Sample records for navigation search wave

  1. Navigating Computer Science Research Through Waves of Privacy Concerns

    E-Print Network [OSTI]

    Navigating Computer Science Research Through Waves of Privacy Concerns: Discussions among Computer as Institute for Software Research International Technical Report CMU-ISRI-03-102 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3890 Abstract Computer Science research and practice

  2. Navigating Computer Science Research Through Waves of Privacy Concerns

    E-Print Network [OSTI]

    1 Navigating Computer Science Research Through Waves of Privacy Concerns: Discussions among appears as Computer Science Technical Report CMU­CS­03­165 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213­3890 Abstract Computer Science research and practice are raising growing

  3. Navigating Computer Science Research Through Waves of Privacy Concerns

    E-Print Network [OSTI]

    Navigating Computer Science Research Through Waves of Privacy Concerns: Discussions among Computer as Computer Science Technical Report CMU-CS-03-165 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3890 Abstract Computer Science research and practice are raising growing privacy

  4. Indexing and Keyword Search to Ease Navigation in Lecture Videos

    E-Print Network [OSTI]

    Subhlok, Jaspal

    Indexing and Keyword Search to Ease Navigation in Lecture Videos Tayfun Tuna, Jaspal Subhlok@uh.edu, shah@cs.uh.edu Abstract----Lecture videos have been commonly used to supplement in-class teaching and for distance learning. Videos recorded during in-class teaching and made accessible online are a versatile

  5. Mining Web Site Link Structures for Adaptive Web Site Navigation and Search

    E-Print Network [OSTI]

    Zhu, Jianhan

    Mining Web Site Link Structures for Adaptive Web Site Navigation and Search Jianhan Zhu BSc Faculty of the requirements for the degree of Doctor of Philosophy October, 2003 #12;University of Ulster Abstract Mining Web Site Link Structures for Adaptive Web Site Navigation and Search by Jianhan Zhu Supervisors: Dr. Jun

  6. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

  7. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...

    Open Energy Info (EERE)

    Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico- Results from the Jemez Teleseismic Tomography Experiment Jump to: navigation, search OpenEI...

  8. P wave anisotropy, stress, and crack distribution at Coso geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: P wave anisotropy, stress, and crack distribution at Coso geothermal field, California...

  9. Anomalous shear wave attenuation in the shallow crust beneath...

    Open Energy Info (EERE)

    Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic region, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  10. E-Print Network 3.0 - aware navigation based Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in strategic (navigation) tasks... automation for navigation tasks. Keywords: In-vehicle automation; Automation reliability; Situation aware... reality-based driving...

  11. Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors

    SciTech Connect (OSTI)

    Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

    2011-06-22T23:59:59.000Z

    This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

  12. Shear-wave splitting as a tool for the characterization of geothermal...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Shear-wave splitting as a tool for the characterization of geothermal fractured reservoirs:...

  13. Directed search for continuous gravitational waves from the Galactic center

    E-Print Network [OSTI]

    Aggarwal, Nancy

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGOs fifth science run from two LIGO ...

  14. Shear-wave splitting and reservoir crack characterization: the...

    Open Energy Info (EERE)

    Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Shear-wave...

  15. E-Print Network 3.0 - auxiliary navigation mechanism Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -December 2004 Summary: - Waterways Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. Navigable... ;13 Geobags Geo Containers 12;14...

  16. Proposal for a geophysical search for dilatonic waves

    E-Print Network [OSTI]

    Sachie Shiomi

    2008-08-12T23:59:59.000Z

    We propose a new method of searching for the composition-dependent dilatonic waves, predicted by unified theories of strings. In this method, Earth's surface-gravity changes due to translational motions of its inner core, excited by dilatonic waves, are searched for by using superconducting gravimeters. This method has its best sensitivity at the frequency of $\\sim$ 7 $\\times$ 10$^{-5}$ Hz, which is lower than the sensitive frequencies of previous proposals using gravitational-wave detectors: $\\sim$ 10 to 1000 Hz. Using available results of surface-gravity measurements with superconducting gravimeters and assuming a simple Earth model, we present preliminary upper limits on the energy density of a stochastic background of massless dilatons at the low frequency. Though the results are currently limited by the uncertainty in the Earth model, this method has a potential of detecting dilatonic waves in a new window.

  17. Einstein@Home search for periodic gravitational waves in LIGO S4 data

    E-Print Network [OSTI]

    Zucker, Michael E.

    A search for periodic gravitational waves, from sources such as isolated rapidly spinning neutron stars, was carried out using 510 h of data from the fourth LIGO science run (S4). The search was for quasimonochromatic waves ...

  18. LIGO and the Search for Gravitational Waves

    SciTech Connect (OSTI)

    Robertson, Norna A.

    2006-10-16T23:59:59.000Z

    Gravitational waves, predicted to exist by Einstein's General Theory of Relativity but as yet undetected, are expected to be emitted during violent astrophysical events such as supernovae, black hole interactions and the coalescence of compact binary systems. Their detection and study should lead to a new branch of astronomy. However the experimental challenge is formidable: ground-based detection relies on sensing displacements of order 10{sup -18} m over a frequency range of tens of hertz to a few kHz. There is currently a large international effort to commission and operate long baseline interferometric detectors including those that comprise LIGO - the Laser Interferometer Gravitational-Wave Observatory - in the USA. In this talk I will give an introduction to the topic of gravitational wave detection and in particular review the status of the LIGO project which is currently taking data at its design sensitivity. I will also look to the future to consider planned improvements in sensitivity for such detectors, focusing on Advanced LIGO, the proposed upgrade to the LIGO project.

  19. On Investigating EMD Parameters to Search for Gravitational Waves

    E-Print Network [OSTI]

    Hirotaka Takahashi; Ken-ichi Oohara; Masato Kaneyama; Yuta Hiranuma; Jordan B Camp

    2013-06-23T23:59:59.000Z

    The Hilbert-Huang transform (HHT) is a novel, adaptive approach to time series analysis. It does not impose a basis set on the data or otherwise make assumptions about the data form, and so the time--frequency decomposition is not limited by spreading due to uncertainty. Because of the high resolution of the time--frequency, we investigate the possibility of the application of the HHT to the search for gravitational waves. It is necessary to determine some parameters in the empirical mode decomposition (EMD), which is a component of the HHT, and in this paper we propose and demonstrate a method to determine the optimal values of the parameters to use in the search for gravitational waves.

  20. Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    E-Print Network [OSTI]

    the LIGO Scientific Collaboration; the Virgo Collaboration; J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; E. Amador Ceron; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. A. Arain; M. C. Araya; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; S. Ballmer; J. C. B. Barayoga; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; D. Beck; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; A. Belletoile; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet-Castell; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; E. Calloni; J. B. Camp; P. Campsie; J. Cannizzo; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; S. Caudill; M. Cavaglia; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; O. Chaibi; T. Chalermsongsak; P. Charlton; E. Chassande-Mottin; S. Chelkowski; W. Chen; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. Cho; J. Chow; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; S. L. Danilishin; R. Dannenberg; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; W. Del Pozzo; M. del Prete; T. Dent; V. Dergachev; R. DeRosa; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Diaz; A. Dietz; F. Donovan; K. L. Dooley; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endroczi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Y. Fan; B. F. Farr; D. Fazi; H. Fehrmann; D. Feldbaum; F. Feroz; I. Ferrante; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; M. Flanigan; S. Foley; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. J. Fulda; M. Fyffe; J. Gair; M. Galimberti; L. Gammaitoni; J. Garcia; F. Garufi; M. E. Gaspar; G. Gemme; R. Geng; E. Genin; A. Gennai; L. A. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil; C. Gill; J. Gleason; E. Goetz; L. M. Goggin; G. Gonzalez; M. L. Gorodetsky; S. Gossler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; N. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Greverie; R. Grosso; H. Grote; S. Grunewald; G. M. Guidi; C. Guido; R. Gupta; E. K. Gustafson; R. Gustafson; T. Ha; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; J. Heefner; A. Heidmann; M. C. Heintze; H. Heitmann; P. Hello; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; D. J. Hosken; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; E. James; Y. J. Jang; P. Jaranowski; E. Jesse; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; S. Kawamura; F. Kawazoe; D. Kelley; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. Kim; C. Kim; H. Kim; K. Kim; N. Kim; Y. -M. Kim; P. J. King; D. L. Kinzel; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; S. Koranda; W. Z. Korth; I. Kowalska

    2012-04-25T23:59:59.000Z

    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 solar masses, for non-spinning sources, the rate density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.

  1. P wave velocity variations in the Coso region, California, derived...

    Open Energy Info (EERE)

    times Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: P wave velocity variations in the Coso region, California, derived from local earthquake...

  2. SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA

    E-Print Network [OSTI]

    Bodiya, Timothy Paul

    We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained ...

  3. First LIGO search for gravitational wave bursts from cosmic (super)strings

    E-Print Network [OSTI]

    Zucker, Michael E.

    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected ...

  4. Navigating the Numbers: Greenhouse Gas Data and International...

    Open Energy Info (EERE)

    the Numbers: Greenhouse Gas Data and International Climate Policy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Navigating the Numbers: Greenhouse Gas Data and...

  5. Einstein@Home search for periodic gravitational waves in early S5 LIGO data

    E-Print Network [OSTI]

    Barsotti, Lisa

    This paper reports on an all-sky search for periodic gravitational waves from sources such as deformed isolated rapidly spinning neutron stars. The analysis uses 840 hours of data from 66 days of the fifth LIGO science run ...

  6. X-Pipeline: an analysis package for autonomous gravitational-wave burst searches

    E-Print Network [OSTI]

    Sutton, Patrick J.

    Autonomous gravitational-wave searchesfully automated analyses of data that run without human intervention or assistanceare desirable for a number of reasons. They are necessary for the rapid identification of ...

  7. Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

    E-Print Network [OSTI]

    Aasi, J.

    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among ...

  8. Pulsar Timing Noise and the Search for Very-Low-Frequency Gravitational Waves

    E-Print Network [OSTI]

    Weinreb, Sander

    Pulsar Timing Noise and the Search for Very-Low-Frequency Gravitational Waves John Armstrong, Frank in any other way Scientific payoff Test of fundamental physical law GW astronomy: seeing the "Dark

  9. Irrigation, Navigation Flood Control and Recreation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irrigation,-Navigation-Flood-Control-and-Recreation- Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  10. Sensitivity comparison of searches for binary black hole coalescences with ground-based gravitational-wave detectors

    E-Print Network [OSTI]

    Mohapatra, Satya

    Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic ...

  11. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 20052010

    E-Print Network [OSTI]

    Aggarwal, Nancy

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources ...

  12. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

    E-Print Network [OSTI]

    Barsotti, Lisa

    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected ...

  13. Chasing 5-sigma: Prospects for searches for long-duration gravitational-waves without time slides

    E-Print Network [OSTI]

    Michael Coughlin; Patrick Meyers; Shivaraj Kandhasamy; Eric Thrane; Nelson Christensen

    2015-05-01T23:59:59.000Z

    The detection of unmodeled gravitational-wave bursts by ground-based interferometric gravitational-wave detectors is a major goal for the advanced detector era. These searches are commonly cast as pattern recognition problems, where the goal is to identify statistically significant clusters in spectrograms of strain power when the precise signal morphology is unknown. In previous work, we have introduced a clustering algorithm referred to as "seedless clustering," and shown that it is a powerful tool for detecting weak long-lived (10-1000s) signals in background. However, as the algorithm is currently conceived, in order to carry out an all-sky search on a $\\approx$ year of data, significant computational resources may be required in order to carry out background estimation. Alternatively, some of the sensitivity of the search must be sacrificed to control computational costs. The sensitivity of the algorithm is limited by the amount of computing resources due to the requirement of performing background studies to assign significance in gravitational-wave searches. In this paper, we present an analytic method for estimating the background generated by the seedless clustering algorithm and compare the performance to both Monte Carlo Gaussian noise and time-shifted gravitational-wave data from a week of LIGO's 5th Science Run. We demonstrate qualitative agreement between the model and measured distributions and argue that the approximation will be useful to supplement conventional background estimation techniques for advanced detector searches for long-duration gravitational-wave transients.

  14. Multivariate Classification with Random Forests for Gravitational Wave Searches of Black Hole Binary Coalescence

    E-Print Network [OSTI]

    Paul T. Baker; Sarah Caudill; Kari A. Hodge; Dipongkar Talukder; Collin Capano; Neil J. Cornish

    2014-12-19T23:59:59.000Z

    Searches for gravitational waves produced by coalescing black hole binaries with total masses $\\gtrsim25\\,$M$_\\odot$ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass $\\left( \\gtrsim25\\,\\mathrm{M}_\\odot \\right)$ parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown (IMR) of binary black holes with total mass between $25\\,$M$_\\odot$ and $100\\,$M$_\\odot$, we find sensitive volume improvements as high as $70_{\\pm 13}-109_{\\pm 11}$\\% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between $10\\,$M$_\\odot$ and $600\\,$M$_\\odot$, we find sensitive volume improvements as high as $61_{\\pm 4}-241_{\\pm 12}$\\% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.

  15. Green Wave Energy Corp GWEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,IISrl Jump to: navigation, searchWave

  16. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. Bejger; M. G. Beker; C. Belczynski; A. S. Bell; C. Bell; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; M. Blom; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brckner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Delglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Daz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Grf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; E. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jimnez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kflian; G. M. Keiser; D. Keitel; D. B. Kelley; W. Kells; A. Khalaidovski

    2014-09-17T23:59:59.000Z

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.

  17. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    E-Print Network [OSTI]

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adams, T; Addesso, P; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Ast, S; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Bao, Y; Barayoga, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bhadbade, T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bond, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavagli, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; Del Pozzo, W; Dent, T; Dergachev, V; DeRosa, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Daz, M; Dietz, A; Dietz, A; Donovan, F; Dooley, K L; Doravari, S; Dorsher, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endr?czi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Farr, B F; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J -D; Franc, J; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M A; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gspr, M E; Gelencser, G; Gemme, G; Genin, E; Gennai, A; Gergely, L ; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Gonzlez, G; Gorodetsky, M L; Goler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner}, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Keitel, D; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnan, B; Krlak, A; Kuehn, G; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Lam, P K; Landry, M; Langley, A; Lantz, B

    2012-01-01T23:59:59.000Z

    This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 \\times 10^-9, 1.1 \\times 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the search lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 15...

  18. Einstein@Home search for periodic gravitational waves in early S5 LIGO data

    E-Print Network [OSTI]

    LIGO Scientific Collaboration

    2009-05-11T23:59:59.000Z

    This paper reports on an all-sky search for periodic gravitational waves from sources such as deformed isolated rapidly-spinning neutron stars. The analysis uses 840 hours of data from 66 days of the fifth LIGO science run (S5). The data was searched for quasi-monochromatic waves with frequencies f in the range from 50 Hz to 1500 Hz, with a linear frequency drift \\dot{f} (measured at the solar system barycenter) in the range -f/\\tau < \\dot{f} < 0.1 f/\\tau, for a minimum spin-down age \\tau of 1000 years for signals below 400 Hz and 8000 years above 400 Hz. The main computational work of the search was distributed over approximately 100000 computers volunteered by the general public. This large computing power allowed the use of a relatively long coherent integration time of 30 hours while searching a large parameter space. This search extends Einstein@Home's previous search in LIGO S4 data to about three times better sensitivity. No statistically significant signals were found. In the 125 Hz to 225 Hz band, more than 90% of sources with dimensionless gravitational-wave strain tensor amplitude greater than 3e-24 would have been detected.

  19. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    E-Print Network [OSTI]

    J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; P. Addesso; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; S. Ast; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; S. Ballmer; Y. Bao; J. C. B. Barayoga; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; D. Beck; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; T. Bhadbade; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; C. Bond; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet--Castell; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; G. Cagnoli; E. Calloni; J. B. Camp; P. Campsie; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; T. Chalermsongsak; P. Charlton; E. Chassande-Mottin; W. Chen; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; J. Degallaix; W. Del Pozzo; T. Dent; V. Dergachev; R. DeRosa; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Daz; A. Dietz; A. Dietz; F. Donovan; K. L. Dooley; S. Doravari; S. Dorsher; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endrczi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; B. F. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; S. Foley; E. Forsi; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. A. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. J. Fulda; M. Fyffe; J. Gair; M. Galimberti; L. Gammaitoni; J. Garcia; F. Garufi; M. E. Gspr; G. Gelencser; G. Gemme; E. Genin; A. Gennai; L. . Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; G. Gonzlez; M. L. Gorodetsky; S. Goler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; R. Gupta; E. K. Gustafson; R. Gustafson; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; J. Heefner; A. Heidmann; H. Heitmann; P. Hello; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; E. James; Y. J. Jang; P. Jaranowski; E. Jesse; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kaufman; K. Kawabe; S. Kawamura; F. Kawazoe; D. Keitel; D. Kelley; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. K. Kim; C. Kim; H. Kim; K. Kim; N. Kim; Y. M. Kim; P. J. King; D. L. Kinzel; J. S. Kissel; S. Klimenko; J. Kline; K. Kokeyama; V. Kondrashov; S. Koranda; W. Z. Korth; I. Kowalska

    2012-08-04T23:59:59.000Z

    This paper presents results of an all-sky searches for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative ranges of [-2 x 10^-9, 1.1 x 10^-10] Hz/s for the fifth LIGO science run (S5). The novelty of the search lies in the use of a non-coherent technique based on the Hough-transform to combine the information from coherent searches on timescales of about one day. Because these searches are very computationally intensive, they have been deployed on the Einstein@Home distributed computing project infrastructure. The search presented here is about a factor 3 more sensitive than the previous Einstein@Home search in early S5 LIGO data. The post-processing has left us with eight surviving candidates. We show that deeper follow-up studies rule each of them out. Hence, since no statistically significant gravitational wave signals have been detected, we report upper limits on the intrinsic gravitational wave amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6 x 10^-25 with a 90% confidence level.

  20. Einstein-Home search for periodic gravitational waves in early S5 LIGO data

    SciTech Connect (OSTI)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T. [LIGO-California Institute of Technology, Pasadena, California 91125 (United States)] (and others)

    2009-08-15T23:59:59.000Z

    This paper reports on an all-sky search for periodic gravitational waves from sources such as deformed isolated rapidly spinning neutron stars. The analysis uses 840 hours of data from 66 days of the fifth LIGO science run (S5). The data were searched for quasimonochromatic waves with frequencies f in the range from 50 to 1500 Hz, with a linear frequency drift f (measured at the solar system barycenter) in the range -f/{tau}search was distributed over approximately 100 000 computers volunteered by the general public. This large computing power allowed the use of a relatively long coherent integration time of 30 hours while searching a large parameter space. This search extends Einstein-Home's previous search in LIGO S4 data to about 3 times better sensitivity. No statistically significant signals were found. In the 125-225 Hz band, more than 90% of sources with dimensionless gravitational-wave strain tensor amplitude greater than 3x10{sup -24} would have been detected.

  1. Open Issues in the search for gravitational wave transients

    E-Print Network [OSTI]

    Blackburn, Lindy L

    2010-01-01T23:59:59.000Z

    The LIGO-Virgo network of kilometer-scale laser interferometric gravitational-wave detectors reached a major milestone with the successful operation of LIGO's fifth (S5) and Virgo's first (VSR1) science runs during 2005-2007. ...

  2. A directed search for continuous Gravitational Waves from the Galactic Center

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; The Virgo Collaboration; J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; R. A. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; D. Barker; S. H. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; G. Bergmann; J. M. Berliner; A. Bertolini; D. Bessis; J. Betzwieser; P. T. Beyersdorf; T. Bhadbhade; I. A. Bilenko; G. Billingsley; J. Birch; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; M. Blom; O. Bock; T. P. Bodiya; M. Boer; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; S. Bose; L. Bosi; J. Bowers; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; C. A. Brannen; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brckner; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; M. Colombini; M. Constancio Jr; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; G. Debreczeni; J. Degallaix; W. Del Pozzo; E. Deleeuw; S. Delglise; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. DeRosa; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; M. Daz; A. Dietz; K. Dmitry; F. Donovan; K. L. Dooley; S. Doravari; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edwards; A. Effler; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endrczi; R. Essick; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; B. Farr; W. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. Fisher; R. Flaminio; E. Foley; S. Foley; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; J. Garcia; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; L. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. E. Gushwa; E. K. Gustafson; R. Gustafson; B. Hall; E. Hall; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. Heefner; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; T. Horrom; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; Z. Hua; V. Huang; E. A. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; J. Iafrate; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; Y. J. Jang; P. Jaranowski; F. Jimnez-Forteza; W. W. Johnson; D. Jones; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kaufman; K. Kawabe

    2013-09-27T23:59:59.000Z

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic Center region, performed on two years of data from LIGO's fifth science run from two LIGO detectors. The search uses a semi-coherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first order spindown values down to -7.86 x 10^-8 Hz/s at the highest frequency. No gravitational waves were detected. We place 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic Center. Placing 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic Center, we reach ~3.35x10^-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.

  3. Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    E-Print Network [OSTI]

    V. Predoi; for the LIGO Scientific Collaboration; for the Virgo Collaboration; K. Hurley; for IPN

    2011-12-07T23:59:59.000Z

    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.

  4. Search for gravitational-wave bursts in the first year of the fifth LIGO science run

    E-Print Network [OSTI]

    Zucker, Michael E.

    We present the results obtained from an all-sky search for gravitational-wave (GW) bursts in the 642000 Hz frequency range in data collected by the LIGO detectors during the first year (November 2005November 2006) of ...

  5. Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    E-Print Network [OSTI]

    California at Berkeley, University of

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts V with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error

  6. Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors

    E-Print Network [OSTI]

    Tanner, David B.

    Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO. Rakhmanov,33 S. R. Rao,11 K. Rawlins,12 S. Ray-Majumder,38 V. Re,32 D. Redding,11,b M. W. Regehr,11,b

  7. All-sky search for periodic gravitational waves in the full S5 LIGO data

    E-Print Network [OSTI]

    Barsotti, Lisa

    We report on an all-sky search for periodic gravitational waves in the frequency band 50800 Hz and with the frequency time derivative in the range of 0 through -610[superscript -9]??Hz/s. Such a signal could be produced ...

  8. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    E-Print Network [OSTI]

    Barsotti, Lisa

    This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50,1?190]??Hz and with frequency derivative range of ?[-20,1.1]10[superscript -10]??Hz?s[superscript -1] for the ...

  9. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    E-Print Network [OSTI]

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brckner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Caldern; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavagli, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Delglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Daz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr\\Hoczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; Gonzlez, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goler, S; Gouaty, R; Grf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jimnez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kflian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S

    2014-01-01T23:59:59.000Z

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for ci...

  10. Chasing 5-sigma: Prospects for searches for long-duration gravitational-waves without time slides

    E-Print Network [OSTI]

    Coughlin, Michael; Kandhasamy, Shivaraj; Thrane, Eric; Christensen, Nelson

    2015-01-01T23:59:59.000Z

    The detection of unmodeled gravitational-wave bursts by ground-based interferometric gravitational-wave detectors is a major goal for the advanced detector era. These searches are commonly cast as pattern recognition problems, where the goal is to identify statistically significant clusters in spectrograms of strain power when the precise signal morphology is unknown. In previous work, we have introduced a clustering algorithm referred to as "seedless clustering," and shown that it is a powerful tool for detecting weak long-lived (10-1000s) signals in background. However, as the algorithm is currently conceived, in order to carry out an all-sky search on a $\\approx$ year of data, significant computational resources may be required in order to carry out background estimation. Alternatively, some of the sensitivity of the search must be sacrificed to control computational costs. The sensitivity of the algorithm is limited by the amount of computing resources due to the requirement of performing background studi...

  11. A Search for Gravitational Waves Associated with the Gamma Ray Burst GRB030329 Using the LIGO Detectors

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration

    2005-06-24T23:59:59.000Z

    We have performed a search for bursts of gravitational waves associated with the very bright Gamma Ray Burst GRB030329, using the two detectors at the LIGO Hanford Observatory. Our search covered the most sensitive frequency range of the LIGO detectors (approximately 80-2048 Hz), and we specifically targeted signals shorter than 150 ms. Our search algorithm looks for excess correlated power between the two interferometers and thus makes minimal assumptions about the gravitational waveform. We observed no candidates with gravitational wave signal strength larger than a pre-determined threshold. We report frequency dependent upper limits on the strength of the gravitational waves associated with GRB030329. Near the most sensitive frequency region, around 250 Hz, our root-sum-square (RSS) gravitational wave strain sensitivity for optimally polarized bursts was better than h_RSS = 6E-21 Hz^{-1/2}. Our result is comparable to the best published results searching for association between gravitational waves and GRBs.

