Sample records for nc sc ga

  1. NC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - Fermilab atNovelNC π 0 Production

  2. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    SciTech Connect (OSTI)

    Özduran, Mustafa [Ahi Evran Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü, K?r?ehir (Turkey); Turgut, Kemal [Yüksek Lisans Ö?rencisi, K?r?ehir (Turkey); Arikan, Nihat [Ahi Evran Üniversitesi E?itim Fakültesi ?lkö?retim Bölümü, K?r?ehir (Turkey); ?yigör, Ahmet; Candan, Abdullah [Ahi Evran Üniversitesi Merkezi Ara?t?rma Laboratuvar?, K?r?ehir (Turkey)

    2014-10-06T23:59:59.000Z

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso program package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.

  3. Mixing Rocksalt and Wurtzite Structure Binary Nitrides to Form Novel Ternary Alloys: ScGaN and MnGaN

    E-Print Network [OSTI]

    Mixing Rocksalt and Wurtzite Structure Binary Nitrides to Form Novel Ternary Alloys: ScGaN and Mn wurtzite structure and tetrahedral bonding, both MnN and ScN are face-centered tetragonal (fct [11]. Though challenging, growth of wurtzite MnGaN alloy by molecular beam epitaxy using radio

  4. Issues associated with the metalorganic chemical vapor deposition of ScGaN and YGaN alloys.

    SciTech Connect (OSTI)

    Koleske, Daniel David; Knapp, James Arthur; Lee, Stephen Roger; Crawford, Mary Hagerott; Creighton, James Randall; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01T23:59:59.000Z

    The most energy efficient solid state white light source will likely be a combination of individually efficient red, green, and blue LED. For any multi-color approach to be successful the efficiency of deep green LEDs must be significantly improved. While traditional approaches to improve InGaN materials have yielded incremental success, we proposed a novel approach using group IIIA and IIIB nitride semiconductors to produce efficient green and high wavelength LEDs. To obtain longer wavelength LEDs in the nitrides, we attempted to combine scandium (Sc) and yttrium (Y) with gallium (Ga) to produce ScGaN and YGaN for the quantum well (QW) active regions. Based on linear extrapolation of the proposed bandgaps of ScN (2.15 eV), YN (0.8 eV) and GaN (3.4 eV), we expected that LEDs could be fabricated from the UV (410 nm) to the IR (1600 nm), and therefore cover all visible wavelengths. The growth of these novel alloys potentially provided several advantages over the more traditional InGaN QW regions including: higher growth temperatures more compatible with GaN growth, closer lattice matching to GaN, and reduced phase separation than is commonly observed in InGaN growth. One drawback to using ScGaN and YGaN films as the active regions in LEDs is that little research has been conducted on their growth, specifically, are there metalorganic precursors that are suitable for growth, are the bandgaps direct or indirect, can the materials be grown directly on GaN with a minimal defect formation, as well as other issues related to growth. The major impediment to the growth of ScGaN and YGaN alloys was the low volatility of metalorganic precursors. Despite this impediment some progress was made in incorporation of Sc and Y into GaN which is detailed in this report. Primarily, we were able to incorporate up to 5 x 10{sup 18} cm{sup -3} Y atoms into a GaN film, which are far below the alloy concentrations needed to evaluate the YGaN optical properties. After a no-cost extension was granted on this program, an additional more 'liquid-like' Sc precursor was evaluated and the nitridation of Sc metals on GaN were investigated. Using the Sc precursor, dopant level quantities of Sc were incorporated into GaN, thereby concluding the growth of ScGaN and YGaN films. Our remaining time during the no-cost extension was focused on pulsed laser deposition of Sc metal films on GaN, followed by nitridation in the MOCVD reactor to form ScN. Finally, GaN films were deposited on the ScN thin films in order to study possible GaN dislocation reduction.

  5. SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on-- Sample4,7,SC

  6. Composition-dependent structural properties in ScGaN alloy films: A combined experimental and theoretical study

    E-Print Network [OSTI]

    and theoretical results are presented regarding the incorporation of scandium into wurtzite GaN. Variation and wurtzite phases.5,9 In prin- ciple, the alloy range with Sc concentration from 0% to 100% should allow band gap control over the whole range 2.1­3.4 eV. Takeuchi predicted a metastable wurtzite phase denoted w

  7. Lattice Parameter Variation in ScGaN Alloy Thin Films on MgO(001) Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    Lattice Parameter Variation in ScGaN Alloy Thin Films on MgO(001) Grown by RF Plasma Molecular Beam ABSTRACT We present the structural and surface characterization of the alloy formation of scandium gallium GaN (w-GaN) spurred much interest in related III-nitrides such as aluminium nitride (Al

  8. EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council of Governments (NC)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Valence and conduction band alignment at ScN interfaces with 3C-SiC (111) and 2H-GaN (0001)

    SciTech Connect (OSTI)

    King, Sean W., E-mail: sean.king@intel.com [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Physics, Arizona State University, Tempe, Arizona 85281 (United States); Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2014-08-25T23:59:59.000Z

    In order to understand and predict the behavior of future scandium nitride (ScN) semiconductor heterostructure devices, we have utilized in situ x-ray and ultra-violet photoelectron spectroscopy to determine the valence band offset (VBO) present at ScN/3C-SiC (111) and 2H-GaN (0001)/ScN (111) interfaces formed by ammonia gas source molecular beam epitaxy. The ScN/3C-SiC (111) VBO was dependent on the ScN growth temperature and resistivity. VBOs of 0.4?±?0.1 and 0.1?±?0.1?eV were, respectively, determined for ScN grown at 925?°C (low resistivity) and 800?°C (high resistivity). Using the band-gaps of 1.6?±?0.2 and 1.4?±?0.2?eV previously determined by reflection electron energy loss spectroscopy for the 925 and 800?°C ScN films, the respective conduction band offsets (CBO) for these interfaces were 0.4?±?0.2 and 0.9?±?0.2?eV. For a GaN (0001) interface with 925?°C ScN (111), the VBO and CBO were similarly determined to be 0.9?±?0.1 and 0.9?±?0.2?eV, respectively.

  10. ScGaN Alloy Growth by Molecular Beam Epitaxy: Evidence for a Metastable Layered Hexagonal Phase

    E-Print Network [OSTI]

    range x = 0-100%. Optical and structural analysis show separate regimes of growth, namely I) wurtzite predicted a metastable wurtzite phase (w-ScN) for ScN.8 However, recently Farrer and Bellaiche have found coordination, denoted h-ScN, which can be arrived at by flattening the bilayer of the wurtzite structure

  11. Electronic structure and bonding in garnet crystals Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12}, Gd{sub 3}Sc{sub 2}Al{sub 3}O{sub 12}, and Gd{sub 3}Ga{sub 3}O{sub 12} compared to Y{sub 3}Al{sub 3}O{sub 12}

    SciTech Connect (OSTI)

    Xu, Yong-Nian [Department of Physics, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States)] [Department of Physics, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States); Ching, W. Y. [Department of Physics, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States)] [Department of Physics, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States); Brickeen, B. K. [Allied Signal FM and T, Kansas City, Missouri 64141 (United States)] [Allied Signal FM and T, Kansas City, Missouri 64141 (United States)

    2000-01-15T23:59:59.000Z

    The electronic structure and bonding of Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (GSGG), Gd{sub 3}Sc{sub 2}Al{sub 3}O{sub 12} (GSAG), and Gd{sub 3}Ga{sub 5}O{sub 12} (GGG) crystals with a garnet structure are studied by means of first-principles local-density calculations. The results are compared with a similar calculation on yttrium aluminum garnet [Y{sub 3}Al{sub 5}O{sub 12} (YAG)]. The calculated equilibrium volumes of the three crystals are close to the measured volumes with a slight overestimation for GGG. GGG also has a smaller bulk modulus than the other three crystals. The calculated density of states and their atomic and orbital decompositions are presented and contrasted. All four crystals show very similar band structures and interatomic bonding. However, it is found that in GSGG and GSAG crystals, the Sc atom at the octahedral site shows a higher covalent character and an increased bond order in comparison to Ga or Al at the same site. This result may provide some insight into the significant difference in the radiation hardness of Cr{sup 3+}:Nd{sup 3+}:GSGG as compared to Nd{sup 3+}:YAG. (c) 2000 The American Physical Society.

  12. CT NC0

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d! CT NC0 - i , ,.

  13. Table 1 -ESTIMATED REDUCTION IN 1985 COTTON YIELDS RESULTING FROM INSECTDAMAGE TOTAL YIELD 13,622 bales INSECTS Loss in AL AZ AR CA FL GA LA MS MO NM NC OK SC TN TX VA No.

    E-Print Network [OSTI]

    Ray, David

    Average cost for all states nTotal yield for all states o Total acres for all states *Does not include BWE cost

  14. GA-AL-SC | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFunding Opportunities1 - TheD, Title

  15. NC CSC Open Science Conference

    Broader source: Energy.gov [DOE]

    This three-day conference will bring the regional climate research community (North Central region universities, DOI agencies, and other research institutions) and stakeholders, including local, federal, and tribal resource managers and leaders, to foster productive engagement, interactions, and involvement with the North Central Climate Science Center (NC CSC). The conference will strive to identify emerging research issues and topics.

  16. TThe {\\sc Majorana} Project

    E-Print Network [OSTI]

    The MAJORANA collaboration

    2009-10-23T23:59:59.000Z

    The {\\sc Majorana} Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  17. M.Sc. Finance M.Sc. Investment and Finance

    E-Print Network [OSTI]

    Mottram, Nigel

    M.Sc. Finance M.Sc. Investment and Finance M.Sc. International Banking and Finance and M.Sc. International Accounting and Finance 2014-15 Introductory Meeting Information Welcome to the full-time postgraduate taught programmes for the Department of Accounting and Finance at the University of Strathclyde

  18. Exact-exchange-based quasiparticle energy calculations for the band gap, effective masses, and deformation potentials of ScN

    E-Print Network [OSTI]

    of less than 2% to cubic gallium nitride GaN . This makes ScN structurally compatible with the group devices. Alloying ScN with GaN Refs. 9­12 might provide a viable alternative to InGaN alloys for use tunneling spectroscopy and optical-absorption mea- surements, Al-Brithen et al.18 were able to reduce

  19. Automatic 5-axis NC toolpath generation

    E-Print Network [OSTI]

    Balasubramaniam, Mahadevan, 1976-

    2001-01-01T23:59:59.000Z

    Despite over a decade of research, automatic toolpath generation has remained an elusive goal for 5-axis NC machining. This thesis describes the theoretical and practical issues associated with generating collision free ...

  20. NC GreenPower Production Incentive

    Broader source: Energy.gov [DOE]

    '''''Note: NC GreenPower issued an RFP in December 2013, seeking up to 20,000 MWh of renewable energy credits (RECs) through a purchase with either a one or two year term. Green power is defined...

  1. Effect of strain-compensation in stacked 1.3 m InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition

    E-Print Network [OSTI]

    Jalali. Bahram

    of compressive strain by inserting tensile layers has been demonstrated using InGaP and InGaAsP in multiple efficiency in In Ga As-based QDs. In this letter, we discuss the effects of InGaP SC layers on five high resolution transmission electron microscopy (TEM) images. The inter- face regions, GaAs/InGaP

  2. Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology

    SciTech Connect (OSTI)

    Lefebvre, P.; Fernandez-Garrido, S.; Grandal, J.; Ristic, J.; Sanchez-Garcia, M.-A.; Calleja, E. [Instituto de Sistemas Optoelectronicos y Microtecnologia, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2011-02-21T23:59:59.000Z

    Low-temperature photoluminescence is studied in detail in GaN nanocolumns (NCs) grown by plasma-assisted molecular beam epitaxy under various conditions (substrate temperature and impinging Ga/N flux ratio). The relative intensities of the different emission lines, in particular those related to structural defects, appear to be correlated with the growth conditions, and clearly linked to the NC sample morphology. We demonstrate, in particular, that all lines comprised between 3.10 and 3.42 eV rapidly lose intensity when the growth conditions are such that the NC coalescence is reduced. The well-known line around 3.45 eV, characteristic of GaN NC samples, shows, however, a behavior that is exactly the opposite of the other lines, namely, for growth conditions leading to reduced NC coalescence, this line tends to become more prominent, thus proving to be intrinsic to individual GaN NCs.

  3. NC State Engineering A Wolfpack World

    E-Print Network [OSTI]

    Ning, Peng

    and sustainability collaboration with The Energy and Resources Institute in India. Pachauri, an NC State engineering programs for engineering students. Australia Mexico Botswana South Africa Brazil Spain China Sweden Ghana, Dr. Ayman Hawari, is an advisor for the International Atomic Energy Agency and serves on the Jordan

  4. Synthesis of the Sterically Related Nickel Gallanediyl Complexes [Ni(CO)3(GaAr?)] (Ar? = C6H3-2,6-(C6H3-2,6-iPr2)2) and [Ni(CO)3(GaL)] (L = HC[C(CH3)N(C6H3-2,6-iPr2)]2): Thermal Decomposition of [Ni(CO)3(GaAr?)] to give the Cluster [Ni4(CO)7(GaAr?)3

    E-Print Network [OSTI]

    Serrano, Oracio; Hoppe, Elke; Power, Philip P.

    2010-01-01T23:59:59.000Z

    23.9 (CH(CH 3 ) 2 ). IR m CO (cm -1 ): 2024 (s), 1972 (vs).Synthesis of Ni 4 (CO) 7 (GaAr 0 ) 3 (2) A deep greena toluene (5 mL) solution of Ni(CO) 4 (0.038 g, 27 lL, 0.205

  5. 2012 NC Mobile CARE Awards April 20, 2012

    E-Print Network [OSTI]

    provided technology assessment and commercialization services to notable clients such as NASA. Our Judges2012 NC Mobile CARE Awards April 20, 2012 Background: The NC Mobile Clean Air Renewable Energy

  6. 2010 NC Mobile CARE Awards May 26, 2010

    E-Print Network [OSTI]

    transportation related emissions. Organized by the NC Solar Center/NC State University and sponsored by the NC students have made biofuels and built vehicles-solar electric bikes, recumbent, trikes, gocarts outdoor landscape environments for a variety of commercial and residential customers. Part

  7. ***NC: DISCIPLINA DO NOVO CURRCULO ***VC: DISCIPLINA DO VELHO CURRCULO

    E-Print Network [OSTI]

    Paraná, Universidade Federal do

    TOPICOS ESPECIAIS EM CIENCIA POLITICA I ***NC HC172 TOPICOS ESPECIAIS EM CIENCIA POLITICA I ***VC 8 HC174 TOPICOS ESPECIAIS EM CIENCIA POLITICA III ***NC HC174 TOPICOS ESPECIAIS EM CIENCIA POLITICA III ***VC 9 HC176 TOPICOS ESPECIAIS EM CIENCIA POLITICA V ***NC HC176 TOPICOS ESPECIAIS EM CIENCIA POLITICA V ***VC

  8. NC STATE UNIVERSITY College of Engineering North Carolina Solar Center

    E-Print Network [OSTI]

    NC STATE UNIVERSITY College of Engineering North Carolina Solar Center Room 210, McKimmon Center been awarded by the North Carolina Solar Center at NC State University through the Clean Fuel Advanced by the N.C. Department of Transportation, State Energy Office, and Division of Air Quality

  9. NC Mobile CARE is an initiative of the NC Solar Center /NC State University and is sponsored by the NC Department of Transportation. 2013 Mobile CARE Award Nomination Guidelines

    E-Print Network [OSTI]

    : August 12th, 2013- September 13th, 2013 Award Announcements: October 14th, 2013 at North Carolina Solar technologies as these relate to air quality and energy diversity through one or more of the following areasNC Mobile CARE is an initiative of the NC Solar Center /NC State University and is sponsored

  10. New Ellenton, SC SRS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew AdvancesNew Crystal40Aiken

  11. Highlights From SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlights LANS invests

  12. SC e-journals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs Running jobsS2. ReceiptsSCSC LogosSC

  13. Kh trng khn cp nc ung Trong nhng thi k ri ren, cc s y t a phng c th khuyn co ngi dn dng nc thn

    E-Print Network [OSTI]

    nc cho gia ình bn, bn vn có th tìm c s lng gii hn dùng bng cách ly nc ra t bình nc nóng, hay là tan nc ni ó. Thuc kh trùng ít hiu nghim nu nc c. Cn phi lc nc c qua nhng khn sch hoc yên cho lng xung, và không b r sét. Có hai phng pháp kh trùng thông dng và hiu qu nu lng nc ít. Phng pháp th nht là Ðun

  14. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes

    SciTech Connect (OSTI)

    Zhou, Kun; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Liu, Jianping, E-mail: mikeda2013@sinano.ac.cn, E-mail: jpliu2010@sinano.ac.cn; Zhang, Shuming; Li, Deyao; Zhang, Liqun; Yang, Hui [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Cai, Jin; Wang, Hui; Wang, H. B. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou (China); Suzhou Nanojoin Photonics Co., Ltd., Suzhou (China)

    2014-10-27T23:59:59.000Z

    The efficiency droop of InGaN/GaN(InGaN) multiple quantum well (MQW) light emitting diodes (LEDs) with thin quantum barriers (QB) is studied. With thin GaN QB (3?nm–6?nm thickness), the efficiency droop is not improved, which indicates that hole transport cannot be significantly enhanced by the thin GaN QBs. On the contrary, the efficiency droop was remarkably reduced by using a InGaN staircase QB (InGaN SC-QB) MQWs structure where InGaN SC-QBs lower the transport energy barrier of holes. The efficiency droop ratio was as low as 3.3% up to 200?A/cm{sup 2} for the InGaN SC-QB LED. By using monitoring QW with longer wavelength we observe a much uniform carrier distribution in the InGaN SC-QB LEDs, which reveals the mechanism of improvement in the efficiency droop.

