Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vito Cedro III Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7406 vito.cedro@netl.doe.gov Jason S....

2

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R R &D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

3

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

4

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Romanosky Romanosky Crosscutting Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Richard Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Shizhong Yang Principal Investigator Southern University

5

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

6

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

7

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

8

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

9

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

10

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

11

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

12

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

13

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

14

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

15

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

16

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

17

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

18

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

19

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Patricia Rawls Patricia Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Sankaran Sundaresan Principal Investigator Princeton University Department of Chemical Engineering Princeton, NJ 08544 609-258-4583 sundar@princeton.edu PROJECT DURATION Start Date 10/01/2011 End Date 09/30/2014 COST Total Project Value $420,366 DOE/Non-DOE Share $300,000 / $120,366 Implementation and Refinement

20

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Category:Elkins, WV | Open Energy Information  

Open Energy Info (EERE)

Elkins, WV Elkins, WV Jump to: navigation, search Go Back to PV Economics By Location Media in category "Elkins, WV" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant Elkins WV Harrison Rural Elec Assn Inc.png SVQuickServiceRestaura... 60 KB SVHospital Elkins WV Harrison Rural Elec Assn Inc.png SVHospital Elkins WV H... 57 KB SVLargeHotel Elkins WV Harrison Rural Elec Assn Inc.png SVLargeHotel Elkins WV... 57 KB SVLargeOffice Elkins WV Harrison Rural Elec Assn Inc.png SVLargeOffice Elkins W... 58 KB SVMediumOffice Elkins WV Harrison Rural Elec Assn Inc.png SVMediumOffice Elkins ... 59 KB SVMidriseApartment Elkins WV Harrison Rural Elec Assn Inc.png

22

If you reside in WASHINGTON, DC - MD -VA - WV your salary will...  

National Nuclear Security Administration (NNSA)

If you are employed in the WASHINGTON, DC Metropolitan Area (D.C., Baltimore, Northern VA, Eastern WV, and Southern PA) your salary will range from: Pay Band Pay Plan(s) Minimum...

23

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL R&D Tackles Technological NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding

24

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Engine Technology Background The mission of the U.S. Department of Energy's National Energy Technology Laboratory (DOENETL) Carbon Capture Program is to develop innovative...

25

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Rapid PSA for CO 2 Capture Background The mission of the U.S. Department of EnergyNational Energy Technology Laboratory (DOENETL) Carbon Capture Research &...

26

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

including lignite and sub-bituminous coal, make up about half of U.S. coal production and reserves. They have lower energy and sulfur contents than bituminous coal, but higher...

27

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Institute Background The mission of the U.S. Department of EnergyNational Energy Technology Laboratory (DOENETL) Carbon Capture Program is to develop innovative...

28

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of filter elements to remove ash from the syngas prior to it being utilized in a gas turbine or fuel cell. The elements are arranged in columns called "candles" and contained...

29

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Facilities Description Scientists at NETL's laboratories use the Geoscience Analysis, Interpretation, and Assessments (GAIA) Computational Facilities for...

30

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation on Pyroelectric Ceramic Temperature Sensors for Energy System Applications Background There is an increasing need to monitor processing parameters such as...

31

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO 2 -Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Background The mission of the U.S. Department of EnergyNational Energy Technology Laboratory...

32

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and are also stringent in order to avoid poisoning catalysts utilized in making liquids from fuel gas, electrodes in fuel cells, and selective catalytic reduction...

33

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

modeling, laboratory experiments, and industry input to develop physics-based methods, models, and tools to support the development and deployment of advanced...

34

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of clean energy systems. Accomplishments The AVESTAR team successfully deployed 3-D virtual IGCC immersive training systems at NETL and West Virginia University that allow...

35

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent...

36

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

volatilization from interconnect alloys using solution conductivity. Schematic of a SOFC highlighting potential degradation mechanisms. The GEGR project assists the SOFCs...

37

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

project phases focused on cell and stack research and development with emphasis on SOFC performance enhancement (power density, fuel utilization, and degradation), cost...

38

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical state of pulse laser deposited thin-film cathodes were measured. * A symmetric SOFC cell for ultra-small angle X-ray scattering studies was designed and constructed. The...

39

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

coatingscale durability through thermal cycling. * Drew the interest of a major SOFC manufacturer and specialty SOFC metals producer. Benefits nGimat's SBIR project...

40

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

assists the SOFCs program in meeting its cost and performance targets by ensuring that SOFC seals can achieve reliable operation over an extended operating life. The program...

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

methods developed in this ONR program can now be applied to the testing of a Delphi Gen 4 SOFC stack in the DOE research program. Benefits This NUWC project assists the SOFCs...

42

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

region or matching oxygen vacancy concen- trations. * Demonstrated that periodic reverse SOFC operation serves to prolong SOFC lifetimes. * Demonstrated elemental surface valence...

43

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Unique Low Thermal Conductivity Thermal Barrier Coating (TBC) Architectures-UES Background Gas turbine engines used in integrated gasification combined cycle power plants require...

44

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

a novel catalyzed wall heat exchanger, and a network of heat exchangers to support thermal self-sufficiency. * Completed test stand modifications at UTC Power to support...

45

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

diverse number of systems and chemical processes ranging from catalysts developments for Fischer-Tropsch synthesis applications, nanoscience, development of dense membrane systems...

46

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

and unknown samples. Analyses are used to characterize the fundamental properties of unconventional natural gas and oil reservoirs, ultra-deepwater and frontier-region...

47

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the plant. Calera's process reduces carbon dioxide and pollutant emissions by using waste streams to make useable products. In the Sub-phase 2a, Calera completed the detailed...

48

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

WGS National Carbon Capture Center - Water-Gas Shift Tests to Reduce Steam Use Background In cooperation with Southern Company Services, the U.S. Department of Energy (DOE)...

49

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Conduct bench-scale testing of the complete ICES incorporating the selected particle growth method with the optimized capture duct and diffuser systems to enable the...

50

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

can contribute to the reduction of overall greenhouse gas emissions from fossil power plants. One area of research is the development and characterization of multiple...

51

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Archer Daniels Midland Company: CO 2 Capture from Biofuels Production and Storage into the Mt. Simon Sandstone Background Carbon dioxide (CO 2 ) emissions from industrial...

52

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Membrane (ITM) Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems Background Oxygen is among the top five chemicals produced worldwide...

53

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

materials requirements for all fossil energy systems, including materials for advanced power generation technologies, such as coal gasification, heat engines, such as turbines,...

54

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC- Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under...

55

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition-The Ohio State University Background Sophisticated...

56

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

FutureGen 2.0 Background The combustion of fossil fuels for electricity generation is one of the largest contributors to carbon dioxide (CO 2 ) emissions in the United States and...

57

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

(3) improving efficiency of storage operations; and (4) developing Best Practices Manuals. Deploying these technologies in commercial-scale applications will require a...

58

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

main bulk phases, the Nb solid solution, and Nb silicides will be developed. Formation energies of the undoped and doped Nb-Si-Cr will be calculated and compared. Interfacial...

59

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Technology (Georgia Tech) will obtain data and develop models of the turbulent burning rate of HHC fuels at realistic conditions and in inhomo- geneous conditions such as...

60

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier; hot gas filtration; continuous ash depressurization systems; and various instrumentation, sampling, and controls systems. After only eight years from the time of...

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

gasifier; hot gas filtration; continuous ash depressurization systems; and various instrumentation, sampling, and controls systems. Only eight years after construction and...

62

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

capture technologies developed by the DOE program may also be applied to natural gas power plants after addressing the R&D challenges associated with the relatively low...

63

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

correspond to reflected-shock temperature (1180 K) and pressure (13.06 atm) for a stoichiometric H 2 -O 2 mixture in argon. Comparison with chemical kinetics mechanisms is good...

64

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

NLE Websites -- All DOE Office Websites (Extended Search)

oil recovery (EOR) application. The industrial source of CO 2 will be a petroleum-coke-to-chemicals (methanol and other by-products) gasification plant being developed by...

65

Category:Charleston, WV | Open Energy Information  

Open Energy Info (EERE)

WV WV Jump to: navigation, search Go Back to PV Economics By Location Media in category "Charleston, WV" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Charleston WV Harrison Rural Elec Assn Inc.png SVFullServiceRestauran... 59 KB SVQuickServiceRestaurant Charleston WV Harrison Rural Elec Assn Inc.png SVQuickServiceRestaura... 60 KB SVHospital Charleston WV Harrison Rural Elec Assn Inc.png SVHospital Charleston ... 57 KB SVLargeHotel Charleston WV Harrison Rural Elec Assn Inc.png SVLargeHotel Charlesto... 57 KB SVLargeOffice Charleston WV Harrison Rural Elec Assn Inc.png SVLargeOffice Charlest... 58 KB SVMediumOffice Charleston WV Harrison Rural Elec Assn Inc.png SVMediumOffice Charles... 60 KB SVMidriseApartment Charleston WV Harrison Rural Elec Assn Inc.png

66

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power...

67

DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01  

Office of Legacy Management (LM)

Reduction Pilot Plant - WV 01 Reduction Pilot Plant - WV 01 FUSRAP Considered Sites Site: REDUCTION PILOT PLANT (WV.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: International Nickel Company WV.01-1 Location: Cole Street at Alterizer Ave. , Huntington , West Virginia WV.01-2 Evaluation Year: 1987 WV.01-1 Site Operations: Manufactured powdered Nickel for use at Paducah and Portsmouth gaseous diffusion plants and Nickel plated a small quantity of Uranium slugs. WV.01-2 WV.01-1 Site Disposition: Eliminated - Limited quantities of radioactive material used on the site. Potential for residual radioactive material from AEC operations conducted at the site considered remote - confirmed by radiological survey. WV.01-1 WV.01-3

68

NETL: 2010 WV Science Bowl Information  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 WV Science Bowl 2010 WV Science Bowl The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) invites you to participate in one of the premier scientific events for high school students, the West Virginia High School Science Bowl 2010 on February 6, 2010. This will be NETL's 19th year sponsoring the high school competition. There is a change this year in the registration process from past years, all teams who are registering to complete, must do so through the National Science Bowl website. For those who are not familiar with the West Virginia Science Bowl here are some highlights: The competition is open to high school students (school, scouts, home school) from West Virginia. Complete eligibility requirements are located at the National Science Bowl website.

69

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

WV DoE-NRCCE-APERC DRAFT February 16, 2009 WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power Service Ali Feliachi, Muhammad Choudhry, John Saymansky and Ed Sneckenberger February 16, 2009 Introduction APERC has appreciated that one of the most important sources for data on the consumer perspective of the current electric power grid in West Virginia would be the WV Public Service Commission (WV PSC). Thus, an email request was sent on December 19, 2008 to Byron Harris at the WV PSC to request any advice or approaches to determine customer and regulatory perspectives of the current electric power grid in WV. Customer Complaint Data Bryon Harris was able to provide a spreadsheet of customer complaints in West Virginia for

70

NC STATE UNIVERSITY UNIVERSITY HOUSING  

E-Print Network (OSTI)

name to enter it on your application. Only current and accepted students will appear in the search box of the application process 1 #12;NC STATE UNIVERSITY SELECT THE FALL 2012 TERM 2 Once accepted by NC State, students accepting the terms and conditions associated with the Agreement. ELECTRONIC SIGNATURE #12;NC STATE

71

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

72

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

73

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

74

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

75

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

76

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

77

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

78

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

79

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

80

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

82

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

83

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

84

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

85

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

86

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

87

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

88

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

89

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

90

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

91

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

92

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

93

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

94

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

95

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

96

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

97

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

98

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

99

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

100

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

102

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

103

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

104

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SO SO 2 -Resistent Immobilized Amine Sorbents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

105

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

106

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

107

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

108

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

109

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

110

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

111

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

112

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

113

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

114

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

115

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

116

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Background Carbon dioxide (CO2) emissions from industrial processes, among other sources, are linked to global climate change. Advancing development of technologies that capture and store or beneficially reuse CO2 that would otherwise reside in the atmosphere for extended periods is of great importance. Advanced carbon capture, utilization and storage (CCUS) technologies offer significant potential for reducing CO2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Industrial Carbon Capture and Storage (ICCS) program, the U.S. Department

117

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

118

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

119

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

120

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

122

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

123

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

124

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

125

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

126

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

127

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

128

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

129

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

130

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

131

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

132

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

133

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

134

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing and Evaluation of Next Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion Background The Department of Energy (DOE) supports research towards the development of efficient and inexpensive CO 2 capture technologies for fossil fuel based power generation. The Department of Energy Crosscutting Research Program (CCR) serves as a bridge between basic and applied research. Projects supported by the Crosscutting Research Program conduct a range of pre-competitive research focused on opening new avenues to gains in power plant efficiency, reliability, and environmental quality by research in materials and processes, coal utilization science, sensors and controls, and computational energy science. Within the CCR, the University Coal Research (UCR) Program sponsors

135

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

136

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

137

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

138

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

139

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

140

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

142

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

143

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

144

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

145

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

146

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

147

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

148

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

149

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

150

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

151

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT CONTACT Cathy Summers Director, Process Development Division National Energy Technology Laboratory 1450 Queen Ave., SW Albany, OR 97321-2198 541-967-5844 cathy.summers@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has

152

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Simulations of the Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for FE Power Systems Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. The goal of

153

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

154

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

155

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

156

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

157

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

158

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

159

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

160

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

162

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

163

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

164

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

165

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

166

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

167

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Diode Laser Cladding of High Diode Laser Cladding of High Temperature Alloys Used in USC Coal- Fired Boilers Background The Advanced Research (AR) Materials Program addresses materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal gasification, heat engines such as turbines, combustion systems, fuel cells, hydrogen production, and carbon capture

168

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

169

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

170

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

171

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

172

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

173

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathodes: Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship among Structure, Surface Chemistry, and Oxygen Reduction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The Boston University (BU) project was competitively selected to acquire the fundamental

174

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

175

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

176

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

177

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Research Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are:

178

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

179

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

180

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Leads Collaborative Effort DOE Leads Collaborative Effort to Quantify Environmental Changes that Coincide with Shale Gas Development Background DOE's National Energy Technology Laboratory (NETL) is leading a joint industry/ government research project to document environmental changes that occur during the lifecycle of shale gas development. The research plan calls for one year of environmental monitoring before development takes place to establish baseline conditions and account for seasonal variations. Monitoring then will continue through the different stages of unconventional shale gas development including: road and pad construction, drilling, and hydraulic fracturing, and for at least one year of subsequent production operations. The study will take place at a Range Resources-Appalachia

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

182

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

183

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

r r oj e c t Fac t s Advanced Research Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments Background Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is central to the mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensors that can function under the

184

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

185

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

186

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

187

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

188

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

189

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Modified Electrodes: Enhancing Surface-Modified Electrodes: Enhancing Performance Guided by In-Situ Spectroscopy and Microscopy- Stanford University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by mass and

190

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Eddy Simulation Modeling of Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines using a Hierarchical Validation Approach- University of Texas at Austin Background The focus of this project is the development of advanced large eddy simulation (LES)-based combustion modeling tools that can be used to design low emissions combustors burning high hydrogen content fuels. The University of Texas at Austin (UT) will develop models for two key topics: (1) flame stabilization, lift- off, and blowout when fuel-containing jets are introduced into a crossflow at high pressure, and (2) flashback dynamics of lean premixed flames with detailed description of flame propagation in turbulent core and near-wall flows. The jet- in-crossflow (JICF) configuration is widely used for rapid mixing of reactants

191

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Efficient Regeneration of Physical and Chemical Solvents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

192

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Scale CO2 Injection and Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

193

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Thermal Management-NETL-RUA Turbine Thermal Management-NETL-RUA Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is researching advanced turbine technology with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the nation's increasing energy challenges. With the Hydrogen Turbine Program, NETL is leading the research, development, and demonstration of technologies to achieve power production from high-hydrogen-content fuels derived from coal that is clean, efficient, and cost-effective, and minimizes carbon dioxide (CO 2 ) emissions, and will help maintain the nation's leadership in the export of gas turbine equipment. The NETL Regional University Alliance (RUA) is an applied research collaboration that

194

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoping Studies to Evaluate the Benefits Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in Integrated Gasification Combined Cycle Background Gasification of coal or other solid feedstocks (biomass, petroleum coke, etc.) produces synthesis gas (syngas), which can be cleaned and used to produce electricity and a variety of commercial products that support the U.S. economy, decrease U.S. dependence on oil imports, and meet current and future environmental emission standards. The major challenge is cost, which needs to be reduced to make integrated gasification combined cycle (IGCC) technology competitive. An IGCC plant combines a combustion turbine operating on a gasified fuel stream--syngas--with a steam turbine to capture what would otherwise be waste heat. Currently, the estimated cost of power from IGCC is higher than

195

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reliability and Durability of Materials Reliability and Durability of Materials and Components for SOFCs - Oak Ridge National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Oak Ridge National Laboratory's (ORNL) project was selected to acquire the fundamental

196

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Protection Coatings Based on a SOFC Protection Coatings Based on a Cost-Effective Aluminization Process- NexTech Materials Background To make solid oxide fuel cell (SOFC) systems easier to manufacture and reduce costs, less expensive stainless steels have been substituted into the stack design as alternatives to ceramic interconnects. Stainless has also been substituted for high-cost, nickel-based superalloys in balance of plant (BOP) components. For successful implementation of these steels, protective coatings are necessary to protect the air-facing metal surfaces from high-temperature corrosion/oxidation and chromium (Cr) volatilization. NexTech Materials Ltd. (NexTech) will develop an aluminide diffusion coating as a low- cost alternative to conventional aluminization processes and evaluate the ability of the

197

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Methanol Economy Methanol Economy Background Fossil fuels such as coal, oil, and natural gas are composed of hydrocarbons with varying ratios of carbon and hydrogen. Consumption of hydrocarbons derived from fossil fuels is integral to modern day life in the U.S. Hydrocarbons are used as fuels and raw materials in the transportation sector and in many industrial production processes including chemicals, petrochemicals, plastics, pharmaceuticals, agrochemicals, and rubber.

198

CT NC0  

Office of Legacy Management (LM)

x-L* d! x-L* d! CT NC0 - i , ,. i, .' i :.:(e.!' ,A\~, L.,t, - (iI :i' , . y- 2 .L i ._ 1 c\ :- i;! Ii $ 4. Ci:lc:i.nnati. 39, t>:::i.f> (J&l3 q-1 -3 sui3 Jrn T3 FRCM .I iirz 1 ?j ~ 1.3 bL1 T:' IP !REFOI?T TC 5YC?CZCiC~ :EWllIFl;j",tsSS L' I"JIsIc:;. .:;xli3;. iCAN !fA(=;-fL,yg-j L' sc,, E. $.iCLX:i?, -iIJ,x:q()Is. ON hL4X 24 - 25 ) 1.9tic ;i. A. Quiglel;, A.3, 3, M. ChenauEt gpxrIvB OF TP.~ The purpose of t3is trip was tc observe a proposed method for the dchy- dratim of green salt md to determine that all health and safety measures were being xrried out, SurveiU.ance of this nature provided protection against excessi3z personnel exposure, insured compliance with ICC shipping regulaticns, tion of the equ'~ and determined when adequate decontamira-

199

Microsoft Word - 2014 WVSB - WV HS letter (generic for PDF).docx  

NLE Websites -- All DOE Office Websites (Extended Search)

610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 610 Collins Ferry Road, P.O. Box 880, Morgantown, WV 26507-0880 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940 REPLY TO: Morgantown Office  steven.woodruff@netl.doe.gov  Voice (304) 285-4175  Fax (304) 285-0903  www.netl.doe.gov September 23, 2013 Dear Science Chair or Principal: On behalf of the Secretary of Energy, I am pleased to announce the opening of the 2014 National Science Bowl, a tournament-style academic competition challenging students in the fields of science and mathematics. In support of the National Science Bowl, the U.S. Dept of Energy's National Energy Technology Laboratory is once again proud to host the West Virginia Regional Science Bowl. The WVSB is one of many regional competitions held for high school teams across

200

Microsoft PowerPoint - NETL Morgantown, WV to Washington, DC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Morgantown, WV Site to Washington, DC Headquarters 1. Take I-68 EAST toward CUMBERLAND, MD. 2 M t I 70 EASTUS 40 EUS 522 S E it EXIT 82AB t d HAGERSTOWN 2. Merge onto I-70 EAST...

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Microsoft Word - Parkersburg High School Claims 2013 WV Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parkersburg High School Claims 2013 WV Science Bowl Regional Win Parkersburg High School demonstrated its academic prowess as it defeated 12 other teams to capture the 22 nd Annual...