  12. Searches for gravitational waves from known pulsars with S5 LIGO data

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; The Virgo Collaboration; B. P. Abbott; R. Abbott; F. Acernese; R. Adhikari; P. Ajith; B. Allen; G. Allen; M. Alshourbagy; R. S. Amin; S. B. Anderson; W. G. Anderson; F. Antonucci; S. Aoudia; M. A. Arain; M. Araya; H. Armandula; P. Armor; K. G. Arun; Y. Aso; S. Aston; P. Astone; P. Aufmuth; C. Aulbert; S. Babak; P. Baker; G. Ballardin; S. Ballmer; C. Barker; D. Barker; F. Barone; B. Barr; P. Barriga; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; Th. S. Bauer; B. Behnke; M. Beker; M. Benacquista; J. Betzwieser; P. T. Beyersdorf; S. Bigotta; I. A. Bilenko; G. Billingsley; S. Birindelli; R. Biswas; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; C. Boccara; T. P. Bodiya; L. Bogue; F. Bondu; L. Bonelli; R. Bork; V. Boschi; S. Bose; L. Bosi; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; J. E. Brau; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; C. Van Den Broeck; A. F. Brooks; D. A. Brown; A. Brummit; G. Brunet; R. Budzynski; T. Bulik; A. Bullington; H. J. Bulten; A. Buonanno; O. Burmeister; D. Buskulic; R. L. Byer; L. Cadonati; G. Cagnoli; E. Calloni; J. B. Camp; E. Campagna; J. Cannizzo; K. C. Cannon; B. Canuel; J. Cao; F. Carbognani; L. Cardenas; S. Caride; G. Castaldi; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; T. Chalermsongsak; E. Chalkley; P. Charlton; E. Chassande-Mottin; S. Chatterji; S. Chelkowski; Y. Chen; A. Chincarini; N. Christensen; C. T. Y. Chung; D. Clark; J. Clark; J. H. Clayton; F. Cleva; E. Coccia; T. Cokelaer; C. N. Colacino; J. Colas; A. Colla; M. Colombini; R. Conte; D. Cook; T. R. C. Corbitt; C. Corda; N. Cornish; A. Corsi; J. -P. Coulon; D. Coward; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; R. M. Culter; A. Cumming; L. Cunningham; E. Cuoco; S. L. Danilishin; S. D'Antonio; K. Danzmann; A. Dari; V. Dattilo; B. Daudert; M. Davier; G. Davies; E. J. Daw; R. Day; R. De Rosa; D. DeBra; J. Degallaix; M. del Prete; V. Dergachev; S. Desai; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; M. Di Paolo Emilio; A. Di Virgilio; M. Daz; A. Dietz; F. Donovan; K. L. Dooley; E. E. Doomes; M. Drago; R. W. P. Drever; J. Dueck; I. Duke; J. -C. Dumas; J. G. Dwyer; C. Echols; M. Edgar; A. Effler; P. Ehrens; E. Espinoza; T. Etzel; M. Evans; T. Evans; V. Fafone; S. Fairhurst; Y. Faltas; Y. Fan; D. Fazi; H. Fehrmann; I. Ferrante; F. Fidecaro; L. S. Finn; I. Fiori; R. Flaminio; K. Flasch; S. Foley; C. Forrest; N. Fotopoulos; J. -D. Fournier; J. Franc; A. Franzen; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. Fricke; P. Fritschel; V. V. Frolov; M. Fyffe; V. Galdi; L. Gammaitoni; J. A. Garofoli; F. Garufi; G. Gemme; E. Genin; A. Gennai; I. Gholami; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; K. Goda; E. Goetz; L. M. Goggin; G. Gonzlez; M. L. Gorodetsky; S. Goler; R. Gouaty; M. Granata; V. Granata; A. Grant; S. Gras; C. Gray; M. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Greverie; F. Grimaldi; R. Grosso; H. Grote; S. Grunewald; M. Guenther; G. Guidi; E. K. Gustafson; R. Gustafson; B. Hage; J. M. Hallam; D. Hammer; G. D. Hammond; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; K. Haughian; K. Hayama; J. Heefner; H. Heitmann; P. Hello; I. S. Heng; A. Heptonstall; M. Hewitson; S. Hild; E. Hirose; D. Hoak; K. A. Hodge; K. Holt; D. J. Hosken; J. Hough; D. Hoyland; D. Huet; B. Hughey; S. H. Huttner; D. R. Ingram; T. Isogai; M. Ito; A. Ivanov; P. Jaranowski; B. Johnson; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Sancho de la Jordana; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; J. Kanner; D. Kasprzyk; E. Katsavounidis; K. Kawabe; S. Kawamura; F. Kawazoe; W. Kells; D. G. Keppel; A. Khalaidovski; F. Y. Khalili; R. Khan; E. Khazanov; P. King; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; R. Kopparapu; S. Koranda; I. Kowalska; D. Kozak; B. Krishnan; A. Krlak; R. Kumar; P. Kwee; P. La Penna; P. K. Lam; M. Landry; B. Lantz; A. Lazzarini; H. Lei; M. Lei; N. Leindecker; I. Leonor; N. Leroy; N. Letendre; C. Li; H. Lin; P. E. Lindquist; T. B. Littenberg; N. A. Lockerbie; D. Lodhia; M. Longo; M. Lorenzini; V. Loriette; M. Lormand; G. Losurdo; P. Lu; M. Lubinski; A. Lucianetti; H. Lck; B. Machenschalk; M. MacInnis; J. -M. Mackowski; M. Mageswaran; K. Mailand; E. Majorana; N. Man; I. Mandel; V. Mandic; M. Mantovani; F. Marchesoni; F. Marion; S. Mrka; Z. Mrka; A. Markosyan; J. Markowitz; E. Maros; J. Marque; F. Martelli; I. W. Martin; R. M. Martin; J. N. Marx; K. Mason; A. Masserot; F. Matichard; L. Matone; R. A. Matzner; N. Mavalvala; R. McCarthy; D. E. McClelland; S. C. McGuire; M. McHugh; G. McIntyre; D. J. A. McKechan; K. McKenzie; M. Mehmet; A. Melatos; A. C. Melissinos; G. Mendell; D. F. Menndez; F. Menzinger

    2010-02-26T23:59:59.000Z

    We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of seven below the spin-down limit. This limits the power radiated via gravitational waves to be less than ~2% of the available spin-down power. For the X-ray pulsar J0537-6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars several of the measured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3x10^-26 for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0x10^-8 for J2124-3358.

  13. Application of the Hilbert-Huang Transform to the Search for Gravitational Waves

    E-Print Network [OSTI]

    Jordan B. Camp; John K. Cannizzo; Kenji Numata

    2007-01-27T23:59:59.000Z

    We present the application of a novel method of time-series analysis, the Hilbert-Huang Transform, to the search for gravitational waves. This algorithm is adaptive and does not impose a basis set on the data, and thus the time-frequency decomposition it provides is not limited by time-frequency uncertainty spreading. Because of its high time-frequency resolution it has important applications to both signal detection and instrumental characterization. Applications to the data analysis of the ground and space based gravitational wave detectors, LIGO and LISA, are described.

  14. Search for gravitational waves from binary black hole inspiral, merger and ringdown

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Abadie; B. P. Abbott; R. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; P. Ajith; B. Allen; G. S. Allen; E. Amador Ceron; R. S. Amin; S. B. Anderson; W. G. Anderson; F. Antonucci; M. A. Arain; M. C. Araya; M. Aronsson; Y. Aso; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; S. Babak; P. Baker; G. Ballardin; T. Ballinger; S. Ballmer; D. Barker; S. Barnum; F. Barone; B. Barr; P. Barriga; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. G. Beker; A. Belletoile; M. Benacquista; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Birindelli; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; C. Boccara; O. Bock; T. P. Bodiya; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; M. Boyle; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; J. E. Brau; J. Breyer; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; R. Budzy?ski; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet-Castell; O. Burmeister; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Cain; E. Calloni; J. B. Camp; E. Campagna; P. Campsie; J. Cannizzo; K. Cannon; B. Canuel; J. Cao; C. Capano; F. Carbognani; S. Caride; S. Caudill; M. Cavaglia`; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; O. Chaibi; T. Chalermsongsak; E. Chalkley; P. Charlton; E. Chassande-Mottin; S. Chelkowski; Y. Chen; A. Chincarini; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; D. Clark; J. Clark; J. H. Clayton; F. Cleva; E. Coccia; C. N. Colacino; J. Colas; A. Colla; M. Colombini; R. Conte; D. Cook; T. R. Corbitt; N. Cornish; A. Corsi; C. A. Costa; J. -P. Coulon; D. M. Coward; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; R. M. Culter; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; S. L. Danilishin; R. Dannenberg; S. D'Antonio; K. Danzmann; K. Das; V. Dattilo; B. Daudert; M. Davier; G. Davies; A. Davis; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; J. Degallaix; M. del Prete; V. Dergachev; R. DeRosa; R. DeSalvo; P. Devanka; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Daz; A. Dietz; F. Donovan; K. L. Dooley; E. E. Doomes; S. Dorsher; E. S. D. Douglas; M. Drago; R. W. P. Drever; J. C. Driggers; J. Dueck; J. -C. Dumas; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Ely; R. Engel; T. Etzel; M. Evans; T. Evans; V. Fafone; S. Fairhurst; Y. Fan; B. F. Farr; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Fidecaro; L. S. Finn; I. Fiori; R. Flaminio; M. Flanigan; K. Flasch; S. Foley; C. Forrest; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; M. Galimberti; L. Gammaitoni; J. A. Garofoli; F. Garufi; M. E. Gspr; G. Gemme; E. Genin; A. Gennai; I. Gholami; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; C. Gill; E. Goetz; L. M. Goggin; G. Gonzlez; M. L. Gorodetsky; S. Goler; R. Gouaty; C. Graef; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Greverie; R. Grosso; H. Grote; S. Grunewald; G. M. Guidi; E. K. Gustafson; R. Gustafson; B. Hage; P. Hall; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; K. Haughian; K. Hayama; J. -F. Hayau; T. Hayler; J. Heefner; H. Heitmann; P. Hello; I. S. Heng; A. W. Heptonstall; M. Hewitson; S. Hild; E. Hirose; D. Hoak; K. A. Hodge; K. Holt; D. J. Hosken; J. Hough; E. J. Howell; D. Hoyland; D. Huet; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; P. Jaranowski; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; J. B. Kanner; E. Katsavounidis; K. Kawabe; S. Kawamura; F. Kawazoe; W. Kells; D. G. Keppel; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; H. Kim; P. J. King; D. L. Kinzel; J. S. Kissel; S. Klimenko; V. Kondrashov; R. Kopparapu; S. Koranda; I. Kowalska; D. Kozak; T. Krause; V. Kringel; S. Krishnamurthy; B. Krishnan; A. Krlak; G. Kuehn; J. Kullman; R. Kumar; P. Kwee; M. Landry; M. Lang; B. Lantz; N. Lastzka; A. Lazzarini; P. Leaci; J. Leong; I. Leonor; N. Leroy; N. Letendre; J. Li; T. G. F. Li; N. Liguori; H. Lin; P. E. Lindquist; N. A. Lockerbie; D. Lodhia; M. Lorenzini; V. Loriette; M. Lormand; G. Losurdo; P. Lu; J. Luan; M. Lubinski; A. Lucianetti; H. Lck; A. D. Lundgren; B. Machenschalk; M. MacInnis; M. Mageswaran; K. Mailand; E. Majorana

    2011-02-18T23:59:59.000Z

    We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.

  15. All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

    E-Print Network [OSTI]

    LIGO Scientific Collaboration

    2008-10-01T23:59:59.000Z

    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50--1100 Hz and with the frequency's time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semi-coherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 1.E-24 are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 1.0E-6, the search is sensitive to distances as great as 500 pc--a range that could encompass many undiscovered neutron stars, albeit only a tiny fraction of which would likely be rotating fast enough to be accessible to LIGO. This ellipticity is at the upper range thought to be sustainable by conventional neutron stars and well below the maximum sustainable by a strange quark star.

  16. All-sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data

    E-Print Network [OSTI]

    J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; C. Affeldt; P. Ajith; B. Allen; G. S. Allen; E. Amador Ceron; D. Amariutei; R. S. Amin; S. B. Anderson; W. G. Anderson; K. Arai; M. A. Arain; M. C. Araya; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; S. Ballmer; D. Barker; F. Barone; B. Barr; P. Barriga; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; B. Behnke; M. G. Beker; A. S. Bell; A. Belletoile; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; A. Brummit; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet--Castell; O. Burmeister; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Cain; E. Calloni; J. B. Camp; P. Campsie; J. Cannizzo; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; S. Caride; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; O. Chaibi; T. Chalermsongsak; E. Chalkley; P. Charlton; E. Chassande-Mottin; S. Chelkowski; Y. Chen; A. Chincarini; A. Chiummo; H. Cho; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; S. L. Danilishin; R. Dannenberg; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; G. Davies; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; J. Degallaix; W. Del Pozzo; M. del Prete; T. Dent; V. Dergachev; R. DeRosa; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Daz; A. Dietz; F. Donovan; K. L. Dooley; S. Dorsher; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endr?czi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Y. Fan; B. F. Farr; W. Farr; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; M. Flanigan; S. Foley; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; P. J. Fulda; M. Fyffe; M. Galimberti; L. Gammaitoni; M. R. Ganija; J. Garcia; J. A. Garofoli; F. Garufi; M. E. Gspr; G. Gemme; R. Geng; E. Genin; A. Gennai; L. . Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; C. Gill; E. Goetz; L. M. Goggin; G. Gonzlez; M. L. Gorodetsky; S. Goler; R. Gouaty; C. Graef; M. Granata; A. Grant; S. Gras; C. Gray; N. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Greverie; R. Grosso; H. Grote; S. Grunewald; G. M. Guidi; C. Guido; R. Gupta; E. K. Gustafson; R. Gustafson; T. Ha; B. Hage; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; T. Hayler; J. Heefner; A. Heidmann; M. C. Heintze; H. Heitmann; P. Hello; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; T. Hong; S. Hooper; D. J. Hosken; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; H. Jang; P. Jaranowski; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Ju; P. Kalmus; V. Kalogera; I. Kamaretsos; S. Kandhasamy; G. Kang; J. B. Kanner; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; S. Kawamura; F. Kawazoe; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. Kim; C. Kim; D. Kim; H. Kim; K. Kim; N. Kim; Y. -M. Kim; P. J. King; M. Kinsey; D. L. Kinzel; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; R. Kopparapu; S. Koranda; W. Z. Korth; I. Kowalska; D. Kozak; V. Kringel; S. Krishnamurthy; B. Krishnan; A. Krlak

    2011-10-02T23:59:59.000Z

    We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6e-9 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmetric isolated neutron star in our galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude $h_0$ is 1e-24, while at the high end of our frequency range we achieve a worst-case upper limit of 3.8e-24 for all polarizations and sky locations. These results constitute a factor of two improvement upon previously published data. A new detection pipeline utilizing a Loosely Coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion.

  17. Hierarchical Hough all-sky search for periodic gravitational waves in LIGO S5 data

    E-Print Network [OSTI]

    Llucia Sancho de la Jordana; for the LIGO Scientific Collaboration; the Virgo Collaboration

    2010-01-21T23:59:59.000Z

    We describe a new pipeline used to analyze the data from the fifth science run (S5) of the LIGO detectors to search for continuous gravitational waves from isolated spinning neutron stars. The method employed is based on the Hough transform, which is a semi-coherent, computationally efficient, and robust pattern recognition technique. The Hough transform is used to find signals in the time-frequency plane of the data whose frequency evolution fits the pattern produced by the Doppler shift imposed on the signal by the Earth's motion and the pulsar's spin-down during the observation period. The main differences with respect to previous Hough all-sky searches are described. These differences include the use of a two-step hierarchical Hough search, analysis of coincidences among the candidates produced in the first and second year of S5, and veto strategies based on a $\\chi^2$ test.

  18. The characterization of Virgo data and its impact on gravitational-wave searches

    E-Print Network [OSTI]

    J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; P. Addesso; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; S. Ast; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; T. Ballinger; S. Ballmer; Y. Bao; J. C. B. Barayoga; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; D. Beck; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; T. Bhadbade; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; C. Bond; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet--Castell; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; G. Cagnoli; E. Calloni; J. B. Camp; P. Campsie; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; T. Chalermsongsak; P. Charlton; E. Chassande-Mottin; W. Chen; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; J. Degallaix; W. Del Pozzo; T. Dent; V. Dergachev; R. DeRosa; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Daz; A. Dietz; A. Dietz; F. Donovan; K. L. Dooley; S. Doravari; S. Dorsher; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endr?czi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; B. F. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; S. Foley; E. Forsi; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. A. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. J. Fulda; M. Fyffe; J. Gair; M. Galimberti; L. Gammaitoni; J. Garcia; F. Garufi; M. E. Gspr; G. Gelencser; G. Gemme; E. Genin; A. Gennai; L. . Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; G. Gonzlez; M. L. Gorodetsky; S. Goler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; R. Gupta; E. K. Gustafson; R. Gustafson; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; A. Hardt; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; J. Heefner; A. Heidmann; M. C. Heintze; H. Heitmann; P. Hello; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; E. James; Y. J. Jang; P. Jaranowski; E. Jesse; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kaufman; K. Kawabe; S. Kawamura; F. Kawazoe; D. Keitel; D. Kelley; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. K. Kim; C. Kim; H. Kim; K. Kim; N. Kim; Y. M. Kim; P. J. King; D. L. Kinzel; J. S. Kissel; S. Klimenko; J. Kline; K. Kokeyama; V. Kondrashov

    2012-06-18T23:59:59.000Z

    Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of gravitational-wave searches.

  19. Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    SciTech Connect (OSTI)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S. [LIGO - California Institute of Technology, Pasadena, California 91125 (United States)

    2011-02-15T23:59:59.000Z

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3x10{sup -21} to 1.4x10{sup -20} on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0x10{sup 44} to 1.3x10{sup 45} erg.

  20. A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; J. Abadie; B. P. Abbott; R. Abbott; R. Adhikari; P. Ajith; B. Allen; G. Allen; E. Amador Ceron; R. S. Amin; S. B. Anderson; W. G. Anderson; M. A. Arain; M. Araya; Y. Aso; S. Aston; P. Aufmuth; C. Aulbert; S. Babak; P. Baker; S. Ballmer; D. Barker; B. Barr; P. Barriga; L. Barsotti; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; B. Behnke; M. Benacquista; M. F. Bennett; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; R. Biswas; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; O. Bock; T. P. Bodiya; R. Bondarescu; R. Bork; M. Born; S. Bose; P. R. Brady; V. B. Braginsky; J. E. Brau; J. Breyer; D. O. Bridges; M. Brinkmann; M. Britzger; A. F. Brooks; D. A. Brown; S. Buchner; A. Bullington; A. Buonanno; O. Burmeister; R. L. Byer; L. Cadonati; J. Cain; J. B. Camp; J. Cannizzo; K. C. Cannon; J. Cao; C. Capano; L. Cardenas; S. Caudill; M. Cavagli; C. Cepeda; T. Chalermsongsak; E. Chalkley; P. Charlton; S. Chatterji; S. Chelkowski; Y. Chen; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; D. Clark; J. Clark; J. H. Clayton; R. Conte; D. Cook; T. R. C. Corbitt; N. Cornish; D. Coward; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; R. M. Culter; A. Cumming; L. Cunningham; K. Dahl; S. L. Danilishin; K. Danzmann; B. Daudert; G. Davies; E. J. Daw; T. Dayanga; D. DeBra; J. Degallaix; V. Dergachev; R. DeSalvo; S. Dhurandhar; M. Daz; F. Donovan; K. L. Dooley; E. E. Doomes; R. W. P. Drever; J. Driggers; J. Dueck; I. Duke; J. -C. Dumas; M. Edgar; M. Edwards; A. Effler; P. Ehrens; T. Etzel; M. Evans; T. Evans; S. Fairhurst; Y. Faltas; Y. Fan; D. Fazi; H. Fehrmann; L. S. Finn; K. Flasch; S. Foley; C. Forrest; N. Fotopoulos; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. A. Garofoli; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; E. Goetz; L. M. Goggin; G. Gonzlez; S. Goler; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; R. Grosso; H. Grote; S. Grunewald; E. K. Gustafson; R. Gustafson; B. Hage; J. M. Hallam; D. Hammer; G. D. Hammond; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; K. Haughian; K. Hayama; T. Hayler; J. Heefner; I. S. Heng; A. Heptonstall; M. Hewitson; S. Hild; E. Hirose; D. Hoak; K. A. Hodge; K. Holt; D. J. Hosken; J. Hough; E. Howell; D. Hoyland; B. Hughey; S. Husa; S. H. Huttner; D. R. Ingram; T. Isogai; A. Ivanov; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; J. Kanner; E. Katsavounidis; K. Kawabe; S. Kawamura; F. Kawazoe; W. Kells; D. G. Keppel; A. Khalaidovski; F. Y. Khalili; R. Khan; E. Khazanov; H. Kim; P. J. King; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; R. Kopparapu; S. Koranda; D. Kozak; V. Kringel; B. Krishnan; G. Kuehn; J. Kullman; R. Kumar; P. Kwee; P. K. Lam; M. Landry; M. Lang; B. Lantz; N. Lastzka; A. Lazzarini; P. Leaci; M. Lei; N. Leindecker; I. Leonor; H. Lin; P. E. Lindquist; T. B. Littenberg; N. A. Lockerbie; D. Lodhia; M. Lormand; P. Lu; M. Lubinski; A. Lucianetti; H. Lck; A. Lundgren; B. Machenschalk; M. MacInnis; M. Mageswaran; K. Mailand; C. Mak; I. Mandel; V. Mandic; S. Mrka; Z. Mrka; A. Markosyan; J. Markowitz; E. Maros; I. W. Martin; R. M. Martin; J. N. Marx; K. Mason; F. Matichard; L. Matone; R. A. Matzner; N. Mavalvala; R. McCarthy; D. E. McClelland; S. C. McGuire; G. McIntyre; D. J. A. McKechan; M. Mehmet; A. Melatos; A. C. Melissinos; G. Mendell; D. F. Menndez; R. A. Mercer; L. Merrill; S. Meshkov; C. Messenger; M. S. Meyer; H. Miao; J. Miller; Y. Mino; S. Mitra; V. P. Mitrofanov; G. Mitselmakher; R. Mittleman; O. Miyakawa; B. Moe; S. D. Mohanty; S. R. P. Mohapatra; G. Moreno; K. Mors; K. Mossavi; C. MowLowry; G. Mueller; H. Mller-Ebhardt; S. Mukherjee; A. Mullavey; J. Munch; P. G. Murray; T. Nash; R. Nawrodt; J. Nelson; G. Newton; E. Nishida; A. Nishizawa; J. O'Dell; B. O'Reilly; R. O'Shaughnessy; E. Ochsner; G. H. Ogin; R. Oldenburg; D. J. Ottaway; R. S. Ottens; H. Overmier; B. J. Owen; A. Page; Y. Pan; C. Pankow; M. A. Papa; P. Patel; D. Pathak; M. Pedraza; L. Pekowsky; S. Penn; C. Peralta; A. Perreca; M. Pickenpack; I. M. Pinto; M. Pitkin; H. J. Pletsch; M. V. Plissi; F. Postiglione; M. Principe; R. Prix; L. Prokhorov; O. Puncken; V. Quetschke; F. J. Raab; D. S. Rabeling; H. Radkins; P. Raffai; Z. Raics; M. Rakhmanov; V. Raymond; C. M. Reed; T. Reed; H. Rehbein; S. Reid; D. H. Reitze; R. Riesen; K. Riles; P. Roberts; N. A. Robertson; C. Robinson; E. L. Robinson; S. Roddy; C. Rver; J. Rollins; J. D. Romano; J. H. Romie; S. Rowan; A. Rdiger; K. Ryan; S. Sakata; L. Sammut; L. Sancho de la Jordana; V. Sandberg; V. Sannibale; L. Santamara; G. Santostasi; S. Saraf; P. Sarin; B. S. Sathyaprakash; S. Sato; M. Satterthwaite; P. R. Saulson; R. Savage; R. Schilling

    2010-11-23T23:59:59.000Z

    The physical mechanisms responsible for pulsar timing glitches are thought to excite quasi-normal mode oscillations in their parent neutron star that couple to gravitational wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two co-located Hanford gravitational wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3e-21 to 1.4e-20 on the peak intrinsic strain amplitude of gravitational wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0e44 to 1.3e45 erg.

  1. Searches for inspiral gravitational waves associated with short gamma-ray bursts in LIGO's fifth and Virgo's first science run

    E-Print Network [OSTI]

    Alexander Dietz

    2010-06-16T23:59:59.000Z

    This brief report describes the search for gravitational-wave inspiral signals from short gamma-ray bursts. Since these events are probably created by the merger of two compact objects, a targeted search with a lower threshold can be made. The data around 22 short gamma-ray bursts have been analyzed.

  2. Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data

    E-Print Network [OSTI]

    J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; B. Behnke; M. Bejger; M. G. Beker; C. Belczynski; A. S. Bell; C. Bell; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; M. Blom; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; K. Borkowski; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brckner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Delglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Daz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; O. Dorosh; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Grf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; E. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jimnez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kflian; G. M. Keiser; D. Keitel; D. B. Kelley; W. Kells; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; C. Kim; K. Kim; N. Kim; N. G. Kim

    2014-04-10T23:59:59.000Z

    We present an implementation of the $\\mathcal{F}$-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency $f_0$ range from 100 Hz to 1 kHz and the frequency dependent spindown $f_1$ range from $-1.6\\,(f_0/100\\,{\\rm Hz}) \\times 10^{-9}\\,$ Hz/s to zero. A large part of this frequency - spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the $\\mathcal{F}$-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the Fast Fourier Transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the $\\mathcal{F}$-statistic with respect to the algorithm used in the other pipelines. No significant gravitational wave signal was found. The sensitivity of the search was estimated by injecting signals into the data. In the most sensitive parts of the detector band more than 90% of signals would have been detected with dimensionless gravitational-wave amplitude greater than $5 \\times 10^{-24}$.

  3. A template bank to search for gravitational waves from inspiralling compact binaries: II. Phenomenological model

    E-Print Network [OSTI]

    Thomas Cokelaer

    2007-09-07T23:59:59.000Z

    Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from ground-based interferometers. One of the key aspects of the detection process is the deployment of a set of templates, also called a template bank, to cover the astrophysically interesting region of the parameter space. In a companion paper, we described the template-bank algorithm used in the analysis of LIGO data to search for signals from non-spinning binaries made of neutron star and/or stellar-mass black holes; this template bank is based upon physical template families. In this paper, we describe the phenomenological template bank that was used to search for gravitational waves from non-spinning black hole binaries (from stellar mass formation) in the second, third and fourth LIGO science runs. We briefly explain the design of the bank, whose templates are based on a phenomenological detection template family. We show that this template bank gives matches greater than 95% with the physical template families that are expected to be captured by the phenomenological templates.

  4. Search for periodic gravitational radiation with the ALLEGRO gravitational wave detector

    E-Print Network [OSTI]

    E. Mauceli; M. P. McHugh; W. O. Hamilton; W. W. Johnson; A. Morse

    2000-07-11T23:59:59.000Z

    We describe the search for a continuous signal of gravitational radiation from a rotating neutron star in the data taken by the ALLEGRO gravitational wave detector in early 1994. Since ALLEGRO is sensitive at frequencies near 1 kHz, only neutron stars with spin periods near 2 ms are potential sources. There are no known sources of this typ e for ALLEGRO, so we directed the search towards both the galactic center and the globular clus ter 47 Tucanae. The analysis puts a constraint of roughly $8 \\times 10^{-24}$ at frequencies near 1 kHz on the gravitational strain emitted from pulsar spin-down in either 47 Tucanae or the galactic center.

  5. Search for periodic gravitational radiation with the ALLEGRO gravitational wave detector

    E-Print Network [OSTI]

    Mauceli, E; Hamilton, W O; Johnson, W W; Morse, A

    2002-01-01T23:59:59.000Z

    We describe the search for a continuous signal of gravitational radiation from a rotating neutron star in the data taken by the ALLEGRO gravitational wave detector in early 1994. Since ALLEGRO is sensitive at frequencies near 1 kHz, only neutron stars with spin periods near 2 ms are potential sources. There are no known sources of this typ e for ALLEGRO, so we directed the search towards both the galactic center and the globular clus ter 47 Tucanae. The analysis puts a constraint of roughly $8 \\times 10^{-24}$ at frequencies near 1 kHz on the gravitational strain emitted from pulsar spin-down in either 47 Tucanae or the galactic center.

  6. Navigable Waterways (Indiana)

    Broader source: Energy.gov [DOE]

    The construction of new structures in navigable waterways requires a permit from the Department of Natural Resources. Existing structures in waterways newly classified as navigable are not...