  15. areva nc cadarache: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index 261 Link between the Potentially Hazardous Asteroid (86039) 1999 NC43 and the Chelyabinsk meteoroid tenuous CERN Preprints Summary: We explored the statistical and...

  16. areva nc bu: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DC 392 Link between the Potentially Hazardous Asteroid (86039) 1999 NC43 and the Chelyabinsk meteoroid tenuous CERN Preprints Summary: We explored the statistical and...

  17. SC Correspondence Control Center (SC CCC) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SC CCC)

  18. North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831| www.www.cleantransportation.org | 9/6/12 In 2006 and 2009 the NC Solar Center /NC State Universi-

    E-Print Network [OSTI]

    North Carolina roads over the 6 year project period. The CFAT project will continue at the NC SolarNorth Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831| www.www.cleantransportation.org | 9/6/12 In 2006 and 2009 the NC Solar Center /NC State Universi- ty was awarded a total of $2.6M

  19. C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture ---200620062006 Systems Architecture

    E-Print Network [OSTI]

    Cheverst, Keith

    1 C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture --- 200620062006 C.Sc. 131: Systems Architecture Dr Keith Cheverst kc@comp.lancs.ac.uk C42, infolab C.Sc. 131: Systems ArchitectureC.Sc. 131: Systems ArchitectureC.Sc. 131: Systems Architecture --- 200620062006 CSc101

  20. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GA, AL, SC); Centralina Council of Governments (NC) EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals and Energy...

  1. Service Science, Management and Engineering Curricula and Research at NC State University

    E-Print Network [OSTI]

    Perros, Harry

    _allen@ncsu.edu (919) 515-6941 Harry Perros Professor, Department of Computer Science, NC State University Raleigh, NC1 Service Science, Management and Engineering Curricula and Research at NC State University Steven and Computer Engineering, NC State University Raleigh, NC 27695-7911 candice@ncsu.edu (919) 515-7357 Michael

  2. NC STATE UNIVERSITY College of Engineering North Carolina Solar Center

    E-Print Network [OSTI]

    NC STATE UNIVERSITY College of Engineering North Carolina Solar Center Room 210, McKimmon Center been awarded by the North Carolina Solar Center at NC State University to reduce mobile emissions to reduce transportation related emissions in North Carolina counties that do not meet national ambient air

  3. 2013 NC Mobile CARE Awards October 14, 2013

    E-Print Network [OSTI]

    /or advanced transportation technology use. 2013 Mobile CARE Awardees Our Judges Seth Effron Communication2013 NC Mobile CARE Awards October 14, 2013 Background: The NC Mobile Clean Air Renewable Energy Department of Transportation, the Mobile CARE initiative brings together three state agencies

  4. 2011 Computing@NC State 22 2011 Computer Recommendations

    E-Print Network [OSTI]

    Green IT 17 Higher Education Opportunity Act 11 Hook Up with ResNet 25 iTunes U 25 Mobile Web 13 Moodle 6 MyPack for Parents 5 MyPack Portal 15 NC State Bookstores 11 NC State Help Desk 14 NCSU Libraries

  5. SC Logos | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SCSC Logos

  6. SC Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SCSC

  7. Evan Marshall Trevathan Admissible SC-Graphs

    E-Print Network [OSTI]

    Donnelly, Rob

    Evan Marshall Trevathan Admissible SC-Graphs Page 1 Admissible SC-Graphs Define: ( , )G ( 2)nB n ( 4)nD n ( 6,7,8)nE n 4F 2G 2H 3H #12;Evan Marshall Trevathan Admissible SC-Graphs Page 2 the form of a #12;Evan Marshall Trevathan Admissible SC-Graphs Page 3 "loop", like ,with no other

  8. North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831| www.www.cleantransportation.org | 11/7/12 In 2006 and 2009 the NC Solar Center /NC State Universi-

    E-Print Network [OSTI]

    North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831| www.www.cleantransportation.org | 11/7/12 In 2006 and 2009 the NC Solar Center /NC State Universi- ty was awarded a total of $2.6M Division of Air Quality and State Energy Of- fice also contributed $200,000 each to support the Clean Fuel

  9. DOE/SC-ARM-0606

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC Lehman0606

  10. DOE/SC-ARM-0903

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC

  11. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports Usage Reports

  12. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports Usage

  13. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports UsageParallel

  14. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReports

  15. NERSC Training at SC11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC Archive

  16. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC Archive

  17. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC ArchivePGAS

  18. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPC

  19. NERSC Training at SC12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role inReportsHPCProxy

  20. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current- spreading experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN

  1. B.Sc)1997,(,M.Sc)2001,(,Ph.D)2005( .2007

    E-Print Network [OSTI]

    Rimon, Elon

    1 " " " ' * '". B.Sc)1997,(,M.Sc)2001,(,Ph.D)2005( . .2007 )ETH. Fulbright)2003(, )2001( . High-Tech. : )machine learning(, , , , ,, . " B.Sc)1997(-M Competition. : , , , - . #12;4 " * '". )2003( Ph.D .Danish Technical University )1997(- M

  2. Personal Devices in the Workplace NC Digital Government Summit

    E-Print Network [OSTI]

    Personal Devices in the Workplace NC Digital Government Summit August 31, 2011 Marc Hoit, PhD Vice planning being undertaken to determine path forward. #12;Personal IT Devices on a University Campus Marc Students Owned Laptops Than Other Devices in 2010 http://chronicle.com/section/Almanac/536 95% of students

  3. Decays of excited baryons in the large Nc expansion of QCD

    SciTech Connect (OSTI)

    Jose Goity; Norberto Scoccola

    2006-05-06T23:59:59.000Z

    We present the analysis of the decay widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.

  4. SC11 Education Program Applications due July 31

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC11 Education Program Applications due July 31 SC11 Education Program Applications due July 31 June 9, 2011 by Francesca Verdier (0 Comments) Applications for the Education...

  5. Neutron fluence effects on SC coils and comments

    E-Print Network [OSTI]

    McDonald, Kirk

    SH#3 SH#4 SC#1-5 SC#6-10 SC#11-15 SC#1 7.9W 2.0W 1.0W 0.7W 0.9W 1.4W COMET NF/MC Same size SC wires to increase the SC wire temperature (may be up to the room temperature) to recover their property by anneal on SC#6-10 : 3.5 days HTS instead of resistive magnets looks no hope. #12;Anneal Effect: SC -Tc

  6. 222 Old Cherry Road Clemson, SC 29631

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    at the farm or purchased from commercial vendors. The birds housed at the farm are used for research, teaching Clemson,SC29634-0385 #12;Solar Brooder House The incubation/hatching facility is located in the Solar

  7. INTRA Programme B.Sc. Biotechnology

    E-Print Network [OSTI]

    Humphrys, Mark

    Analysis n Environmental Monitoring & Analysis n Waste Treatment Work Areas To date, Biotechnology Engineering Environmental Biotechnology Food Biotechnology RESEARCH PROJECT Literature Survey LaboratoryINTRA Programme B.Sc. Biotechnology Biotechnology is defined as the controlled and deliberate

  8. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    SciTech Connect (OSTI)

    Shvarts, Maxim Z., E-mail: shvarts@scell.ioffe.ru; Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021 (Russian Federation); Gudovskikh, Alexander S. [Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26T23:59:59.000Z

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to ?190 °C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from ?20°C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  9. NCSU Box 7401 Raleigh, NC 27695 (919) 515-3480 Toll Free 1-800-33-NC SUN SOLAR CENTER INFORMATION

    E-Print Network [OSTI]

    Solar Home #12;NorthCarolinaSolarCenter EnergyDivision,NCDepartmentofCommerce Box 7401, NCSU, Raleigh. At North Carolinas latitudes, this means that the area extending from 45o east of south to 45o westNCSU Box 7401 Raleigh, NC 27695 (919) 515-3480 Toll Free 1-800-33-NC SUN SOLAR CENTER

  10. SOLAR CENTER INFORMATION NCSU Box 7401 Raleigh, NC 27695 (919) 515-3480 Toll Free 1-800-33-NC SUN

    E-Print Network [OSTI]

    SOLAR CENTER INFORMATION NCSU Box 7401 Raleigh, NC 27695 (919) 515-3480 Toll Free 1-800-33-NC SUN Summer Shading and Exterior Insulation for North Carolina Windows The same windows that provide window energy efficiency. A well-insulated window will never be as efficient as a well-insulated wall

  11. Nanostructured GaN Nucleation Layer for Light-Emitting Diodes

    SciTech Connect (OSTI)

    Narayan, Jagdish [North Carolina State University; Pant, Punam [North Carolina State University; Wei, Wei [North Carolina State University; Narayan, Roger [University of North Carolina, Chapel Hill; Budai, John D [ORNL

    2007-01-01T23:59:59.000Z

    This paper addresses the formation of nanostructured gallium nitride nucleation (NL) or initial layer (IL), which is necessary to obtain a smooth surface morphology and reduce defects in h-GaN layers for light-emitting diodes and lasers. From detailed X-ray and HR-TEM studies, researchers determined that this layer consists of nanostructured grains with average grain size of 25 nm, which are separated by small-angle grain boundaries (with misorientation 1 ), known as subgrain boundaries. Thus NL is considered to be single-crystal layer with mosaicity of about 1 . These nc grains are mostly faulted cubic GaN (c-GaN) and a small fraction of unfaulted c-GaN. This unfaulted Zinc-blende c-GaN, which is considered a nonequilibrium phase, often appears as embedded or occluded within the faulted c-GaN. The NL layer contained in-plane tensile strain, presumably arising from defects due to island coalescence during Volmer-Weber growth. The 10L X-ray scans showed c-GaN fraction to be over 63% and the rest h-GaN. The NL layer grows epitaxially with the (0001) sapphire substrate by domain matching epitaxy, and this epitaxial relationship is remarkably maintained when c-GaN converts into h-GaN during high-temperature growth.

  12. On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N- GaN built-in junctions in the n-GaN layer for InGaN/GaN: N-GaN/P-GaN/N-GaN/P-GaN/N-GaN (NPNPN-GaN) junctions embedded between the n-GaN region and multiple the performance of InGaN/GaN light emitting diodes (LEDs) in this work. In the proposed architecture, each thin P-GaN

  13. B.Sc.)(-M.Sc. )1989,1996.(Ph.D. )2001.( -,.

    E-Print Network [OSTI]

    Rimon, Elon

    " " " B.Sc.)(-M.Sc. )1989,1996.(Ph.D. )2001.( - ,. : - , , . - ,DTM;" Diplome d' Lngeneur)1990( - -Brussels Free University)1995( -Ph.D.)2000( . - )2001-2002( )2002( .-M.S.),1996( .M.S.)1998(-Ph.D.)2001( +) (-CALTECH. - -MIT)2001-2002(, Irvine

  14. Properties of the SU(Nc) Gluon Plasma

    E-Print Network [OSTI]

    Saumen Datta; Sourendu Gupta

    2009-10-15T23:59:59.000Z

    We investigate the deconfinement transition in SU(Nc) gauge theories, and properties of the deconfined phase. A detailed lattice study of SU(4) and SU(6) gauge theories are conducted, and finite volume and cutoff effects on thermodynamic observables are studied. The scaling of the deconfinement transition point with lattice spacing is used to calculate the scale, Lambda_MSbar. The continuum estimates of the thermodynamic quantities are used to study properties of the gluon plasma. In particular, the approach to conformal limit is studied. We do not find any evidence of a strongly coupled, conformal phase in these theories.

  15. The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory

    SciTech Connect (OSTI)

    Calle Cordon, Alvaro C. [JLAB; DeGrand, Thomas A. [University of Colorado; Goity, Jose L. [JLAB

    2014-07-01T23:59:59.000Z

    Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc=3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc=3, are used for the analysis. The results are consistent with a previous analysis of Nc=3 LQCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon masses as well as in the hyperfine splittings.

  16. The Nc dependencies of baryon masses: Analysis with Lattice QCD and Effective Theory

    E-Print Network [OSTI]

    A. Calle Cordon; T. DeGrand; J. L. Goity

    2014-04-08T23:59:59.000Z

    Baryon masses at varying values of Nc and light quark masses are studied with Lattice QCD and the results are analyzed in a low energy effective theory based on a combined framework of the 1/Nc and Heavy Baryon Chiral Perturbation Theory expansions. Lattice QCD results for Nc = 3, 5 and 7 obtained in quenched calculations, as well as results for unquenched calculations for Nc = 3, are used for the analysis. The results are consistent with a previous analysis of Nc = 3 Lattice QCD results, and in addition permit the determination of sub-leading in 1/Nc effects in the spin-flavor singlet component of the baryon masses as well as in the hyperfine splittings.

  17. North Carolina State University, Campus Box 7401, Raleigh, NC 27695 | 1 919 513 7769 | www.ncsc.ncsu.edu The NC Solar Center at NC State University has been a hub for

    E-Print Network [OSTI]

    on We have resources that few training centers have such as NC State University libraries, the FREEDM Systems Center, and access to the DSIRE staff. TRAIN WITH US Advancing Clean Energy for a Sustainable

  18. SC e-journals About/FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC) SC

  19. SC Federal Project Directors | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSC Correspondence Control Center (SC

  20. North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 8/2013 Formerly the NC Solar Center

    E-Print Network [OSTI]

    .nccleantech.ncsu.edu | 8/2013 Formerly the NC Solar Center BIODIESEL RETAIL STATIONS IN NORTH CAROLINA Clean Transportation. Duke Street) 919-471-6924 Durham Godar's Garage B100 1000 Will Bea Road (at Turkey Farm Road) 919

  1. INTRA Programme B.Sc. Applied Physics

    E-Print Network [OSTI]

    Humphrys, Mark

    INTRA Programme B.Sc. Applied Physics The Objective of this four-year, full-time degree is to produce graduates with a thorough understanding of physics, with an emphasis on modern technological areas: n Computer programming, mathematics and computational physics n Electronics and instrumentation n

  2. MASTQt UCRL-15515 S/C 5299101

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    tritium breeder. About 521 of the energy incident on the blanket is deposited in the front radial tone? MASTQt UCRL-15515 S/C 5299101 UCRL--15515 DE83 006557 MARS HIGH-TEMPERATURE BLANKET TRW, INC : December 1982 ·nwBcfTBOKar.nug' 4 #12;MASS HIGH TtHPERATUK BLANKET J» D. Gordon, D, B. Berwald, B. A

  3. S.C. Honors College Scholarships

    E-Print Network [OSTI]

    Almor, Amit

    Foley Thesis Support Fund Eligibility will be determined by Kay Banks, the Honors College Thesis the spring semester. Yes Fall 2014 Pearl Fernandes 803.777.2187 pefernan@mailbox.sc.edu James Gadsden Holmes IV Scholarship The James Gadsden Holmes IV Scholarship is awarded to a worthy incoming freshman. No N

  4. (c) Consejo Superior de Investigaciones Cientficas Licencia Creative Commons 3.0 Espaa (by-nc)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (c) Consejo Superior de Investigaciones Científicas Licencia Creative Commons 3.0 España (by Commons 3.0 España (by-nc) http://aespa.revistas.csic.es #12;(c) Consejo Superior de Investigaciones Científicas Licencia Creative Commons 3.0 España (by-nc) http://aespa.revistas.csic.es #12;(c) Consejo

  5. American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC, EVALUATION OF NUMERICAL WEATHER PREDICTION

    E-Print Network [OSTI]

    Perez, Richard R.

    © American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, EVALUATION;© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, irradiance forecasts over OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, Perez

  6. Comparative affinity purification of single chain antibody NC6.8

    E-Print Network [OSTI]

    Jackson, Michael Gary

    1996-01-01T23:59:59.000Z

    Single chain antibody (scfv NC6.8) was generated from the IgG (2b,k) parent mAb cell line NC6.8, a mAb that binds a super-potent trisubstituted guanidino sweetener, N-(p-cyanophenyl)-N'(diphenylmethyl)guanidine acetic acid. The plasmid construct...