202

DOE - Office of Legacy Management -- Springdale PA - PA 11  

Office of Legacy Management (LM)

Springdale PA - PA 11 Springdale PA - PA 11 FUSRAP Considered Sites Springdale, PA Alternate Name(s): C.H. Schnoor - Misspelling of Schnorr from historical documents Conviber, Inc. Premier Manufacturing Company Unity Railway Supply Company PA.11-1 PA.11-2 PA.11-4 PA.11-9 Location: 644 Garfield Street, Springdale, Pennsylvania PA.11-2 Historical Operations: Machined extruded uranium for the Hanford Pile Project to produce an alternate charge for the Hanford reactor and machined uranium slugs for MED contractors. PA.11-9 Eligibility Determination: Eligible PA.11-4 PA.11-5 Radiological Survey(s): Assessment Surveys, Verification Surveys PA.11-4 PA.11-6 PA.11-7 PA.11-8 Site Status: Certified - Cleanup completed - Certification Basis, Federal Register Notice Included PA.11-9

203

DOE - Office of Legacy Management -- Springdale PA - PA 11  

NLE Websites -- All DOE Office Websites (Extended Search)

Springdale PA - PA 11 Springdale PA - PA 11 FUSRAP Considered Sites Springdale, PA Alternate Name(s): C.H. Schnoor - Misspelling of Schnorr from historical documents Conviber, Inc. Premier Manufacturing Company Unity Railway Supply Company PA.11-1 PA.11-2 PA.11-4 PA.11-9 Location: 644 Garfield Street, Springdale, Pennsylvania PA.11-2 Historical Operations: Machined extruded uranium for the Hanford Pile Project to produce an alternate charge for the Hanford reactor and machined uranium slugs for MED contractors. PA.11-9 Eligibility Determination: Eligible PA.11-4 PA.11-5 Radiological Survey(s): Assessment Surveys, Verification Surveys PA.11-4 PA.11-6 PA.11-7 PA.11-8 Site Status: Certified - Cleanup completed - Certification Basis, Federal Register Notice Included PA.11-9

204

Category:Wilmington, NC | Open Energy Information  

Open Energy Info (EERE)

NC NC Jump to: navigation, search Go Back to PV Economics By Location Media in category "Wilmington, NC" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Wilmington NC Duke Energy Carolinas LLC.png SVFullServiceRestauran... 69 KB SVQuickServiceRestaurant Wilmington NC Duke Energy Carolinas LLC.png SVQuickServiceRestaura... 68 KB SVHospital Wilmington NC Duke Energy Carolinas LLC.png SVHospital Wilmington ... 67 KB SVLargeHotel Wilmington NC Duke Energy Carolinas LLC.png SVLargeHotel Wilmingto... 65 KB SVLargeOffice Wilmington NC Duke Energy Carolinas LLC.png SVLargeOffice Wilmingt... 68 KB SVMediumOffice Wilmington NC Duke Energy Carolinas LLC.png SVMediumOffice Wilming... 68 KB SVMidriseApartment Wilmington NC Duke Energy Carolinas LLC.png

205

Category:Greensboro, NC | Open Energy Information  

Open Energy Info (EERE)

NC NC Jump to: navigation, search Go Back to PV Economics By Location Media in category "Greensboro, NC" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Greensboro NC Duke Energy Carolinas LLC.png SVFullServiceRestauran... 69 KB SVQuickServiceRestaurant Greensboro NC Duke Energy Carolinas LLC.png SVQuickServiceRestaura... 68 KB SVHospital Greensboro NC Duke Energy Carolinas LLC.png SVHospital Greensboro ... 67 KB SVLargeHotel Greensboro NC Duke Energy Carolinas LLC.png SVLargeHotel Greensbor... 66 KB SVLargeOffice Greensboro NC Duke Energy Carolinas LLC.png SVLargeOffice Greensbo... 68 KB SVMediumOffice Greensboro NC Duke Energy Carolinas LLC.png SVMediumOffice Greensb... 67 KB SVMidriseApartment Greensboro NC Duke Energy Carolinas LLC.png

206

DOE - Office of Legacy Management -- The Carborundum Co Inc - WV 02  

Office of Legacy Management (LM)

The Carborundum Co Inc - WV 02 The Carborundum Co Inc - WV 02 FUSRAP Considered Sites Site: THE CARBORUNDUM CO., INC (WV.02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: AMAX Inc WV.02-1 Location: Wood County , West Virginia WV.02-1 Evaluation Year: 1982 WV.02-1 Site Operations: Produced high-grade Zirconium metal for use in construction of nuclear reactors for the Navy circa late-1950s and 1960s; Conducted small scale Zirconium and Uranium testing in the mid-1970s. WV.02-2 Site Disposition: Eliminated - AEC/NRC licensed site. No Authority for cleanup under FUSRAP WV.02-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium, Uranium WV.02-2 Radiological Survey(s): Yes WV.02-3 Site Status: Eliminated from further consideration under FUSRAP

207

I'NC.£F::.-------  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I'NC.£F::.------- I'NC.£F::.------- u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETI!lUnNATION RECIPIENT:WA Dept of Commerce PROJECT TITLE: SEP ARRA· WSU Anaerobic Digester· Nutrient Recovery Technology Page 1 of3 STATE: WA funding Opportunity Announcement Number Procurement Instrument Number NEPA Cnntrol Number CID Number EEOOOO139 GF0-0000139-Q22 EE139 Based on my ",view of the informaUon concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI.IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including , but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

208

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia Smart Grid Implementation Plan (WV SGIP) Project West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid modernization project is to assess the current status of the electric power grid in West Virginia in order to define the potential to implement smart grid technologies. Thus, an initial task of this project was to define the current state or "As-Is" grid in West Virginia. Financial and time constraints prohibited the development and execution of formal surveys to solicit input from the various stakeholders. However attempts were made to obtain their input through informal questionnaires and meeting with focus groups. list of stakeholders which

209

East North Central Pa  

Gasoline and Diesel Fuel Update (EIA)

East East North Central Pa cif ic Contiguous Mountain West North Central West South Central Pacific Noncontiguous East South Central Sout h At lant ic Middle Atlantic New England 35. Average Price of Natural Gas Delivered to Consumers by Census Division, 1995-1996 (Dollars per Thousand Cubic Feet) Table Census Division Residential Commercial 1995 1996 1995 1996 New England ........................................................... 9.06 9.03 6.78 6.96 Middle Atlantic ......................................................... 7.75 8.00 6.04 6.57 East North Central ................................................... 5.05 5.44 4.57 4.94 West North Central .................................................. 4.97 5.54 4.08 4.71 South Atlantic........................................................... 6.89 7.50 5.33 6.14 East South Central...................................................

210

NC Sustainable Energy Association | Open Energy Information  

Open Energy Info (EERE)

NC Sustainable Energy Association NC Sustainable Energy Association Jump to: navigation, search Name NC Sustainable Energy Association Address PO Box 6465 Place Raleigh Zip 27628 Number of employees 1-10 Year founded 1978 Phone number 919-832-7601 Website http://www.energync.org Coordinates 35.7719°, -78.6388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7719,"lon":-78.6388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Category:Philadelphia, PA | Open Energy Information  

Open Energy Info (EERE)

PA PA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Philadelphia, PA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Philadelphia PA PECO Energy Co.png SVFullServiceRestauran... 65 KB SVHospital Philadelphia PA PECO Energy Co.png SVHospital Philadelphi... 59 KB SVLargeHotel Philadelphia PA PECO Energy Co.png SVLargeHotel Philadelp... 60 KB SVLargeOffice Philadelphia PA PECO Energy Co.png SVLargeOffice Philadel... 61 KB SVMediumOffice Philadelphia PA PECO Energy Co.png SVMediumOffice Philade... 63 KB SVMidriseApartment Philadelphia PA PECO Energy Co.png SVMidriseApartment Phi... 64 KB SVOutPatient Philadelphia PA PECO Energy Co.png SVOutPatient Philadelp... 62 KB SVPrimarySchool Philadelphia PA PECO Energy Co.png

212

Category:Pittsburgh, PA | Open Energy Information  

Open Energy Info (EERE)

Pittsburgh, PA Pittsburgh, PA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Pittsburgh, PA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Pittsburgh PA PECO Energy Co.png SVFullServiceRestauran... 65 KB SVHospital Pittsburgh PA PECO Energy Co.png SVHospital Pittsburgh ... 60 KB SVLargeHotel Pittsburgh PA PECO Energy Co.png SVLargeHotel Pittsburg... 60 KB SVLargeOffice Pittsburgh PA PECO Energy Co.png SVLargeOffice Pittsbur... 61 KB SVMediumOffice Pittsburgh PA PECO Energy Co.png SVMediumOffice Pittsbu... 63 KB SVMidriseApartment Pittsburgh PA PECO Energy Co.png SVMidriseApartment Pit... 64 KB SVOutPatient Pittsburgh PA PECO Energy Co.png SVOutPatient Pittsburg... 62 KB SVPrimarySchool Pittsburgh PA PECO Energy Co.png

213

DOE - Office of Legacy Management -- Carpenter Steel Co - PA...  

Office of Legacy Management (LM)

included uranium hot rolling tests. PA.12-3 PA.12-4 Site Disposition: Eliminated - Radiation levels below criteria PA.12-1 PA.12-3 PA.12-5 Radioactive Materials Handled: Yes...

214

NC GreenPower Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NC GreenPower Production Incentive NC GreenPower Production Incentive NC GreenPower Production Incentive < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State North Carolina Program Type Performance-Based Incentive Rebate Amount Varies by technology and system size PV up to 5 kW: $0.06/kWh PV larger than 5 kW: must enter bid process Wind up to 10 kW: $0.09/kWh Wind larger than 10 kW: must enter bid process Provider NC GreenPower NC GreenPower, a statewide green power program designed to encourage the use of renewable energy in North Carolina, offers production payments for grid-tied electricity generated by solar, wind, small hydro (10 megawatts

215

Does nuclear matter bind at large $N_c$?  

E-Print Network (OSTI)

The existence of nuclear matter at large $N_c$ is investigated in the framework of effective hadronic models of the Walecka type. This issue is strongly related to the nucleon-nucleon attraction in the scalar channel, and thus to the nature of the light scalar mesons. Different scenarios for the light scalar sector correspond to different large $N_c$ scaling properties of the parameters of the hadronic models. In all realistic phenomenological scenarios for the light scalar field(s) responsible for the attraction in the scalar channel it is found that nuclear matter does not bind in the large $N_c$ world. We thus conclude that $N_c = 3$ is in this respect special: 3 is fortunately not large at all and allows for nuclear matter, while large $N_c$ would not.

Bonanno, Luca

2011-01-01T23:59:59.000Z

216

D"E(:pa  

Office of Legacy Management (LM)

e e D"E(:pa . EFG (0744 United States Government .;,~&ljy gb' /fq Department of Eneigy memorandum JUN 4 1992 DATE: REPLY TO ATTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Authority Determination -- Springdale, Pennsylvania Former C. H. Schnoor & Company facility, TO: The File The attached review documents the basis for determining whether DOE has authority for taking remedial action at the former C. H. Schnoor & Company facility in Springdale, Pennsylvania, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The facility was used for the shaping of uranium by the Manhattan Engineer District (MED) during the Second World War. The following factors are significant in reaching a decision and are discussed in more detail in the attached authority review:

217

File:EIA-Appalach6-WV-VA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach6-WV-VA-BOE.pdf Appalach6-WV-VA-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.02 MB, MIME type: application/pdf) Description Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Virginia File history Click on a date/time to view the file as it appeared at that time.

218

Scoping Study for Demand Respose DFT II Project in Morgantown, WV  

Science Conference Proceedings (OSTI)

This scoping study describes the underlying data resources and an analysis tool for a demand response assessment specifically tailored toward the needs of the Modern Grid Initiatives Demonstration Field Test in Phase II in Morgantown, WV. To develop demand response strategies as part of more general distribution automation, automated islanding and feeder reconfiguration schemes, an assessment of the demand response resource potential is required. This report provides the data for the resource assessment for residential customers and describes a tool that allows the analyst to estimate demand response in kW for each hour of the day, by end-use, season, day type (weekday versus weekend) with specific saturation rates of residential appliances valid for the Morgantown, WV area.

Lu, Shuai; Kintner-Meyer, Michael CW

2008-06-06T23:59:59.000Z

219

File:EIA-Appalach6-WV-VA-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach6-WV-VA-GAS.pdf Appalach6-WV-VA-GAS.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.09 MB, MIME type: application/pdf) Description Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Virginia File history Click on a date/time to view the file as it appeared at that time.

220

File:EIA-Appalach5-eastWV-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach5-eastWV-BOE.pdf Appalach5-eastWV-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.26 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time.

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE - Office of Legacy Management -- Aliquippa - PA 07  

Office of Legacy Management (LM)

Aliquippa - PA 07 Aliquippa - PA 07 FUSRAP Considered Sites Aliquippa, PA Alternate Name(s): Cyclops Corporation, Titusville Plant Univesal Cyclops, Inc Aliquippa Forge Site Vulcan Crucible Site PA.07-2 PA.07-4 Location: 100 First Street, Aliquippa, Pennsylvania PA.07-4 Historical Operations: During the late 1940s, performed metal fabrication services under contracct with the AEC that included rolling natural uranium metal into rods. PA.07-3 PA.07-5 PA.07-6 PA.07-7 Eligibility Determination: Eligible PA.07-1 Radiological Survey(s): Assessment Surveys, Verification Surveys PA.07-8 PA.07-9 PA.07-10 PA.07-11 PA.07-12 Site Status: Certified- Certification Basis, Federal Register Notice included PA.07-4 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

222

Figure 23. Average price of natural gas delivered to U.S. commercial...  

Annual Energy Outlook 2012 (EIA)

Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL...

223

Microsoft Word - figure_22.doc  

Gasoline and Diesel Fuel Update (EIA)

Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL...

224

Microsoft Word - figure_21.doc  

Annual Energy Outlook 2012 (EIA)

of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA...

225

BatPaC - Battery Performance and Cost model - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

> BatPaC Home About BatPaC Download BatPaC Contact Us BatPaC: A Lithium-Ion Battery Performance and Cost Model for Electric-Drive Vehicles The recent penetration of...

226

N.C. Solar Center | Open Energy Information  

Open Energy Info (EERE)

N.C. Solar Center N.C. Solar Center Jump to: navigation, search Name N.C. Solar Center Address NCSU, Box 7401 Place Raleigh, NC Zip 27695 Number of employees 11-50 Year founded 1988 Coordinates 35.762515267°, -78.5407447815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.762515267,"lon":-78.5407447815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

SBOT WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VIRGINIA WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

228

DOE - Office of Legacy Management -- Frankford Arsenal - PA 21  

Office of Legacy Management (LM)

Frankford Arsenal - PA 21 Frankford Arsenal - PA 21 FUSRAP Considered Sites Site: Frankford Arsenal (PA.21 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Pitman -Dunn Laboratories Dept. , Philadelphia , Pennsylvania PA.21-1 Evaluation Year: 1987 PA.21-2 Site Operations: Conducted research involving the use of uranium tetrachloride and metal fabrication operations with uranium metal. PA.21-2 PA.21-4 PA.21-5 Site Disposition: Eliminated - Referred to DOD PA.21-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.21-2 PA.21-3 PA.21-4 PA.21-5 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD PA.21-2

229

Palmco Power PA, LLC | Open Energy Information  

Open Energy Info (EERE)

PA, LLC Place New York Utility Id 56573 Utility Location Yes Ownership R Operates Generating Plant Yes References EIA Form EIA-861 Final Data File for 2010 - File1a1 LinkedIn...

230

NC-1-B Wholesale Power Rate Schedule | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NC-1-B Wholesale Power Rate Schedule NC-1-B Wholesale Power Rate Schedule NC-1-B Wholesale Power Rate Schedule Area: Virginia Power/CP&L System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia and North Carolina to whom power may be transmitted pursuant to a contract between the Government and Virginia Electric and Power Company (hereinafter called the Virginia Power) and PJM Interconnection LLC (hereinafter called PJM), scheduled pursuant to a contract between the Government and Carolina Power & Light Company (hereinafter called CP&L), and billed pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale at wholesale of power

231

Chemical and Biomolecular Engineering at NC State University  

E-Print Network (OSTI)

for biological research and solar energy conversion. Chemical and Biomolecular Engineering at NC State #12.Biocatalysts(enzymes) are of vital importance in the production of transportation fuels from renewable resources. Bioethanol) and cellulosic biomass can be used as sources of sugars for fermentation to ethanol. Prof. Lamb's group is also

Velev, Orlin D.

232

US MidAtl PA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

233

US MidAtl PA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

234

PA Sangli Bundled Wind Project | Open Energy Information  

Open Energy Info (EERE)

PA Sangli Bundled Wind Project Jump to: navigation, search Name PA Sangli Bundled Wind Project Place Maharashtra, India Zip 416115 Sector Wind energy Product Ichalkaranji-based SPV...

235

NETL: Science Bowl Information - Southwestern PA  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Bowl Information > Science Bowl Information - South West PA Science Bowl Information > Science Bowl Information - South West PA Educational Initiatives Science Bowl Information - Southwestern PA Facebook Visit us on Facebook CLICK ON IMAGE TO SEE LARGER VIEW SWPA SWPA SWPA 2012 SWPA Science Bowl Results Congratulations! North Allegheny High School and Ingomar Middle School The finals for the SWPA Science Bowl were held on March 7th. The winner of the SWPA High School Science Bowl is North Allegheny High School. The winner of the SWPA Middle School Science Bowl is Ingomar Middle School Team 2 from the North Allegheny School District. The final team results are High School: 1st - North Allegheny HS 2nd - Mt. Lebanon HS 3rd - Baldwin HS 4th - Pine-Richland HS Middle School: 1st - Ingomar MS Team 2 (North Allegheny School District)

236

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area (Redirected from New York Area - NY NJ CT PA) Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

237

DOE - Office of Legacy Management -- Jessop Steel Co - PA 17  

Office of Legacy Management (LM)

Jessop Steel Co - PA 17 Jessop Steel Co - PA 17 FUSRAP Considered Sites Site: JESSOP STEEL CO. (PA.17 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 500 Green Street , Washington , Pennsylvania PA.17-3 Evaluation Year: 1991 PA.17-1 Site Operations: Metal fabrication for the AEC in the early 1950s. PA.17-1 Site Disposition: Eliminated - Limited quantities of radioactive material handled on site - Potential for residual radioactive contamination is considered remote - Confirmed by radiological survey PA.17-1 PA.17-2 PA.17-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.17-1 Radiological Survey(s): Yes PA.17-3 Site Status: Eliminated from further consideration under FUSRAP

238

DOE - Office of Legacy Management -- Bettis Atomic Power Laboratories - PA  

Office of Legacy Management (LM)

Bettis Atomic Power Laboratories - Bettis Atomic Power Laboratories - PA 44 FUSRAP Considered Sites Site: Bettis Atomic Power Laboratories (PA.44 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Allegheny County , West Mifflin , Pennsylvania PA.44-1 Evaluation Year: Circa 1987 PA.44-2 Site Operations: Conducted activities directed toward the design, development, testing, and operational follow of nuclear reactor propulsion plants for Naval surface and submarine vessels. PA.44-1 Site Disposition: Eliminated - Active DOE facility PA.44-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radioactive Materials Associated with Reactor Operation PA.44-3 Radiological Survey(s): None Indicated

239

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

240

DOE - Office of Legacy Management -- Sharples Corp - PA 29  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharples Corp - PA 29 Sharples Corp - PA 29 FUSRAP Considered Sites Site: SHARPLES CORP. (PA.29 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 201 Spring Garden Street , Philadelphia , Pennsylvania & Philadelphia , Pennsylvania PA.29-2 PA.29-1 Evaluation Year: 1986 PA.29-1 Site Operations: Producer/broker of special chemicals - major MED supplier. PA.29-2 PA.29-3 Site Disposition: Eliminated - No indication that radioactive materials were used on the site PA.29-1 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to SHARPLES CORP. PA.29-1 - Memorandum/Checklist; D. Levine to the File; Subject:

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE - Office of Legacy Management -- Heppanstall Co - PA 19  

Office of Legacy Management (LM)

Heppanstall Co - PA 19 Heppanstall Co - PA 19 FUSRAP Considered Sites Site: Heppanstall Co. (PA.19 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Tippens Inc. PA.19-1 Location: 4620 Hatfield Street , Pittsburgh , Pennsylvania PA.19-4 Evaluation Year: 1987 PA.19-2 Site Operations: Forged approximately 100,000 pounds of uranium during a six month period in 1955. PA.19-1 Site Disposition: Eliminated - Potential for contamination remote. Radiological screening survey results indicate radiation levels well below DOE guidelines. Conditions at site meet applicable requirements - No further investigation of site necessary. PA.19-1 PA.19-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.19-3

242

DOE - Office of Legacy Management -- Beryllium Corp - PA 39  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Corp - PA 39 Beryllium Corp - PA 39 FUSRAP Considered Sites Site: BERYLLIUM CORP. (PA.39 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Brush Beryllium PA.39-1 Location: Reading , Pennsylvania PA.39-1 Evaluation Year: 1987 PA.39-1 Site Operations: Production of Beryllium circa late 1940s - 50s. PA.39-1 Site Disposition: Eliminated - No radioactive material handled at this site, only Beryllium PA.39-1 Radioactive Materials Handled: No PA.39-1 Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to BERYLLIUM CORP. PA.39-1 - Memorandum/Checklist; D. Levine to the File; Subject:

243

DOE - Office of Legacy Management -- Foote Mineral Co - PA 27  

NLE Websites -- All DOE Office Websites (Extended Search)

Foote Mineral Co - PA 27 Foote Mineral Co - PA 27 FUSRAP Considered Sites Site: Foote Mineral Co. (PA.27 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Exton , Pennsylvania PA.27-1 Evaluation Year: 1987 PA.27-1 Site Operations: Processed rare earth, principally zirconium and monazite sand was processed on a pilot-plant scale. PA.27-2 Site Disposition: Eliminated - Limited quantity of material handled - Potential for contamination considered remote PA.27-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Zirconium, Possibly Uranium PA.27-1 PA.27-2 PA.27-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Foote Mineral Co.

244

Precise global collision detection in multi-axis NC-machining  

Science Conference Proceedings (OSTI)

We introduce a new approach to the problem of collision detection in multi-axis NC-machining. Due to the directional nature (tool axis) of multi-axis NC-machining, space subdivision techniques are adopted from ray-tracing algorithms and are extended ... Keywords: 5-Axis machining, Collision detection and verification, Lower envelopes, NC-machining, Ray tracing, Space subdivision

Oleg Ilushin; Gershon Elber; Dan Halperin; Ron Wein; Myung-Soo Kim

2005-08-01T23:59:59.000Z

245

Technical Insights for Saltstone PA Maintenance  

Science Conference Proceedings (OSTI)

The Cementitious Barriers Partnership (CBP) is a collaborative program sponsored by the US DOE Office of Waste Processing. The objective of the CBP is to develop a set of computational tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers and waste forms used in nuclear applications. CBP tools are expected to better characterize and reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the assessment process, as the five-year program progresses. In September 2009, entering its second year of funded effort, the CBP sought opportunities to provide near-term tangible support to DOE Performance Assessments (PAs). The Savannah River Saltstone Disposal Facility (SDF) was selected for the initial PA support effort because (1) cementitious waste forms and barriers play a prominent role in the performance of the facility, (2) certain important long-term behaviors of cementitious materials composing the facility are uncertain, (3) review of the SDF PA by external stakeholders is ongoing, and (4) the DOE contractor responsible for the SDF PA is open to receiving technical assistance from the CBP. A review of the current (SRR Closure & Waste Disposal Authority 2009) and prior Saltstone PAs (e.g., Cook et al. 2005) suggested five potential opportunities for improving predictions. The candidate topics considered were (1) concrete degradation from external sulfate attack, (2) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, (3) mechanistic prediction of geochemical conditions, (4) concrete degradation from rebar corrosion due to carbonation, and (5) early age cracking from drying and/or thermal shrinkage. The candidate topics were down-selected considering the feasibility of addressing each issue within approximately six months, and compatibility with existing CBP expertise and already-planned activities. Based on these criteria, the five original topics were down-selected to two: external sulfate attack and mechanistic geochemical prediction. For each of the selected topics, the CBP communicated with the PA analysts and subject matter experts at Savannah River to acquire input data specific to the Saltstone facility and related laboratory experiments. Simulations and analyses were performed for both topics using STADIUM (SIMCO 2008), LeachXS/ORCHESTRA (ECN 2007, Meeussen 2003), and other software tools. These supplemental CBP analyses produced valuable technical insights that can be used to strengthen the Saltstone PA using the ongoing PA maintenance process. This report in part summarizes key information gleaned from more comprehensive documents prepared by Sarkar et al. (2010), Samson (2010), and Sarkar (2010).

Flach, G.; Sarkar, S.; Mahadevan, S.; Kosson, D.

2011-07-20T23:59:59.000Z

246

PA.03 A' EROSPACE~CORPORATI'  

Office of Legacy Management (LM)

PA.03 PA.03 ? A' EROSPACE~CORPORATI' ON / A. Plato, S. W., Washington, D. C. ZOOZJ. Telephone: (20.2) 488.6000 7117-Oli85.cdy.X 30'Septemberl985 Mr. Arthur Whitman, NE-24 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Whitman: AUTHORITY ,REVIEW. - THE FORMER SUPERIOR,STEEL CORPORATION SITE - AECCONTRACT NO. AT(30-l)- 1412 Aer0spac.e has completed.assembly and analysis.of, available documentation,, and'.prepared the,subject review for'your consideration and. determination ifthere.is authority for. remedial action. under FUSRAP' at the former Superior SteellCorporation facility in-Carnegie, Pennsylvania. As indica,ted,in the attached~review, the Superior Steel Corporation was one of three principal contractors involved in AEC's initial fuel element

247

DOE - Office of Legacy Management -- Philadelphia Navy Yard - PA 08  

NLE Websites -- All DOE Office Websites (Extended Search)

Philadelphia Navy Yard - PA 08 Philadelphia Navy Yard - PA 08 FUSRAP Considered Sites Site: PHILADELPHIA NAVY YARD (PA.08) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.08-1 Evaluation Year: 1987 PA.08-1 Site Operations: Abelson's S-50 thermal diffusion pilot plant was built and operated on this facility in 1944 and large quantities of uranium hexafluoride were processed in 1945. PA.08-1 Site Disposition: Eliminated - Referred to DOD PA.08-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium oxide (hexaflouride) PA.08-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD PA.08-1

248

Properties of the SU(Nc) Gluon Plasma  

E-Print Network (OSTI)

We investigate the deconfinement transition in SU(Nc) gauge theories, and properties of the deconfined phase. A detailed lattice study of SU(4) and SU(6) gauge theories are conducted, and finite volume and cutoff effects on thermodynamic observables are studied. The scaling of the deconfinement transition point with lattice spacing is used to calculate the scale, Lambda_MSbar. The continuum estimates of the thermodynamic quantities are used to study properties of the gluon plasma. In particular, the approach to conformal limit is studied. We do not find any evidence of a strongly coupled, conformal phase in these theories.

