Sample records for naval reactor plants

  1. EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

  2. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06T23:59:59.000Z

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  3. EIS-0275: Disposal of the S1C Prototype Reactor Plant, Hanford Site, Richland, WA (Navy Document)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Office of Naval Reactors (Naval Reactors) proposed action to dismantle the defueled S1C Prototype reactor plant.

  4. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 30 - Deputy Administrator for Naval Reactors NA 30 - Deputy Administrator for...

  5. 1996 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 1996 at the Naval Reactors Facility (NRF) are presented in this report. The NRF is located on the Idaho National Engineering and Environmental Laboratory and contains three naval reactor prototypes and the Expended Core Facility, which examines developmental nuclear fuel material samples, spent naval fuel, and irradiated reactor plant components/materials. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  6. Naval Reactors | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCENationalNaval Reactors

  7. James P. Mosquera Director, Reactor Plant Components

    E-Print Network [OSTI]

    of the application of nuclear reactor power to capital ships of the U.S. Navy, and other assigned projects. Mr for steam generator technology (within the Nuclear Components Division); and power plant systems engineer working for the U.S. Naval Nuclear Propulsion Program (a.k.a. Naval Reactors). This program is a joint

  8. LCEs for Naval Reactor Benchmark Calculations

    SciTech Connect (OSTI)

    W.J. Anderson

    1999-07-19T23:59:59.000Z

    The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.

  9. EIS-0259: Disposal of Decommissioned, Defueled Cruiser, Ohio Class and Los Angeles Class Naval Reactor Plants, Hanford Site, Richland (adopted from Navy)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the alternate ways for disposing of decommissioned, defieled reactor compliments from U.S. Navy nuclear-powered cruisers, (Bainbridge, Truxtun, Long Beach, California Class and Virginia Class) and Los Angeles Class, and Ohio Class submarines.

  10. Naval Reactors Facility environmental monitoring report, calendar year 2001

    SciTech Connect (OSTI)

    NONE

    2002-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 2001 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U. S. Environmental Protection Agency and the U. S. Department of Energy.

  11. Naval Reactors Facility Environmental Monitoring Report, Calendar Year 2003

    SciTech Connect (OSTI)

    None

    2003-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 2003 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency and the U.S. Department of Energy.

  12. 1997 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 1997 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  13. 2012 Annual Planning Summary for Naval Reactors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1The ongoing andDepartment ofNaval

  14. naval reactors

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A en4/%2A en5/%2A

  15. Occurrence and distribution of special status plant species on the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Anderson, D.C.; Cypher, B.L.; Holmstead, G.L.; Hammer, K.L.; Frost, N.

    1994-10-01T23:59:59.000Z

    Several special status plant species occur or potentially occur at the Naval Petroleum Reserves in California (NPRC). Special status species are defined as those species that are either federally listed as endangered or threatened, or candidate taxa. Candidate species are classified as Category 1 or Category 2. Category 1 taxa are those species for which there is sufficient evidence to support listing, while Category 2 taxa are those species for which listing may possibly be appropriate, but for which sufficient data are lacking to warrant immediate listing. Determining the presence and distribution of these species on NPRC is necessary so that appropriate conservation or protection measures can be implemented. In the spring of 1988, a survey of Naval Petroleum Reserve No. 1 (NPR-1) was conducted to determine the occurrence of Hoover`s wooly-star (Eriastrum hooveri), Kern Mallow (Eremalche kemensis), San Joaquin wooly-threads (Lembertia congdonii), and California jewelflower (Caulanthus califonicus), all listed by the US Fish and Wildlife Service (FWS) as Category 2 species at that time. Of the four species, only Hoover`s wooly-star was found. It was concluded that Kern mallow and San Joaquin wooly-threads could potentially be found on NPR-1, but habitat for California jewelflower did not occur on NPR-1 and its occurrence was unlikely. As part of an ongoing effort to document the presence or absence of sensitive plant species on NPRC, surveys for species other than Hoover`s wooly-star were conducted in the spring of 1993. Abundant spring rains in 1993 created favorable growing conditions for annual forbs. Surveys in 1993 focused on potential habitat of several endangered and candidate species. The results of those surveys are presented in this report.

  16. Plant maintenance and advanced reactors, 2006

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2006-09-15T23:59:59.000Z

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Advanced plants to meet rising expectations, by John Cleveland, International Atomic Energy Agency, Vienna; A flexible and economic small reactor, by Mario D. Carelli and Bojan Petrovic, Westinghouse Electric Company; A simple and passively safe reactor, by Yury N. Kuznetsov, Research and Development Institute of Power Engineering (NIKIET), Russia; Gas-cooled reactors, by Jeffrey S. Merrifield, U.S. Nuclear Regulatory Commission; ISI project managment in the PRC, by Chen Chanbing, RINPO, China; and, Fort Calhoun refurbishment, by Sudesh Cambhir, Omaha Public Power District.

  17. Generic small modular reactor plant design.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01T23:59:59.000Z

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  18. DOE - Office of Legacy Management -- Naval Ordnance Plant - MI 0-03

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CT 0-01Naturita NaturitaMexico -Plant -

  19. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  20. Naval Reactors Prime Contractor Team (NRPCT) Experiences and Considerations With Irradiation Test Performance in an International Environment

    SciTech Connect (OSTI)

    MH Lane

    2006-02-15T23:59:59.000Z

    This letter forwards a compilation of knowledge gained regarding international interactions and issues associated with Project Prometheus. The following topics are discussed herein: (1) Assessment of international fast reactor capability and availability; (2) Japanese fast reactor (JOYO) contracting strategy; (3) NRPCT/Program Office international contract follow; (4) Completion of the Japan Atomic Energy Agency (JAEA)/Pacific Northwest National Laboratory (PNNL) contract for manufacture of reactor test components; (5) US/Japanese Departmental interactions and required Treaties and Agreements; and (6) Non-technical details--interactions and considerations.

  1. Nuclear Naval Propulsion: A Feasible Proliferation Pathway?

    SciTech Connect (OSTI)

    Swift, Alicia L.

    2014-01-31T23:59:59.000Z

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navy while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.

  2. Analysis of reactor trips originating in balance of plant systems

    SciTech Connect (OSTI)

    Stetson, F.T.; Gallagher, D.W.; Le, P.T.; Ebert, M.W. (Science Applications International Corp., McLean, VA (USA))

    1990-09-01T23:59:59.000Z

    This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of these events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs.

  3. TREAT Upgrade Manual Reactor Control System and its interface with the Automatic Reactor Control System and the Plant Protection System

    SciTech Connect (OSTI)

    McDowell, W.P.

    1985-01-01T23:59:59.000Z

    The Transient Reactor Test Facility (TREAT) at Argonne National Laboratory is being upgraded to simulate extreme conditions in a reactor. This facility will be used to subject test assemblies of fuel bundles to very rapid and intense power transients. This paper will describe in detail the manual reactor control system and its interfaces with the plant protection system the automatic reactor control system.

  4. Simulation of a plant minicomputer in reactor control room simulator

    SciTech Connect (OSTI)

    Forrester, A.; Anderson, J.L.

    1984-12-07T23:59:59.000Z

    A control room simulator for the N-Reactor at Hanford is being developed. An important aspect of reactor operation is provided by the plant minicomputer. This paper discusses the simulation of the plant minicomputer. The original commitments in developing the model are set out, as well as the actual requirements at the start of implementation of the model. Original estimates of costs and times for the simulation are presented; actual costs and times were lower by large factors, and the reasons for better performance are examined.

  5. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    SciTech Connect (OSTI)

    M. Chen; CM Regan; D. Noe

    2006-01-09T23:59:59.000Z

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  6. Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants

    E-Print Network [OSTI]

    Anitescu, Mihai

    Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 by G. Palmiotti, J. Cahalan, P. Pfeiffer, T;2 ANL-AFCI-168 Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants G

  7. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  8. Advanced Neutron Source reactor control and plant protection systems design

    SciTech Connect (OSTI)

    Anderson, J.L.; Battle, R.E.; March-Leuba, J. (Oak Ridge National Lab., TN (United States)); Khayat, M.I. (Tennessee Univ., Knoxville, TN (United States))

    1992-01-01T23:59:59.000Z

    This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges.

  9. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect (OSTI)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11T23:59:59.000Z

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  10. Naval Engineering A National Naval Obligation

    E-Print Network [OSTI]

    Chryssostomidis, Chryssostomos

    2000-05-16T23:59:59.000Z

    As part of its national obligations, ONR must ensure US world leadership in those unique technology areas that insure naval superiority. ONR accomplishes this mission through research, recruitment and education, maintaining ...

  11. Distillation and Dehydro Reactors Advanced Process Conrol Freeport Texas PLant

    E-Print Network [OSTI]

    Eisele, D.

    2014-01-01T23:59:59.000Z

    Distillation and Dehydro Reactors Advanced Process Control Freeport Texas Plant ESL-IE-14-05-16 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 G-KTI, Polyamide and Intermediates Distillation...-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 G-KTI, Polyamide and Intermediates Distillation APC – Control Matrix 6/2/2014 INTERNAL; CONFIDENTIAL 3 ESL-IE-14-05-16 Proceedings of the Thrity-Sixth Industrial Energy Technology...

  12. Dual-phase reactor plant with partitioned isolation condenser

    DOE Patents [OSTI]

    Hui, Marvin M. (Cupertino, CA)

    1992-01-01T23:59:59.000Z

    A nuclear energy plant housing a boiling-water reactor utilizes an isolation condenser in which a single chamber is partitioned into a distributor plenum and a collector plenum. Steam accumulates in the distributor plenum and is conveyed to the collector plenum through an annular manifold that includes tubes extending through a condenser pool. The tubes provide for a transfer of heat from the steam, forming a condensate. The chamber has a disk-shaped base, a cylindrical sidewall, and a semispherical top. This geometry results in a compact design that exhibits significant performance and cost advantages over prior designs.

  13. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  14. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  15. Audit of wet gas processing at Chevron's McKittrick Plant, Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1987-04-10T23:59:59.000Z

    The purpose of the audit was to determine if: (1) volumes of wet gas delivered to the McKittrick plant were properly calculated and reported; (2) processing fees paid to Chevron conformed to contract provisions; (3) wet gas processing at Chevron's facility was economical; and (4) controls over natural gas liquid sales were adequate. Our review showed that there were weaknesses in internal controls, practices and procedures regarding the Department's management of the wet gas which is processed by Chevron under contract to the Reserve. The findings, recommendations and management comments are synopsized in the Executive Summary.

  16. Naval petroleum reserves

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    A hearing to consider two bills (S. 1744 and H.R. 3023) authorizing appropriations to operate the Naval Petroleum Reserve during fiscal 1982 brought testimony from officials of the Departments of Energy and Defense; from Chevron, USA; and from the Independent Refiners Association. Both bills authorize $228,463,000, of which $2.56 million will be available for the naval oil shale reserves and the remainder for the naval petroleum reserves. Chevron spokesmen noted that 8-11 months were required to reach full production at the Elk Hills site rather than the 60-90 days estimated by DOE, although both Chevron and the Independent Refiners Association of the west coast support the President's decision that it is in the national interest to continue the production of crude from naval petroleum reserves for the next three years.

  17. NPS Research supports Naval

    E-Print Network [OSTI]

    · Management Stanley Arthur Chair of Logistics· RADM George F. Wagner Chair in· Public Management Chair WAYNE E. MEYER INSTITUTE OF SYSTEMS ENGINEERING FY08 Naval Sponsored Program Research and Education: $36

  18. The TREAT upgrade manual reactor control system and its interface with the automatic reactor control system and the plant protection system

    SciTech Connect (OSTI)

    McDowell, W.P.

    1986-02-01T23:59:59.000Z

    The Transient Reactor Test Facility (TREAT) at Argonne National Laboratory is being upgraded to simulate extreme conditions in a reactor. This facility will be used to subject test assemblies of fuel bundles to very rapid and intense power transients. This paper describes in detail the manual reactor control system and its interfaces with the plant protection system the automatic reactor control system.

  19. Proposal for the Award of a Contract for the Supply and Installation of Two Thyristor-Controlled Reactor Plants

    E-Print Network [OSTI]

    1991-01-01T23:59:59.000Z

    Proposal for the Award of a Contract for the Supply and Installation of Two Thyristor-Controlled Reactor Plants

  20. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  1. Naval Architecture and Marine Engineering

    E-Print Network [OSTI]

    Eustice, Ryan

    knowledge of mathematics, science, and engineering within naval architecture and marine engineering and marine engineering problems; an ability to apply basic knowledge in fluid mechanics, dynamicsNaval Architecture and Marine Engineering Undergraduate Program The University of Michigan #12

  2. Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing

    E-Print Network [OSTI]

    El-Magboub, Sadek Abdulhafid.

    Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

  3. Utility/user requirements for the Modular High Temperature Gas-Cooled Reactor Plant

    SciTech Connect (OSTI)

    Swart, F.E.

    1987-06-01T23:59:59.000Z

    The purpose of this document is to set forth the top level Utilty/User requirements for a Modular High Temperature Gas-Cooled Reactor electric generating plant that incorporates 4 reactors and 2 turbine-generators to produce a nominal electrical output of 550 MW net.

  4. EIS-0108: L-Reactor Operation, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) was prepared to provide environmental input into the proposed decision to restart L-Reactor operation at the Savannah River Plant (SRP). The Savannah River Plant is a major U.S. Department of Energy (DOE) installation for the production of defense nuclear materials. The proposed restart of L–Reactor would provide defense nuclear materials (i.e. , plutonium) to wet current and near-term needs for national defense purposes.

  5. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect (OSTI)

    M. J. Russell

    2006-06-01T23:59:59.000Z

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  6. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  7. BOARD OF ADVISORS TO THE PRESIDENTS OF THE NAVAL POSTGRADUATE SCHOOL & NAVAL WAR COLLEGE

    E-Print Network [OSTI]

    BOARD OF ADVISORS TO THE PRESIDENTS OF THE NAVAL POSTGRADUATE SCHOOL & NAVAL WAR COLLEGE October 17 attendance (choose all that apply): Naval Postgraduate School Subcommittee, 17 October 2012 Naval War College

  8. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect (OSTI)

    Not Available

    1993-05-13T23:59:59.000Z

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  9. Seismicity and seismic response of the Soviet-designed VVER (Water-cooled, Water moderated Energy Reactor) reactor plants

    SciTech Connect (OSTI)

    Ma, D.C.; Gvildys, J.; Wang, C.Y.; Spencer, B.W.; Sienicki, J.J.; Seidensticker, R.W.; Purvis, E.E. III

    1989-01-01T23:59:59.000Z

    On March 4, 1977, a strong earthquake occurred at Vrancea, Romania, about 350 km from the Kozloduy plant in Bulgaria. Subsequent to this event, construction of the unit 2 of the Armenia plant was delayed over two years while seismic features were added. On December 7, 1988, another strong earthquake struck northwest Armenia about 90 km north of the Armenia plant. Extensive damage of residential and industrial facilities occurred in the vicinity of the epicenter. The earthquake did not damage the Armenia plant. Following this event, the Soviet government announced that the plant would be shutdown permanently by March 18, 1989, and the station converted to a fossil-fired plant. This paper presents the results of the seismic analyses of the Soviet-designed VVER (Water-cooled, Water moderated Energy Reactor) plants. Also presented is the information concerning seismicity in the regions where VVERs are located and information on seismic design of VVERs. The reference units are the VVER-440 model V230 (similar to the two units of the Armenia plant) and the VVER-1000 model V320 units at Kozloduy in Bulgaria. This document provides an initial basis for understanding the seismicity and seismic response of VVERs under seismic events. 1 ref., 9 figs., 3 tabs.

  10. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading newNaturalNatureNaval

  11. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    SciTech Connect (OSTI)

    B. Levine

    2006-01-27T23:59:59.000Z

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  12. Overall plant design specification Modular High Temperature Gas-cooled Reactor. Revision 9

    SciTech Connect (OSTI)

    NONE

    1990-05-01T23:59:59.000Z

    Revision 9 of the ``Overall Plant Design Specification Modular High Temperature Gas-Cooled Reactor,`` DOE-HTGR-86004 (OPDS) has been completed and is hereby distributed for use by the HTGR Program team members. This document, Revision 9 of the ``Overall Plant Design Specification`` (OPDS) reflects those changes in the MHTGR design requirements and configuration resulting form approved Design Change Proposals DCP BNI-003 and DCP BNI-004, involving the Nuclear Island Cooling and Spent Fuel Cooling Systems respectively.

  13. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Wayne Moe

    2013-05-01T23:59:59.000Z

    This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

  14. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  15. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15T23:59:59.000Z

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  16. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01T23:59:59.000Z

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  17. Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant

    SciTech Connect (OSTI)

    Chang H. Oh; Eung Soo Kim; Steven Sherman

    2008-04-01T23:59:59.000Z

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood.

  18. Thermal Hydraulic Analyses for Coupling High Temperature Gas-Cooled Reactor to Hydrogen Plant

    SciTech Connect (OSTI)

    C.H. Oh; R. Barner; C. B. Davis; S. Sherman; P. Pickard

    2006-08-01T23:59:59.000Z

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermalhydraulic and efficiency points of view.

  19. naval reactors | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97,1996 http://www.eia.doe.gov N Y M Enaval

  20. About Naval Reactors | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA could reduceCustomerEIA's 2015questionsNNSA

  1. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    SciTech Connect (OSTI)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21T23:59:59.000Z

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for both the PBMR and prismatic design. The main focus of this report is the RPV for both design concepts with emphasis on material selection.

  2. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  3. Fracture of aluminum naval structures

    E-Print Network [OSTI]

    Galanis, Konstantinos, 1970-

    2007-01-01T23:59:59.000Z

    Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

  4. Knowledges and abilities catalog for nuclear power plant operators: pressurized water reactors

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    This document catalogs roughly 5300 knowledges and abilities of reactor operators and senior reactor operators. It results from a reanalysis of much larger job-task analysis data base compiled by the Institute of Nuclear Power Operations (INPO). Knowledges and abilities are cataloged for 45 major power plant systems and 38 emergency evolutions, grouped according to 11 fundamental safety functions (e.g., reactivity control and reactor coolant system inventory control). With appropriate sampling from this catalog, operator licensing examinations having content validity can be developed. A structured sampling procedure for this catalog is under development by the Nuclear Regulatory Commission (NRC) and will be published as a companion document, ''Examiners' Handbook for Developing Operator Licensing Examinations'' (NUREG-1121). The examinations developed by using the catalog and handbook will cover those topics listed under Title 10, Code of Federal Regulations, Part 55.

  5. Dosimetry assessments for the reactor pressure vessel and core barrel in UK PWR plant

    SciTech Connect (OSTI)

    Thornton, D.A.; Allen, D.A.; Huggon, A.P.; Picton, D.J.; Robinson, A.T.; Steadman, R.J. [Serco, Rutherford House, Quedgeley, Gloucester, Gl2 4NF (United Kingdom); Seren, T.; Lipponen, M.; Kekki, T. [VTT, Technical Research Centre of Finland, Otakaari 3 K, P.O. BOX 1000, Espoo, FI-02044 (Finland)

    2011-07-01T23:59:59.000Z

    Specimens for the Sizewell B reactor pressure vessel (RPV) inservice steels surveillance program are irradiated inside eight capsules located within the reactor pressure vessel and loaded prior to commissioning. The periodic removal of these capsules and testing of their contents provides material properties data at intervals during the lifetime of the plant. Neutron activation measurements and radiation transport calculations play an essential role in assessing the neutron exposure of the specimens and RPV. Following the most recent withdrawal, seven capsules have now been removed covering nine cycles of reactor operation. This paper summarizes the dosimetry results of the Sizewell B surveillance program obtained to date. In addition to an overview of the calculational methodology it includes a review of the measurements. Finally, it describes an extension of the methodology to provide dosimetry recommendations for the core barrel and briefly discusses the results that were obtained. (authors)

  6. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2009-09-01T23:59:59.000Z

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

  7. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01T23:59:59.000Z

    Resources at Naval Base Ventura Country Building 1512 7.August 2001. “Naval Base Ventura County Standby GeneratorEnergy Resources at Naval Base Ventura Country Building 1512

  8. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    SciTech Connect (OSTI)

    Wood, RT

    2004-09-27T23:59:59.000Z

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  9. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01T23:59:59.000Z

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  10. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01T23:59:59.000Z

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

  11. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  12. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Phillip Mills

    2012-02-01T23:59:59.000Z

    This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

  13. Naval Petroleum Reserves | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Petroleum Reserves For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military. All that...