  7. ISO/IEC JTC1/SC7 Software & Systems Engineering

    E-Print Network [OSTI]

    Kindler, Ekkart

    ISO/IEC JTC1/SC7 Software & Systems Engineering Secretariat: CANADA (SCC) Address reply to: ISO Notre Dame Ouest, Montréal, Québec Canada H3C 1K3 secretariat@jtc1-sc7.org www.jtc1-sc7.org ISO/IEC JTC1 Members Medium Acrobat No. of Pages 54 Note #12;ISO/IEC JTC1/SC7 WD 19509-2 Date 2005-07-03 Reference

  8. Studienordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management"

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Studienordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management" an der Ernst- Moritz den Masterstudiengang (M.Sc.) ,,Health Care Management" als Sat- zung: Inhaltsverzeichnis § 1.Sc.) ,,Health Care Management" an der Ernst-Moritz-Arndt-Universität Greifswald vom 18.07.2006 das Studium

  9. Studienordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management"

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Studienordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management" an der Ernst- Moritz den Masterstudiengang (M.Sc.) ,,Health Care Management" als Satzung: Inhaltsverzeichnis § 1.Sc.) ,,Health Care Management" an der Ernst-Moritz- Arndt-Universität Greifswald vom 18.07.2006 das Studium

  10. North Carolina State University | College of Engineering | Raleigh, NC | www.ncsc.ncsu.edu For More Information Contact: Betsy McCorkle, Economic Development Coordinator, NC Solar Center, 919-515-4382, betsy_mccorkle@ncsu.edu

    E-Print Network [OSTI]

    Customized Dashboard Presentation Tools The NC Solar Center's Economic Development team offers a wide range Information Contact: Betsy McCorkle, Economic Development Coordinator, NC Solar Center, 919-515-4382, betsy the financial implications of implementing renewable energy projects. The NC Solar Center can assist your

  11. NC State Chemical Engineering Degrees -B and BS Graduation Name NicknamDgr Maj Grad Date H Hometown StateInitial Employer Employer City StateJob Title

    E-Print Network [OSTI]

    Velev, Orlin D.

    /31/1905 Oscar Luther Bagley BS IC 5/31/1905 Bagley NC Coca-Cola Bottling Weldon NC Manager Richard Hugh Harper

  12. Grating-gate tunable plasmon absorption in InP and GaN based R. E. Peale*a

    E-Print Network [OSTI]

    Peale, Robert E.

    Grating-gate tunable plasmon absorption in InP and GaN based HEMTs R. E. Peale*a , H. Saxenaa , W, Inc., 1195 Atlas Road, Columbia SC, USA 29209 ABSTRACT Gate-voltage tunable plasmon resonances incident THz radiation into 2D plasmons. Narrow-band resonant absorption of THz radiation was observed

  13. Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well ABSTRACT: InGaN/GaN light-emitting diodes (LEDs) with p-(AlGaN/GaN/AlGaN) quantum well structured electron. The proposed QWEBL LED structure, in which a p-GaN QW layer is inserted in the p-AlGaN electron blocking layer

  14. Source: Federal Emergency Management Agency September 2011 Earthquake Preparedness at NC State

    E-Print Network [OSTI]

    Source: Federal Emergency Management Agency September 2011 Earthquake Preparedness at NC State buildings. Be aware, the electricity may go out or the sprinkler systems or fire alarms may turn on

  15. New ORNL, N.C. State, LanzaTech DNA dataset is potent, accessible...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 New ORNL, N.C. State, LanzaTech DNA dataset is potent, accessible tool Dawn Klingeman of Oak Ridge National Laboratory's Biosciences Division...

  16. Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 1997 IEEE

    E-Print Network [OSTI]

    Brightwell, Ron

    Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM/IEEE SC97 Conference (SC'97) 0-89791-985-8/97 $ 17.00 © 1997 IEEE #12;Proceedings of the ACM

  17. PHYSICS ASSEMBLY LABORATORY HAER NO. SC-43

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860SelectedGLOWAGREEMENT

  18. SC Johnson Waxdale Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLand FocusSC Johnson Waxdale Plant

  19. SC e-journals Contact page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC)

  20. SC e-journals Help page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release Printed March 2012B.Workshop on--(SC)Help

  1. Micromechanical resonators fabricated from lattice-matched and etch-selective GaAs/InGaP/GaAs heterostructures

    E-Print Network [OSTI]

    Micromechanical resonators fabricated from lattice-matched and etch-selective GaAs/InGaP September 2007 Utilizing lattice-matched GaAs/InGaP/GaAs heterostructures, clean micromechanical resonators are fabricated and characterized. The nearly perfect selectivity of GaAs/InGaP is demonstrated by realizing

  2. The baryon vector current in the combined chiral and 1/Nc expansions

    SciTech Connect (OSTI)

    Flores-Mendieta, Ruben; Goity, Jose L [JLAB

    2014-12-01T23:59:59.000Z

    The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions are in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.

  3. Ga nanoparticle-enhanced photoluminescence of GaAs

    SciTech Connect (OSTI)

    Kang, M.; Al-Heji, A. A.; Jeon, S.; Wu, J. H. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Lee, J.-E.; Saucer, T. W.; Zhao, L.; Sih, V. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States); Katzenstein, A. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Eckerd College, St. Petersburg, Florida 33711-4744 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-09-02T23:59:59.000Z

    We have examined the influence of surface Ga nanoparticles (NPs) on the enhancement of GaAs photoluminescence (PL) efficiency. We have utilized off-normal focused-ion-beam irradiation of GaAs surfaces to fabricate close-packed Ga NP arrays. The enhancement in PL efficiency is inversely proportional to the Ga NP diameter. The maximum PL enhancement occurs for the Ga NP diameter predicted to maximize the incident electromagnetic (EM) field enhancement. The PL enhancement is driven by the surface plasmon resonance (SPR)-induced enhancement of the incident EM field which overwhelms the SPR-induced suppression of the light emission.

  4. Science Headlines | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    imageshighlights201502molecular-structure-thumb.jpg SC User Facility Combining computer simulations with laboratory measurements provides insights on molecular-level...

  5. Steam and Condensate System Optimization in Converse College, Spartanburg, SC

    E-Print Network [OSTI]

    Cruz, A.; Iordanova, N.; Stevenson, S.

    2007-01-01T23:59:59.000Z

    STEAM AND CONDENSATE SYSTEM OPTIMIZATION IN CONVERSE COLLEGE, SPARTANBURG, SC Alberto Cruz, CEM Nevena Iordanova, CEM Susan Stevenson Energy Systems Engineer Director of Engineering Services VP for Finance...

  6. Agenda | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    file (264KB) Links Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown...

  7. AlGaN/GaN-based power semiconductor switches

    E-Print Network [OSTI]

    Lu, Bin, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    AlGaN/GaN-based high-electron-mobility transistors (HEMTs) have great potential for their use as high efficiency and high speed power semiconductor switches, thanks to their high breakdown electric field, mobility and ...

  8. GaAs/InGaP/AlGaAs quantum-well infrared photodetectors

    SciTech Connect (OSTI)

    Keshagupta, P.; Radpour, F. [Univ. of Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    In this paper, a new quantum-well infrared photodetector (QWIP) based on bound-to-miniband transitions in a GaAs/InGaP quantum well with GaAs/AlGaAs short superlattice barriers is presented and compared with the conventional GaAs/InGaP QWIPs. Results of the theoretical calculations of the detector parameters and the preliminary fabrication results of an embedded-well to miniband (EWTMB) GaAs/InGaP/AlGaAs quantum well/superlattice detector are presented. The advantages of the proposed design include improvement of the material quality, ability to adjust the peak wavelength in 8--12 {micro}m range, and in the lower dark current.

  9. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2008 Annual Water-Quality Report and reliable supply of high-quality drinking water. We test our water using sophisticated equipment

  10. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  11. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2005 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  12. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    of microbial contaminants. Maximum Residual Disinfectant Level Goal or (MRDLG): The level of drinking water1 Clemson University Water System System No, SC3910006 Clemson, SC 2007 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  13. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  14. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    of microbial contaminants. Maximum Residual Disinfectant Level Goal or (MRDLG): The level of drinking water1 Clemson University Water System System No, SC3910006 Clemson, SC 2006 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  15. Clemson University Water System System No, SC3910006

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Clemson University Water System System No, SC3910006 Clemson, SC 2003 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  16. Fant's Grove Water System System No, SC390112

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    intended to reduce the level of a contaminant in drinking water. Maximum Residual Disinfectant Level1 Fant's Grove Water System System No, SC390112 Clemson, SC 2004 Annual Water-Quality Report with a safe and reliable supply of high-quality drinking water. We test our water using sophisticated

  17. Next Story > SC DMV lifting drivers' suspensions this week

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    The State Next Story > SC DMV lifting drivers' suspensions this week Researcher: Zombie fads peak COLUMBIA, S.C. -- Zombies seem to be everywhere these days. In the popular TV series "The Walking Dead at the University of California at Davis. Lauro said she keeps track of zombie movies, TV shows and video games

  18. Carrier spin relaxation in GaInNAsSb/GaNAsSb/GaAs quantum well

    SciTech Connect (OSTI)

    Asami, T.; Nosho, H.; Tackeuchi, A. [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Li, L. H.; Harmand, J. C. [Laboratory for Photonics and Nanostructures-CNRS, Site Alcatel de Marcoussis, Route de Nozay, 91460 Marcoussis (France); Lu, S. L. [Suzhou Institute of Nano-tech and Nano-bionics, CAS, Dushu, Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou 215125 (China)

    2011-12-23T23:59:59.000Z

    We have investigated the carrier spin relaxation in GaInNAsSb/GaNAsSb/GaAs quantum well (QW) by time-resolved photoluminescence (PL) measurement. The sample consists of an 8-nm-thick GaIn{sub 0.36}N{sub 0.006}AsSb{sub 0.015} well, 5-nm-thick GaN{sub 0.01}AsSb{sub 0.11} intermediate barriers and 100-nm-thick GaAs barriers grown by molecular beam epitaxy on a GaAs(100) substrate. The spin relaxation time and recombination lifetime at 10 K are measured to be 228 ps and 151 ps, respectively. As a reference, we have also obtained a spin relaxation time of 125 ps and a recombination lifetime of 63 ps for GaInNAs/GaNAs/GaAs QW. This result shows that crystal quality is slightly improved by adding Sb, although these short carrier lifetimes mainly originate from a nonradiative recombination. These spin relaxation times are longer than the 36 ps spin relaxation time of InGaAs/InP QWs and shorter than the 2 ns spin relaxation time of GaInNAs/GaAs QW.

  19. Link between the Potentially Hazardous Asteroid (86039) 1999 NC43 and the Chelyabinsk meteoroid tenuous

    E-Print Network [OSTI]

    Reddy, Vishnu; Bottke, William F; Pravec, Petr; Sanchez, Juan A; Gary, Bruce L; Klima, Rachel; Cloutis, Edward A; Galád, Adrián; Guan, Tan Thiam; Hornoch, Kamil; Izawa, Matthew R M; Kušnirák, Peter; Corre, Lucille Le; Mann, Paul; Moskovitz, Nicholas; Skiff, Brian; Vraštil, Jan

    2015-01-01T23:59:59.000Z

    We explored the statistical and compositional link between Chelyabinsk meteoroid and potentially hazardous asteroid (86039) 1999 NC43 to investigate their proposed relation proposed by Borovi\\v{c}ka et al. (2013). Using detailed computation we confirm that the orbit of the Chelyabinsk impactor is anomalously close to 1999 NC43. We find about (1-3) x 10-4 likelihood of that to happen by chance. Taking the standpoint that the Chelyabinsk impactor indeed separated from 1999 NC43 by a cratering or rotational fission event, we run a forward probability calculation, which is an independent statistical test. However, we find this scenario is unlikely at the about (10-3 -10-2) level. We also verified compositional link between Chelyabinska and 1999NC43. Mineralogical analysis of Chelyabinsk (LL chondrite) and (8) Flora (the largest member of the presumed LL chondrite parent family) shows that their olivine and pyroxene chemistries are similar to LL chondrites. Similar analysis of 1999 NC43 shows that its olivine and ...

  20. Duke University, Durham, NC Mechanical Engineering Ph.D., 2012 Trinity College, Hartford, CT Mechanical Engineering B.Sc. Hons, 2007

    E-Print Network [OSTI]

    Pennycook, Steve

    known as synthetic biology. Intracellular macromolecules will be encapsulated in vitro inside thermal diodes are of interest for more efficient solar energy harvesting and for the thermal regulation

  1. Compositionally-graded InGaAsInGaP alloys and GaAsSb alloys for metamorphic InP on GaAs

    E-Print Network [OSTI]

    Compositionally-graded InGaAs­InGaP alloys and GaAsSb alloys for metamorphic InP on GaAs Li Yang a of tandem graded layers of InGaAs and InGaP with compositional grading of the In concentration. This tandem

  2. Analysis of InAs/GaAs quantum dot solar cells using Suns-Voc measurements

    E-Print Network [OSTI]

    Beattie, N. S.; Zoppi, G.; See, P.; Farrer, I.; Duchamp, M.; Morrison, D. J.; Miles, R. W.; Ritchie, D. A.

    2014-08-06T23:59:59.000Z

    . Appl. Phys. 32 (1961) 510. [10] G. Wei, K. Shiu, N.C. Giebink, S.R. Forrest, Thermodynamic limits of quantum photovoltaic cell efficiency, Appl. Phys. Lett. 91 (2007) 223507. [11] A. Martí, A. Luque, Comment on Thermodynamics limits of quantum photo... /GaAs quantum dot solar cells and the influence on the open circuit voltage, Appl. Phys. Lett. 97 (2010) 123505. [26] A. Martí, A. Luque, Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization, IOP Publishing, Bristol, UK, 2004. [27] H...

  3. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya [Department of Electrical and Computer Engineering, University of South Alabama, Mobile, Alabama 36688 (United States); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Sharp Corporation, 282-1 Hajikami, Shinjo, Nara 639-2198 (Japan)

    2004-10-11T23:59:59.000Z

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J{sub P}) and valley current (J{sub V}) densities should be greater than the short-circuit current density (J{sub sc}) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J{sub P}) and valley current density (J{sub V}) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios.

  4. A Search for Neutrino Induced Coherent NC($\\pi^{0}$) Production in the MINOS Near Detector

    SciTech Connect (OSTI)

    Cherdack, Daniel David; /Tufts U.

    2010-11-01T23:59:59.000Z

    The production of single, highly forward {pi}{sup 0} mesons by NC coherent neutrino-nucleus interactions ({nu}{sub {mu}} + N {yields} {nu}{sub {mu}} + N + {pi}{sup 0}) is a process which probes fundamental aspects of the weak interaction. This reaction may also pose as a limiting background for long baseline searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations if the neutrino mixing angle {theta}{sub 13} is very small. The high-statistics sample of neutrino interactions recorded by the MINOS Near Detector provides an opportunity to measure the cross section of this coherent reaction on a relatively large-A nucleus at an average E{sub {nu}} = 4.9 GeV. A major challenge for this measurement is the isolation of forward-going electromagnetic (EM) showers produced by the relatively rare coherent NC({pi}{sup 0}) process amidst an abundant rate of incoherently produced EM showers. The backgrounds arise from single {pi}{sup 0} dominated NC events and also from quasi-elastic-like CC scattering of electron neutrinos. In this Thesis the theory of coherent interactions is summarized, and previous measurements of the coherent NC({pi}{sup 0}) cross section are reviewed. Then, methods for selecting a sample of coherent NC({pi}{sup 0}) like events, extracting the coherent NC({pi}{sup 0}) event rate from that sample, estimating the analysis uncertainties, and calculating a cross section, are presented. A signal for neutrino-induced NC({pi}{sup 0}) production is observed in the relevant kinematic regime as an excess of events of three standard deviations above background. The reaction cross sections, averaged over an energy window of 2.5 {<=} E{sub {nu}} {<=} 9.0 GeV is determined to be (31.6{+-}10.5) x 10{sup -40} cm{sup 2}/nucleus. The result is the first evidence obtained for neutrino-nucleus coherent NC({pi}{sup 0}) scattering on iron, and is the first measurement on an average nuclear target above A = 30. The cross section measurement is in agreement with NEUGEN3 implementation of the model by Rein and Sehgal which is motived by the PCAC hypothesis.