Saumen Datta; Sourendu Gupta

2009-10-15T23:59:59.000Z

249

ANVIL-5000 1. 1. 1 NC programming update  

SciTech Connect

ANVIL-5000 is used effectively by the staff in Sandia's Materials Process Engineering and Fabrication Directorate to develop training materials, solve mathematics problems, prepare documentation, and program machines. The computational graphics resources are reviewed, the techniques for training the craftworker staff to use ANVIL are described, and a variety of current ANVIL applications are documented. Complex ANVIL projects involving a propeller blade mold and a water cooled head are described to illustrate the utility of CAD/CAM techniques being used by the NC Engineering staff. 30 figs.

Plomp, P.W.

1987-01-01T23:59:59.000Z

250

NC State Chemical Engineering Degrees -B and BS Graduation Name NicknamDgr Maj Grad Date H Hometown StateInitial Employer Employer City StateJob Title  

E-Print Network (OSTI)

-Employed Diggs NC Farmer Oliver Max Gardner OMax BS IC 5/27/1903 Shelby NC NC College of A&M Ar Raleigh NC Winborne White BS IC 5/27/1903 Greenville NC Raleigh Hosiery Mill Raleigh NC Dyer Edgar William Gaither BS/30/1906 Halifax NC U. Illinois Urbana IL Assistant William Graham Knox BS IC 5/30/1906 Charlotte NC Northampton

Velev, Orlin D.

251

DOE - Office of Legacy Management -- Catalytic Co - PA 40  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Co - PA 40 Catalytic Co - PA 40 FUSRAP Considered Sites Site: Catalytic Co. (PA.40 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.40-1 Evaluation Year: 1991 PA.40-1 Site Operations: Prime contractor for construction of the Fernald facility. Records indicate one time shipment of a very small quantity (4 lbs) of uranium metal to this site. PA.40-1 Site Disposition: Eliminated - Construction contractor - Potential for residual contamination from the very small quantity of uranium shipped to this site is considered remote PA.40-2 Radioactive Materials Handled: None - as a construction contractor Primary Radioactive Materials Handled: Uranium Metal - Believed to be a Souvenier. PA.40-1

252

DOE - Office of Legacy Management -- Summerville Tube Co - PA 24  

NLE Websites -- All DOE Office Websites (Extended Search)

Summerville Tube Co - PA 24 Summerville Tube Co - PA 24 FUSRAP Considered Sites Site: SUMMERVILLE TUBE CO. (PA.24) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bridgeport , Pennsylvania PA.24-1 Evaluation Year: 1987 PA.24-1 Site Operations: Metal fabrication research and development on uranium metal in the early 1940s - Cold drawing of tuballoy aluminum sheathing. PA.24-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote due to limited scope of operations and quantity of radioactive material handled PA.24-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.24-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

253

DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA  

Office of Legacy Management (LM)

Shippingport Atomic Power Plant - Shippingport Atomic Power Plant - PA 13 FUSRAP Considered Sites Site: SHIPPINGPORT ATOMIC POWER PLANT (PA.13 ) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: Duquesne Light Company PA.13-1 Location: 25 miles west of Pittsburgh in Beaver County , Shippingport , Pennsylvania PA.13-2 Evaluation Year: circa 1987 PA.13-3 Site Operations: First commercially operated nuclear power reactor. Joint project (Federal Government an Duquesne Light Company) to demonstrate pressurized water reactor technology and to generate electricity. Plant operated by Duquesne Light Company under supervision of the Office of the DOE Deputy Assistant Secretary for Naval Reactors -- 1957 to October 1982. PA.13-2 Site Disposition: Eliminated - No Authority. DOE chartered Major Project #118, Shippingport Station Decommissioning Project completed cleanup in 1989. PA.13-1

254

NETL: Science Bowl Information - Southwestern PA  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 SWPA Science Bowl 2011 SWPA Science Bowl CLICK ON IMAGE TO SEE LARGER VIEW SWPA West Chester East Team 1 SWPA Hempfield Team 1 SWPA State College Team 1 and SWPA Winner SWPA Norwin Team 1 Lilas Soukup,SB Coordinator NETL, The Honorable Tim Murphy, U.S. House, Dr. Charlene Newkirk, Dr. Anthony Cugini, Director, NETL Click here to watch the archived webcast of the Southwestern PA Science Bowl Finals High School Congratulations to our four division winners: View full results here Division Einstein - West Chester East Team 1 - Frances Poodry, Coach - Jon C, Captain - Ashish B - Alex C - Dan D Division Carson - Hempfield Team 1 - Thomas Harden, Coach - Jake K, Captain - Chase L - Rob R - Mike T - Priya B Division Tesla - State College Team 1 and SWPA Winner - Christoph S, Captain - Joe L - Monica M

255

NETL: 2010 SW PA Middle School Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

is open to middle school students (school, scouts, home school) from Southwestern Pennsylvania (SW PA). Complete eligibility requirements are located at the National...

256

Microsoft PowerPoint - NETL Pittsburgh, PA to Washington, DC...  

NLE Websites -- All DOE Office Websites (Extended Search)

PA. 2. Merge RIGHT via Exit 161 onto I-70 EAST toward BREEZEWOODUS-30 BALTIMOREWASHINGTON, DC (follow US-30 through Breezewood). , ( g ) 3. At FREDERICKSBURG, merge...

257

U.S. DOE Industrial Technologies Program Technology Delivery Plant-Wide Assessment at PPG Industries, Natrium, WV  

SciTech Connect

PPG and West Virginia University performed a plantwide energy assessment at the PPGs Natrium, WV chemical plant, an energy-intensive manufacturing facility producing chlor-alkali and related products. Implementation of all the assessment recommendations contained in this report could reduce plant energy consumption by 8.7%, saving an estimated 10,023,192 kWh/yr in electricity, 6,113 MM Btu/yr in Natural Gas, 401,156 M lb/yr in steam and 23,494 tons/yr in coal and reduce carbon dioxide emissions by 241 mm lb/yr. The total cost savings would amount to approximately $2.9 mm/yr. Projects being actively implemented will save $1.7 mm/yr; the remainder are undergoing more detailed engineering study.

Lester, Stephen R.; Wiethe, Jeff; Green, Russell; Guice, Christina; Gopalakrishnan, Bhaskaran; Turton, Richard

2007-09-28T23:59:59.000Z

258

Building Energy Software Tools Directory: Power Calc PaK  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Calc PaK Power Calc PaK Power Calc PaK logo Power Calc PaK is smart electrical engineering software with a proprietary database. With just 3 inputs (load kVA, load type, and number of poles), it automatically calculates, and recalculates for changes (upstream and downstream), the entire power distribution system in a building providing more than 300 outputs that are compliant with the National Electrical Code (NEC). Power Calc PaK is a patent-protected innovation (covered by U.S. Patent No. 7,636,650). One bundled calculation integrates all the outputs across all the panelboards and equipment worksheets required for the power distribution system from the branch circuit to the electrical service. A few highlights are: 3 inputs for 300 NEC-compliant outputs; ends tedious and repetitive

259

Privacy Act (PA) of 1974 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

(PA) of 1974 | National Nuclear Security Administration (PA) of 1974 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Privacy Act (PA) of 1974 Home > About Us > Our Operations > NNSA Office of General Counsel > Privacy Act (PA) of 1974 Privacy Act (PA) of 1974 The purpose of the Privacy Act of 1974 (Act), Title 5, United States Code,

260

BatPaC - Battery Performance and Cost model - About BatPaC  

NLE Websites -- All DOE Office Websites (Extended Search)

About BatPaC About BatPaC The starting point for this work is based on the decades of battery design work headed by Paul Nelson at Argonne National Laboratory. These design models were based in Microsoft Office Excel® resulting in a flexible and straightforward format. The current effort builds on this previous experience by adding a manufacturing cost calculation as well as increasing the fidelity of the performance calculations all while maintaining efficient calculations (e.g. fractions of a second). The cost of a battery will change depending upon the materials chemistry, battery design, and manufacturing process. Therefore, it is necessary to account for all three areas with a bottom-up cost model. Other bottom-up cost models exist but are not generally available and have not been explicitly detailed in a public document. The motivation for our approach is based on a need for a battery performance and cost model that meets the following requirements:

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Quark-Hadron Duality for Hybrid Mesons at Large-Nc  

E-Print Network (OSTI)

We investigate implications of quark-hadron duality for hybrid mesons in the large-Nc limit. A simple formalism is developed which implements duality for QCD two-point functions of currents of quark bilinears, with any number of gluons. We argue that the large-Nc meson masses share a common parameter, which is related to the QCD string tension. This parameter is fixed from correlators of conserved vector and axial-vector currents, and using lattice QCD determinations of the string tension. Our results predict towers of hybrid mesons which, within expected 1/Nc corrections, naturally accommodate the 1^(-+) experimental hybrid candidates.

S. R. Beane

2001-08-02T23:59:59.000Z

262

Toxicity of aqueous fullerene nC60 to activated sludge: nitrification inhibition and microtox test  

Science Conference Proceedings (OSTI)

The increasing production and use of fullerene nanomaterials raised their exposure potential to the activated sludge during biological wastewater treatment process. In this study, the toxicity of aqueous nanoscaled C60 (nC60) to ...

Yongkui Yang; Norihide Nakada; Ryoji Nakajima; Chao Wang; Hiroaki Tanaka

2012-01-01T23:59:59.000Z

263

Martin-Lf Random and PA-complete Sets  

E-Print Network (OSTI)

A set A is Martin-Lof random iff the class fAg does not have \\Sigma 1 -measure 0. A set A is PA-complete if one can compute relative to A a consistent and complete extension of Peano Arithmetic. It is shown that every Martin-Lof random set either permits to solve the halting problem K or is not PA-complete. This result implies a negative answer to the question of Ambos-Spies and Kucera whether there is a Martin-Lof random set not above K which is also PA-complete.

Frank Stephan

2002-01-01T23:59:59.000Z

264

pi N to Multi-pi N Scattering in the 1/N_c Expansion  

E-Print Network (OSTI)

We extend the 1/N_c meson-baryon scattering formalism to pi N to multi-pi N case. We first show that the leading-order large N_c processes proceed through resonant intermediate states (e.g., rho N or pi Delta). We find that the pole structure of baryon resonances can be uniquely identified by their (non)appearance in eta N or mixed partial-wave pi Delta final states.

Herry J. Kwee

2007-06-29T23:59:59.000Z

265

Pion Electroproduction Amplitude Relations in the 1/N_c Expansion  

E-Print Network (OSTI)

We derive expressions for pion electroproduction amplitudes in the 1/N_c expansion of QCD, and obtain from them linear relations between the electromagnetic multipole amplitudes that hold at all energies. The leading-order relations in 1/N_c compare favorably with available data (especially away from resonances), but the next-to-leading-order relations tend to provide only small or no improvement.

Lebed, Richard F

2009-01-01T23:59:59.000Z

266

HEAVY BARYONS: A COMBINED LARGE Nc AND HEAVY QUARK EXPANSION FOR ELECTROWEAK CURRENTS  

E-Print Network (OSTI)

The combined large Nc and heavy quark limit for baryons containing a single heavy quark is discussed. The combined large Nc and heavy quark expansion of the heavy quark bilinear operators is obtained. In the combined expansion the corrections proportional to mN/mQ are summed to all orders. In particular, the combined expansion can be used to determine semileptonic form factors of heavy baryons in the combined limit. 1

Boris A. Gelman

2002-01-01T23:59:59.000Z

267

Large $N_c$ QCD at non-zero chemical potential  

E-Print Network (OSTI)

The general issue of large $N_c$ QCD at nonzero chemical potential is considered with a focus on understanding the difference between large $N_c$ QCD with an isospin chemical potential and large $N_c$ QCD with a baryon chemical potential. A simple diagrammatic analysis analogous to `t Hooft's analysis at $\\mu=0$ implies that the free energy with a given baryon chemical potential is equal to the free energy with an isospin chemical potential of the same value plus $1/N_c$ corrections. Phenomenologically, these two systems behave quite differently. A scenario to explain this difference in light of the diagrammatic analysis is explored. This scenario is based on a phase transition associated with pion condensation when the isospin chemical potential exceeds $m_\\pi/2$; associated with this transition there is breakdown of the $1/N_c$ expansion--in the pion condensed phase there is a distinct $1/N_c$ expansion including a larger set of diagrams. While this scenario is natural, there are a number of theoretical issues which at least superficially challenge it. Most of these can be accommodated. However, the behavior of quenched QCD which raises a number of apparently analogous issues cannot be easily understood completely in terms of an analogous scenario. Thus, the overall issue remains open.

Thomas D. Cohen

2004-10-11T23:59:59.000Z

268

PaTu Wind Farm | Open Energy Information  

Open Energy Info (EERE)

PaTu Wind Farm PaTu Wind Farm Jump to: navigation, search Name PaTu Wind Farm Facility PaTu Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Oregon Trail Wind Farm Location Sherman County OR Coordinates 45.603734°, -120.618621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.603734,"lon":-120.618621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Palmetto Clean Energy (PaCE) Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Palmetto Clean Energy (PaCE) Program Palmetto Clean Energy (PaCE) Program Palmetto Clean Energy (PaCE) Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State South Carolina Program Type Performance-Based Incentive Rebate Amount Varies by technology and customer demand for Palmetto Clean Energy (PaCE) Provider South Carolina Energy Office '''''Note: For a limited time, generators of 6 kilowatts or less of renewable energy can now take advantage of a premium $0.10 per kilowatt hour. This premium is available on a first-come-first-serve basis to generators of solar, wind, hydro or biomass-based electricity.'''''

270

MINING PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SBOT 17-May-11 MINING PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov Support Activities for Oil and...

271

Microsoft PowerPoint - NETL Pittsburgh, PA to Washington, DC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington, DC Headquarters 1. COCHRANS MILL RD. becomes BROWNSVILLE RD. 2. Stay STRAIGHT to go onto CURRY HOLLOW RDYELLOW BELT. 3 T k th PA 51 SOUTH t d CLAIRTON 3. Take the...

272

PA -Alternative 2009 FINAL mark revisions 91709green FINAL use...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the insulation , shall inspect the air barrier and insulation. PA304.3 Fireplaces. New wood-burning fireplaces shall have gasketed doors and outdoor combustion air. Exception:...

273

DOE - Office of Legacy Management -- Superior Steel Co - PA 03  

Office of Legacy Management (LM)

site; January 27, 1995 PA.03-4 - ORNLDOE Preliminary Survey; T.E. Myrick and C. Clark; Preliminary Site Survey Report for the Former Superior Steel Mill at Carnegie,...

274

PaSol Italia SpA | Open Energy Information  

Open Energy Info (EERE)

investors in order to initiate local PV module manufacturing to address the growing solar market in Italy and other parts of Europe References PaSol Italia SpA1 LinkedIn...

275

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

Shallow Land Disposal Area - PA 45 Shallow Land Disposal Area - PA 45 FUSRAP Considered Sites Shallow Land Disposal Area, PA Alternate Name(s): Parks Township Shallow Land Disposal Area Nuclear Materials and Equipment Corporation (NUMEC) Babcox and Wilcox Parks Facilities PA.45-1 PA.45-5 PA.45-6 Location: PA Route 66 and Kissimere Road, Parks Township, Apollo, Pennsylvania PA.45-1 Historical Operations: Fabricated nulcear fuel under an NRC license as an extension of NUMEC Apollo production facilities. PA.45-1 PA.45-5 Eligibility Determination: Eligible PA.45-6 Radiological Survey(s): None Site Status: Cleanup in progress by U.S. Army Corps of Engineers. PA.45-6 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shallow Land Disposal Area, PA

276

DOE - Office of Legacy Management -- Aluminum Co of America - PA 23  

Office of Legacy Management (LM)

PA 23 PA 23 FUSRAP Considered Sites Site: Aluminum Company of America (ALCOA) ( PA.23 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: ALCOA Research Laboratory ALCOA New Kensington Works PA.23-3 PA.23-4 Location: 600 Freeport Road and Pine and Ninth Streets , New Kensington , Pennsylvania PA.23-1 PA.23-4 Evaluation Year: Circa 1993 PA.23-1 Site Operations: Research/Development and Production activities in support of the MED uranium slug canning and other programs, 1943-1945. PA.23-5 Site Disposition: Eliminated - Based upon results of radiological surveys of the properties, potential for residual radioactive contamination is considered remote PA.23-1 PA.23-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.23-1

277

Microsoft PowerPoint - PA CoP.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Community of Practice Roger Seitz (Savannah River National Laboratory) David Kosson (CRESP/Vanderbilt University) Martin Letourneau (DOE EM-41) 10 March 2010 WM '10, Phoenix Arizona SRNL-MS-2010-00037-S 2 WM 10, March 10, 2010 Safety Case Concept IAEA, Nuclear Energy Agency and others Reflects use of PA as only one part of a package used to support decisions "The purpose of computing is insight, not numbers" - Richard Hamming PA PA Uncertainty/ Importance Analysis Uncertainty/ Importance Analysis Safety Case Design Design Stakeholder Stakeholder Demonstrations Demonstrations R&D R&D Monitoring Monitoring Documentation Documentation WAC WAC Uncertainties can be managed in many different ways in addition to modeling 3 WM 10, March 10, 2010 Allow Low-level Waste Disposal Facility Federal

278

RECIPIENT:County of Chester STATE: PA PROJECT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County of Chester STATE: PA County of Chester STATE: PA PROJECT EECBG - Chester County (PA) Installation of Cool Roof at Coatesville District Court TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA0000013 EE0000932 GFO-O000932-003 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy. demonstrate potential energy conservation. and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

279

DOE - Office of Legacy Management -- Pennsylvania Ordnance Works - PA 32  

Office of Legacy Management (LM)

Ordnance Works - PA 32 Ordnance Works - PA 32 FUSRAP Considered Sites Site: Pennsylvania Ordnance Works (PA.32 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

280

P.A. Capdau Charter School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

P.A. Capdau Charter School P.A. Capdau Charter School P.A. Capdau Charter School August 8, 2007 - 3:16pm Addthis Prepared Remarks for Secretary Bodman Thank you, Principal Mitchell, for your kind introduction. I am glad to be back here in New Orleans to witness the tremendous progress all of you have made after the devastating events of two years ago. I am here not only to commend your efforts but also to state my commitment and the Department of Energy's commitment to the continued rebuilding effort. With great challenges come great opportunities. While there are tangible losses to grieve over when such devastation occurs, the resilient American spirit also finds unique ways to maximize any positive impact. In this case, the chance to rebuild much of the physical infrastructure that has

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

N.C. Agency Growing, Helping Citizens Save Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N.C. Agency Growing, Helping Citizens Save Money N.C. Agency Growing, Helping Citizens Save Money N.C. Agency Growing, Helping Citizens Save Money March 12, 2010 - 5:20pm Addthis Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action Joshua DeLung North Carolina will receive $132 million, or 10 times more money than in years past, for its weatherization program through the Recovery Act. Martin County Community Action is tasked with weatherizing about 1,029 units with its $7.7 million share. The agency has also surpassed its 123 units from its usual fiscal year funding. "It's been interesting ramping up like this, but we've put our agency in a position the last couple of years to be able to do more creative

282

North Carolina School of Science and Mathematics from Durham, NC and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Carolina School of Science and Mathematics from Durham, NC North Carolina School of Science and Mathematics from Durham, NC and Albuquerque Academy from Albuquerque, NM Win the U.S. Department of Energy National Science Bowl North Carolina School of Science and Mathematics from Durham, NC and Albuquerque Academy from Albuquerque, NM Win the U.S. Department of Energy National Science Bowl May 3, 2010 - 12:00am Addthis WASHINGTON, D.C. - A high school team from Durham and a middle school team from Albuquerque won the 2010 U.S. Department of Energy (DOE) National Science Bowl today at the National Building Museum in Washington. North Carolina School of Science and Mathematics beat Mira Loma High School from Sacramento CA in the high school national championship match by correctly answering a chemistry question. Albuquerque Academy beat Gale

283

N.C. Agency Growing, Helping Citizens Save Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N.C. Agency Growing, Helping Citizens Save Money N.C. Agency Growing, Helping Citizens Save Money N.C. Agency Growing, Helping Citizens Save Money March 12, 2010 - 5:20pm Addthis Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action Joshua DeLung North Carolina will receive $132 million, or 10 times more money than in years past, for its weatherization program through the Recovery Act. Martin County Community Action is tasked with weatherizing about 1,029 units with its $7.7 million share. The agency has also surpassed its 123 units from its usual fiscal year funding. "It's been interesting ramping up like this, but we've put our agency in a position the last couple of years to be able to do more creative

284

DOE - Office of Legacy Management -- Palmerton Ore Buying Site - PA 33  

NLE Websites -- All DOE Office Websites (Extended Search)

Palmerton Ore Buying Site - PA 33 Palmerton Ore Buying Site - PA 33 FUSRAP Considered Sites Site: PALMERTON ORE BUYING SITE (PA.33) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: New Jersey Zinc Company PA.33-1 Location: Palmerton , Pennsylvania PA.33-2 Evaluation Year: 1994 PA.33-3 Site Operations: Mid-1950s - AEC leased the New Jersey Zinc Company property and established a uranium ore stockpile on the property in the vicinity of Palmerton, PA. PA.33-4 Site Disposition: Eliminated - Potential for residual contamination and resulting exposure beyond that associated with natural background radiation considered remote PA.33-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Ore PA.33-4 Radiological Survey(s): Yes PA.33-5

285

DOE - Office of Legacy Management -- Rohm and Hass Co - PA 02  

Office of Legacy Management (LM)

Rohm and Hass Co - PA 02 Rohm and Hass Co - PA 02 FUSRAP Considered Sites Site: ROHM & HASS CO. (PA.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 5000 Richmond Street , Philadelphia , Pennsylvania PA.02-1 Evaluation Year: 1985 PA.02-2 Site Operations: Research and development on uranium recovery from carbonate leach liquors in the mid-1950s. PA.02-3 Site Disposition: Eliminated - Radiation levels below criteria PA.02-4 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.02-3 Radiological Survey(s): Yes PA.02-4 Site Status: Eliminated from consideration under FUSRAP PA.02-5 Also see Documents Related to ROHM & HASS CO. PA.02-1 - DOE Letter; Thornton to Bjuvik; Subject: Radiological

286

New Regimes of Stringy (Holographic) Pomeron and High Multiplicity pp and pA Collisions  

E-Print Network (OSTI)

Holographic AdS/QCD models of the Pomeron unite a string-based description of hadronic reactions of the pre-QCD era with the perturbative BFKL approach. The specific version we will use due to Stoffers and Zahed, is based on a semiclassical quantization of a "tube" (closed string exchange or open string virtual pair production) in its Euclidean formulation using the scalar Polyakov action. This model has a number of phenomenologically successful results. In this work we point out that the periodicity of a coordinate around the tube allows the introduction of a Matsubara time and therefore an effective temperature on the string. We observe that in the LHC setting this temperature is approaching the Hagedorn temperature of the QCD strings. We therefore conclude, based on studies of the stringy thermodynamics of pure gauge theories, that there should exist two new regimes of the Pomeron: the "near-critical" and the "post-critical" ones. In the former one, string excitations should create a high entropy "string ball" at mid-rapidity, with high energy and entropy but small pressure/free energy. Amusingly, we find that this ball is dual to a certain black hole. Furthermore, as the intrinsic temperature of the string narrows on the Hagedorn temperature or T/TH-1=O(1/Nc), or even higher ones, the stringy ball develops repulsive interactions, a pressure, and becomes a post-critical explosive "QGP ball". We speculate that the high multiplicity trigger in pp and pA selects events with such a "string ball" cluster. The hydrodynamical flow resulting from this scenario is discussed elsewhere.