  14. Naval Petroleum Reserve No. 1

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    For several years, the administration has proposed selling the government's ownership interest in the Naval Petroleum Reserves, arguing that it would help reduce the federal budget deficit. The administration's latest proposal calls for the sale of reserves in fiscal year 1990. DOE estimates that if the reserves are sold in 1990, proceeds would amount to about $3.4 billion. The Naval Petroleum Reserve at Elk Hills, California, is the largest of the reserves. This report has reviewed and analyzed the new reserve data and found that DOE's reserve estimates for Elk Hills are still neither accurate nor up-to-date.

  15. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect (OSTI)

    NONE

    1993-09-15T23:59:59.000Z

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  16. NAVAL POSTGRADUAm SCHOOL Monterey, California

    E-Print Network [OSTI]

    NAVAL POSTGRADUAm SCHOOL Monterey, California A WHOLESALE LEVEL CONSUMABLE ITEM DEMAND PATI TYPE AND DATES COVERED Master's Thesis 4. TITLE AND SUBTITLE A WHOLESALE LEVEL CONSUMABLE DEMAND is unlimited. A Wholesale Level Consumable Item Inventory Model for Non-Stationary Demand Patterns Glenn C

  17. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    SciTech Connect (OSTI)

    Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

    2012-07-01T23:59:59.000Z

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  18. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 1: Final summary report; Volume 1

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  19. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  20. Computerization upgrade project for the Rocky Flats Plant Critical Mass Laboratory Reactor Control Console

    SciTech Connect (OSTI)

    Bachman, H.C.; Miles, R.E.; Sachs, R.D.

    1987-01-01T23:59:59.000Z

    This report discusses present and planned future work on computerization of the Rocky Flats Plant (RFP) Critical Mass Laboratory (CML) Nuclear Reactor Control Console. No computerized control functions are planned or anticipated at this time. The scope of this computerization effort is limited to Data Acquisition and Analysis. In this work an IBM-PC will be connected to four (4) Nuclear Safety channels, and two (2) nonnuclear safety channels. Programming is being done in interpretive advanced BASIC. At the present time only two channels, Linear Picoammeters 1 and 2, are having their signals processed by the IBM-PC.

  1. The application of Plant Reliability Data Information System (PRINS) to CANDU reactor

    SciTech Connect (OSTI)

    Hwang, S. W.; Lim, Y. H.; Park, H. C. [Korea Hydro and Nuclear Power Co., Ltd., Naah-ri 260, Yangnam-myun, Gyeongju-si, Gyeong Buk (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    As risk-informed applications (RIAs) are actively implanted in the nuclear industry, an issue associated with technical adequacy of Probabilistic Safety Assessment (PSA) arises in its modeling and data sourcing. In Korea, PSA for all Korean NPPs has been completed and KHNP(Korea Hydro and Nuclear Power Plant Company) developed the database called the Plant Reliability Data Information System (PRinS). It has several characteristics that distinguish it from other database system such as NPRDs (INPO,1994), PRIS (IAEA), and SRDF (EdF). This database has the function of systematic data management such as automatic data-gathering, periodic data deposition and updating, statistical analysis including Bayesian method, and trend analysis of failure rate or unavailability. In recent PSA for CANDU reactor, the component failure data of EPRI ALWR URD and Component Reliability Database were preferentially used as generic data set. The error factor for most component failure data was estimated by using the information NUREG/CR-4550 and NUREG/CR-4639. Also, annual trend analysis was performed for the functional losses of components using the statistical analysis and chart module of PRinS. Furthermore, the database has been updated regularly and maintained as a living program to reflect the current status. This paper presents the failure data analysis using PRinS which provides Bayesian analysis on main components in the CANDU reactor. (authors)

  2. Pulse*Star Inertial Confinement Fusion Reactor: heat transfer loop and balance of plant considerations

    SciTech Connect (OSTI)

    McDowell, M.W.; Murray, K.A.

    1984-05-09T23:59:59.000Z

    A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li/sub 17/Pb/sub 83/ coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li/sub 17/Pb/sub 83/ coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m/sup 3//s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented.

  3. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect (OSTI)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01T23:59:59.000Z

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  4. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP) (Fact Sheet)UTCLift

  5. Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

    SciTech Connect (OSTI)

    M. G. McKellar; J. E. O'Brien; J. S. Herring

    2007-09-01T23:59:59.000Z

    This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

  6. The form, function, and interrelationships of naval rams: a study of naval rams from antiquity

    E-Print Network [OSTI]

    Pridemore, Matthew Garnett

    1996-01-01T23:59:59.000Z

    The discovery of several naval rams from sites around the Mediterranean has given scholars a brief glimpse of one of the most widely used naval weapons of the ancient world. Examining these physical examples provides information that is unavailable...

  7. Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion

    SciTech Connect (OSTI)

    Sayre, Edwin D. [Engineering Consultant, 218 Brooke Acres Drive, Los Gatos, CA 95032 (United States); Ring, Peter J. [Advanced Methods and Materials, 1190 Mountain View-Alviso Rd. Suite P, Sunnyvale, CA 94089 (United States); Brown, Neil [Engineering Consultant, 5134 Cordoy Lane, San Jose, CA 95124 (United States); Elsner, Norbert B.; Bass, John C. [Hi-Z Technology, Inc., 7606 Miramar Rd. Suite 7400, San Diego, CA 92126 (United States)

    2008-01-21T23:59:59.000Z

    This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

  8. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    J. M. Beck; L. F. Pincock

    2011-04-01T23:59:59.000Z

    The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

  9. Protected air-cooled condenser for the Clinch River Breeder Reactor Plant

    SciTech Connect (OSTI)

    Louison, R.; Boardman, C.E.

    1981-05-29T23:59:59.000Z

    The long term residual heat removal for the Clinch River Breeder Reactor Plant (CRBRP) is accomplished through the use of three protected air-cooled condensers (PACC's) each rated at 15M/sub t/ following a normal or emergency shutdown of the reactor. Steam is condensed by forcing air over the finned and coiled condenser tubes located above the steam drums. The steam flow is by natural convection. It is drawn to the PACC tube bundle for the steam drum by the lower pressure region in the tube bundle created from the condensing action. The concept of the tube bundle employs a unique patented configuration which has been commercially available through CONSECO Inc. of Medfore, Wisconsin. The concept provides semi-parallel flow that minimizes subcooling and reduces steam/condensate flow instabilities that have been observed on other similar heat transfer equipment such as moisture separator reheaters (MSRS). The improved flow stability will reduce temperature cycling and associated mechanical fatigue. The PACC is being designed to operate during and following the design basis earthquake, depressurization from the design basis tornado and is housed in protective building enclosure which is also designed to withstand the above mentioned events.

  10. andreyev bay naval: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    led by my Marine Corps staff and battalion New Mexico, University of 2 Naval Architecture Marine Engineering Engineering Websites Summary: Naval Architecture Marine...

  11. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...

    Energy Savers [EERE]

    Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline This Report to Congress provides a...

  12. Naval Research Laboratory Stennis Space Center

    E-Print Network [OSTI]

    Naval Research Laboratory Stennis Space Center Mississippi 39529 www7320.nrlssc.navy.mil/ Ocean Ocean prediction technology The Naval Research Laboratory (NRL) is the US Navy corporate laboratory, dedicated to addressing Navy unique problems and enabling the Navy to operate efficiently and safely. Unique

  13. Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    Curtis Smith; Scott Beck; Bill Galyean

    2005-09-01T23:59:59.000Z

    This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

  14. An investigation of temperature measurement methods in nuclear power plant reactor pressure vessel annealing

    SciTech Connect (OSTI)

    Acton, R.U.; Gill, W.; Sais, D.J.; Schulze, D.H.; Nakos, J.T. [Sandia National Labs., Albuquerque, NM (United States)

    1996-05-01T23:59:59.000Z

    The objective of this project was to provide an assessment of several methods by which the temperature of a commercial nuclear power plant reactor pressure vessel (RPV) could be measured during an annealing process. This project was a coordinated effort between DOE`s Office of Nuclear Energy, Science and Technology; DOE`s Light Water Reactor Technology Center at Sandia National Laboratories; and the Electric Power Research Institute`s Non- Destructive Evaluation Center. Ball- thermocouple probes similar to those described in NUREG/CR-5760, spring-loaded, metal- sheathed thermocouple probes, and 1778 air- suspended thermocouples were investigated in experiments that heated a section of an RPV wall to simulate a thermal annealing treatment. A parametric study of ball material, emissivity, thermal conductivity, and thermocouple function locations was conducted. Also investigated was a sheathed thermocouple failure mode known as shunting (electrical breakdown of insulation separating the thermocouple wires). Large errors were found between the temperature as measured by the probes and the true RPV wall temperature during heat-up and cool-down. At the annealing soak temperature, in this case 454{degrees}C [850`F], all sensors measured the same temperature within about {plus_minus}5% (23.6{degrees}C [42.5{degrees}F]). Because of these errors, actual RPV wall heating and cooling rates differed from those prescribed (by up to 29%). Shunting does not appear to be a problem under these conditions. The large temperature measurement errors led to the development of a thermal model that predicts the RPV wall temperature from the temperature of a ball- probe. Comparisons between the model and the experimental data for ball-probes indicate that the model could be a useful tool in predicting the actual RPV temperature based on the indicated ball- probe temperature. The model does not predict the temperature as well for the spring-loaded and air suspended probes.

  15. The use of LBB concept in French fast reactors: Application to SPX plant

    SciTech Connect (OSTI)

    Turbat, A.; Deschanels, H.; Sperandio, M. [and others

    1997-04-01T23:59:59.000Z

    The leak before break (LBB) concept was not used at the design level for SUPERPHENIX (SPX), but different studies have been performed or are in progress concerning different components : Main Vessel (MV), pipings. These studies were undertaken to improve the defense in depth, an approach used in all French reactors. In a first study, the LBB approach has been applied to the MV of SPX plant to verify the absence of risk as regards the core supporting function and to help in the definition of in-service inspection (ISI) program. Defining a reference semi-elliptic defect located in the welds of the structure, it is verified that the crack growth is limited and that the end-of-life defect is smaller than the critical one. Then it is shown that the hoop welds (those which are the most important for safety) located between the roof and the triple point verify the leak-before-break criteria. However, generally speaking, the low level of membrane primary stresses which is favorable for the integrity of the vessel makes the application of the leak-before-break concept more difficult due to small crack opening areas. Finally, the extension of the methodology to the secondary pipings of SPX incorporating recent European works of DCRC is briefly presented.

  16. Study of Pu consumption in light water reactors: Evaluation of GE advanced boiling water reactor plants, compilation of Phase 1C task reports

    SciTech Connect (OSTI)

    Not Available

    1994-01-15T23:59:59.000Z

    This report summarizes the evaluations conducted during Phase 1C of the Pu Disposition Study have provided further results which reinforce the conclusions reached during Phase 1A & 1B: These conclusions clearly establish the benefits of the fission option and the use of the ABWR as a reliable, proven, well-defined and cost-effective means available to disposition the weapons Pu. This project could be implemented in the near-term at a cost and on a schedule being validated by reactor plants currently under construction in Japan and by cost and schedule history and validated plans for MOX plants in Europe. Evaluations conducted during this phase have established that (1) the MOX fuel is licensable based on existing criteria for new fuel with limited lead fuel rod testing, (2) that the applicable requirements for transport, handling and repository storage can be met, and (3) that all the applicable safeguards criteria can be met.

  17. Data management for the Clinch River Breeder Reactor Plant Project by use of document status and hold systems

    SciTech Connect (OSTI)

    Hunt, C S; Beck, A E; Akhtar, M S

    1982-01-01T23:59:59.000Z

    This paper describes the development, framework, and scope of the Document Status System and the Document Hold System for the Clinch River Breeder Reactor Plant Project. It shows how data are generated at five locations and transmitted to a central computer for processing and storage. The resulting computerized data bank provides reports needed to perform day-to-day management and engineering planning. Those reports also partially satisfy the requirements of the Project's Quality Assurance Program.

  18. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect (OSTI)

    Lata

    1996-09-26T23:59:59.000Z

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  19. Investigation of plant control strategies for the supercritical C0{sub 2}Brayton cycle for a sodium-cooled fast reactor using the plant dynamics code.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. (Nuclear Engineering Division)

    2011-04-12T23:59:59.000Z

    The development of a control strategy for the supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle has been extended to the investigation of alternate control strategies for a Sodium-Cooled Fast Reactor (SFR) nuclear power plant incorporating a S-CO{sub 2} Brayton cycle power converter. The SFR assumed is the 400 MWe (1000 MWt) ABR-1000 preconceptual design incorporating metallic fuel. Three alternative idealized schemes for controlling the reactor side of the plant in combination with the existing automatic control strategy for the S-CO{sub 2} Brayton cycle are explored using the ANL Plant Dynamics Code together with the SAS4A/SASSYS-1 Liquid Metal Reactor (LMR) Analysis Code System coupled together using the iterative coupling formulation previously developed and implemented into the Plant Dynamics Code. The first option assumes that the reactor side can be ideally controlled through movement of control rods and changing the speeds of both the primary and intermediate coolant system sodium pumps such that the intermediate sodium flow rate and inlet temperature to the sodium-to-CO{sub 2} heat exchanger (RHX) remain unvarying while the intermediate sodium outlet temperature changes as the load demand from the electric grid changes and the S-CO{sub 2} cycle conditions adjust according to the S-CO{sub 2} cycle control strategy. For this option, the reactor plant follows an assumed change in load demand from 100 to 0 % nominal at 5 % reduction per minute in a suitable fashion. The second option allows the reactor core power and primary and intermediate coolant system sodium pump flow rates to change autonomously in response to the strong reactivity feedbacks of the metallic fueled core and assumed constant pump torques representing unchanging output from the pump electric motors. The plant behavior to the assumed load demand reduction is surprising close to that calculated for the first option. The only negative result observed is a slight increase in the intermediate inlet sodium temperatures by about 10 C. This temperature rise could presumably be precluded or significantly reduced through fine adjustment of the control rods and pump motors. The third option assumes that the reactor core power and primary and intermediate system flow rates are ideally reduced linearly in a programmed fashion that instantaneously matches the prescribed load demand. The calculated behavior of this idealized case reveals a number of difficulties because the control strategy for the S-CO{sub 2} cycle overcools the reactor potentially resulting in the calculation of sodium bulk freezing and the onset of sodium boiling. The results show that autonomous SFR operation may be viable for the particular assumed load change transient and deserves further investigation for other transients and postulated accidents.

  20. DOE - Office of Legacy Management -- Westinghouse Naval Ordnance - MI 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal - MAWesternPlantNaval

  1. Naval Academy, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy InformationNatura Bio FuelsNautilusNaval

  2. Comparative naval architecture analysis of diesel submarines

    E-Print Network [OSTI]

    Torkelson, Kai Oscar

    2005-01-01T23:59:59.000Z

    Many comparative naval architecture analyses of surface ships have been performed, but few published comparative analyses of submarines exist. Of the several design concept papers, reports and studies that have been written ...

  3. Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2009-05-01T23:59:59.000Z

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

  4. Application of the LBB concept to nuclear power plants with WWER 440 and WWER 1000 reactors

    SciTech Connect (OSTI)

    Zdarek, J.; Pecinka, L. [Nuclear Research Institute Rez (Czech Republic)

    1997-04-01T23:59:59.000Z

    Leak-before-break (LBB) analysis of WWER type reactors in the Czech and Sloval Republics is summarized in this paper. Legislative bases, required procedures, and validation and verification of procedures are discussed. A list of significant issues identified during the application of LBB analysis is presented. The results of statistical evaluation of crack length characteristics are presented and compared for the WWER 440 Type 230 and 213 reactors and for the WWER 1000 Type 302, 320 and 338 reactors.

  5. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    SciTech Connect (OSTI)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01T23:59:59.000Z

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

  6. EIS-0259: Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Disposal of Decommissioned, Defueled Cruiser, Ohio Class, Los Angeles and Class Naval Reactor Plants

  7. Anti-proliferation safeguard system for General Electric's PRISM reactor plant

    E-Print Network [OSTI]

    Tenorio, Luis E

    2008-01-01T23:59:59.000Z

    The proliferation resistance of a nuclear power plant has become an increasingly important issue due to the political climate of nuclear power at the present. Any new power plant that is constructed must be proliferation ...

  8. U.S. NAVAL ACADEMY COMPUTER SCIENCE DEPARTMENT

    E-Print Network [OSTI]

    Crabbe, Frederick

    U.S. NAVAL ACADEMY COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT Mobile Vehicle Teleoperated Over Akin and Frederick L. Crabbe U.S. Naval Academy Computer Science Department 572M Holloway Rd, Stop 9F

  9. EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

    E-Print Network [OSTI]

    EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY Marine Biological Laboratory t, T "B and Wildlife Service, John L. Farley, Director EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY of Medicine, Univ. of Puerto Rico. #12;#12;EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

  10. Habitat restoration on naval petroleum reserves in Kern County, California

    SciTech Connect (OSTI)

    Anderson, D.C. [EG& G Energy Measurements, Inc., Tupman, CA (United States)

    1990-12-31T23:59:59.000Z

    One of several task performed under contract to the Department of Energy (DOE) by EG & G Energy Measurements as part of the endangered species program is the restoration of abandoned well pads, roads, pipelines and soil borrow sites resulting from oil and gas production activities on Naval Petroleum Reserves in California (NPRC). Naval Petroleum Reserves in California is located in the Elk Hills approximately 30 miles southwest of Bakersfield in the rain shadow of the coastal range. Annual precipitation is approximately five inches. Reclamation of disturbed habitat on NPRC began with research plots and test trials in the early 1980s. Full scale reclamation began in 1985 and has continued through the 1989 planting season. Almost 700 acres have been revegetated, which represents over 1,200 sites distributed over the 47,250 acres of NPRC and averaging less than .75 acre in size. Monitoring of the sites began in 1987 to establish reclamation success and evaluate reclamation techniques. Reclamation objectives include the improvement of wildlife habitat for four endangered species living on NPRC, and the protection of the soils from wind and water erosion on the disturbed sites.

  11. Advanced light water reactor plants system 80+{trademark} design certification program. Annual progress report, October 1, 1993--September 30, 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80{sup +}{trademark} during the U.S. government`s 1994 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2 and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems. Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units and the System 80+ design form the basis of the Korean standardization program. The Nuclear Island portion of the System 80+ standard design has also been offered to the Republic of China, in response to their bid specification for an ALWR. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was docketed by the Nuclear Regulatory Commission (NRC) in May 1991 and a Draft Safety Evaluation Report (DSER) was issued in October 1992.