  5. Low frequency noise in AlGaN/InGaN/GaN double heterostructure field effect transistors

    E-Print Network [OSTI]

    Pala, Nezih

    Torr and consisted of a 1.4 lm undoped GaN buffer layer on i-SiC substrate, * Corresponding authorLow frequency noise in AlGaN/InGaN/GaN double heterostructure field effect transistors N. Pala a November 2002 Abstract Low-frequency noise in AlGaN/InGaN/GaN double heterostructure field effect

  6. Polarization-engineered GaN/InGaN/GaN tunnel diodes

    E-Print Network [OSTI]

    Sriram Krishnamoorthy; Digbijoy N. Nath; Fatih Akyol; Pil Sung Park; Michele Esposto; Siddharth Rajan

    2010-08-24T23:59:59.000Z

    We report on the design and demonstration of polarization-engineered GaN/InGaN/GaN tunnel junction diodes with high current density and low tunneling turn-on voltage. Wentzel-Kramers-Brillouin (WKB) calculations were used to model and design tunnel junctions with narrow bandgap InGaN-based barrier layers. N-polar p-GaN/In0.33Ga0.67N/n-GaN heterostructure tunnel diodes were grown using molecular beam epitaxy. Efficient zero bias tunneling turn-on with a high current density of 118 A/cm2 at a reverse bias of 1V, reaching a maximum current density up to 9.2 kA/cm2 were obtained. These results represent the highest current density reported in III-nitride tunnel junctions, and demonstrate the potential of III-nitride tunnel devices for a broad range of optoelectronic and electronic applications.

  7. SC In Your State | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U CO1)Programs »PoliciesRSS FeedsSC In

  8. Connect with SC | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S.Computational

  9. Official List of SC User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/

  10. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    SciTech Connect (OSTI)

    Vlach, M., E-mail: martin.vlach@mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague (Czech Republic); Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague (Czech Republic); Gemma, R. [King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, 23955-6900 Thuwal (Saudi Arabia); Ocenasek, V. [SVÚM a.s., Podnikatelská 565, CZ-190 11 Prague (Czech Republic); Malek, J. [Czech Technical University in Prague, Faculty of Mechanical Engineering, CZ-120 00 Prague (Czech Republic); Tanprayoon, D.; Neubert, V. [Institut für Materialprüfung und Werkstofftechnik, Freiberger Strasse 1, D-38678 Clausthal-Zellerfeld (Germany)

    2013-12-15T23:59:59.000Z

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al{sub 6}Mn- and/or Al{sub 6}(Mn,Fe) particles of a size ? 1.0 ?m at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al{sub 3}Sc particles formation and/or coarsening and that of the Al{sub 6}Mn and/or Al{sub 6}(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al{sub 3}Sc-phase and the Al{sub 6}Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle precipitation is slightly facilitated by cold rolling. • The Mn-containing particle precipitation is highly enhanced by cold rolling. • Cold rolling has no effect on activation energy of the Al{sub 3}Sc and Al{sub 6}Mn precipitation. • The texture development is affected by high solid solution strengthening by Mn.

  11. Nidc Orgchart | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833...

  12. ALCF contributes papers, posters, and more to SC14 | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a DOE Office of Science User Facility, will have a strong presence at the high-performance computing community's premier annual event, Nov. 16-21 in New Orleans. SC is the...

  13. FY 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Small Business Technology Transfer U.S. Department of Energy SC-29Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E:...

  14. Prfungsordnung fr den Masterstudiengang (M.Sc.) ,,Health Care Management "

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Prüfungsordnung für den Masterstudiengang (M.Sc.) ,,Health Care Management " an der Ernst ,,Health Care Management" (HCM) als Satzung: Inhaltsverzeichnis § 1 Regelungsgegenstand § 2* Regelungsgegenstand (1) Diese Prüfungsordnung regelt das Prüfungsverfahren im Masterstudiengang ,,Health Care

  15. Thermoelectric Transport in a ZrN/ScN Superlattice

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    at Springerlink.com Thermoelectric Transport in a ZrN/ScNthe potential for a high thermoelectric ?gure of merit. Theexperimental studies of the thermoelectric transport in ZrN/

  16. Violet to deep-ultraviolet InGaN/GaN and GaN/AlGaN quantum structures for UV electroabsorption modulators

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Violet to deep-ultraviolet InGaN/GaN and GaN/AlGaN quantum structures for UV electroabsorption In this paper, we present four GaN based polar quantum structures grown on c-plane embedded in p-i-n diode GaN/AlGaN quantum structures for operation in the deep-UV spectral region and the other three

  17. American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC, 2011 SHORT-TERM IRRADIANCE VARIABILITY

    E-Print Network [OSTI]

    Perez, Richard R.

    © American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, 2011 SHORT, as hypothesized in Hoff and Perez's optimum point. #12;© American Solar Energy Society ­ Proc. ASES Annual is the factor that determines whether the combined relative fluctuations of two solar systems add up when

  18. NC State provides a number of computing labs around campus for students to use for

    E-Print Network [OSTI]

    and the various colleges, and provide students access to the Internet, word processors, spreadsheets, compilers that they can be accessed from anywhere, through any Web browser or compatible email client. Email Addresses NC State students have access to Unity, a campus-wide computing environment that serves faculty

  19. All NC State students have access to Unity, a campus-wide computing environment

    E-Print Network [OSTI]

    All NC State students have access to Unity, a campus-wide computing environment that serves faculty. They provide access to the Internet, word processors, spreadsheets, compil- ers and discipline services 4Web-based email client 4Personal web-page support 4Personal networked file space that can be used

  20. Lattice distortion in single crystal rare-earth arsenide/GaAs nanocomposites

    SciTech Connect (OSTI)

    Young, A. J. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Schultz, B. D. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560 (United States); Palmstrøm, C. J., E-mail: cpalmstrom@ece.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560 (United States)

    2014-02-17T23:59:59.000Z

    Epitaxial single crystal nanocomposites comprised of rare-earth arsenide nanoparticles embedded in GaAs (001) layers produce a larger change in lattice parameter than expected from the lattice parameters of relaxed films. Despite similar cubic structures and lattice parameters, elongation of the interfacial bond length between the two materials induces additional strain causing an expansion in the nanocomposite lattice. The interface bond length is material dependent with an average atomic layer spacing at the ErAs:GaAs interface of 1.9?Å while the spacing at the ScAs:GaAs interface is only 1.4?Å. Implications for lattice matching various single crystal epitaxial nanostructures in semiconductors are discussed.

  1. Luminescence Efficiency of InGaN/GaN Quantum Wells on Bulk GaN Substrate M. Dworzak1

    E-Print Network [OSTI]

    Nabben, Reinhard

    Luminescence Efficiency of InGaN/GaN Quantum Wells on Bulk GaN Substrate M. Dworzak1 , T. Stempel1/37, 01-142 Warsaw, Poland ABSTRACT Time-integrated and time-resolved photoluminescence measurements on InGaN quantum wells grown by MOCVD on two different substrates (sapphire and GaN) show that the lumines- cence

  2. Analysis of InGaN light-emitting diodes with GaN-AlGaN and AlGaN-GaN composition-graded barriers

    SciTech Connect (OSTI)

    Yang, Yujue; Wang, Junxi; Li, Jinmin; Zeng, Yiping, E-mail: ypzeng@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-06-21T23:59:59.000Z

    The effects of InGaN-based light-emitting diodes (LEDs) with Al composition increasing and decreasing GaN-AlGaN barriers along the growth direction are studied numerically. Simulation results suggest that the LEDs with GaN-AlGaN composition-decreased barriers show more significant enhancement of light-output power and internal quantum efficiency than LEDs with composition-increasing GaN-AlGaN barriers when compared with the conventional LED with GaN barriers, due to the improvement in hole injection efficiency and electron blocking capability. Moreover, the optical performance is further improved by replacing GaN-AlGaN barriers with AlGaN-GaN barriers of the same Al composition-decreasing range, which are mainly attributed to the modified band diagrams. In addition, the major causes of the different efficiency droop behaviors for all the designed structures are explained by the electron leakage current and the different increase rates of hole concentration with injection current.

  3. Design and fabrication of InGaN/GaN heterojunction bipolar transistors for microwave power amplifiers

    E-Print Network [OSTI]

    Keogh, David Martin

    2006-01-01T23:59:59.000Z

    T. Henderson, “High- Speed InGaP/GaAs HBT’s Using a SimpleA typical AlGaAs/GaAs HBT or InGaP/GaAs HBT has the opposite

  4. The Area Derivative of a Space-filling Diagram Robert Bryant, Mathematics, Duke, Durham, NC 27708, USA, email: bryant@math.duke.edu,

    E-Print Network [OSTI]

    Edelsbrunner, Herbert

    The Area Derivative of a Space-filling Diagram Robert Bryant, Mathematics, Duke, Durham, NC 27708, USA, email: bryant@math.duke.edu, Herbert Edelsbrunner ¡, Computer Science, Duke, Durham, NC 27708

  5. Investigation of the GaN-on-GaAs interface for vertical power device applications

    SciTech Connect (OSTI)

    Möreke, Janina, E-mail: janina.moereke@bristol.ac.uk; Uren, Michael J.; Kuball, Martin [H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Novikov, Sergei V.; Foxon, C. Thomas [Department of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Hosseini Vajargah, Shahrzad; Wallis, David J.; Humphreys, Colin J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Haigh, Sarah J. [Super STEM Laboratory, STFC Daresbury Campus, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Al-Khalidi, Abdullah; Wasige, Edward; Thayne, Iain [School of Engineering, University of Glasgow, Rankine Bldg, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)

    2014-07-07T23:59:59.000Z

    GaN layers were grown onto (111) GaAs by molecular beam epitaxy. Minimal band offset between the conduction bands for GaN and GaAs materials has been suggested in the literature raising the possibility of using GaN-on-GaAs for vertical power device applications. I-V and C-V measurements of the GaN/GaAs heterostructures however yielded a rectifying junction, even when both sides of the junction were heavily doped with an n-type dopant. Transmission electron microscopy analysis further confirmed the challenge in creating a GaN/GaAs Ohmic interface by showing a large density of dislocations in the GaN layer and suggesting roughening of the GaN/GaAs interface due to etching of the GaAs by the nitrogen plasma, diffusion of nitrogen or melting of Ga into the GaAs substrate.

  6. Entertainment Technology Center, CMU Internship Survey Results, Dec 2013, May 2014, and Dec 2014

    E-Print Network [OSTI]

    Matsuda, Noboru

    Developer Mount Pleasant SC Visionary Works LLC UX Designer, Game Programmer Washington DC VOCI Technology, NM, OK, TX 2 West: CA, HI, NV 16 Southeast: AL, AR, FL, GA, KY, LA, MS, NC, PR, SC, TN 1 Midwest: IA Emails 28 Faculty Contacts 22 Personal Network 17 Interviews Arranged by Career Services 9 Intern Search

  7. Ga NMR spectra and relaxation in wurtzite GaN M. Corti and A. Gabetta

    E-Print Network [OSTI]

    Svane, Axel Torstein

    69,71 Ga NMR spectra and relaxation in wurtzite GaN M. Corti and A. Gabetta Department of Physics properties of wurtzite GaN are studied by Ga nuclear magnetic resonance NMR in a GaN bulk crystal containing GaN is a wide band-gap semiconductor which crystallizes in the hexagonal wurtzite structure

  8. Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of InGaP/GaAs Heterojunctions

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of InGaP/GaAs Heterojunctions Y Abstract Compositionally abrupt InGaP/GaAs heterojunctions grown by gas-source molecular beam epitaxy have the InGaP layer show non-uniform In and Ga distribution. About 1.5 nm of transition region

  9. Role of Electrochemical Reactions in the Degradation Mechanisms of AlGaN/GaN HEMTs

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    Role of Electrochemical Reactions in the Degradation Mechanisms of AlGaN/GaN HEMTs Feng Gao1, USA tpalacios@mit.edu; (617) 324-2395 Keywords: AlGaN/GaN HEMTs, reliability, moisture, electro-chemical reactions Abstract The nature of structural degradation in AlGaN/GaN high electron mobility transistors

  10. Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High

    E-Print Network [OSTI]

    Li, Yat

    Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors, 2006 ABSTRACT We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/ AlN/AlGaN

  11. Beta decay of Ga-62 

    E-Print Network [OSTI]

    Hyman, BC; Iacob, VE; Azhari, A.; Gagliardi, Carl A.; Hardy, John C.; Mayes, VE; Neilson, RG; Sanchez-Vega, M.; Tang, X.; Trache, L.; Tribble, Robert E.

    2003-01-01T23:59:59.000Z

    We report a study of the beta decay of Ga-62, whose dominant branch is a superallowed 0(+)-->0(+) transition to the ground state of Zn-62. We find the total half-life to be 115.84+/-0.25 ms. This is the first time that the Ga-62 half-life has been...

  12. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    SciTech Connect (OSTI)

    Zech, E. S.; Chang, A. S.; Martin, A. J.; Canniff, J. C.; Millunchick, J. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Lin, Y. H. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)

    2013-08-19T23:59:59.000Z

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  13. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)

  14. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About »

  15. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About »About

  16. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)About

  17. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)AboutAbout »

  18. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science (SC)AboutAbout

  19. February 2007 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC)(SC)

  20. February 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarthJuly 2007(SC)(SC)8

  1. Vignettes | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettes

  2. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  3. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  4. What's New | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)andVignettesNew

  5. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience (SC)

  6. Wellcome Trust -Bloomsbury Centre for Global Health Research Policy Group Members -May 2014 C -Clinical / NC -Non Clinical

    E-Print Network [OSTI]

    Maizels, Rick

    - Clinical / NC - Non Clinical NAME INSTITUTION DEPARTMENT TITLE ROLE RESEARCH INTERESTS Abas, Melanie IOP Health Service and Population Research / International Mental Health Clinical Senior Lecturer Diseases / Department of Clinical Research Professor of Tropical Medicine C Clinical epidemiology, Clinical

  7. Multiple-band-edge quantum-well intermixing in the InGaAs/InGaAsP/InGaP material system

    E-Print Network [OSTI]

    Coldren, Larry A.

    Multiple-band-edge quantum-well intermixing in the InGaAs/InGaAsP/InGaP material system Erik J InGaAs/InGaAsP/InGaP material system. © 2005 American Institute of Physics. DOI: 10 of achieving QWI in such active regions.3,4 However, InGaAs/InGaAsP/InGaP-based de- vices offer numerous

  8. GaInNAs laser gain

    SciTech Connect (OSTI)

    CHOW,WENG W.; JONES,ERIC D.; MODINE,NORMAND A.; KURTZ,STEVEN R.; ALLERMAN,ANDREW A.

    2000-05-23T23:59:59.000Z

    The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.

  9. SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY

    E-Print Network [OSTI]

    SC-RISE LECTURE SERIES BRIGHT HORIZONS IN SOLAR ENERGY Sustainable Energy Opportunities, Options are being developed including biomass, geothermal, hydropower, ocean thermal energy conversion, solar electric, solar thermal, and wind. However, such aspects as low energy density, siting, and temporal

  10. Graduate Student ScHool of Graduate StudieS

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Graduate Student Handbook ScHool of Graduate StudieS 2012-2013 #12;Foreword This handbook should website http://gradstudies.case.edu for the most comprehensive and up to date information. The learning scholarly activity, the very search for knowledge is impaired. In these respects, each of us

  11. S1The Newsletter for all ScHARR graduates

    E-Print Network [OSTI]

    Oakley, Jeremy

    , corruption and poor management can often turn a challenge into a disaster. Tide From September, ScHARR's new Master of Public Health specialist programme in Management and Leadership will do its bit to turn the tide of public health. Management and governance of public health have been recognised as among

  12. M.Sc. Mathematics: Guidelines on Writing the Project Dissertation

    E-Print Network [OSTI]

    Wright, Francis

    M.Sc. Mathematics: Guidelines on Writing the Project Dissertation Aim The aim of the dissertation. Remember that your dissertation will be read by three examiners, all of whom will be asking themselves `Can The dissertation should be written in correct, grammatical English. The content should be clear and readable

  13. DOE/SC-0060 U. S. Department of Energy

    E-Print Network [OSTI]

    . The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severeDOE/SC-0060 U. S. Department of Energy Office of Science September, 2002 Fusion Energy Sciences Advisory Committee A BURNING PLASMA PROGRAM STRATEGY TO ADVANCE FUSION ENERGY #12;1 Report of the FESAC

  14. Red emitting photonic devices using InGaP/InGaAlP material system

    E-Print Network [OSTI]

    Kangude, Yamini

    2005-01-01T23:59:59.000Z

    In this thesis, two red emitting photonic devices are presented using the InGaP/InGaAlP material system. InGaP/InGaAlP material system provides large flexibility in the band gap energy while being lattice matched to GaAs ...