Edward Shuryak; Ismail Zahed

2013-11-04T23:59:59.000Z

287

www.eia.gov  

U.S. Energy Information Administration (EIA)

MO MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY U.S. Number of states in which marketer is licensed ... Service Tech & Research Corp

288

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2012 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT...

289

C:\\ANNUAL\\VENTCHAP.V8\\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

4 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99...

290

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DC NC SC GA AL MS LA FL HI AK DE 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998...

291

C:\\ANNUAL\\VENTCHAP.V8\\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

0 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Sources: Energy...

292

NGA98fin5.vp  

Annual Energy Outlook 2012 (EIA)

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99...

293

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

3 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE...

294

Development of a new dynamic gas flow-control system in the pressure range of 1 Pa-133 Pa  

Science Conference Proceedings (OSTI)

A new flow-control system (FCS-705) has been developed at Korea Research Institute of Standards and Science. The system is intended for calibration of vacuum gauges in the pressure range of 1 Pa-133 Pa by comparison method. This paper describes some basic characteristics of the system including; (1) the design and construction of the system, (2) the generation of stable pressures in the chamber, (3) achieving high upstream pressure limit by installing a short duct in the by-pass pumping line, and (4) investigation of the gas flow regimes within the short duct.

Hong, S. S.; Chung, J. W. [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Khan, Wakil [Pakistan Vacuum Society, street 17, Islamabad (Pakistan)

2011-12-15T23:59:59.000Z

295

DOCKET NO. PA02-2-000 STAFF REPORT  

E-Print Network (OSTI)

knowledge of market conditions unavailable to its competitors. This informational trading advantage from EOL for allegations that Williams Energy Marketing & Trading Co. cornered the market for natural gas in California3-26-03 DOCKET NO. PA02-2-000 STAFF REPORT PRICE MANIPULATION IN WESTERN MARKETS FINDINGS

Laughlin, Robert B.

296

Magneto-intersubband oscillations in triple quantum wells S. Wiedmann a,, N.C. Mamani b  

E-Print Network (OSTI)

Magneto-intersubband oscillations in triple quantum wells S. Wiedmann a,?, N.C. Mamani b , G online 24 November 2009 Keywords: Triple quantum well Magneto-intersubband oscillations a b s t r a c t We present magnetotransport studies of high-density triple quantum well samples with different

Gusev, Guennady

297

American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC, EVALUATION OF NUMERICAL WEATHER PREDICTION  

E-Print Network (OSTI)

OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, Perez to solar radiation forecasting include (1) numerical weather prediction (NWP) models that infer local cloud© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, EVALUATION

Perez, Richard R.

298

DOE - Office of Legacy Management -- U S Bureau of Mines - PA 36  

Office of Legacy Management (LM)

PA 36 PA 36 FUSRAP Considered Sites Site: U. S. BUREAU OF MINES (PA.36) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bruceton , Pennsylvania PA.36-1 Evaluation Year: 1987 PA.36-2 Site Operations: Conducted studied on explosiveness of Uranium, Thorium and Beryllium. PA.36-1 PA.36-3 Site Disposition: Eliminated - Small amounts of radioactive materials used - Potential for residual radioactive contamination considered remote PA.36-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium and Thorium PA.36-2 Radiological Survey(s): Yes - health and safety monitoring during operations only PA.36-1 Site Status: Eliminated from further consideration under FUSRAP

299

DOE - Office of Legacy Management -- Curtis-Wright Corp - PA 37  

NLE Websites -- All DOE Office Websites (Extended Search)

Curtis-Wright Corp - PA 37 Curtis-Wright Corp - PA 37 FUSRAP Considered Sites Site: Curtis-Wright Corp. ( PA.37 ) Eliminated from further consideration under FUSRAP - Referred to the Pennsylvania Department of Environmental Resources, Bureau of Radiation Protection Designated Name: Not Designated Alternate Name: Quehanna Site Quehanna Radioisotopes Pilot Plant Radiation Process Center PA.37-1 Location: Northwest Clearfield County , Quehanna , Pennsylvania PA.37-2 PA.37-3 Evaluation Year: Circa 1990 PA.37-1 Site Operations: 1955-1960 Conducted research in nucleonics, electronics, chemicals and plastics - work for AEC primarily isotope separation and heat sources for space application. Also work for U.S. Air Force. AEC licensed facility. PA.37-1 PA.37-3 Site Disposition: Eliminated - No Authority to perform remedial action. Commercial facility operated under AEC license. Cleanup by the Commonwealth of Pennsylvania under plan approved by NRC. PA.37-2

300

DOE - Office of Legacy Management -- Landis Machine Tool Co - PA 34  

NLE Websites -- All DOE Office Websites (Extended Search)

Landis Machine Tool Co - PA 34 Landis Machine Tool Co - PA 34 FUSRAP Considered Sites Site: LANDIS MACHINE TOOL CO. (PA.34 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Teledyne Landis Machine PA.34-1 Location: Waynesboro , Pennsylvania PA.34-2 Evaluation Year: 1991 PA.34-1 Site Operations: Manufactured metal fabrication equipment for machining uranium metal slugs. PA.34-1 Site Disposition: Eliminated - Limited scope of activities performed quantities of radioactive materials involved suggest little or no potential for residual radioactive contamination PA.34-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.34-2 Radiological Survey(s): Yes - health and safety monitoring during operations PA.34-3

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb  

Office of Legacy Management (LM)

Designation Survey - Palmerton, Pa. Ore Storage Site Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb Oak Ridge Operations Office Based on the information furnished in Aerospace's Review of the.subject site (Attachment 1) and the ORKL/RASA (Attachment 2), it Is requested that designation survey of the Palmerton Ore Storage Pennsylvania. The survey should be detailed to and subsurface data to make up for the lack of the previous AEC surveys and in keeping with ORNL/RASA group should furnish a draft survey approval prior to conducting any survey activities. If there are any questions, please call Edward DeLaney 04 FTS 253-4716. Arthur J. Whitman / '/ Division of Facility and Site ' Deconrnissioning P,rojects Office of Nuclear Energy : 2 Attachments I bee: I E. Keller, OR, w/attachs:

302

Demonstration Assessment of LED Roadway Lighting: Philadelphia, PA  

Science Conference Proceedings (OSTI)

For this demonstration assessment, 10 different groups of LED luminaires were installed at three sites in Philadelphia, PA. Each of the three sites represented a different set of conditions, most importantly with regard to the incumbent HPS luminaires, which were nominally 100 W, 150 W, and 250 W. The performance of each product was evaluated based on manufacturer data, illuminance calculations, field measurements of illuminance, and the subjective impressions of both regular and expert observers.

Royer, Michael P.; Tuenge, Jason R.; Poplawski, Michael E.

2012-09-01T23:59:59.000Z

303

DOE - Office of Legacy Management -- Westinghouse Atomic Power Div - PA 16  

Office of Legacy Management (LM)

Power Div - PA Power Div - PA 16 FUSRAP Considered Sites Site: WESTINGHOUSE ATOMIC POWER DIV. (PA.16 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Route 30 (Forrest Hills) , Pittsburgh , Pennsylvania PA.16-1 Evaluation Year: 1985 PA.16-1 Site Operations: Processed uranium metal for research and development and pilot-scale production of uranium oxide fuel elements. Prepared uranium metal for Enrico Fermi's Stagg Field experiment. PA.16-1 Site Disposition: Eliminated - Radiation levels below criteria PA.16-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.16-1 Radiological Survey(s): Yes PA.16-3 Site Status: Eliminated from further consideration under FUSRAP

304

DOE - Office of Legacy Management -- Birdsboro Steel and Foundry Co - PA 31  

Office of Legacy Management (LM)

Birdsboro Steel and Foundry Co - PA Birdsboro Steel and Foundry Co - PA 31 FUSRAP Considered Sites Site: Birdsboro Steel and Foundry Co. (PA.31 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Birdsboro Steel Foundry & Machine Company PA.31-1 Location: Birdsboro , Pennsylvania PA.31-1 Evaluation Year: 1987 PA.31-2 Site Operations: Designed and developed metal fabrication facilities installed at the AEC Feed Materials Production Center at Fernald, Ohio; no information on metal fabrication at Birdsboro, although the site received small quantities of uranium metal - presumably for testing purposes. PA.31-2 PA.31-3 Site Disposition: Eliminated - Limited scope of activities and quantity of radioactive material used at the site suggest that the potential for residual radioactive material at the site is remote PA.31-2

305

DOE - Office of Legacy Management -- Bartol Research Foundation - PA 0-02  

NLE Websites -- All DOE Office Websites (Extended Search)

Bartol Research Foundation - PA Bartol Research Foundation - PA 0-02 FUSRAP Considered Sites Site: Bartol Research Foundation (PA 0-02) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: The Franklin Institute PA.0-02-1 Location: Swathmore , Pennsylvania PA.0-02-1 Evaluation Year: 1987 PA.0-02-1 Site Operations: Research organization. Possibly performed radiation monitoring and possibly supplied monitoring equipment to Monsanto Chemical Company. PA.0-02-1 Site Disposition: Eliminated - No indication that radioactive materials were used on this site PA.0-02-1 Radioactive Materials Handled: None Indicated PA.0-02-1 Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

306

DOE - Office of Legacy Management -- Teledyne-Columbia-Summerville - PA 01  

NLE Websites -- All DOE Office Websites (Extended Search)

Teledyne-Columbia-Summerville - PA Teledyne-Columbia-Summerville - PA 01 FUSRAP Considered Sites Site: TELEDYNE-COLUMBIA-SUMMERVILLE (PA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Columbia Steel, Summerill Tube, Columbia-Summerill PA.01-1 Location: Pittsburgh , Pennsylvania PA.01-1 Evaluation Year: 1987 PA.01-1 Site Operations: Metal fabrication operations. No indication radioactive materials were involved. PA.01-1 Site Disposition: Eliminated - Site was not involved in the handling of radioactive materials PA.01-1 PA.01-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see

307

File:USDA-CE-Production-GIFmaps-NC.pdf | Open Energy Information  

Open Energy Info (EERE)

NC.pdf NC.pdf Jump to: navigation, search File File history File usage North Carolina Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 355 KB, MIME type: application/pdf) Description North Carolina Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States North Carolina External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:17, 27 December 2010 Thumbnail for version as of 16:17, 27 December 2010 1,650 × 1,275 (355 KB) MapBot (Talk | contribs) Automated bot upload

308

The QCD Phase Diagram: Large Nc, Quarkyonic Matter and the Triple Point  

SciTech Connect

I discuss the phase diagram of QCD in the large N_c limit. Quarkyonic Matter is described. The properties of QCD matter as measured in the abundance of produced particles are shown to be consistent with this phase diagram. A possible triple point of Hadronic Mater, Deconfined Matter and Quarkyonic matter is shown to explain various behaviors of ratios of particles abundances seen in CERN fixed target experiments.

McLerran L.

2010-01-31T23:59:59.000Z

309

Large-Nc estimate of the chiral low-energy constants  

E-Print Network (OSTI)

Chiral low-energy constants incorporate short-distance information from the dynamics involving heavier degrees of freedom not present in the chiral Lagrangian. We have studied the contribution of the lightest resonances to the chiral low-energy constants, up to O(p^6), within a systematic procedure guided by the large-Nc limit of QCD and also including short-distance asymptotic constraints.

J. Portoles

2007-02-18T23:59:59.000Z

310

Test Map and Discreteness Criteria for Subgroups in PU(1,n;C)  

E-Print Network (OSTI)

We study the discreteness for non-elementary subgroup G in PU(1, n;C), under the assumption that G satisfies Condition A. Mainly, we present that one can use a test map, which need not to be in G, to examine the discreteness of G, and also show that G is discrete, if every two-loxodromic-generator subgroup of G is discrete.

Li, ChangJun

2011-01-01T23:59:59.000Z

311

SBOT PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PENNSYLVANIA PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

312

DOE - Office of Legacy Management -- Babcock and Wilcox Co - PA 18  

Office of Legacy Management (LM)

Babcock and Wilcox Co - PA 18 Babcock and Wilcox Co - PA 18 FUSRAP Considered Sites Site: Babcock and Wilcox Co (PA 18) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Tubular Products Division PA.18-1 Location: Beaver Falls , Pennsylvania PA.18-1 Evaluation Year: 1990 PA.18-1 Site Operations: Performed development work to pierce uranium billets for extrusion to tubes. No indication that the piercing operation was conducted. PA.18-1 Site Disposition: Eliminated - No indication that the metal fabrication (piercing) operation was conducted on this site. Records indicate small radiation sources were used on the site. Potential for residual radioactive contamination considered remote due to the limited quantities of material handled on the site. PA.18-3

313

DOE - Office of Legacy Management -- University of Pennsylvania - PA 0-06  

Office of Legacy Management (LM)

Pennsylvania - PA Pennsylvania - PA 0-06 FUSRAP Considered Sites Site: UNIVERSITY OF PENNSYLVANIA (PA.0-06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.0-06-1 Evaluation Year: 1987 PA.0-06-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. PA.0-06-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote PA.0-06-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium PA.0-06-2 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to UNIVERSITY OF PENNSYLVANIA

314

DOE - Office of Legacy Management -- Vanadium Corp of America - PA 15  

Office of Legacy Management (LM)

Vanadium Corp of America - PA 15 Vanadium Corp of America - PA 15 FUSRAP Considered Sites Site: Vanadium Corp. of America (PA.15) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: UMTRAP Vicinity Property No. CA-401 PA.15-5 Location: Mayer Street - Collier Township , Bridgeville , Pennsylvania PA.15-1 Evaluation Year: 1985 PA.15-2 Site Operations: Faclility used to grind pitchblende ore during the early 1940's for processing by Vitro at Canonsburg. Conducted research and developed processes for concentration of Colorado Plateau ores (uranium-vanadium) PA.15-3 Site Disposition: Eliminated - site cleaned up as a vicinity property of the Canonsburg Site in 1986 under the Uranium Mill Tailings Remedial Action Program (UMTRAP). PA.15-5

315

DOE - Office of Legacy Management -- University of Pittsburgh - PA 0-07  

Office of Legacy Management (LM)

Pittsburgh - PA 0-07 Pittsburgh - PA 0-07 FUSRAP Considered Sites Site: UNIVERSITY OF PITTSBURGH (PA.0-07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pittsburgh , Pennsylvania PA.0-07-1 Evaluation Year: 1987 PA.0-07-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. PA.0-07-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote PA.0-07-1 Radioactive Materials Handled: Yes PA.0-07-1 Primary Radioactive Materials Handled: Not Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to UNIVERSITY OF PITTSBURGH

316

Poplar breeding and testing strategies in the NC US: Demonstration of potential yield and consideration of future research needs.  

SciTech Connect

The objective of this project was to extend previous poplar breeding and selection in the NC US by implementing a regional testing system with multiple test locations in Minnesota, Iowa, Wisconsin and Michigan.

Riemenschneider, Don; Berguson, William E; Dickmann, Don; Hall, Richard

2004-06-30T23:59:59.000Z

317

The nuclear liquid-gas phase transition at large $N_c$ in the Van der Waals approximation  

E-Print Network (OSTI)

We examine the nuclear liquid-gas phase transition at large number of colors ($N_c$) within the framework of the Van Der Waals (VdW) model. We argue that the VdW equation is appropriate at describing inter-nucleon forces, and discuss how each parameter scales with $N_c$. We demonstrate that $N_c=3$ (our world) is not large with respect to the other dimensionless scale relevant to baryonic matter, the number of neighbors in a dense system $N_N$. Consequently, we show that the liquid-gas phase transition looks dramatically different at $N_c \\to \\infty$ with respect of our world: The critical point temperature becomes of the order of $\\lqcd$ rather than below it. The critical point density becomes of the order of the baryonic density, rather than an order of magnitude below it. These are precisely the characteristics usually associated with the "Quarkyonic phase". We therefore conjecture that quarkyonic matter is simply the large $N_c$ limit of the nuclear liquid, and the interplay between $N_c$ and $N_N$ is the reason why the nuclear liquid in our world is so different from quarkyonic matter. We conclude by suggesting ways our conjecture can be tested in future lattice measurements.

Giorgio Torrieri; Igor Mishustin

2010-06-12T23:59:59.000Z

318

SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Anode Interaction with Trace Coal Syngas Species SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Gregory Hackett, Kirk Gerdes, Randall Gemmen Phone: (304)285-5279, Gregory.Hackett@NETL.DOE.GOV Utilization of coal as a fuel source for highly efficient integrated gasification fuel cell (IGFC) power generation facilities is technologically and environmentally attractive. IGFC plants are expected to offer the highest efficiency coal gasification processes, even when carbon capture and storage systems are included in the design. One element of IGFC research at the National Energy Technology Laboratory is the investigation of syngas cleanup processes for these integrated systems. Of particular interest are the effects of trace elements naturally contained in

319

Record of Decision and Floodplain Statement of Findings: Western Greenbrier Co-Production Demonstration Project, Rainelle, Greenbrier County, WV (DOE/EIS-0361) (04/29/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14 Federal Register 14 Federal Register / Vol. 73, No. 83 / Tuesday, April 29, 2008 / Notices DEPARTMENT OF ENERGY Record of Decision and Floodplain Statement of Findings: Western Greenbrier Co-Production Demonstration Project, Rainelle, Greenbrier County, WV AGENCY: Office of Fossil Energy, U.S. Department of Energy (DOE). ACTION: Record of Decision (ROD) and Floodplain Statement of Findings. SUMMARY: DOE has decided to implement the Proposed Action alternative, identified as the preferred alternative, in the Western Greenbrier Co-Production Demonstration Project, Final Environmental Impact Statement (DOE/EIS-0361; November 2007) (FEIS). That alternative is to provide approximately $107.5 million (up to 50% of the development costs) to Western Greenbrier Co-Generation, LLC

320

NETL: 2010 SW PA High School Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Science Bowl High School Science Bowl The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), and the Community College of Allegheny County (CCAC), South Campus, would like to invite you to participate in one of the premier scientific events for high school students, the Southwestern Pennsylvania High School Science Bowl 2010 on February 20, 2010. This will be NETL's 19th year sponsoring the high school competition. There is a change this year in the registration process from past years, all teams who are registering to complete, must do so through the National Science Bowl website by January 7, 2010. For those who are not familiar with the Science Bowl here are some highlights: The competition is open to high school students (school, scouts, home school) from Southwestern Pennsylvania (SW PA). Complete eligibility requirements are located at the National Science Bowl website.

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Real Time Simulation and Visualization of NC Milling Processes for Inhomogeneous Materials on Low-End Graphics Hardware  

E-Print Network (OSTI)

Simulation and visualization of NC milling processes has become an important step in computer aided manufacturing. The usage of stock materials with specific locally varying properties (like density, accuracy, color,. . . ) becomes more and more important with new technologies emerging in the material industry. Our new approach, using volumetric representation, has been adapted to this needs and copes with inhomogeneous material properties. Taking color as one possible material property, our approach enables the visualization of milled wood or compound materials. Furthermore, our approach has been developed with the usage of low-end graphics hardware in mind. The algorithms have been optimized to ensure interactive update rates even on standard personal computers without hardware graphics acceleration. Keywords: NC milling simulation, dexel approach, inhomogeneous material properties 1. Introduction NC milling simulation using computer graphics techniques was proposed some years ag...

Andreas Holger Knig; Eduard Grller

1998-01-01T23:59:59.000Z

322

Microsoft PowerPoint - DOE_PA_Derivation and Application of SCULs...  

NLE Websites -- All DOE Office Websites (Extended Search)

Derivation and Application of Soil Contaminant Levels Protective of Groundwater at the Hanford Site Presented to: PA Community of Practice Technical Exchange Presented by: - Jim...

323

Albany, OR * Morgantown, WV * Pittsburgh...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Carbon Sequestration Partnership-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration...

324

La premiere somme philosophique du bouddhisme tibetain. Origines litteraires, philosophiques et mythologiques des Neuf etatpes de la Voie (theg pa rim pa dgu)  

E-Print Network (OSTI)

/ 'dul ba dgongs pa gsang ba dang/ rang bzhin gsang ba'i donrnams ni/ zhes gsung te/ rtsal 'phang mtho dman gyi khyad par gyis/ so so'i blo'i rtogs tshod kyi don'di rnams kyang phyin ci ma log pa'i don rtogs pa'i man ngag gi gzhi yin pas/ de bas na man... 'en haut (tib. lha) et d'en bas (tib. klu). Cf. Stein, 1996 : 141. Les Neuf Etapes de la Voie 97 dorigine cleste et munis de capacits surhumaines, descendaient etremontaient au ciel par le moyen d'une chelle qui se trouvait sur le sommetd'une montagne...

Mestanza, Ferran

2005-01-01T23:59:59.000Z

325

Resonance Spin Flavour Precession of Solar Neutrinos After SNO NC Data  

E-Print Network (OSTI)

We present an analysis of the solar neutrino data assuming the deficit of solar neutrinos to be originated from the interaction of their transition magnetic moments with the solar magnetic field. We perform fits to the rates only and global fits and consider separately the existing data prior to the announcement of the SNO NC results, and present data. Predictions for the Borexino experiment are also derived. The solar field profiles are taken both in the radiation zone and core of the sun, and in the convective zone. The latter are chosen so as to exhibit a rapid increase across the bottom of the convective zone and a moderate decrease towards the surface. Regarding the field profiles in the radiative zone and core, it is found that the data show a preference for those cases in which a strong field rests at the solar centre with a steep decrease thereafter. For these, the quality of the global fits is as good as the one from the best oscillation solutions and the same as for the convective zone profiles examined. It is also found that the $\\chi^2$ of the fits increases when the most recent data are considered, owing to the smaller errors involved. This in turn provides more precise predictions for Borexino than previous ones, thus resulting in a clearer possible distinction between magnetic moment and the currently favoured oscillation solutions.

Bhag C. Chauhan; Joao Pulido

2002-06-20T23:59:59.000Z

326

Microsoft Word - figure_8.doc  

Gasoline and Diesel Fuel Update (EIA)

T I D O R W Y ND SD C A N V U T CO NE KS A Z NM OK TX MN WI MI IA I L IN OH MO AR M S AL GA T N KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI A K J a p a n Mexico M e x...