  12. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  13. DEPARTMENT OF THE NAVY NAVAL POSTGRADUATE SCHOOL

    E-Print Network [OSTI]

    DEPARTMENT OF THE NAVY NAVAL POSTGRADUATE SCHOOL 1 UNIVERSITY CIR MONTEREY, CA 93943-5000 IN REPLY FOR ADMINISTRATION AND MANAGEMENT OF NAVY FULLY-FUNDED GRADUATE EDUCATION PROGRAMS AT CIVILIAN INSTITUTIONS guidance for the U.S. Navy's fully funded graduate education programs at Civilian Institutions (CIVINS

  14. Yangtze Patrol: American Naval Forces in China

    E-Print Network [OSTI]

    Yangtze Patrol: American Naval Forces in China A Selected, Partially-Annotated Bibliography literature of the United States Navy in China. mvh #12;"Like Chimneys in Summer" The thousands of men who served on the China Station before World War II have been all but forgotten, except in the mythology

  15. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1982-07-01T23:59:59.000Z

    A book is reviewed which emphasizes topics directly related to the light water reactor power plant and the fast reactor power system. Current real-world problems are addressed throughout the text, and a chapter on safety includes much of the postThree Mile Island impact on operating systems. Topics covered include Doppler broadening, neutron resonances, multigroup diffusion theory, reactor kinetics, reactor control, energy removal, nonfuel materials, reactor fuel, radiation protection, environmental effects, and reactor safety.

  16. Congressional Delegation visits Naval Reactors Facility | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputerConfirmed: Stellar Behemoth

  17. Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,Enriched UraniumPhysical| Nationaltechnicalbefore the Housebefore

  18. Management of Naval Reactors' Cyber Security Program, OIG-0884

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy University ofOverviewManagement of

  19. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB - H, Page i

  20. More About NNSA's Naval Reactors Office | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 ThisBackground

  1. More About NNSA's Naval Reactors Office | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 ThisBackgroundAdministration

  2. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01T23:59:59.000Z

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  3. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  4. ASSESSMENT OF THE RADIONUCLIDE COMPOSITION OF "HOT PARTICLES" SAMPLED IN THE CHERNOBYL NUCLEAR POWER PLANT FOURTH REACTOR UNIT

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.; Marra, J.

    2011-10-01T23:59:59.000Z

    Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) 4th Reactor Unit Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified and the fuel burnup in these samples was determined. A systematic deviation in the burnup values based on the cesium isotopes, in comparison with other radionuclides, was observed. The conducted studies were the first ever performed to demonstrate the presence of significant quantities of {sup 242}Cm and {sup 243}Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from {sup 241}Am (and going higher), in comparison with the theoretical calculations.

  5. Load follow-up control of a pressurized water reactor power plant by using an approximate noninteractive control

    SciTech Connect (OSTI)

    Tsuji, M.; Ogawa, Y.

    1986-08-01T23:59:59.000Z

    The present paper describes an attempt to apply an approximate noninteractive control to the load-following operation of the nuclear steam supply (NSS) system of a pressurized water reactor power plant. A control strategy is proposed for maximizing the unique merit of the noninteractive control in advancing the operational performance of the NSS system. An noninteractive load follow-up control system is designed based on the idea of approximate model-following. The authors make the design method more flexible and widely applicable to more general control problems by introducing some modifications. Digital simulations and graphical studies based on the Bode-diagram demonstrate the effectiveness of the noninteractive load follow-up control as well as the applicability of the proposed design method.

  6. Exploratory design study on reactor configurations for carbon dioxide capture from conventional power plants employing regenerable solid sorbents

    SciTech Connect (OSTI)

    Yang, W.C.; Hoffman, J. [US DOE, Pittsburgh, PA (USA). National Energy Technology Laboratory

    2009-01-15T23:59:59.000Z

    Preliminary commercial designs were carried out for a fluidized bed as a CO{sub 2} adsorber and a moving bed as a CO{sub 2} regenerator. Reverse engineering methodology was employed on the basis of a commercial 500 MW supercritical PC power plant whereby the boundaries required for a particular reactor design and configuration could be set. Employing the proposed moving bed for regenerator is, however, not promising because of poor heat transfer, evolution of CO{sub 2} during regeneration, and high pressure drop when small particles are used. If regeneration kinetics is as slow as reported in tens of minutes, the bed height can be quite high and the reactor can be quite costly. In its place, a so-called assisted self-fluidization bed with embedded heat transfer surface was proposed. Theoretically, there is no reason why the fluidized bed cannot be successfully designed and operated both as an adsorber and a regenerator under proper adsorption and regeneration kinetics. Recent publications, where fluidized beds, circulating fluidized beds, or a combination of them were employed both as an adsorber and a regenerator, were cited. Staging may not be necessary employing the fluidized bed technology because of the capability to control reaction temperature at the optimum operating temperature through embedded heat transfer surface in the fluidized beds. Even if the staging is necessary, the implementation of staging in fluidized beds at ambient pressure and moderate temperature is relatively easy and with minimum cost penalty. Example designs are presented.

  7. The French nuclear power plant reactor building containment contributions of prestressing and concrete performances in reliability improvements and cost savings

    SciTech Connect (OSTI)

    Rouelle, P.; Roy, F. [Electricite de France, Paris (France). Engineering and Construction Div.

    1998-12-31T23:59:59.000Z

    The Electricite de France`s N4 CHOOZ B nuclear power plant, two units of the world`s largest PWR model (1450 Mwe each), has earned the Electric Power International`s 1997 Powerplant Award. This lead NPP for EDF`s N4 series has been improved notably in terms of civil works. The presentation will focus on the Reactor Building`s inner containment wall which is one of the main civil structures on a technical and safety point of view. In order to take into account the necessary evolution of the concrete technical specification such as compressive strength low creep and shrinkage, the HSC/HPC has been used on the last N4 Civaux 2 NPP. As a result of the use of this type of professional concrete, the containment withstands an higher internal pressure related to severe accident and ensures higher level of leak-tightness, thus improving the overall safety of the NPP. On that occasion, a new type of prestressing has been tested locally through 55 C 15 S tendons using a new C 1500 FE Jack. These updated civil works techniques shall allow EDF to ensure a Reactor Containment lifespan for more than 50 years. The gains in terms of reliability and cost saving of these improved techniques will be developed hereafter.

  8. Russian naval bases due commercial development

    SciTech Connect (OSTI)

    Not Available

    1992-04-27T23:59:59.000Z

    Tecnogrid Group, New York, has signed a joint venture with the Russian Navy for commercial development of a wide range of sea dn land based assets owned by the former Soviet Navy. This paper reports that among other things, the venture aims for projects that will allow greater volumes of oil exports by revamping several naval bases. Tecnogrid's partner in the joint venture is AO Navicon, A Russian stock holding company that is the commercial arm of the Navy. Navicon has the sole right to commercially develop and deploy the Navy's assets. The Navy can no longer depend on the state for support, and Adm. Ig. Malhonin. With that in mind, the Navy is looking to become the leading force in moving toward a free market economy. Mahonin is Russia's second ranking naval official.

  9. Three important parts of an integrated plant are reactors, separators and a heat exchanger network (HEN) for heat recovery. Within the process engineering community, much

    E-Print Network [OSTI]

    Skogestad, Sigurd

    exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has beeni ABSTRACT Three important parts of an integrated plant are reactors, separators and a heat and in particular to optimal operation of HENs. The purpose of heat integration is to save energy, but the HEN also

  10. France gets nuclear fusion plant France will get to host the project to build a 10bn-euro (6.6bn) nuclear fusion reactor, in

    E-Print Network [OSTI]

    ) nuclear fusion reactor, in the face of strong competition from Japan. The International Thermonuclear division, which is responsible for the UK's thermonuclear fusion programme, said the decisionFrance gets nuclear fusion plant France will get to host the project to build a 10bn-euro (£6.6bn

  11. The case for naval arms control

    SciTech Connect (OSTI)

    Fieldhouse, R. (Natural Resources Defense Council in Washington, DC (USA))

    1990-02-01T23:59:59.000Z

    Resurfacing at the Malta summit, the issue of naval arms control has once again become prominent as START and other potential treaties near completion. The time has come when we should begin discussing naval forces, said Soviet leader Mikhail Gorbachev, arguing that limiting only ground and air forces would not be equitable. The United States has opposed naval arms control - although some prominent U.S. officials, such as former chairman of the Joint Chiefs of Staff, Admiral William J. Crowe, Jr., have advocated some type of limitations. The official US position is that as a maritime power, the United States requires an unrestrained navy to fulfill its defense obligations. This issue of Arms Control Today presents here two views on this controversy. In the article, Richard Fieldhouse, senior research associate with the Nuclear Weapons Data Project, argues that there are indeed areas, such as controlling nuclear weapons on ships and confidence-building measures, that will enhance, not diminish, U.S. security. Following this, James R. Blaker, a former deputy assistant secretary of defense, presents a counter argument.

  12. Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, Randy [ORNL; Copinger, Donald A [ORNL; Mays, Gary T [ORNL; Omitaomu, Olufemi A [ORNL; Poore III, Willis P [ORNL

    2013-03-01T23:59:59.000Z

    This report summarizes the approach that ORNL developed for screening a sample set of small coal stations for possible repowering with SMRs; the methodology employed, including spatial modeling; and initial results for these sample plants. The objective in conducting this type of siting evaluation is to demonstrate the capability to characterize specific sample coal plant sites to identify any particular issues associated with repowering existing coal stations with SMRs using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  13. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    SciTech Connect (OSTI)

    T.L. Mitchell

    2000-05-31T23:59:59.000Z

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M&O 2000a).

  14. Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.

  15. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01T23:59:59.000Z

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  16. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01T23:59:59.000Z

    by a DER system. Distributed Energy Resources at Naval BaseFebruary 2003. “Distributed Energy Resources in Practice: A2004. “Distributed Energy Resources Customer Adoption Model

  17. Naval Construction Battalion Center Gulfport- Mississippi Power Partnership Success Story

    Broader source: Energy.gov [DOE]

    Presentation covers the Naval Construction Battalion Center Gulfport - Mississippi Power Partnership success story given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting...

  18. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01T23:59:59.000Z

    system. Distributed Energy Resources at Naval Base Ventura2003. “Distributed Energy Resources in Practice: A Case2004. “Distributed Energy Resources Customer Adoption Model

  19. 13.400 Introduction to Naval Architecture, Fall 2004

    E-Print Network [OSTI]

    Herbein, David

    Introduction to principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damaged stability, hull structure strength calculations and ship resistance. Projects ...

  20. Department of Energy, Office of Naval Petroleum & Oil Shale Reserves

    Broader source: Energy.gov (indexed) [DOE]

    Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5...

  1. THE NAVAL RESEARCH ENTERPRISE AND PLASMA PHYSICS RESEARCH AT THE NAVAL RESEARCH LAB

    E-Print Network [OSTI]

    Shyy, Wei

    , to create Xray simulators for testing nuclear weapons effects, and to understand high altitude nuclear ex and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power also participates in two Innovative Naval Prototype programs: the electromagnetic railgun and the free

  2. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna [Idaho National Laboratory; Bly, Aaron [Idaho National Laboratory; LeBlanc, Katya [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  3. Naval Research Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00 P.M.Innovation Portal Naval

  4. Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2005-01-01T23:59:59.000Z

    Resources at Naval Base Ventura Country Building 1512 6.Resources at Navy Base Ventura County Building 1512. ”August 2001. “Naval Base Ventura County Standby Generator

  5. Peter C. Chu Naval Ocean Analysis and Prediction Laboratory,

    E-Print Network [OSTI]

    Chu, Peter C.

    , such as using the wind tunnel, we present a new efficient and low cost method to determine the drag, liftPeter C. Chu Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Naval Postgraduate School, and no fin and no-tail section) conducted at the SRI test site. The cost of this method is much lower than

  6. Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems

    SciTech Connect (OSTI)

    Ronald G. Ballinger Chunyun Wang Andrew Kadak Neil Todreas

    2004-08-30T23:59:59.000Z

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

  7. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  8. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  9. Radiological survey of the Mare Island Naval Shipyard, Alameda Naval Air Station, and Hunters Point Shipyard

    SciTech Connect (OSTI)

    Semler, M.O.; Blanchard, R.L. (Environmental Protection Agency, Montgomery, AL (USA). Eastern Environmental Radiation Facility)

    1989-06-01T23:59:59.000Z

    Since 1963, the Eastern Environmental Radiation Facility (EERF), US Environmental Protection Agency (USEPA), in cooperation with the US Naval Sea Systems Command (NAVSEA) has surveyed facilities serving nuclear-powered warships on the Atlantic and Pacific coasts and the Gulf of Mexico. These surveys assess whether the operation of nuclear-powered warships, during construction, maintenance, overhaul, or refueling, have created elevated levels of radioactivity. The surveys emphasize sampling those areas and pathways that could expose the public. In 1984, NAVSEA requested that EPA survey all active facilities serving nuclear-powered warships over the next three years. This report contains the results of surveys conducted at Naval facilities located at Mare Island, Alameda, and Hunters Point in the San Francisco region. The locations of these facilities are shown. 3 refs., 4 figs., 3 tabs.

  10. Naval Nuclear Propulsion Plants | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading

  11. Naval Nuclear Propulsion Plants | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1ResourceloadingOur Mission / Powering

  12. Fuel Cell Power Plant Experience Naval Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2ofFuel Cell Financing forEnergyPower

  13. Sandia National Laboratories: Carderock Naval Surface War-fare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carderock Naval Surface War-fare Center Inter-Agency Agreement Signed between DOE's Wind and Water Power Program and Carderock On December 3, 2014, in Energy, News, News & Events,...

  14. A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...

    Office of Scientific and Technical Information (OSTI)

    A reactor and associated power plant designed to produce 1.05 Mwh and 3.535 Mwh of steam for heating purposes are described. The total thermal output of the reactor is 10 Mwh....

  15. Radiological surveys of Naval facilities on Puget Sound. Final report

    SciTech Connect (OSTI)

    Lloyd, V.D.; Blanchard, R.L.

    1989-06-01T23:59:59.000Z

    This report presents results of surveys conducted to assess levels of environmental radioactivity resulting from maintenance and operation of nuclear-powered warships at Puget Sound Naval Shipyard, Naval Submarine Base, Bangor, and the proposed Carrier Battle Group Homeporting Site in northwestern Washington. The purpose of the survey was to determine if activities related to nuclear-powered warships resulted in release of radionuclides that may contribute to significant population exposure or contamination of the environment.

  16. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  17. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Ioffe, B. L.; Kochurov, B. P. [Institute of Theoretical and Experimental Physics (Russian Federation)

    2012-02-15T23:59:59.000Z

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  18. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE's Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES H/QA programs was conducted.

  19. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE`s Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES&H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES&H/QA programs was conducted.

  20. Hypothetical Reactor Accident Study

    E-Print Network [OSTI]

    POPULATIONS; IODINE 131; MELTDOWN; METEOROLOGY; NUCLEAR POWER PLANTS; P CODES; PWR TYPE REACTORS; RADIATION in a Typical BWR and in a typical PWR. Comparison with WASH-1400 by C F . Højerup 202 APPENDIX 3. Calculation

  1. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  2. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  3. Carl Vinson and pre-war naval legislation 1932-1940

    E-Print Network [OSTI]

    Svonavec, Stephen Charles

    1994-01-01T23:59:59.000Z

    , House and Senate debates, and behind the scenes conferences between Vinson and officials of the Navy Department and Roosevelt Administration which helped decide the course of naval expansion. It shows that while many people contributed passing naval...

  4. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01T23:59:59.000Z

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  5. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1994-12-31T23:59:59.000Z

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future.

  6. Endangered Species Program, Naval Petroleum Reserves in California. Annual report FY93

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The Naval Petroleum Reserves in California (NPRC) are operated by the US Department of Energy (DOE) and Chevron USA. Production Company (CPDN). Four federally-listed endangered animal species and one federally-threatened plant species are known to occur on NPRC: San Joaquin kit fox, blunt-nosed leopard lizard, giant kangaroo rat, Tipton kangaroo rat, and Hoover`s wooly-star. All five are protected under the Endangered Species Act of 1973, which declares that it is ``...the policy of Congress that all Federal departments and agencies shall seek to conserve endangered species and threatened species and shall utilize their authorities in furtherance of the purposes of the Act.`` DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 will have any effects on endangered species or their habitats. The major objective of the EG&G Energy Measurements, Inc. Endangered Species Program on NPRC is to provide DOE with the scientific expertise necessary for compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during fiscal year 1993.

  7. Endangered species and cultural resources program, Naval Petroleum Reserves in California, annual report FY97

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Naval Petroleum Reserves in California (NPRC) are oil fields administered by the DOE in the southern San Joaquin Valley of California. Four federally endangered animal species and one federally threatened plant species are known to occur on NPRC: San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides), and Hoover`s wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act (ESA) of 1973. The DOE/NPRC is obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The primary objective of the Endangered Species and Cultural Resources Program is to provide NPRC with the scientific expertise necessary for compliance with the ESA, the National Environmental Policy Act (NEPA), and the National Historic Preservation Act (NHPA). The specific objective of this report is to summarize progress, results, and accomplishments of the program during fiscal year 1997 (FY97).

  8. Plant Design and Cost Assessment of Forced Circulation Lead-Bismuth Cooled Reactor with Conventional Power Conversion Cycles

    E-Print Network [OSTI]

    Dostal, Vaclav

    Cost of electricity is the key factor that determines competitiveness of a power plant. Thus the proper selection, design and optimization of the electric power generating cycle is of main importance. This report makes an ...

  9. Results of detailed analyses performed on boring cores extracted from the concrete floors of the Fukushima Daiichi nuclear power plant reactor buildings

    SciTech Connect (OSTI)

    Maeda, Koji; Sasaki, S.; Kumai, M.; Sato, Isamu; Osaka, Masahiko; Fukushima, Mineo; Kawatsuma, Shinji [Japan Atomic Energy Agency, 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Goto, Tetsuo; Sakai, Hitoshi [Toshiba Corporation, 8, Shinsugita, Isogo-ku, Yokohama 235-8523 (Japan); Chigira, Takayuki; Murata, Hirotoshi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai, Chiyoda-ku, Tokyo, 100-8560 (Japan)

    2013-07-01T23:59:59.000Z

    Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium in the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (authors)

  10. Page 1 of 16 Naval Power and Globalization

    E-Print Network [OSTI]

    Aronov, Boris

    years China has followed the same path as its predecessor modernizing Asian neighbors. It has committed size and the scale, China is affecting both the regional and worldwide economic balances of power and India are influenced by the potential for China's increasing role as both an economic and naval power

  11. Colleagues and Friends of NPS: Recently the Naval Postgraduate

    E-Print Network [OSTI]

    @nps.edu Journalists Barbara Honegger MC2 (SW) Corey Truax MC3 Kellie Arakawa Photographers Javier Chagoya MC2 (SW) Corey Truax MC2 Kellie Arakawa Naval Postgraduate School President Daniel T. Oliver Provost Executive. Full versions of all articles are available at www.nps.edu #12;July 2008 Contents 7 New GSEAS Dean Dr

  12. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  14. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  15. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  16. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  17. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  18. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  20. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  1. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  3. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  4. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  5. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  7. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  8. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  9. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  10. 1-Dimensional simulation of thermal annealing in a commercial nuclear power plant reactor pressure vessel wall section

    SciTech Connect (OSTI)

    Nakos, J.T.; Rosinski, S.T.; Acton, R.U.

    1994-11-01T23:59:59.000Z

    The objective of this work was to provide experimental heat transfer boundary condition and reactor pressure vessel (RPV) section thermal response data that can be used to benchmark computer codes that simulate thermal annealing of RPVS. This specific protect was designed to provide the Electric Power Research Institute (EPRI) with experimental data that could be used to support the development of a thermal annealing model. A secondary benefit is to provide additional experimental data (e.g., thermal response of concrete reactor cavity wall) that could be of use in an annealing demonstration project. The setup comprised a heater assembly, a 1.2 in {times} 1.2 m {times} 17.1 cm thick [4 ft {times} 4 ft {times} 6.75 in] section of an RPV (A533B ferritic steel with stainless steel cladding), a mockup of the {open_quotes}mirror{close_quotes} insulation between the RPV and the concrete reactor cavity wall, and a 25.4 cm [10 in] thick concrete wall, 2.1 in {times} 2.1 in [10 ft {times} 10 ft] square. Experiments were performed at temperature heat-up/cooldown rates of 7, 14, and 28{degrees}C/hr [12.5, 25, and 50{degrees}F/hr] as measured on the heated face. A peak temperature of 454{degrees}C [850{degrees}F] was maintained on the heated face until the concrete wall temperature reached equilibrium. Results are most representative of those RPV locations where the heat transfer would be 1-dimensional. Temperature was measured at multiple locations on the heated and unheated faces of the RPV section and the concrete wall. Incident heat flux was measured on the heated face, and absorbed heat flux estimates were generated from temperature measurements and an inverse heat conduction code. Through-wall temperature differences, concrete wall temperature response, heat flux absorbed into the RPV surface and incident on the surface are presented. All of these data are useful to modelers developing codes to simulate RPV annealing.