  15. Study of a 1?eV GaNAsSb photovoltaic cell grown on a silicon substrate

    SciTech Connect (OSTI)

    Tan, K. H.; Loke, W. K.; Wicaksono, S.; Li, D.; Leong, Y. R.; Yoon, S. F. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)] [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Sharma, P.; Milakovich, T.; Bulsara, M. T.; Fitzgerald, E. A. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)] [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2014-03-10T23:59:59.000Z

    We report the performance of a 1?eV GaNAsSb photovoltaic cell grown on a Si substrate with a SiGe graded buffer grown using molecular beam epitaxy. For comparison, the performance of a similar 1?eV GaN{sub 0.018}As{sub 0.897}Sb{sub 0.085} photovoltaic cell grown on a GaAs substrate was also reported. Both devices were in situ annealed at 700?°C for 5?min, and a significant performance improvement over our previous result was observed. The device on the GaAs substrate showed a low open circuit voltage (V{sub OC}) of 0.42?V and a short circuit current density (J{sub SC}) of 23.4?mA/cm{sup 2} while the device on the Si substrate showed a V{sub OC} of 0.39?V and a J{sub SC} of 21.3?mA/cm{sup 2}. Both devices delivered a quantum efficiency of 50%–55% without any anti-reflection coating.

  16. Structure and Dynamics of Forsterite-scCO2/H2O Interfaces as...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forsterite-scCO2H2O Interfaces as a Function of Water Content. Structure and Dynamics of Forsterite-scCO2H2O Interfaces as a Function of Water Content. Abstract: Molecular...

  17. AlGaAs/InGaAs/AlGaAs Double Barrier

    E-Print Network [OSTI]

    Perera, A. G. Unil

    -state Er. Tunneling Quantum Dot Sensors for Multi-band Infrared and Terahertz Radiation Detection G radiation detection are demonstrated. In T-QDIP structures, photoabsorption takes place in InGaAs QDs (due

  18. ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still Mailing List Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T. Lee Hewlett-Packard Company, 11000-mail: Daniel_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1584 13 March 2000 Core Experiment Description

  19. ISO/IEC JTC1/SC29/WG1 N1716 22 June 2000

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1716 22 June 2000 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still: For information only DISTRIBUTION: WG 1 Mailing List Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T 447 4160, Fax: +1 408 447 2842, E-mail: Daniel_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1716 22 June

  20. ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T. Lee Hewlett-Packard Company, 11000 Wolfe Road, MS42U_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1303 30 June 1999 Core Experiment Description/Results Summary

  1. College/University: 1999 B.Sc. University of Indonesia, Indonesia

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    Education College/University: 1999 B.Sc. University of Indonesia, Indonesia 2003 M.Sc. University of Indonesia, Indonesia Highest degree: M.Sc. in Microbiology Medicine Major Subjects: Cell Biology, Embryonic name: Andri Last name: Pramono Date of birth: 21.08.1976 Country: Indonesia E-mail: pramesyanti @yahoo

  2. ccsd00001116 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys

    E-Print Network [OSTI]

    ccsd­00001116 (version 1) : 4 Feb 2004 Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: from 4, 2004) Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which

  3. M.Sc. and Ph.D. in Agricultural & Biological Engineering www.usask.ca

    E-Print Network [OSTI]

    Saskatchewan, University of

    Department of Chemical and Biological Engineering M.Sc. and Ph.D. in Agricultural & BioresourceM.Sc. and Ph.D. in Agricultural & Biological Engineering www.usask.ca College of Engineering Engineering M.Sc. and Ph.D. programs in Agricultural & Bioresource Engineering integrate engineering

  4. ISO/IEC JTC 1/SC 29/WG 1 N 867 Date: June 27, 1998

    E-Print Network [OSTI]

    Adams, Michael D.

    ISO/IEC JTC 1/SC 29/WG 1 N 867 Date: June 27, 1998 ISO/IEC JTC 1/SC 29/WG 1 (ITU­T SG8) Coding ACTION: Discussion DISTRIBUTION: July 1998 Meeting of WG1 Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener

  5. ISO/IEC JTC 1/SC 29/WG 1 N 2415 Date: 2006-12-07

    E-Print Network [OSTI]

    Adams, Michael D.

    ISO/IEC JTC 1/SC 29/WG 1 N 2415 Date: 2006-12-07 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG 16) Coding STATUS: REQUESTED ACTION: None DISTRIBUTION: Public Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener

  6. Composition and Interface Analysis of InGaN/GaN Multiquantum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Interface Analysis of InGaNGaN Multiquantum-Wells on GaN Substrates Using Atom Probe Tomography. Composition and Interface Analysis of InGaNGaN Multiquantum-Wells...

  7. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin [Centre for Research in Photonics, University of Ottawa, Ottawa, ON (Canada); Masson, Denis; Riel, Bruno; Fafard, Simon [Cyrium Technologies Inc., Ottawa, ON (Canada); Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent [Centre de Recherche en Nanofabrication et en Nanocaracterisation CRN2, Universite de Sherbrooke, Sherbrooke, QC (Canada)

    2010-10-14T23:59:59.000Z

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  8. PRESSURE DEPENDENCE OF OPTICAL TRANSITIONS IN InGaN/GaN MULTIPLE QUANTUM WELLS

    E-Print Network [OSTI]

    McCluskey, Matthew

    -µm thick GaN layer deposited on a sapphire substrate, and it is capped by a 0.2-µm GaN:Mg pPRESSURE DEPENDENCE OF OPTICAL TRANSITIONS IN InGaN/GaN MULTIPLE QUANTUM WELLS W. Shan,* J.W. Ager pressure on optical transitions in InGaN/GaN multiple quantum wells (MQWs) has been studied

  9. Free carrier accumulation at cubic AlGaN/GaN heterojunctions Q. Y. Wei,1

    E-Print Network [OSTI]

    As, Donat Josef

    ) substrate,7 with GaN and AlGaN layer thickness of 600 nm and 30 nm, respectively. The layer thicknessFree carrier accumulation at cubic AlGaN/GaN heterojunctions Q. Y. Wei,1 T. Li,1 J. Y. Huang,1 F. A (Received 24 February 2012; accepted 19 March 2012; published online 3 April 2012) Cubic Al0.3Ga0.7N/GaN

  10. InGaP/GaAs/InGaP double-heterojunction bipolar transistors grown by solid-source molecular-beam epitaxy with a valved phosphorus cracker

    E-Print Network [OSTI]

    Woodall, Jerry M.

    InGaP/GaAs/InGaP double-heterojunction bipolar transistors grown by solid-source molecular; accepted 17 November 1995 The growth and device characterization of an InGaP/GaAs double-quality phosphorus-containing compounds.1­4 The growth of high-performance InGaP/ GaAs and InGaAs/InP single

  11. Hybridization and superconducting gaps in heavy-fermion superconductor PuCoGa5 probed via the dynamics of photoinduced quasiparticles

    SciTech Connect (OSTI)

    Talbayev, Diyar [Los Alamos National Laboratory; Trugman, Stuart A [Los Alamos National Laboratory; Zhu, Jian - Xin [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Kennison, John A [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Sarrao, John L [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory; Burch, Kenneth S [CANADA; Chia, Elbert E. M. [CANADA

    2009-01-01T23:59:59.000Z

    We have examined the relaxation of photoinduced quasiparticles in the heavy-fermion superconductor PuCoGa{sub 5}. The deduced electron-phonon coupling constant is incompatible with the measured superconducting transition temperature T{sub c}, which speaks against phonon-mediated superconducting pairing. Upon lowering the temperature, we observe an order-of-magnitude increase of the quasiparticle relaxation time in agreement with the phonon bottleneck scenario - evidence for the presence of a hybridization gap in the electronic density of states. The modification of photoinduced reflectance in the superconducting state is consistent with the heavy character of the quasiparticles that participate in Cooper pairing. The discovery of relatively high-temperature superconductivity in the Pu-based compounds PuCoGa{sub 5} (T{sub c} = 18.5 K) and PuRhGa{sub 5} (T{sub c} = 8.7 K) has renewed the interest in actinide materials research. The Pu-based superconductors share the HoCoGa{sub 5}-type tetragonal lattice stucture with the Ce-based series of compounds (CeRhIn{sub 5}, CeCoIn{sub 5}, and CeIrIn{sub 5}) commonly referred to as '115' materials. In the Ce-based 115 compounds, CeIrIn{sub 5} (T{sub c} = 0.4 K) and CeCoIn{sub 5} (T{sub c} = 2.3 K), display superconductivity at ambient pressure. Both Ce- and Pu-based 115 compounds display the heavy fermion behavior resulting from the influence of 4f (Ce) and 5f (Pu) electrons. The most intriguing question concerns the origin of superconductivity (SC) in the 115 materials. In the Ce series, the d-wave symmetry of the SC order parameter and the proximity of SC order to magnetism have lead to a widespread belief that the unconventional SC is induced by antiferromagnetic spin fluctuations. In the Pu compounds, two possible scenarios regarding the SC mechanism have been considered: one approach favors a magnetically mediated unconventional SC similar to that in CeCoIn{sub 5}. In the other scenario, the conventional SC is mediated by phonons, where the strength of the electron-phonon (e-ph) coupling {lambda} is the crucial parameter that sets the superconducting transition temperature T{sub c}. In this Letter, we present a measurement of the e-ph coupling constant {lambda} via the pump-probe optical study of the room-temperature relaxation time of photoinduced reflectance. We find that e-ph coupling ({lambda} = 0.2-0.26) is too weak to explain the high T{sub c} of PuCoGa{sub 5} and that phonon-mediated superconductivity is unlikely in this material. Upon lowering the temperature in the normal state (T > T{sub c}), we find an order-of-magnitude increase in the relaxation time consistent with a phonon bottleneck, similar to other heavy-fermion materials, which provides the first optical evidence of the presence of a hybridization gap in the electronic density of states (DOS). Below T{sub c}, the photoinduced response exhibits dramatic changes that we ascribe to the opening of the superconducting (SC) gap at the Fermi level. The observed dynamics confirms that the same quasiparticles detected in the normal state, i.e., the heavy quasiparticles, also participate in the SC pairing. Our study is the first to directly probe the electronic structure of PuCoGa{sub 5} in the SC state and corroborate that fact. Our results are consistent with the theoretical investigations, which find that the electronic structure is dominated by cylindrical sheets of Fermi surfaces with large 5f electron character, suggesting that the delocalized 5f electrons of Pu playa key role in the superconducting pairing.

  12. InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chang, P. C. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Baca, A. G. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Li, N. Y. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Xie, X. M. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Hou, H. Q. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Armour, E. [Emcore Corporation, Somerset, New Jersey 08873 (United States)] [Emcore Corporation, Somerset, New Jersey 08873 (United States)

    2000-04-17T23:59:59.000Z

    We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the breakdown voltage (BV{sub CEO}) is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with {delta} doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics. (c) 2000 American Institute of Physics.

  13. InGaP/InGaAsN/GaAs NpN double heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Xie, X.M.; Sharps, P.R.; Hou, H.Q.

    2000-01-10T23:59:59.000Z

    The authors have demonstrated a functional NpN double heterojunction bipolar transistor (DHBT) using InGaAsN for base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs HBT. The lower V{sub ON} is attributed to the smaller bandgap (E{sub g}=1.20eV) of MOCVD grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the BV{sub CEO} is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs Hbts of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger {triangle}E{sub C} between InGaAsN and GaAs, a graded InGaAs layer with {delta}-doping is inserted at the base-collector junction. The improved device has a peak current gain of 7 with ideal IV characteristics.

  14. Infrared spectra of ClCN{sup +}, ClNC{sup +}, and BrCN{sup +} trapped in solid neon

    SciTech Connect (OSTI)

    Jacox, Marilyn E.; Thompson, Warren E. [Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8441 (United States)

    2007-06-28T23:59:59.000Z

    When a mixture of ClCN or BrCN with a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, the infrared spectrum of the resulting solid includes prominent absorptions of the uncharged isocyanide, ClNC or BrNC, and of the corresponding cation, ClCN{sup +} or BrCN{sup +}. The NC-stretching fundamentals of the isocyanides trapped in solid neon lie close to the positions for their previously reported argon-matrix counterparts. The CN-stretching absorptions of ClCN{sup +} and BrCN{sup +} and the CCl-stretching absorption of ClCN{sup +} appear very close to the gas-phase band centers. Absorptions of two overtones and one combination band of ClCN{sup +} are identified. Reversible photoisomerization of ClCN{sup +} to ClNC{sup +} occurs. The two stretching vibrational fundamentals and several infrared and near infrared absorptions associated with electronic transitions of ClNC{sup +} are observed. Minor infrared peaks are attributed to the vibrational fundamental absorptions of the CX and CX{sup +} species (X=Cl,Br)

  15. Intrafacet migration effects in InGaN/GaN structures grown on triangular GaN ridges studied by submicron beam x-ray diffraction

    E-Print Network [OSTI]

    Sirenko, Andrei

    Intrafacet migration effects in InGaN/GaN structures grown on triangular GaN ridges studied for x-ray diffraction and reciprocal space mapping of InGaN/GaN multiple-quantum-well MQW structures grown on the sidewalls of 10- m-wide triangular GaN ridges with 1-1.1 facets. Samples were produced

  16. GaN0.011P0.989–GaP Double-Heterostructure Red Light-Emitting Diodes Directly Grown on GaP Substrates

    E-Print Network [OSTI]

    Tu, Charles W

    2000-01-01T23:59:59.000Z

    and C. W. Tu, GaN diodes on GaP substrates, 2000. [7] J. W.on a GaN directly grown on a GaP substrate was successfullyDH) directly a GaN grown on a (100) GaP substrate. Fig. 1(a)

  17. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis

  18. AlGaAs/InGaAsN/GaAs PnP double heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Sharps, P.R.; Hou, H.Q.; Laroche, J.R.; Ren, F.

    2000-01-11T23:59:59.000Z

    The authors have demonstrated a functional MOCVD-grown AlGaAs/InGaAsN/GaAsPnP DHBT that is lattice matched to GaAs and has a peak current gain ({beta}) of 25. Because of the smaller bandgap (E{sub g}=1.20eV)of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. The BV{sub CEO} is 12 V, consistent with its GaAs collector thickness and doping level.

  19. Asymmetric interfacial abruptness in N-polar and Ga-polar GaN/AlN/GaN heterostructures

    SciTech Connect (OSTI)

    Mazumder, B.; Hurni, C. A.; Zhang, J. Y.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wong, M. H.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2012-08-27T23:59:59.000Z

    In this letter, we report on the interfacial abruptness of GaN/AlN/GaN heterostructures with pulsed laser atom probe tomography (APT). The samples were grown by plasma-assisted molecular beam epitaxy (MBE) under both metal-rich and N-rich conditions on both Ga-polar (0001) GaN templates and N-polar (0001) GaN substrates. An NH{sub 3} assisted MBE technique was involved to grow similar Ga-polar and N-polar structures on GaN:Fe substrates and GaN/Al{sub 2}O{sub 3} templates, respectively, for a comparison study. We find in all cases the interface with net positive polarization charge was chemically abrupt, whereas the interface with net negative polarization charge was diffuse. We discuss the implications on device design and performance. These data validate the efficiency of APT in studying interfaces for better performance in devices.

  20. Superior radiation-resistant properties of InGaP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Yamaguchi, M.; Okuda, T.; Taylor, S.J.; Takamoto, T. [Toyota Technological Institute 2-12-1 Hisakata, Tempaku, Nagoya 468 (Japan)] [Toyota Technological Institute 2-12-1 Hisakata, Tempaku, Nagoya 468 (Japan); Ikeda, E.; Kurita, H. [Central Resource Laboratory, Japan Energy Company, Niizo-Minami, Toda, Saitama 335 (Japan)] [Central Resource Laboratory, Japan Energy Company, Niizo-Minami, Toda, Saitama 335 (Japan)

    1997-03-01T23:59:59.000Z

    The observation of minority-carrier injection-enhanced annealing of radiation damage to InGa{sub 0.5}P{sub 0.5}/GaAs tandem solar cells is reported. Radiation resistance of InGaP/GaAs tandem solar cells as is similar with GaAs-on-Ge cells have been confirmed with 1 MeV electron irradiations. Moreover, minority-carrier injection under light illumination and forward bias conditions is shown to enhance defect annealing in InGaP and to result in the recovery of InGaP/GaAs tandem solar cell properties. These results suggest that the InGaP/GaAs(/Ge) multijunction solar cells and InGaP-based devices have great potential for space applications. {copyright} {ital 1997 American Institute of Physics.}

  1. Beta decay of Ga-62

    E-Print Network [OSTI]

    Hyman, BC; Iacob, VE; Azhari, A.; Gagliardi, Carl A.; Hardy, John C.; Mayes, VE; Neilson, RG; Sanchez-Vega, M.; Tang, X.; Trache, L.; Tribble, Robert E.

    2003-01-01T23:59:59.000Z

    from the ex- perimental ft value for a 01?01 b decay between analog states with the relation @3# 0556-2813/2003/68~1!/015501~6!/$20.00 68 015501- of 62Ga . Hardy, V. E. Mayes, R. G. Neilson, M. Sanchez-Vega, and R. E. Tribble y, College Station...