327

Microsoft PowerPoint - Freeze.NE PA Overview_052511.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Used Fuel Disposition Campaign Used Fuel Disposition Campaign Summary of DOE-NE PA Modeling for Storage and Disposal of Used Nuclear Fuel (UNF), High-Level Radioactive Waste (HLW), and Low-Level Waste (LLW) Geoff Freeze Sandia National Laboratories PA Community of Practice Technical Exchange May 25-26, 2011 Print Close Used Fuel Disposition 2 DOE-Nuclear Energy (NE) - PA Modeling Activities NE Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (Waste IPSC) Used Fuel Disposition (UFD) Generic Performance Assessment Model (GPAM) *** Initial modeling focus in both campaigns in on UNF/HLW disposal Print Close Used Fuel Disposition 3  UFD GPAM  Short time horizon (2-3 yrs) - Simplified generic system models (i.e., PA-fidelity using GoldSim) - Current computing capabilities

328

Northern Hemisphere 500-hPa Trough Merger and Fracture: A Climatology and Case Study  

Science Conference Proceedings (OSTI)

The results of an objective climatology of 500hPa trough merger (defined as the amalgamation of two initially separate vorticity maxima) and trough fracture (defined as the splitting of a single vorticity center into two separate vorticity ...

Devin B. Dean; Lance F. Bosart

1996-12-01T23:59:59.000Z

329

EERE PROJECT MANAGEMENT CENTER Nl'PA D:E1'ERJvllNATION RECIPIENT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

s DEP . .Rnn:NT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl'PA D:E1'ERJvllNATION RECIPIENT:Terralog Technologies USA Inc Page I of2 STATE: CA PROJECT TITLE: Advanced Horizontal...

330

SYNTHESIS AND CHARACTERIZATION OF Pa(IV), Np(IV), AND Pu(IV) BOROHYDRIDES  

E-Print Network (OSTI)

a ( I V ) , N p ( I V ) , AND Pu(IV) BOROHYDRIDES Rodney H.borohydrides of Pa, Np, and Pu have been pre pared and someU(BH. ,)Pu(BHi<)ii are much more volatile

Banks, R.H.

2010-01-01T23:59:59.000Z

331

Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering  

E-Print Network (OSTI)

The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

M. B. Barbaro; J. E. Amaro; J. A. Caballero; T. W. Donnelly; R. Gonzalez-Jimenez; M. Ivanov; J. M. Udias

2013-03-26T23:59:59.000Z

332

Radiological environs study at a fuel fabrication facility. [General Electric Fuel Fabrication Plant at Wilmington, NC  

SciTech Connect

Field studies were conducted to detect environmental contamination from fuel fabrication plant effluents. The plant chosen for study was operated by the General Electric Company, Nuclear Fuel Division, at Wilmington, NC. The facility operates continuously using the ammonium diuranate (ADU) process to convert 2.0 to 2.2% enriched UF/sub 6/ to UO/sub 2/ fuel. Continuous air samplers at five sites measured the concentrations of /sup 234/U and /sup 238/U in air for 36 one-week intervals. River water was sampled at nine locations above and below the plant discharge point during each of three field surveys. The atmospheric concentrations of /sup 234/U and /sup 238/U appeared to vary according to a log-normal distribution. The annual facility release of approximately 2 to 3 mCi uranium to the atmosphere would add from 0.01 to 0.2 fCi/m/sup 3/ uranium in the atmospheric environs. An individual residing continuously at the nearest residence is predicted to receive a 50-year dose commitment of 0.9 mrem to the lung. The approximately 1 Ci/y of uranium liquid effluent released would increase the uranium concentration in Northeast Cape Fear estuary about 3 kilometers downstream by 0.3 pCi/liter. Although this water is not potable and is not used for any potable water supply, ingestion of water containing uranium at this concentration for a year would deliver a 3-mrem dose commitment to the bone.

Lyon, R.J.; Shearin, R.L.; Broadway, J.A.

1978-10-01T23:59:59.000Z

333

The theta^+ baryon in soliton models: large Nc QCD and the validity of rigid-rotor quantization  

E-Print Network (OSTI)

A light collective theta+ baryon state (with strangeness +1) was predicted via rigid-rotor collective quantization of SU(3) chiral soliton models. This paper explores the validity of this treatment. A number of rather general analyses suggest that predictions of exotic baryon properties based on this approximation do not follow from large Nc QCD. These include an analysis of the baryon's width, a comparison of the predictions with general large Nc consistency conditions of the Gervais-Sakita-Dashen-Manohar type; an application of the technique to QCD in the limit where the quarks are heavy; a comparison of this method with the vibration approach of Callan and Klebanov; and the 1/Nc scaling of the excitation energy. It is suggested that the origin of the problem lies in an implicit assumption in the that the collective motion is orthogonal to vibrational motion. While true for non-exotic motion, the Wess-Zumino term induces mixing at leading order between collective and vibrational motion with exotic quantum numbers. This suggests that successful phenomenological predictions of theta+ properties based on rigid-rotor quantization were accidental.

Thomas D. Cohen

2003-12-15T23:59:59.000Z

334

State College Area High School From State College, PA Wins DOE's National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

College Area High School From State College, PA Wins DOE's College Area High School From State College, PA Wins DOE's National Science Bowl® State College Area High School From State College, PA Wins DOE's National Science Bowl® May 1, 2006 - 10:34am Addthis WASHINGTON , DC - State College Area High School from State College, Pennsylvania, today won the Department of Energy's (DOE) National Science Bowl®. Teams representing 65 schools from across the United States competed in this "Science Jeopardy" competition, which concluded this afternoon. Members of the winning team include Jason Ma, Ylaine Gerardin, Barry Liu, Galen Lynch, Francois Greer and coach, Julie Gittings. This team won a research trip to France and $1,000 for their school's science department. The answer that clinched the championship was in response to an earth

335

Second Meeting, July 13, 1999 Crowne Plaza Center City Philadelphia, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Meeting, July 13, 1999 Crowne Plaza Center City Philadelphia, PA Second Meeting, July 13, 1999 Crowne Plaza Center City Philadelphia, PA The second meeting of the Transportation External Coordination Working Group (TEC/WG) DOE Transportation Protocols Topic Group took place on July 13, 1999 at the Crowne Plaza Center City in Philadelphia, PA. MORNING SESSION Ms. Williams began the meeting by stating this was the second face-to-face session of the group; several conference calls had also been held since the first meeting in Jacksonville, FL in January 1999. She indicated there were some materials available in addition to the draft protocols that had been promised; one was a comment response document containing written comments received from participants on the different protocols, and the other was a draft schedule for completion of the other protocols. She said the milestones in the schedule were

336

Baryons and Low-Density Baryonic Matter in 1+1 Dimensional Large N_c QCD with Heavy Quarks  

E-Print Network (OSTI)

This paper studies baryons and baryonic matter in the combined large N_c and heavy quark mass limits of QCD in 1+1 dimension. In this non-relativistic limit, baryons are composed of N_c quarks that interact, at leading order in N_c, through a color Coulomb potential. Using variational techniques, very accurate calculations of single baryon masses and interaction energies of low-density baryon crystal are performed. These results are used to cross-check a general numerical approach applicable for arbitrary quark masses and baryon densities recently proposed by Bringoltz, which is based on a lattice in a finite box with periodic boundary conditions. The Bringoltz method differs from a previous approach of Salcedo, et al. in its treatment of a finite box effect - namely gauge configurations that wind around the box. One might expect these effects to be small for large enough boxes, in which the baryon density approaches zero to high accuracy at the edges. However, the effects of these windings appear to be quite large even in such boxes. The large mass infinite volume calculations performed here are consistent with the results of numerical calculations using the Bringoltz method. The calculation of the baryon crystal interaction energy requires the assumption that at low-densities the ground state is composed of individual baryons, each in a color-singlet state and orthogonal to each other. This assumption is plausible but ad hoc in that one can construct configurations in which the entire state is color-singlet but cannot be broken into individual color-singlet baryons. The interaction energy of low-density baryon crystals calculated with the assumption is consistent with numerical results based on Bringoltz's approach suggesting that the assumption is justified. This further supports a similar assumption that was made in 3+1 dimensions, where no alternative means of calculation exist.

Prabal Adhikari; Thomas D. Cohen; Arec Jamgochian; Nilay Kumar

2012-12-10T23:59:59.000Z

337

Obtaining pressures in the 10?5 Pa range with oil?sealed rotary vacuum pumps  

Science Conference Proceedings (OSTI)

Trapped oil?sealed rotary pumps are usually considered capable of ultimate pressures no lower than about 10?3 Pa. Experiments are described which confirm that most of this residual gas originates from air dissolved in the pump oil. Replacement of the air with a less soluble gas (helium) or an easily trapped gas (carbon dioxide) is shown to give a useful reduction in ultimate pressure and to reduce the oxygen partial pressure to essentially zero. Operation with completely degassed oil is shown to give ultimate pressures in the 10?5 Pa range. The design of pumps based on these principles is discussed.

B. R. F. Kendall

1982-01-01T23:59:59.000Z

338

P-A logic: a compositional proof system for distributed programs  

Science Conference Proceedings (OSTI)

This paper describes a compositional proof system called P-A logic for establishing weak total correctness and weak divergence correctness of CSP-like distributed programs with synchronous and asynchronous communication. Each process in a network is ... Keywords: OCCAM, liveness, proof system, safety

Paritosh K. Pandya; Mathai Joseph

1991-06-01T23:59:59.000Z

339

Improved Skill for the Anomaly Correlation of Geopotential Heights at 500 hPa  

Science Conference Proceedings (OSTI)

This paper addresses the anomaly correlation of the 500-hPa geopotential heights from a suite of global multimodels and from a model-weighted ensemble mean called the superensemble. This procedure follows a number of current studies on weather ...

T. N. Krishnamurti; K. Rajendran; T. S. V. Vijaya Kumar; Stephen Lord; Zoltan Toth; Xiaolei Zou; Steven Cocke; Jon E. Ahlquist; I. Michael Navon

2003-06-01T23:59:59.000Z

340

SpaceTime Spectral Analysis of the Southern Hemisphere Daily 500-hPa Geopotential Height  

Science Conference Proceedings (OSTI)

In this paper the authors use the NCEPDepartment of Energy (DOE) Reanalysis 2 (NCEP2) data from 1979 to 2004 to expand the daily 500-hPa geopotential height in the Southern Hemisphere (SH, 9020S) into a double Fourier series, and analyze the ...

Cheng Sun; Jianping Li

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion  

E-Print Network (OSTI)

Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion Authors Abu believed to cause fuel formation for in-situ combustion have been studied and modeled. A thin, packed bed the approach of a combustion front. Analysis of gases produced from the reaction cell revealed that pyrolysis

Abu-Khamsin, Sidqi

342

A generic network interface architecture for a networked processor array (NePA)  

Science Conference Proceedings (OSTI)

Recently Network-on-Chip (NoC) technique has been proposed as a promising solution for on-chip interconnection network. However, different interface specification of integrated components raises a considerable difficulty for adopting NoC techniques. ... Keywords: interconnection network, multiprocessor systemon-chip (MPSoC), network interface, network-on-chip (NoC), networked processor array (NePA)

Seung Eun Lee; Jun Ho Bahn; Yoon Seok Yang; Nader Bagherzadeh

2008-02-01T23:59:59.000Z

343

Hugo van Dam and the dynamic adjoint function Imre Pa zsit*  

E-Print Network (OSTI)

adjoint theory in such cases does not play a role at all. 1762 I. Pa´zsit / Annals of Nuclear Energy 30 and practical and, accordingly, it dominates the applications in the theory of zero power reactor noise fluctuations in a steady subcritical reactor, i.e. the theory of zero power reactor noise, the dual possibility

Pázsit, Imre

344

Spectroscopic and magnetic studies of tetravalent Pa and trivalent Th compounds  

SciTech Connect

At the beginning of the actinide series, the 5f and 6d configurations are very close in energy. Consequently, both the 5f and 6d energy level splittings may be observed experimentally in Pa{sup 4+} and Th{sup 3+} compounds. The available magnetic and optical data on these systems are reviewed.

Edelstein, N.M.; Kot, W.K.

1992-06-01T23:59:59.000Z

345

Project Plan 7930 Cell G PaR Remote Handling System Replacement  

Science Conference Proceedings (OSTI)

For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulators and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully functioning and reliable Par manipulator arm is necessary for uninterrupted {sup 252}Cf operations; a fully-functioning bridge is needed for the system to function as intended.

Kinney, Kathryn A [ORNL

2009-10-01T23:59:59.000Z

346

One-and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos  

E-Print Network (OSTI)

constructed a photoactivatable Drosophila his- tone 2 A variant green fluorescent fusion protein (H2AvD- pa of multiple fluorescent loci. This report constitutes the first demon- stration of two-photon activation of pa Biochemical Societies. Published by Elsevier B.V. All rights reserved. Keywords: Green fluorescent protein

Rieger, Bernd

347

Notice of Intent to prepare an Environmental Impact Statement for the Western Greenbrier Co-Production Demonstration Project, Rainelle, WV and Notice of Floodplain/Wetlands Involvement (6/3/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 11 Federal Register / Vol. 68, No. 106 / Tuesday, June 3, 2003 / Notices Dated: May 27, 2003. Judge Eric Andell, Deputy Under Secretary for Safe and Drug- Free Schools. [FR Doc. 03-13836 Filed 6-2-03; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Notice of Intent To Prepare an Environmental Impact Statement for the Western Greenbrier Co-Production Demonstration Project, Rainelle, WV and Notice of Floodplain/Wetlands Involvement AGENCY: Department of Energy. ACTION: Notice of Intent to prepare an Environmental Impact Statement and Notice of Floodplain/Wetlands Involvement. SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA), the

348

Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima Dai-ichi reactor accident  

E-Print Network (OSTI)

We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^3 and 0.42 +/- 0.07 mBq/m^3 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

S. MacMullin; G. K. Giovanetti; M. P. Green; R. Henning; R. Holmes; K. Vorren; J. F. Wilkerson

2011-11-17T23:59:59.000Z

349

Measurement of Airborne Fission Products in Chapel Hill, NC, USA from the Kukushima Dai-ichi Reactor Accident  

SciTech Connect

We present measurement results of airborne fission products in Chapel Hill, NC, USA, from 62 d following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products 131I and 137Cs were measured with maximum activity concentrations of 4.2 0.6 mBq/m3 and 0.42 0.07 mBq/m3 respectively. Additional activity from 131,132I, 134,136,137Cs and 132Te were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

MacMullin, S. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Giovanetti, G. K. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Green, M. P. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Henning, R. [Univ, of North Carolina & Triangle Universities Nucl. Lab - Durham, NC; Holmes, R. [Univ. North Carolina-Chapel & Univ. of Illinois-Urbana; Vorren, K. [University of North Carolina / Triangle Universities Nuclear Lababoratory, Durham; Wilkerson, J. F. [UNC/Triangle Univ. Nucl. Lab, Durham, NC/ORNL

2012-01-01T23:59:59.000Z

350

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NJ1PA DETERMINATION NJ1PA DETERMINATION RECIPIENT:Abengoa Solar Inc. Page 1 of2 STATE: CO PROJECT TITLE: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Power Plants Funding Opportunity Announcement Numbu Procurement Instrument Number NEPA Control Numbu ell) Number DE·PS36-08G098032 G018156 GFQ.G018156-003 G018156 Based on my review oflhe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but nollimiled to, literature surveys. inventories. audits), data analysis (indudm9 computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply

351

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

352

U.S. DEPARTMENT OF ENERGY EERE PROJECT MAN AGEMENT CENTER Nl!PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nl!PA DETERMINATION Nl!PA DETERMINATION RI':CIPIENT:Western Iowa Tech Community College PROJECT TITLE: Western Iowa Tech Community College Renewable Energy Economy Conidor Page 1 of2 STATE: IA Funding Opportunity Announcement Number Proeurement lnstrument Number NEPA Control Number CID Number CongressIOnally Directed DE-EEOOO3285 GF0-10-329 0 Based on my review orthe Inrormation concerning the proposed action, B5 NEPA Compliance Officer (authorb-.ed under DOE Order 451.IA), I have made the rollo wing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including. but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

353

STATEMENT OF CONSIDERATIONS REQUEST BY 3M COMPANY FOR AN ADVANCE WAIVER OF PA ENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3M COMPANY FOR AN ADVANCE WAIVER OF PA ENT 3M COMPANY FOR AN ADVANCE WAIVER OF PA ENT RIGHTS UNDEF DOE COOPERATIVE AGREEMENT NO. DE-FC36- 01AL67621 ENTITLED "ADVANCED MEA'S FOR ENHANCED OPERATING CONDITIONS"; W(A)-04-038; CH-1205 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, 3M Company (3M) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of 3M's waiver petition, the purpose of this agreement encompasses the design, development and manufacturing of polymer electrolyte membrane fuel cells

354

US. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF ENERGY OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA DETERMINATION Page 1 of2 RECIPIENT:ELECTRATHERM, Inc. STATE: NV PROJECT TITLE: ·Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: MiningOperation" Funding Opportunity Announcement Number PNK:urement Instrument Number N£PA Control Number em Number OE+FOAOOOO336 DE-EEOOO4435 GF0-0004435-002 G04435 Based on my review of the information c:oncerning tbe proposed action, 85 NEPA Compliance Officer (authorized under DOE Order 451.IA),1 have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Info rm ation gathering, analysis, and d issemination Information gathering (including , but not limited to, literature surveys, inventories, site visits, and

355

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DEl1!RMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PA DEl1!RMINATION PA DEl1!RMINATION RECIPIENT:Snohomish County PUD PROJECT TITLE: Acoustic Effects of Hydrokinetic Tidal Turbines Page 1 00 STATE: WA funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA..()()()()()69 DE-EEOOO2654 GF0-10-171 0 Based on my review oflhe information concerning the proposed adion, as NEPA CompliaDce Officer (authorized under DOE Order451.1A), I have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 83.1 OnSlle and off site site characterizatIOn and environmental monitonng, Induding siting, construction (or modification). operatJon, and dismantlement or dosing (abandonment) of characterization and monitoring devices and siting, constructJon, and aSSOCIated operation of a small-scale laboratory building or renovation of a room in an existing building

356

File:EIA-Appalach2-OH-PA-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach2-OH-PA-GAS.pdf Appalach2-OH-PA-GAS.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Northern Ohio, Southwestern New York, and Western Pennsylvania By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.31 MB, MIME type: application/pdf) Description Appalachian Basin, Northern Ohio, Southwestern New York, and Western Pennsylvania By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Ohio, New York, Pennsylvania File history Click on a date/time to view the file as it appeared at that time.

357

u.s. DEPARTMENT OF ENERGY EERE PROJECT MAN AGEMENT CENTER Nl!PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nl!PA DETERMINATION Nl!PA DETERMINATION RECIPIENT :Ruby Mountain Inc for EI Paso County PROJECf TITLE : EI Paso County Geothermal Project at Fort Bliss - Phase 2-8 and Phase 3 Page 1 of2 STATE : TX Funding Opportunity Announcement Number Procuremenllnstrument Number NEPA Control Number CID Number DE-FOA-0000109 DE-EEOOO2827 GFO-O002827-OO4 Based on my review ofthe information concerning the proposed action, as NEPA Compliance Officer (autborlzed under DOE Order 45I.lA), I have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited la, literature surveys, inventories, audits). data analysis (including computer modeling). document preparation (such as conceptual design or feasibility studies, analytical energy supply

358

File:EIA-Appalach3-eastPA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Appalach3-eastPA-BOE.pdf Appalach3-eastPA-BOE.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Eastern Pennsylvania By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 17.04 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern Pennsylvania By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Pennsylvania File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

359

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NllPA DETERMINATION NllPA DETERMINATION REClPI[NT:General Molors LlC Page I 0[2 STATE: MI PROJECf TITLE: Investigation of Micra.andMacro-scale Transport Processes for Improved Fuel Cell Performance Funding Opportunity Announcement Number Proc:urement Instrument Number NEPA Control Number CID Number DE·PS36-08G098OO9 EE0000470 GF0-10-353 EE470 Based on my review orthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI.IA},1 have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description: B3.6 Siting, construction (or modification). operation, and decommissioning of facilities for indoor bench-scale research projects and conventional laboratory operations (fOf example, preparation of chemical standards and sample analYSIS);

360

File:USDA-CE-Production-GIFmaps-PA.pdf | Open Energy Information  

Open Energy Info (EERE)

PA.pdf PA.pdf Jump to: navigation, search File File history File usage Pennsylvania Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 419 KB, MIME type: application/pdf) Description Pennsylvania Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Pennsylvania External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:20, 27 December 2010 Thumbnail for version as of 16:20, 27 December 2010 1,650 × 1,275 (419 KB) MapBot (Talk | contribs) Automated bot upload

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evolutionary Significance of an Algal Gene Encoding an [FeFe]-Hydrogenase with F-Domain Homology and Hydrogenase Activity in Chlorella Variabilis NC64A  

SciTech Connect

[FeFe]-hydrogenases (HYDA) link the production of molecular H{sub 2} to anaerobic metabolism in many green algae. Similar to Chlamydomonas reinhardtii, Chlorella variabilis NC64A (Trebouxiophyceae, Chlorophyta) exhibits [FeFe]-hydrogenase (HYDA) activity during anoxia. In contrast to C. reinhardtii and other chlorophycean algae, which contain hydrogenases with only the HYDA active site (H-cluster), C. variabilis NC64A is the only known green alga containing HYDA genes encoding accessory FeS cluster-binding domains (F-cluster). cDNA sequencing confirmed the presence of F-cluster HYDA1 mRNA transcripts, and identified deviations from the in silico splicing models. We show that HYDA activity in C. variabilis NC64A is coupled to anoxic photosynthetic electron transport (PSII linked, as well as PSII-independent) and dark fermentation. We also show that the in vivo H{sub 2}-photoproduction activity observed is as O2 sensitive as in C. reinhardtii. The two C. variabilis NC64A HYDA sequences are similar to homologs found in more deeply branching bacteria (Thermotogales), diatoms, and heterotrophic flagellates, suggesting that an F-cluster HYDA is the ancestral enzyme in algae. Phylogenetic analysis indicates that the algal HYDA H-cluster domains are monophyletic, suggesting that they share a common origin, and evolved from a single ancestral F-cluster HYDA. Furthermore, phylogenetic reconstruction indicates that the multiple algal HYDA paralogs are the result of gene duplication events that occurred independently within each algal lineage. Collectively, comparative genomic, physiological, and phylogenetic analyses of the C. variabilis NC64A hydrogenase has provided new insights into the molecular evolution and diversity of algal [FeFe]-hydrogenases.

Meuser, J. E.; Boyd, E. S.; Ananyev, G.; Karns, D.; Radakovits, R.; Murthy, U. M. N.; Ghirardi, M. L.; Dismukes, G. C.; Peters, J. W.; Posewitz, M. C.

2011-10-01T23:59:59.000Z

362

Recipient: County of Lancaster, PA ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Recipient: County of Lancaster, PA ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Lancaster County Environmental Center Energy Efficiency Retrofits A9, All, B5.1 Waste Stream Clause Historic Preservation Clause Engineering Clause **This NEPA determination is limited to lighting upgrades, installation of a PV system; installation of a geothermal heat pump is conditioned pending further NEPA review. Lancaster County Environmental Center Renewable Energy System B5.1 Waste Stream clause Historic Preservation clause Engineering clause County Facility Energy Audits A9 None. This NEPA determination is limited to audits only.