  7. Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; P. Ajith; B. Allen; A. Allocca; E. Amado. Ceron; D. Amariutei; R. A. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; D. Barker; S. H. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; G. Bergmann; J. M. Berliner; D. Bersanetti; A. Bertolini; D. Bessis; J. Betzwieser; P. T. Beyersdorf; T. Bhadbhade; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; M. Blom; O. Bock; T. P. Bodiya; M. Boer; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; J. Bowers; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; C. A. Brannen; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brckner; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Calder. Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; M. Colombini; M. Constanci. Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Da. Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; E. Deleeuw; S. Delglise; W. De. Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. T. DeRosa; R. D. Rosa; R. DeSalvo; S. Dhurandhar; M. Daz; A. Dietz; L. D. Fiore; A. D. Lieto; I. D. Palma; A. D. Virgilio; K. Dmitry; F. Donovan; K. L. Dooley; S. Doravari; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edwards; A. Effler; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; B. Farr; W. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. Fisher; R. Flaminio; E. Foley; S. Foley; E. Forsi; N. Fotopoulos; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; J. Garcia; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; L. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. E. Gushwa; E. K. Gustafson; R. Gustafson; B. Hall; E. Hall; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. Heefner; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; S. Hild; D. Hoak; K. A. Hodge; K. Holt; T. Hong; S. Hooper; T. Horrom; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; Z. Hua; V. Huang; E. A. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; J. Iafrate; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; Y. J. Jang; P. Jaranowski; F. Jimnez-Forteza; W. W. Johnson; D. I. Jones; D. Jones; R. Jones; R. J. G. Jonker; L. Ju; Hari. K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer

    2014-12-03T23:59:59.000Z

    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a $95%$ confidence level (C.L.) upper limit on the gravitational-wave energy density of \\Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of $\\sim 180$. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.

  8. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    E-Print Network [OSTI]

    the LIGO Scientific Collaboration; the Virgo Collaboration; J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; E. Amador Ceron; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. A. Arain; M. C. Araya; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; S. Ballmer; J. C. B. Barayoga; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; D. Beck; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; A. Belletoile; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet-Castell; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; E. Calloni; J. B. Camp; P. Campsie; J. Cannizzo; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; S. Caudill; M. Cavaglia; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; O. Chaibi; T. Chalermsongsak; P. Charlton; E. Chassande-Mottin; S. Chelkowski; W. Chen; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. Cho; J. Chow; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; D. E. Clark; J. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; S. L. Danilishin; R. Dannenberg; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; W. Del Pozzo; M. del Prete; T. Dent; V. Dergachev; R. DeRosa; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Diaz; A. Dietz; F. Donovan; K. L. Dooley; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endroczi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Y. Fan; B. F. Farr; D. Fazi; H. Fehrmann; D. Feldbaum; F. Feroz; I. Ferrante; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; M. Flanigan; S. Foley; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. J. Fulda; M. Fyffe; J. Gair; M. Galimberti; L. Gammaitoni; J. Garcia; F. Garufi; M. E. Gaspar; G. Gemme; R. Geng; E. Genin; A. Gennai; L. A. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil; C. Gill; J. Gleason; E. Goetz; L. M. Goggin; G. Gonzalez; M. L. Gorodetsky; S. Gossler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; N. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Greverie; R. Grosso; H. Grote; S. Grunewald; G. M. Guidi; R. Gupta; E. K. Gustafson; R. Gustafson; T. Ha; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; A. Hardt; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; J. Heefner; A. Heidmann; M. C. Heintze; H. Heitmann; P. Hello; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; D. J. Hosken; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; E. James; Y. J. Jang; P. Jaranowski; E. Jesse; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; S. Kawamura; F. Kawazoe; D. Kelley; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. Kim; C. Kim; H. Kim; K. Kim; N. Kim; Y. -M. Kim; P. J. King; D. L. Kinzel; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; S. Koranda; W. Z. Korth; I. Kowalska; D. Kozak; O. Kranz; V. Kringel; S. Krishnamurthy

    2012-04-20T23:59:59.000Z

    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.

  9. A Web Site Navigation Engine Mark Levene

    E-Print Network [OSTI]

    Levene, Mark

    A Web Site Navigation Engine Mark Levene Department of Computer Science Birkbeck College site-specific search engines is that they are not able to pick up the "scent of information" [5 is looking for. Moreover, Hearst [2] argues that next gener- ation site-specific search engines should

  10. Architecture, implementation and parallelization of the software to search for periodic gravitational wave signals

    E-Print Network [OSTI]

    Gevorg Poghosyan; Sanchit Matta; Achim Streit; Micha? Bejger; Andrzej Krlak

    2014-10-14T23:59:59.000Z

    The parallelization, design and scalability of the \\sky code to search for periodic gravitational waves from rotating neutron stars is discussed. The code is based on an efficient implementation of the F-statistic using the Fast Fourier Transform algorithm. To perform an analysis of data from the advanced LIGO and Virgo gravitational wave detectors' network, which will start operating in 2015, hundreds of millions of CPU hours will be required - the code utilizing the potential of massively parallel supercomputers is therefore mandatory. We have parallelized the code using the Message Passing Interface standard, implemented a mechanism for combining the searches at different sky-positions and frequency bands into one extremely scalable program. The parallel I/O interface is used to escape bottlenecks, when writing the generated data into file system. This allowed to develop a highly scalable computation code, which would enable the data analysis at large scales on acceptable time scales. Benchmarking of the code on a Cray XE6 system was performed to show efficiency of our parallelization concept and to demonstrate scaling up to 50 thousand cores in parallel.

  11. Application of Artificial Neural Network to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

    E-Print Network [OSTI]

    Kim, Kyungmin; Hodge, Kari A; Kim, Young-Min; Lee, Chang-Hwan; Lee, Hyun Kyu; Oh, John J; Oh, Sang Hoon; Son, Edwin J

    2014-01-01T23:59:59.000Z

    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. In order to demonstrate the performance, we also evaluate a few seconds of gravitational-wave data segment using the trained networks and obtain the false alarm probability. We suggest that the artificial neural network can be a complementary method to the conventio...

  12. Precision ephemerides for gravitational-wave searches. I. Sco X-1

    SciTech Connect (OSTI)

    Galloway, Duncan K.; Premachandra, Sammanani [Monash Centre for Astrophysics, Monash University, VIC 3800 (Australia); Steeghs, Danny; Marsh, Tom [Department of Physics, Astronomy and Astrophysics Group, University of Warwick, Coventry CV4 7AL (United Kingdom); Casares, Jorge; Cornelisse, Rmon, E-mail: Duncan.Galloway@monash.edu [Instituto de Astrofsica, E-38205, La Laguna, Tenerife (Spain)

    2014-01-20T23:59:59.000Z

    Rapidly rotating neutron stars are the only candidates for persistent high-frequency gravitational wave emission, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g., radio and X-ray) observations. The principal factor determining the sensitivity of such searches is the measurement precision of the physical parameters of the system. Neutron stars in X-ray binaries present additional computational demands for searches due to the uncertainty in the binary parameters. We present the results of a pilot study with the goal of improving the measurement precision of binary orbital parameters for candidate gravitational wave sources. We observed the optical counterpart of Sco X-1 in 2011 June with the William Herschel Telescope and also made use of Very Large Telescope observations in 2011 to provide an additional epoch of radial-velocity measurements to earlier measurements in 1999. From a circular orbit fit to the combined data set, we obtained an improvement of a factor of 2 in the orbital period precision and a factor of 2.5 in the epoch of inferior conjunction T {sub 0}. While the new orbital period is consistent with the previous value of Gottlieb et al., the new T {sub 0} (and the amplitude of variation of the Bowen line velocities) exhibited a significant shift, which we attribute to variations in the emission geometry with epoch. We propagate the uncertainties on these parameters through to the expected Advanced LIGO-Virgo detector network observation epochs and quantify the improvement obtained with additional optical observations.

  13. Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    E-Print Network [OSTI]

    Benjamin Aylott; John G. Baker; William D. Boggs; Michael Boyle; Patrick R. Brady; Duncan A. Brown; Bernd Brgmann; Luisa T. Buchman; Alessandra Buonanno; Laura Cadonati; Jordan Camp; Manuela Campanelli; Joan Centrella; Shourov Chatterji; Nelson Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua Faber; Stephen Fairhurst; Benjamin Farr; Sebastian Fischetti; Gianluca Guidi; Lisa M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; Sascha Husa; Vicky Kalogera; Drew Keppel; Lawrence E. Kidder; Bernard J. Kelly; Badri Krishnan; Pablo Laguna; Carlos O. Lousto; Ilya Mandel; Pedro Marronetti; Richard Matzner; Sean T. McWilliams; Keith D. Matthews; R. Adam Mercer; Satyanarayan R. P. Mohapatra; Abdul H. Mrou; Hiroyuki Nakano; Evan Ochsner; Yi Pan; Larne Pekowsky; Harald P. Pfeiffer; Denis Pollney; Frans Pretorius; Vivien Raymond; Christian Reisswig; Luciano Rezzolla; Oliver Rinne; Craig Robinson; Christian Rver; Luca Santamara; Bangalore Sathyaprakash; Mark A. Scheel; Erik Schnetter; Jennifer Seiler; Stuart L. Shapiro; Deirdre Shoemaker; Ulrich Sperhake; Alexander Stroeer; Riccardo Sturani; Wolfgang Tichy; Yuk Tung Liu; Marc van der Sluys; James R. van Meter; Ruslan Vaulin; Alberto Vecchio; John Veitch; Andrea Vicer; John T. Whelan; Yosef Zlochower

    2009-07-09T23:59:59.000Z

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.

  14. A directed search for gravitational waves from Scorpius X-1 with initial LIGO

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; T. Adams; P. Addesso; R. X. Adhikari; V. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. S. Areeda; G. Ashton; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. T. Baker; F. Baldaccini; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; S. Barclay; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; J. Bartlett; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; Th. S. Bauer; C. Baune; V. Bavigadda; B. Behnke; M. Bejger; C. Belczynski; A. S. Bell; C. Bell; M. Benacquista; J. Bergman; G. Bergmann; C. P. L. Berry; D. Bersanetti; A. Bertolini; J. Betzwieser; S. Bhagwat; R. Bhandare; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; C. Biwer; M. A. Bizouard; J. K. Blackburn; L. Blackburn; C. D. Blair; D. Blair; S. Bloemen; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; P. Bojtos; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; N. M. Brown; S. Buchman; A. Buikema; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; K. C. Cannon; J. Cao; C. D. Capano; F. Carbognani; S. Caride; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; M. Cho; J. H. Chow; N. Christensen; Q. Chu; S. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio, Jr.; A. Conte; D. Cook; T. R. Corbitt; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. J. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; J. Cripe; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; C. Cutler; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; L. Dartez; V. Dattilo; I. Dave; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; D. DeBra; G. Debreczeni; J. Degallaix; M. De Laurentis; S. Delglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Daz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; G. Dojcinoski; V. Dolique; E. Dominguez; F. Donovan; K. L. Dooley; S. Doravari; R. Douglas; T. P. Downes; M. Drago; J. C. Driggers; Z. Du; M. Ducrot; S. Dwyer; T. Eberle; T. Edo; M. Edwards; M. Edwards; A. Effler; H. -B. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; X. Fan; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; M. Fays; H. Fehrmann; M. M. Fejer; D. Feldbaum; I. Ferrante; E. C. Ferreira; F. Ferrini; F. Fidecaro; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; S. Fuentes-Tapia; P. Fulda; M. Fyffe; J. R. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; A. Gatto; N. Gehrels; G. Gemme; B. Gendre; E. Genin; A. Gennai; L. . Gergely; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Grf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; S. Grunewald; G. M. Guidi; C. J. Guido; X. Guo; K. Gushwa; E. K. Gustafson; R. Gustafson; J. Hacker; E. D. Hall; G. Hammond; M. Hanke; J. Hanks; C. Hanna; M. D. Hannam; J. Hanson; T. Hardwick; J. Harms; G. M. Harry; I. W. Harry; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; S. Hee; A. Heidmann; M. Heintze; G. Heinzel; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; D. Hofman; S. E. Hollitt; K. Holt; P. Hopkins; D. J. Hosken; J. Hough; E. Houston; E. J. Howell; Y. M. Hu; E. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; A. Idrisy; N. Indik; D. R. Ingram; R. Inta; G. Islas; J. C. Isler; T. Isogai; B. R. Iyer; K. Izumi; M. Jacobson; H. Jang; P. Jaranowski; S. Jawahar; Y. Ji; F. Jimnez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; V. Kalogera

    2014-12-01T23:59:59.000Z

    We present results of a search for continuously-emitted gravitational radiation, directed at the brightest low-mass X-ray binary, Scorpius X-1. Our semi-coherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent $\\mathcal{F}$-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3e-24 and 8e-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof of principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ~1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.

  15. A Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors

    SciTech Connect (OSTI)

    Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Allen, B.; Amin, R.; Anderson, S.B.; Anderson, W.G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B.C.; Barker, C.; Barker, D.; Barnes, M.; /Potsdam, Max Planck Inst. /Hannover, Max Planck Inst. Grav. /Australian

    2005-01-01T23:59:59.000Z

    We have performed a search for bursts of gravitational waves associated with the very bright Gamma Ray Burst GRB030329, using the two detectors at the LIGO Hanford Observatory. Our search covered the most sensitive frequency range of the LIGO detectors (approximately 80-2048 Hz), and we specifically targeted signals shorter than {approx_equal}150 ms. Our search algorithm looks for excess correlated power between the two interferometers and thus makes minimal assumptions about the gravitational waveform. We observed no candidates with gravitational wave signal strength larger than a pre-determined threshold. We report frequency dependent upper limits on the strength of the gravitational waves associated with GRB030329. Near the most sensitive frequency region, around {approx_equal}250 Hz, our root-sum-square (RSS) gravitational wave strain sensitivity for optimally polarized bursts was better than h{sub RSS} {approx_equal} 6 x 10{sup -21} Hz{sup -1/2}. Our result is comparable to the best published results searching for association between gravitational waves and GRBs.

  16. The Unfinished Search for Wave-Particle and Classical-Quantum Harmony

    E-Print Network [OSTI]

    Partha Ghose

    2015-02-11T23:59:59.000Z

    The main purpose of this paper is to review the progress that has taken place so far in the search for a single unifying principle that harmonizes (i) the wave and particle natures of matter and radiation, both at the quantum and the classical levels, on the one hand and (ii) the classical and quantum theories of matter and radiation on the other hand. The famous paradoxes of quantum theory, the mysterious nature of measurements in quantum theory and the principal no-go theorems for hidden variables are first briefly reviewed. The Koopman-von Neumann Hilbert space theory based on complex wave functions underlying particle trajectories in classical phase space, is an important step forward in that direction. It provides a clear and beautiful harmony of classical waves and particles. Sudarshan has given an alternative but equivalent formulation that shows that classical mechanics can be regarded as a quantum theory with essentially hidden non-commuting variables. An extension of KvNS theory to classical electrodynamics provides a sound Hilbert space foundation to it and satisfactorily accounts for entanglement and Bell-CHSH-like violations already observed in classical polarization optics. An important new insight that has been obtained through these developments is that entanglement and Bell-like inequality violations are neither unique signatures of quantumness nor of non-locality---they are rather signatures of non-separability. Finally, Sudarshan's proposed solution to the measurement problem using KvNS theory for the measuring apparatus is sketched to show to what extent wave and particles can be harmonized in quantum theory.

  17. AS&E Registering for Classes Use this registration guide to navigate your iSIS student Homepage, search the Schedule of Classes, manage your

    E-Print Network [OSTI]

    Dennett, Daniel

    1 Student AS&E Registering for Classes Use this registration guide to navigate your iSIS student, and plan out tentative future schedules with My Planner. To log in: 1. Log in to iSIS: go.tufts.edu/isis Your customized iSIS homepage opens. If you do not know your Tufts Username or Password, go to http

  18. Navigable Waters, Harbors and Navigation (Wisconsin)

    Broader source: Energy.gov [DOE]

    This statute details regulations relevant to navigable waterways and harbors. Depending on the project design of a proposed dam or hydropower structure, some of these regulations may apply.

  19. Search for gravitational waves from low mass binary coalescences in the first year of LIGOs S5 data

    E-Print Network [OSTI]

    Zucker, Michael E.

    We have searched for gravitational waves from coalescing low mass compact binary systems with a total mass between 2M[subscript ?] and 35M[subscript ?] and a minimum component mass of 1M[subscript ?] using data from the ...

  20. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    E-Print Network [OSTI]

    Barsotti, Lisa

    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo ...

  1. Searches for inspiral gravitational waves associated with short gamma-ray bursts in LIGO's fifth and Virgo's first science run

    E-Print Network [OSTI]

    Alexander Dietz

    2010-06-17T23:59:59.000Z

    Mergers of two compact objects, like two neutron stars or a neutron star and a black hole, are the probable progenitor of short gamma-ray bursts. These events are also promising sources of gravitational waves, that are currently motivating related searches by an international network of gravitational wave detectors. Here we describe a search for gravitational waves from the in-spiral phase of two coalescing compact objects, in coincidence with short GRBs occurred during during LIGO's fifth science run and Virgo's first science run. The search includes 22 GRBs for which data from more than one of the detectors in the LIGO/Virgo network were available. No statistically significant gravitational-wave candidate has been found, and a parametric test shows no excess of weak gravitational-wave signals in our sample of GRBs. The 90\\%~C.L. median exclusion distance for GRBs in our sample is of 6.7 Mpc, under the hypothesis of a neutron star - black hole progenitor model.

  2. Coincidence searches of gravitational waves and short gamma-ray bursts

    E-Print Network [OSTI]

    Andrea Maselli; Valeria Ferrari

    2014-05-28T23:59:59.000Z

    Black-hole neutron-star coalescing binaries have been invoked as one of the most suitable scenario to explain the emission of short gamma-ray bursts. Indeed, if the black-hole which forms after the merger, is surrounded by a massive disk, neutrino annihilation processes may produce high-energy and collimated electromagnetic radiation. In this paper, we devise a new procedure, to be used in the search for gravitational waves from black-hole-neutron-star binaries, to assign a probability that a detected gravitational signal is associated to the formation of an accreting disk, massive enough to power gamma-ray bursts. This method is based on two recently proposed semi-analytic fits, one reproducing the mass of the remnant disk surrounding the black hole as a function of some binary parameters, the second relating the neutron star compactness, with its tidal deformability. Our approach can be used in low-latency data analysis to restrict the parameter space searching for gravitational signals associated with short gamma-ray bursts, and to gain information on the dynamics of the coalescing system and on the neutron star equation of state.

  3. REANALYSIS OF F-STATISTIC GRAVITATIONAL-WAVE SEARCHES WITH THE HIGHER CRITICISM STATISTIC

    SciTech Connect (OSTI)

    Bennett, M. F.; Melatos, A. [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)] [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Delaigle, A.; Hall, P., E-mail: mfb@unimelb.edu.au [Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2013-04-01T23:59:59.000Z

    We propose a new method of gravitational-wave detection using a modified form of higher criticism, a statistical technique introduced by Donoho and Jin. Higher criticism is designed to detect a group of sparse, weak sources, none of which are strong enough to be reliably estimated or detected individually. We apply higher criticism as a second-pass method to synthetic F-statistic and C-statistic data for a monochromatic periodic source in a binary system and quantify the improvement relative to the first-pass methods. We find that higher criticism on C-statistic data is more sensitive by {approx}6% than the C-statistic alone under optimal conditions (i.e., binary orbit known exactly) and the relative advantage increases as the error in the orbital parameters increases. Higher criticism is robust even when the source is not monochromatic (e.g., phase-wandering in an accreting system). Applying higher criticism to a phase-wandering source over multiple time intervals gives a {approx}> 30% increase in detectability with few assumptions about the frequency evolution. By contrast, in all-sky searches for unknown periodic sources, which are dominated by the brightest source, second-pass higher criticism does not provide any benefits over a first-pass search.

  4. Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data

    E-Print Network [OSTI]

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Borkowski, K; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brckner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Caldern; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavagli, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Delglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Daz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dorosh, O; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr?czi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; Gonzlez, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goler, S; Gouaty, R; Grf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jimnez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kflian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S

    2014-01-01T23:59:59.000Z

    We present an implementation of the $\\mathcal{F}$-statistic to carry out the first search in data from the Virgo laser interferometric gravitational wave detector for periodic gravitational waves from a priori unknown, isolated rotating neutron stars. We searched a frequency $f_0$ range from 100 Hz to 1 kHz and the frequency dependent spindown $f_1$ range from $-1.6\\,(f_0/100\\,{\\rm Hz}) \\times 10^{-9}\\,$ Hz/s to zero. A large part of this frequency - spindown space was unexplored by any of the all-sky searches published so far. Our method consisted of a coherent search over two-day periods using the $\\mathcal{F}$-statistic, followed by a search for coincidences among the candidates from the two-day segments. We have introduced a number of novel techniques and algorithms that allow the use of the Fast Fourier Transform (FFT) algorithm in the coherent part of the search resulting in a fifty-fold speed-up in computation of the $\\mathcal{F}$-statistic with respect to the algorithm used in the other pipelines. No ...

  5. Sensitivity Comparison of Searches for Binary Black Hole Coalescences with Ground-based Gravitational-Wave Detectors

    E-Print Network [OSTI]

    Satya Mohapatra; Laura Cadonati; Sarah Caudill; James Clark; Chad Hanna; Sergey Klimenko; Chris Pankow; Ruslan Vaulin; Gabriele Vedovato; Salvatore Vitale

    2014-05-26T23:59:59.000Z

    Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic implementations in the analysis of data from the first generation of ground-based gravitational wave interferometers have used different strategies for the suppression of non-Gaussian noise transients, and targeted different regions of the binary black hole parameter space. In this paper we compare the sensitivity of three such algorithms: matched filtering with full coalescence templates, matched filtering with ringdown templates and a morphology-independent excess power search. The comparison is performed at a fixed false alarm rate and relies on Monte-carlo simulations of binary black hole coalescences for spinning, non-precessing systems with total mass 25-350 solar mass, which covers the parameter space of stellar mass and intermediate mass black hole binaries. We find that in the mass range of 25 -100 solar mass the sensitive distance of the search, marginalized over source parameters, is best with matched filtering to full waveform templates, to within 10 percent at a false alarm rate of 3 events per year. In the mass range of 100-350 solar mass, the same comparison favors the morphology-independent excess power search to within 20 percent. The dependence on mass and spin is also explored.

  6. Application of Artificial Neural Network to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

    E-Print Network [OSTI]

    Kyungmin Kim; Ian W. Harry; Kari A. Hodge; Young-Min Kim; Chang-Hwan Lee; Hyun Kyu Lee; John J. Oh; Sang Hoon Oh; Edwin J. Son

    2015-03-03T23:59:59.000Z

    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. In order to demonstrate the performance, we also evaluate a few seconds of gravitational-wave data segment using the trained networks and obtain the false alarm probability. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.

  7. E-Print Network 3.0 - acoustic wave propagation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N... .Schmidt, H., "Propagation of seismic and acoustic waves in horizontally stratified media... wave-number-integration approach to ... Source: Leonard, John J. - Computer...

  8. Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1

    E-Print Network [OSTI]

    the LIGO Scientific Collaboration; the Virgo Collaboration

    2010-05-25T23:59:59.000Z

    We report the results of the first search for gravitational waves from compact binary coalescence using data from the LIGO and Virgo detectors. Five months of data were collected during the concurrent S5 (LIGO) and VSR1 (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Msun. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10^-3, 2.2x10^-3 and 4.4x10^-4 yr^-1 L_10^-1 respectively, where L_10 is 10^10 times the blue solar luminosity. These upper limits are compared with astrophysical expectations.

  9. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    E-Print Network [OSTI]

    Aartsen, M.?G.

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint ...

  10. OpenEI Community - Navigant

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff the GridHomeWrap-up courtesy5/0

  11. Search algorithm for a gravitational wave signal in association with Gamma Ray Burst GRB030329 using the LIGO detectors

    E-Print Network [OSTI]

    S. Mohanty; Sz. Marka; R. Rahkola; S. Mukherjee; I. Leonor; R. Frey; J. Cannizzo; J. Camp

    2004-07-15T23:59:59.000Z

    One of the brightest Gamma Ray Burst ever recorded, GRB030329, occurred during the second science run of the LIGO detectors. At that time, both interferometers at the Hanford, WA LIGO site were in lock and acquiring data. The data collected from the two Hanford detectors was analyzed for the presence of a gravitational wave signal associated with this GRB. This paper presents a detailed description of the search algorithm implemented in the current analysis.

  12. Application of Graphics Processing Units to Search Pipeline for Gravitational Waves from Coalescing Binaries of Compact Objects

    E-Print Network [OSTI]

    Shin Kee Chung; Linqing Wen; David Blair; Kipp Cannon; Amitava Datta

    2010-05-17T23:59:59.000Z

    We report a novel application of graphics processing units (GPUs) for the purpose of accelerating the search pipelines for gravitational waves from coalescing binaries of compact objects. A speed-up of 16 fold has been achieved compared with a single central processing unit (CPU). We show that substantial improvements are possible and discuss the reduction in CPU count required for the detection of inspiral sources afforded by the use of GPUs.

  13. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; R. A. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; D. Barker; S. H. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; G. Bergmann; J. M. Berliner; D. Bersanetti; A. Bertolini; D. Bessis; J. Betzwieser; P. T. Beyersdorf; T. Bhadbhade; I. A. Bilenko; G. Billingsley; J. Birch; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; M. Blom; O. Bock; T. P. Bodiya; M. Boer; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; J. Bowers; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; C. A. Brannen; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; D. D. Brown; F. Br; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Calderon Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; M. Colombini; M. Constancio Jr.; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; G. Debreczeni; J. Degallaix; W. Del Pozzo; E. Deleeuw; S. Deleglise; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. DeRosa; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; M. Diaz; A. Dietz; K. Dmitry; F. Donovan; K. L. Dooley; S. Doravari; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edwards; A. Effler; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. EndrH; R. Essick; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. Fisher; R. Flaminio; E. Foley; S. Foley; E. Forsi; N. Fotopoulos; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; J. Garcia; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; L. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzalez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Go; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. E. Gushwa; E. K. Gustafson; R. Gustafson; B. Hall; E. Hall; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. Heefner; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; T. Horrom; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; Z. Hua; V. Huang; E. A. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; J. Iafrate; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; Y. J. Jang; P. Jaranowski; F. Jimenez-Forteza; W. W. Johnson; D. Jones; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kaufman

    2013-12-09T23:59:59.000Z

    Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO's fifth science run, and GRB triggers from the swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5 ergs cm^-2 to $F<1200 ergs cm^-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ~33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.

  14. Extended hierarchical search (EHS) algorithm for detection of gravitational waves from inspiraling compact binaries

    E-Print Network [OSTI]

    Anand S. Sengupta; Sanjeev V. Dhurandhar; Albert Lazzarini; Tom Prince

    2001-09-27T23:59:59.000Z

    Pattern matching techniques like matched filtering will be used for online extraction of gravitational wave signals buried inside detector noise. This involves cross correlating the detector output with hundreds of thousands of templates spanning a multi-dimensional parameter space, which is very expensive computationally. A faster implementation algorithm was devised by Mohanty and Dhurandhar [1996] using a hierarchy of templates over the mass parameters, which speeded up the procedure by about 25 to 30 times. We show that a further reduction in computational cost is possible if we extend the hierarchy paradigm to an extra parameter, namely, the time of arrival of the signal. In the first stage, the chirp waveform is cut-off at a relatively low frequency allowing the data to be coarsely sampled leading to cost saving in performing the FFTs. This is possible because most of the signal power is at low frequencies, and therefore the advantage due to hierarchy over masses is not compromised. Results are obtained for spin-less templates up to the second post-Newtonian (2PN) order for a single detector with LIGO I noise power spectral density. We estimate that the gain in computational cost over a flat search is about 100.