  2. BIOLOGY AT NCBS, BANGALORE AND DBS, MUMBAI (PhD/Int-PhD/ M. Sc.-by-Research/ M. Sc. in Wildlife & Conservation)

    E-Print Network [OSTI]

    Bhalla, Upinder S.

    BIOLOGY AT NCBS, BANGALORE AND DBS, MUMBAI (PhD/Int-PhD/ M. Sc.-by-Research/ M. Sc. in Wildlife & Conservation) (Please check the websites: `Admissions' at www.ncbs.res.in; http at both Bangalore and Mumbai campuses. Internet access, e-mail and bibliography search support are also

  3. GaN nanowires show more 3D piezoelectricity than bulk GaN

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Logo GaN nanowires show more 3D piezoelectricity than bulk GaN admin / January 11, 2012 individual gallium nitride (GaN) nanowires showing strong piezoelectric effect in 3D. This is in spite of the fact that each nanowire only measures 100nm in diameter. While GaN is ubiquitous in optoelectronic

  4. Self-aligned AlGaN/GaN transistors for sub-mm wave applications

    E-Print Network [OSTI]

    Saadat, Omair I

    2010-01-01T23:59:59.000Z

    This thesis describes work done towards realizing self-aligned AlGaN/GaN high electron mobility transistors (HEMTs). Self-aligned transistors are important for improving the frequency of AlGaN/GaN HEMTs by reducing source ...

  5. Invited Paper GaN HEMT reliability

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    Invited Paper GaN HEMT reliability J.A. del Alamo *, J. Joh Microsystems Technology Laboratories mechanism recently identified in GaN high-electron mobility transistors subject to electrical stress. Under high voltage, it has been found that electrically active defects are generated in the AlGaN barrier

  6. New GaInP/GaAs/GaInAs, Triple-Bandgap, Tandem Solar Cell for High-Efficiency Terrestrial Concentrator Systems

    SciTech Connect (OSTI)

    Kurtz, S.; Wanlass, M.; Kramer, C.; Young, M.; Geisz, J.; Ward, S.; Duda, A.; Moriarty, T.; Carapella, J.; Ahrenkiel, P.; Emery. K.; Jones, K.; Romero, M.; Kibbler, A.; Olson, J.; Friedman, D.; McMahon, W.; Ptak, A.

    2005-11-01T23:59:59.000Z

    GaInP/GaAs/GaInAs three-junction cells are grown in an inverted configuration on GaAs, allowing high quality growth of the lattice matched GaInP and GaAs layers before a grade is used for the 1-eV GaInAs layer. Using this approach an efficiency of 37.9% was demonstrated.

  7. InAs=InGaP=GaAs heterojunction power Schottky rectifiers

    E-Print Network [OSTI]

    Woodall, Jerry M.

    InAs=InGaP=GaAs heterojunction power Schottky rectifiers A. Chen, M. Young and J.M. Woodall A low-matched InGaP on GaAs, to make a high-temperature power rectifier. The LT molecular beam epitaxy technique enables the formation of an abrupt interface between InAs and InGaP. This heterojunction rectifier

  8. Monolithic Millimeter-wave Distributed Amplifiers using AlGaN/GaN HEMTs

    E-Print Network [OSTI]

    York, Robert A.

    Monolithic Millimeter-wave Distributed Amplifiers using AlGaN/GaN HEMTs Rajkumar Santhakumar, Yi have been designed and fabricated using AlGaN/GaN HEMTs. One of them uses a standard HEMT for the unit-gate distributed amplifier achieves a CW peak output power of 1W and a PAE of about 16% at 4GHz. Index Terms -- GaN

  9. Role of strain in polarization switching in semipolar InGaN/GaN quantum wells

    E-Print Network [OSTI]

    Role of strain in polarization switching in semipolar InGaN/GaN quantum wells Qimin Yan,1,a Patrick November 2010 The effect of strain on the valence-band structure of 112¯2 semipolar InGaN grown on GaN D6 is calculated for GaN and InN using density functional theory with the Heyd­Scuseria­ Ernzerhof

  10. GaN/AlGaN heterojunction infrared detector responding in 814 and 2070 m ranges

    E-Print Network [OSTI]

    Perera, A. G. Unil

    GaN/AlGaN heterojunction infrared detector responding in 8­14 and 20­70 m ranges G. Ariyawansa, M October 2006 A GaN/AlGaN heterojunction interfacial work function internal photoemission infrared detector, the work demonstrates 54 m 5.5 THz operation of the detector based on 1s­2p± transition of Si donors in GaN

  11. Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima I reactor accident

    E-Print Network [OSTI]

    MacMullin, S; Green, M P; Henning, R; Holmes, R; Vorren, K; Wilkerson, J F

    2011-01-01T23:59:59.000Z

    We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima I Nuclear Power Plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^2 and 0.42 +/- 0.07 mBq/m^2 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

  12. TRAINING PROGRAM | www.nccleantech.ncsu.edu North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 1 919-523-8888 | www.nccleantech.ncsu.edu 2014

    E-Print Network [OSTI]

    and finance topics to help renewable energy project development; this is a hybrid onsite and online course, Raleigh, NC 27695 | 1 919-523-8888 | www.nccleantech.ncsu.edu 2014 The award-winning Renewable Energy network of experienced renewable energy professionals To earn this continuing education diploma from NC

  13. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability

    SciTech Connect (OSTI)

    Liu, L. [University of Florida, Gainesville; Xi, Y. Y. [University of Florida, Gainesville; Ren, F. [University of Florida; Pearton, S. J. [University of Florida; Laboutin, O. [Kopin Corporation, Taunton, MA; Cao, Yu [Kopin Corporation, Taunton, MA; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Kravchenko, Ivan I [ORNL

    2012-01-01T23:59:59.000Z

    AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

  14. Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer

    SciTech Connect (OSTI)

    Chen, Z.; Denbaars, S. P. [Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Pei, Y.; Newman, S.; Chu, R.; Brown, D.; Keller, S.; Mishra, U. K. [Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Chung, R.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2009-03-16T23:59:59.000Z

    Semi-insulating (SI) GaN layers were grown on 4H-SiC substrates by inserting an AlGaN layer between the AlN buffer and the GaN layer. Secondary ion mass spectroscopy measurements showed that the AlGaN layer prevented Si from diffusing from the substrate into the GaN layer. X-ray diffraction and atomic force microscopy analyses showed that an optimized AlGaN interlayer does not degrade the crystal quality or surface morphology of the SI GaN. The room temperature mobility of an AlGaN/GaN heterostructure using this SI GaN was 2200 cm{sup 2}/V s. High electron mobility transistors (HEMTs) with 0.65 {mu}m long gates were also fabricated on these SI GaN buffers. A power density of 19.0 W/mm with a power added efficiency of 48% was demonstrated at 10 GHz at a drain bias of 78 V. These HEMTs also exhibited sharp pinch off, low leakage, and negligible dispersion.

  15. New ORNL, N.C. State, LanzaTech DNA dataset is potent, accessible tool |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeasofNewNewornl.gov

  16. Microsoft Word - DOE-ID-12-007 NC State EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition of a 35 SECTION67

  17. Microsoft Word - DOE-ID-13-033 NC State B1-31.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition of32 SECTION A.3

  18. Microsoft Word - DOE-ID-13-034 NC State B1-31.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title: Acquisition of32 SECTION A.34

  19. MiniBooNE NC 1Ï€0 Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7, atMineralMuonSectionsνμ and

  20. The calculated rovibronic spectrum of scandium hydride, ScH

    E-Print Network [OSTI]

    Lodi, Lorenzo; Tennyson\\, Jonathan

    2015-01-01T23:59:59.000Z

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.

  1. News Archives | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home | Beamlines |

  2. IACT | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChang Curriculum Vitae' NetCDF

  3. DOE/SC Lehman Review of US ITER Project, USIPO,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is aSC Lehman

  4. Bionic Plants | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESAC HomeU.S. DOE OfficeBionic

  5. Brochures | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESAC HomeU.S. DOEhighlights/

  6. Ceremony | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S. DOE Office ofCeremony

  7. Commercialization Assistance| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S. DOE

  8. Contacts | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S.ComputationalContacts

  9. Contract Information | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information Grants &

  10. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information Grants

  11. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information GrantsContract

  12. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract Information

  13. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract InformationContract

  14. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)Contract

  15. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract Management Oak

  16. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract Management

  17. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract ManagementContract

  18. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContract

  19. Contract Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContract Management

  20. Cosmic Frontier | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContract

  1. Current Projects | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC)ContractContractContractCurrent

  2. Designation Process | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrent ProjectsResearch(SC)2/ Below

  3. Functions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S.U.S.(SC)

  4. News | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSB Home

  5. Newsletters | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSB HomeNewsletters About About

  6. Open FOAs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2 » Open FOAs

  7. Other Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2Other Links

  8. Other Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of ResearchNPNSBabout/jobs/CeO2Other

  9. Oversight | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact of

  10. Privacy Act | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome Pacific NorthwestHomePrivacy Act

  11. Programs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome Pacific

  12. Project Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagement Project Assessment

  13. Publications | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagement ProjectPublications

  14. Recovery Act | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery Act News

  15. Reference Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery Act

  16. Reporting Fraud | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecovery

  17. Research News | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome PacificManagementRecoveryResearch

  18. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHome

  19. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological and Environmental

  20. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological and

  1. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological andResearch Fusion

  2. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological andResearch

  3. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch Biological

  4. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch BiologicalOrganization

  5. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearch

  6. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources Brookhaven Site

  7. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources Brookhaven

  8. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources BrookhavenResources

  9. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResources

  10. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResourcesResources Pacific

  11. Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the Impact ofHomeResearchResourcesResources

  12. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of Science

  13. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » Staff Small

  14. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » Staff

  15. Staff | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout » StaffAbout »

  16. Sustainability | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAbout

  17. Technology Transfer | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office of ScienceAboutTechnology

  18. Theoretical Physics | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe Life of Enrico

  19. Training | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe Life of

  20. User Agreements | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUser Agreements User

  1. User Safety | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUser AgreementsUser

  2. 1950's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's The

  3. 1960's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's

  4. 1960's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's's

  5. 1970's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork 100Gbps's's's

  6. 1970's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork

  7. 1980's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The Enrico

  8. 1980's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The

  9. 1990's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's The

  10. 1990's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's The's

  11. 2000's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's

  12. 2000's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's The's's The

  13. 2009 Awards | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards

  14. 2010's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards's

  15. 2010's | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's Awards's's

  16. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33 Discovery

  17. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33

  18. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High

  19. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High3

  20. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High344

  1. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333 High3444

  2. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333

  3. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's3332015

  4. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's3332015

  5. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's33320155

  6. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe LifeUserWork's333201555

  7. DOE SC Exascale Requirements Review: High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT26,go!(RMP)08ResponseSC

  8. RMSSEC | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmart SensorsData -Madison

  9. Agenda20120921 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009

  10. Agenda22610 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February 26,

  11. Agenda31105 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February

  12. Agenda31708 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009February7,

  13. Agenda3209 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,

  14. Agenda3211 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes March 02,

  15. Agenda3807 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes March

  16. Agenda61505 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes MarchJune

  17. Agenda72709 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes

  18. Agenda73010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30, 2010

  19. Agenda82108 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,

  20. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,Ames

  1. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5,Minutes30,AmesAmes

  2. April 2004 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andApril 2004

  3. April | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andApril 2004April

  4. Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication Evaluation andAprilArchives

  5. Aug 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific

  6. August 2006 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific6

  7. August 2007 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific67

  8. August 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific678

  9. August 2009 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific6789

  10. August 2010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific67890

  11. August 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 Advanced Scientific678902

  12. BERAC Minutes | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutes Biological

  13. BES Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutesBES Reports

  14. BES Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1 AdvancedMinutesBES

  15. Biogeochemical Controls | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1Biogeochemical Controls

  16. Bios | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanisApplication1BiogeochemicalBios High

  17. European Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarth System(SC)of

  18. Thiyaga | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The birth of

  19. 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of1

  20. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of120122

  1. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of1201222

  2. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of12012223

  3. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOffice of120122233

  4. 20130627 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune 27-28,

  5. 20130905 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune

  6. 20131205 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune5-6, 2012

  7. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune5-6,

  8. AEC Headquarters | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC)WolfgangOfficeJune5-6,AAEC

  9. Bibtexcitationinfo | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals »Awake AnimalScience (SC)Reports

  10. November | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions NationalScience (SC) NewYorkNorthNovember

  11. November | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions NationalScience (SC)

  12. November | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions NationalScience (SC)November Advanced

  13. UNC EFRC | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)

  14. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice ofUtah

  15. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice ofUtahUtah

  16. Vermont Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice

  17. Vermont Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOfficeVermont

  18. MEEM | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love You Back LoveM od ein

  19. Meetings | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDispositionMechanicalAbout UsHome » Meetings

  20. ASCR Budget | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe A Growing

  1. ASCR Budget | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe A GrowingASCR Budget

  2. ASCR Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe APresentations Advanced

  3. About ASCAC | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCAC Advanced

  4. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCAC AdvancedAbout

  5. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCAC

  6. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCACAbout Materials

  7. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCACAbout

  8. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofTheAbout ASCACAboutAbout

  9. Benefits | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOEAward Search NuclearBESBarry

  10. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping theCategoricalScienceConrad L. Longmire,Contact

  11. Eligibility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12, 2004Documenting theEligibility

  12. Fundamental Interactions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.Frequently

  13. Fusion Education | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits of FES

  14. Fusion Institutions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits of

  15. Fusion Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOE OfficeU.S.FrequentlyBenefits

  16. Geosciences | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOEGas Phase ChemicalGeorge

  17. High School | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S. DOEGasH.G.Herbert F. York,High School

  18. Jobs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S. DOEJoan F. Brennecke, 2009JobsJobs

  19. Key Dates | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S. DOEJoanKaye D. Lathrop,KevinKey

  20. Meetings | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S.Maurice Goldhaber,MedicineMeetings

  1. Meetings | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S.Maurice

  2. Middle School | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctober 12,U.S.U.S.MauriceMeetingsMichaelVocabulary

  3. News Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctoberMildred S.Applications in High Energy News

  4. News Media | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctoberMildred S.Applications in High Energy NewsNews

  5. Organization | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctoberMildred S.ApplicationsOrganization Argonne Site

  6. Participant Obligations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) MappingOctoberMildredParticipant Obligations Community

  7. Quality Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators' MeetingsSciencePublicQuality Management

  8. Recommender Information | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray Irwin Deputy Director

  9. Recommender Information | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray Irwin Deputy DirectorRecommender

  10. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray IrwinandRobertofScience Highlights

  11. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray IrwinandRobertofScience

  12. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray IrwinandRobertofScienceScience

  13. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'Ray

  14. Sciences | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'RayScience and Cellular

  15. Sharlene Weatherwax | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)Principal Investigators'RayScience andSelectingSharlene

  16. 2008 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX RayNanotechnology:U.S.8

  17. 2009 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX RayNanotechnology:U.S.89

  18. 2010 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX RayNanotechnology:U.S.8900

  19. 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX

  20. 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 Discovery &

  1. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience

  2. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience2 High

  3. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience23

  4. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX1 DiscoveryScience233 High

  5. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 Advanced Scientific

  6. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 Advanced Scientific4

  7. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 Advanced Scientific4

  8. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 Advanced

  9. About INCITE | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDAC 2

  10. Agenda 20130128 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDAC

  11. Agenda 20130308 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDACDOE/NSF Nuclear

  12. Agenda 20131219 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDACDOE/NSF

  13. Agenda012901 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 SciDACDOE/NSFJanuary

  14. Agenda021904 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14

  15. Agenda030206 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006 Nuclear Science

  16. Agenda030603 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006 Nuclear

  17. Agenda031402 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006 Nuclear14-15,

  18. Agenda053003 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006

  19. Agenda072106 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006July 21, 2006

  20. Agenda080204 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006July 21,

  1. Agenda091303 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006July

  2. Agenda10704 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006JulyOctober 7,

  3. Agenda110102 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006JulyOctober 7,1,

  4. Agenda110703 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006JulyOctober

  5. Agenda111804 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3, 2006JulyOctober18,

  6. Agenda112901 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,

  7. Agenda11509 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009 Nuclear

  8. Agenda12307 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009 Nuclear3-4,

  9. Agenda12810 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX142-3,5, 2009 Nuclear3-4,8,

  10. Obligations | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeeding access(SC)Gas and Oil ResearchPublic

  11. NERSC Scientists Contribute to SC14 Technical Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayed Key Role in NobelReachesNERSC

  12. Light induced instability in bilayer nc-Si/a-Si thin film transistors M Bauza and A Nathan

    E-Print Network [OSTI]

    Haddadi, Hamed

    silicon (nc-Si:H) have been used as the channel layer in thin film transistors (TFTs) and photovoltaic in the field effect mobility of the device due to the higher contact resistance, it increases the ON/OFF ratio it is important to investigate the effect of TFT stability when subjected to illumination and/or electrical

  13. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    SciTech Connect (OSTI)

    Blanc, Guillaume; Duncan, Garry A.; Agarakova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangailinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Etten, James L. Van

    2010-05-06T23:59:59.000Z

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.