363

Microsoft PowerPoint - PA CoP Status and plans.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

of Practice Status and Plans Performance Assessment Community of Practice Technical Exchange May 25, 2011 Martin J Letourneau DOE Office of Environmental Compliance 5/25/2011 Print Close 2 History and Background * Originally envisioned and established in 2008 under DOE HLW Corporate Board * Very DOE and EM oriented * Sponsored 2 technical exchange meetings (Salt Lake and Richland) * Went dormant when HLW Corporate Board was on hiatus * Corporate Board Shifted to Office of Environmental Compliance * Identified opportunity to make PA CoP broader and free- standing 5/25/2011 Print Close 3 Initial Steering Committee Meeting * Met Monday to develop path forward and work on charter - Alaa aly, Intera

364

Mycenaean -pi and pa-ro in the light of TH Uq 434  

E-Print Network (OSTI)

for Mycenologists and specialists in the Aegean cultures, but also for scholars working on the history of the Greek language, Greek religion and institutions, and Indo-European. ISBN978-90-429-2909-8 (Peeters Leuven) ISBN978-2-7584-0186-5 (Peeters France... he demonstrates record standing flocks involved in the production of lambs and wool (KILLEN 1964); mutatis mutandis he argues for a similar function for these Pylian records. If so, the pa-ro formulae would record the herdsmen under whose care...

Thompson, Rupert John Ernest

2013-10-04T23:59:59.000Z

365

Effects of Pressure on Collision, Coalescence, and Breakup of Raindrops. Part I: Experiments at 50 kPa  

Science Conference Proceedings (OSTI)

Previous breakup experiments have been carried out at laboratory pressures (100 kPa). However, raindrop interactions mainly take place higher up in the atmosphere, even in the supercooled part of a cloud where drops can be initiated by shedding ...

Roland List; C. Fung; R. Nissen

2009-08-01T23:59:59.000Z

366

PREPARATION AND PROPERTIES OF THE ACTINIDE BOROHYDRIDES: Pa(BH4)4, Np(BH4)4, AND Pu(BH4)4  

E-Print Network (OSTI)

Pa (BH4 ) 4' Np (BH ) 4' AND Pu (BH ) 4 R. H. Banks, N. M.Pa(BH4 )4' Np(BH 4 )4' and Pu(BH4)4t R. H. Banks, N. M.Pa(BH )4' Np(BH )4' and Pu(BH )4 have been synthesized. U(

Banks, R.H

2011-01-01T23:59:59.000Z

367

OIL-FOAM INTERACTIONS IN A MICROMODEL  

E-Print Network (OSTI)

, PA, Cleveland, OH, Washington DC, and New York City. Morgantown, WV has been rated the "No. 1 Small

368

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL CO2 Capture Technology Meeting NETL CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering Presentation Outline 2  ION Advanced Solvent Background  Project Overview  Technology Fundamentals  Progress & Current Status  Plans for Future Commercialization  Acknowledgements ION Engineering Background 3 Mission Statement: Develop new solvents and processes for economic removal of CO 2 from industrial emissions. Markets:  Coal-fired flue gas  NGCC-fired flue gas  Sour gas processing 1 st & 2 nd Generation CO 2 Capture 4 Aqueous MEA Commercial Use Existing Commercial Technology Lateral Transfer of Existing Technology Aqueous MEA

369

EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!Rl\.lINAIION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DFPARTIlIENT OFI!NERGY DFPARTIlIENT OFI!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!Rl\.lINAIION RECIPIENT:NH Office of Energy and Planning PROJECf TITLE : Fonnula Grant for State Energy Program· NH Page 1 of2 STATE: NH Funding Opportunity Announ~ement Number Procurement Instrument Number NEPA Control Number CID Number DE FDA 0000643 DE-FG26-06R130472 GF()'()130472-OO1 Based on my review orlbe information concerning the proposed action, as NEPA Compliance OffICer (authorized under DOE Order 4sl.tA), I have made the foUowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A11 Technical advice and assistance to organizations A9 Information gathering, analysis, and dissemination Rational for detennination: Technical advice and planning assistance to international, national, state, and local organizatioos

370

EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TFIU.nNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARTh1l1NT OFI!NERGY PARTh1l1NT OFI!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TFIU.nNATION Page I of2 RECIPIENT: City of SI. Petersburg STATE: FL PROJECT TITLE: SI. Petersburg Solar Pilol Project (FL) FUnding Opportunity Announcement Number Procunml'nt Instrument Numbu NEPA Control Number CID Number DE-EEOOOO284 GF().OQ()()284-003 G0284 Based on my review ortbe information concerning the proposed action, as NEPA Compliance Officer (authorized UDder DOE Order 451.1A), I have made the (ollowing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 8 5.16 Sola r photovoltaic systems The installation, modification, operation, and removal of commercially available solar photovoltaic systems located on a building or other structure (such as rooftop, parking lot or facility, and mounted to Signage,

371

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

~) ~) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPI[NT :Dehlsen Associates. LlC (DA) Page 1 of2 STATE: CA PROJECT TITLE: High Energy Density Distributed Hydrostatic Direct Drive for large Wind Turbine and MHK Device Applications Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-0000439 DE-EEOOO5139 GFO-OOOS139-001 0 Based on my review ofthe information concerning tbe proposed acrion, as NEPA Compliance Officer (authorized under DOE Order451.IA), J have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (Including, but nollimited to, literature surveys, inventories, audits), data analysis (including

372

EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!RMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DFPARTlIIENT OFI!NERGY DFPARTlIIENT OFI!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!Tl!RMINATION Page 1 of2 RECIPIENT: Energent Corporation STATE: CA PROJECT TITLE: Scale Resistant Heat Exchangers for Low Temperature Geothermal Binary Cycle Power Plant Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number elD Number DE-FOA-0000318 DE-EE0004423 GFO-OOO4423-OO2 G04423 Based on my review ofthe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order4S1.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Inf ormation Information gathering (including, but not limited to, literature surveys, inventories, site visits, and gathering, analYSiS, and audits), data analysis (including, but not limited to, computer modeling), document preparation

373

US DEPARl'lIIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARl'lIIENT OF ENERGY DEPARl'lIIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPIENT: Snohomish County PUD PROJECf TITLE: Acoustic Effects of Hydrokinetic Tidal Turbines Page 1 on STATE: WA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0000069 DE-EEOOO2654 GFQ-0002654-OO2 0 Based on my review orlhe Information concerning the proposed action, as NEPA Compliance Officer (authori1.ed under DOE Order 4S1.1A), I have made the following determination: ex, EA, EIS APPENDIX ANO NUMBER: Description: B3.3 Field and laboratory research, inventory, and information collection activities that are directly related to the conservation of fish or wildlife resources and that involve only negligible habitat destruction or population reduction

374

Microsoft PowerPoint - Cheng-PA Presentation-v5.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Applications of RESRAD-OFFSITE Presented At PA Community of Practice Technical Exchange Richland, WA April 14, 2010 Jing-Jy Cheng, Ph.D. Environmental Science Division Argonne National Laboratory RESRAD - A Regulatory Tool for Addressing Site Cleanup Issues 2 RESRAD, an internationally utilized model, successfully addresses the critical question "How clean is clean enough?" Supports government regulatory endeavors in cleanup * DOE (Designated by Order 5400.5) * NRC (License Termination Rule; 10 CFR 20 Subpart E; NUREG/1757) * EPA (CERCLA) * State agencies In use for about 30 years * Evaluation of more than 300 cleanup sites * Over 100 training workshops * International (e.g., IAEA) recognition RESRAD Development Philosophy : Bridging Science with Regulatory Compliance

375

EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!R}.JINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFl!NERGY OFl!NERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!R}.JINATION RECIPIENT:State of Wisconsin * Office of Energy Independence PROJECf TITLE: WI Biodiesel Blending Program Page 1 of2 STATE: WI Funding Opportunity Announttmenf Number Proc:unment Instrument Numbu NEPA Control Number CID Number COP DE-EEOOO3117 GFO-l0-4t4 EE3117 Based on my nview oftbe information concerning the proposed action, as NEPA Compliance Officer (authori7.ed undu DOE Onter 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathenng (Including, but not limited to, literature surveys, inventories, audits). data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies. analytical energy supply

376

EERE PROJECT MANAGEMENT CENTER Nl!PA DFTFnIINATION RECIPIENT:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Il.II.': , Il.II.': , u.s. DEPARTMENT OFFNERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DFTFnIINATION RECIPIENT: FDC Enterprises, Inc. Page 1 of2 STATE: KS PROJECT TITLE: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for lignocellulosic Bioenergy Production Funding Opportunity AonOUDCtment Number DE-FOA-0000060 Pnxunmtol Instrument Number EEOOO1033 NEPA Control Number em Number GF()..10-532 0 Based on my review oflbe information concerning the propostd action, 85 NEPA Compliance Officer (authorized under DOE Order 4Sl.IA). I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits). data analysis (including

377

U.S. DEPARTIl1FNT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FNT OF ENERGY FNT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPIENT:Oregon Department of Energy PROJECf TITLE: Farm Power Tillamook, LLC Page I of2 STATE: OR Funding Opportunity Announcement Number DE-FOA-0000052 Procurement Instrument Number NEPA Control Number ell> Number DE-EEOOOO140 GFO-OOO0140-OO5 EE140 Based on my review oftbe information concerning the proposed aetion, as NEPA Compliance Officer (autborized under DOE Order 451.1A), I have made the following determination: ex, EA, EI S APP~:NDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

378

TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

u~\ u~\ u.s. DEPAR TMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPIENT:Hawaii Natural Energy Institute STATE : HI PROJECf TITLE: Hawaii Hydrogen Power Park - Technology Validation of a Hydrogen Fueling System Funding Opportunity Announcement Number n/a Procurement Instrument Number DE·FC51-02R021399 NEPA Control Number GFO-R021399-002 Page 1 of2 em Number 21399 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA), I have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description; 85.1 Adions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

379

18 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August  

Office of Legacy Management (LM)

8 MILES NORTH OF PHlLADEl.PHlA 8 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August 27, 1948 ! ! Frank Giaccio' Commission / I This follows my letter of August ZOth, in which I promised to advise you of our thoughts concerning beryllium, after I had completed a series of con- tacts with both.Government and private,grou?s and had an opportunity to evaluate the possibilities of using our process from the point of view of industrial research. By this, I meanthe possibility of the research leading into substantial production of parts. I believe I mentioned some of the contacts to you when I was in your office, and that we still had more to make. It is my opinion now that as far as beryllium is concerned, I cannot visualize the possibility of large production runs of parts; because it is

380

Recipient. County of Berks, PA ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Recipient. County of Berks, PA ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Replacement of Steam and Condensation Lines at North Campus B5.1 Waste Stream, Engineering, and Historical Preservation clauses. The new boiler cannot result in a net increase in air emissions. Additional Comments: Based on my review of information conveyed to me and in my possession (or attached) concerning the proposed action, as NEPA Compliance Officer (as authorized under DOE Order 451.1B), I have determined that the proposed action fits within the specified class of actions, other applicable regulatory requirements are met, and the proposed action is hereby categorically excluded from further

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

u.s. Dl!PARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARTMENT OF ENERGY PARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETERMINATION RECIPIENT:WA Dept of Commerce Page 1 of3 STATE: WA PROJECT TITLE: SEP ARRA · WSU Anaerobic Digester - Nutrient Recovery Technology - Vander Haak Dairy Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number EEOOOO139 GF0-0000139-040 0 Based on my review of the Information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.1A), I have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (including, but not limited to, literature surveys, inventories, site visils, and audits), data analysis (including

382

Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.  

DOE Green Energy (OSTI)

A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

Mills, Bernice E.

2007-11-01T23:59:59.000Z

383

EERE PROJECT MANAGEMENT CDITER Nl!PA Dl!Tl!Rl\llNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

... ... ~ . u.s DEPAR lENT OFl!NERG' EERE PROJECT MANAGEMENT CDITER Nl!PA Dl!Tl!Rl\llNATION Page 1 of2 RECIPIENT:Stanford University STATE: CA PROJECf TITLE: In·Situ X·Ray Analysis of Rapid Thermal Processing for Thin·FiI Solar Cells: Closing the Gap between Production and Laboratory Efficiency Funding Opportunity Announcement Number DE·FOA-0000654 Procurement Instrument Number DE·EE0005951 NEPA Control Number em Number GFQ-0005951·001 G05951 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI.IA), I have made the following determination: CX, EA, EIS APP~:NDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination 81.31 Installation or

384

RFI for NC  

NLE Websites -- All DOE Office Websites (Extended Search)

Statement of Energy Service Requirements Statement of Energy Service Requirements & Format for Responses to a Request for Information GENERAL INFORMATION Document Type: Request for Information Posted Date: June 12, 2003 Original Response Date: June 26, 2003 Classification Code: 99-Miscellaneous-Renewable Energy/Renewable Energy Certificates (REC) DESCRIPTION The Federal Government is seeking interested parties to potentially supply renewable energy/REC in North Carolina behind the Duke Energy Service Territory, with the possibility of other locations as well. Requirements are estimated at approximately 30 million kWh. We are seeking Green-e certified (or the equivalent) REC, or renewable energy located close to North Carolina, but not necessarily within the state.

385

Durham, NC 27708  

DOE Green Energy (OSTI)

In the Krafla hydrothermal system in Iceland, both MT polarization and MEQ splitting directions align with

Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

2006-12-15T23:59:59.000Z

386

wvBLACK DIAMONDS table of contents  

E-Print Network (OSTI)

County Coal Corporation, presented the annual William Poundstone Lecture entitled, "My Last (and Best) 23 Years in Coal." Bradbury's 42-year coal mining career included a number of senior-level positions in engineering and management. He was president of Martin County Coal during his last 18 years in the industry

Mohaghegh, Shahab

387

wvBLACK DIAMONDS table of contents  

E-Print Network (OSTI)

......................12 Chris Hamilton, senior vice president of the West Virginia Coal Association (WVCA), presented a speech on "Coal, Energy, and Mountaintop Development," as part West Virginia University's College experience in the coal mining industry, 25 with the WVCA. He is responsible for legislative, regulatory

Mohaghegh, Shahab

388

wvBLACK DIAMONDS Engineering and  

E-Print Network (OSTI)

. Robert E. Murray is president of Murray Energy Corp., the largest privately owned coal mining company father's paralysis from a mining accident. He worked for the North American Coal Corp. for 31 years president ­ mining services for International Coal Group (ICG), presented the William Poundstone Lecture

Mohaghegh, Shahab

389

Oil-shale utilization at Morgantown, WV  

Science Conference Proceedings (OSTI)

Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

1982-01-01T23:59:59.000Z

390

DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER N1!PA Dl!1'ElU.llNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N1!PA Dl!1'ElU.llNATION N1!PA Dl!1'ElU.llNATION RECIPIENT:City of Perth Amboy PROJECT TITLE : Municipal Complex Solar Power Project Page 1 of2 STATE: NJ Funding Opportunity Announl::ement Number Procurement Instrument Number NEPA Control Number elD Number Congressionally Directed Project DE· EEOOO3172 GF0-0003172..Q01 EE3172 Based on my review of the information concerning the proposed action, as N[PA Compliance Officer (authoro.ed under DOE Order451.1A),1 have made tbe following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 8 5.1 Adions to oonserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentratIOns of potentially harmful substances. These actions may involve financial and technical

391

BsTan gnyis gling pa (1480-1535) et la Revelation du Yang tig ye shes mthong grol  

E-Print Network (OSTI)

enseignements et de ri-chesses se trouve Gos sngon ! Si tu (veux) te rendre l-bas, je te guiderai !Cest une injonction de Guru Padma ! 10 4 Le personnage dont il est question dans cette stance est O rgyan m... certainement lui prfrer laleon du bKa thang gser phreng de Sangs rgyas gling pa qui propose la lecture (p.630) stag thab. On verra plus bas comment interprter isolment stag (pour stagshar) et thab (pour thab).6 O rgyan gling pa, op. cit., p. 571 : de...

Achard, Jean-Luc

2004-01-01T23:59:59.000Z

392

A Diagnostic Study of an Explosively Developing Extratropical Cyclone and an Associated 500-hPa Trough Merger  

Science Conference Proceedings (OSTI)

This paper presents a diagnosis of an explosively developing cyclone (1.3 Ber) that occurred in conjunction with a 500-hPa synoptic-scale trough merger over the eastern United States in November 1999. The explosive development occurred in ...

Jennifer L. S. Strahl; Phillip J. Smith

2001-09-01T23:59:59.000Z

393

Contributions to 2^nd TeV Particle Astrophysics Conference (TeV PA II) Madison Wisconsin - 28-31 August 2006  

E-Print Network (OSTI)

This collection of proceedings to the TeV PA II Conference presents some of the latest results of the IceCube Collaboration.

IceCube Collaboration; A. Achterberg

2006-11-18T23:59:59.000Z

394

A Main Steam Safety Valve (MSSV) With Fixed Blowdown According to ASME Section III,Part NC-7512  

Science Conference Proceedings (OSTI)

In 1986, the NRC issued the Information Notice (IN) 86-05 'Main Steam Safety Valve test failures and ring setting adjustments'. Shortly after this IN was issued, the Code was revised to require that a full flow test has to be performed on each CL.2 MSSV by the manufacturer to verify that the valve was adjusted so that it would reach full lift and thus full relieving capacity and would re-close at a pressure as specified in the valve Design Specification. In response to the concern discussed in the IN, the Westinghouse Owners Group (WOG) performed extensive full flow testing on PWR MSSVs and found that each valve required a unique setting of a combination of two rings in order to achieve full lift at accumulation of 3% and re-closing at a blowdown of 5%. The Bopp and Reuther MSSV type SiZ 2507 has a 'fixed blowdown' i.e. without any adjusting rings to adjust the 'blowdown' so that the blowdown is 'fixed'. More than 1000 pieces of this type are successfully in nuclear power plants in operation. Many of them since about 25 years. Therefore it can be considered as a proven design. It is new that an optimization of this MSSV type SiZ 2507 fulfill the requirements of part NC-7512 of the ASME Section III although there are still no adjusting rings in the flow part. In 2000, for the Qinshan Candu unit 1 and 2 full flow tests were performed with 32 MSSV type SiZ 2507 size 8'' x 12'' at 51 bar saturated steam in only 6 days. In all tests the functional performance was very stable. It was demonstrated by recording the signals lift and system pressure that all valves had acceptable results to achieve full lift at accumulation of 3% and to re-close at blowdown of 5%. This is an advantage which gives a reduction in cost for flow tests and which gives more reliability after maintenance work during outage compared to the common MSSV design with an individual required setting of the combination of the two rings. The design of the type SiZ 2507 without any adjusting rings in the flow path is presented. The stable performance depends on the interaction of flow force and spring force. The optimization of the flow path to create a suitable flow-force-curve was managed by Computational Fluid Dynamics (CFD) and flow-force-characteristic-measurements at a model 1: 2.5. The method of the flow-force-characteristic-measurement permits systematic dimensioning of valve spring forces by means of measurement of the fluid mechanical forces occurring on the valve spindle during flow. A special procedure was established to verify a spring force versus lift curve with an accuracy of 1% for each production valve. This gives high reliability at required stable performance and this can not be influenced by wrong setting of any adjusting ring during maintenance work. (authors)

Follmer, Bernhard; Schnettler, Armin [Bopp and Reuther Sicherheitsund Regelarmaturen, GmbH, Mannheim (Germany)

2002-07-01T23:59:59.000Z

395

Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)  

Science Conference Proceedings (OSTI)

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.

DI Kaplan; RJ Serne

2000-02-24T23:59:59.000Z

396

DEPARThIl!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DEl'ER}.fiNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARThIl!NT OF ENERGY DEPARThIl!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DEl'ER}.fiNATION RECIPIENT:Cortiand County Business Development Corporation PROJE(.T TITLE : Energy Independent Agri-Business Outreach Page I of2 STATE: NY Funding Opportunity Announcement Number DE-EOOO3110 Procurement Instrument Number EEOOO3110 NEPA Control Number em Number GFO-10-573 0 Based on my review orlbe information concerning the proposed action, as N[PA Compliance Officer (autborized under DOE Order 4SI.IA),1 have made tbe follol'iing determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, bul nollimiled 10, literature surveys. inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

397

U.S. DEPARTMENT OFENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETlffiMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nl!PA DETlffiMINATION Nl!PA DETlffiMINATION R[CIPIENT:New York State Energy Research and Development Authority PROJECf TITLE: Program Year 2012 Formula Grants - State Energy Program Page 1 of3 STATE: NY Funding Opportunity Announcement Numbel" Procurement Instrument Number NEPA Control Number CID Number DE-FOA-Q000643 R130772 GF0-0130772-OO1 Based on my review orlbe information concerning the proposed action, as NEPA Compliance Omen (authorized under DOE Order 451.1A), I hne made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: All Technical advice and assistance to organization, A9 Information gathering, analysis, and dissemination Rational for determination: Technical advice and planning aSSistance to international, national, slate, and local organizations.

398

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

399

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1999 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

400

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Natural Gas Annual 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ 17. Average Price of Natural Gas Delivered to U.S. Residential

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1998 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental

402

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-99.99 10.00-11.99 12.00+ 19. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2000 (Dollars per Thousand Cubic Feet) Figure 20. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 2000 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural

403

Microsoft Word - Figure_18_19.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2004 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2004 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$2.49 price category.

404

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

49 49 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-1.99 2.00-3.99 4.00-5.99 6.00-7.99 8.00-9.99 10.00-11.99 12.00+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2003 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2003 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$1.99 price category.

405

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1999 (Dollars per Thousand Cubic Feet) Figure

406

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

8 8 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1997 (Dollars per Thousand Cubic Feet) Figure

407

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

1998 1998 NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC Note: Commercial prices include natural gas delivered for use as vehicle fuel. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 16. Average Price of Natural Gas Delivered to U.S. Residential Consumers, 1998 (Dollars per Thousand Cubic Feet) Figure

408

Comparison of 700-hPa NCEP-R1 and AMIP-R2 Wind Patterns over the Continental United States Using Cluster Analysis  

Science Conference Proceedings (OSTI)

Clustering techniques are adapted to facilitate the comparison of gridded 700-hPa wind flow patterns spanning the continental United States. A recent decade (198594) of wind component data has been extracted from two widely used reanalysis ...