  11. 22.312 Engineering of Nuclear Reactors, Fall 2002

    E-Print Network [OSTI]

    Todreas, Neil E.

    Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

  12. 22.312 Engineering of Nuclear Reactors, Fall 2004

    E-Print Network [OSTI]

    Buongiorno, Jacopo, 1971-

    Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

  13. Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design

    SciTech Connect (OSTI)

    Smith, C

    2010-02-22T23:59:59.000Z

    The idea of developing fast spectrum reactors with molten lead (or lead alloy) as a coolant is not a new one. Although initially considered in the West in the 1950s, such technology was not pursued to completion because of anticipated difficulties associated with the corrosive nature of these coolant materials. However, in the Soviet Union, such technology was actively pursued during the same time frame (1950s through the 1980s) for the specialized role of submarine propulsion. More recently, there has been a renewal of interest in the West for such technology, both for critical systems as well as for Accelerator Driven Subcritical (ADS) systems. Meanwhile, interest in the former Soviet Union, primarily Russia, has remained strong and has expanded well beyond the original limited mission of submarine propulsion. This section reviews the past and current status of LFR development.

  14. Management of the aging of critical safety-related concrete structures in light-water reactor plants

    SciTech Connect (OSTI)

    Naus, D.J.; Oland, C.B. (Oak Ridge National Lab., TN (USA)); Arndt, E.G. (Nuclear Regulatory Commission, Washington, DC (USA))

    1990-01-01T23:59:59.000Z

    The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniques for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs.

  15. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2012-05-10T23:59:59.000Z

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO{sub 2} cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO{sub 2}. It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO{sub 2} heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO{sub 2}-to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO{sub 2} turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO{sub 2} cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO{sub 2} cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO{sub 2} cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO{sub 2} cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall cycle performance. Therefore, the single-shaft

  16. Energy use baselining study for the National Naval Medical Center

    SciTech Connect (OSTI)

    Parker, G.B.; Halverson, M.A.

    1992-04-01T23:59:59.000Z

    This report provides an energy consumption profile for fourteen buildings at the National Naval Medical Center (NNMC) in Bethesda, Maryland. Recommendations are also made for viable energy efficiency projects funded with assistance from the servicing utility (Potomic Electric Power Company) in the form of rebates and incentives available in their Demand Side Management (DSM) program and through Shared Energy Savings (SES) projects. This report also provides estimates of costs and potential energy savings of the recommended projects.

  17. On the neutron noise diagnostics of Pressurized Water Reactor control rod vibrations. Application at a power plant

    SciTech Connect (OSTI)

    Pazsit, I. (Studsvik Energiteknik AB, S-611 82 Nykoping (SE)); Glockler, O. (Univ. of Tennessee, Dept. of Nuclear Engineering, Knoxville, TN (US))

    1988-08-01T23:59:59.000Z

    In the first two papers of this series, a complete algorithm was elaborated and tested for the diagnostics of vibrating control rods in pressurized water reactors (PWRs). Although the method was thoroughly tested in numerical experiments where even the effects of background noise were accounted for, the influence of the several approximations regarding the underlying neutron physical and mechanical model of the applicability of the method in real applications could not be properly estimated. In August 1985, in-core self-powered neutron detector spectra taken at Paks-2, a PWR in Hungary, indicated the presence of an excessively vibrating control rod. With these measured noise data as input, the previously reported localization algorithm was applied in its original form. The algorithm singled out one control rod out of the possible seven, and independent investigations performed before and during the subsequent refueling showed the correctness of the localization results. It is therefore concluded that, at least in this particular application, the approximations used in the model were allowable in a case of practical interest. The algorithm was developed further to facilitate the automatization and reliability of the localization procedure. These developments and the experiences in the application of the algorithm are reported in this paper.

  18. A pilot plant scale reactor/separator for ethanol from cellulosics. ERIP/DOE quarterly report no. 3 and 4

    SciTech Connect (OSTI)

    Dale, M.C.; Moelhman, M.; Butters, R.

    1998-12-01T23:59:59.000Z

    The objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive simultaneous saccharification/fermentation (SSF) of cellulose (glucans) followed by hemi-cellulose (pentosans) in a multi-stage continuous stirred reactor separator (CSRS). During quarters 3 and 4, we have completed a literature survey on cellulase production, activated one strain of Trichoderma reesei. We continued developing our proprietary Steep Delignification (SD) process for biomass pretreatment. Some problems with fermentations were traces to bad cellulase enzyme. Using commercial cellulase enzymes from Solvay & Genecor, SSF experiments with wheat straw showed 41 g/L ethanol and free xylose of 20 g/L after completion of the fermentation. From corn stover, we noted 36 g/L ethanol production from the cellulose fraction of the biomass, and 4 g/L free xylose at the completion of the SSF. We also began some work with paper mill sludge as a cellulose source, and in some preliminary experiments obtained 23 g/L ethanol during SSF of the sludge. During year 2, a 130 L process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation.

  19. Naval Petroleum and Oil Shale Reserves annual report of operations for fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    During fiscal year 1996, the Department of Energy continued to operate Naval Petroleum Reserve No. 1 in California and Naval Petroleum Reserve No. 3 in Wyoming through its contractors. In addition, natural gas operations were conducted at Naval Petroleum Reserve No. 3. All productive acreage owned by the Government at Naval Petroleum Reserve No. 2 in California was produced under lease to private companies. The locations of all six Naval Petroleum and Oil Shale Reserves are shown in a figure. Under the Naval Petroleum Reserves Production Act of 1976, production was originally authorized for six years, and based on findings of national interest, the President was authorized to extend production in three-year increments. President Reagan exercised this authority three times (in 1981, 1984, and 1987) and President Bush authorized extended production once (in 1990). President Clinton exercised this authority in 1993 and again in October 1996; production is presently authorized through April 5, 2000. 4 figs. 30 tabs.

  20. Wildlife management plan, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Scrivner, J.H.

    1987-01-01T23:59:59.000Z

    Under the Naval Petroleum Act of 1976, Congress directed the Secretary of the Navy and subsequently the Secretary of Energy, to produce petroleum products from Naval Petroleum Reserve No. 1 (NPR-1) in Kern County, California, at the maximum efficient rate consistent with sound engineering practices. Because of the presence of two endangered species and the quality, quantity, and contiguous nature of habitat on NPR-1, the area is unique and management of its resources deserves special attention. The purpose of this wildlife management plan is to: (1) draw together specific information on NPR-1 wildlife resources; (2) suggest management goals that could be implemented, which if achieved, would result in diverse, healthy wildlife populations; and (3) reinitiate cooperative agreements between the US Department of Energy (DOE) and other conservation organizations regarding the management of wildlife on NPR-1. NPR-1 supports an abundant and diverse vertebrate fauna. Twenty-five mammalian, 92 avian, eight reptilian, and two amphibian species have been observed on Elk Hills. Of these, three are endangered (San Joaquin kit fox, Vulpes macrotis mutica; giant kangaroo rat, Dipodomys ingens; blunt-nosed leopard lizard, Gambelia silus). Nine vertebrates, six invertebrates, and four plant species known to occur or suspected of occurring on Elk Hills are potential candidates for listing. A major objective of this management plan is to minimize the impact of petroleum development activities on the San Joaquin kit fox, giant kangaroo rat, blunt-nosed leopard lizard, and their essential habitats. This will mainly be achieved by monitoring the status of these species and their habitat and by restoring disturbed habitats. In general, management policies designed to benefit the above three species and other species of concern will also benefit other wildlife inhabiting NPR-1.

  1. Estimate of Radiation-Induced Steel Embrittlement in the BWR Core Shroud and Vessel Wall from Reactor-Grade MOX/UOX Fuel for the Nuclear Power Plant at Laguna Verde, Veracruz, Mexico

    SciTech Connect (OSTI)

    Vickers, Lisa R. [BWXT, U.S. Department of Energy, Pantex Plant, P.O. Box 30020, Hwy 60/FM 2373, Amarillo, TX 79120-0020 (United States)

    2002-07-01T23:59:59.000Z

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18 - 30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased {sup 239}Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to personnel and public safety, environment, and operating life of the reactor. The primary conclusion of this research was that the addition of the maximum fraction of 1/3 MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the personnel and public safety, environment, and operating life of the reactor. (author)

  2. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    be utilized in a steam power plant to produce electricitytemperature reactor. A steam power plant is a large scaleworking fluid. A simple steam power plant is illustrated in

  3. Reactor physics design of supercritical CO?-cooled fast reactors

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2004-01-01T23:59:59.000Z

    Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

  4. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  5. Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage

    SciTech Connect (OSTI)

    Guskov, Vladimir; Korotkov, Gennady [JSC 'KBSM' (Russian Federation); Barnes, Ella [US Environmental Protection Agency - EPA (United States); Snipes, Randy [Oak Ridge National Laboratory - ORNL, 1 Bethel Valley Rd, Oak Ridge, TN 37830 (United States)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distribution of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108/1 drying facility; a pilot facility has been manufactured. This report describes key issues of cask drying technology, justification of terms of dry storage of naval SNF in no-108/1, design features of the mobile drying facility, results of tests of the pilot facility at the Far Eastern plant Zvezda. (authors)

  6. United States Naval Surface Warfare Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSC JumpNaval

  7. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  8. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  9. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  10. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. The 2006 Naval S&T Partnership Conference is presented by NDIA with technical support from ONR The Naval Postgraduate School's Role

    E-Print Network [OSTI]

    · Directed Energy Systems · Software Engineering · Combat System Physics · Electronic Warfare · SIGINT 1 Kenya 1 Nigeria 1 Rwanda 1 Senegal 1 Tanzania 1 Tunisia 4 11 #12;The 2006 Naval S&T Partnership

  12. a contaminant in decline: long-term tbt monitoring at a naval base in Western australia

    E-Print Network [OSTI]

    Burgman, Mark

    a contaminant in decline: long-term tbt monitoring at a naval base in Western australia john a planulatus) in and around the RAN naval base in Cockburn Sound, WesternAustralia, was initiated and continued, Australia. 2 Current address: ES Link Services Pty Ltd, PO Box 10, Castlemaine, VIC 3450, Australia. 3

  13. DEPARTMENT OF THE NAVY OFfiCE OF THE CHIEF OF NAVAL OPERATIONS

    E-Print Network [OSTI]

    DEPARTMENT OF THE NAVY OFfiCE OF THE CHIEF OF NAVAL OPERATIONS 2000 NAVY PENTAGON WASHINGTON, DC: Chief of Naval Operations Subj , NAVY PASSENGER TRAVEL Ref: (al 000 Di rective 5154.29 of 9 Marc h 1993 on the management , execution, and funding of passenger travel for Navy personne l . This i n struction

  14. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  15. Coastal Inundation due to Tide, Surge, Waves, and Sea Level Rise at Naval Station Norfolk

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Coastal Inundation due to Tide, Surge, Waves, and Sea Level Rise at Naval Station Norfolk Honghai of future sea level rise (SLR) scenarios and to evaluate the potential coastal inundation at Naval Station and sea level rise threats to coastal residents and coastal military facilities, the US Strategic

  16. Vitrification of contaminated soils from the Charleston Naval Complex

    SciTech Connect (OSTI)

    O'Connor, William K.; Turner, Paul C.; Brosnan, D.A. (CECM, CLemson Univ.); Mussro, R. (CECM, Clemson Univ.); Addison, G.W. (AJT Enterprises, Inc.); Jackson, V.B. (AJT Enterprises, Inc.); Teaster, G.F. (AJT Enterprises, Inc.)

    1998-05-01T23:59:59.000Z

    Demonstration melting tests for vitrifying chrome- and lead-bearing wastes from the Charleston Naval Complex, and organic-contaminated dredging spoils from the Ashley River (part of the greater Charleston Harbor), were conducted in a 3-phase AC, graphite electrode arc furnace located at the Albany Research Center (ALRC) of the U.S. Department of Energy (DOE). These tests were conducted in cooperation with the Center for Engineering Ceramic Manufacturing (CECM) of Clemson University, and AJT Enterprises, Inc., of Charleston, South Carolina, and were funded by the DOE Office of Environmental Restoration. The two waste streams were composited into separate furance feed mixtures by blending and agglomeration with readily available industrial minerals. Over 11,340 kg (25,000 lb) of feed was processed during the demonstration melting test, at feed rates up to 523 kg/h (1,150 lb/h). Continuous feeding and glass tapping was achieved for both the dredging spoils feed mixture and the naval complex mixture. Roughly 85% of all feed reported to the glass products, which readily passed the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP). ASTM aggregate tests using the vitrified aggregate in concrete and asphaltic cements indicated a potential for utilization of these materials in concentrations from 5-15% of the total aggregate, without negative impact on the mix. Toxicological tests performed on the galss products found that this material appears to be nonhazardous and its use is not likely to result in a public health risk.

  17. Naval Petroleum Reserve No. 1 (Elk Hills): Supplemental environmental impact statement. Record of decision

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Pursuant to the Council on Environmental Quality regulations, which implement the procedural provisions of the National Environmental Policy Act, and the US Department of Energy National Environmental Policy Act regulations, the Department of Energy, Office of Fossil Energy, is issuing a Record of Decision on the continued operation of Naval Petroleum Reserve No. 1, Kern County, California. The Department of Energy has decided to continue current operations at Naval Petroleum Reserve No. 1 and implement additional well drilling, facility development projects and other activities necessary for continued production of Naval Petroleum Reserve No. 1 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976. The final Supplemental Environmental Impact Statement, entitled ``Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California (DOE/SEIS-0158),`` was released on September 3, 1993.

  18. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    M. Cribier

    2007-04-06T23:59:59.000Z

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  19. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08T23:59:59.000Z

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal resistance of a gas-filled gap.

  20. 2014 Annual Planning Summary for the NNSA Naval Reactors | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2DepartmentNaturalDepartment of Energy

  1. Audit Report - Naval Reactors Information Technology System Development Efforts, IG-0879

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName Affiliation Ahern,5 AuditImplementation of

  2. Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982

    SciTech Connect (OSTI)

    Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

    1981-08-01T23:59:59.000Z

    Legislation authorizing production from two Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents an assessment of the trade-offs of extending production or returning to a shut-in status. Strategic, economic, and energy factors at the national, regional, and local levels are considered. The results of the study indicate that the only major local impact of shut-in will be on small refineries near NPR-1. At the national level, shut-in increases the size of the national petroleum reserve system. However, economic losses as measured by changes in the present value of real GNP also occur. The estimate of the increase in the size of the national petroleum reserve with shut-in of the NPRs was found to be most sensitive to the assumed length of future import interruptions.

  3. Naval Petroleum Reserve No. 1: an assessment of production alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-30T23:59:59.000Z

    Under existing legislation, every 3 years the President must decide whether to shut-in or continue production of the Naval Petroleum Reserve No. 1 (NPR-1) oil field at Elk Hills, California. The current authorization for production expires on April 5, 1985. GAO discusses the geologic, budgetary, local economic, and national security implications of three production alternatives for NPR-1: continued production, shut-in, and partial shut in. In addition, GAO discusses the advantages and disadvantages of establishing a Defense Petroleum Reserve, a crude oil reserve for the military, using part of the revenues from continued production at NPR-1 to fund it. During the course of its review, GAO found that production rates at Elk Hills may be too high, causing problems within the reserve that could decrease ultimate recovery of oil by about 139 million barrels. The Department of Energy plans to analyze this situation and, if need be, adjust the rate. 2 figures, 2 tables.

  4. Annual report of operations. [Naval Petroleum Reserves No. 1, 2, 3; oil shale reserves

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves during FY 1980 deliver 59,993,213 bbl of crude oil and substantial quantities of natural gas, butane, propane and natural gasoline to the United States market. During September, Naval Petroleum Reserve oil was utilized to resume filling the Strategic Petroleum Reserve. During FY 1980, Naval Petroleum Reserve No. 1, Elk Hills, became the largest producing oil field in California and the second largest producing field in the United States. Production at the end of September was 165,000 bbl/d; production is expected to peak at about 190,000 bbl/d early in calender year 1982. Production from Naval Petroleum Reserves Nos. 2 and 3 in California and Wyoming, contributed 1,101,582 and 1,603,477 bbl of crude oil to the market, respectively. Enhanced oil recovery work has been inititated at Naval Petroleum Reserve no. 3. Total revenues from the Naval Petroleum Reserves during FY 1980 were 1.6 billion. The three Naval Oil Shale Reserves in Colorado and Utah have substantial potential. In addition to containing approximately 2.5 billion bbl recoverable shale oil. They probably contain significant quantities of conventional oil and gas.

  5. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

    2008-08-06T23:59:59.000Z

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  6. BDDR, a new CEA technological and operating reactor database

    SciTech Connect (OSTI)

    Soldevilla, M.; Salmons, S.; Espinosa, B. [CEA-Saclay, CEA/DEN/DANS/DM2S/SERMA, 91191 Gif-sur-Yvette (France); Clanet, M.; Boudin, X. [CEA-Bruyeres-le-Chatel, 91297 Arpajon (France)

    2013-07-01T23:59:59.000Z

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a unique repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)

  7. Rise and fall of a tactic: the ram in nineteenth century naval doctrine

    E-Print Network [OSTI]

    Johnson, Robert Leroy

    1989-01-01T23:59:59.000Z

    . , 158; "A Royal Navy Officer", "Tactical Results of Recent Naval Construction, " Naval Science, Vol. 2 No. 2 (AP '1, 1873), 1397 Ed d J 2 d, ~0 ~ld 88 ((. o d: JoR M 9, 1869), 20. Baxter, Introduction of the Ironclad Warshi , 100. U. S. , Department...? son ( ~&ember) J. Richard St (Member) L rry D. Hill (He d of Department) December 1989 ABSTRACT Rise and Fall of a Tactic: The Ram in Nineteenth Century Naval Doctrine. (December 1989) Robert Leroy Johnson II, B. A. , Kansas State University...

  8. Naval petroleum reserves: Sales procedures and prices received for Elk Hills oil

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The Congress expressed concern about the Department of Energy's actions in selling oil from the Elk Hills Naval Petroleum Reserve at what appeared to be unreasonably low prices. DOE officials believe that Naval Petroleum Reserve oil has been and is currently being produced at the appropriate rate and that no recoverable oil has been lost. This fact sheet provides information on the basis for the procedures followed by DOE in selling Naval Petroleum Reserve oil and sales data for the period extending from October 1985 through April 1986.

  9. advanced fission reactors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daya Bay reactor core, and compare its with those calculated by the commercial reactor simulation program SCIENCE, which is used by the Daya Bay nuclear power plant, and the...

  10. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    SciTech Connect (OSTI)

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01T23:59:59.000Z

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  11. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  12. Light-weight materials selection for high-speed naval craft

    E-Print Network [OSTI]

    Torrez, Joseph B. (Joseph Benjamin)

    2007-01-01T23:59:59.000Z

    A decision analysis study was conducted on the process of materials selection for high-speed naval craft using the Modified Digital Logic (MDL) method proposed by B. Dehgham-Manshadi et al in ref [17]. The purpose is to ...

  13. EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY

    Broader source: Energy.gov [DOE]

    Final Sitewide Environmental Assessment (EA) This Sitewide EA evaluates activities that DOE would conduct in anticipation of possible transfer of Naval Petroleum Reserve No. 3 (NPR-3) out of Federal operation.