  14. North Carolina State University | College of Engineering | Raleigh, NC | www.ncsc.ncsu.edu FOSTERING PRIVATE SECTOR JOB

    E-Print Network [OSTI]

    300 companies annually with project and industry development. The Solar Center is home.ncsc.ncsu.edu FOSTERING PRIVATE SECTOR JOB CREATION AND INVESTMENT The North Carolina Solar Center was founded in 1988 at NC State University. The Solar Center breaks down barriers for clean energy businesses who want

  15. Strain variations in InGaAsP/InGaP superlattices studied by scanning probe microscopy

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Strain variations in InGaAsP/InGaP superlattices studied by scanning probe microscopy Huajie Chen, Kista, Sweden Abstract Strain-compensated InGaAsP/InGaP superlattices are studied in cross- section. The strain compensated InGaAsP/InGaP/InP superlattices studied here have application for light sources

  16. AlGaN/GaN Metal Oxide Semiconductor Field Effect Transistors using Titanium Dioxide P. J. HANSEN

    E-Print Network [OSTI]

    York, Robert A.

    AlGaN/GaN Metal Oxide Semiconductor Field Effect Transistors using Titanium Dioxide P. J. HANSEN 1 epitaxially on AlGaN/GaN HFET structures by molecular beam epitaxy (MBE). Growth was first performed on GaN templates to establish epitaxial growth conditions. X-ray diffraction showed [001] TiO2 || [1010]GaN

  17. AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate

    E-Print Network [OSTI]

    York, Robert A.

    AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium; published 13 October 2004) Use of high-k gate dielectrics in AlGaN/GaN heterostructure field transconductance and pinchoff voltage. To achieve this, AlGaN/GaN metal-oxide-semiconductor heterostructure field

  18. In this paper, an AlGaN/GaN high electron mobility transistor (HEMT) device based on a

    E-Print Network [OSTI]

    Yang, Kyounghoon

    205 Abstract In this paper, an AlGaN/GaN high electron mobility transistor (HEMT) device basedBm at 2 GHz have been demonstrated from the fabricated device. 1. Introduction In recent years, AlGaN/GaN noise amplifier and switch. Superior results have been reported in microwave power performance of AlGaN/GaN

  19. A New Architecture for AlGaN/GaN HEMT Frequency Doubler Using Active Integrated Antenna Design Approach

    E-Print Network [OSTI]

    Itoh, Tatsuo

    A New Architecture for AlGaN/GaN HEMT Frequency Doubler Using Active Integrated Antenna Design presents a new architecture for an AlGaN/GaN HEMT frequency doubler using the active integrated antenna. The antenna operates as a fundamental frequency reflector in this circuit. Using AlGaN/GaN with 1mm gate

  20. Generation-Recombination Defects In AlGaN/GaN HEMT On SiC Substrate,

    E-Print Network [OSTI]

    Boyer, Edmond

    Generation-Recombination Defects In AlGaN/GaN HEMT On SiC Substrate, Evidenced By Low Frequency Aristide Briand, 92.195 Meudon, France Abstract. Wide bandgap devices such as AlGaN/GaN High Electron of GR- bulges related respectively to AlGaN/GaN interface and quantum well are identified. Each GR

  1. Effect of dislocations on electron mobility in AlGaN/GaN and AlGaN/AlN/GaN heterostructures

    SciTech Connect (OSTI)

    Kaun, Stephen W.; Burke, Peter G.; Kyle, Erin C. H.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wong, Man Hoi; Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

    2012-12-24T23:59:59.000Z

    Al{sub x}Ga{sub 1-x}N/GaN (x = 0.06, 0.12, 0.24) and AlGaN/AlN/GaN heterostructures were grown on 6 H-SiC, GaN-on-sapphire, and free-standing GaN, resulting in heterostructures with threading dislocation densities of {approx}2 Multiplication-Sign 10{sup 10}, {approx}5 Multiplication-Sign 10{sup 8}, and {approx}5 Multiplication-Sign 10{sup 7} cm{sup -2}, respectively. All growths were performed under Ga-rich conditions by plasma-assisted molecular beam epitaxy. Dominant scattering mechanisms with variations in threading dislocation density and sheet concentration were indicated through temperature-dependent Hall measurements. The inclusion of an AlN interlayer was also considered. Dislocation scattering contributed to reduced mobility in these heterostructures, especially when sheet concentration was low or when an AlN interlayer was present.

  2. High efficiency InGaP solar cells for InGaP/GaAs tandem cell application

    SciTech Connect (OSTI)

    Takamoto, T.; Ikeda, E.; Kurita, H.; Ohmori, M. [Japan Energy Corp., Toda, Saitama (Japan). Central Research Lab.

    1994-12-31T23:59:59.000Z

    In this paper, high conversion efficiency single junction InGaP solar cells with n-p-p{sup +} structure are presented and their application to InGaP/GaAs monolithic tandem cells is discussed. In the InGaP cells, a best conversion efficiency of 18.48% was achieved by introducing the p{sup +} peak back surface field (BSF) layer with a high carrier concentration of 2 {times} 10{sup 18} cm{sup {minus}3}, which improved both short circuit current (Isc) and open circuit voltage (Voc). However, in the case of InGaP/GaAs tandem cells, a decrease in carrier concentration of the InGaP BSF layer, which was caused by the diffusion of Zn, was found to reduce the Isc and Voc of the tandem cell. The reduction in the carrier concentration was suppressed by using a thicker BSF layer of 0.5 {micro}m, which reduced the current density in the GaAs bottom cell. An InGaP/GaAs tandem cell with 27.3% efficiency and a high Voc of 2.418 V was obtained.

  3. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation

    E-Print Network [OSTI]

    Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phaseAs was 70% of that on bulk InP at both temperatures. To achieve this, graded buffers in the InGaAs, InGaP

  4. AlGaN/GaN HEMTs grown by Molecular Beam Epitaxy on sapphire, Sic, and HVPE GaN templates

    E-Print Network [OSTI]

    Manfra, Michael J.

    PS-4 AlGaN/GaN HEMTs grown by Molecular Beam Epitaxy on sapphire, Sic, and HVPE GaN templates Nils ABSTRACT Molecular Beam Epitaxy of GaN and related alloys is becoming a rival to the more established, and HVPE SI-GaN templates on sapphire. While sapphire and SI-Sic are established substrates for the growth

  5. ZrO2 gate dielectrics produced by ultraviolet ozone oxidation for GaN and AlGaN/GaN transistors

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    MOSCAP process ?ow: n-GaN substrate; Ohmic metallization andtion for a AlGaN/ GaN HEMT on a substrate which has a poorsapphire substrate, a well-passivated AlGaN/ GaN HEMT grown

  6. ISO/IEC JTC 1/SC 29/WG1 N2233 July 19, 2001

    E-Print Network [OSTI]

    Salvaggio, Carl

    ISO/IEC JTC 1/SC 29/WG1 N2233 July 19, 2001 TITLE: An Overview of the JPEG2000 Still Image Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener ­ Dr. Daniel T. Lee Yahoo! 3420 Central Expressway, Santa Clara, California 95051, USA Tel: +1 408 992 7051, Fax: +1 253 830 0372, E-mail: dlee@yahoo-inc.com ISO/IEC JTC 1/SC

  7. Growth and characterization of Sc-doped EuO thin films

    SciTech Connect (OSTI)

    Altendorf, S. G.; Reisner, A.; Chang, C. F.; Hollmann, N.; Rata, A. D.; Tjeng, L. H. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany)

    2014-02-03T23:59:59.000Z

    The preparation of 3d-transition metal-doped EuO thin films by molecular beam epitaxy is investigated using the example of Sc doping. The Sc-doped EuO samples display a good crystalline structure, despite the relatively small ionic radius of the dopant. The Sc doping leads to an enhancement of the Curie temperature to up to 125?K, remarkably similar to previous observations on lanthanide-doped EuO.

  8. Green light emission by InGaN/GaN multiple-quantum-well microdisks

    SciTech Connect (OSTI)

    Hsu, Yu-Chi; Lo, Ikai, E-mail: ikailo@mail.phys.nsysu.edu.tw; Shih, Cheng-Hung; Pang, Wen-Yuan; Hu, Chia-Hsuan; Wang, Ying-Chieh; Tsai, Cheng-Da; Chou, Mitch M. C. [Department of Physics, Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)] [Department of Physics, Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Hsu, Gary Z. L. [United Crystal Corporation, No. 243-3, Wenshan 36061, Miaoli, Taiwan (China)] [United Crystal Corporation, No. 243-3, Wenshan 36061, Miaoli, Taiwan (China)

    2014-03-10T23:59:59.000Z

    The high-quality In{sub x}Ga{sub 1?x}N/GaN multiple quantum wells were grown on GaN microdisks with ?-LiAlO{sub 2} substrate by using low-temperature two-step technique of plasma-assisted molecular beam epitaxy. We demonstrated that the hexagonal GaN microdisk can be used as a strain-free substrate to grow the advanced In{sub x}Ga{sub 1?x}N/GaN quantum wells for the optoelectronic applications. We showed that the green light of 566-nm wavelength (2.192?eV) emitted from the In{sub x}Ga{sub 1?x}N/GaN quantum wells was tremendously enhanced in an order of amplitude higher than the UV light of 367-nm wavelength (3.383?eV) from GaN.

  9. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Klem, John F. (Albuquerque, NM); Jones, Eric D. (Edgewood, NM)

    2001-01-01T23:59:59.000Z

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0GaAs layer, with the InGaAsN and GaAs layers being lattice-matched to the substrate. The InGaAsN/GaAs p-n heterojunction can be epitaxially grown by either molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). The InGaAsN/GaAs p-n heterojunction provides a high open-circuit voltage of up to 0.62 volts and an internal quantum efficiency of >70%.

  10. Texas AM Junior Science Bowl | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    News Media WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:...

  11. Other Participants 1995 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    News Media WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:...

  12. Other Participants 1997 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    News Media WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:...

  13. ISO/IEC JTC1/SC29/WG1 N1452 24 Nov 1999

    E-Print Network [OSTI]

    Zeng, Wenjun "Kevin"

    ISO/IEC JTC1/SC29/WG1 N1452 24 Nov 1999 ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) Coding of Still as an option in WD, Part II DISTRIBUTION: WG 1 Mailing List Contact: ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr 408 447 4160, Fax: +1 408 447 2842, E-mail: Daniel_Lee@hp.com 1 #12;ISO/IEC JTC1/SC29/WG1 N1452 24 Nov

  14. ESnet Powers NRL's 100 Gbps Remote I/O Demo at SC14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powers NRL's 100 Gbps Remote IO Demo at SC14 News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon...

  15. Agenda/Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    file (264KB) Links Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown...

  16. Working Group Presentations | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    file (264KB) Links Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown...

  17. Official List of SC User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Policies and Processes Definition Official List of SC User Facilities Designation Process User Statistics Collection Practices Science Highlights Frequently Asked Questions...

  18. InGaP/GaAs and InGaAs mechanically-stacked triple-junction solar cells

    SciTech Connect (OSTI)

    Takamoto, T.; Ikeda, E.; Agui, T. [Japan Energy Corp., Toda, Saitama (Japan)] [and others

    1997-12-31T23:59:59.000Z

    Triple-junction cells with AM1.5 efficiencies of over 33% have been demonstrated. A planar type InGaP/GaAs monolithic dual-junction cell was fabricated on a semi-insulating FaAs substrate, which has high infra-red transparency. Then a dual-junction cell, with efficiency of 27--28%, was mechanically stacked on an InGaAs cell fabricated on an InP substrate. The bottom InGaAs cell showed an efficiency of 6.2% under the InGaP/GaAs cell, and a total efficiency of 33--34% was achieved for the four-terminal triple-junction cell.

  19. Graphene induced remote surface scattering in graphene/AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Liu, Xiwen; Li, Dan; Wang, Bobo; Liu, Bin; Chen, Famin; Jin, Guangri; Lu, Yanwu, E-mail: ywlu@bjtu.edu.cn [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2014-10-20T23:59:59.000Z

    The mobilities of single-layer graphene combined with AlGaN/GaN heterostructures on two-dimensional electron gases in graphene/AlGaN/GaN double heterojunction are calculated. The impact of electron density in single-layer graphene is also studied. Remote surface roughness (RSR) and remote interfacial charge (RIC) scatterings are introduced into this heterostructure. The mobilities limited by RSR and RIC are an order of magnitude higher than that of interface roughness and misfit dislocation. This study contributes to designing structures for generation of higher electron mobility in graphene/AlGaN/GaN double heterojunction.

  20. Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films

    SciTech Connect (OSTI)

    Roul, Basanta; Kumar, Mahesh [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Kalghatgi, A. T. [Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Kumar, Nitesh; Sundaresan, A. [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India)

    2011-10-17T23:59:59.000Z

    We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm{sup -1} in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy.

  1. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2007-02-01T23:59:59.000Z

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of {approx}1 eV. For the last several years, research has been conducted by a number of organizations to develop {approx}1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) {approx}1-eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1-eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm{sup 2}) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include recent results of testing similar devices under the concentrated AMO spectrum, and also present the first demonstration of a high-efficiency, ultra-thin GaInP/GaAs/GaInAs tandem cell processed on a flexible kapton handle.

  2. September 16-21, 2007 Las Vegas, Nevada Gate recess technology on AlGaN/GaN HFET with InGaN as etch-stop layer

    E-Print Network [OSTI]

    Pala, Nezih

    0 2 V(V) C(pF) Before etching (material) After etching (device) G AlGaN substrate i-GaN DS AlN AlGaN substrate AlN i-GaN AlGaN S G DAlGaNAlGaN InGaNInGaN Standard gate recess InGaN stop layer gate recess InGaNICNS 7 September 16-21, 2007 ­ Las Vegas, Nevada Gate recess technology on AlGaN/GaN HFET with InGaN

  3. Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN P. J. Hansen

    E-Print Network [OSTI]

    York, Robert A.

    Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN P. J. Hansen Materials Department March 2005 Titanium dioxide TiO2, with the rutile structure was grown on 0001 oriented GaN and 0001 Al0.33Ga0.67N/GaN heterostructure field effect transistor HFET structures by molecular beam epitaxy. X

  4. Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells

    E-Print Network [OSTI]

    Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN based on radial p­i­n multi quantum well (QW) junctions have been realized from GaN wires grown by catalyst- free metal organic vapor phase epitaxy. The Inx Ga1Àx N/GaN undoped QW system is coated over both

  5. High density plasma damage in InGaP/GaAs as AlGaAs/GaAs high electron mobility transistors

    SciTech Connect (OSTI)

    Lee, J.W.; Pearton, S.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Ren, F.; Kopf, R.F.; Kuo, J.M. [Bell Labs., Murray Hill, NJ (United States). Lucent Technologies; Shul, R.J. [Sandia National Labs., Albuquerque, NM (United States); Constantine, C.; Johnson, D. [Plasma-Therm Inc., St. Petersburg, FL (United States)

    1998-11-01T23:59:59.000Z

    The introduction of plasma damage in InGaP/GaAs and AlGaAs/GaAs high electron mobility transistors (HEMTs) has been investigated using both inductively coupled plasma and electron cyclotron resonance Ar discharges. The saturated drain-source current is found to be decreased through introduction of compensating deep levels into the InGaP or AlGaAs donor layer. The degradation of device performance is a strong function of ion energy and ion flux, and an advantage of both high density plasma tools is that ion energy can be reduced by increasing the plasma density. Increasing process pressure and source power, and decreasing radio-frequency chuck power produce the lowest amounts of plasma damage in HEMTs.

  6. Comparison of compressive and tensile relaxed composition-graded GaAsP and ,,Al...InGaP substrates

    E-Print Network [OSTI]

    Comparison of compressive and tensile relaxed composition-graded GaAsP and ,,Al...InGaP substrates, around 104 cm-2 . The structures, grown on GaP or GaAs, consist of graded In-fraction InGaP and AlInGaP. High surface roughness and branch defects in Al InGaP lead to the lowest quality virtual substrates we

  7. Carrier Dynamics in InGaN/GaN SQW Structure Probed by the Transient Grating Method

    E-Print Network [OSTI]

    Okamoto, Koichi

    Carrier Dynamics in InGaN/GaN SQW Structure Probed by the Transient Grating Method; 78.55.Cr; 78.67.De; S7.14 Carrier dynamics in GaN and InGaN/GaN SQW structures were observed by using inhomogeneity of In composition. Recently, InGaN/GaN-based light emitting diodes (LEDs) have been commercialized

  8. N-Face GaN/AlGaN HEMTs Fabricated Through Layer Transfer Technology

    E-Print Network [OSTI]

    Chung, Jinwook

    We present a new method to fabricate N-face GaN/AlGaN high electron mobility transistors (HEMTs). These devices are extremely promising for ultrahigh frequency applications where low contact resistances and excellent carrier ...

