown U.; Castro, J.M.; Gierman, S.M.; Loos, H.; /SLAC; Weber, P.M.; /Brown U.

2006-10-24T23:59:59.000Z

480

Electron screening in nickel  

SciTech Connect (OSTI)

In order to further investigate electron screening phenomenon we studied proton induced nuclear reactions over an energy range from 1.35 to 3.08 MeV for different environments: Ni metal and NiO insulator. The measurements were based on observation of the {gamma}-ray yields of {sup 59,61,63,64,65}Cu and {sup 58,60,62}Ni. Also, we have studied the decay of {sup 61}Cu produced in the reaction {sup 60}Ni(p,{gamma}), in order to find a possible decay rate perturbation by atomic electrons and found a small difference in half-life for metallic compared to oxide environment, respectively. The present results clearly show that the metallic environment affects the fusion reactions at low energy and that it might also affect the decay rate.

Gajevic, Jelena; Lipoglavsek, Matej; Petrovic, Toni; Pelicon, Primoz [Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia) and Cosylab d.d, Teslova ulica 30, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova cesta 39, Ljubljana (Slovenia)

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "ncem electron microscopy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Electronics for Satellite Experiments  

SciTech Connect (OSTI)

The tracking detector for the LAT science instrument on the GLAST mission is an example of a large-scale particle detection system built primarily by particle physicists for space flight within the context of a NASA program. The design and fabrication model in most ways reflected practice and experience from particle physics, but the quality assurance aspects were guided by NASA. Similarly, most of the electronics in the LAT as a whole were designed and built by staff at a particle physics lab. This paper reports on many of the challenges and lessons learned in the experience of designing and building the tracking detector and general LAT electronics for use in the NASA GLAST mission.

Johnson, Robert P.; /UC, Santa Cruz

2006-05-16T23:59:59.000Z

482

Computational Electronics and Electromagnetics  

SciTech Connect (OSTI)

The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

DeFord, J.F.

1993-03-01T23:59:59.000Z

483

Xyce parallel electronic simulator.  

SciTech Connect (OSTI)

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.

Keiter, Eric Richard; Mei, Ting; Russo, Thomas V.; Rankin, Eric Lamont; Schiek, Richard Louis; Thornquist, Heidi K.; Fixel, Deborah A.; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

2010-05-01T23:59:59.000Z

484

Pulsed-electron-beam melting of Fe  

SciTech Connect (OSTI)

Pulsed (50 nsec) electron beams with deposited energies of 1.1 to 2.3 J/cm/sup 2/ have been used to rapidly melt a surface layer of Fe. Calculations show that this range of energies produces melt depths from 0.4 to 1.2 ..mu..m and melt times of 100 to 500 nsec. Optical microscopy and SEM of pulse treated polycrystalline foils show slip traces, as well as a general smoothing of surface features which shows that melting has occurred. TEM shows that the resolidified material is bcc, and that the material within a grain is epitaxial with the substrate. TEM also shows slip traces along (110) planes, as well as a high density of dislocations, both extended and loop. At the highest energy, subgrain boundaries are observed. Some samples were implanted with 1 x 10/sup 16/ Sn/cm/sup 2/ at 150 keV. After pulse treatment, the Sn depth profile was observed to have broadened, consistent with liquid phase diffusion. The Sn had the unexpected effect of suppressing slip at the sample surface.

Knapp, J.A.; Follstaedt, D.M.

1981-01-01T23:59:59.000Z

485

Surface science analysis of GaAs photocathodes following sustained electron beam delivery  

SciTech Connect (OSTI)

Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

2012-06-01T23:59:59.000Z

486

Microscopy | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for converting biomass-derived light hydrocarbons and aromatics into a mixture of carbon monoxide and... Key changes in proteins occur in cyanobacteria Posted: September 22,...

487

EMSL - Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:DirectivesSAND2015-21271 7 6 EIA-176Pageenergymicroscopy

488

Electronic Travel Documents (VE5,  

E-Print Network [OSTI]

Electronic Travel Documents (VE5, VE6, VP5) 512-471-8802 askUS@austin.utexas.edu www ................................................................................................. 10 III. ELECTRONIC RTA - CORRECTION DOCUMENT (VE6 ......................................................................................... 36 C. TRAVEL MANAGEMENT SERVICES

Texas at Austin, University of

489

Unbalanced field RF electron gun  

DOE Patents [OSTI]

A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

Hofler, Alicia

2013-11-12T23:59:59.000Z

490

Rf Feedback free electron laser  

DOE Patents [OSTI]

A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

491

Transmission electron microscope CCD camera  

DOE Patents [OSTI]

In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

Downing, Kenneth H. (Lafayette, CA)

1999-01-01T23:59:59.000Z

492

Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography  

E-Print Network [OSTI]

by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images resolution images have been used to obtain the strain in nano-structured materials.3 Although this approach in many different types of sam- ples, at this time the spatial resolution of between 3 and 6 nm

Dunin-Borkowski, Rafal E.

493

Electron tunneling characteristics on La[subscript 0.7]Sr[subscript 0.3]MnO[subscript 3] thin-film surfaces at high temperature  

E-Print Network [OSTI]

We report on the electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces up to 580?C in 10[superscript ?3]?mbar oxygen pressure, using scanning tunneling microscopy/spectroscopy (STM/STS). A thresholdlike ...

Katsiev, Khabiboulakh

494

Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle  

E-Print Network [OSTI]

Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light) and atomic force microscopy (AFM) experiments have been carried out on aerogels at dierent steps of densi

Demouchy, Sylvie

495

Synthesis and structure of Al clusters supported on TiO2,,110...: A scanning tunneling microscopy study  

E-Print Network [OSTI]

Synthesis and structure of Al clusters supported on TiO2,,110...: A scanning tunneling microscopy, Texas 77843-3255 Received 14 October 1997; accepted 6 April 1998 Al clusters supported on TiO2(110) have been investigated using scanning tunneling microscopy. Al interacts strongly with the TiO2(110) surface

Goodman, Wayne