  14. Naval ship propulsion and electric power systems selection for optimal fuel consumption

    E-Print Network [OSTI]

    Sarris, Emmanouil

    2011-01-01T23:59:59.000Z

    Although propulsion and electric power systems selection is an important part of naval ship design, respective decisions often have to be made without detailed ship knowledge (resistance, propulsors, etc.). Propulsion and ...

  15. Modular machinery arrangement and its impact in early-stage naval electric ship design

    E-Print Network [OSTI]

    Jurkiewicz, David J. (David James)

    2012-01-01T23:59:59.000Z

    Electrical power demands for naval surface combatants are projected to rise with the development of increasingly complex and power intensive combat systems. This trend also coincides with the need of achieving maximum fuel ...

  16. Analyzing the effects of component reliability on naval Integrated Power System quality of service

    E-Print Network [OSTI]

    Hawbaker, Benjamin F. (Benjamin Forrest)

    2008-01-01T23:59:59.000Z

    The Integrated Power System (IPS) is a key enabling technology for future naval vessels and their advanced weapon systems. While conventional warship designs utilize separate power systems for propulsion and shipboard ...

  17. Design and analysis of a permanent magnet generator for naval applications

    E-Print Network [OSTI]

    Rucker, Jonathan E. (Jonathan Estill)

    2005-01-01T23:59:59.000Z

    This paper discusses the electrical and magnetic design and analysis of a permanent magnet generation module for naval applications. Numerous design issues are addressed and several issues are raised about the potential ...

  18. US Department of Energy Naval petroleum reserve number 1. Financial statement audit

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the United States taxpayer. NPOSR was established by a series of Executive Orders in the early 1900s as a future source of liquid fuels for the military. NPOSR remained largely inactive until Congress, responding to the Arab oil embargo of 1973-74, passed the Naval Petroleum Reserves Production Act of 1976. The law authorized production for six years. Thereafter, NPOSR production could be reauthorized by the President in three-year increments. Since enactment of the law, every President has determined that continuing NPOSR production is in the nation`s best interest. NPOSR currently is authorized to continue production through April 5, 2000.

  19. A study of the Naval Construction Force project material supply chain

    E-Print Network [OSTI]

    Stasick, Steven J. (Steven James), 1970-

    2004-01-01T23:59:59.000Z

    The Naval Construction Force (NCF) performs construction projects in all areas of the world during both peacetime and war. While some of these projects occur in populated areas where project materials are readily available, ...

  20. Application and analysis of stiffened side shell panel failure for naval patrol craft

    E-Print Network [OSTI]

    Mothander, Matthew K. A., Lieutenant (Matthew Kristian Alden)

    2009-01-01T23:59:59.000Z

    Over their lifetime, naval patrol craft are subjected to many different types of loading scenarios, most of which are perfectly safe. In rare instances, through a variety of different reasons, these craft are loaded beyond ...

  1. EIS-0158: Sale of the Naval Petroleum Reserve No. 1 at Elk Hills, California (1997)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the potential environmental impacts of the continued operation of the Naval Petroleum Reserve No. 1 at the Maximum Efficient Rate authorized by Public Law 94-258.

  2. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  3. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1994-12-31T23:59:59.000Z

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials.

  4. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

    E-Print Network [OSTI]

    S. Oguri; Y. Kuroda; Y. Kato; R. Nakata; Y. Inoue; C. Ito; M. Minowa

    2014-05-23T23:59:59.000Z

    We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside the reactor building, we measured the difference in reactor antineutrino flux above the ground when the reactor was active and inactive.

  5. Automatic reactor power control for a pressurized water reactor

    SciTech Connect (OSTI)

    Jungin Choi (Kyungwon Univ. (Korea, Republic of)); Yungjoon Hah (Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)); Unchul Lee (Seoul National Univ. (Korea, Republic of))

    1993-05-01T23:59:59.000Z

    An automatic reactor power control system is presented for a pressurized water reactor (PWR). The associated reactor control strategy is called mode K.' The new system implements a heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The heavy bank provides a monotonic relationship between its motion and the axial shape change, which allows automatic control of the axial power distribution. Thus, the mode K enables precise regulation of both the reactivity and the power distribution, by using double closed-loop control of the reactor coolant temperature and the axial power difference. Automatic reactor power control permits the nuclear power plant to accommodate the load-follow operations, including frequency control, to respond to the grid requirements. The mode K reactor control concepts were tested using simulation responses of a Korean standardized 1,000-MW (electric) PWR. The simulation results illustrate that the mode K would be a practical reactor power control strategy for the increased automation of nuclear plants.

  6. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy's Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  7. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy`s Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  8. NALDA (Naval Aviation Logistics Data Analysis) CAI (computer aided instruction)

    SciTech Connect (OSTI)

    Handler, B.H. (Oak Ridge K-25 Site, TN (USA)); France, P.A.; Frey, S.C.; Gaubas, N.F.; Hyland, K.J.; Lindsey, A.M.; Manley, D.O. (Oak Ridge Associated Universities, Inc., TN (USA)); Hunnum, W.H. (North Carolina Univ., Chapel Hill, NC (USA)); Smith, D.L. (Memphis State Univ., TN (USA))

    1990-07-01T23:59:59.000Z

    Data Systems Engineering Organization (DSEO) personnel developed a prototype computer aided instruction CAI system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project was to provide a CAI prototype that could be used as an enhancement to existing NALDA training. The CAI prototype project was performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. The findings from Phase I are documented in Recommended CAI Approach for the NALDA System (Duncan et al., 1987). In Phase II, a structured design and specifications were developed, and a prototype CAI system was created. A report, NALDA CAI Prototype: Phase II Final Report, was written to record the findings and results of Phase II. NALDA CAI: Recommendations for an Advanced Instructional Model, is comprised of related papers encompassing research on computer aided instruction CAI, newly developing training technologies, instructional systems development, and an Advanced Instructional Model. These topics were selected because of their relevancy to the CAI needs of NALDA. These papers provide general background information on various aspects of CAI and give a broad overview of new technologies and their impact on the future design and development of training programs. The paper within have been index separately elsewhere.

  9. Renewable Energy Optimization Report for Naval Station Newport

    SciTech Connect (OSTI)

    Robichaud, R.; Mosey, G.; Olis, D.

    2012-02-01T23:59:59.000Z

    In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

  10. Distributed energy resources at naval base ventura county building 1512

    SciTech Connect (OSTI)

    Bailey, Owen C.; Marnay, Chris

    2004-10-01T23:59:59.000Z

    This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year.

  11. EA-1889: Final Environmental Assessment and Finding of No Significant...

    Broader source: Energy.gov (indexed) [DOE]

    of No Significant Impact (FONSI) on the Disposal of Decommissioned, Defueled, Naval Reactor Plants from the USS Enterprise. Because the preferred alternative is to dispose of...

  12. ONR Symposium on Naval Hydrodynamics, Val de Reuil, France, 17-22 September. Forces, Moment and Wave Pattern for Naval Combatant

    E-Print Network [OSTI]

    Gui, Lichuan

    ABSTRACT A model-scale naval surface combatant, DTMB 5512, is studied experimentally in steady forward and Stern (1996) applied traditional 5-hole pitot probes to measure the time mean velocities. Laser Ohkusu (1990) described two methods, i.e. with wave probes installed on the towing carriage for acquiring

  13. affecting reactor accident: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    METEOROLOGY; NUCLEAR POWER PLANTS; P CODES; PWR TYPE REACTORS; RADIATION 2 Does Daylight Savings Time Affect Traffic Accidents? Texas A&M University - TxSpace Summary: This...

  14. Light Water Reactor Sustainability Program - Non-Destructive...

    Energy Savers [EERE]

    for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for...

  15. State space modeling of reactor core in a pressurized water reactor

    SciTech Connect (OSTI)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10T23:59:59.000Z

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  16. Conservation plan for protected species on Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Otten, M.R.M.; Cypher, B.L.

    1997-07-01T23:59:59.000Z

    Habitats in and around Naval Petroleum Reserve No. 1 (NPR-1) support populations of various vertebrates and plants, including a number of threatened and endangered species. Adequate conservation of habitats and species, particularly protected species, can be facilitated through development and implementation of management plans. This document provides a comprehensive plan for the conservation of protected species on NPR-1, through compliance with terms and conditions expressed in Biological Opinions rendered by the U.S. Fish and Wildlife Service for NPR-1 activities. Six conservation strategies by which threatened and endangered species have been, and will be, protected are described: population monitoring, mitigation strategies, special studies, operating guidelines and policies, information transfer and outreach, and the endangered species conservation area. Population monitoring programs are essential for determining population densities and for assessing the effects of oil field developments and environmental factors on protected species. Mitigation strategies (preactivity surveys and habitat reclamation) are employed to minimize the loss of important habitats components and to restore previously disturbed lands to conditions more suitable for species` use. A number of special studies were undertaken between 1985 and 1995 to investigate the effectiveness of a variety of population and habitat management techniques with the goal of increasing the density of protected species. Operating guidelines and policies governing routine oil field activities continue to be implemented to minimize the potential for the incidental take of protected species and minimize damage to wildlife habitats. Information transfer and outreach activities are important means by which technical and nontechnical information concerning protected species conservation on NPR-1 is shared with both the scientific and non-scientific public.

  17. Endangered species and cultural resources program, Naval Petroleum Reserves in California: Annual report FY95

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.

  18. Selective purge for hydrogenation reactor recycle loop

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

    2001-01-01T23:59:59.000Z

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  19. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1981-01-01T23:59:59.000Z

    Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

  20. Analysis of Instability in an Industrial Ammonia Reactor

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Analysis of Instability in an Industrial Ammonia Reactor John C. Morud and Sigurd Skogestad Dept point for this study was an incident in an industrial plant, where the ammonia synthesis reactor became used to analyze the stability, but a more care@1 analysis for this reactor system reveals

  1. Starfire - a commercial tokamak reactor

    SciTech Connect (OSTI)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Kokoszenski, J.; Graumann, D.

    1981-01-01T23:59:59.000Z

    The basic objective of the STARFIRE Project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. 10 refs.

  2. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Demazière, Christophe

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazière

  3. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

  4. This document was downloaded on May 22, 2013 at 14:37:52 Author(s) Naval Postgraduate School (U.S.)

    E-Print Network [OSTI]

    Officer in Charge Naval Engineering J. E. Fradd D. R. Frakes J. P. Craft Capt. USN Cmdr. USN Cmdr. USN

  5. Potential geothermal energy use at the Naval Air Rework Facilities, Norfolk, Virginia and Jacksonville, Florida, and at the naval shipyard, Charleston, South Carolina

    SciTech Connect (OSTI)

    Costain, J.K.; Glover, L. III; Newman, R.W.

    1984-05-01T23:59:59.000Z

    The feasibility of geothermal energy use at naval installations in Norfolk, VA, Jacksonville, FL, and Charleston, SC was assessed. Geophysical and geological studies of the above areas were performed. Engineering and economic factors, affecting potential energy use, were evaluated. The Norfolk and Jacksonville facilities are identified as candidates for geothermal systems. System costs are predicted. Economic benefits of the proposed geothermal systems are forecast, using the net present value method of predicting future income.

  6. FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts&51Reactor Programs

  7. Plasma instrumentation for fusion power reactor control

    SciTech Connect (OSTI)

    Sager, G.T.; Bauer, J.F.; Maya, I.; Miley, G.H.

    1985-07-01T23:59:59.000Z

    Feedback control will be implemented in fusion power reactors to guard against unpredicted behavior of the plant and to assure desirable operation. In this study, plasma state feedback requirements for plasma control by systems strongly coupled to the plasma (magnet sets, RF, and neutral beam heating systems, and refueling systems) are estimated. Generic considerations regarding the impact of the power reactor environment on plasma instrumentation are outlined. Solutions are proposed to minimize the impact of the power reactor environment on plasma instrumentation. Key plasma diagnostics are evaluated with respect to their potential for upgrade and implementation as power reactor instruments.

  8. Control structure selection for Reactor, Separator and Recycle Process

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control structure selection for Reactor, Separator and Recycle Process T. Larsson M.S. Govatsmark S to control", for a simple plant with a liquid phase reactor, a distillation column and recycle of unreacted processes is the presence of recycle. Variations of a plant with reaction, separation and mass recycle, see

  9. Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, U.S.A.

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling of Coastal Inundation, Storm Surge, and Relative Sea- Level Rise at Naval Station Norfolk. Modeling of coastal inundation, storm surge, and relative sea-level rise at Naval Station Norfolk, Norfolk, and relative sea-level-rise (RSLR) scenarios were examined at the U.S. Naval Station, Norfolk, Virginia

  10. Savannah River Site production reactor technical specifications. K Production Reactor

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  11. Bioconversion reactor

    DOE Patents [OSTI]

    McCarty, Perry L. (Stanford, CA); Bachmann, Andre (Palo Alto, CA)

    1992-01-01T23:59:59.000Z

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  12. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10T23:59:59.000Z

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  13. Work Breakdown Structure and Plant/Equipment Designation System Numbering Scheme for the High Temperature Gas- Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect (OSTI)

    Jeffrey D Bryan

    2009-09-01T23:59:59.000Z

    This white paper investigates the potential integration of the CTC work breakdown structure numbering scheme with a plant/equipment numbering system (PNS), or alternatively referred to in industry as a reference designation system (RDS). Ideally, the goal of such integration would be a single, common referencing system for the life cycle of the CTC that supports all the various processes (e.g., information, execution, and control) that necessitate plant and equipment numbers be assigned. This white paper focuses on discovering the full scope of Idaho National Laboratory (INL) processes to which this goal might be applied as well as the factors likely to affect decisions about implementation. Later, a procedure for assigning these numbers will be developed using this white paper as a starting point and that reflects the resolved scope and outcome of associated decisions.

  14. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    SciTech Connect (OSTI)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06T23:59:59.000Z

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  15. Naval Research Laboratory Memorandum Report, 2003 Perceptual and Ergonomic Issues in

    E-Print Network [OSTI]

    Swan II, J. Edward

    Naval Research Laboratory Memorandum Report, 2003 1 Perceptual and Ergonomic Issues in Mobile paradigm, the field needs a much better understanding of the fundamental perceptual and ergonomic issues aimed at both understanding the fundamental perceptual and ergonomic issues in AR display

  16. Importance of Nuclear DataImportance of Nuclear Data to the Naval Nuclear Propulsion Program

    E-Print Network [OSTI]

    Danon, Yaron

    Importance of Nuclear DataImportance of Nuclear Data to the Naval Nuclear Propulsion Program Don Cores · Project Prometheus · Some Very Recent Criticality Analyses #12;Use of Early RPI Measurements · Criticality Analyses of Under-moderated Systemsy y y · Most Reactive Condition ­ Highest Water Density

  17. Karen Swider-Lyons, Peter Bouwman, Norma Ugarte Naval Research Laboratory

    E-Print Network [OSTI]

    supported on MOx·H2O supported on carbon Pt MOx e- carbon H+ OO H+ H+ Nafion H+ O2 O H2O Catalyst development via electrochemical and structural analysis #12;Naval Research Lab DOE review 19May2003 Pt-MOx

  18. Zircaloy performance in light water reactors

    SciTech Connect (OSTI)

    Adamson, R.B.; Cheng, B.C.; Kruger, R.M. [GE Nuclear Energy, Pleasanton, CA (United States)

    1992-12-31T23:59:59.000Z

    Zircaloy has been successfully used as the primary light water reactor (LWR) core structural material since its introduction in the early days of the US naval nuclear program. Its unique combination of low neutron absorption cross section, fabricability, mechanical strength, and corrosion resistance in water and steam near 300{degrees}C has resulted in remarkable reliability of operation of pressurized and boiling water reactor (PWR, BWR) fuel through the years. At present time, BWRs use Zircaloy-2 and PWRs use Zircaloy-4 for fuel cladding. In BWRs, both Zircaloy-2 and -4 have been successfully used for spacer grids and channels, and in PWRs Zircaloy-4 is used for spacer grids and control rod guide tubes. Performance of fuel rods has been excellent thus far. The current trend for utilities worldwide is to expect both higher fuel reliability in the future. Fuel suppliers have already achieved extended exposures in lead use assemblies, and have demonstrated excellent performance in all areas; therefore unsuspected problems are not likely to arise. However, as exposure and expectations continue to increase, Zircaloy is being taken toward the limits of its known capabilities. This paper reviews Zircaloy performance capabilities in areas related to environmentally affected microstructure, mechanical properties, corrosion resistance, and dimensional stability. The effects of radiation and reactor environment on each property is illustrated with data, micrographs, and analysis.

  19. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  20. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

    1984-01-01T23:59:59.000Z

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  1. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01T23:59:59.000Z

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  2. Nuclear reactor safety heat transfer

    SciTech Connect (OSTI)

    Jones, O.C.

    1982-07-01T23:59:59.000Z

    Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

  3. Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology

    SciTech Connect (OSTI)

    Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

    1998-08-01T23:59:59.000Z

    The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

  4. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14T23:59:59.000Z

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  5. Assessment of impacts and evaluation of restoration methods on areas affected by a well blowout, Naval Petroleum Reserve No. 1, California

    SciTech Connect (OSTI)

    Warrick, G.D.; Kato, T.T.; Phillips, M.V. [and others

    1996-12-01T23:59:59.000Z

    In June 1994, an oil well on Naval Petroleum Reserve No. 1 blew-out and crude oil was deposited downwind. After the well was capped, information was collected to characterize the release and to assess effects to wildlife and plants. Oil residue was found up to 13.7 km from the well site, but deposition was relatively light and the oil quickly dried to form a thin crust on the soil surface. Elevated levels of hydrocarbons were found in livers collected from Heermann`s kangaroo rats (Dipodomys heermanni) from the oiled area but polycyclic aromatic hydrocarbons (known carcinogens or mutagens) were not detected in the livers. Restoration techniques (surface modification and bioremediation) and natural recovery were evaluated within three portions of the oiled area. Herbaceous cover and production, and survival and vigor of desert saltbush (Atriplex polycarpa) were also monitored within each trapping grid.

  6. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

  7. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

  8. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

  9. Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc. Reactor Type a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has of the veteran plant workers. The presentation gave the nuclear plant engineering basics and built

  10. "The Fourth Dimension of Naval Tactics": The U.S. Navy and Public Relations, 1919-1939 

    E-Print Network [OSTI]

    Wadle, Ryan David

    2012-07-16T23:59:59.000Z

    Prior to 1917, the United States Navy only utilized public relations techniques during times of war or to attract recruits into naval service. Following World I, the Navy confronted several daunting problems, including the ...

  11. EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...

  12. Technical Safety Appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    This report presents the results of a focused Technical Safety Appraisal (TSA) of the Naval Petroleum Reserve No. 1 (NPR-1), Elk Hills, California, conducted during November 27 through December 8, 1989. The Department of Energy (DOE) program organization responsible for NPR-1 is the Assistant Secretary for Fossil Energy (FE); the responsible Field Office is the Naval Petroleum Reserves California (NPRC) Office. This appraisal is an application of the program that was initiated in 1985 to strengthen the DOE Environment, Safety and Health Program. The appraisal was conducted by the staff of the DOE Assistant Secretary for Environment, Safety and Health (EH), Office of Safety Appraisals, with support from experts in specific appraisal areas, including a number from the petroleum industry, and a liaison representative from FE. The Senior EH Manager for the appraisal was Mr. Robert Barber, Acting Director, Office of Compliance Programs; the Team Leader was Dr. Owen Thompson, Office of Safety Appraisals.