  9. Development and Industrialization of InGaN/GaN LEDs on Patterned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of InGaNGaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture Development and Industrialization of InGaNGaN LEDs on Patterned Sapphire...

  10. Breakdown mechanism in AlGaN/GaN HEMTs on Si substrate

    E-Print Network [OSTI]

    Lu, Bin

    AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates have attracted a great interest for power electronics applications. Despite the low cost of the Si substrate, the breakdown voltage (V[subscript ...

  11. Siemens Pittsburgh, PA Novelis Corporation Atlanta, GA

    E-Print Network [OSTI]

    McGaughey, Alan

    Industrial Design ­ Shanghai, China Eaton Corporation ­ Pittsburgh, PA CMU, CTTEC ­ PittsburghSiemens ­ Pittsburgh, PA Novelis Corporation ­ Atlanta, GA Expense

  12. Final Report for DOE Grant Number DE-SC0001481

    SciTech Connect (OSTI)

    Liang, Edison [Rice University

    2013-12-02T23:59:59.000Z

    This report covers research activities, major results and publications supported by DE-SC-000-1481. This project was funded by the DOE OFES-NNSA HEDLP program. It was a joint research program between Rice University and the University of Texas at Austin. The physics of relativistic plasmas was investigated in the context of ultra-intense laser irradiation of high-Z solid targets. Laser experiments using the Texas Petawatt Laser were performed in the summers of 2011, 2012 and 2013. Numerical simulations of laser-plasma interactions were performed using Monte Carlo and Particle-in-Cell codes to design and support these experiments. Astrophysical applications of these results were also investigated.

  13. Analysis of Stripping to Quasibound Levels in Sc-41

    E-Print Network [OSTI]

    Youngblood, David H.; Kozub, R. L.; Kenefick, R. A.; Hiebert, John C.

    1970-01-01T23:59:59.000Z

    Levels in 4'Sc~ D. H. Youngblood, R. L. Kozub, R. A. Kenefick, and J. C. Hiebert Cyclotron Institute, Texas A 5 M University, College Station, Texas 77843 (Received 2 February 1970) Angular distributions have been measured for 15 levels observed... Befs. 1-8. Ex (MeV) Contribution to 0. by unresolved levels 0 1.718 2.100 2.419 2.686 2.892 2.966 3.192 3.471 3.744 4.030 4,519 4.812 5.037 6.413 5.542 6.709 6.862 5.981 6.167 6.257 6.470 6.902' 7.814 8.119' 8.694 See text...

  14. Strain-balanced InGaN/GaN multiple quantum wells

    SciTech Connect (OSTI)

    Van Den Broeck, D. M.; Hosalli, A. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-07-21T23:59:59.000Z

    InGaN/GaN multiple quantum well (MQW) structures suffer from a high amount of compressive strain in the InGaN wells and the accompanied piezoelectric field resulting in both a blue shift in emission and a reduction of emission intensity. We report the growth of In{sub x}Ga{sub 1?x}N/GaN “strain-balanced” multiple quantum wells (SBMQWs) grown on thick In{sub y}Ga{sub 1?y}N templates for x?>?y by metal organic chemical vapor deposition. SBMQWs consist of alternating layers of In{sub x}Ga{sub 1?x}N wells and GaN barriers under compressive and tensile stress, respectively, which have been lattice matched to a thick In{sub y}Ga{sub 1?y}N template. Growth of the In{sub y}Ga{sub 1?y}N template is also detailed in order to achieve thick, relaxed In{sub y}Ga{sub 1?y}N grown on GaN without the presence of V-grooves. When compared to conventional In{sub x}Ga{sub 1?x}N/GaN MQWs grown on GaN, the SBMQW structures exhibit longer wavelength emission and higher emission intensity for the same InN mole fraction due to a reduction in the well strain and piezoelectric field. By matching the average lattice constant of the MQW active region to the lattice constant of the In{sub y}Ga{sub 1?y}N template, essentially an infinite number of periods can be grown using the SBMQW growth method without relaxation-related effects. SBMQWs can be utilized to achieve longer wavelength emission in light emitting diodes without the use of excess indium and can be advantageous in addressing the “green gap.”.

  15. High current gain InGaN=GaN HBTs with C operating temperature

    E-Print Network [OSTI]

    Asbeck, Peter M.

    with an $20 nm low-temperature (Tg ¼ 550 C) GaN buffer layer on a (0001) sapphire substrate. The layer 1018 cmÀ3 Buffer GaN 2.5 mm ­ Substrate Sapphire ­ ­ HBT device processing began by depositing a 100 nmHigh current gain InGaN=GaN HBTs with 300 C operating temperature D.M. Keogh, P.M. Asbeck, T. Chung

  16. Nichtamtliche Lesefassung der Fachprfungsordnung M.Sc. Health Care Management Fachprfungsordnung

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Nichtamtliche Lesefassung der Fachprüfungsordnung M.Sc. Health Care Management Fachprüfungsordnung des Masterstudiengangs Health Care Management an der Ernst-Moritz-Arndt-Universität Greifswald vom 15-Moritz-Arndt-Universität Greifs- wald die folgende Prüfungsordnung für den Masterstudiengang (M. Sc.) ,,Health Care Management

  17. Thermoelectric Transport in a ZrN/ScN Superlattice MONA ZEBARJADI,1

    E-Print Network [OSTI]

    Thermoelectric Transport in a ZrN/ScN Superlattice MONA ZEBARJADI,1 ZHIXI BIAN,1 RAJEEV SINGH,1 ALI for a high thermoelectric figure of merit. The thermopower of these structures can be enhanced by controlling and experimental studies of the thermoelectric transport in ZrN/ScN metal/semiconductor superlattices. Preliminary

  18. CrowdSC: Building Smart Cities with Large Scale Citizen Participation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CrowdSC: Building Smart Cities with Large Scale Citizen Participation Karim Benouaret1 , Raman/Inria/Universit´e de Lorraine, Villers-l`es-Nancy, France Abstract ­ An elegant way to make cities smarter would CrowdSC, an effective crowdsourcing frame- work designed for smarter cities. We show that it is possible

  19. Switchable piezoelectric transduction in AlGaN/GaN MEMS resonators

    E-Print Network [OSTI]

    Weinstein, Dana

    This work presents a new switching mechanism in piezoelectric transduction of AlGaN/GaN bulk acoustic resonators. A piezoelectric transducer is formed in the AlGaN, between a top Schottky electrode and a 2D electron gas ...

  20. Spontaneous emission in GaN/InGaN photonic crystal nanopillars

    E-Print Network [OSTI]

    Boyer, Edmond

    . Sigalas, "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466, and H. Benisty, "Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution

  1. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01T23:59:59.000Z

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  2. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    SciTech Connect (OSTI)

    Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru; Mushnikov, Nikolai V., E-mail: kleinerman@imp.uran.ru; Stashkova, Liudmila A., E-mail: kleinerman@imp.uran.ru [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation)

    2014-10-27T23:59:59.000Z

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to enter the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)

  3. TEM Characterization of InAs/GaAs Quantum Dots Capped by a GaSb/GaAs Layer

    SciTech Connect (OSTI)

    Beltran, AM [Universidad de Cadiz, Spain; Ben, Teresa [Universidad de Cadiz, Spain; Sanchez, AM [Universidad de Cadiz, Spain; Sales Lerida, David [ORNL; Chisholm, Matthew F [ORNL; Varela del Arco, Maria [ORNL; Pennycook, Stephen J [ORNL; Galindo, Pedro [Universidad de Cadiz, Spain; Ripalda, JM [Instituto de Microelectronica de Madrid (CNM, CSIC); Molina Rubio, Sergio I [ORNL

    2008-01-01T23:59:59.000Z

    It is well known that there is intense interest in expanding the usable wavelength for electronic devices. This is one of the reasons to study new self-assembled semiconductor nanostructures. Telecommunication applications use InGaAsP/InP emitting at 1.3 and 1.55 m. Research efforts are dedicated to develop GaAs technology in order to achieve emission at the same range as InP, so GaAs could be used for optical fibre communications. Ga(As)Sb on InAs/GaAs quantum dots (QDs) is a promising nanostructure to be used in telecommunications. The introduction of antimony during or after the QDs growth is an effective solution to obtain a red shift in the emission wavelength, even at room temperature.

  4. Excitonic properties of strained wurtzite and zinc-blende GaNAlxGa1xN quantum dots

    E-Print Network [OSTI]

    Fonoberov, Vladimir

    Excitonic properties of strained wurtzite and zinc-blende GaNÕAlxGa1ÀxN quantum dots Vladimir A 2003 We investigate exciton states theoretically in strained GaN/AlN quantum dots with wurtzite WZ of GaN QDs.1­8 Molecu- lar beam epitaxial growth in the Stranski­Krastanov mode of wurtzite WZ Ga

  5. Morphological and compositional variations in strain-compensated InGaAsP/InGaP superlattices

    E-Print Network [OSTI]

    Feenstra, Randall

    Morphological and compositional variations in strain- compensated InGaAsP/InGaP superlattices R of Technology, Kista, Sweden Abstract We have investigated the properties of strain-compensated InGaAsP/In- GaP superlattices, grown by metalorganic vapor phase epitaxy, with and without InP interlayers inserted in the InGaP

  6. Operating Characteristics of GaAs/InGaP Self Aligned Stripe Lasers Benjamin J. Stevens1

    E-Print Network [OSTI]

    Operating Characteristics of GaAs/InGaP Self Aligned Stripe Lasers Benjamin J. Stevens1 , Kristian of GaAs based self-aligned lasers based upon a single overgrowth. A lattice matched n-doped InGaP layer were exposed to oxygen. True buried heterostructures devices utilising InGaP clad- ding layers have

  7. Microstructure and luminescent properties of novel InGaP alloys on relaxed GaAsP substrates

    E-Print Network [OSTI]

    Microstructure and luminescent properties of novel InGaP alloys on relaxed GaAsP substrates M. J of unconventional alloys of InGaP with In fraction of 0.2­0.4 grown on fully relaxed GaAsP virtual substrates demonstrate growth of extremely high quality InGaP heterostructures which hold promise for fabrication

  8. Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M Abstract Scanning tunneling microscopy and spectroscopy are used to study InGaP/GaAs heterojunctions computation of the tunnel current. Curve fitting of theory to experiment is performed. Using an InGaP band gap

  9. Negative capacitance in GaN/AlGaN heterojunction dual-band detectors L. E. Byrum,1

    E-Print Network [OSTI]

    Dietz, Nikolaus

    Negative capacitance in GaN/AlGaN heterojunction dual-band detectors L. E. Byrum,1 G. Ariyawansa,1 online 2 September 2009 A study of trap states in n+ -GaN/AlGaN heterostructures using electrical related absorption centers attributed to shallow Si-donor pinned to the AlGaN barrier , N-vacancy/ C

  10. High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop

    E-Print Network [OSTI]

    Itoh, Tatsuo

    High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop amplifier module using AlGaN/GaN high electron mobility transistor (HEMT) has been developed that covers radars and communications systems. GaN-based HEMT's for high power applications at microwave frequencies

  11. Impact ionization in N-polar AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Killat, N., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk; Uren, M. J.; Kuball, M., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk [Center for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Keller, S.; Kolluri, S.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of Santa Barbara California, Santa Barbara, California 93106 (United States)

    2014-08-11T23:59:59.000Z

    The existence of impact ionization as one of the open questions for GaN device reliability was studied in N-polar AlGaN/GaN high electron mobility transistors. Electroluminescence (EL) imaging and spectroscopy from underneath the device gate contact revealed the presence of hot electrons in excess of the GaN bandgap energy even at moderate on-state bias conditions, enabling impact ionization with hole currents up to several hundreds of pA/mm. The detection of high energy luminescence from hot electrons demonstrates that EL analysis is a highly sensitive tool to study degradation mechanisms in GaN devices.

  12. Michael J. Poston Atlanta, GA 30307

    E-Print Network [OSTI]

    Orlando, Thomas

    Page | 1 Michael J. Poston Atlanta, GA 30307 Michael.Poston@gatech.edu Cell: 770.561.4756 U.S. Citizen Education PhD Candidate in Chemistry Georgia Institute of Technology, Atlanta, GA August 2007 with Application to Lunar Observations," JGR ­ Planets, 118, 105, doi: 10.1002/jgre.20025. Poston, M. J

  13. June M. Merlino, Training & Organizational Development Consultant June Merlino joined NC State in April 2010 and currently serves as a training and organizational

    E-Print Network [OSTI]

    June M. Merlino, Training & Organizational Development Consultant June Merlino joined NC State in April 2010 and currently serves as a training and organizational development consultant. June offers organizational effectiveness consultations with academic, administrative leaders and teams responding to change

  14. Tunable two-dimensional plasmon resonances in an InGaAs/InP high electron mobility transistor

    E-Print Network [OSTI]

    Peale, Robert E.

    of materials systems such as GaAs/AlGaAs,3 InGaP/InGaAs/GaAs,4 GaN/AlGaN,2,5 and Si Ref. 1 have been explored

  15. SC Beta Graded Cavity Design for a Proposed 350 MHZ Linac for Waste Transmutation and Energy Production

    E-Print Network [OSTI]

    Barni, D; Pagani, C; Pierini, P; Visona, S; Gemme, G; Parodi, R

    1998-01-01T23:59:59.000Z

    SC Beta Graded Cavity Design for a Proposed 350 MHZ Linac for Waste Transmutation and Energy Production

  16. FUPWG Meeting Agenda - Atlanta, GA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atlanta, GA FUPWG Meeting Agenda - Atlanta, GA Energy on My Mind FUPWG Atlanta, GA May 3-4, 2006 Hosted by: AGL Resources Logo May 3-4, 2006 Hosted by AGL Resources Atlanta,...

  17. AlGaN/GaN heterostructure prepared on a Si (110) substrate via pulsed sputtering

    SciTech Connect (OSTI)

    Watanabe, T.; Ohta, J.; Kondo, T.; Ohashi, M.; Ueno, K.; Kobayashi, A. [Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Tokyo 153-8505 (Japan); Fujioka, H., E-mail: hfujioka@iis.u-tokyo.ac.jp [Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Tokyo 153-8505 (Japan); CREST, Japan Science and Technology Corporation (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2014-05-05T23:59:59.000Z

    GaN films were grown on Si (110) substrates using a low-temperature growth technique based on pulsed sputtering. Reduction of the growth temperature suppressed the strain in the GaN films, leading to an increase in the critical thickness for crack formation. In addition, an AlGaN/GaN heterostructure with a flat heterointerface was prepared using this technique. Furthermore, the existence of a two dimensional electron gas at the heterointerface with a mobility of 1360 cm{sup 2}/Vs and a sheet carrier density of 1.3?×?10{sup 13}?cm{sup ?2} was confirmed. Finally, the use of the AlGaN/GaN heterostructure in a high electron mobility transistor was demonstrated. These results indicate that low-temperature growth via pulsed sputtering is quite promising for the fabrication of GaN-based electronic devices.

  18. 56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar Cells on GaAs

    E-Print Network [OSTI]

    Haller, Gary L.

    56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar bandgap range. Index Terms--Epitaxy, GaAsP, InGaP, metamorphic. I. INTRODUCTION TODAY'S highest efficiency

  19. Applications and nominations are invited for the position of Chair of the Department of Mathematical Sciences at Clemson University. Qualifications include a rank of Full Professor, or

    E-Print Network [OSTI]

    Stuart, Steven J.

    information regarding the department and its programs can be found at its website http information should be sent to: Dr. Gretchen Matthews, Chair Mathematical Sciences Department Chair Search Ridge Mountains and the metropolitan areas of Greenville-Spartanburg, SC; Charlotte, NC; and Atlanta, GA

  20. Entertainment Technology Center, CMU Post-Graduation Survey Results, Dec 2012, May 2013, and Aug 2013

    E-Print Network [OSTI]

    Matsuda, Noboru

    Alumni Contacts 13 ETC dlist email 11 Intern Search/Company Websites 9 Faculty Contacts 8 Interviews Southwest: AZ, NM, OK, TX 1 West: CA, HI, NV 40 Southeast: AL, AR, FL, GA, KY, LA, MS, NC, PR, SC, TN 3