  15. Resampling technique to correct for the Doppler effect in a search for gravitational waves

    SciTech Connect (OSTI)

    Braccini, S.; Cella, G.; Ferrante, I.; Passuello, D.; Torre, O. [INFN, Sezione di Pisa (Italy); INFN, Sezione di Pisa (Italy); INFN, Sezione di Pisa (Italy); Universita di Pisa (Italy); INFN, Sezione di Pisa (Italy); INFN, Sezione di Pisa (Italy); Universita di Siena (Italy)

    2011-02-15T23:59:59.000Z

    The frequency of any gravitational-wave signal received from a spinning neutron star will appear Doppler-shifted by the Earth's rotation and orbital motion. This frequency shift must be compensated to recover the signal energy as a spectral monochromatic peak with a high signal-to-noise ratio. Generally the correction depends on the source's position in the sky, spin, and spin-down rate. Here we propose a method of applying a single correction to the data which is valid for all the emission frequencies at a fixed position in the sky and for a given spin-down rate. We advance or retard the antenna proper time by removing (or repeating) single samples of the digitized output signal to keep the effective receiver and source clocks in accurate synchronization. The method, which requires just a few lines of code and little computational effort, appears to be very effective for ''semitargeted'' searches, where the source direction is known but the emission frequency is not.

  16. A Comprehensive Study of Detectability and Contamination in Deep Rapid Optical Searches for Gravitational Wave Counterparts

    E-Print Network [OSTI]

    Cowperthwaite, P S

    2015-01-01T23:59:59.000Z

    The first direct detection of gravitational waves (GW) by the ground-based interferometers is expected to occur within the next few years. These interferometers will detect the mergers of compact object binaries composed of neutron stars and/or black holes to a fiducial distance of ~200 Mpc and a localization region of ~100 sq. deg. To maximize the science gains from such GW detections it is essential to identify electromagnetic (EM) counterparts. The most promising such counterpart is optical/IR emission powered by the radioactive decay of r-process elements synthesized in the neutron-rich merger ejecta - a "kilonova". Here we present detailed simulated observations that encompass a range of strategies for kilonova searches during GW follow-up. We assess both the detectability of kilonovae and our ability to distinguish them from a wide range of contaminating transients. We find that if pre-existing template images for the localization region are available, then nightly observations to a depth of i=24 mag an...

  17. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; T. Adams; P. Addesso; R. X. Adhikari; V. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. S. Areeda; G. Ashton; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. T. Baker; F. Baldaccini; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; S. Barclay; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; J. Bartlett; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; Th. S. Bauer; C. Baune; V. Bavigadda; B. Behnke; M. Bejger; C. Belczynski; A. S. Bell; C. Bell; M. Benacquista; J. Bergman; G. Bergmann; C. P. L. Berry; D. Bersanetti; A. Bertolini; J. Betzwieser; S. Bhagwat; R. Bhandare; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; C. Biwer; M. A. Bizouard; J. K. Blackburn; L. Blackburn; C. D. Blair; D. Blair; S. Bloemen; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; P. Bojtos; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; N. M. Brown; S. Buchman; A. Buikema; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; K. C. Cannon; J. Cao; C. D. Capano; F. Carbognani; S. Caride; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; M. Cho; J. H. Chow; N. Christensen; Q. Chu; S. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio, Jr.; A. Conte; D. Cook; T. R. Corbitt; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. J. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; J. Cripe; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; C. Cutler; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; L. Dartez; V. Dattilo; I. Dave; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; D. DeBra; G. Debreczeni; J. Degallaix; M. De Laurentis; S. Delglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Daz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; G. Dojcinoski; V. Dolique; E. Dominguez; F. Donovan; K. L. Dooley; S. Doravari; R. Douglas; T. P. Downes; M. Drago; J. C. Driggers; Z. Du; M. Ducrot; S. Dwyer; T. Eberle; T. Edo; M. Edwards; M. Edwards; A. Effler; H. -B. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; X. Fan; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; M. Fays; H. Fehrmann; M. M. Fejer; D. Feldbaum; I. Ferrante; E. C. Ferreira; F. Ferrini; F. Fidecaro; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; S. Fuentes-Tapia; P. Fulda; M. Fyffe; J. R. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; A. Gatto; N. Gehrels; G. Gemme; B. Gendre; E. Genin; A. Gennai; L. . Gergely; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Grf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; G. Greco; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; S. Grunewald; G. M. Guidi; C. J. Guido; X. Guo; K. Gushwa; E. K. Gustafson; R. Gustafson; J. Hacker; E. D. Hall; G. Hammond; M. Hanke; J. Hanks; C. Hanna; M. D. Hannam; J. Hanson; T. Hardwick; J. Harms; G. M. Harry; I. W. Harry; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; S. Hee; A. Heidmann; M. Heintze; G. Heinzel; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; D. Hofman; S. E. Hollitt; K. Holt; P. Hopkins; D. J. Hosken; J. Hough; E. Houston; E. J. Howell; Y. M. Hu; E. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; A. Idrisy; N. Indik; D. R. Ingram; R. Inta; G. Islas; J. C. Isler; T. Isogai; B. R. Iyer; K. Izumi; M. Jacobson; H. Jang; P. Jaranowski; S. Jawahar; Y. Ji; F. Jimnez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K

    2014-10-30T23:59:59.000Z

    In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95$\\%$ confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

  18. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; A. Alemic; B. Allen; A. Allocca; D. Amariutei; M. Andersen; R. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; M. Barbet; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; J. Bauchrowitz; Th. S. Bauer; V. Bavigadda; B. Behnke; M. Bejger; M . G. Beker; C. Belczynski; A. S. Bell; C. Bell; M. Benacquista; G. Bergmann; D. Bersanetti; A. Bertolini; J. Betzwieser; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; S. Bloemen; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; L. Bosi; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brckner; S. Buchman; T. Bulik; H. J. Bulten; A. Buonanno; R. Burman; D. Buskulic; C. Buy; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. Collette; M. Colombini; L. Cominsky; M. Constancio Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corpuz; A. Corsi; C. A. Costa; M. W. Coughlin; S. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; S. Delglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. Daz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; V. Dolique; A. Donath; F. Donovan; K. L. Dooley; S. Doravari; S. Dossa; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; M. Ducrot; S. Dwyer; T. Eberle; T. Edo; M. Edwards; A. Effler; H. Eggenstein; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr\\Hoczi; R. Essick; T. Etzel; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; H. Fehrmann; M. M. Fejer; D. Feldbaum; F. Feroz; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; S. Gaonkar; F. Garufi; N. Gehrels; G. Gemme; B. Gendre; E. Genin; A. Gennai; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. M. Goggin; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goler; R. Gouaty; C. Grf; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. Gushwa; E. K. Gustafson; R. Gustafson; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; S. Hooper; P. Hopkins; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; P. Jaranowski; Y. Ji; F. Jimnez-Forteza; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; K. Haris; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; J. Karlen; M. Kasprzack; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; F. Kawazoe; F. Kflian; G. M. Keiser; D. Keitel; D. B. Kelley

    2014-05-22T23:59:59.000Z

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency $50\\le f_{0}/\\mathrm{Hz} \\le 2000$ and decay timescale $0.0001\\lesssim \\tau/\\mathrm{s} \\lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass $50 \\le M/\\mathrm{M}_\\odot \\le 450$ and component mass ratios of either 1:1 or 4:1. For systems with total mass $100 \\le M/\\mathrm{M}_\\odot \\le 150$, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of $6.9\\times10^{-8}\\,$Mpc$^{-3}$yr$^{-1}$. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, $\\ell=m=2$, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

  19. Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

    SciTech Connect (OSTI)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aronsson, M.; Aso, Y.; Ballmer, S.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cannon, K. C.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C. [LIGO - California Institute of Technology, Pasadena, California 91125 (United States)

    2010-11-15T23:59:59.000Z

    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M{sub {center_dot}}. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10{sup -3} yr{sup -1} L{sub 10}{sup -1}, 2.2x10{sup -3} yr{sup -1} L{sub 10}{sup -1}, and 4.4x10{sup -4} yr{sup -1} L{sub 10}{sup -1}, respectively, where L{sub 10} is 10{sup 10} times the blue solar luminosity. These upper limits are compared with astrophysical expectations.

  20. Learning Structured Reactive Navigation Plans from Executing MDP Navigation Policies

    E-Print Network [OSTI]

    Cremers, Daniel

    Learning Structured Reactive Navigation Plans from Executing MDP Navigation Policies Michael Beetz, beetz,belker@cs.uni-bonn.de Abstract. Autonomous robots, such as robot office couriers, need navigation

  1. Application of a Hough search for continuous gravitational waves on data from the 5th LIGO science run

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; The Virgo Collaboration; J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; R. A. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; D. Barker; S. H. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; G. Bergmann; J. M. Berliner; D. Bersanetti; A. Bertolini; D. Bessis; J. Betzwieser; P. T. Beyersdorf; T. Bhadbhade; I. A. Bilenko; G. Billingsley; J. Birch; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; M. Blom; O. Bock; T. P. Bodiya; M. Boer; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; J. Bowers; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; C. A. Brannen; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brckner; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Caldern Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavaglia; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; M. Colombini; M. Constancio Jr.; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Dal Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; E. Deleeuw; S. Delglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. T. DeRosa; R. De Rosa; R. DeSalvo; S. Dhurandhar; M. Daz; A. Dietz; L. Di Fiore; A. Di Lieto; I. Di Palma; A. Di Virgilio; K. Dmitry; F. Donovan; K. L. Dooley; S. Doravari; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. C. Dumas; S. Dwyer; T. Eberle; M. Edwards; A. Effler; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endroczi; R. Essick; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. Fisher; R. Flaminio; E. Foley; S. Foley; E. Forsi; N. Fotopoulos; J. D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; J. Garcia; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; L. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. Gonzlez; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Gossler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. E. Gushwa; E. K. Gustafson; R. Gustafson; B. Hall; E. Hall; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. Heefner; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; S. Hild; D. Hoak; K. A. Hodge; K. Holt; T. Hong; S. Hooper; T. Horrom; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; Z. Hua; V. Huang; E. A. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; J. Iafrate; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; Y. J. Jang; P. Jaranowski; F. Jimnez-Forteza; W. W. Johnson; D. Jones; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; Haris K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer

    2014-03-17T23:59:59.000Z

    We report on an all-sky search for periodic gravitational waves in the frequency range $\\mathrm{50-1000 Hz}$ with the first derivative of frequency in the range $-8.9 \\times 10^{-10}$ Hz/s to zero in two years of data collected during LIGO's fifth science run. Our results employ a Hough transform technique, introducing a $\\chi^2$ test and analysis of coincidences between the signal levels in years 1 and 2 of observations that offers a significant improvement in the product of strain sensitivity with compute cycles per data sample compared to previously published searches. Since our search yields no surviving candidates, we present results taking the form of frequency dependent, 95$%$ confidence upper limits on the strain amplitude $h_0$. The most stringent upper limit from year 1 is $1.0\\times 10^{-24}$ in the $\\mathrm{158.00-158.25 Hz}$ band. In year 2, the most stringent upper limit is $\\mathrm{8.9\\times10^{-25}}$ in the $\\mathrm{146.50-146.75 Hz}$ band. This improved detection pipeline, which is computationally efficient by at least two orders of magnitude better than our flagship Einstein$@$Home search, will be important for "quick-look" searches in the Advanced LIGO and Virgo detector era.

  2. Improved spacecraft radio science using an on-board atomic clock: Application to gravitational wave searches

    SciTech Connect (OSTI)

    Tinto, Massimo; Dick, George J.; Prestage, John D.; Armstrong, J. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2009-05-15T23:59:59.000Z

    Recent advances in space-qualified atomic clocks (low-mass, low power-consumption, frequency stability comparable to that of ground-based clocks) can enable interplanetary spacecraft radio science experiments at unprecedented Doppler sensitivities. The addition of an on-board digital receiver would allow the up- and down-link Doppler frequencies to be measured separately. Such separate, high-quality measurements allow optimal data combinations that suppress the currently leading noise sources: phase scintillation noise from the Earth's atmosphere and Doppler noise caused by mechanical vibrations of the ground antenna. Here we provide a general expression for the optimal combination of ground and on-board Doppler data and compute the sensitivity such a system would have to low-frequency gravitational waves (GWs). Assuming a plasma scintillation noise calibration comparable to that already demonstrated with the multilink CASSINI radio system, the space-clock/digital-receiver instrumentation enhancements would give GW strain sensitivity of 3.7x10{sup -14} Hz{sup -1/2} for randomly polarized, monochromatic GW signals isotropically distributed over the celestial sphere, over a two-decade ({approx}0.0001-0.01 Hz) region of the low-frequency band. This is about an order of magnitude better than currently achieved with traditional two-way coherent Doppler experiments. The utility of optimally combining simultaneous up- and down-link observations is not limited to GW searches. The Doppler tracking technique discussed here could be performed at minimal incremental cost to improve also other radio science experiments (i.e., tests of relativistic gravity, planetary and satellite gravity field measurements, atmospheric and ring occultations) on future interplanetary missions.

  3. The search for gravitational wave bursts in data from the second LIGO science run

    E-Print Network [OSTI]

    Chatterji, Shourov Keith

    2005-01-01T23:59:59.000Z

    The network of detectors comprising the Laser Interferometer Gravitational-wave Observatory (LIGO) are among a new generation of detectors that seek to make the first direct observation of gravitational waves. While providing ...

  4. Inland Navigation Districts and Florida Inland Navigation District Law (Florida)

    Broader source: Energy.gov [DOE]

    The first part of this legislation establishes Inland Navigation Districts, which are authorized to plan for and manage the development of inland waterways, and to maintain public navigation...

  5. Low latency search for Gravitational waves from BH-NS binaries in coincidence with Short Gamma Ray Bursts

    E-Print Network [OSTI]

    Andrea Maselli; Valeria Ferrari

    2014-02-24T23:59:59.000Z

    We propose a procedure to be used in the search for gravitational waves from black hole-neutron star coalescing binaries, in coincidence with short gamma-ray bursts. It is based on two recently proposed semi-analytic fits, one reproducing the mass of the remnant disk surrounding the black hole which forms after the merging as a function of some binary parameters, the second relating the neutron star compactness, i.e. the ratio of mass and radius, with its tidal deformability. Using a Fisher matrix analysis and the two fits, we assign a probability that the emitted gravitational signal is associated to the formation of an accreting disk massive enough to supply the energy needed to power a short gamma ray burst. This information can be used in low-latency data analysis to restrict the parameter space searching for gravitational wave signals in coincidence with short gamma-ray bursts, and to gain information on the dynamics of the coalescing system and on the internal structure of the components. In addition, when the binary parameters will be measured with high accuracy, it will be possible to use this information to trigger the search for off-axis gamma-ray bursts afterglows.

  6. Waves

    E-Print Network [OSTI]

    LaCure, Mari Mae

    2010-04-29T23:59:59.000Z

    Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

  7. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    E-Print Network [OSTI]

    Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Benacquista, M; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brckner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Caldern; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavagli, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Delglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Daz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endr?czi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Goggin, L M; Gondan, L; Gonzlez, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goler, S; Gouaty, R; Grf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jimnez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kflian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K

    2014-01-01T23:59:59.000Z

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency $50\\le f_{0}/\\mathrm{Hz} \\le 2000$ and decay timescale $0.0001\\lesssim \\tau/\\mathrm{s} \\lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass $50 \\le M/\\mathrm{M}_\\odot \\le 450$ and component mass ratios of either 1:1 or 4:1. For systems with total mass $100 \\le M/\\mathrm{M}_\\odot \\le 150$, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of $6.9\\times10^{-8}\\,$Mpc$^{-3}$yr$^{-1}$. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs,...

  8. SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3

    SciTech Connect (OSTI)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ajith, P.; Anderson, S. B.; Arai, K. [LIGO-California Institute of Technology, Pasadena, CA 91125 (United States); Abbott, T. D. [California State University Fullerton, Fullerton, CA 92831 (United States); Abernathy, M. [SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Accadia, T. [Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Universite de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux (France); Acernese, F. [INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli (Italy); Adams, C. [LIGO-Livingston Observatory, Livingston, LA 70754 (United States); Affeldt, C.; Allen, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Agathos, M. [Nikhef, Science Park, Amsterdam (Netherlands); Agatsuma, K. [National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Ceron, E. Amador; Anderson, W. G. [University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); Amariutei, D.; Arain, M. A. [University of Florida, Gainesville, FL 32611 (United States); Collaboration: LIGO Scientific Collaboration; Virgo Collaboration; and others

    2012-11-20T23:59:59.000Z

    We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole, and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10{sup -2} M {sub Sun} c {sup 2} at 150 Hz, with a median limit of 17 Mpc. For short-hard GRBs we place exclusion distances on binary neutron star and neutron-star-black-hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc, respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.

  9. Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; Virgo Collaboration; J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; E. Amador Ceron; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. A. Arain; M. C. Araya; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; S. Ballmer; J. C. B. Barayoga; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; D. Beck; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet--Castell; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; E. Calloni; J. B. Camp; P. Campsie; J. Cannizzo; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; O. Chaibi; T. Chalermsongsak; P. Charlton; E. Chassande-Mottin; S. Chelkowski; W. Chen; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; S. L. Danilishin; R. Dannenberg; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; J. Degallaix; W. Del Pozzo; M. del Prete; T. Dent; V. Dergachev; R. DeRosa; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Daz; A. Dietz; F. Donovan; K. L. Dooley; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endrczi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Y. Fan; B. F. Farr; D. Fazi; H. Fehrmann; D. Feldbaum; F. Feroz; I. Ferrante; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; M. Flanigan; S. Foley; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. J. Fulda; M. Fyffe; J. Gair; M. Galimberti; L. Gammaitoni; J. Garcia; F. Garufi; M. E. Gspr; N. Gehrels; G. Gemme; R. Geng; E. Genin; A. Gennai; L. . Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; L. M. Goggin; G. Gonzlez; M. L. Gorodetsky; S. Goler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; N. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Greverie; R. Grosso; H. Grote; S. Grunewald; G. M. Guidi; C. Guido; R. Gupta; E. K. Gustafson; R. Gustafson; T. Ha; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; A. Hardt; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; J. Heefner; A. Heidmann; M. C. Heintze; H. Heitmann; P. Hello; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; D. J. Hosken; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; E. James; Y. J. Jang; P. Jaranowski; E. Jesse; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; R. J. G. Jonker; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; S. Kawamura; F. Kawazoe; D. Kelley; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. K. Kim; C. Kim; H. Kim; K. Kim; N. Kim; Y. M. Kim; P. J. King; D. L. Kinzel; J. S. Kissel; S. Klimenko; K. Kokeyama

    2012-09-24T23:59:59.000Z

    We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole; and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10^-2 M c^2 at 150 Hz, with a median limit of 17 Mpc. For short hard GRBs we place exclusion distances on binary neutron star and neutron star-black hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.

  10. E-Print Network 3.0 - acoustic wave theory Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shallow water internal waves on acoustic... - and strong-scattering theories for random media would ... Source: Oregon State University, College of Oceanic and Atmospheric...

  11. E-Print Network 3.0 - amplitude anisotropic wave Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    media are studied using... into the wave processes in viscoelastic anisotropic media can ... Source: Cerveny, Vlastislav - Department of Geophysics, Charles University...

  12. Site-Searching Strategies of Searchers Referred from Search Engines

    E-Print Network [OSTI]

    Jansen, James

    1 Site-Searching Strategies of Searchers Referred from Search Engines Adan Ortiz-Cordova College and then submit multiple broad queries on the site-search engine, (2) the navigators who submit a query to the major search engine that is part of a URL and then submit specific queries to the site-search engine

  13. MHK Technologies/WaveTork | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <WavePlaneWaveTork

  14. MHK Technologies/hyWave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG BuoyYOG < MHKbioWave <hyWave

  15. Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs

    SciTech Connect (OSTI)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Barish, B. C.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Boschi, V.; Busby, D.; Cardenas, L.; Cepeda, C.; Chatterji, S.; Coyne, D. [LIGO-California Institute of Technology, Pasadena, California 91125 (United States)] (and others)

    2008-03-15T23:59:59.000Z

    We present the results of a search for short-duration gravitational-wave bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray satellite experiments during LIGO's S2, S3, and S4 science runs. The search involves calculating the crosscorrelation between two interferometer data streams surrounding the GRB trigger time. We search for associated gravitational radiation from single GRBs, and also apply statistical tests to search for a gravitational-wave signature associated with the whole sample. For the sample examined, we find no evidence for the association of gravitational radiation with GRBs, either on a single-GRB basis or on a statistical basis. Simulating gravitational-wave bursts with sine-Gaussian waveforms, we set upper limits on the root-sum-square of the gravitational-wave strain amplitude of such waveforms at the times of the GRB triggers. We also demonstrate how a sample of several GRBs can be used collectively to set constraints on population models. The small number of GRBs and the significant change in sensitivity of the detectors over the three runs, however, limits the usefulness of a population study for the S2, S3, and S4 runs. Finally, we discuss prospects for the search sensitivity for the ongoing S5 run, and beyond for the next generation of detectors.

  16. Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs

    E-Print Network [OSTI]

    LIGO Scientific Collaboration

    2008-02-01T23:59:59.000Z

    We present the results of a search for short-duration gravitational-wave bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray satellite experiments during LIGO's S2, S3, and S4 science runs. The search involves calculating the crosscorrelation between two interferometer data streams surrounding the GRB trigger time. We search for associated gravitational radiation from single GRBs, and also apply statistical tests to search for a gravitational-wave signature associated with the whole sample. For the sample examined, we find no evidence for the association of gravitational radiation with GRBs, either on a single-GRB basis or on a statistical basis. Simulating gravitational-wave bursts with sine-gaussian waveforms, we set upper limits on the root-sum-square of the gravitational-wave strain amplitude of such waveforms at the times of the GRB triggers. We also demonstrate how a sample of several GRBs can be used collectively to set constraints on population models. The small number of GRBs and the significant change in sensitivity of the detectors over the three runs, however, limits the usefulness of a population study for the S2, S3, and S4 runs. Finally, we discuss prospects for the search sensitivity for the ongoing S5 run, and beyond for the next generation of detectors.

  17. A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors

    E-Print Network [OSTI]

    Sukanta Bose; Thilina Dayanga; Shaon Ghosh; Dipongkar Talukder

    2011-04-14T23:59:59.000Z

    We describe a hierarchical data analysis pipeline for coherently searching for gravitational wave (GW) signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. It assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed "blind". The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise, and allows for the computation of a suite of alternative statistics and signal-based discriminators that can improve its performance in real data. Unlike the coincident multi-detector search statistics employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. The first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. The performance of the hierarchical coherent pipeline on Gaussian data is shown to be better than the pipeline with just the first (coincidence) stage.

  18. Long-Wave Infrared | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump to:EnergyLong-Wave

  19. Model-Based Cross-Correlation Search for Gravitational Waves from Scorpius X-1

    E-Print Network [OSTI]

    John T. Whelan; Santosh Sundaresan; Yuanhao Zhang; Prabath Peiris

    2015-05-20T23:59:59.000Z

    We consider the cross-correlation search for periodic GWs and its potential application to the LMXB Sco X-1. This method coherently combines data from different detectors at the same time, as well as different times from the same or different detectors. By adjusting the maximum time offset between a pair of data segments to be coherently combined, one can tune the method to trade off sensitivity and computing costs. In particular, the detectable signal amplitude scales as the inverse fourth root of this coherence time. The improvement in amplitude sensitivity for a search with a coherence time of 1hr, compared with a directed stochastic background search with 0.25Hz wide bins is about a factor of 5.4. We show that a search of 1yr of data from Advanced LIGO and Advanced Virgo with a coherence time of 1hr would be able to detect GWs from Sco X-1 at the level predicted by torque balance over a range of signal frequencies from 30-300Hz; if the coherence time could be increased to 10hr, the range would be 20-500Hz. In addition, we consider several technical aspects of the cross-correlation method: We quantify the effects of spectral leakage and show that nearly rectangular windows still lead to the most sensitive search. We produce an explicit parameter-space metric for the cross-correlation search in general and as applied to a neutron star in a circular binary system. We consider the effects of using a signal template averaged over unknown amplitude parameters: the search is sensitive to a combination of the intrinsic signal amplitude and the inclination of the neutron star rotation axis, and the peak of the expected detection statistic is systematically offset from the true signal parameters. Finally, we describe the potential loss of SNR due to unmodelled effects such as signal phase acceleration within the Fourier transform timescale and gradual evolution of the spin frequency.

  20. A Model-Based Cross-Correlation Search for Gravitational Waves from Scorpius X-1

    E-Print Network [OSTI]

    John T. Whelan; Santosh Sundaresan; Yuanhao Zhang; Prabath Peiris

    2015-04-22T23:59:59.000Z

    We consider the cross-correlation search for periodic GWs and its potential application to the LMXB Sco X-1. This method coherently combines data from different detectors at the same time, as well as different times from the same or different detectors. By adjusting the maximum time offset between a pair of data segments to be coherently combined, one can tune the method to trade off sensitivity and computing costs. In particular, the detectable signal amplitude scales as the inverse fourth root of this coherence time. The improvement in amplitude sensitivity for a search with a coherence time of 1hr, compared with a directed stochastic background search with 0.25Hz wide bins is about a factor of 5.4. We show that a search of 1yr of data from Advanced LIGO and Advanced Virgo with a coherence time of 1hr would be able to detect GWs from Sco X-1 at the level predicted by torque balance over a range of signal frequencies from 30-300Hz; if the coherence time could be increased to 10hr, the range would be 20-500Hz. In addition, we consider several technical aspects of the cross-correlation method: We quantify the effects of spectral leakage and show that nearly rectangular windows still lead to the most sensitive search. We produce an explicit parameter-space metric for the cross-correlation search in general and as applied to a neutron star in a circular binary system. We consider the effects of using a signal template averaged over unknown amplitude parameters: the search is sensitive to a combination of the intrinsic signal amplitude and the inclination of the neutron star rotation axis, and the peak of the expected detection statistic is systematically offset from the true signal parameters. Finally, we describe the potential loss of SNR due to unmodelled effects such as signal phase acceleration within the Fourier transform timescale and gradual evolution of the spin frequency.

  1. Searching for A Generic Gravitational Wave Background via Bayesian Nonparametric Analysis with Pulsar Timing Arrays

    E-Print Network [OSTI]

    Xihao Deng

    2014-10-23T23:59:59.000Z

    Gravitational wave background results from the superposition of gravitational waves generated from all sources across the Universe. Previous efforts on detecting such a background with pulsar timing arrays assume it is an isotropic Gaussian background with a power law spectrum. However, when the number of sources is limited, the background might be non-Gaussian or the spectrum might not be a power law. Correspondingly previous analysis may not work effectively. Here we use a method --- Bayesian Nonparametric Analysis --- to try to detect a generic gravitational wave background, which directly sets constraints on the feasible shapes of the pulsar timing signals induced by a gravitational wave background and allows more flexible forms of the background. Our Bayesian nonparametric analysis will infer if a gravitational wave background is present in the data, and also estimate the parameters that characterize the background. This method will be much more effective than the conventional one assuming the background spectrum follows a power law in general cases. While the context of our discussion focuses on pulsar timing arrays, the analysis itself is directly applicable to detect and characterize any signals that arise from the superposition of a large number of astrophysical events.