  13. Investigation on the continued production of the Naval Petroleum Reserves beyond April 5, 1991

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    The authority to produce the Naval Petroleum Reserves (NPRs) is due to expire in April 1991, unless extended by Presidential finding. As provided in the Naval Petroleum Reserves Production act of 1976 (Public Law 94-258), the President may continue production of the NPRs for a period of up to three years following the submission to Congress, at least 180 days prior to the expiration of the current production period, of a report that determines that continued production of the NPRs is necessary and a finding by the President that continued production is in the national interest. This report assesses the need to continue production of the NPRs, including analyzing the benefits and costs of extending production or returning to the shut-in status that existed prior to 1976. This continued production study considers strategic, economic, and energy issues at the local, regional, and national levels. 15 figs., 13 tabs.

  14. Structure of processes in flow reactor and closed reactor: Flow reactor

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Structure of processes in flow reactor and closed reactor: Flow reactor Closed reactor Active Zone -- chemical quasi- equilibria, similarity principles and macroscopic kinetics", in: Lectures on Plasma Physics

  15. Role of research reactors in training of NPP personnel with special focus on training reactor VR-1

    SciTech Connect (OSTI)

    Sklenka, L.; Rataj, J.; Frybort, J.; Huml, O. [Dept. of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical Univ. in Prague, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)

    2012-07-01T23:59:59.000Z

    Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training program are demonstrated. (authors)

  16. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  17. Environmental Information Document: L-reactor reactivation

    SciTech Connect (OSTI)

    Mackey, H.E. Jr. (comp.)

    1982-04-01T23:59:59.000Z

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  18. Self-actuating reactor shutdown system

    DOE Patents [OSTI]

    Barrus, Donald M. (San Jose, CA); Brummond, Willian A (Livermore, CA); Peterson, Leslie F. (Danville, CA)

    1988-01-01T23:59:59.000Z

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  19. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01T23:59:59.000Z

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  20. Pressurized melt ejection into scaled reactor cavities

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.; Ross, J.W.; Gilbert, D.W.

    1986-10-01T23:59:59.000Z

    This report describes four tests performed in the High-Pressure Melt Streaming Program (HIPS) using linear-scaled cavities of the Zion Nuclear Power Plant. These experiments were conducted to study the phenomena involved in high-pressure ejection of core debris into the cavity beneath the reactor pressure vessel. One-tenth and one-twentieth linear scale models of reactor cavities were constructed and instrumented. The first test used an apparatus constructed of alumina firebrick to minimize the potential interaction between the ejected melt and cavity material. The remaining three experiments used scaled representations of the Zion nuclear plant geometry, constructed of prototypic concrete composition.

  1. EIS-0251: Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)

    Broader source: Energy.gov [DOE]

    This Final Environmental Impact Statement addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.

  2. acidogenic anaerobic reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a pilot-scale setup was designed and constructed at a wastewater treatment plant in Giza, Egypt. It consists of an up-flow anaerobic reactor; down-flow anaerobic...

  3. anaerobic gac reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a pilot-scale setup was designed and constructed at a wastewater treatment plant in Giza, Egypt. It consists of an up-flow anaerobic reactor; down-flow anaerobic...

  4. anaerobic biofilm reactors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a pilot-scale setup was designed and constructed at a wastewater treatment plant in Giza, Egypt. It consists of an up-flow anaerobic reactor; down-flow anaerobic...

  5. anaerobic contact reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a pilot-scale setup was designed and constructed at a wastewater treatment plant in Giza, Egypt. It consists of an up-flow anaerobic reactor; down-flow anaerobic...

  6. Aspects of environmental and safety analysis of fusion reactors

    E-Print Network [OSTI]

    Kazimi, Mujid S.

    1977-01-01T23:59:59.000Z

    This report summarizes the progress made between October 1976 and September 1977 in studies of some environmental and safety considerations in fusion reactor plants. A methodology to assess the admissible occurrence rate ...

  7. NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered Oak Ridge selected as site for World War II Manhattan Project First sustained and controlled nuclear 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20

  8. Programming Guidelines for FBD programs in Reactor Protection

    E-Print Network [OSTI]

    Programming Guidelines for FBD programs in Reactor Protection System Sejin Jung, Dong-Ah Lee, Eui Diagram) to design software ­ It used PLC (Programmable Logic Controller) programming language in plant for the Use of Function Block Diagram in Reactor Protection Systems, accepted APSEC 2014 Research2

  9. SRS Small Modular Reactors

    SciTech Connect (OSTI)

    None

    2012-04-27T23:59:59.000Z

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  10. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21T23:59:59.000Z

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  11. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11T23:59:59.000Z

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  12. 22.39 Integration of Reactor Design, Operations, and Safety, Fall 2005

    E-Print Network [OSTI]

    Todreas, Neil E.

    This course integrates studies of reactor physics and engineering sciences into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and ...

  13. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01T23:59:59.000Z

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  14. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

  15. Uncertainty quantification approaches for advanced reactor analyses.

    SciTech Connect (OSTI)

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24T23:59:59.000Z

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  16. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16T23:59:59.000Z

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  17. Rise and fall of a tactic: the ram in nineteenth century naval doctrine 

    E-Print Network [OSTI]

    Johnson, Robert Leroy

    1989-01-01T23:59:59.000Z

    collision between a steamer and another vessel at anchor which resulted in the sinking of the latter. In 1846, George L. Schuyler proposed a ram to Congress, supporting his concept with the evidence of two maritime accidents. The first occurred when... THE EMERGENCE OF THE RAM IN THE 1860'S About 1860, two important events happened that mark a new phase in the history of the ram, as well as naval history in general. In 1858, the French laid down the first ocean-going ironclad warship, the Gloire, to which...

  18. Influence of physiography and vegetation on small mammals at the Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Cypher, B.L.

    1995-02-13T23:59:59.000Z

    Influence of physiography and vegetation on small mammal abundance and species Composition was investigated at Naval Petroleum Reserve No. 1 in California to assess prey abundance for Federally endangered San Joaquin kit foxes (Vulpes macrotis mutica) and to assess the distribution of two Federal candidate species, San Joaquin antelope squirrels (Ammospermophilus nelsoni) and short-nosed kangaroo rats (Dinodomys nitratoides brevinasus). The specific objectives of this investigation were to determine whether small mammal abundance and community composition varied with north-south orientation, terrain, ground cover, and Cypher shrub density, and whether these factors influenced the distribution and abundance of San Joaquin antelope squirrels and short-nosed kangaroo rats.

  19. U.S. Naval Station, Guantanamo Bay, Cuba | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&Department of Energy U.S.Naval

  20. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  1. FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure

    E-Print Network [OSTI]

    SP·215-18 FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure by M. Demers. A for the storage of the moderately contaminated nuclear reactor. The enforcement of more rigorous environmental. 1. HISTORY 1.1 Decommissioning of the Reactor The Gentilly-I nuclear power plant, located

  2. Decision-support tool for assessing future nuclear reactor generation portfolios.

    E-Print Network [OSTI]

    Oosterlee, Cornelis W. "Kees"

    Decision-support tool for assessing future nuclear reactor generation portfolios. Shashi Jain, where especially capital costs are known to be highly uncertain. Differ- ent nuclear reactor types uncertainties in the cost elements of a nuclear power plant, to provide an optimal portfolio of nuclear reactors

  3. Analysis of granular flow in a pebble-bed nuclear reactor Chris H. Rycroft,1

    E-Print Network [OSTI]

    Bazant, Martin Z.

    Analysis of granular flow in a pebble-bed nuclear reactor Chris H. Rycroft,1 Gary S. Grest,2 James February 2006; published 24 August 2006 Pebble-bed nuclear reactor technology, which is currently being States, the Modular Pebble Bed Reactor MPBR 4,8 is a candidate for the next generation nuclear plant

  4. Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestadand Cheng-Ching Yu

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad£and Cheng-Ching Yu This paper looks at control of a plant that consists of a reactor, separator and recycle of unreacted reactor where component A is converted to a product and the amount converted is given by ´ÌµÅÞ ÑÓÐ

  5. US graphite reactor D&D experience

    SciTech Connect (OSTI)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01T23:59:59.000Z

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  6. NGNP Reactor Coolant Chemistry Control Study

    SciTech Connect (OSTI)

    Brian Castle

    2010-11-01T23:59:59.000Z

    The main focus of this paper is to identify the most desirable ranges of impurity levels in the primary coolant to optimize component life in the primary circuit of the Next Generation Nuclear Plant (NGNP), which will either be a prismatic block or pebble bed reactor.

  7. The advanced test reactor strategic evaluation program

    SciTech Connect (OSTI)

    Buescher, B.J.; Majumdar, D.; Croucher, D.W.

    1989-01-01T23:59:59.000Z

    Since the Chernobly accident, the safety of test reactors and irradiation facilities has been critically evaluated from the public's point of view. A systematic evaluation of all safety, environmental, and operational issues must be made in an integrated manner to prioritize actions to maximize benefits while minimizing costs. Such a proactive program has been initiated at the Advanced Test Reactor (ATR). This program, called the Strategic Evaluation Program (STEP), is being conducted for the ATR to provide integrated safety and operational reviews of the reactor against the standards applied to licensed commercial power reactors. This has taken into consideration the lessons learned by the US Nuclear Regulatory Commission (NRC) in its Systematic Evaluation Program (SEP) and the follow-on effort known as the Integrated Safety Assessment Program (ISAP). The SEP was initiated by the NRC to review the designs of older operating nuclear power plants to confirm and document their safety. The ATR STEP objectives are discussed.

  8. Atmospheric Pressure Reactor System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Reactor System Atmospheric Pressure Reactor System The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the...

  9. Environmental assessment, aircraft chemical warfare survivability test program, Naval Air Warfare Center, Aircraft Division, Patuxent River, Maryland

    SciTech Connect (OSTI)

    NONE

    1992-02-01T23:59:59.000Z

    The proposed project, the Aircraft Chemical Warfare Survivability Test Program at Patuxent River Naval Air Station, involves the testing and development of aircraft systems and operating procedures for use in an environment contaminated with chemical/biological warfare agents. The tests will be performed in accordance with a directive from the chief of Naval Operations to obtain and maintain the capability to operate in a chemically-contaminated environment. These tests will be performed under outdoor, warm-weather conditions on a dredge disposal area and adjacent runways to simulate the conditions under which a real-life threat would be encountered.

  10. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01T23:59:59.000Z

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  11. Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)

  12. JOB DESCRIPTION: E06, Senior Principal Naval Architect with a minimum of 10 + years experience in the design and construction of naval and/or commercial vessels, with a

    E-Print Network [OSTI]

    Eustice, Ryan

    + Years Naval Architecture experience International Experience Experience with Earned Value Management Demonstrated team management, task management and capture/proposal experience Desired Qualifications: 15 Program and/or Subcontract Management Experience To Apply On line, go to Raytheon.com under the careers

  13. Reactor Sharing Program

    SciTech Connect (OSTI)

    Vernetson, W.G.

    1993-01-01T23:59:59.000Z

    Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

  14. Undergraduate reactor control experiment

    SciTech Connect (OSTI)

    Edwards, R.M.; Power, M.A.; Bryan, M. (Pennsylvania State Univ., University Park (United States))

    1992-01-01T23:59:59.000Z

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise.

  15. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01T23:59:59.000Z

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  16. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28T23:59:59.000Z

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  17. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  18. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02T23:59:59.000Z

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  19. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

    1993-01-01T23:59:59.000Z

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  20. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  1. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. The Immortal Fausto: The Life, Works, and Ships of the Venetian Humanist and Naval Architect Vettor Fausto (1490-1546)

    E-Print Network [OSTI]

    Campana, Lilia

    2014-06-11T23:59:59.000Z

    in the Mediterranean, the Republic of Venice strongly encouraged Venetian shipwrights to submit new designs for war galleys. The undisputed founder and champion of this naval program was not a skilled shipwright but a young professor of Greek in the School of Saint...

  3. EIS-0158-S2: Supplemental Environmental Impact Statement Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement, the supplement to DOE/EIS-0158, to analyze the environmental and socioeconomic impacts of the sale of Naval Petroleum Reserve No. 1 in Kern County, California to Occidental Petroleum Corporation.

  4. Superfund record of decision (EPA Region 3): Naval Weapons Station, operable unit 2, Yorktown, VA, September 29, 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This decision document presents a determination that the No Further Remedial Action Decision with Institutional Controls is sufficient to protect human health and the environment for Operable Unit No. II (OU II), Site 16, the West Road Landfill and Site Screening Area (SSA) 16, the Building 402 Metal Disposal Area at the Naval Weapons Station (WPNSTA) Yorktown (Site 16/SSA 16).

  5. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  6. Reactor accident consequence analysis code (MACCS)

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Sprung, J.L.; Chanin, D.I.; Helton, J.C.; Rollstin, J.A. (Sandia National Labs., Albuquerque, NM (USA); Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA); Arizona State Univ., Tempe, AZ (USA); GRAM, Inc., Albuquerque, NM (USA))

    1990-01-01T23:59:59.000Z

    Sandia National Laboratories has been involved in the performance of risk assessments for the US Nuclear Regulatory Commission for more than a decade. As part of this effort, Sandia developed the reactor consequence analysis codes, CRAC2, and more recently, MACCS. CRAC2 is an improved version of CRAC, which was used in the Reactor Safety Study (also known as WASH-1400). MACCS was used in recent risk assessments for five nuclear power plants (NUREG-1150). MACCS incorporates many model improvements over CRAC2. Some of these improvements are discussed. A comparison of results obtained with CRAC2 and MACCS is also presented. 19 refs., 3 tabs.

  7. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

    1982-01-01T23:59:59.000Z

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  9. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01T23:59:59.000Z

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  10. Naval petroleum reserves: Preliminary analysis of future net revenues from Elk Hills production

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This is an interim report on the present value of the net revenues from Elk Hills Naval Petroleum Reserve. GAO calculated alternative present values of the net revenues applying (1) low, medium, and high forecasts of future crude oil prices and (2) alternative interest rates for discounting the future net revenues to their present values. The calculations are sensitive to both the oil price forecasts and discount rates used; they are preliminary and should be used with caution. They do not take into account possible added tax revenues collected by the government if Elk Hills were sold nor varying production levels and practices, which could either increase or decrease the total amount of oil that can be extracted.

  11. Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982. Analysis and supporting data

    SciTech Connect (OSTI)

    Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

    1981-06-01T23:59:59.000Z

    Legislation authorizing production from two of the Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents analyses and supporting data concerning the trade-offs of extending production or returning to a shut-in status in order to provide the Department of Energy with information needed to formulate a recommendation. The primary objective of the study is to evaluate a range of possible futures (through 1990) to determine technical, economic, energy, strategic and political trade-offs between the two options. A secondary objective is to develop a data base for use by DOE to respond to questions and issues raised by interested parties during executive branch and Congressional reviews.

  12. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  13. Environmental Survey preliminary report, Naval Petroleum Reserves in California (NPRC), Tupman, California

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Naval Petroleum Reserves 1 (NPR-1) and 2 (NPR-2) in California (NPRC), conducted May 9--20, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPRC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involved the review of existing site environmental data, observations of the operations carried on at NPRC, and interviews with site personnel. 120 refs., 28 figs., 40 tabs.

  14. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20T23:59:59.000Z

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  15. Spinning fluids reactor

    SciTech Connect (OSTI)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20T23:59:59.000Z

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  16. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  17. Aging considerations for PWR (pressurized water reactor) control rod drive mechanisms and reactor internals

    SciTech Connect (OSTI)

    Ware, A.G.

    1988-01-01T23:59:59.000Z

    This paper describes age-related degradation mechanisms affecting life extension of pressurized water reactor control rod drive mechanisms and reactor internals. The major sources of age-related degradation for control rod drive mechanisms are thermal transients such as plant heatups and cooldowns, latchings and unlatchings, long-term aging effects on electrical insulation, and the high temperature corrosive environment. Flow induced loads, the high-temperature corrosive environment, radiation exposure, and high tensile stresses in bolts all contribute to aging related degradation of reactor internals. Another problem has been wear and fretting of instrument guide tubes. The paper also discusses age-related failures that have occurred to date in pressurized water reactors.

  18. Design study of the deep-sea reactor X

    SciTech Connect (OSTI)

    Iida, Hiromasa (Japan Atomic Energy Research Inst., Ibaraki (Japan)); Ishizaka, Yuichi (Mitsubishi Atomic Power Industries, Inc., Tokyo (Japan)); Kim, Y.C.; Yamaguchi, Chouichi (Japan Research Inst., Ltd., Tokyo (Japan))

    1994-07-01T23:59:59.000Z

    The deep-sea reactor X (DRX) is a small nuclear plant designed to provide undersea power sources. It has the full advantages of nuclear reactors and can provide large power capacity and does not require oxygen for power production. An application conceivable in the near future is that for a submersible. The Japan Atomic Energy Research Institute is conducting a design study of a 150-kW(electric) DRX plant for a deep-sea research vessel. It has a so-called integrated pressurized water reactor,'' having a steam generator inside the reactor vessel. A pressure shell includes a turbine and a generator as well as a reactor vessel, resulting in a very compact electricity producing plant. It should be easy to operate and have high passive safety characteristics; namely, a short startup time, good reactor response to power demand changes, and passive core flooding and decay heat removal in case of an accident. Transient analyses including those for load follow-up, reactor startup, and accidents have been conducted. The results show that the DRX has excellent inherent characteristics satisfying those requirements.

  19. Environmental assessment of a proposed steam flood of the Shallow Oil Zone, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    The US Department of Energy proposes to develop a limited enhanced oil recovery project in the Shallow Oil Zone at Naval Petroleum Reserve No. 1 (NPR-1) Elk Hills. The project would employ steam forced into the oil-bearing formation through injector wells, and would involve two phases. The initiation of the second phase would be dependent on the economic success of the first phase. The total project would require the drilling of 22 new wells in a 45-acre area supporting seven existing production wells. It would also require construction of various surface facilities including a tank setting (gas-oil separation system), steam generators, and a water treatment plant. Adverse environmental impacts associated with the proposed steam flood project would include the effects on vegetation, wildlife and land-use resulting from the total reconfiguration of the topography within the project bondaries. Other adverse impacts include the emission of oxides of nitrogen, carbon monoxide, hydrocarbons and particulates from steam generators, vehicles and associated surface facilities. Minor adverse impacts include localized noise and dust during constuction, and reduction of visual quality. 48 refs., 7 figs., 10 tabs.

  20. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect (OSTI)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01T23:59:59.000Z

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

  1. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. February 2,...

  2. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect (OSTI)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01T23:59:59.000Z

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  3. Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad and ChengChing Yu y

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad #3; and Cheng­Ching Yu y This paper looks at control of a plant that consists of a reactor, separator and recycle of unreacted reactor where component A is converted to a product and the amount converted is given by k(T )Mz [mole

  4. Development of Modeling Techniques for A Generation IV Gas Fast Reactor 

    E-Print Network [OSTI]

    Dercher, Andrew Steven

    2012-10-19T23:59:59.000Z

    to the harmful biological effects caused by excessive radiation exposure, one can understand why people are concerned about mankind?s ability to safely operate ____________ This thesis follows the style of International Journal of Heat and Mass Transfer. 2... to increase plant life and plant safety, a new class of nuclear reactors is being considered in order to meet the world?s ever-growing energy demands. This class of new reactors has been termed as the Gen IV class of nuclear reactors. These new reactors...

  5. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  6. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09T23:59:59.000Z

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  7. Thermionic switched self-actuating reactor shutdown system

    DOE Patents [OSTI]

    Barrus, Donald M. (San Jose, CA); Shires, Charles D. (San Jose, CA); Brummond, William A. (Livermore, CA)

    1989-01-01T23:59:59.000Z

    A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

  8. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  9. This document was downloaded on May 22, 2013 at 14:24:38 Author(s) Naval Postgraduate School (U.S.)

    E-Print Network [OSTI]

    state-of- the-art laboratories, numerous academic buildings, a library, government housing and impressive recreational facilities. The Students Nearly 2,000 students attend the Naval Postgraduate School Engineering, Applied Mathematics, Astronautical Engineering, Computer Science, Electrical Engineering

  10. Disruptive innovation and naval power : strategic and financial implications of unmanned underwater vehicles (UUVs) and long-term underwater power sources

    E-Print Network [OSTI]

    Larson, Richard Winston

    2014-01-01T23:59:59.000Z

    The naval warfare environment is rapidly changing. The U.S. Navy is adapting by continuing its blue-water dominance while simultaneously building brown-water capabilities. Unmanned systems, such as unmanned airborne drones, ...