Ellen J. Cooter; Jenise Swall; Robert Gilliam

2007-11-01T23:59:59.000Z

409

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER N1!PA DE1'l!RlInNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DE1'l!RlInNATION DE1'l!RlInNATION Page I of2 RECIPIENT:West Chester University of Pennsylvania STATE: PA PROJECT TITLE: Design and Implementation of Geothermal Energy Systems at West Chester University Funding Opportunity Announcement Number 70.10 Procurement Instrument Number DE-EEOOO3217 NEPA Control Number GFO-1Q-484 cm Number o Based on my review oflhe informallon concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

410

DEPARTII'IENT OF ENERGY EERE PROJECT MA'<AGEMENT CENTER Nl!PA DETEIU.fiNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTII'IENT OF ENERGY DEPARTII'IENT OF ENERGY EERE PROJECT MA'PA DETEIU.fiNATION RECIPIENT:ldaho Office of Energy Resources PROJECT TITLE : Program Year 2012 State Energy Program Formula Grants Page 1 of2 STATE: fD Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CIO Number DE-FOA0000643 DE-EEOOO3681 GFD-0003681-OO3 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 45 1. IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination A11 Technical advice and assistance to organizations Rational for determination: Information gathering (induding, but not limited to, literature surveys, inventories, site visits, and

411

US. DI!PARTlIIENT OFI!NFRGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TIIU.fiNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DI!PARTlIIENT OFI!NFRGY DI!PARTlIIENT OFI!NFRGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TIIU.fiNATION REClPI[NT:The Regents of the University of Califomia; University of California Berkley Page I of2 STATE: CA PROJEcr TITLE: Advanced Manufacturing MedicaVBiosciences Pipeline for Economic Development {AM2PED)is a regional medical and biosciences manufacturing initiative targeting the 180/880 corridor in the SF East Bay. Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number JlAC2102AM DE-EE0006026 GF().()()()6()26-001 G06026 Based on my TCview ortbe information concerning the proposed aclion, as NEPA Compliance Officer (authoru.ed under DOE Order 451.1A), I have made tbe following detel"mination: ex, EA, [IS APPENDIX AND NUMBER:

412

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!Rl\lINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.**.* : .**.* : , U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!Rl\lINATION RECIPIENT :DOE Solar Energy Technology Program PROJECf TITLE: Solar Energy Evolution and Diffusion Studies (SE EDS) Page 1 of2 STATE: DC Funding Opportunity Annouoc:emenf Number Procurement Instrument Number NEPA Control Number em Number OE-FOA-OOOO740 GFO-FOA0740-001 Based on my review orehe information concerning the proposed aetion, as NEPA Compliance Officer (authorized under DOE Order 4Sl.IA), I have made tbe following determination: ex, EA, EIS APPENDlX AND NUMBER: Description: A91nformation gatheri ng, analYSiS, and d isseminatio n Information gathering (including, but nollimiled 10, literature surveys, Inventories, site visits, and audits), data analysis (including, but not limited 10, computer modeling), document preparation

413

U.S. DFPARThIENT OFENYRGY EERE PROJECT MANAGEMENT CENTER Nl'PA DETFlUllNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DFPARThIENT OFENYRGY DFPARThIENT OFENYRGY EERE PROJECT MANAGEMENT CENTER Nl'PA DETFlUllNATION RECIPIENT:State of louisiana-Louisiana Department of Natural Resources PROJECf TITLE: ARRA EECBG-Slale of louisiana Pointe Coupe Parish Page 1 of3 STATE : LA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Numbu DE-FOA-OOOOO13 DE-EEOOOO735 GF0-0000735-OO5 0 Based on my review of the informafion concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Adions to conserve energy. demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

414

DEPARTMENT OFENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!lU.nNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFENl!RGY OFENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!lU.nNATION RECIPIENT:Atargis Energy Inc. PROJECT TITLE : Cycloidal Wave Energy Converter Page lof2 STATE: CO Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number elD Number DE·FOA-OOOO293 DE-EEOOO3635 GFQ-000363S-001 0 Based on my review of tbe information concerning tbe proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA). I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, bul not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies. analytical energy supply

415

U.S. DEPARTMENT OFI!NFRGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TI!RMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland county Richland county U.S. DEPARTMENT OFI!NFRGY EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TI!RMINATION PROJECT TITLE: Irmo Char1ing Cross Sidewalk Project Page 1 of2 STATE: SC Funding Opportunity AnnouDcement Num~r Procurement Instrument Number NEPA Control Number CID Number EEOOOO95O GF().()()()()95()3 0 Based on my review ofthe information concerning tbe proposed action, as NEPA Compliance Officer (authom.ed under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation , and promote energy-efficJency that do not increase the indoor ooncentrations of potentially harmful substances. These actions may involve financial and technical

416

u.s. DI!PARThIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ!PA DETEJU,llNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT CENTER MANAGEMENT CENTER NJ!PA DETEJU,llNATION RECIPIENT :Ocean Renewable Power Company, LlC Page I of2 STATE: AK PROJECf TITLE: Acoustic Monitoring of Beluga Whale Interactions withCook Inlet Tidal Energy Project Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOOO69 DE-EE0002657 GFO-O002657-002 G02657 Based on my review oftbe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: B3.3 Research related to Field and laboratory research, inventory, and information collection activities that are directly conservation of fish, wildlife, related to the conservation of fish and wildlife resources or to the protection of cultural

417

US DFPARThIFNT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DETFID.llNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DFPARThIFNT OF ENERGY DFPARThIFNT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA DETFID.llNATION RECIPIENT:Mercedes·Benz Research & Development, North America PROJECT TITLE : Light· Duty Fuel Cell Electric Vehicle Validation Data Page I of2 STATE : CA Funding Opportunity Announcemcnt Number DE·FOA·0000625 Procurement Instrument Number DE-EEOOO5971 NEPA Control Number CID Number GFO"'()005971...{)()1 G05971 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4SI. IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Rational for detennination: Information gathering (including, but not limited to, literature surveys. inventories, site visits, and

418

u.s. DIiPARTMENT OF ENFR Y EERE PROJECT MANAGEMENT C NTER NIiPA DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DIiPARTMENT OF ENFR Y DIiPARTMENT OF ENFR Y EERE PROJECT MANAGEMENT C NTER NIiPA DETERMINATION RECIPIENT:Califomia Energy Commission PROJE('T TITLE: SEP Annual Formula Page 1 of2 STATE: CA Funding Opportunity Announcement Number Procurement Instrument umber NEPA Control Number em Number DE-FOA-0000643 DE-EE-0003941 GFO-O003941-OO1 Based on my review of the information concerning the proposed action, as NEP Compliance Officer (authorized under DOE Order 451.lA), I have made the (ollowlng determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (including , bul nol limiled 10, lite alure surveys, inventories, site visits, and audits), data analysis (including , but nol limiled 10. co puler modeling), document preparation

419

Exchanges of Energy, Water and Carbon Dioxide Xuhui Lee (Yale University) and Edward Pa:on (NCAR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Influences of the Boundary Layer Flow on Vegeta8on-Air Influences of the Boundary Layer Flow on Vegeta8on-Air Exchanges of Energy, Water and Carbon Dioxide Xuhui Lee (Yale University) and Edward Pa:on (NCAR) * Summarize your projects and its scienFfic objecFves for the next 3-5 years The objecFve of this project is to establish a mechanisFc understanding of the interplay between flow heterogeneity in the atmospheric boundary layer (ABL), land surface heterogeneity, and vegetaFon-air exchange of energy, water and CO 2 . The project will invesFgate mechanisms by which mesoscale moFons in the ABL influence vegetaFon-air exchange. It will also quanFfy the influence of heterogeneity on predicFons by 1D column models used in regional and global scale climate models. It is hypothesized that two important ABL processes entrainment and flow

420

u.s. DEP.-\RTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!RMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

*** *** ~ , RECI P I [NT :Riverheath u.s. DEP.-\RTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!RMINATION Page 1 of2 STATE: WI PROJECT TITLE: RiverHeath: Neighborhood loop Geothermal Exchange System: Technology Demonstration Project Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOO116 DE-EEOOO3005 GFO-OO03005-OO2 G03005 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4Sl.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description : 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may Involve financial and technical

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains  

E-Print Network (OSTI)

,15 DDB0167879 IWS1 C-terminus 0,70 0,69 DDB0205969 snd1, tudor domain-containing protein 0,66 0,79 DDB0188840 TFIIAL, "transcription_factor_IIA" -0,79 -0,55 DDB0167865 ddx52, DEAD/DEAH box helicase -0,55 -0,55 DDB0184074 ddx6, DEAD/DEAH box helicase 0... ,62 0,66 DDB0184228 DEAD/DEAH box helicase -0,63 -0,60 Table 2: Genes differentially expressed upon infection with PAO1 and PA14 versus Klebsiella (Continued)Page 9 of 15 (page number not for citation purposes) DDB0206136 myb domain-containing protein 0...

Carilla-Latorre, Sergio; Calvo-Garrido, Javier; Bloomfield, Gareth; Skelton, Jason; Kay, Robert R; Ivens, Alasdair; Martinez, Jose L; Escalante, Ricardo

2008-06-30T23:59:59.000Z

422

San Juan Montana Thrust Belt WY Thrust Belt Black Warrior  

U.S. Energy Information Administration (EIA) Indexed Site

San San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern Great Basin Appalachian Denver Florida Peninsula Black Warrior W Y T h ru st B e lt Powder River Paradox- Uinta- Grtr Green River MT Thrust Belt Powder River North (1) Powder River South (2) Denver North (1) Denver South (3) Denver Middle (2) TX CA MT AZ ID NV NM CO IL OR UT KS WY IA NE SD MN ND OK FL WI MO AL WA GA AR LA MI IN PA NY NC MS TN KY VA OH SC

423

[(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH-8): An Organically Templated Open-Framework Uranium Silicate  

E-Print Network (OSTI)

-Framework Uranium Silicate Xiqu Wang, Jin Huang, and Allan J. Jacobson* Department of Chemistry, Uni pyramids we obtained also a number of open-framework uranium silicates.18,19 These new compounds were-framework uranium fluorosilicate [(CH3)4N][(C5H5NH)0.8((CH3)3NH)0.2]U2Si9O23F4 (USH- 8) that has been synthesized

Wang, Xiqu

424

Chemical Engineering NC State University  

E-Print Network (OSTI)

Ameristeel Christy Taylor Angelo Jonathan Rice Madeha Baqai Caldwell Natalie Scurry Austin Kizzie Jessica

Velev, Orlin D.

425

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

DAKOTA NEBRASKA KANSAS ARIZONA NEW MEXICO OKLAHOMA ARKANSAS MISSOURI IOWA MINNESOTA WISCONSIN MICH PA MD DELAWARE CONNECTICUT RHODE ISLAND MASS NH NJ ILL INDIANA OHIO VIRGINIA WV...

426

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

FE0006600 US Department of Agriculture FE APHIS, Wildlife Services OIOESSHD FY13-18, through 09302018 William Lowry NETL: Morgantown, WV and Pgh, PA Wildlife Management Program...

427

Exceptional Service in the National Interest SNL/WIPP Records Center File Code: WIPP:1.4.1.2:PA:QA-L:543621  

E-Print Network (OSTI)

Exceptional Service in the National Interest SNL/WIPP Records Center File Code: WIPP:1.4.1.2:PA's) Waste Isolation Pilot Plant (WIPP). The DOE is emplacing MgO in the WIPP to serve as the engineered in the WIPP divided by the total amount required to consume all CO2 that would be produced by microbial

428

The Northern Wintertime Divergence Extrema at 200 hPa and MSLP Cyclones as Simulated in the AMIP Integration by the ECMWF General Circulation Model  

Science Conference Proceedings (OSTI)

Divergence and convergence centers at 200 hPa and mean sea level pressure (MSLP) cyclones are located every 6 hours for a 10-year GCM simulation for the boreal winters from 1980 to 1988. The simulation used the observed monthly mean SST for the ...

James S. Boyle

1994-01-01T23:59:59.000Z

429

Interannual Variations of East Asian Trough Axis at 500 hPa and its Association with the East Asian Winter Monsoon Pathway  

Science Conference Proceedings (OSTI)

Interannual variations of the East Asian trough (EAT) axis at 500 hPa are studied with the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis data. The associated circulation pattern and pathway of the East Asian winter monsoon (...

Lin Wang; Wen Chen; Wen Zhou; Ronghui Huang

2009-02-01T23:59:59.000Z

430

By Terry Engelder and Gary G. Lash UNIVERSITY PARK, PA.The shale gas rush is on. Excitement over natural gas production from a  

E-Print Network (OSTI)

By Terry Engelder and Gary G. Lash UNIVERSITY PARK, PA.­The shale gas rush is on. Excitement over natural gas production from a number of Devonian-Mississippian black shales such as the Barnett by the Eastern Gas Shales Project (EGSP), a U.S. Department of Energy-sponsored investigation of gas potential

Engelder, Terry

431

U.S. DEPARTMENT OF l!Nl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!la.llNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nl!PA DETl!la.llNATION Nl!PA DETl!la.llNATION RECIPIENT:lmpact Technologies llC PROJECf TITLE : Deep Geothermal Drilling using Millimeter Wave Technology Page 1 of2 STATE: OK Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOOS22 DE-EEOOO5504 GFO-OOO5504-OO1 G05504 Based on my review or lhe infonnation concerning the proposed action, as NEPA Compliance OtrlCCf (authorized unde r DOE OTdu451.IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (induding. but not limited to. literature surveys, inventories, site visits, and audits), data analysis (induding. but not limited 10, computer modeling), document preparation (induding. bul nollimited to, conceptual design,

432

Structure and Function of PA4872 from Pseudomonas aeruginosa, a Novel Class of Oxaloacetate Decarboxylase from the PEP Mutase/Isocitrate Lyase Superfamily  

SciTech Connect

Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family R-oxyanion carboxylate intermediate/transition state) and Mg{sup 2+} was determined at 1.9 {angstrom} resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an {alpha}/{beta} barrel fold and two subunits swapping their barrel's C-terminal {alpha}-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The N{sup {epsilon}} of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into {alpha}-oxocarboxylate-containing compounds was confirmed by {sup 1}H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an {alpha}-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (k{sub cat}) = 7500 s{sup -1} and K{sub m} = 2.2 mM) and 3-methyloxaloacetate (k{sub cat}) = 250 s{sup -1} and K{sub m} = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.

Narayanan, Buvaneswari C.; Niu, Weiling; Han, Ying; Zou, Jiwen; Mariano, Patrick S.; Dunaway-Mariano, Debra; Herzberg, Osnat (UNM); (UMBI)

2008-06-30T23:59:59.000Z

433

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

operating and asset health data deeply integrated with operating and asset management applications, dramatic improvement in enterprise wide processes - GIS, system...

434

Microsoft PowerPoint - WV SGIP 101810 rev1.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Grid Implementation Plan - Roadmap Framework GridWeek 2010 Steve Pullins October 18, 2010, Washington, DC This material is based upon work supported by the Department of...

435

Wind Program: Stakeholder Engagement and Outreach  

Wind Powering America (EERE)

Outreach Outreach Printable Version Bookmark and Share The Stakeholder Engagement and Outreach initiative of the U.S. Department of Energy's Wind Program is designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Highlights Resources Wind Resource Maps State Activities What activities are happening in my state? AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Installed wind capacity maps. Features A image of a house with a residential-scale small wind turbine. Small Wind for Homeowners, Farmers, and Businesses Stakeholder Engagement & Outreach Projects

436

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

2 2 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2012

437

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

clothes drying, ceiling fans, coffee makers, spas, home security clothes drying, ceiling fans, coffee makers, spas, home security systems, microwave ovens, set-top boxes, home audio equipment, rechargeable electronics, and VCR/DVDs. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric appliances. The module's output includes number Energy Information Administration/Assumptions to the Annual Energy Outlook 2007 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central

438

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2007 (Million Cubic Feet) Nigeria Algeria 37,483 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports.

439

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Regional maps Figure F6. Coal supply regions Figure F6. Coal Supply Regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky Mountain Southwest Northwest KY AK 1000 0 SCALE IN MILES Source: U.S. Energy Information Administration, Office

440

N:\WORK\WORDPERF\CLEANCO1\MEETINGS\PUBLIC\CCPIREG.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Initiative Power Initiative Public Meeting, January 17, 2002 Participants Name Company Location 1 Webcast Attendees David Akers CQ Inc. Homer City PA Richard Armstrong Alchemix Corporation Carefree AZ Piyush Banafar Mitsui Babcock (US) LLC Atlanta GA Bob Bellemare SCIENTECH Inc. Albuquerque NM Berkeley Booth Reliant Energy Houston TX Christine Booth Alchemix Corporation Carefree AZ Mark Bring Minnkota Power Cooperative, Inc. Grand Forks ND Leon Chuck U. of Dayton Research Institute Dayton OH Patrick Curry CiDRA Corporation Wallingford CT Alan Darby Rocketdyne Canoga Park CA Dana Davis Charleston WV Bruce Dean Gilead Resources, Inc. Mount Gilead OH Richard Delaney Fluor Corp. Aliso Viejo CA Don Denton Duke Engineering & Services Charlotte NC Steven Derenne Wisconsin Electric Power Milwaukee WI Ray Drnevich

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

La Liste Des Tantras Du rNying Ma'i Rgyud 'bum Selon L'edition Et Ablie Par Kun Mkhyen 'Jigs Med Gling Pa  

E-Print Network (OSTI)

gro bai rgyud lnga) qui sontcommuns lAnuyoga24 et dont la liste concerne les nos. 229, 224, 169, 166 etun Ri bo brtsegs pai rgyud qui est non-identifi dans la liste de Jigs med glingpa),xvi. le Recueillement Concentr (Ting dzin rtse gcig, non... on pourrait leur en trouver une, ainsi quon la fait dans cette prsentation. Il faudrait galement appliquer ce schma celui des clas- sification complexes du Klong sde en Abme blanc (klong dkar po), noir (klong nag po), diapr (klong khra bo) et infini...

Achard, Jean-Luc

2002-01-01T23:59:59.000Z

442

Offering Songs, Festive Songs, Processional Songs mGar-gLu, Khro-Glu, Phebsnga: Tashi Tsering's Music: Ta po sam ten gyam pa, 'Dream about Tibet'  

E-Print Network (OSTI)

last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name mGar glu / Katey Blumenthal Tape No. / Track / Item No. 06_14_2010_Ta po sam ten gyam pa.WAV Length of track 00:03:53 Title of track Ta po... ) Date of recording 06/14/2010 Place of recording Lo Monthang, Mustang, Nepal Name(s), age, sex, place of birth of performer(s) Tashi Tsering, unknown age, Male, Lo Monthang, Mustang, Nepal. Language of recording Logay Performer(s)s first / native...

Blumenthal, Katey

443

Offering Songs, Festive Songs, Processional Songs mGar-gLu, Khro-Glu, Phebsnga: Tashi Tsering's Music: Da lulo chig dag pa nai ki nai glu yakshung  

E-Print Network (OSTI)

last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name khro glu / Katey Blumenthal Tape No. / Track / Item No. 06_07_2010_Da lulo chig dag pa nai ki nai glu yakshung.MP3 Length of track 00... (festive song) Medium (i.e. reel to reel, web-based file, DVD) Digital Recording Related tracks (include description/relationship if appropriate) Name of recorder (if different from collector) Date of recording 06/07/2010 Place of recording Lo...

Blumenthal, Katey

444

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

445

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

4 4 Regional maps Figure F7. Coal demand regions Figure F7. Coal Demand Regions CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT 16. PC 15. ZN 12. WS 11. C2 9. AM 5. GF 8. KT 4. S2 7. EN 6. OH 2. YP 1. NE 3. S1 10. C1 KY,TN 8. KT 16. PC AK,HI,WA,OR,CA 10. C1 CT,MA,ME,NH,RI,VT OH 1. NE 3. S1 4. S2 5. GF 6. OH 7. EN AL,MS MN,ND,SD IA,NE,MO,KS TX,LA,OK,AR MT,WY,ID CO,UT,NV AZ,NM 9. AM 11. C2 12. WS 13. MT 14. CU 15. ZN WV,MD,DC,DE 2. YP Region Content Region Code NY,PA,NJ VA,NC,SC GA,FL IN,IL,MI,WI Region Content Region Code 14. CU 13. MT

446

Physical characteristics of LWRs and SCLWRs loaded by ({sup 233}U-Th-{sup 238}U) oxide fuel with small additions of {sup 231}Pa  

SciTech Connect

The paper investigates the possibility and attractiveness of using (U-Th) fuel in light-water reactors (LWRs) and in light-water reactors with super-critical coolant parameters (SCLWRs). It is proposed to dilute {sup 233}U with {sup 238}U to enhance the proliferation resistance of this fissionable isotope. If is noteworthy that she idea was put forward for the first time by she well known American physicist and participant of the Manhattan Project Dr. T. Taylor. Various fuel compositions are analyzed and compared on fuel breeding, achievable values of fuel burn-up and cross-sections of parasitic neutron absorption. It is also demonstrated that small {sup 231}Pa additions (several percent) into the fuel allows: to increase fuel burn-up, to achieve more negative temperature reactivity coefficient of coolant and to enhance nonproliferation of the fuel. (authors)

Kulikov, E.G.; Shmelev, A.N.; Apse, V.A. [Moscow Engineering Physics Institute - State University, Kashirskoe shosse, 31, Moscow (Russian Federation); Kulikov, G.G. [International Science and Technology Center, Krasnoproletarskaya ul., 32-34, P.0. Box 20, Moscow (Russian Federation)

2007-07-01T23:59:59.000Z

447

U.S. DEPARTMENT OF ENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!R1.llNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENl!RGY ENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!R1.llNATION RECIPIENT: Magma Energy (U.S .) Corp. Page 1 of3 STATE: NV PROJECf TITLE: Recovery Act: A 3D·3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones over a Known Geothermal Resource: Soda lake , Churchill Co" NV Funding Opportunity Announcement Number PrO(u.-ement Instrument Number NEPA Control Number em Number 0000109 DE-EEOOO2832 GFO-OOO2832·003 0 Based on my review oftbe informatioD concerning the proposed action, as NEPA Compliance Officer (authori7.ed under DOE Order 451.IA), I have made the following determination: ex, EA, [IS APPENDIX AND NUMBER: Description: A9 Information gathenng (including , but nollimiled 10, literature surveys, inventories, audits), data analYSIS (including

448

ENVIRONMENTAL COALITION ON NUCLEAR POWER Phone/Fax: 814-237-3900 433 Orlando Avenue, State College, PA 16803 e-mail: johnsrud@csrlink  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COALITION ON NUCLEAR POWER Phone/Fax: 814-237-3900 433 COALITION ON NUCLEAR POWER Phone/Fax: 814-237-3900 433 Orlando Avenue, State College, PA 16803 e-mail: johnsrud@csrlink.net January 29, 1998 U.S. Department of Energy Office of General Counsel CC-52 RE: 62 FR 68272 1000 Independence Avenue SW Price-Anderson Act Washington, D.C. 20585 Dear Madam or Sir: We have just been notified of the December 31, 1997, Federal Register Notice of opportunity for public comment on the Price-Anderson Act (PAA). Please accept for the Department's record in this matter the following comments submitted by the Pennsylvania-based Environmental Coalition on Nuclear Power (ECNP), a not-for-profit public-interest citizens' organization that has been actively involved in a broad range of nuclear energy and radioactive waste issues since

449

U.S. DI!PARThlENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA Dl1TImfiNATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARThlENT OF ENERGY PARThlENT OF ENERGY EERE PROJECT MANAGEMENT CENTER Nl!PA Dl1TImfiNATION RECIPIENT: BeIi Geospace, Inc Page 1 of2 STATE: TX PROJECT TITLE: Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Funding OpportunUy Announcement Number Procurement Instrument Number NEPA Control Number em Number DE·FQA'()()()()S22 OE-EEOOO5515 GF0-0005515-001 G05515 Bued on my review oftbe information concerning the proposro action, as NEPA Compliance Officer (authorized under DOE Ordtr 4SI.IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description : A9 Information gathering, analysis, and dissemination Information gathering (induding, but not limited to, literature surveys, inventories, site visits. and audits), data analysis

450

EERE PROJECT MANAGEMENT CENTER N1!PA DEl'l!R1.llNAl'ION R[CIPIENT:State of Louisiana-louisiana Department of Natural Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CENTER CENTER N1!PA DEl'l!R1.llNAl'ION R[CIPIENT:State of Louisiana-louisiana Department of Natural Resources PROJECf TITLE: ARRA EECBG - State of Louisiana St. James Parish Page 1 of2 STATE: LA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOOO13 DE-EEOOOO735 GF0-0000735-004 0 Based on my review or the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA), I bave made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potentia! energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

451

Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2}){sub x}F (x=1 and 2): New one-dimensional Bi-coordination materials-Reversible hydration and topotactic decomposition to {alpha}-Bi{sub 2}O{sub 3}  

SciTech Connect

Two one-dimensional bismuth-coordination materials, Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2}){sub x}F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi{sub 2}O{sub 3}, 2,6-NC{sub 5}H{sub 3}(CO{sub 2}H){sub 2}, HF, and water at 180 Degree-Sign C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi{sup 3+} cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F single crystals at 800 Degree-Sign C led to {alpha}-Bi{sub 2}O{sub 3} that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F single crystals at 800 Degree-Sign C results in the {alpha}-Bi{sub 2}O{sub 3} rods that maintain the original morphology of the crystals. Highlights: Black-Right-Pointing-Pointer Synthesis of one-dimensional chain Bi-organic frameworks. Black-Right-Pointing-Pointer Reversible hydration reactions of Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F. Black-Right-Pointing-Pointer Topotactic decomposition maintaining the same morphology of the original crystals.