  2. SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN

    SciTech Connect (OSTI)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Araya, M.; Aso, Y. [LIGO-California Institute of Technology, Pasadena, CA 91125 (United States); Accadia, T. [Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Universite de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux (France); Acernese, F. [INFN, Sezione di Napoli, Complesso Universitario di Monte Sant Angelo, I-80126 Napoli (Italy); Allen, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Allen, G. [Stanford University, Stanford, CA 94305 (United States); Ceron, E. Amador; Anderson, W. G. [University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); Amin, R. S. [Louisiana State University, Baton Rouge, LA 70803 (United States); Antonucci, F. [INFN, Sezione di Roma, I-00185 Roma (Italy); Aoudia, S. [Universite Nice-Sophia-Antipolis, CNRS, Observatoire de la Cote d'Azur, F-06304 Nice (France); Arain, M. A. [University of Florida, Gainesville, FL 32611 (United States); Arun, K. G. [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Aston, S. [University of Birmingham, Birmingham, B15 2TT (United Kingdom)

    2010-06-01T23:59:59.000Z

    Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ - 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc.

  3. Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors

    E-Print Network [OSTI]

    Aggarwal, Nancy

    In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. ...

  4. SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3

    E-Print Network [OSTI]

    Bodiya, Timothy Paul

    We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the ...

  5. Navigating the Numbers: Greenhouse Gas Data and International Climate

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation, searchNauru: EnergyPolicy | Open Energy

  6. A Model-Based Cross-Correlation Search for Gravitational Waves from Scorpius X-1

    E-Print Network [OSTI]

    Whelan, John T; Zhang, Yuanhao; Peiris, Prabath

    2015-01-01T23:59:59.000Z

    We consider the cross-correlation search for periodic GWs and its potential application to the LMXB Sco X-1. This method coherently combines data from different detectors at the same time, as well as different times from the same or different detectors. By adjusting the maximum time offset between a pair of data segments to be coherently combined, one can tune the method to trade off sensitivity and computing costs. In particular, the detectable signal amplitude scales as the inverse fourth root of this coherence time. The improvement in amplitude sensitivity for a search with a coherence time of 1hr, compared with a directed stochastic background search with 0.25Hz wide bins is about a factor of 5.4. We show that a search of 1yr of data from Advanced LIGO and Advanced Virgo with a coherence time of 1hr would be able to detect GWs from Sco X-1 at the level predicted by torque balance over a range of signal frequencies from 30-300Hz; if the coherence time could be increased to 10hr, the range would be 20-500Hz...

  7. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

    E-Print Network [OSTI]

    Aggarwal, Nancy

    Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (?101000??s) ...

  8. Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of LIGO's S5 Data

    E-Print Network [OSTI]

    LIGO Scientific Collaboration; B. Abbott

    2009-05-06T23:59:59.000Z

    We have searched for gravitational waves from coalescing low mass compact binary systems with a total mass between 2 and 35 Msun and a minimum component mass of 1 Msun using data from the first year of the fifth science run (S5) of the three LIGO detectors, operating at design sensitivity. Depending on mass, we are sensitive to coalescences as far as 150 Mpc from the Earth. No gravitational wave signals were observed above the expected background. Assuming a compact binary objects population with a Gaussian mass distribution representing binary neutron star systems, black hole-neutron star binary systems, and binary black hole systems, we calculate the 90%-confidence upper limit on the rate of coalescences to be 3.9 \\times 10^{-2} yr^{-1} L_{10}^{-1}, 1.1 \\times 10^{-2} yr^{-1} L_{10}^{-1}, and 2.5 \\times 10^{-3} yr^{-1} L_{10}^{-1} respectively, where $L_{10}$ is $10^{10}$ times the blue solar luminosity. We also set improved upper limits on the rate of compact binary coalescences per unit blue-light luminosity, as a function of mass.

  9. Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data

    SciTech Connect (OSTI)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T. [LIGO-California Institute of Technology, Pasadena, California 91125 (United States)] (and others)

    2009-06-15T23:59:59.000Z

    We have searched for gravitational waves from coalescing low mass compact binary systems with a total mass between 2M{sub {center_dot}} and 35M{sub {center_dot}} and a minimum component mass of 1M{sub {center_dot}} using data from the first year of the fifth science run of the three LIGO detectors, operating at design sensitivity. Depending on the mass, we are sensitive to coalescences as far as 150 Mpc from the Earth. No gravitational-wave signals were observed above the expected background. Assuming a population of compact binary objects with a Gaussian mass distribution representing binary neutron star systems, black hole-neutron star binary systems, and binary black hole systems, we calculate the 90% confidence upper limit on the rate of coalescences to be 3.9x10{sup -2} yr{sup -1}L{sub 10}{sup -1}, 1.1x10{sup -2} yr{sup -1}L{sub 10}{sup -1}, and 2.5x10{sup -3} yr{sup -1}L{sub 10}{sup -1}, respectively, where L{sub 10} is 10{sup 10} times the blue solar luminosity. We also set improved upper limits on the rate of compact binary coalescences per unit blue-light luminosity, as a function of mass.

  10. Nano-Hertz Gravitational Waves Searches with Interferometric Pulsar Timing Experiments

    E-Print Network [OSTI]

    Massimo Tinto

    2011-01-20T23:59:59.000Z

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly-stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same time-keeping subsystem (i.e. "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band ($10^{-9} - 10^{-8}$) Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost two orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the forthcoming large arraying projects.

  11. Searches

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | Careers |Searches for New

  12. Searching

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | Careers |Searches for

  13. Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO Science Run 5 and Virgo Science Run 1

    E-Print Network [OSTI]

    LIGO Scientific Collaboration; Virgo Collaboration; B. P. Abbott; R. Abbott; F. Acernese; R. Adhikari; P. Ajith; B. Allen; G. Allen; M. Alshourbagy; R. S. Amin; S. B. Anderson; W. G. Anderson; F. Antonucci; S. Aoudia; M. A. Arain; M. Araya; H. Armandula; P. Armor; K. G. Arun; Y. Aso; S. Aston; P. Astone; P. Aufmuth; C. Aulbert; S. Babak; P. Baker; G. Ballardin; S. Ballmer; C. Barker; D. Barker; F. Barone; B. Barr; P. Barriga; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; Th. S. Bauer; B. Behnke; M. Beker; M. Benacquista; J. Betzwieser; P. T. Beyersdorf; S. Bigotta; I. A. Bilenko; G. Billingsley; S. Birindelli; R. Biswas; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; C. Boccara; T. P. Bodiya; L. Bogue; F. Bondu; L. Bonelli; R. Bork; V. Boschi; S. Bose; L. Bosi; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; J. E. Brau; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; C. Van Den Broeck; A. F. Brooks; D. A. Brown; A. Brummit; G. Brunet; R. Budzy?ski; T. Bulik; A. Bullington; H. J. Bulten; A. Buonanno; O. Burmeister; D. Buskulic; R. L. Byer; L. Cadonati; G. Cagnoli; E. Calloni; J. B. Camp; E. Campagna; J. Cannizzo; K. C. Cannon; B. Canuel; J. Cao; F. Carbognani; L. Cardenas; S. Caride; G. Castaldi; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; T. Chalermsongsak; E. Chalkley; P. Charlton; E. Chassande-Mottin; S. Chatterji; S. Chelkowski; Y. Chen; A. Chincarini; N. Christensen; C. T. Y. Chung; D. Clark; J. Clark; J. H. Clayton; F. Cleva; E. Coccia; T. Cokelaer; C. N. Colacino; J. Colas; A. Colla; M. Colombini; R. Conte; D. Cook; T. R. C. Corbitt; C. Corda; N. Cornish; A. Corsi; J. -P. Coulon; D. Coward; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; R. M. Culter; A. Cumming; L. Cunningham; E. Cuoco; S. L. Danilishin; S. D'Antonio; K. Danzmann; A. Dari; V. Dattilo; B. Daudert; M. Davier; G. Davies; E. J. Daw; R. Day; R. De Rosa; D. DeBra; J. Degallaix; M. del Prete; V. Dergachev; S. Desai; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; M. Di Paolo Emilio; A. Di Virgilio; M. Daz; A. Dietz; F. Donovan; K. L. Dooley; E. E. Doomes; M. Drago; R. W. P. Drever; J. Dueck; I. Duke; J. -C. Dumas; J. G. Dwyer; C. Echols; M. Edgar; M. Edwards; A. Effler; P. Ehrens; E. Espinoza; T. Etzel; M. Evans; T. Evans; V. Fafone; S. Fairhurst; Y. Faltas; Y. Fan; D. Fazi; H. Fehrmann; I. Ferrante; F. Fidecaro; L. S. Finn; I. Fiori; R. Flaminio; K. Flasch; S. Foley; C. Forrest; N. Fotopoulos; J. -D. Fournier; J. Franc; A. Franzen; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. Fricke; P. Fritschel; V. V. Frolov; M. Fyffe; V. Galdi; L. Gammaitoni; J. A. Garofoli; F. Garufi; G. Gemme; E. Genin; A. Gennai; I. Gholami; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; K. Goda; E. Goetz; L. M. Goggin; G. Gonzlez; M. L. Gorodetsky; S. Goezetler; S. Goler; R. Gouaty; M. Granata; V. Granata; A. Grant; S. Gras; C. Gray; M. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Greverie; F. Grimaldi; R. Grosso; H. Grote; S. Grunewald; M. Guenther; G. Guidi; E. K. Gustafson; R. Gustafson; B. Hage; J. M. Hallam; D. Hammer; G. D. Hammond; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; K. Haughian; K. Hayama; J. Heefner; H. Heitmann; P. Hello; I. S. Heng; A. Heptonstall; M. Hewitson; S. Hild; E. Hirose; D. Hoak; K. A. Hodge; K. Holt; D. J. Hosken; J. Hough; D. Hoyland; D. Huet; B. Hughey; S. H. Huttner; D. R. Ingram; T. Isogai; M. Ito; A. Ivanov; P. Jaranowski; B. Johnson; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Sancho de la Jordana; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; J. Kanner; D. Kasprzyk; E. Katsavounidis; K. Kawabe; S. Kawamura; F. Kawazoe; W. Kells; D. G. Keppel; A. Khalaidovski; F. Y. Khalili; R. Khan; E. Khazanov; P. King; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; R. Kopparapu; S. Koranda; I. Kowalska; D. Kozak; B. Krishnan; A. Krlak; R. Kumar; P. Kwee; P. La Penna; P. K. Lam; M. Landry; B. Lantz; A. Lazzarini; H. Lei; M. Lei; N. Leindecker; I. Leonor; N. Leroy; N. Letendre; C. Li; H. Lin; P. E. Lindquist; T. B. Littenberg; N. A. Lockerbie; D. Lodhia; M. Longo; M. Lorenzini; V. Loriette; M. Lormand; G. Losurdo; P. Lu; M. Lubinski; A. Lucianetti; H. Lck; B. Machenschalk; M. MacInnis; J. -M. Mackowski; M. Mageswaran; K. Mailand; E. Majorana; N. Man; I. Mandel; V. Mandic; M. Mantovani; F. Marchesoni; F. Marion; S. Mrka; Z. Mrka; A. Markosyan; J. Markowitz; E. Maros; J. Marque; F. Martelli; I. W. Martin; R. M. Martin; J. N. Marx; K. Mason; A. Masserot; F. Matichard; L. Matone; R. A. Matzner; N. Mavalvala; R. McCarthy; D. E. McClelland; S. C. McGuire; M. McHugh; G. McIntyre; D. J. A. McKechan; K. McKenzie; M. Mehmet; A. Melatos; A. C. Melissinos; G. Mendell; D. F. Menndez

    2010-04-07T23:59:59.000Z

    We present the results of a search for gravitational-wave bursts associated with 137 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments during the fifth LIGO science run and first Virgo science run. The data used in this analysis were collected from 2005 November 4 to 2007 October 1, and most of the GRB triggers were from the Swift satellite. The search uses a coherent network analysis method that takes into account the different locations and orientations of the interferometers at the three LIGO-Virgo sites. We find no evidence for gravitational-wave burst signals associated with this sample of GRBs. Using simulated short-duration (<1 s) waveforms, we set upper limits on the amplitude of gravitational waves associated with each GRB. We also place lower bounds on the distance to each GRB under the assumption of a fixed energy emission in gravitational waves, with typical limits of D ~ 15 Mpc (E_GW^iso / 0.01 M_o c^2)^1/2 for emission at frequencies around 150 Hz, where the LIGO-Virgo detector network has best sensitivity. We present astrophysical interpretations and implications of these results, and prospects for corresponding searches during future LIGO-Virgo runs.

  14. NAVIGATING THE BRAIN'S MYSTERIES

    E-Print Network [OSTI]

    C C C A A A A G A G G D D D D D F D F F F H H H E E E E FHE E B B B C E B NAVIGATING THE BRAIN of the brain-- one that shows its complex trafficking across trillions of neuronal connections. Addressing: outlining "the next great American project," the BRAIN (Brain Research through Advancing Innovative

  15. AUV Cooperative Operations using Acoustic Communication and Navigation

    E-Print Network [OSTI]

    Idaho, University of

    1 AUV Cooperative Operations using Acoustic Communication and Navigation T. Bean*, G. Beidler*, J to collect underwater data, including sonar bathymetry in relatively deep water [1] and measurements) [3]. AUVs were used to search 3.5 million square meters of shallow water for mines in Operation

  16. The effect of small inter-pulsar distance variations in stochastic gravitational wave background searches with Pulsar Timing Arrays

    E-Print Network [OSTI]

    Chiara M. F. Mingarelli; Trevor Sidery

    2014-08-28T23:59:59.000Z

    One of the primary objectives for Pulsar Timing Arrays (PTAs) is to detect a stochastic background generated by the incoherent superposition of gravitational waves (GWs), in particular from the cosmic population of supermassive black hole binaries. Current stochastic background searches assume that pulsars in a PTA are separated from each other and the Earth by many GW wavelengths. As more millisecond pulsars are discovered and added to PTAs, some may be separated by only a few radiation wavelengths or less, resulting in correlated GW phase changes between close pulsars in the array. Here we investigate how PTA overlap reduction functions (ORFs), up to quadrupole order, are affected by these additional correlated phase changes, and how they are in turn affected by relaxing the assumption that all pulsars are equidistant from the solar system barycenter. We find that in the low frequency GW background limit of $f\\sim10^{-9}$~Hz, and for pulsars at varying distances from the Earth, that these additional correlations only affect the ORFs by a few percent for pulsar pairs at large angular separations, as expected. However when nearby (order 100 pc) pulsars are separated by less than a few degrees, the correlated phase changes can introduce variations of a few tens of percent in the magnitude of the isotropic ORF, and much larger fractional differences in the anisotropic ORFs-- up to 188 in the $m=0$, $l=2$ ORF for equidistant pulsars separated by 3 degrees. In fact, the magnitude of most of the anisotropic ORFs is largest at small, but non-zero, pulsar separations. Finally, we write down a small angle approximation for the correlated phase changes which can easily be implemented in search pipelines, and for completeness, examine the behavior of the ORFs for pulsars which lie at a radiation wavelength from the Earth.

  17. 33 CFR 2.36: Navigable Waters of the United States, navigable...

    Open Energy Info (EERE)

    navigable waters, and territorial watersLegal Abstract This regulation provides the definition for "navigable waters of the United States, navigable waters, and territorial...

  18. Search for Gravitational Waves from Binary Black Hole Inspiral, Merger and Ringdown in LIGO-Virgo Data from 2009-2010

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; P. Addesso; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; S. Ast; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; S. Ballmer; Y. Bao; J. C. B. Barayoga; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; D. Beck; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; T. Bhadbade; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; C. Bond; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet-Castell; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; E. Calloni; J. B. Camp; P. Campsie; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; S. Caudill; M. Cavaglia; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; T. Chalermsongsak; P. Charlton; E. Chassande-Mottin; W. Chen; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; J. Degallaix; W. Del Pozzo; T. Dent; V. Dergachev; R. DeRosa; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Diaz; A. Dietz; F. Donovan; K. L. Dooley; S. Doravari; S. Dorsher; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endroczi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; B. F. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; S. Foley; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. A. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. J. Fulda; M. Fyffe; J. Gair; M. Galimberti; L. Gammaitoni; J. Garcia; F. Garufi; M. E. Gaspar; G. Gelencser; G. Gemme; E. Genin; A. Gennai; L. A. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; G. Gonzalez; M. L. Gorodetsky; S. Gossler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; R. Gupta; E. K. Gustafson; R. Gustafson; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; J. Heefner; A. Heidmann; M. C. Heintze; H. Heitmann; P. Hello; G. Hemming; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Heurs; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; M. Holtrop; T. Hong; S. Hooper; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; E. James; Y. J. Jang; P. Jaranowski; E. Jesse; W. W. Johnson; D. I. Jones; R. Jones; R. J. G. Jonker; L. Ju; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kaufman; K. Kawabe; S. Kawamura; F. Kawazoe; D. Keitel; D. Kelley; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. K. Kim; C. Kim; H. Kim; K. Kim; N. Kim; Y. M. Kim; P. J. King; D. L. Kinzel; J. S. Kissel; S. Klimenko

    2013-02-25T23:59:59.000Z

    We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20) Msun coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for non-spinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with non-spinning components of mass between 19 and 28 Msun of 3.3 \\times 10^-7 mergers /Mpc^3 /yr.

  19. Search

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found ItemRomero-Redondo, C"Voth,Jaehoon"Zhu, Jianaerogels FindSearch

  20. Searching

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found ItemRomero-Redondo, C"Voth,Jaehoon"Zhu,Searching for

  1. Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysics LabwildfiresScott Taylor,SeaTimSearch

  2. Search for gravitational wave bursts by wavelet packet decomposition: The detection algorithm

    SciTech Connect (OSTI)

    Camarda, M.; Ortolan, A. [Dipartimento di Ingegneria dell'Informazione, Via Gradenigo, 6/B, 35131 Padova (Italy); INFN Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); INFN Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy)

    2006-09-15T23:59:59.000Z

    We present a novel method based on wavelet packet transformation for detection of gravitational wave (gw) bursts embedded in additive Gaussian noise. The method exploits a wavelet packet decomposition of observed data and performs detection of bursts at multiple time-frequency resolutions by the extreme value statistics. We discuss the performances of detection algorithms (efficiency and robustness) in the general framework of hypothesis testing. In particular, we compare the performances of wavelet packet (WP), matched filter (MF), and power filter (PF) algorithms by means of a complete Monte Carlo simulation of the output of a gw detector, with the detection efficiencies of MF and PF playing the role of upper and lower bounds, respectively. Moreover, the performances of impulsive filter (IF) algorithm, widely used in the data analysis of resonant gw detectors, have been investigated. Results we get by injecting chirplet signals confirm the expected performances in terms of efficiency and robustness. To illustrate the application of the new method to real data, we analyzed a few data sets of the resonant gw detector AURIGA.

  3. Oregon Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODOOregon PublicTrail WindOregon Wave

  4. MHK Projects/Brough Head Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough Head Wave Farm < MHK

  5. MHK Projects/Orcadian Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE <Orcadian Wave Farm

  6. MHK Projects/Oregon Coastal Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway Bay IE <Orcadian Wave

  7. MHK Technologies/CETO Wave Energy Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlane < MHK Technologies JumpWave

  8. MHK Technologies/GyroWaveGen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship < MHK Technologies JumpGyroWaveGen

  9. MHK Technologies/Syphon Wave Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK TechnologiesSyphon Wave Generator

  10. MHK Technologies/Under Bottom Wave Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCKInformation MadaTechWave

  11. MHK Technologies/WavePlane | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <WavePlane < MHK

  12. MHK Technologies/WaveStar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <WavePlane <

  13. MHK Technologies/WaveSurfer | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <WavePlane

  14. MHK Technologies/bioWave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG BuoyYOG < MHKbioWave < MHK

  15. MHL 2D Wind/Wave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG BuoyYOG < MHKbioWave

  16. ScentTrails: Integrating Browsing and Searching on the Web

    E-Print Network [OSTI]

    Chi, Ed Huai-hsin

    . Searching is the process of entering a search query (usually a list of keywords) into a search engine, which are more appropriately termed by Jul and Furnas [1997] as "search by navigation" and "search by query," respectively, but we will use the more common terms "browsing" and "searching.") Authors' addresses: Chris

  17. Comparison of crest height distributions of experimental and theoretical waves - a search for applicability of 2nd-order theory

    E-Print Network [OSTI]

    Kumar, Amitabh

    2001-01-01T23:59:59.000Z

    This study is focussed on investigating the applicability of the 2nd-order wave theory to different sea-states. The study was conducted by analyzing the experimental wave data and comparing the data with the 2nd-order wave theory. This helps...

  18. Instruction Guide Using the Search Export to

    E-Print Network [OSTI]

    Sheremet, Alexandru

    Instruction Guide Using the Search Export to Research POs and Requisitions Training:July 26, 2012 Page 1 of 6 OVERVIEW Use this simulation to learn how to use the new Search/Export tool to save the search and reuse later Export the search Set up a Recurring Export STEPS 1. Navigation

  19. Searching for minicharged particles via birefringence, dichroism and Raman spectroscopy of the vacuum polarized by a high-intensity laser wave

    SciTech Connect (OSTI)

    Villalba-Chvez, S., E-mail: selymv@gmail.com; Mller, C., E-mail: c.mueller@tp1.uni-duesseldorf.de

    2013-12-15T23:59:59.000Z

    Absorption and dispersion of probe photons in the field of a high-intensity circularly polarized laser wave are investigated. The optical theorem is applied for determining the absorption coefficients in terms of the imaginary part of the vacuum polarization tensor. Compact expressions for the vacuum refraction indices and the photon absorption coefficients are obtained in various asymptotic regimes of interest. The outcomes of this analysis reveal that, far from the region relatively close to the threshold of the two-photon reaction, the birefringence and dichroism of the vacuum are small and, in some cases, strongly suppressed. On the contrary, in a vicinity of the region in which the photo-production of a pair occurs, these optical properties are manifest with lasers of moderate intensities. We take advantage of such a property in the search of minicharged particles by considering high-precision polarimetric experiments. In addition, Raman-like electromagnetic waves resulting from the inelastic part of the vacuum polarization tensor are suggested as an alternative form for finding exclusion limits on these hypothetical charge carriers. The envisaged parameters of upcoming high-intensity laser facilities are used for establishing upper bounds on the minicharged particles. -- Highlights: Via dichroism and birefringence of the vacuum by a strong laser wave, minicharged particles can be probed. The discovery potential is the highest in a vicinity of the first pair production threshold. As alternative observable, Raman scattered waves are put forward.

  20. IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD...

    Open Energy Info (EERE)

    REMOTE SENSING AND FIELD DATA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL...

  1. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    E-Print Network [OSTI]

    the LIGO Scientific Collaboration; the Virgo Collaboration; J. Abadie; B. P. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; R. Adhikari; C. Affeldt; M. Agathos; P. Ajith; B. Allen; G. S. Allen; E. Amador Ceron; D. Amariutei; R. S. Amin; S. B. Anderson; W. G. Anderson; K. Arai; M. A. Arain; M. C. Araya; S. M. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert; B. E. Aylott; S. Babak; P. Baker; G. Ballardin; S. Ballmer; D. Barker; F. Barone; B. Barr; P. Barriga; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; M. Bastarrika; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; B. Behnke; M. G. Beker; A. S. Bell; A. Belletoile; I. Belopolski; M. Benacquista; J. M. Berliner; A. Bertolini; J. Betzwieser; N. Beveridge; P. T. Beyersdorf; I. A. Bilenko; G. Billingsley; J. Birch; R. Biswas; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; B. Bland; M. Blom; O. Bock; T. P. Bodiya; C. Bogan; R. Bondarescu; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; A. Brummit; T. Bulik; H. J. Bulten; A. Buonanno; J. Burguet--Castell; O. Burmeister; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; E. Calloni; J. B. Camp; P. Campsie; J. Cannizzo; K. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; S. Caride; S. Caudill; M. Cavagli; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; O. Chaibi; T. Chalermsongsak; E. Chalkley; P. Charlton; E. Chassande-Mottin; S. Chelkowski; Y. Chen; A. Chincarini; A. Chiummo; H. Cho; N. Christensen; S. S. Y. Chua; C. T. Y. Chung; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. Clark; J. H. Clayton; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; R. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. Coughlin; J. -P. Coulon; P. Couvares; D. M. Coward; D. C. Coyne; J. D. E. Creighton; T. D. Creighton; A. M. Cruise; A. Cumming; L. Cunningham; E. Cuoco; R. M. Cutler; K. Dahl; S. L. Danilishin; R. Dannenberg; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; G. Davies; E. J. Daw; R. Day; T. Dayanga; R. De Rosa; D. DeBra; G. Debreczeni; J. Degallaix; W. Del Pozzo; M. del Prete; T. Dent; V. Dergachev; R. DeRosa; R. DeSalvo; S. Dhurandhar; L. Di Fiore; A. Di Lieto; I. Di Palma; M. Di Paolo Emilio; A. Di Virgilio; M. Daz; A. Dietz; J. DiGuglielmo; F. Donovan; K. L. Dooley; S. Dorsher; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edgar; M. Edwards; A. Effler; P. Ehrens; G. Endrczi; R. Engel; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Y. Fan; B. F. Farr; W. Farr; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Fidecaro; L. S. Finn; I. Fiori; R. P. Fisher; R. Flaminio; M. Flanigan; S. Foley; E. Forsi; L. A. Forte; N. Fotopoulos; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; D. Friedrich; P. Fritschel; V. V. Frolov; P. J. Fulda; M. Fyffe; M. Galimberti; L. Gammaitoni; M. R. Ganija; J. Garcia; J. A. Garofoli; F. Garufi; M. E. Gspr; G. Gemme; R. Geng; E. Genin; A. Gennai; L. . Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; C. Gill; E. Goetz; L. M. Goggin; G. Gonzlez; M. L. Gorodetsky; S. Goler; R. Gouaty; C. Graef; M. Granata; A. Grant; S. Gras; C. Gray; N. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Greverie; R. Grosso; H. Grote; S. Grunewald; G. M. Guidi; C. Guido; R. Gupta; E. K. Gustafson; R. Gustafson; T. Ha; B. Hage; J. M. Hallam; D. Hammer; G. Hammond; J. Hanks; C. Hanna; J. Hanson; A. Hardt; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. -F. Hayau; J. Heefner; A. Heidmann; M. C. Heintze; H. Heitmann; P. Hello; M. A. Hendry; I. S. Heng; A. W. Heptonstall; V. Herrera; M. Hewitson; S. Hild; D. Hoak; K. A. Hodge; K. Holt; T. Hong; S. Hooper; D. J. Hosken; J. Hough; E. J. Howell; B. Hughey; S. Husa; S. H. Huttner; T. Huynh-Dinh; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; K. Izumi; M. Jacobson; H. Jang; P. Jaranowski; W. W. Johnson; D. I. Jones; G. Jones; R. Jones; L. Ju; P. Kalmus; V. Kalogera; I. Kamaretsos; S. Kandhasamy; G. Kang; J. B. Kanner; E. Katsavounidis; W. Katzman; H. Kaufer; K. Kawabe; S. Kawamura; F. Kawazoe; W. Kells; D. G. Keppel; Z. Keresztes; A. Khalaidovski; F. Y. Khalili; E. A. Khazanov; B. Kim; C. Kim; D. Kim; H. Kim; K. Kim; N. Kim; Y. -M. Kim; P. J. King; M. Kinsey; D. L. Kinzel; J. S. Kissel; S. Klimenko; K. Kokeyama; V. Kondrashov; R. Kopparapu; S. Koranda

    2012-01-18T23:59:59.000Z

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009 and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25 solar masses; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90%-confidence rate upper limits of the binary coalescence of binary neutron star, neutron star- black hole and binary black hole systems are 1.3 x 10^{-4}, 3.1 x 10^{-5} and 6.4 x 10^{-6} Mpc^{-3}yr^{-1}, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  2. Navigating FAIR Academic Activity Reports

    E-Print Network [OSTI]

    Fernandez, Eduardo

    boxes. Click on Search. To browse by Name: Enter the correct Term and Last Name and Click on Search. All/Record see page 5. To Search by Course: Enter the Term, Prefix, Course Number and Section and Click on Search: Enter the Term and then select the correct Campus, College, Department and Pay Plan using the drop down

  3. Analysis of spatial mode sensitivity of gravitational wave interferometer and targeted search for gravitational radiation from the Crab pulsar

    E-Print Network [OSTI]

    Betzwieser, Joseph (Joseph Charles)

    2008-01-01T23:59:59.000Z

    Over the last several years the Laser Interferometer Gravitational Wave Observatory (LIGO) has been making steady progress in improving the sensitivities of its three interferometers, two in Hanford, Washington, and one ...