  11. Human Factors Aspects of Operating Small Reactors

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins, J.; Deem, R. (BNL); Xing, J.; DAgostino, A. (NRC)

    2010-11-07T23:59:59.000Z

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. They are considering small modular reactors (SMRs) as one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants, and so may require a concept of operations (ConOps) that also is different. The U.S. Nuclear Regulatory Commission (NRC) has begun examining the human factors engineering- (HFE) and ConOps- aspects of SMRs; if needed, they will formulate guidance to support SMR licensing reviews. We developed a ConOps model, consisting of the following dimensions: Plant mission; roles and responsibilities of all agents; staffing, qualifications, and training; management of normal operations; management of off-normal conditions and emergencies; and, management of maintenance and modifications. We are reviewing information on SMR design to obtain data about each of these dimensions, and have identified several preliminary issues. In addition, we are obtaining operations-related information from other types of multi-module systems, such as refineries, to identify lessons learned from their experience. Here, we describe the project's methodology and our preliminary findings.

  12. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20T23:59:59.000Z

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  13. The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes

    SciTech Connect (OSTI)

    Monti, S.; Toti, A. [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, PO Box 100, A-1400 Vienna (Austria)

    2013-07-01T23:59:59.000Z

    The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

  14. Supercritical CO2 direct cycle Gas Fast Reactor (SC-GFR) concept.

    SciTech Connect (OSTI)

    Wright, Steven Alan; Parma, Edward J., Jr.; Suo-Anttila, Ahti Jorma (Computational Engineering Analysis, Albuquerque, NM); Al Rashdan, Ahmad (Texas A& M University, College Station, TX); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Vernon, Milton E.; Fleming, Darryn D.; Rochau, Gary Eugene

    2011-05-01T23:59:59.000Z

    This report describes the supercritical carbon dioxide (S-CO{sub 2}) direct cycle gas fast reactor (SC-GFR) concept. The SC-GFR reactor concept was developed to determine the feasibility of a right size reactor (RSR) type concept using S-CO{sub 2} as the working fluid in a direct cycle fast reactor. Scoping analyses were performed for a 200 to 400 MWth reactor and an S-CO{sub 2} Brayton cycle. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this report show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The concept is based largely on the Advanced Gas Reactor (AGR) commercial power plants operated in the United Kingdom and other GFR concepts.

  15. Control Structure Selection for Reactor, Separator, and Recycle T. Larsson, M. S. Govatsmark, S. Skogestad,* and C. C. Yu

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control Structure Selection for Reactor, Separator, and Recycle Processes T. Larsson, M. S to control", for a simple plant with a liquid-phase reactor, a distillation column, and recycle of unreacted processes is the presence of recycle. Variations of a plant with reaction, separation, and mass recycle (see

  16. Using Net-Zero Energy Projects to Enable Sustainable Economic Redevelopment at the Former Brunswick Air Naval Base

    SciTech Connect (OSTI)

    Huffman, S.

    2011-10-01T23:59:59.000Z

    A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites. The Brunswick Naval Air Station is a naval air facility and Environmental Protection Agency (EPA) Super Fund site that is being cleaned up, and closed down. The objective of this report is not only to look at the economics of individual renewable energy technologies, but also to look at the systemic benefits that can be gained when cost-effective renewable energy technologies are integrated with other systems and businesses in a community; thus multiplying the total monetary, employment, and quality-of-life benefits they can provide to a community.

  17. Risk Management for Sodium Fast Reactors.

    SciTech Connect (OSTI)

    Denman, Matthew R; Groth, Katrina; Cardoni, Jeffrey N; Wheeler, Timothy A.

    2015-01-01T23:59:59.000Z

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  18. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  19. Report to the President on agreements and programs relating to the Naval Petroleum and Oil Shale Reserves

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.

  20. Brookhaven Graphite Research Reactor Workshop

    Broader source: Energy.gov [DOE]

    The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

  1. Component failures that lead to reactor scrams. [PWR; BWR

    SciTech Connect (OSTI)

    Burns, E. T.; Wilson, R. J.; Lim, E. Y.

    1980-04-01T23:59:59.000Z

    This report summarizes the operating experience scram data compiled from 35 operating US light water reactors (LWRs) to identify the principal components/systems related to reactor scrams. The data base utilized to identify the scram causes is developed from a EPRI-utility sponsored survey conducted by SAI coupled with recent data from the USNRC Gray Books. The reactor population considered in this evaluation is limited to 23 PWRs and 12 BWRs because of the limited scope of the program. The population includes all the US NSSS vendors. It is judged that this population accurately characterizes the component-related scrams in LWRs over the first 10 years of plant operation.

  2. Role of nuclear reactors in future military satellites

    SciTech Connect (OSTI)

    Buden, D.; Angelo, J.A. Jr.

    1982-01-01T23:59:59.000Z

    Future military capabilities will be profoundly influenced by emerging Shuttle Era space technology. Regardless of the specific direction or content of tomorrow's military space program, it is clear that advanced space transportation systems, orbital support facilities, and large-capacity power subsystems will be needed to create the generally larger, more sophisticated military space systems of the future. This paper explores the critical role that space nuclear reactors should play in America's future space program and reviews the current state of nuclear reactor power plant technology. Space nuclear reactor technologies have the potential of satisfying power requirements ranging from 10 kW/sub (e)/ to 100 MW/sub (e)/.

  3. Reactor pressure vessel. Status report

    SciTech Connect (OSTI)

    Elliot, B.J.; Hackett, E.M.; Lee, A.D. [and others

    1996-10-01T23:59:59.000Z

    This report describes the issues raised as a result of the staffs review of Generic Letter (GL) 92-01, Revision 1, responses and plant-specific reactor pressure vessel (RPV) assessments and the actions taken or work in progress to address these issues. In addition, the report describes actions taken by the staff and the nuclear industry to develop a thermal annealing process for use at U.S. commercial nuclear power plants. This process is intended to be used as a means of mitigating the effects of neutron radiation on the fracture toughness of RPV materials. The Nuclear Regulatory Commission (NRC) issued GL 92-01, Revision 1, Supplement 1, to obtain information needed to assess compliance with regulatory requirements and licensee commitments regarding RPV integrity. GL 92-01, Revision 1, Supplement 1, was issued as a result of generic issues that were raised in the NRC staff`s reviews of licensee responses to GL 92-01, Revision 1, and plant-specific RPV evaluations. In particular, an integrated review of all data submitted in response to GL 92-01, Revision 1, indicated that licensees may not have considered all relevant data in their RPV assessments. This report is representative of submittals to and evaluations by the staff as of September 30, 1996. An update of this report will be issued at a later date.

  4. United States-Russian laboratory-to-laboratory cooperation on protection, control, and accounting for naval nuclear materials

    SciTech Connect (OSTI)

    Sukhoruchkin, V. [Kurchatov Inst., Moscow (Russian Federation); Yurasov, N.; Goncharenko, Y. [Russian Navy, Moscow (Russian Federation); Mullen, M. [Los Alamos National Lab., NM (United States); McConnell, D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31T23:59:59.000Z

    In March 1995, the Russian Navy contacted safeguards experts at the Kurchatov Institute (KI) and proposed the initiation of work to enhance nuclear materials protection, control, and accounting (MPC and A) at Russian Navy facilities. Because of KI`s successful experience in laboratory-to-laboratory MPC and A cooperation with US Department of Energy Laboratories, the possibility of US participation in the work with the Russian Navy was explored. Several months later, approval was received from the US Government and the Russian Navy to proceed with this work on a laboratory-to-laboratory basis through Kurchatov Institute. As a first step in the cooperation, a planning meeting occurred at KI in September, 1995. Representatives from the US Department of Energy (DOE), the US Department of Defense (DOD), the Russian Navy, and KI discussed several areas for near-term cooperative work, including a vulnerability assessment workshop and a planning study to identify and prioritize near-term MPC and A enhancements that might be implemented at Russian facilities which store or handle unirradiated highly enriched uranium fuel for naval propulsion applications. In subsequent meetings, these early proposals have been further refined and extended. This MPC and A cooperation will now include enhanced protection and control features for storage facilities and refueling service ships, computerized accounting systems for naval fuel, methods and equipment for rapid inventories, improved security of fresh fuel during truck transportation, and training. This paper describes the current status and future plans for MPC and A cooperation for naval nuclear materials.

  5. Naval Petroleum Reserve Number 1 financial statements September 30, 1997 and 1996 (with independent auditors` report thereon)

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserve No. 1 (NPR-1) in a manner to achieve the greatest value and benefits to the US taxpayer. As required by the 1996 National Defense Authorization Act, the Department of Energy offered NPR-1 for sale during FY 1997. DOE structured the sale so as to offer two types of ownership segments: one operatorship segment, consisting of 74% of the US interest in NPR-1, and 13 nonoperating segments, each consisting of 2% of the US interest. Potential purchasers could bid on one, some, or all of the segments. If a single purchaser wanted to buy all of the Government`s interest, then its bid would have to exceed the total of the highest bids for all of the individual segments. Bids were due October 1, 1997, at which time DOE received 22 bids from 15 parties acting alone or in concert. The report and management letter present the results of the independent certified public accountants` audits of the Department of Energy`s Naval Petroleum Reserve Number 1 (NPR-1) financial statements as of, and for the years ended, September 30, 1997 and 1996.

  6. Final sitewide environmental assessment for continued development of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Secretary of Energy is required by law to explore, prospect, conserve, develop, use, and operate the Naval Petroleum and Oil Shale Reserves. The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258), requires that the Naval Petroleum Reserves be produced at their maximum efficient rate (MER), consistent with sound engineering practices, for a period of six years. To fulfill this mission, DOE is proposing continued development activities which would include the drilling of approximately 250 oil production and injection (gas, water, and steam) wells, the construction of between 25 and 30 miles of associated gas, water, and steam pipelines, the installation of several production and support facilities, and the construction of between 15 and 20 miles of access roads. These drilling and construction estimates include any necessary activities related to the operation of the Rocky Mountain Oilfield Testing Center (RMOTC). The purpose of RMOTC will be to provide facilities and necessary support to government and private industry for testing and evaluating new oilfield and environmental technologies, and to transfer these results to the petroleum industry through seminars and publications. Continued development activities either have no potential to result in adverse environmental impacts or would only result in adverse impacts that could be readily mitigated. The small amounts of disturbed surface area will be reclaimed to its original natural state when production operations terminate. The preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (FONSI). 73 refs.

  7. REACTOR OPERATIONS AND CONTROL

    E-Print Network [OSTI]

    Pázsit, Imre

    REACTOR OPERATIONS AND CONTROL KEYWORDS: core calculations, neural networks, control rod elevation of a control rod, or a group of control rods, is an important parameter from the viewpoint of reactor control DETERMINATION OF PWR CONTROL ROD POSITION BY CORE PHYSICS AND NEURAL NETWORK METHODS NINOS S. GARIS* and IMRE

  8. Reed Reactor Facility. Final report

    SciTech Connect (OSTI)

    Frantz, S.G.

    1994-12-31T23:59:59.000Z

    This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

  9. Reactor & Nuclear Systems Publications | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications The...

  10. Naval Petroleum Reserves in California site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This summary for Naval Petroleum Reserves in California (NPRC) is divided into NPR-1 and NPR-2. Monitoring efforts at NPR-1 include handling and disposal of oilfield wastes; environmental preactivity surveys for the protection of endangered species and archaeological resources; inspections of topsoil stockpiling; monitoring of revegetated sites; surveillance of production facilities for hydrocarbons and oxides of nitrogen (NO{sub x}) emissions; monitoring of oil spill prevention and cleanup; and monitoring of wastewater injection. No major compliance issues existed for NPR-1 during 1989. Oil spills are recorded, reviewed for corrective action, and reported. Environmental preactivity surveys for proposed projects which may disturb or contaminate the land are conducted to prevent damage to the federally protected San Joaquin kit fox, blunt-nosed leopard lizard, Tipton kangaroo rat and the giant kangaroo rat. Projects are adjusted or relocated as necessary to avoid impact to dens, burrows, or flat-bottomed drainages. A major revegetation program was accomplished in 1989 for erosion control enhancement of endangered species habitat. The main compliance issue on NPR-2 was oil and produced water discharges into drainages by lessees. An additional compliance issue on NPR-2 is surface refuse from past oilfield operations. 17 refs.

  11. Endangered species and cultural resources program Naval petroleum Reserves in California. Annual report FY96

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    In FY96, Enterprise Advisory Services, Inc. (EASI) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on federal properties. Population monitoring activities were conducted for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. Kit fox abundance and distribution was assessed by live-trapping over a 329-km{sup 2} area. Kit fox reproduction and mortality were assessed by radiocollaring and monitoring 22 adults and two pups. Reproductive success and litter size were determined through live-trapping and den observations. Rates and sources of kit fox mortality were assessed by recovering dead radiocollared kit foxes and conducting necropsies to determine cause of death. Abundance of coyotes and bobcats, which compete with kit foxes, was determined by conducting scent station surveys. Kit fox diet was assessed through analysis of fecal samples collected from live-trapped foxes. Abundance of potential prey for kit foxes was determined by conducting transect surveys for lagornorphs and live-trapping small mammals.

  12. Distributed Energy Resources at Naval Base Ventura County Building1512: A Sensitivity Analysis

    SciTech Connect (OSTI)

    Bailey, Owen C.; Marnay, Chris

    2005-06-05T23:59:59.000Z

    This report is the second of a two-part study by BerkeleyLab of a DER (distributed energy resources) system at Navy Base VenturaCounty (NBVC). First, a preliminary assessment ofthe cost effectivenessof distributed energy resources at Naval Base Ventura County (NBVC)Building 1512 was conducted in response to the base s request for designassistance to the Federal Energy Management Program (Bailey and Marnay,2004). That report contains a detailed description of the site and theDER-CAM (Consumer Adoption Model) parameters used. This second reportcontains sensitivity analyses of key parameters in the DER system modelof Building 1512 at NBVC and additionally considers the potential forabsorption-powered refrigeration.The prior analysis found that under thecurrent tariffs, and given assumptions about the performance andstructure of building energy loads and available generating technologycharacteristics, installing a 600 kW DER system with absorption coolingand recovery heat capabilities could deliver cost savings of about 14percent, worth $55,000 per year. However, under current conditions, thisstudy also suggested that significant savings could be obtained ifBuilding 1512 changed from its current direct access contract to a SCETOU-8 (Southern California Edison time of use tariff number 8) ratewithout installing a DER system. Evaluated on this tariff, the potentialsavings from installation of a DER system would be about 4 percent of thetotal bill, or $16,000 per year.

  13. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect (OSTI)

    Beckmeyer, R.R.

    1989-01-01T23:59:59.000Z

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  14. Westinghouse Reactor Protection System Unavailability, 1984--1995

    SciTech Connect (OSTI)

    Eide, Steven Arvid; Calley, Michael Brennan; Gentillon, Cynthia Ann; Wierman, Thomas Edward; Rasmuson, D.; Marksberry, D.

    1999-08-01T23:59:59.000Z

    An analysis was performed of the safety-related performance of the reactor protection system (RPS) at U. S. Westinghouse commercial reactors during the period 1984 through 1995. RPS operational data were collected from the Nuclear Plant Reliability Data System and Licensee Event Reports. A risk-based analysis was performed on the data to estimate the observed unavailability of the RPS, based on a fault tree model of the system. Results were compared with existing unavailability estimates from Individual Plant Examinations and other reports.

  15. Westinghouse Reactor Protection System Unavailability, 1984-1995

    SciTech Connect (OSTI)

    C. D. Gentillon; D. Marksberry (USNRC); D. Rasmuson; M. B. Calley; S. A. Eide; T. Wierman (INEEL)

    1999-08-01T23:59:59.000Z

    An analysis was performed of the safety-related performance of the reactor protection system (RPS) at U.S. Westinghouse commercial reactors during the period 1984 through 1995. RPS operational data were collected from the Nuclear Plant Reliability Data System and Licensee Event Reports. A risk-based analysis was performed on the data to estimate the observed unavailability of the RPS, based on a fault tree model of the system. Results were compared with existing unavailability estimates from Individual Plant Examinations and other reports.

  16. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Wike, L.D.; Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wilde, E.W.; Dicks, A.S.

    1989-12-01T23:59:59.000Z

    The Savannah River Site (SRS) is a large United States Department of Energy installation on the upper Atlantic Coastal Plain of South Carolina. The SRS contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, varied wetlands including Carolina Bays, the Savannah River swamp system, and impoundment related and riparian wetlands, and the aquatic habitats of several stream systems, two large cooling reservoirs, and the Savannah River. These diverse habitats support a large variety of plants and animals including many commercially or recreational valuable species and several rare, threatened or endangered species. This volume describes the major habitats and their biota found on the SRS, and discuss the impacts of continued operation of the K, L, and P production reactors.

  17. Material unaccounted for at the Southwest Experimental Fast Oxide Reactor: The SEFOR MUF

    SciTech Connect (OSTI)

    Higinbotham, W.A.

    1994-11-07T23:59:59.000Z

    The U.S. Atomic Energy Commission contracted with the General Electric Company to design, construct, and operate the Southwest Experimental Fast Oxide Reactor (SEFOR) to measure the Doppler effect for fast neutron breeder reactors. It contracted with Nuclear Fuel Services to fabricate the fuel rods for the reactor. When the reactor went critical in May, 1969, it appeared that some of the mixed uranium-plutonium oxide (MOX) fuel rods did not contain the specified quantity of plutonium. The SEFOR operators soon found several fuel rods which appeared to be low in plutonium. The safeguards group at Brookhaven was asked to look into the problem and, if possible, determine how much plutonium was missing from the unirradiated rods and from the larger number which had been slightly irradiated in the reactor. It was decided that the plutonium content of the unirradiated and irradiated rods could be measured relative to a reference rod using a high resolution gamma-ray detector and also by neutron measurements using an auto-correlation circuit recently developed at the Naval Research Laboratory (NRL). During the next two years, Brookhaven personnel and C.V. Strain of NRL made several trips to the SEFOR reactor. About 250 of the 775 rods were measured by two or more methods, using a sodium-iodide detector, a high-resolution germanium detector, a neutron detector, or the reactor (to measure reactivity). The research team concluded that 4.6 {+-} 0.46 kg of plutonium was missing out of the 433 kg that the rods should have contained. This report describes the SEFOR experiment and the procedures used to determine the material unaccounted for, or MUF.

  18. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect (OSTI)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01T23:59:59.000Z

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  19. Nuclear reactor control column

    SciTech Connect (OSTI)

    Bachovchin, D.M.

    1982-08-10T23:59:59.000Z

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  20. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  1. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Plum Borough, PA)

    1982-01-01T23:59:59.000Z

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  2. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01T23:59:59.000Z

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  3. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03T23:59:59.000Z

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  4. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

    1994-01-01T23:59:59.000Z

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  5. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07T23:59:59.000Z

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  6. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

    2011-03-22T23:59:59.000Z

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  7. Feasibility of risk-informed regulation for Generation-IV reactors

    E-Print Network [OSTI]

    Matos, Craig H

    2005-01-01T23:59:59.000Z

    With the advent of new and innovative Generation-IV reactor designs, new regulations must be developed to assure the safety of these plants. In the past a purely deterministic way of developing design basis accidents was ...

  8. The use for frequency-consequence curves in future reactor licensing

    E-Print Network [OSTI]

    Debesse, Laurène

    2007-01-01T23:59:59.000Z

    The licensing of nuclear power plants has focused until now on Light Water Reactors and has not incorporated systematically insights and benefits from Probabilistic Risk Assessment (PRA). With the goal of making the licensing ...