Jeon, Hye Rim [Department of Chemistry Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Dong Woo [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

2012-03-15T23:59:59.000Z

452

THEMANU FA CTURINGEXTENSION PA RTNERSHIP  

Science Conference Proceedings (OSTI)

... Synovate provides services to many companies, including General Motors, Fidelity Investments, American Express, ExxonMobil, Proctor & Gamble ...

2010-01-26T23:59:59.000Z

453

De l'utilite de l'hermeneutique des Tantra bouddhiques a propos d'un expose de l'appareit des Sept Ornements par un doxologue erudit dge lugs pa dBal mang dKon mchog rgyal mtshan (1764-1863)  

E-Print Network (OSTI)

) et son interprtation, v. P. Arnes (2002-a) : pp. 23-25 et n. 77-79. 31 Sa skya Pandita Kun dga rgyal mtshan (1182-1251), mKhas pa rnamsjug pai sgo zhes bya bai bstan bcos, (dornavant mKhas pa rnamsjug pai sgo), Mi rigs dpe skrun khang, 1981... don gsal ba sgron me, dans The Collected Works of Gu?-tha? dKon-mchog bstan- pai sgron-me, vol.1., 1971, p. 707 : sbas don ni bla mai man ngag gis ma bstan par rang dbang du dpyad pas rtogs mi nus pa zhig yin / ; pour le sens cach, v. ltude qui...

Arenes, Pierre

2003-01-01T23:59:59.000Z

454

Radiobiological Laboratory Beaufort, N.C.  

E-Print Network (OSTI)

concentrations were determined from specific radioactivity using calcium or the nucleotide solutions of known stirred gently with a magnetic stirrer for 30 min. Insoluble material was collected by centrifugation (20 of radioactive CaC12(600-1200 cpm/pmol). Fractions of 400 rl were collected at a flow rate of 8 ml/ h. Prior

455

www.eia.gov  

U.S. Energy Information Administration (EIA)

Buck NC Exelon Power Cromby Generating Station PA Eddystone Generating Station IVEX Packaging Paper LLC IVEX Packaging Lavalley Lumber LLC ME WDS State of Wisconsin

456

THE SCHMIDT-KENNICUTT LAW OF MATCHED-AGE STAR-FORMING REGIONS; Pa{alpha} OBSERVATIONS OF THE EARLY-PHASE INTERACTING GALAXY TAFFY I  

SciTech Connect

In order to test a recent hypothesis that the dispersion in the Schmidt-Kennicutt law arises from variations in the evolutionary stage of star-forming molecular clouds, we compared molecular gas and recent star formation in an early-phase merger galaxy pair, Taffy I (UGC 12915/UGC 12914, VV 254) which went through a direct collision 20 Myr ago and whose star-forming regions are expected to have similar ages. Narrowband Pa{alpha} image is obtained using the ANIR near-infrared camera on the mini-TAO 1 m telescope. The image enables us to derive accurate star formation rates within the galaxy directly. The total star formation rate, 22.2 M{sub Sun} yr{sup -1}, was found to be much higher than previous estimates. Ages of individual star-forming blobs estimated from equivalent widths indicate that most star-forming regions are {approx}7 Myr old, except for a giant H II region at the bridge which is much younger. Comparison between star formation rates and molecular gas masses for the regions with the same age exhibits a surprisingly tight correlation, a slope of unity, and star formation efficiencies comparable to those of starburst galaxies. These results suggest that Taffy I has just evolved into a starburst system after the collision, and the star-forming sites are at a similar stage in their evolution from natal molecular clouds except for the bridge region. The tight Schmidt-Kennicutt law supports the scenario that dispersion in the star formation law is in large part due to differences in evolutionary stage of star-forming regions.

Komugi, S. [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Tateuchi, K.; Motohara, K.; Kato, N.; Konishi, M.; Koshida, S.; Morokuma, T.; Takahashi, H.; Tanabe, T.; Yoshii, Y. [Institute of Astronomy, University of Tokyo, Osawa 2-21-1, Mitaka, Tokyo 181-0015 (Japan); Takagi, T. [Institute of Space and Astronautical Science, JAXA, 3-31-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Iono, D.; Kaneko, H.; Ueda, J. [Nobeyama Radio Observatory, National Astronomical Observatory, 462-2 Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Saitoh, T. R., E-mail: skomugi@alma.cl [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro 152-0033 (Japan)

2012-10-01T23:59:59.000Z

457

Tibetan Texts: dMigs-pa-brtag-pa; dMigs-pa-brtag-pahi-hgrel-pa; dMigs-pa-brtag-pahi-hgrel-bshad  

E-Print Network (OSTI)

~~ .~~.:..\\t ~.~",.Q.,~", " 01~' -" ""' ~""' -.,.rtI' .!"oo~""" ...", q+j::"~' ~~ :J"..q~r'ra,,::'t:4"',"?f:a~'fl:::J':.\\l=-;Q~~"~ ~='~I:';C\\ ~~"~;:'S~'~~rs ::J'iJ'~'~5~':J'~='~="~1 ::" 1 ~ ~=:~;:':;;J... ~~ '~=" ~~'.:fs:,'..CJj "l'~ ~r:.J~'~''C!~'~ ~i'r;.:I-l J.t='~C!l~~t:'~~=l1~:P::~~~;'=-irC\\i"'~~1 i~ :r. e;-~ 'f,e:' ~ ~ "'" ...",.., ~ ~ . @l~ ~t:'tJ::~ ",,'~ "'. S ~'?l'~~~' c.rti ~ ;1 C:,~ .~ 1- .t; 6t 't: ,r. ''-i'll':: 1:' f:' ':r~'=~"1...

Namgyal Institute of Tibetology

1980-01-01T23:59:59.000Z

458

discrim  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Technology Laboratory Nancy Vargas 626 Cochrans Mill Rd. 3610 Collins Ferry Rd. P.O. Box 10940 P.O. Box 880 Pittsburgh, PA 15236-0940 Morgantown, WV 26507-0880 Tel:...

459

Albany, OR * Anchorage, AK * Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Brian Dressel Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA...

460

untitled  

Gasoline and Diesel Fuel Update (EIA)

21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) Year Month U.S. Average PAD District I PAD District II U.S. Average Less AK North Slope Average NY PA WV Average...

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

untitled  

Annual Energy Outlook 2012 (EIA)

Domestic Crude Oil First Purchase Prices (Dollars per Barrel) Year Month U.S. Average PAD District I PAD District II U.S. Average Less AK North Slope Average NY PA WV Average IL IN...

462

untitled  

Gasoline and Diesel Fuel Update (EIA)

Table 18. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) Year Month U.S. Average PAD District I PAD District II U.S. Average Less AK North Slope Average NY PA WV...

463

Solid Sorbents for CO2 Capture from Precombustion Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Morgantown, WV 26507 304-285-4458 george.richards@netl.doe.gov PROjeCT PARTNeRS Sd-Chemie Inc. (Louisville, KY) Carnegie Melon University (Pittsburgh, PA) COST Total estimated...

464

U.S. Coalbed Methane Proved Reserves and Production  

Gasoline and Diesel Fuel Update (EIA)

Area: U.S. Alabama Colorado New Mexico Utah Wyoming Virginia Eastern States (IL, IN, OH, PA, WV) Western States (AR, KS, LA, MT, OK) Other States Period: Annual Download Series...

465

Microsoft Word - figure_23.doc  

Annual Energy Outlook 2012 (EIA)

11.00+ Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." IN OH TN WV VA KY MD PA NY VT NH MA...

466

Microsoft Word - figure_23.doc  

Gasoline and Diesel Fuel Update (EIA)

Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." IN OH TN WV VA KY MD PA NY VT NH MA...

467

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

TBD TBD FE TBD OIOSite Operations Division FY13-14 Matthew Peck NETL: Albany, OR; Pgh, PA; MGN, WV Cable Plant Study Corrections Address safety issues and code violations...

468

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

of Last of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2013 PAD District I 542,450 GNC Energy Corp Greensboro, NC 3,000 0 a Primary Energy Corp Richmond, VA 6,100 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc Westville, NJ 145,000 263,000 11/09 02/10 Western Refining Yorktown Inc Yorktown, VA 66,300 182,600 09/10 12/11 Sunoco Inc Marcus Hook, PA 178,000 278,000 12/11 12/11 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District II 460,315 Coastal Refining & Mktg El Dorado, KS 0 20,000 b Intercoastal Energy Svcs

469

Notice of Intent to Prepare an Environmental Impact Statement for the Gilberton Coal-to-Clean Fuels and Power Project, Gilberton, PA (DOE/EIS-0357) (April 10, 2003)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 08 Federal Register / Vol. 68, No. 69 / Thursday, April 10, 2003 / Notices DEPARTMENT OF ENERGY Notice of Intent To Prepare an Environmental Impact Statement for the Gilberton Coal-to-Clean Fuels and Power Project, Gilberton, PA AGENCY: Department of Energy. ACTION: Notice of intent. SUMMARY: The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA), the Council on Environmental Quality (CEQ) NEPA regulations (40 CFR parts 1500-1508), and the DOE NEPA regulations (10 CFR part 1021), to assess the potential environmental impacts of a proposed project by WMPI PTY, LLC, to design, construct, and operate a demonstration plant near Gilberton, Schuylkill County, Pennsylvania. The

470

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

471

Carol Giffin Lance Clampitt  

E-Print Network (OSTI)

; HI-Acting) Diane Eldridge (VA; PA-Acting) Craig Neidig (WV; NY, PA-Acting) Hawaii Alaska USGS Miles 100 Miles Dick Vraga (Acting), Federal Liaison (Reston, VA) Dave Vincent, US Forest Service (Salt Lake City, UT) Becci Anderson Sheri Schneider Pacific Basin Legend New Region & HI Associate: Derek

472

File:EIA-Appalach5-eastWV-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

Eastern West Virginia and Western Maryland By 2001 Liquids Reserve Class Eastern West Virginia and Western Maryland By 2001 Liquids Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.6 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:41, 20 December 2010 Thumbnail for version as of 17:41, 20 December 2010 6,600 × 5,100 (18.6 MB) MapBot (Talk | contribs) Automated bot upload

473

File:EIA-Appalach6-WV-VA-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

LIQ.pdf LIQ.pdf Jump to: navigation, search File File history File usage Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Liquids Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.77 MB, MIME type: application/pdf) Description Appalachian Basin, Southern West Virginia and Southwestern Virginia By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Virginia File history Click on a date/time to view the file as it appeared at that time.

474

File:EIA-Appalach5-eastWV-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Eastern West Virginia and Western Maryland By 2001 Gas Reserve Class Eastern West Virginia and Western Maryland By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 18.18 MB, MIME type: application/pdf) Description Appalachian Basin, Eastern West Virginia and Western Maryland By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States West Virginia, Maryland File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:41, 20 December 2010 Thumbnail for version as of 17:41, 20 December 2010 6,600 × 5,100 (18.18 MB) MapBot (Talk | contribs) Automated bot upload

475

Microsoft Word - 2014 WVSB - WV HS letter (generic for PDF).docx  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Secretary of Energy, I am pleased to announce the opening of the 2014 National Science Bowl, a tournament-style academic competition challenging students in the fields...

476

Gas Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Prices Gasoline Prices for U.S. Cities Click on the map to view gas prices for cities in your state. AK VT ME NH NH MA MA RI CT CT DC NJ DE DE NY WV VA NC SC FL GA AL MS TN KY IN...

477

Genesis Solar Energy Project PA/FEIS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GENESIS SOLAR ENERGY PROJECT GENESIS SOLAR ENERGY PROJECT Volume 1 of 3 August 2010 DOI Control #: FES 10-42 Publication Index #: BLM/CA/ES-2010-016+1793 NEPA Tracking # DOI-BLM-CA-060-0010-0015-EIS ,,..--......- _...._--- United States Department of the Interior Bureau of Land Management 1201 Bird Center Drive Palm Springs, CA 92262 Phone (760) 833·7100 IFax (760) 833-7199 http://www.blm.gov/calpalmsprings/ In reply refer to: CACA 048880 August 27, 20 I0 Dear Reader: Enclosed is the Proposed Resource Management Plan-Amendment/Final Environmental Impact Statement (PAIFEIS) for the California Desert Conservation Area (COCA) Plan and Genesis Solar Energy Project (GSEP). The Bureau of Land Management (BLM) prepared the PAiFEIS in consultation with cooperating agencies, taking into account public comments received during the National

478

Microsoft Word - PA Report 2013.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 1-December 30, 2012 October 1-December 30, 2012 February 12, 2013 Page 5 2.2 90-DAY LOOK AHEAD  Provide an annual assessment of the LM/LMS Environmental Management System in February. Three processes will be examined to evaluate implementation of the EMS elements.  Revise the Quality Assurance Manual, incorporating DOE Order 414.1D in March. A major change to the DOE directive is the requirements to choose a national standard as a basis of the QA Program. Stoller has chosen ISO 14001, Environmental Management System, because the standard focuses on environmental stewardship. 2.3 MAJOR CONCERNS The 2012 Health and Safety goal of more timely completion of corrective actions did not reach the 80 percent target for this quarter. A renewed focus on corrective action completion was

479

NETL: Science Bowl Information - South Western PA  

NLE Websites -- All DOE Office Websites (Extended Search)

CLICK ON IMAGE TO SEE LARGER VIEW SWPA Marshall Team 1 and SWPA Winner SWPA Wendover SWPA Carson Team 1 SWPA Suncrest Team 1 Lilas Soukup,SB Coordinator NETL, The Honorable Tim Murphy, U.S. House, Dr. Charlene Newkirk, Dr. Anthony Cugini, Director, NETL Middle School Congratulations to our four division winners: View full results here Division Einstein - Suncrest Team 1 - Christina Maloney, Coach - Aishwarya V, Captain - Bryce A - Luka B - David S - Roark S Division Carson - Wendover - Denise McGill, Coach - Adam G, Captain - Julia H - Kristina M - Josh M - Katrina P Division Tesla - Carson Team 1 - Cris Rufflol, Coach - Kevin D, Captain - Massil A - Pranav C - Rohan Y Division Westinghouse - Marshall Team 1 and SWPA Winner - Daniel Williams, Coach - Songela C, Captain - Marisa D

480

225 Shunk Hall University Park, PA 16802  

E-Print Network (OSTI)

of experience: Leadership of a contracted work crew consisting of 15 laborers Troubleshooting daily process

Demirel, Melik C.

Note: This page contains sample records for the topic "nc wv pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NETL: Science Bowl Information - South Western PA  

NLE Websites -- All DOE Office Websites (Extended Search)

CLICK ON IMAGE TO SEE LARGER VIEW National Champs - State College - enjoying the Eiffel Tower in Paris. National Champs - State College - enjoying the Eiffel Tower in Paris....

482

NETL: 2009 SW PA Science Bowl Information  

NLE Websites -- All DOE Office Websites (Extended Search)

second in the National Competition and traveled to France to visit Europe's largest nuclear power plant. 2009 Southwestern Pennsylvania Science Bowl Information Center DATE:...

483

NETL: Science Bowl Information - Southwestern PA  

NLE Websites -- All DOE Office Websites (Extended Search)

SWPA Science Bowl-High School Preliminary Results Congratulations to the four high school divisional winners who competed Saturday February 25, 2012 in 12 competitive matches....

484

NETL: Science Bowl Information - South Western PA  

NLE Websites -- All DOE Office Websites (Extended Search)

SWPA Science Bowl-Middle School Preliminary Results Congratulations to the four middle school divisional winners who competed Saturday March 3, 2012 in 5 competitive rounds. These...

485

Arco chimie focuses on PA at FOS  

Science Conference Proceedings (OSTI)

Arco Chimie France (Fos-sur-Mer), at a recent meeting at its southern France manufacturing site, emphasized that future strategy is strongly focused on its propylene oxide (PO) and derivatives activities. The F2.5 billion ($466 million)-Fe billion/year operation manufactures 200,000 m.t./year of PO, about 70% for captive use and the balance for the merchant market; 550,000 m.t./year of methyl tert butyl ether (MTBE); 97,000 m.t./year of polyols; and 70,000 m.t./year of propylene glycols. There has been talk of Arco modifying its Fos MTBE plant to make it flexible for ethyl tert-butyl ether (ETBE) output; the parent company already operates an MTBE/ETBE pilot unit at Corpus Christi, TX. But Arco Chimie notes there is insufficient bioethanol feedstock availability to convert all production to ETBE. The company would also require investment in new storage capacity for ethanol and ETBE. However, France's biofuels program is not yet clearly defined, and it is politically sensitive because it depends heavily on government subsidies offered to farmers. That, says Arco, makes it impossible to have an accurate idea of how much ethanol will be available.

Jackson, D.

1992-12-02T23:59:59.000Z

486

Blythe Solar Power Project PA/FEIS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BLYTHE SOLAR POWER PROJECT BLYTHE SOLAR POWER PROJECT Volume 1 of 2 August 2010 DOI Control #: FES 10-41 Publication Index #: BLM/CA/ES-2010-015+1793 NEPA Tracking # DOI-BLM-CA-060-0010-0013-EIS United States Department of the Interior Bureau of Land Management 120 1 Bird Center Drive Palm Springs, CA 92262 Phone (760) 833-7100 IFax (760) 833-7199 http://www.blm.gov/ca/palmsprings/ In reply refer to: CACA 048811 August 20, 20 I0 Dear Reader: Enclosed is the Proposed Resource Management Plan-AmendmentlFinal Environmental Impact Statement (PAlFEIS) for the California Desert Conservation Area (CDCA) Plan and Blythe Solar Power Project (BSPP). The Bureau of Land Management (BLM) prepared the PAIFEIS in consultation with cooperating agencies, taking into account public comments received during the National Environmental

487

Pittsburgh, PA 15217 Members, County Council  

E-Print Network (OSTI)

Members, My name is Roger Dannenberg. I've lived in Pittsburgh since 1979, and I have been a member never be detected by testing. It might be detected by a complete inspection of the software programs, has recommended that electronic voting systems enable voters to inspect a paper record to verify

Eckhardt, Dave

488

2011 International Pittsburgh Coal Conference Pittsburgh, PA  

E-Print Network (OSTI)

injection line is equipped with a flow meter and pressure transducer as well as a pneumatic control valve to below the water table and hence are not directly connected with the vadose zone, while well W-3 has of the latter's well screen and shutting off its connectivity with soil vadose zone gas. Formal sampling

Mohaghegh, Shahab

489

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book (EERE)

6 6 2010 Regional New Construction and Renovations Expenditures for Public K-12 Schools ($Million) Region New Schools Additions Renovation Total Region 1 (CT, MA, ME, NH, RI, VT) Region 2 (NJ, NY, PA) Region 3 (DE, MD, VA, WV) Region 4 (KY, NC, SC, TN) Region 5 (AL, FL, GA, MS) Region 6 (IN, MI, OH) Region 7 (IL, MN, WI) Region 8 (IA, KS, MO, NE) Region 9 (AR, LA, OK, TX) Region 10 (CO, MT, ND, NM, SD, UT, WY) Region 11 (AZ, CA, HI, NV) Region 12 (AK, ID, OR, WA) Total Source(s): School Planning & Management, 16th Annual School Construction Report, Feb. 2011 p. CR3 8,669.5 3,074.1 2,796.8 14,540.4 1,605.4 407.3 275.2 2,287.9 258.2 181.8 158.1 598.1 1,653.9 479.6 387.8 2,521.2 548.2 130.9 93.3 772.4 309.3 206.1 135.3 650.7 217.6 231.4 187.8 636.8 1,338.0 327.6 175.9 1,841.4 359.6 286.3 278.9 924.8

490

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

LNG Imports LNG Imports Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming

491

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

WA WA MT ID OR WY ND SD CA NV UT CO NE KS AZ NM OK TX MN WI MI IA IL IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Japan Mexico Mexico Algeria Canada Canada Canada Canada Canada Canada Canada Algeria Mexico Trinidad Canada Canada Nigeria Oman Qatar Trinidad Gulf of Mexico Gulf of Mexico Gulf of Mexico Canada Trinidad Trinidad Gulf of Mexico Malaysia 13,623 Figure 8. Interstate Movements of Natural Gas in the United States, 2003 (Million Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Energy Information Administration / Natural Gas Annual 2003 Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 366,224 655,731 666,614 633,960 144,284 43,869 536,776 63,133 36,848

492

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

493

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2008 (Million Cubic Feet) Norway Trinidad/ Tobago Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 45,772 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates.

494

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

,833 ,833 35 Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2009 (Million Cubic Feet) Norway Trinidad/ Tobago Trinidad/ Tobago Egypt Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 111,144 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates

495

AEOSup ltr to Dear Customer  

Gasoline and Diesel Fuel Update (EIA)

WA WA OR CA ID NV UT AZ NM CO WY MT ND SD NE KS OK TX MN IA MO AR LA WI IL KY IN OH WV TN MS AL GA SC NC VA PA NY VT ME NH MA RI CT NJ DE MD D.C. FL MI Electricity Supply Regions 1 ECAR 2 ERCOT 3 MAAC 4 MAIN 5 MAPP 6 NY 7 NE 8 FL 9 STV 10 SPP 11 NWP 12 RA 13 CNV 13 11 12 2 10 5 9 8 1 6 7 3 AK 15 14 H I 14 AK 15 H I Figure 2. Electricity Market Module (EMM) Regions 1. ECAR = East Central Area Reliability Coordination Agreement 2. ERCOT = Electric Reliability Council of Texas 3. MACC = Mid-Atlantic Area Council 4. MAIN = Mid-America Interconnected Network 5. MAPP = Mid-Continent Area Power Pool 6. NY = Northeast Power Coordinating Council/ New York 7. NE = Northeast Power Coordinating Council/ New England 8. FL = Southeastern Electric Reliability Council/ Florida 9. STV = Southeastern Electric Reliability Council /excluding Florida 10. SPP

496

regionalmaps  

Gasoline and Diesel Fuel Update (EIA)

Specific LNG Terminals Specific LNG Terminals Generic LNG Terminals Pacifi c (9) Moun tain (8) CA (12) AZ/N M (11) W. North Centr al (4) W. South Centr al (7) E. South Centr al (6) E. North Centr al (3) S. Atlan tic (5) FL (10) Mid. Atlan tic (2) New Engl. (1) W. Cana da E. Cana da MacK enzie Alask a Cana da Offsh ore and LNG Mexic o Baha mas Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Generic LNG Terminals Figure 6. Coal Supply Regions Source: Energy Information Administration. Office of Integrated Analysis and Forecasting WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana

497

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 (Million Cubic Feet) Supplemental Data From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 42,411 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports. Energy Information Administration / Natural Gas Annual 2006 253,214 690,780 634,185 658,523 134,764 63,063 526,726 121,049 34,531 492,655 101,101 23,154 40,113 1,496,283 68,601