  4. MHK Projects/Centreville OPT Wave Energy Park | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBrough HeadCentreville OPT Wave

  5. NERSC Online Training May 3: Navigating NERSC File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online Training May 3: Navigating NERSC File Systems NERSC Online Training May 3: Navigating NERSC File Systems April 26, 2011 by Richard Gerber A NERSC training event, "Navigating...

  6. Inner Harbor Navigation Canal Lock

    E-Print Network [OSTI]

    Wang, Yuhang

    fuel costs and rising steel prices impact construction and O&M. Dredging costs increase One Team) - Dredge the lock forebay at the Mississippi River, Fall 2008 Calcasieu Lock: - Remove & replace damaged lock dolphin - Sep-Oct 2008 (minimal delays to navigation) Dredge GIWW Port Allen to Morgan City

  7. A comparative analysis of area navigation systems for general aviation

    E-Print Network [OSTI]

    Dodge, Steven Malcolm

    1973-01-01T23:59:59.000Z

    Within the next decade area navigation is to become the primary method of air navigation within the United States. There are numerous radio navigation systems that offer the capabilities of area navigation to general ...

  8. Jl. of Educational Multimedia and Hypermedia (2002) 11(2), 95-115 Effects of Navigation Tool Information on Hypertext

    E-Print Network [OSTI]

    Dawson, Michael

    2002-01-01T23:59:59.000Z

    clearly. Previous re- search identified some of the variables that impact navigation performance through performance measures such as speed, accuracy, number of pages accessed and recall of doc- ument). Efficiency measures are based on speed and the number of steps taken to complete an information search

  9. 33 CFR 114: Navigation and Navigable Waters | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission | OpenDevelopment Guide |and Navigable

  10. Gradient Navigation Model for Pedestrian Dynamics

    E-Print Network [OSTI]

    Felix Dietrich; Gerta Kster

    2014-05-14T23:59:59.000Z

    We present a new microscopic ODE-based model for pedestrian dynamics: the Gradient Navigation Model. The model uses a superposition of gradients of distance functions to directly change the direction of the velocity vector. The velocity is then integrated to obtain the location. The approach differs fundamentally from force based models needing only three equations to derive the ODE system, as opposed to four in, e.g., the Social Force Model. Also, as a result, pedestrians are no longer subject to inertia. Several other advantages ensue: Model induced oscillations are avoided completely since no actual forces are present. The derivatives in the equations of motion are smooth and therefore allow the use of fast and accurate high order numerical integrators. At the same time, existence and uniqueness of the solution to the ODE system follow almost directly from the smoothness properties. In addition, we introduce a method to calibrate parameters by theoretical arguments based on empirically validated assumptions rather than by numerical tests. These parameters, combined with the accurate integration, yield simulation results with no collisions of pedestrians. Several empirically observed system phenomena emerge without the need to recalibrate the parameter set for each scenario: obstacle avoidance, lane formation, stop-and-go waves and congestion at bottlenecks. The density evolution in the latter is shown to be quantitatively close to controlled experiments. Likewise, we observe a dependence of the crowd velocity on the local density that compares well with benchmark fundamental diagrams.

  11. Quantum search without entanglement

    E-Print Network [OSTI]

    Lloyd, S

    2000-01-01T23:59:59.000Z

    Entanglement of quantum variables is usually thought to be a prerequisite for obtaining quantum speed-ups of information processing tasks such as searching databases. This paper presents methods for quantum search that give a speed-up over classical methods, but that do not require entanglement. These methods rely instead on interference to provide a speed-up. Search without entanglement comes at a cost: although they outperform analogous classical devices, the quantum devices that perform the search are not universal quantum computers and require exponentially greater overhead than a quantum computer that operates using entanglement. Quantum search without entanglement is compared to classical search using waves.

  12. Quantum search without entanglement

    E-Print Network [OSTI]

    Seth Lloyd

    1999-03-16T23:59:59.000Z

    Entanglement of quantum variables is usually thought to be a prerequisite for obtaining quantum speed-ups of information processing tasks such as searching databases. This paper presents methods for quantum search that give a speed-up over classical methods, but that do not require entanglement. These methods rely instead on interference to provide a speed-up. Search without entanglement comes at a cost: although they outperform analogous classical devices, the quantum devices that perform the search are not universal quantum computers and require exponentially greater overhead than a quantum computer that operates using entanglement. Quantum search without entanglement is compared to classical search using waves.

  13. Navigant | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy InformationNatsourceNavigant Home Graham7781's

  14. Navigating the complexities of dynamic ecosystem change

    E-Print Network [OSTI]

    Rhodes, Jonathan R.

    2013-01-01T23:59:59.000Z

    NavigatingthecomplexitiesofdynamicecosystemchangeNovelEcosystems:InterveningintheNewEcologicalWorldwww.wiley.com Theworldsecosystemshavealwaysbeen

  15. Construction in Navigable Waters (South Carolina)

    Broader source: Energy.gov [DOE]

    This South Carolina Department of Health and Environmental Control program establishes a number of provisions regarding waters, water resources, and drainage in South Carolina. Navigable streams...

  16. Arm Navigation Tools From URDF -> Databases and

    E-Print Network [OSTI]

    Kavraki, Lydia E.

    links everything further down the kinematic tree from any group joint #12;Self-collision Operations_robot_name>_arm_navigation/config/ _planning_description.yaml multi_dof_joints - world_joint groups collision_operations is arm-navigation? A set of stable components for: Forward kinematics Robot and environment

  17. Satellite Navigation Integrity Assurance: Lessons Learned

    E-Print Network [OSTI]

    Stanford University

    Satellite Navigation Integrity Assurance: Lessons Learned from Hurricane Katrina ION GNSS 2008 by the FAA Satellite Navigation Program Office #12;17 September 2008 Lessons Learned from Hurricane Katrina 2 for probabilistic modeling and analysis #12;17 September 2008 Lessons Learned from Hurricane Katrina 3 Key Sources

  18. Stanford Center for Position, Navigation & Time

    E-Print Network [OSTI]

    Straight, Aaron

    contributing exciting, novel new technologies, and together can play a leading role in this technology to rejuvenate the GLONASS system · Japan is also active with QZSS. #12;6 Outline A. Navigation & time technology;2 Stanford Center for Position Navigation and Time · The implementation of GPS in 1973 began this technology

  19. Mathematical Foundations of Navigation and Perception

    E-Print Network [OSTI]

    Crowley, James L.

    for the design of a mobile robot navigation system. The control system for a mobile robot is found to decompose a coordinated motion in an external Cartesian coordinate space. In the same sense, robot vehicles requireMathematical Foundations of Navigation and Perception For an Autonomous Mobile Robot James L

  20. Navigating nuclear science: Enhancing analysis through visualization

    SciTech Connect (OSTI)

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01T23:59:59.000Z

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  1. Contributions to automated realtime underwater navigation

    E-Print Network [OSTI]

    Stanway, Michael Jordan

    2012-01-01T23:59:59.000Z

    This dissertation presents three separate-but related-contributions to the art of underwater navigation. These methods may be used in postprocessing with a human in the loop, but the overarching goal is to enhance vehicle ...

  2. Navigation computation in the smart cockpit

    E-Print Network [OSTI]

    Lee, Kristopher Alex

    1998-01-01T23:59:59.000Z

    This thesis discusses the design and development of a hics. software module responsible for performing various navigation computations in the smart cockpit. The goals of decreased workload and increased situation awareness for the general aviation...

  3. BRIDGING NAVIGATION, SEARCH AND ADAPTATION. Adaptive Hypermedia Models Evolution

    E-Print Network [OSTI]

    De Bra, Paul

    Corpus, Dexter Model, AHAM, GAF. Abstract: Adaptive Hypermedia Systems (AHS) have long been concentrating The most referenced (but certainly not only) Adaptive Hypermedia (AH) model dates back to 1999. Since AHAM/Hypermedia modelling from Dexter Model through AHAM to the proposed GAF model, out- line advantages of each framework

  4. NAVIGATION SOFTWARE OF AUTOMATED GUIDED VEHICLE

    E-Print Network [OSTI]

    Magdalena Dobrza?ska; Pawe? Dobrza?ski

    Abstract: In the article it has been presented the structure of the control system and measurement data processing of an automated guided vehicle. The basic navigation technique odometry, which is applied in the automated guided vehicle, has been described, as well as connected with it errors of position tracing. Next the navigation software was shown which enables to design the trajectory of the vehicle movement as well as the registration and reading of the measurement data from the measurement sensors.

  5. Gravity Waves Gravity Waves

    E-Print Network [OSTI]

    Weijgaert, Rien van de

    ;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning

  6. Autonomous land navigation in a structured environment

    SciTech Connect (OSTI)

    Klarer, P.R. (Sandia National Lab., Advanced Technology Div., Albuquerque, NM (US))

    1990-03-01T23:59:59.000Z

    This paper describes a hardware and software system developed to perform autonomous navigation of a land vehicle in a structured environment. The vehicle used for development and testing of the system was the Jeep Cherokee Mobile Robotics Testbed Vehicle developed at Sandia National Laboratories in Albuquerque. Since obstacle detection and avoidance have not yet been incorporated into the system, a structured environment is postulated that presumes the paths to be traversed are free of obstacles. The system performs path planning and execution based on maps constructed using the vehicle's on board navigation system and map-maker. The system software, hardware and performance data are discussed.

  7. Accelerometer using atomic waves for space applications

    E-Print Network [OSTI]

    of Bose-Einstein condensation (BEC) of a dilute gas of trapped atoms in a single quantum state [18, 19, 20 of such devices in the field of navigation, surveying and analysis of earth structures. Matter-wave interferometry that the use of Bose-Einstein condensed atoms will bring the science of atom optics, and in particular atom

  8. Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During Ligos Fifth and Virgos First Science Run

    E-Print Network [OSTI]

    Barsotti, Lisa

    Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. ...

  9. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01T23:59:59.000Z

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  10. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump to:WaveWave

  11. A parallel hypothesis method of autonomous underwater vehicle navigation

    E-Print Network [OSTI]

    LaPointe, Cara Elizabeth Grupe

    2009-01-01T23:59:59.000Z

    This research presents a parallel hypothesis method for autonomous underwater vehicle navigation that enables a vehicle to expand the operating envelope of existing long baseline acoustic navigation systems by incorporating ...

  12. Regional Navigation System Using Geosynchronous Satellites and Stratospheric Airships

    E-Print Network [OSTI]

    Won, Chang-Hee

    - 1 - Regional Navigation System Using Geosynchronous Satellites and Stratospheric Airships Chang navigation system using geosynchronous satellites and stratospheric airships. One important factor and stratospheric airships for the urban areas. In the beginning stage, the system would augment the existing GPS

  13. Preliminary Assessment of Alternative Navigation Means for Civil Aviation

    E-Print Network [OSTI]

    Stanford University

    , particularly where it is relied upon in critical infrastructure. The Federal Aviation Administration (FAA Leo Eldredge, Mitchell Narins, Federal Aviation Administration ABSTRACT The Federal Aviation Administration (FAA) is looking to develop alternative navigation means to global navigation satellite systems

  14. Stochastic constraints for vision-aided inertial navigation

    E-Print Network [OSTI]

    Diel, David D., 1979-

    2005-01-01T23:59:59.000Z

    This thesis describes a new method to improve inertial navigation using feature-based constraints from one or more video cameras. The proposed method lengthens the period of time during which a human or vehicle can navigate ...

  15. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10T23:59:59.000Z

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, standard and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

  16. Satellite Navigation in Vietnam & The NAVIS Centre

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    Satellite Navigation in Vietnam & The NAVIS Centre TA HAI TUNG (PhD) NAVIS CentreKme predefined incidents occurring; or each 30 s #12;"The mission of Navis is to boost, in South-East Asia." hcp://navis.hust.edu.vn #12;(Source: Mul,-GNSS Asia) #12;Milestones

  17. INTEGRATION OF NAVIGATIONAL AND CARTOGRAPHIC DATA

    E-Print Network [OSTI]

    Harrie, Lars

    INTEGRATION OF NAVIGATIONAL AND CARTOGRAPHIC DATA Hanna Tuvesson and Lars Harrie Real Estate of the main advantages with vector data is that it is easier to integrate data from different sources than it is with raster data. However, this requires a suitable technical environment to perform the data-integration

  18. UTILIZATION OF MODERNIZED GLOBAL NAVIGATION SATELLITE SYSTEMS

    E-Print Network [OSTI]

    Stanford University

    navigational aids owned by the Federal Aviation Administration (FAA) involve large costs which scale. A major role played by ground equipment in traditional aviation is that of providing assistance standpoint for aviation precision approaches. This dissertation investigates the use of a Multiple Hypothesis

  19. RAPID COMMUNICATION Navigational Skills Correlate With Hippocampal

    E-Print Network [OSTI]

    Iaria, Giuseppe

    ; topographical orientation; virtual environment; cognitive map INTRODUCTION Evidence from human and non-humanRAPID COMMUNICATION Navigational Skills Correlate With Hippocampal Fractional Anisotropy in Humans animals (O'Keefe and Nadel, 1978; Mellet et al., 2000) has shown that successful orientation within

  20. DEVELOPMENTAL LEARNING FOR VISION-BASED NAVIGATION, ATTENTION

    E-Print Network [OSTI]

    -BASED NAVIGATION, ATTENTION AND RECOGNITION By Zhengping Ji Over a half century has passed since Alan Turing

  1. Navigating in Virtual Environments with 360 Omnidirectional Rendering Jrme Ardouin

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Navigating in Virtual Environments with 360 Omnidirectional Rendering Jrme Ardouin ESIEA - INSA to a rendering method of reference, i.e. a perspective projection, in a basic navigation task. Our results con- firm that using any omnidirectional rendering method could lead to more efficient navigation in terms

  2. Navigation in Structured Multimedia Documents using Presentation Context

    E-Print Network [OSTI]

    Joseph Fourier Grenoble-I, Universit

    Navigation in Structured Multimedia Documents using Presentation Context Loay SabryIsmail --- C in multimedia documents differs from the navigation in clas sical documents the fact that temporal information instants in the presentation of multimedia documents, and we describe how they can be used to navigate

  3. Time-optimal navigation through quantum wind

    E-Print Network [OSTI]

    Dorje C. Brody; Gary W. Gibbons; David M. Meier

    2015-02-19T23:59:59.000Z

    The quantum navigation problem of finding the time-optimal control Hamiltonian that transports a given initial state to a target state through quantum wind, that is, under the influence of external fields or potentials, is analysed. By lifting the problem from the state space to the space of unitary gates realising the required task, we are able to deduce the form of the solution to the problem by deriving a universal quantum speed limit. The expression thus obtained indicates that further simplifications of this apparently difficult problem are possible if we switch to the interaction picture of quantum mechanics. A complete solution to the navigation problem for an arbitrary quantum system is then obtained, and the behaviour of the solution is illustrated in the case of a two-level system.

  4. Principles of X-ray Navigation

    SciTech Connect (OSTI)

    Hanson, John Eric; /SLAC

    2006-03-17T23:59:59.000Z

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a part in 10{sup 9}. By observing these pulsations, a satellite can keep accurate time autonomously. They have demonstrated the acquisition and tracking of the Crab nebula pulsar by simulating the operation of a phase-locked loop.

  5. Search Asia Advanced Search

    E-Print Network [OSTI]

    on state-run forestry companies. Illegal logging activities have cost the Indonesian government some US$600Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling to discuss the issue of log smuggling, Forestry Minister M Prakosa said. "We will hold bilateral dialogues

  6. Navigating Transport NAMAs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy InformationNatura BioNavarro County,Navigating

  7. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

  8. Stereo Vision Aided Navigation for Robotic Boats (MAS 10)

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    A docking system for a robotic boat using stereo vision foraided Navigation for Robotic Boats Arvind Menezes Pereira,Moorthi and David Caron. Robotic Embedded Systems Lab,

  9. OM300-GeoThermal MWD Navigation Instrument

    Broader source: Energy.gov [DOE]

    Develop a 300C capable directional drilling navigation tool using Micro Electro-Mechanical Systems (MEMS) accelerometers and flux-gate magnetometers.

  10. OpenEI Community - Wave

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff thedrivingGiven Utility

  11. Navigation of a walking robot in natural environments

    E-Print Network [OSTI]

    Portland State University

    Navigation of a walking robot in natural environments Enric Celaya and Josep María Porta Institut de Robòtica i Informàtica Industrial (UPC-CSIC) Abstract The most relevant differences existing between wheeled and legged robots, from the point of view of the expected navigation tasks to be performed

  12. Navigating through Mashed-up Applications with COMPASS

    E-Print Network [OSTI]

    Milo, Tova

    Navigating through Mashed-up Applications with COMPASS 1 Tel-Aviv University 2 IBM Haifa Research others. To address this difficulty, we present COMPASS, a system that assists users in their navigation them may be non-trivial. To address this difficulty, we present here COMPASS, a sys- tem that assists

  13. Navigation System for Ground Vehicles using Temporally Interconnected Observers

    E-Print Network [OSTI]

    navigation technique for an automotive vehicle. This method involves several observers, each designed for a particular type of trajectory, that are turned on and off according to a switching policy. Each observer of observer design of vehicular systems. A typical example of such practices1 is found in the navigation

  14. Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments

    E-Print Network [OSTI]

    Lu, Chenyang

    Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments Sangeeta Bhattacharya approach that integrates a roadmap based navigation algorithm with a novel WSN query protocol called Roadmap Query (RQ). RQ enables collection of frequent, up-to- date information about the surrounding

  15. Solution to the quantum Zermelo navigation problem

    E-Print Network [OSTI]

    Dorje C. Brody; David Meier

    2015-02-19T23:59:59.000Z

    The solution to the problem of finding a time-optimal control Hamiltonian to generate a given unitary gate, in an environment in which there exists an uncontrollable ambient Hamiltonian (e.g., a background field), is obtained. In the classical context, finding the time-optimal way to steer a ship in the presence of a background wind or current is known as the Zermelo navigation problem, whose solution can be obtained by working out geodesic curves on a space equipped with a Randers metric. The solution to the quantum Zermelo problem, which is shown here to take a remarkably simple form, is likewise obtained by finding explicit solutions to the geodesic equations of motion associated with a Randers metric on the space of unitary operators. The result reveals that the optimal control in a sense `goes along with the wind'.

  16. Possible new wave phenomena in the brain

    E-Print Network [OSTI]

    Jerzy Szwed

    2009-08-10T23:59:59.000Z

    We propose to search for new wave phenomena in the brain by using interference effects in analogy to the well-known double slit (Young) experiment. This method is able to extend the range of oscillation frequencies to much higher values than currently accessible. It is argued that such experiments may test the hypothesis of the wave nature of information coding.

  17. Autonomous Miniature Blimp Navigation with Online Motion Planning and Re-planning

    E-Print Network [OSTI]

    Teschner, Matthias

    in autonomous navigation for lightweight flying robots in indoor environments. Miniature airships, which can navigate freely in three-dimensional environments. In this domain, especially airships have

  18. Zermelo Navigation in the Quantum Brachistochrone

    E-Print Network [OSTI]

    Benjamin Russell; Susan Stepney

    2015-02-20T23:59:59.000Z

    We analyse the optimal times for implementing unitary quantum gates in a constrained finite dimensional controlled quantum system. The family of constraints studied is that the permitted set of (time dependent) Hamiltonians is the unit ball of a norm induced by an inner product on su(n). We also consider a generalisation of this to arbitrary norms. We construct a Randers metric, by applying a theorem of Shen on Zermelo navigation, the geodesics of which are the time optimal trajectories compatible with the prescribed constraint. We determine all geodesics and the corresponding time optimal Hamiltonian for a specific constraint on the control i.e. k (Tr(Hc(t)^2) = 1 for any given value of k > 0. Some of the results of Carlini et. al. are re-derived using alternative methods. A first order system of differential equations for the optimal Hamiltonian is obtained and shown to be of the form of the Euler Poincare equations. We illustrate that this method can form a methodology for determining which physical substrates are effective at supporting the implementation of fast quantum computation.

  19. MHK Technologies/Seatricity wave energy converter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK Technologies Jump to: navigation,

  20. Flight test and evaluation of Omega navigation for general aviation

    E-Print Network [OSTI]

    Hwoschinsky, Peter V.

    1975-01-01T23:59:59.000Z

    A seventy hour flight test program was accomplished to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely ...

  1. DARPA looks beyond GPS for positioning, navigating, and timing

    SciTech Connect (OSTI)

    Kramer, David

    2014-10-01T23:59:59.000Z

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.

  2. Regulation of Dams and Bridges Affecting Navigable Waters (Wisconsin)

    Broader source: Energy.gov [DOE]

    Chapter 31 of the Wisconsin Statutes lays out the regulations relevant to dams and bridges on or near navigable waters. This statute establishes that the Department of Natural Resources has...

  3. Combining Path Integration and Remembered Landmarks When Navigating without Vision

    E-Print Network [OSTI]

    Schrater, Paul R.

    This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without ...

  4. Computer vision based navigation for spacecraft proximity operations

    E-Print Network [OSTI]

    Tweddle, Brent Edward

    2010-01-01T23:59:59.000Z

    The use of computer vision for spacecraft relative navigation and proximity operations within an unknown environment is an enabling technology for a number of future commercial and scientific space missions. This thesis ...

  5. Computer Vision Based Navigation for Spacecraft Proximity Operations

    E-Print Network [OSTI]

    . Miller February 2010 SSL # 1-10 #12;#12;Computer Vision Based Navigation for Spacecraft Proximity Operations Brent E. Tweddle, David W. Miller February 2010 SSL # 1-10 This work is based on the unaltered

  6. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Arunas Chesonis, Chief Executive Officer and Chairman of the Board, Sweetwater Energy

  7. Autonomous robotic wheelchair with collision-avoidance navigation

    E-Print Network [OSTI]

    Hsieh, Pin-Chun

    2008-10-10T23:59:59.000Z

    The objective of this research is to demonstrate a robotic wheelchair moving in an unknown environment with collision-avoidance navigation. A real-time path-planning algorithm was implemented by detecting the range to obstacles and by tracking...

  8. Imaging sonar-aided navigation for autonomous underwater harbor surveillance

    E-Print Network [OSTI]

    Johannsson, Hordur

    In this paper we address the problem of drift-free navigation for underwater vehicles performing harbor surveillance and ship hull inspection. Maintaining accurate localization for the duration of a mission is important ...

  9. Navigation without vision: bumblebee orientation in complete darkness

    E-Print Network [OSTI]

    Chittka, Lars

    to isolate navigation mechanisms used in naturally dark situations, such as in the nest. Using infrared video altogether (such as here) can this question be answered unambiguously. To estimate direction, honeybees

  10. Knowledge-based navigation in a hypertext network

    E-Print Network [OSTI]

    Snell, James Robert

    1990-01-01T23:59:59.000Z

    was to investigate knowledge-based navigation in a hypertext network. Hypertext can be described as a massive network of text fragments, stored in a computer system, linked together electronically. The navigation problem is the inability of the user to move.... However, the system did not have a sufficient number of links (or potential links) to test the effectiveness properly. The final study utilized a set of dermatology class notes. The study measured time, number of moves, and success rates for subjects...

  11. An Evaluation of Pan&Zoom and Rubber Sheet Navigation with and without an Overview

    E-Print Network [OSTI]

    Keinan, Alon

    An Evaluation of Pan&Zoom and Rubber Sheet Navigation with and without an Overview Dmitry and Zoom Navigation and Rubber Sheet Navigation, a rectilinear Focus+Context technique. Each of the two Rubber Sheet Navigation, independent of the presence or absence of an overview. Also, overviews did

  12. Adaptive multiconfigurational wave functions

    SciTech Connect (OSTI)

    Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

    2014-03-28T23:59:59.000Z

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  13. SciTech Connect: Diffuseness of the Nuclear Surface from S-Wave...

    Office of Scientific and Technical Information (OSTI)

    Diffuseness of the Nuclear Surface from S-Wave Strength Functions Citation Details In-Document Search Title: Diffuseness of the Nuclear Surface from S-Wave Strength Functions The...

  14. Three-dimensional P and S waves velocity structures of the Coso...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Journal Article: Three-dimensional P and S waves velocity structures of the Coso geothermal area, California, from...

  15. Vacuum Waves

    E-Print Network [OSTI]

    Paul S. Wesson

    2012-12-11T23:59:59.000Z

    As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

  16. Geothermal: Basic Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links Search...

  17. Global positioning system pseudolite-based relative navigation.

    SciTech Connect (OSTI)

    Monda, Eric W. (University of Texas, Austin, TX)

    2004-03-01T23:59:59.000Z

    Though the Global Positioning System has revolutionized navigation in the modern age, it is limited in its capability for some applications because an unobstructed line of sight to a minimum of four satellites is required. One way of augmenting the system in small areas is by employing pseudolites to broadcast additional signals that can be used to improve the user's position solution. At the Navigation Systems Testing Laboratory (NSTL) at NASA's Johnson Space Center in Houston, TX, research has been underway on the use of pseudolites to perform precision relative navigation. Based on the findings of previous research done at the NSTL, the method used to process the pseudolite measurements is an extended Kalman filter of the double differenced carrier phase measurements. By employing simulations of the system, as well as processing previously collected data in a real time manner, sub-meter tracking of a moving receiver with carrier phase measurements in the extended Kalman filter appears to be possible.

  18. Alden Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation, searchAlcoa Jump

  19. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,KasVinod Privatea metamorphic

  20. Renewable Energy Wave Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes,

  1. Wave represents displacement Wave represents pressure Source -Sound Waves

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

  2. Wave Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Dragon ApSWave

  3. Wave Energy Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave

  4. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Place: Sun

  5. Motor Wave Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California:Morse,Wave Group Jump to: navigation,

  6. Phase Space Navigator: Towards Automating Control Synthesis in Phase Spaces for Nonlinear Control Systems

    E-Print Network [OSTI]

    Zhao, Feng

    1991-04-01T23:59:59.000Z

    We develop a novel autonomous control synthesis strategy called Phase Space Navigator for the automatic synthesis of nonlinear control systems. The Phase Space Navigator generates global control laws by synthesizing ...

  7. Single Transponder Range Only Navigation Geometry (STRONG) applied to REMUS autonomous under water vehicles

    E-Print Network [OSTI]

    Hartsfield, J. Carl (Jasper Carl)

    2005-01-01T23:59:59.000Z

    A detailed study was conducted to prove the concept of an iterative approach to single transponder navigation for REMUS Autonomous Underwater Vehicles (AUVs). Although the concept of navigation with one acoustic beacon is ...

  8. Using Text Animated Transitions to Support Navigation in Document Histories

    E-Print Network [OSTI]

    Toronto, University of

    of an animated transition between two revisions of the Wikipedia article User interfaces. ABSTRACT This article examines the benefits of using text animated transitions for navigating in the revision history of textual documents. We propose an animation technique for smoothly transitioning between different text revisions

  9. Teaching Mobile Robots to Cooperatively Navigate in Populated Environments

    E-Print Network [OSTI]

    Teschner, Matthias

    of the robots highly depends on the application, we need flexible means for teaching a robot a certain robots are expected to populate our human envi- ronments for numerous applications in the near future. The desired navigation behavior of a robot highly depends on the application at hand. For example, a cleaning

  10. Visually-Guided Robot Navigation: From Artificial To Natural Landmarks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Visually-Guided Robot Navigation: From Artificial To Natural Landmarks Enric Celaya, Jose-Luis Albarral, Pablo Jim´enez, and Carme Torras Institut de Rob`otica i Inform`atica Industrial (CSIC seems to be the fast detection of reliable visual references in the image stream as the robot moves

  11. 3D navigation based on a visual memory Anthony Remazeilles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , these days, quite a common issue. Several industrial applications benefit from this technology to automate-- This paper addresses the design of a control law for vision-based robot navigation. The method proposed the possibility for the robotic system to move from one image to an other. A path finding algorithm then gives

  12. Knowledge Structures and Didactic Model Selection in Learning Object Navigation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Knowledge Structures and Didactic Model Selection in Learning Object Navigation Dietrich Albert' of the content of the learning objects, and (2) a `didactic preference level' of the specific preferences constraints and the didactic constraints are available. 1 Introduction According to the SCORM (Shareable

  13. Powers of Ten Thousand: Navigating in Large Information Spaces

    E-Print Network [OSTI]

    Powers of Ten Thousand: Navigating in Large Information Spaces Henry Lieberman Media Laboratory large display space, for example, a street map of the entire United States? The traditional solution, on a scale of at least 1 to 10,000. Powers of ten thousand The book and film Powers of Ten [Morrison

  14. An Evolvable Lunar Communication and Navigation Constellation Concept

    E-Print Network [OSTI]

    Born, George

    communication links with the Earth. A lunar relay element will be necessary to provide critical communication and navigation support for the upcoming missions. This paper presents a highly evolvable, low-cost lunar relay; Use lunar exploration activities to further science, and to develop and test new approaches

  15. Using taxonomy, discriminants, and signatures for navigating in text databases

    E-Print Network [OSTI]

    Chakrabarti, Soumen

    Using taxonomy, discriminants, and signatures for navigating in text databases Soumen Chakrabarti the natural hierarchy of topics, or taxonomy, that many corpora, such as internet directories, digital not as a flat unstructured list, but embedded in the familiar taxonomy, and annotated with document signa­ tures

  16. Integrated Short Term Navigation of a Towed Underwater Body*

    E-Print Network [OSTI]

    LeGland, François

    . An underwater body, to be called here- after the fish, is towed by a surface ship at the end of a few hundred of the fish relative to its otherwise unknown initial position, during a few minutes experiment, so, acceleration measurements pro- vided by an INS (inertial navigation system) lo- cated on board of the fish, can

  17. Risk based motion planning and navigation in uncertain dynamic environment

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 Risk based motion planning and navigation in uncertain dynamic environment Chiara Fulgenzi, Anne of the dynamic environments. Moving obstacles are supposed to move along typical motion patterns represented the performance for a robotic wheelchair in a simulated environment among multiple dynamic obstacles. Index Terms

  18. Model Characterization of Magnetic Microrobot Navigating in Viscous Environment

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    . Indeed most untethered microrobot propulsion schemes based on magnetic pulling have to face importantModel Characterization of Magnetic Microrobot Navigating in Viscous Environment Karim Belharet1.folio@ensi-bourges.fr,antoine.ferreira@ensi-bourges.fr Abstract. In this paper we aim to characterize and validate the system's dynamic model of a magnetic

  19. Drishti: An Integrated Navigation System for Visually Impaired and Disabled

    E-Print Network [OSTI]

    Helal, Abdelsalam

    Drishti: An Integrated Navigation System for Visually Impaired and Disabled This research was supported by Microsoft Research under grant number 4514203-12. Abdelsalam (Sumi) Helal Computer sedwin@cise.ufl.edu Balaji Ramachandran Geomatics Program, Civil Engineering, University of Florida

  20. Integrated navigation for AUV operations under ice shelves

    E-Print Network [OSTI]

    Griffiths, Gwyn

    Integrated navigation for AUV operations under ice shelves Gwyn Griffiths and Steve Mc One-slide summary of the Autosub AUV J Why explore beneath ice shelves? J Technology challenges: the Halliburton `Geosub' #12;Why explore beneath ice shelves? Gl oba l Wa r mi ng Li nke d t o Me l t i ng I c e c

  1. The Connected User Interface: Realizing a Personal Situated Navigation Service

    E-Print Network [OSTI]

    Wasinger, Rainer

    @dfki.de Karl-Ernst Steinberg BMW Research Hanauer Strasse 46 D-Munchen 80992 karl-ernst.steinberg@bmw.de Andreas Dirschl BMW Research Hanauer Strasse 46 D-Munchen 80992 andreas.dirschl@bmw.de ABSTRACT different situations. We describe the concepts behind the BPN (BMW Personal Navigator), an entirely

  2. Feature-Based Prediction of Trajectories for Socially Compliant Navigation

    E-Print Network [OSTI]

    Teschner, Matthias

    in a shared environment with humans need the ability to predict the movements of people to better plan and unexpected evasive movements. In this paper, we present an algorithm for learning typical human navigation behavior. Predicting human behavior and the ability to react in a natural way will enable robots to become

  3. Reinforcement Learning based Omnidirectional Vision Agent for Mobile Robot Navigation

    E-Print Network [OSTI]

    Menegatti, Emanuele

    policy for the robot. The LEM strategy is also applied to speed up learning. The knowledge acquired to support the human and robot activity in the environment with a network of smart sensors [3, 11Reinforcement Learning based Omnidirectional Vision Agent for Mobile Robot Navigation E. Menegatti1

  4. Building a 3D Simulator for Autonomous Navigation of Robotic Fishes

    E-Print Network [OSTI]

    Hu, Huosheng

    Building a 3D Simulator for Autonomous Navigation of Robotic Fishes Jindong Liu Department control and autonomous navigation of a robotic fish. The simplified kinematics and hydrodynamics models way to develop autonomous navigation algorithms for robotic fishes. I. INTRODUCTION In nature, fish

  5. Navigation and Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Science to

    E-Print Network [OSTI]

    Whitcomb, Louis L.

    Navigation and Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Science to 11,000m an overview of the navigation and control system design for the new Nereus hybrid underwater vehicle Nereus hybrid underwater vehicle and summarizes the vehicle's navigation and control performance during

  6. Vibrotactile Feedback in Steering Wheel Reduces Navigation Errors during GPS-Guided Car Driving

    E-Print Network [OSTI]

    Basdogan, Cagatay

    vibration motors are mounted onto the steering wheel of a driving simulator and driving experiments-based car navigation system to improve the navigation performance of a driver. In [5], vibration motors were auditory noise and distraction exist in the environment, the navigation errors (making a wrong turn

  7. SIG Technology Review Summer 1994 57 Real-Time Navigation Using the Global Positioning System

    E-Print Network [OSTI]

    Simon, Dan

    SIG Technology Review · Summer 1994 57 Real-Time Navigation Using the Global Positioning System Real-Time Navigation Using the Global Positioning System Dan Simon and Hossny El-Sherief, TRW Ballistic Technology Review · Summer 1994 Real-Time Navigation Using the Global Positioning System introduces errors

  8. Rotation-invariant appearance based maps for robot navigation using an artificial immune network algorithm

    E-Print Network [OSTI]

    Labrosse, Frédéric

    Rotation-invariant appearance based maps for robot navigation using an artificial immune network for robot navigation using an artificial immune network algorithm Mark Neal Fred Labrosse Dept. of Computer,ffl]@aber.ac.uk Abstract-- The treatment of image data for robotic applications such as navigation, path planning

  9. Towards More Efficient Navigation for Robots and Humans David V. Lu and William D. Smart

    E-Print Network [OSTI]

    Smart, William

    Towards More Efficient Navigation for Robots and Humans David V. Lu and William D. Smart Abstract-- Effective robot navigation in the presence of hu- mans is hard. Not only do human obstacles move, they react to the movements of the robot according to instinct and social rules. In order to efficiently navigate around each

  10. The Allegro gravitational wave detector Data acquisition and analysis

    E-Print Network [OSTI]

    Mauceli, E; Hamilton, W O; Johnson, W W; Merkowitz, S; Morse, A; Price, B T; Solomonson, N

    1996-01-01T23:59:59.000Z

    We discuss the data acquisition and analysis procedures used on the Allegro gravity wave detector, including a full description of the filtering used for bursts of gravity waves. The uncertainties introduced into timing and signal strength estimates due to stationary noise are measured, giving the windows for both quantities in coincidence searches.

  11. The Allegro gravitational wave detector: Data acquisition and analysis

    E-Print Network [OSTI]

    E. Mauceli; Z. K. Geng; W. O. Hamilton; W. W. Johnson; S. Merkowitz; A. Morse; B. Price; N. Solomonson

    1996-10-26T23:59:59.000Z

    We discuss the data acquisition and analysis procedures used on the Allegro gravity wave detector, including a full description of the filtering used for bursts of gravity waves. The uncertainties introduced into timing and signal strength estimates due to stationary noise are measured, giving the windows for both quantities in coincidence searches.

  12. Progress on stochastic background search codes for LIGO

    E-Print Network [OSTI]

    John T. Whelan; Warren G. Anderson; Martha Casquette; Mario C. Diaz; Ik Siong Heng; Martin McHugh; Joseph D. Romano; Charlie W. Torres Jr.; Rosa M. Trejo; Alberto Vecchio

    2001-10-02T23:59:59.000Z

    One of the types of signals for which the LIGO interferometric gravitational wave detectors will search is a stochastic background of gravitational radiation. We review the technique of searching for a background using the optimally-filtered cross-correlation statistic, and describe the state of plans to perform such cross-correlations between the two LIGO interferometers as well as between LIGO and other gravitational-wave detectors, in particular the preparation of software to perform such data analysis.

  13. TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...

    Open Energy Info (EERE)

    OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE...

  14. A Comprehensive Study Of Fracture Patterns And Densities In The...

    Open Energy Info (EERE)

    Patterns And Densities In The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. Characterization Of Fracture Patterns In The Geysers Geothermal...

    Open Energy Info (EERE)

    Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Characterization Of Fracture...

  16. Temporal Velocity Variations beneath the Coso Geothermal Field...

    Open Energy Info (EERE)

    Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

  17. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    reservoir crack patterns using shear-wave splitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Characterization of geothermal reservoir...

  18. Attenuation structure of Coso geothermal area, California, from...

    Open Energy Info (EERE)

    Coso geothermal area, California, from wave pulse widths Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Attenuation structure of Coso...

  19. MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <

  20. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile Wind and Wave

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC < MHK TechnologiesPower Plant

  1. Using doppler radar images to estimate aircraft navigational heading error

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Jordan, Jay D. (Albuquerque, NM); Kim, Theodore J. (Albuquerque, NM)

    2012-07-03T23:59:59.000Z

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  2. Robust low-frequency spread-spectrum navigation system

    DOE Patents [OSTI]

    Smith, Stephen F; Moore, James A

    2012-10-30T23:59:59.000Z

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  3. Robust low-frequency spread-spectrum navigation system

    DOE Patents [OSTI]

    Smith, Stephen F. (Loudon, TN); Moore, James A. (Powell, TN)

    2012-01-03T23:59:59.000Z

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  4. Robust low-frequency spread-spectrum navigation system

    DOE Patents [OSTI]

    Smith, Stephen F. (Loudon, TN) [Loudon, TN; Moore, James A. (Powell, TN) [Powell, TN

    2009-12-01T23:59:59.000Z

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  5. Robust low-frequency spread-spectrum navigation system

    DOE Patents [OSTI]

    Smith, Stephen F. (Loudon, TN); Moore, James A. (Powell, TN)

    2011-01-25T23:59:59.000Z

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  6. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  7. Vehicle Trajectory Reconstruction for Signalized Intersections Using Variational Formulation of Kinematic Waves

    E-Print Network [OSTI]

    Ban, Xuegang "Jeff"

    of Kinematic Waves Zhanbo Sun Department of Civil and Environmental Engineering Rensselaer Polytechnic trajectories are considered. The method is5 based on the Variational Formulation of kinematic wave theory; Kinematic Wave Theory; Shortest Path Search17 #12;2 1. Introduction and Motivation18 Current traffic

  8. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  9. Geothermal: Distributed Search Help

    Office of Scientific and Technical Information (OSTI)

    Search Help Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  10. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  11. Geothermal: Search Results

    Office of Scientific and Technical Information (OSTI)

    Search Results Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links The...

  12. Geothermal: Distributed Search

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Network (STINET) Select All Enter one or more search terms to search the following fields: Searches for the following specific fields are...

  13. E-Print Network 3.0 - air navigators Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies and Information Sciences 86 AABBSSTTRRAACCTT MA, RUIQI. The Effect of In-Vehicle Automation and Reliability on Driver Situation Summary: ; investigate the effect...

  14. E-Print Network 3.0 - agv corridor navigation Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Michigan Summary: .html THE OMNIMATE: A GUIDEWIRE -FREE AGV FOR HIGHLY FLEXIBLE AUTOMATION Johann Borenstein The University of Michigan... @umich.edu ABSTRACT This paper...

  15. Navigate MathSciNet Jump to Search or Browse Screens

    E-Print Network [OSTI]

    Mollin, R.A.

    , CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, 1996, MR1383823 with applications, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, 1998, Zbl, Some computational results on a problem of Eisenstein, Th´eorie des nombres (Quebec, PQ, 1987) (J-M De

  16. MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to: navigation,Thames isTurnbullPondBase

  17. Coda wave interferometry 1 Coda wave interferometry

    E-Print Network [OSTI]

    Snieder, Roel

    Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry

  18. Table Search (or Ranking Tables)

    E-Print Network [OSTI]

    Halevy, Alon

    ;Table Search #3 #12;Outline Goals of table search Table search #1: Deep Web Table search #3 search Table search #1: Deep Web Table search #3: (setup): Fusion Tables Table search #2: WebTables Version 1: modify document search Version 2: recover table semantics #12;Searching the Deep Web store

  19. Data Quality Studies of Enhanced Interferometric Gravitational Wave Detectors

    E-Print Network [OSTI]

    Jessica McIver; for the LIGO Scientific Collaboration; for the Virgo Collaboration

    2012-04-11T23:59:59.000Z

    Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contains a high rate of noise transients from the environment, the detector hardware, and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches.

  20. Triply redundant integrated navigation and asset visibility system

    DOE Patents [OSTI]

    Smith, Stephen F. (Loudon, TN); Moore, James A. (Powell, TN)

    2011-11-29T23:59:59.000Z

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  1. Triply redundant integrated navigation and asset visibility system

    DOE Patents [OSTI]

    Smith, Stephen F.; Moore, James A.

    2013-01-22T23:59:59.000Z

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  2. Towards Decentralization of Multi-robot Navigation Herbert G. Tanner and Amit Kumar

    E-Print Network [OSTI]

    Tanner, Herbert G.

    Mechanical Engineering Dept. University of New Mexico Abstract--We present a navigation function through methodology. Algebraic graph theoretic properties associated with the interconnection graph are shown

  3. Obstacle detection for autonomous navigation : an LDRD final report.

    SciTech Connect (OSTI)

    Padilla, Denise D.

    2004-03-01T23:59:59.000Z

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled 'Obstacle Detection for Autonomous Navigation'. The principal goal of this project was to develop a mathematical framework for obstacle detection. The framework provides a basis for solutions to many complex obstacle detection problems critical to successful autonomous navigation. Another goal of this project was to characterize sensing requirements in terms of physical characteristics of obstacles, vehicles, and terrain. For example, a specific vehicle traveling at a specific velocity over a specific terrain requires a sensor with a certain range of detection, resolution, field-of-view, and sufficient sensitivity to specific obstacle characteristics. In some cases, combinations of sensors were required to distinguish between different hazardous obstacles and benign terrain. In our framework, the problem was posed as a multidimensional, multiple-hypothesis, pattern recognition problem. Features were extracted from selected sensors that allow hazardous obstacles to be distinguished from benign terrain and other types of obstacles. Another unique thrust of this project was to characterize different terrain classes with respect to both positive (e.g., rocks, trees, fences) and negative (e.g., holes, ditches, drop-offs) obstacles. The density of various hazards per square kilometer was statistically quantified for different terrain categories (e.g., high desert, ponderosa forest, and prairie). This quantification reflects the scale, or size, and mobility of different types of vehicles. The tradeoffs between obstacle detection, position location, path planning, and vehicle mobility capabilities were also to be characterized.

  4. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect (OSTI)

    Larry Stolarczyk

    2008-08-08T23:59:59.000Z

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  5. active catheter navigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Course: Enter the Term, Prefix, Course Number and Section and Click on Search: Enter the Term and then select the correct Campus, College, Department and Pay Plan using...

  6. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17T23:59:59.000Z

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industrys development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

  7. Geometrical vs wave optics under gravitational waves

    E-Print Network [OSTI]

    Raymond Anglil; Prasenjit Saha

    2015-05-20T23:59:59.000Z

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.

  8. BIOSIS PREVIEWS COVERAGE SEARCH

    E-Print Network [OSTI]

    California at San Diego, University of

    as international meetings, conference reports, books, and patents. Topic Enter your search words, joined by search, and subject terms; choose Title from the drop-down search menu to restrict your search to document titles only Compton Crick, click , enter Crick F in the search box, and click Move To. 2. Click the Add buttons to add

  9. A Tactile Compass for Eyes-free Pedestrian Navigation Martin Pielot

    E-Print Network [OSTI]

    Boll, Susanne

    A Tactile Compass for Eyes-free Pedestrian Navigation Martin Pielot 1 , Benjamin Poppinga 1 , Wilko. Drawing on the results of these tests we present the concept of a tactile compass, which encodes with visual navigation systems. The tactile compass was used to continuously display the location

  10. Computer Modelling of Pigeon Navigation according to the "Map and Compass"-Model

    E-Print Network [OSTI]

    Nehmzow, Ulrich

    Computer Modelling of Pigeon Navigation according to the "Map and Compass"-Model Ulrich Nehmzow@zoology.uni-frankfurt.de Abstract This paper presents a computer model of pigeon navigation (homing), based on Kramer's map-and-compass intersecting gradients which are used by the birds to determine the correct compass heading for home

  11. Navigating Career Options PRE-TEST AND POST-TEST ANALYSIS

    E-Print Network [OSTI]

    Manchak, John

    Navigating Career Options PRE-TEST AND POST-TEST ANALYSIS Winter 2014 SUBJECTS: Undergraduate students enrolled in GENSTD 350-D "Navigating Career Options" course QUARTER: Winter 2014, pre-test given in week 1, post-test given during finals week SAMPLE SIZE: Fifty-eight students who took both the pre-test

  12. Navigating Career Options PRE-TEST AND POST-TEST ANALYSIS

    E-Print Network [OSTI]

    Manchak, John

    Navigating Career Options PRE-TEST AND POST-TEST ANALYSIS Spring 2013 SUBJECTS: Undergraduate students enrolled in GENSTD 350-D "Navigating Career Options" course QUARTER: Spring 2013, pre-test given in week 1, post-test given during finals week SAMPLE SIZE: Sixty-nine students who took both the pre-test

  13. Navigating Career Options PRE-TEST AND POST-TEST ANALYSIS

    E-Print Network [OSTI]

    Manchak, John

    Navigating Career Options PRE-TEST AND POST-TEST ANALYSIS Spring 2014 SUBJECTS: Undergraduate students enrolled in GENSTD 350-D "Navigating Career Options" course QUARTER: Spring 2014, pre-test given in week 1, post-test given during finals week SAMPLE SIZE: Sixty-four students who took both the pre-test

  14. A Kalman-Particle Kernel Filter and its Application to Terrain Navigation

    E-Print Network [OSTI]

    Del Moral , Pierre

    A Kalman-Particle Kernel Filter and its Application to Terrain Navigation Dinh-Tuan Pham.musso@onera.fr Abstract A new nonlinear filter, the Kalman- Particle Kernel Filter (KPKF) is proposed. Compared. Keywords: Kalman filter, kernel density estimator, regularized particle filter, Inertial navigation System

  15. Final Independent External Peer Review Report for the Navigation and Ecosystem

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Final Independent External Peer Review Report for the Navigation and Ecosystem Sustainability by Battelle Memorial Institute Prepared for Department of the Army U.S. Army Corps of Engineers Ecosystem Independent External Peer Review Report Navigation and Ecosystem Sustainability Program, Project P2, Lock

  16. Designing a Mobile Collaborative System for Navigating and Reviewing Oil Industry CAD Models

    E-Print Network [OSTI]

    Barbosa, Alberto

    Designing a Mobile Collaborative System for Navigating and Reviewing Oil Industry CAD Models navigating and reviewing 3D engineering models, applied to the oil industry. Together with professional oil industry engineers from a large oil company, a team of HCI researchers per- formed task analysis

  17. Threat Assessment for Safe Navigation in Environments with Uncertainty in Predictability

    E-Print Network [OSTI]

    How, Jonathan P.

    Threat Assessment for Safe Navigation in Environments with Uncertainty in Predictability by Georges;Threat Assessment for Safe Navigation in Environments with Uncertainty in Predictability by Georges Salim fulfillment of the requirements for the degree of Doctor of Philosophy Abstract This thesis develops threat

  18. A Real-Time Navigation Architecture for Automated Vehicles in Urban Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Real-Time Navigation Architecture for Automated Vehicles in Urban Environments Gang Chen presents a novel navigation architec- ture for automated car-like vehicles in urban environments. Motion with fully automated driving capabilities. A fleet of such vehicles would form a managed transportation

  19. Visualizing and Discovering Web Navigational Patterns Jiyang Chen, Lisheng Sun, Osmar R. Zaiane, Randy Goebel

    E-Print Network [OSTI]

    Zaiane, Osmar R.

    Visualizing and Discovering Web Navigational Patterns Jiyang Chen, Lisheng Sun, Osmar R. Za, lisheng, zaiane, goebel}@cs.ualberta.ca ABSTRACT Web site structures are complex to analyze. Cross-referencing the web structure with navigational behaviour adds to the complexity of the analysis. However

  20. PagePrompter: An Intelligent Agent for Web Navigation Created Using Data Mining Techniques

    E-Print Network [OSTI]

    Regina, University of

    1 PagePrompter: An Intelligent Agent for Web Navigation Created Using Data Mining Techniques Y.Y. Yao, H.J. Hamilton, and Xuewei Wang Abstract: Creating an intelligent agent for web navigation, which is an agent that dynam- ically gives recommendations to a web site's users by learning from web usage mining

  1. DESIGN AND PERFORMANCE ANALYSIS OF A LOW-COST AIDED DEAD RECKONING NAVIGATION SYSTEM

    E-Print Network [OSTI]

    Stanford University

    DESIGN AND PERFORMANCE ANALYSIS OF A LOW-COST AIDED DEAD RECKONING NAVIGATION SYSTEM D. Gebre. This is because the cost of the inertial sensors required to mechanize a classical inertial navigator is the stochastic nature of the wind field speed (i.e., the motion of the air mass in which the airplane is flying

  2. Navigation Planning in Probabilistic Roadmaps with Uncertainty Michael Kneebone and Richard Dearden

    E-Print Network [OSTI]

    Yao, Xin

    Navigation Planning in Probabilistic Roadmaps with Uncertainty Michael Kneebone and Richard Dearden,rwd@cs.bham.ac.uk Abstract Probabilistic Roadmaps (PRM) are a commonly used class of algorithms for robot navigation tasks Probabilistic Roadmap (PRM) planning to handle uncertainty and observations. Probabilistic Roadmaps (Kavraki

  3. The Benefit of Alternative Position, Navigation, and Timing (APNT) to Aviation and Other User Communities for

    E-Print Network [OSTI]

    Stanford University

    outage. The Federal Aviation Administration (FAA) has initiated an Alternative Position, Navigation Communities for Precise Time and Frequency Services Mitch Narins, US Federal Aviation Administration ShermanThe Benefit of Alternative Position, Navigation, and Timing (APNT) to Aviation and Other User

  4. Using Loran for Broadcast of Integrity Information for Modernized Global Navigation Satellite Systems

    E-Print Network [OSTI]

    Stanford University

    States (US) Federal Aviation Administration (FAA) has been examining the potential of using an enhanced involved in aviation navigation programs such as WAAS, LAAS and Loran with the US Federal Aviation Administration (FAA). He is the Director of the Stanford Center for Position Navigation and Time. Benjamin

  5. The Navigation and Control technology inside the AR.Drone micro UAV

    E-Print Network [OSTI]

    is that it is a stabilized aerial platform, remotely controlled through a user-friendly graphical interface runningThe Navigation and Control technology inside the AR.Drone micro UAV Pierre-Jean Bristeau François, FRANCE Abstract: This paper exposes the Navigation and Control technology embedded in a recently com

  6. Recent research on navigation has been particularly notable for the increased understanding of the factors affecting

    E-Print Network [OSTI]

    Burgess, Neil

    of the factors affecting human navigation and the neural networks supporting it. The use of virtual reality humans and other animals in the neural basis of navigation. Addresses *Wellcome Department of Cognitive brain imaging, combined with the use of virtual environments, has revealed strong parallels between

  7. MRI-based Microrobotic system for the Propulsion and Navigation of Ferromagnetic Microcapsules

    E-Print Network [OSTI]

    Boyer, Edmond

    MRI-based Microrobotic system for the Propulsion and Navigation of Ferromagnetic Microcapsules 3-D navigation of a microdevice in blood ves- sels, namely: (i) vessel path planner, (ii) magnetic, magnetic resonance imaging, minimally invasive interventions, real-time control Email address: antoine

  8. Comparing the Usefulness of Video and Map Information In Navigation Tasks

    SciTech Connect (OSTI)

    Curtis W. Nielsen; Michael A. Goodrich

    2006-03-01T23:59:59.000Z

    One of the fundamental aspects of robot teleoperation is the ability to successfully navigate a robot through an environment. We define successful navigation to mean that the robot minimizes collisions and arrives at the destination in a timely manner. Often video and map information is presented to a robot operator to aid in navigation tasks. This paper addresses the usefulness of map and video information in a navigation task by comparing a side-by-side (2D) representation and an integrated (3D) representation in both a simulated and a real world study. The results suggest that sometimes video is more helpful than a map and other times a map is more helpful than video. From a design perspective, an integrated representation seems to help navigation more than placing map and video side-by-side.

  9. Geothermal Exploration with Visible through Long Wave Infrared Imaging

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to library WebWesternLondon,Valley, Nv |Data

  10. L-Shaped Flume Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas:Kuju Kanko HotelKwitherbee'sGarde Inc

  11. PerpetuWave Power Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation US RecoverySystems

  12. List of Wave Energy Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergysourcesource History

  13. MHK Projects/Cornwall Wave Hub | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AKBroughInformationCornwall

  14. MHK Projects/Green Wave Mendocino | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound, NYManan Channel

  15. MHK Projects/Reedsport OPT Wave Park | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|GalwayInformationReedsport OPT

  16. MHK Projects/SWave Catalina Green Wave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°, -155.488° Project Phase PhaseSR

  17. MHK Projects/Santona Wave Energy Park | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet.7413°, -155.488°InformationSantona

  18. MHK Projects/Wave Dragon Nissum Bredning | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg Bend < MHK

  19. MHK Projects/WavePlane Prototype 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg Bend <

  20. MHK Projects/WestWave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg Bend <Wavegen

  1. MHK Projects/bioWAVE Pilot Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:Vicksburg

  2. MHK Technologies/Archimedes Wave Swing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects Jump to:VicksburgOTECPOWERAquantis <

  3. MHK Technologies/C Wave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlane < MHK Technologies Jump

  4. MHK Technologies/DEXA Wave Converter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlane <

  5. MHK Technologies/Electric Generating Wave Pipe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectric Buoy.jpg Technology

  6. MHK Technologies/Float Wave Electric Power Station | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectricBuoy.jpg Technology

  7. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectricBuoy.jpgGenerator < MHK

  8. MHK Technologies/Green Cat Wave Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects

  9. MHK Technologies/Gyroscopic wave power generation system | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship < MHK Technologies

  10. MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter MWEC | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <HelixKESCClick here AxialEnergy

  11. MHK Technologies/MotorWave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagship <HelixKESCClick

  12. MHK Technologies/Neptune Triton Wave | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC < MHK Technologies JumpJump

  13. MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC < MHK

  14. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC <Air Piston < MHK

  15. MHK Technologies/SyncWave Power Resonator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK Technologies

  16. MHK Technologies/The Crestwing Wave Energy Converter | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK TechnologiesSyphonInformation

  17. MHK Technologies/The DEXAWAVE wave energy converter | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHK

  18. MHK Technologies/Tunneled Wave Energy Converter TWEC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter < MHKDUCK <TidalStarInformation

  19. MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHK Technologies Jump

  20. MHK Technologies/WEGA wave energy gravitational absorber | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHK Technologies

  1. MHK Technologies/Wave Catcher | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHKWings <

  2. MHK Technologies/Wave Dragon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHKWings <Dragon <

  3. MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHKWings <Dragon

  4. MHK Technologies/Wave Energy Propulsion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHKWings

  5. MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy < MHKWingsInformation

  6. MHK Technologies/Wave Power Desalination | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <

  7. MHK Technologies/Wave Rider | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider < MHK Technologies

  8. MHK Technologies/Wave Roller | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider < MHK

  9. MHK Technologies/Wave Rotor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider < MHKRotor < MHK

  10. MHK Technologies/Wave Treader fixed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider < MHKRotor <

  11. MHK Technologies/Wave Water Pump WWP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider < MHKRotor <WWP

  12. MHK Technologies/WaveMaster | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy <Rider <

  13. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG Buoy

  14. Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data

    E-Print Network [OSTI]

    Barnum, Sam

    The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic backgrounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for ...

  15. Water Waves Roger Grimshaw

    E-Print Network [OSTI]

    ,2) provide a kinematic description of water waves, which to this point means that the conditionsWater Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves

  16. Orthogonally referenced integrated ensemble for navigation and timing

    SciTech Connect (OSTI)

    Smith, Stephen Fulton; Moore, James Anthony

    2014-04-01T23:59:59.000Z

    An orthogonally referenced integrated ensemble for navigation and timing includes a dual-polyhedral oscillator array, including an outer sensing array of oscillators and an inner clock array of oscillators situated inside the outer sensing array. The outer sensing array includes a first pair of sensing oscillators situated along a first axis of the outer sensing array, a second pair of sensing oscillators situated along a second axis of the outer sensing array, and a third pair of sensing oscillators situated along a third axis of the outer sensing array. The inner clock array of oscillators includes a first pair of clock oscillators situated along a first axis of the inner clock array, a second pair of clock oscillators situated along a second axis of the inner clock array, and a third pair of clock oscillators situated along a third axis of the inner clock array.

  17. Search Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | Careers | Contact |

  18. Wave Dragon ApS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Dragon ApS

  19. Wave Energy Converter Extreme Conditions Modeling Workshop | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Dragon

  20. Wave Energy Technology New Zealand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy AS Jump to:Wave

  1. Safe Navigation of a Wall-Climbing Robot by Methods of Risk Prediction and Suitable Counteractive Measures

    E-Print Network [OSTI]

    Berns, Karsten

    of the navigation depending on an estimated or measured impact [6], [7], [8]. But, so far, it is nearly unexplored reduced in their impact or probability of occurance. This paper addresses the problem of safe navigation follows in section V. II. FUNDAMENTALS Of course, navigation safety strongly depends on the enviro

  2. the wave model A traveling wave is an organized disturbance

    E-Print Network [OSTI]

    Winokur, Michael

    1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. In longitudinal waves the particles of the medium move parallel to the direction

  3. Gravitational waves and gamma-ray bursts

    E-Print Network [OSTI]

    Alessandra Corsi; for the LIGO Scientific Collaboration; for the Virgo Collaboration

    2012-05-11T23:59:59.000Z

    Gamma-Ray Bursts are likely associated with a catastrophic energy release in stellar mass objects. Electromagnetic observations provide important, but indirect information on the progenitor. On the other hand, gravitational waves emitted from the central source, carry direct information on its nature. In this context, I give an overview of the multi-messenger study of gamma-ray bursts that can be carried out by using electromagnetic and gravitational wave observations. I also underline the importance of joint electromagnetic and gravitational wave searches, in the absence of a gamma-ray trigger. Finally, I discuss how multi-messenger observations may probe alternative gamma-ray burst progenitor models, such as the magnetar scenario.

  4. Data Products from W.A.V.E.S: Web-Accessible Visualization and Extraction System (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    W.A.V.E.S. stands for the Web-Accessible Visualization and Extraction System. Implemented in 2007, this specialized data interface allows users to search for ocean carbon data and receive on screen tables of data, data plots, or data files to download. An interactive map assists in the search, which has many customized search and output parameters. Both discrete data and underway data from ships' cruises are available for search.

  5. Searching for people on Web search engines

    E-Print Network [OSTI]

    Jansen, James

    and retrieval of personal information. Many people and organizations mount Web sites containing large amounts. Introduction People search the Web for many things, including shopping, sex and information on a near infiniteSearching for people on Web search engines Amanda Spink and Bernard J. Jansen School of Information

  6. Photon wave function

    E-Print Network [OSTI]

    Iwo Bialynicki-Birula

    2005-08-26T23:59:59.000Z

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

  7. Correlation between Gamma-Ray bursts and Gravitational Waves

    E-Print Network [OSTI]

    P. Tricarico; A. Ortolan; A. Solaroli; G. Vedovato; L. Baggio; M. Cerdonio; L. Taffarello; J. Zendri; R. Mezzena; G. A. Prodi; S. Vitale; P. Fortini; M. Bonaldi; P. Falferi

    2001-01-05T23:59:59.000Z

    The cosmological origin of $\\gamma$-ray bursts (GRBs) is now commonly accepted and, according to several models for the central engine, GRB sources should also emit at the same time gravitational waves bursts (GWBs). We have performed two correlation searches between the data of the resonant gravitational wave detector AURIGA and GRB arrival times collected in the BATSE 4B catalog. No correlation was found and an upper limit \\bbox{$h_{\\text{RMS}} \\leq 1.5 \\times 10^{-18}$} on the averaged amplitude of gravitational waves associated with $\\gamma$-ray bursts has been set for the first time.

  8. Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)

    E-Print Network [OSTI]

    1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution

  9. Internal Wave Interferometry

    E-Print Network [OSTI]

    Mathur, Manikandan S.

    Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, ...

  10. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123130). This ...

  11. Atlanta NAVIGATOR case study. Final report, May 1996--Jun 1997

    SciTech Connect (OSTI)

    Amodei, R.; Bard, E.; Brong, B.; Cahoon, F.; Jasper, K.

    1998-11-01T23:59:59.000Z

    The Atlanta metropolitan region was the location of one of the most ambitious Intelligent Transportation Systems (ITS) deployments in the United States. This deployment included several individual projects--a Central Transportation Management Center (TMC), six Traffic Control Centers (TCC), one Transit Information Center (TIC), the Travel Information Showcase (TIS), and the extension of the Metropolitan Atlanta Rapid Transit Authority (MARTA) rail network and the new high-occupancy vehicle (HOV) lanes on I-85 and I-75. The Atlanta Centennial Olympic Games and Paralympic Games created a focus for these projects. All of these systems were to be brought on line in time for the Olympic Games. This report presents the findings of the NAVIGATOR Case Study and documents the lessons learned from the Atlanta ITS deployment experience in order to improve other ITS deployments in the future. The Case Study focuses on the institutional, programmatic, and technical issues and opportunities from planning and implementing the ITS deployment in Atlanta. The Case Study collected data and information from interviews, observations, focus groups, and documentation reviews. It presents a series of lessons learned and recommendations for enabling successful ITS deployments nationwide.

  12. Search for Quasi Bound $?$ Mesons

    E-Print Network [OSTI]

    H. Machner

    2014-10-22T23:59:59.000Z

    The search for a quasi bound $\\eta$ meson in atomic nuclei is reviewed. This tentative state is studied theoretically as well as experimentally. The theory starts from elastic $\\eta$ nucleon scattering which is derived from production data within some models. From this interaction the $\\eta$ nucleus interaction is derived. Model calculations predict binding energies and widths of the quasi bound state. Another method is to derive the $\\eta$ nucleus interaction from excitation functions of $\\eta$ production experiments. The $s$ wave interaction is extracted from such data via final state interaction theorem. We give the derivation of $s$ wave amplitudes in partial wave expansion and in helicity amplitudes and their relation to observables. Different experiments extracting the final state interaction are discussed as are production experiments. So far only three experiments give evidence for the existence of the quasi bound state: a pion double charge exchange experiment, an effective mass measurement, and a transfer reaction at recoil free kinematics with observation of the decay of the state.

  13. Vision based navigation system for autonomous proximity operations: an experimental and analytical study

    E-Print Network [OSTI]

    Du, Ju-Young

    2005-02-17T23:59:59.000Z

    This dissertation presents an experimental and analytical study of the Vision Based Navigation system (VisNav). VisNav is a novel intelligent optical sensor system invented by Texas A&M University recently for autonomous proximity operations...

  14. Impacts of Biofuel Production and Navigation Impediments on Agricultural Transportation and Markets

    E-Print Network [OSTI]

    Ahmedov, Zafarbek

    2013-08-22T23:59:59.000Z

    This study investigated the impacts of U.S. biofuel production and barge navigation impediments on agricultural transportation and markets. Both past and future impacts of U.S. biofuel production levels mandated by the Renewable Fuel Standards...

  15. An investigation of the roles of geomagnetic and acoustic cues in whale navigation and orientation

    E-Print Network [OSTI]

    Allen, Ann Nichole

    2013-01-01T23:59:59.000Z

    Many species of whales migrate annually between high-latitude feeding grounds and low-latitude breeding grounds. Yet, very little is known about how these animals navigate during these migrations. This thesis takes a first ...

  16. Vision-based Navigation for Mobile Robots on Ill-structured Roads

    E-Print Network [OSTI]

    Lee, Hyun Nam

    2010-01-16T23:59:59.000Z

    accordingly before the robot makes its move. We propose an algorithm to assist the robot in avoiding the untrusted area by selecting optimal locations to take frames while navigating. Experiments show that the algorithm can significantly reduce the depth error...

  17. Threat assessment for safe navigation in environments with uncertainty in predictability

    E-Print Network [OSTI]

    Aoud, Georges Salim

    2011-01-01T23:59:59.000Z

    This thesis develops threat assessment algorithms to improve the safety of the decision making of autonomous and human-operated vehicles navigating in dynamic and uncertain environments, where the source of uncertainty is ...

  18. An analysis of ICBM navigation using optical observations of existing space objects

    E-Print Network [OSTI]

    Willhite, Weldon Barry

    2004-01-01T23:59:59.000Z

    This thesis investigates the potential of a space-based navigation concept known as Skymark to improve upon the accuracy of inertially-guided intercontinental ballistic missiles (ICBMs). The concept is to use an optical ...

  19. Virtual long baseline (VLBL) autonomous underwater vehicle navigation using a single transponder

    E-Print Network [OSTI]

    LaPointe, Cara Elizabeth Grupe

    2006-01-01T23:59:59.000Z

    (cont.) Therefore, accurate underwater navigation using a single location transponder would provide dramatic time and cost savings for underwater vehicle operations. This thesis presents a simulation of autonomous underwater ...

  20. A framework for roadmap-based navigation and sector-based localization of mobile robots

    E-Print Network [OSTI]

    Kim, Jinsuck

    2004-11-15T23:59:59.000Z

    Personal robotics applications require autonomous mobile robot navigation methods that are safe, robust, and inexpensive. Two requirements for autonomous use of robots for such applications are an automatic motion planner ...

  1. Light pulse atom interferometry at short interrogation times for inertial navigation

    E-Print Network [OSTI]

    Butts, David LaGrange

    2012-01-01T23:59:59.000Z

    Light pulse atom interferometry with cold atoms is a promising inertial sensing technology for high accuracy navigation. At present, laboratory atom interferometers match or surpass state of the art mechanical and optical ...

  2. Visual Navigation: Constructing and Utilizing Simple Maps of an Indoor Environment

    E-Print Network [OSTI]

    Sarachik, Karen Beth

    1989-03-01T23:59:59.000Z

    The goal of this work is to navigate through an office environmentsusing only visual information gathered from four cameras placed onboard a mobile robot. The method is insensitive to physical changes within the room ...

  3. Modeling of wind and radar for simulation in four-dimensional navigation environment

    E-Print Network [OSTI]

    Malherbe, Gerard Andre

    1976-01-01T23:59:59.000Z

    Disturbances affecting time control precision in four-dimension navigation are modeled. Several models of wind and turbulence from the ground to ten thousand feet are developed. A distinction is made between wind mean and ...

  4. A framework for roadmap-based navigation and sector-based localization of mobile robots

    E-Print Network [OSTI]

    Kim, Jinsuck

    2004-11-15T23:59:59.000Z

    Personal robotics applications require autonomous mobile robot navigation methods that are safe, robust, and inexpensive. Two requirements for autonomous use of robots for such applications are an automatic motion planner to select paths and a...

  5. Control of a Magnetic Microrobot Navigating in Microfluidic Arterial Bifurcations through Pulsatile and Viscous Flow

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    force). Magnetic propulsion and steering for ferromagnetic microparticles, also has been employed [4 coil fields [5], [6]. Magnetic helical medical microrobots, inspired by the propulsion of bacterialControl of a Magnetic Microrobot Navigating in Microfluidic Arterial Bifurcations through Pulsatile

  6. MRI Magnetic Signature Imaging, Tracking and Navigation for Targeted Micro/Nano-capsule Therapeutics

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    - back for the microdevice and a propulsion sequence to enable interleaved magnetic propulsionMRI Magnetic Signature Imaging, Tracking and Navigation for Targeted Micro J. Nelson, Antoine Ferreira and Sergej Fatikow Abstract-- The propulsion of nano

  7. Vision based navigation system for autonomous proximity operations: an experimental and analytical study

    E-Print Network [OSTI]

    Du, Ju-Young

    2005-02-17T23:59:59.000Z

    This dissertation presents an experimental and analytical study of the Vision Based Navigation system (VisNav). VisNav is a novel intelligent optical sensor system invented by Texas A&M University recently for autonomous proximity operations...

  8. Mining Navigation History for Recommendation Xiaobin Fu, Jay Budzik, Kristian J. Hammond

    E-Print Network [OSTI]

    Mining Navigation History for Recommendation Xiaobin Fu, Jay Budzik, Kristian J. Hammond Infolab, Northwestern University 1890 Maple Avenue Evanston, IL 60201 1(847) 467-1265 fu, budzik, hammond

  9. The European Satellite Navigation Program : policy analysis and recommendations for the future

    E-Print Network [OSTI]

    Escudero San Jos, Laura

    2011-01-01T23:59:59.000Z

    The European Satellite Navigation Program is a case study that combines Technical / Public / Private aspects in an integrative way. Therefore, it is a sound case for a TPP thesis candidate. This thesis analyzes the European ...

  10. Bragg grating rogue wave

    E-Print Network [OSTI]

    Degasperis, Antonio; Aceves, Alejandro B

    2015-01-01T23:59:59.000Z

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.

  11. Internal wave instability: Wave-wave versus wave-induced mean flow interactions

    E-Print Network [OSTI]

    Sutherland, Bruce

    , known as parametric sub- harmonic instability, results generally when a disturbance of one frequency imparts energy to disturbances of half that frequency.13,14 Generally, a plane periodic internal wave, energy from primary waves is transferred, for example, to waves with half frequency. Self

  12. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

  13. Performance Assessment of the Wave Dragon Wave Energy Converter

    E-Print Network [OSTI]

    Hansen, Ren Rydhof

    Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

  14. Design and analysis of an Extended Kalman Filter based navigator for an autonomous underwater vehicle

    E-Print Network [OSTI]

    Just, Bradley Eugene

    1994-01-01T23:59:59.000Z

    DESIGN AND ANALYSIS OF AN EXTENDED KALMAN FILTER BASED NAVIGATOR FOR AN AUTONOMOUS UNDERWATER VEHICLE A Thesis by BRADLEY EUGENE JUST Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1994 Major Subject: Mechanical Engineering DESIGN AND ANALYSIS OF AN EXTENDED KALMAN FILTER BASED NAVIGATOR FOR AN AUTONOMOUS UNDERWATER VEHICLE A Thesis by BRADLEY EUGENE JUST Submitted to Texas A...

  15. On-line optical flow feedback for mobile robot localization/navigation

    E-Print Network [OSTI]

    Sorensen, David Kristin

    2004-09-30T23:59:59.000Z

    ON-LINE OPTICAL FLOW FEEDBACK FOR MOBILE ROBOT LOCALIZATION/NAVIGATION A Thesis by DAVID KRISTIN SORENSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2003 Major Subject: Mechanical Engineering ON-LINE OPTICAL FLOW FEEDBACK FOR MOBILE ROBOT LOCALIZATION/NAVIGATION A Thesis by DAVID KRISTIN SORENSEN Submitted to Texas A&M University in partial fulfillment...

  16. Design and analysis of an Extended Kalman Filter based navigator for an autonomous underwater vehicle

    E-Print Network [OSTI]

    Just, Bradley Eugene

    1994-01-01T23:59:59.000Z

    DESIGN AND ANALYSIS OF AN EXTENDED KALMAN FILTER BASED NAVIGATOR FOR AN AUTONOMOUS UNDERWATER VEHICLE A Thesis by BRADLEY EUGENE JUST Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1994 Major Subject: Mechanical Engineering DESIGN AND ANALYSIS OF AN EXTENDED KALMAN FILTER BASED NAVIGATOR FOR AN AUTONOMOUS UNDERWATER VEHICLE A Thesis by BRADLEY EUGENE JUST Submitted to Texas A...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Download Green Fuel This activity allows students the opportunity to explore different methods for...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Search results Search results Enter terms Search Showing 1 - 5 of 5 results. Download Alternative Fuels Used in Transportation (5 Activities) Gasoline is the most commonly...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Search results Search results Enter terms Search Showing 1 - 6 of 6 results. Download Alternative Fuels Used in Transportation (5 Activities) Gasoline is the most commonly...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Article Energy Literacy in Action: Nevada Teachers Helping Students Learn...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Page Advantages and Challenges of Wind Energy Wind energy offers many...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Download Search results Search results Enter terms Search Showing 1 - 3 of 3 results. Download Monitoring and Mentoring These activities explore...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 3 of 3 results. Download Monitoring and Mentoring These activities explore energy use and...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K-8 Grade Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Page How Distributed Wind Works Wind generator http:energy.goveerewind...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K-8 Grade Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Article Energy Literacy in Action: Nevada Teachers Helping Students Learn About...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Page How Distributed Wind Works Wind generator http:energy.goveerewind...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Energy Management Students will review energy basics and what...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Energy Management Students will review energy basics and what they...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K-8 Grade Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Article Energy Literacy in Action: Nevada Teachers Helping Students Learn About Energy...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Fun with the Sun- Teacher's Activity Guide for Elementary Grades...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 3 of 3 results. Download Energy Management Students will review energy basics and what...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Design Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Monitoring and Mentoring These activities...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Middle School (6-8) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Protect Your Climate Curriculum...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Protect Your Climate Curriculum and Training Request projects...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity,...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Download Energy from The Wind (9 activities) Hands-on activities that provide a comprehensive...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Search results Search results Enter terms Search Showing 1 - 5 of 5 results. Download Energy Production Students will compare and contrast renewable and nonrenewable...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Electrolysis of Water Students observe the electrolysis of water using either...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Transportation Fuels: The Future is Today (6 Activities) This teacher guide...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video Energy 101: Feedstocks for Biofuels and More See how organic materials like corn...

  6. Search for: "coal" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    coal" Find + Advanced Search Advanced Search All Fields: "coal" Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search Authors Type: All Accepted...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency The...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Power to the Plug: An Introduction to Energy,...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Page Advantages and Challenges of Wind Energy Wind energy offers many advantages, which explains...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video Re-Building Greensburg Civic leaders and entrepreneurs helped rebuild Greensburg, Kansas...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educators Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Energy Literacy Videos New video series, Energy Literacy highlights the 7...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Page Advantages and Challenges of Wind Energy Wind energy offers many advantages, which explains...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video Re-Building Greensburg Civic leaders and entrepreneurs helped rebuild Greensburg, Kansas...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video Re-Building Greensburg Civic leaders and entrepreneurs helped rebuild Greensburg,...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewables Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural waste have...

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Search results Search results Enter terms Search Showing 21 - 30 of 21 results. Download Energy Awareness Quiz Students will identify their level of knowledge about energy issues...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from agricultural...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sources Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Technology Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Video A New Biofuels Technology Blooms in Iowa Cellulosic biofuels made from...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Understanding Earth's Energy Sources In Part 1, students will know how...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Understanding Earth's Energy Sources In Part 1, students will know how fossil fuels...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Transportation Fuels: The Future is Today (6 Activities) This teacher guide...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Transportation Fuels: The Future is Today (6 Activities) This teacher guide provides...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Download Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Alternative Fuels Used in Transportation (5 Activities) Gasoline is...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Download Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Transportation Fuels: The Future is Today (6 Activities) This...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Transportation Fuels: The Future is Today (6 Activities) This teacher guide...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Search results Search results Enter terms Search Showing 1 - 3 of 3 results. Download Energy Management Students will review energy basics and what they have...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Download Energy Management Students will review energy basics and what they have...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Energy Transfer 1. Identify a closed system with consevative forces. 2....

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Download Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Download Energy Management Students will review energy basics and what...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Download Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Transportation Fuels: The Future is Today (6 Activities) This...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Energy Management Students will review energy basics and what they have...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Download Energy Management Students will review energy basics and what they have learned in...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Energy Transfer 1. Identify a closed system with consevative forces. 2....

  2. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Economy Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Energy Management Students will review energy basics and what they have...

  3. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Energy Efficiency Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Alternative Fuels Used in Transportation (5 Activities)...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Transportation Fuels: The Future is Today (6 Activities) This teacher guide...

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Download Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Alternative Fuels Used in Transportation (5 Activities) Gasoline is the...

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Download Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Transportation Fuels: The Future is Today (6 Activities) This teacher...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Search results Search results Enter terms Search Showing 1 - 8 of 8 results. Download Energy Literacy Videos New video series, Energy Literacy highlights the 7 Essential...

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School (9-12) Teachers Energy Efficiency Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Download The BEAM Project: Building Efficient...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School (6-8) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Protect Your Climate Curriculum and Training Request projects...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School (6-8) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Article Energy Literacy in Action: Nevada Teachers Helping Students...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School (6-8) Teachers Search results Search results Enter terms Search Showing 1 - 3 of 3 results. Download Monitoring and Mentoring These activities explore energy use...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School (9-12) Teachers Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Energy Conservation Contract (4 activities) Students learn...

  13. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School Students Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Article Energy Literacy in Action: Nevada Teachers Helping Students Learn About...

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School (6-8) Teachers Search results Search results Enter terms Search Showing 1 - 2 of 2 results. Download Energy Conservation Contract (4 activities) Students learn...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School (6-8) Teachers Download Search results Search results Enter terms Search Showing 1 - 7 of 7 results. Download Energy Management Students will review energy...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School (9-12) Teachers Search results Search results Enter terms Search Showing 1 - 4 of 4 results. Download The BEAM Project: Building Efficient Architectural Models This...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management Elementary (K-5) Teachers Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Energy Expos Students work in groups to create...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Technology Search results Search results Enter terms Search Showing 1 - 8 of 8 results. Download Exploring Hydroelectricity (9 activities) Integrated and inquiry-based...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Energy in Today's Global Society Energy is an abstract concept that is very...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Technology Search results Search results Enter terms Search Showing 1 - 1 of 1 result. Download Energy in Today's Global Society Energy is an abstract concept that is very...