  9. Probabilistic accident analysis of the Pebble Bed modular Reactor for use with risk informed regulation

    E-Print Network [OSTI]

    Savkina, Marina D., 1973-

    2004-01-01T23:59:59.000Z

    One of the major challenges to the successful deployment of new nuclear plants in the United States is the regulatory process, which is largely based on water-reactor technology. While ongoing and expected efforts to license ...

  10. Development of Nuclear Reactor remote Monitoring software (NRM) for the Star project

    E-Print Network [OSTI]

    Gautier, Vincent Charles

    2002-01-01T23:59:59.000Z

    operations support for multiple plants, guarantee safety and nonproliferation, and improve cost-effectiveness. NRM allows soft real time monitoring of the reactor power, primary and secondary coolant temperatures, control rod movement, and secondary coolant...

  11. Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application 

    E-Print Network [OSTI]

    Moore, Eugene James Thomas

    2006-08-16T23:59:59.000Z

    abilities of system analysis codes, used to develop an understanding of light water reactor phenomenology, need to be proven for HTGRs. RELAP5-3D v2.3.6 is used to generate two reactor plant models for a code-to-code and a code-to-experiment benchmark...

  12. Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago

    E-Print Network [OSTI]

    Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago Representatives of more than 30 countries signed a deal on Tuesday to build the world's most advanced nuclear fusion reactor nuclear reactors, but critics argue it could be at least 50 years before a commercially viable reactor

  13. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  14. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, J.

    1996-02-20T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  15. Endangered species program Naval Petroleum Reserves in California. Annual report FY94

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In FY94, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to conserve endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly star. To mitigate impacts of oil field activities on listed species, 400 preactivity surveys covering approximately 315 acres were conducted in FY94. Mitigation measures implemented as a result of survey findings resulted in avoidance of incidental takes of listed species during construction activities. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. Third-party projects in FY94 included three pipeline projects and two well abandonment/clean-up projects. Cultural resource support provided to NPRC consisted primarily of conducting preliminary surveys for cultural resources, and preparing a Cultural Resource Management Plan and Programmatic Agreement for NPR-1. These two documents will be finalized in FY95. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY94, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was initiated to assess reclamation efficacy. Results will be used to direct future habitat reclamation efforts at NPRC. In addition to this effort, 347 reclaimed sites were assessed to evaluate reclamation success.

  16. Integrated systems analysis of the PIUS reactor

    SciTech Connect (OSTI)

    Fullwood, F.; Kroeger, P.; Higgins, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1993-11-01T23:59:59.000Z

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects & Criticality Analysis (FMECA) and Hazards & Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions.

  17. Thermoacoustic Thermometry for Nuclear Reactor Monitoring

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-06-01T23:59:59.000Z

    On Friday, March 11, 2011, at 2:46pm (Japan Standard Trme), the Tohoku region on the east coast of northern Japan experi­enced what would become known as the largest earthquake in the country's history at magnitude 9.0 on the Richter scale. The Fukushima Daiichi nuclear power plant suffered exten­sive and irreversible damage. Six operating units were at the site, each with a boiling water reactor. When the earthquake struck, three of the six reactors were operating and the others were in a periodic inspection outage phase. In one reactor, all of the fuel had been relocated to a spent fuel pool in the reactor building. The seismic acceleration caused by the earthquake brought the three operating units to an automatic shutdown. Since there was damage to the power transmission lines, the emergency diesel generators (EDG) were automat­ically started to ensure continued cooling of the reactors and spent fuel pools. The situation was under control until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 meters, which was three times taller than the sea wall of 5m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to five of the six reactors. The flooding also resulted in the loss of instrumentation that would have other­ wise been used to monitor and control the emergency. The ugly aftermath included high radiation exposure to operators at the nuclear power plants and early contamina­tion of food supplies and water within several restricted areas in Japan, where high radiation levels have rendered them un­safe for human habitation. While the rest of the story will remain a tragic history, it is this part of the series of unfortunate events that has inspired our research. It has indubitably highlighted the need for a novel sensor and instrumentation system that can withstand similar or worse conditions to avoid future catastrophe and assume damage prevention as quickly as possible. This is the question which we are attempting to answer: Is it possible to implement a self-powered sensor that could transmit data independently of electronic networks while taking advantage of the harsh operating environment of the nuclear reactor?

  18. P Reactor Grouting

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Filling the P Reactor with grout. This seals the radioactive material and reduces the environmental footprint left from the Cold War. Project sponsored by the Recovery Act at the Savannah River Site.

  19. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

    1992-01-01T23:59:59.000Z

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  20. Nuclear reactor control

    SciTech Connect (OSTI)

    Ingham, R.V.

    1980-01-01T23:59:59.000Z

    A liquid metal cooled fast breeder nuclear reactor has power setback means for use in an emergency. On initiation of a trip-signal a control rod is injected into the core in two stages, firstly, by free fall to effect an immediate power-set back to a safe level and, secondly, by controlled insertion. Total shut-down of the reactor under all emergencies is avoided. 4 claims.

  1. Polymerization reactor control

    SciTech Connect (OSTI)

    Ray, W.H.

    1985-01-01T23:59:59.000Z

    The principal difficulties in achieving good control of polymerization reactors are related to inadequate on-line measurement, a lack of understanding of the dynamics of the process, the highly sensitive and nonlinear behavior of these reactors, and the lack of well-developed techniques for the control of nonlinear processes. Some illustrations of these problems and a discussion of potential techniques for overcoming some of these difficulties is provided.

  2. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05T23:59:59.000Z

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  3. Reactor- Nuclear Science Center 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    A COMPARISON OF NUCLEAR REACTOR CONTROL ROOM DISPLAY PANELS A Thesis by FRANCES RENAE BOWERS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988... Major Subject: Industrial Engineering A COMPARISON OF NUCLEAR REACTOR CONTROL ROOM DISPLAY PANELS A Thesis by FRANCES RENAE BOWERS Approved as to style and content by: Rod er . oppa (Cha' of 'ttee) R. Quinn Brackett (Member) rome . Co gleton...

  4. NRC policy on future reactor designs

    SciTech Connect (OSTI)

    none,

    1985-07-01T23:59:59.000Z

    On April 13, 1983, the US Nuclear Regulatory Commission issued for public comment a ''Proposed Commission Policy Statement on Severe Accidents and Related Views on Nuclear Reactor Regulation'' (48 FR 16014). This report presents and discusses the Commission's final version of that policy statement now entitled, ''Policy Statement on Severe Reactor Accidents Regarding Future Designs and Existing Plants.'' It provides an overview of comments received from the public and the Advisory Committee on Reactor Safeguards and the staff response to these. In addition to the Policy Statement, the report discusses how the policies of this statement relate to other NRC programs including the Severe Accident Research Program; the implementation of safety measures resulting from lessons learned in the accident at Three Mile Island; safety goal development; the resolution of Unresolved Safety Issues and other Generic Safety Issues; and possible revisions of rules or regulatory requirements resulting from the Severe Accident Source Term Program. Also discussed are the main features of a generic decision strategy for resolving Regulatory Questions and Technical Issues relating to severe accidents; the development and regulatory use of new safety information; the treatment of uncertainty in severe accident decision making; and the development and implementation of a Systems Reliability Program for both existing and future plants to ensure that the realized level of safety is commensurate with the safety analyses used in regulatory decisions.

  5. Electrochemistry of Water-Cooled Nuclear Reactors

    SciTech Connect (OSTI)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08T23:59:59.000Z

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  6. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22T23:59:59.000Z

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  7. Radiation effects on reactor pressure vessel supports

    SciTech Connect (OSTI)

    Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

    1996-05-01T23:59:59.000Z

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  8. Power Burst Facility (PBF) Reactor Reactor Decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7Powder DropperReactor

  9. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Dotson, CW

    1980-08-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  10. F Reactor Inspection

    SciTech Connect (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29T23:59:59.000Z

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  11. F Reactor Inspection

    ScienceCinema (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-11-24T23:59:59.000Z

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  12. Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators

    SciTech Connect (OSTI)

    Jeffrey C. Joe; Johanna H. Oxstrand

    2014-06-01T23:59:59.000Z

    The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks. We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.

  13. accelerate plant residue: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adding nutrient solution to the medium growing the sunflower. Moore et al . (49... Reid, Debbie John 1992-01-01 15 Assessment of light water reactor power plant cost and...

  14. Human Factors Issues For Multi-Modular Reactor Units

    SciTech Connect (OSTI)

    Tuan Q Tran; Humberto E. Garcia; Ronald L. Boring; Jeffrey C. Joe; Bruce P. Hallbert

    2007-08-01T23:59:59.000Z

    Smaller and multi-modular reactor (MMR) will be highly technologically-advanced systems allowing more system flexibility to reactors configurations (e.g., addition/deletion of reactor units). While the technical and financial advantages of systems may be numerous, MMR presents many human factors challenges that may pose vulnerability to plant safety. An important human factors challenge in MMR operation and performance is the monitoring of data from multiple plants from centralized control rooms where human operators are responsible for interpreting, assessing, and responding to different system’s states and failures (e.g., simultaneously monitoring refueling at one plant while keeping an eye on another plant’s normal operating state). Furthermore, the operational, safety, and performance requirements for MMR can seriously change current staffing models and roles, the mode in which information is displayed, procedures and training to support and guide operators, and risk analysis. For these reasons, addressing human factors concerns in MMR are essential in reducing plant risk.

  15. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  16. Starfire - a commercial tokamak fusion power reactor concept

    SciTech Connect (OSTI)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Kokoszenski, J.

    1980-01-01T23:59:59.000Z

    The purpose of the STARFIRE study is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium-fuel cycle. The key technical objective is to develop an attractive embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. 1 ref.

  17. Automatic diagnosis of multiple alarms for reactor-control rooms

    SciTech Connect (OSTI)

    Gimmy, K.L.; Nomm, E.

    1981-01-01T23:59:59.000Z

    A system has been developed at the Savannah River Plant to help reactor operators respond to multiple alarms in a developing incident situation. The need for such systems has become evident in recent years, particularly after the three Mile Island incident.

  18. Passive cooling system for nuclear reactor containment structure

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

    1989-01-01T23:59:59.000Z

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  19. Natural circulating passive cooling system for nuclear reactor containment structure

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

    1990-01-01T23:59:59.000Z

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  20. Zero Power Reactor simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by...

  1. Microprocessor-based fault-tolerant reactor control and information system

    SciTech Connect (OSTI)

    Kakehi, A.; Okutani, T.; Sakamoto, H. (Toshiba Corp., Fuji City (Japan))

    1990-03-01T23:59:59.000Z

    The Reactor Manual Control system (RMCS) and the Rod Position Information system (RPIS), applied to the boiling water reactor (BWR) power plants, areas among the most important systems in controlling the output of nuclear reactor power. Improvement in reliability of the RMCS and RPIS is thus highly important for availability during plant operation. This paper presents a highly reliable RMCS and RPIS employing microprocessors. The developed equipment has been made fault-tolerant by adopting redundancy of each system. The amount of cabling normally required has been reduced by multiplexing transmission via fiber-optic cable. The size of the control panel has been reduced and maintainability improved.

  2. Safety aspects of the US advanced LMR (liquid metal reactor) design

    SciTech Connect (OSTI)

    Pedersen, D.R.; Gyorey, G.L.; Marchaterre, J.F.; Rosen, S. (Argonne National Lab., IL (USA); General Electric Co., San Jose, CA (USA); Argonne National Lab., IL (USA); USDOE Assistant Secretary for Nuclear Energy, Washington, DC (USA))

    1989-01-01T23:59:59.000Z

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. This paper discusses the US regulatory framework for design of an ALMR, safety aspects of the IFR program at ANL, the IFR fuel cycle and actinide recycle, and the ALMR plant design program at GE. 6 refs., 5 figs.

  3. Naval Research Laboratory`s programs in advanced indium phosphide solar cell development

    SciTech Connect (OSTI)

    Summers, G.P.

    1995-10-01T23:59:59.000Z

    The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AMO, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials.

  4. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24T23:59:59.000Z

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  5. A review of experiments and results from the transient reactor test (TREAT) facility.

    SciTech Connect (OSTI)

    Deitrich, L. W.

    1998-07-28T23:59:59.000Z

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop.

  6. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect (OSTI)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01T23:59:59.000Z

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  7. An Overview of the Safety Case for Small Modular Reactors

    SciTech Connect (OSTI)

    Ingersoll, Daniel T [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

  8. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Broader source: Energy.gov [DOE]

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplemental statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Navel Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California. This SEIS is a supplement to DOE/EIS-0020, Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California.

  9. Public health assessment for Treasure Island Naval Station, Hunters Point Annex, San Francisco, San Francisco County, California, Region 9. Cerclis No. CA1170090087. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-30T23:59:59.000Z

    Naval Station Treasure Island, Hunters Point Annex (HPA), an inactive Naval shipyard located on a peninsula in the San Francisco Bay, San Francisco, California, was listed for base closure in 1990. Metals, pesticides, radium-226, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds, semivolatile organic compounds, petroleum products, and asbestos have been found in various media such as soil, groundwater, surface water, air, and sediments. Navy contractors have identified 58 HPA areas where there may be contamination; investigations at these areas are ongoing.

  10. RELAP5/MOD2 split reactor vessel model and steamline break analysis

    SciTech Connect (OSTI)

    Petelin, S.; Mavko, B.; Gortnar, O. (Univ. of Ljubljana, (Slovenia))

    1993-04-01T23:59:59.000Z

    A split reactor vessel model for the RELAP5/ MOD2 computer code is developed in an attempt to realize more realistic predictions of asymmetrical transients in a two-loop nuclear power plant. Based on this split reactor model, coolant mixing processes within the reactor vessel are examined. This study evaluates the model improvements in terms of thermal-hydraulic simulations of the reactor core inlet fluid condition and the consequent core behavior. Furthermore, the split reactor vessel model is introduced into an integral RELAP5/MOD2 power plant model, and a steamline break analysis is performed to determine the influence of the boron concentration in the boron injection tank on accident consequences.

  11. Fiberglass plastics in power plants

    SciTech Connect (OSTI)

    Kelley, D. [Ashland Performance Materials (United States)

    2007-08-15T23:59:59.000Z

    Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

  12. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01T23:59:59.000Z

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  13. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-08-01T23:59:59.000Z

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  14. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02T23:59:59.000Z

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  15. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01T23:59:59.000Z

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  16. Fusion reactor control

    SciTech Connect (OSTI)

    Plummer, D.A.

    1995-12-31T23:59:59.000Z

    The plasma kinetic temperature and density changes, each per an injected fuel density rate increment, control the energy supplied by a thermonuclear fusion reactor in a power production cycle. This could include simultaneously coupled control objectives for plasma current, horizontal and vertical position, shape and burn control. The minimum number of measurements required, use of indirect (not plasma parameters) system measurements, and distributed control procedures for burn control are to be verifiable in a time dependent systems code. The International Thermonuclear Experimental Reactor (ITER) has the need to feedback control both the fusion output power and the driven plasma current, while avoiding damage to diverter plates. The system engineering of fusion reactors must be performed to assure their development expeditiously and effectively by considering reliability, availability, maintainability, environmental impact, health and safety, and cost.

  17. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01T23:59:59.000Z

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  18. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21T23:59:59.000Z

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  19. Nuclear plant irradiated steel handbook

    SciTech Connect (OSTI)

    Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

    1986-09-01T23:59:59.000Z

    This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

  20. MHTGR (modular high-temperature gas-cooled reactor) control: A non-safety related system

    SciTech Connect (OSTI)

    Rodriguez, C.; Swart, F.

    1988-06-01T23:59:59.000Z

    The modular high-temperature gas-cooled reactor (MHTGR) design meets stringent top-level safety regulatory criteria and user requirements that call for high plant availability and no disruption of the public's day to day activities during normal and off-normal operation of the plant. These requirements lead to a plant design that relies mainly on physical properties and passive design features to ensure plant safety regardless of operator actions, plus simplicity and automation to ensure high plant availability and lower cost of operations. The plant does not require safety-related operator actions, and it does not require the control room to be safety related.

  1. Materials Degradation in Light Water Reactors: Life After 60,???

    SciTech Connect (OSTI)

    Busby, Jeremy T [ORNL; Nanstad, Randy K [ORNL; Stoller, Roger E [ORNL; Feng, Zhili [ORNL; Naus, Dan J [ORNL

    2008-04-01T23:59:59.000Z

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the key issue with materials aging and cable/piping as the top concerns for plant reliability. Materials degradation within a nuclear power plant is very complex. There are many different types of materials within the reactor itself: over 25 different metal alloys can be found with can be found within the primary and secondary systems, not to mention the concrete containment vessel, instrumentation and control, and other support facilities. When this diverse set of materials is placed in the complex and harsh environment coupled with load, degradation over an extended life is indeed quite complicated. To address this issue, the USNRC has developed a Progressive Materials Degradation Approach (NUREG/CR-6923). This approach is intended to develop a foundation for appropriate actions to keep materials degradation from adversely impacting component integrity and safety and identify materials and locations where degradation can reasonably be expected in the future. Clearly, materials degradation will impact reactor reliability, availability, and potentially, safe operation. Routine surveillance and component replacement can mitigate these factors, although failures still occur. With reactor life extensions to 60 years or beyond or power uprates, many components must tolerate the reactor environment for even longer times. This may increase susceptibility for most components and may introduce new degradation modes. While all components (except perhaps the reactor vessel) can be replaced, it may not be economically favorable. Therefore, understanding, controlling, and mitigating materials degradation processes are key priorities for reactor operation, power uprate considerations, and life extensions. This document is written to give an overview of some of the materials degradation issues that may be key for extend reactor service life. A detailed description of all the possible forms of degradation is beyond the scope of this short paper and has already been described in other documents (for example, the NUREG/CR-6923). The intent of this document is to present an overview of current materials issues in the existing reactor fleet and a brief analysis of the potential impact of extending life beyond 60 years. Discussion is presented in six distinct areas: (1) Reactor pressure vessel; (2) Reactor core and primary systems; (3) Reactor secondary systems; (4) Weldments; (5) Concrete; and (6) Modeling and simulations. Following each of these areas, some research thrust directions to help identify and mitigate lifetime extension issues are proposed. Note that while piping and cabling are important for extended service, these components are discussed in more depth in a separate paper. Further, the materials degradation issues associated with fuel cladding and fuel assemblies are not discussed in this section as these components are replaced periodically and will not influence the overall lifetime of the reactor.

  2. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  3. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10T23:59:59.000Z

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  4. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01T23:59:59.000Z

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  5. Reactor Neutrino Experiments

    E-Print Network [OSTI]

    Jun Cao

    2007-12-06T23:59:59.000Z

    Precisely measuring $\\theta_{13}$ is one of the highest priority in neutrino oscillation study. Reactor experiments can cleanly determine $\\theta_{13}$. Past reactor neutrino experiments are reviewed and status of next precision $\\theta_{13}$ experiments are presented. Daya Bay is designed to measure $\\sin^22\\theta_{13}$ to better than 0.01 and Double Chooz and RENO are designed to measure it to 0.02-0.03. All are heading to full operation in 2010. Recent improvements in neutrino moment measurement are also briefed.

  6. Perspectives on reactor safety

    SciTech Connect (OSTI)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  7. THE MATERIALS OF FAST BREEDER REACTORS

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01T23:59:59.000Z

    times larger in a fast reactor than in a thermal reactor,structural metals in a fast reactor will be subject to farof fuel ele- ments in fast reactors which are roughly one

  8. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01T23:59:59.000Z

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  9. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01T23:59:59.000Z

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  10. Raytheon explores thorium for next generation nuclear reactor

    SciTech Connect (OSTI)

    Crawford, M.

    1994-03-08T23:59:59.000Z

    Few new orders for nuclear power plants have been placed anywhere in the world in the last 20 years, but that is not discouraging Raytheon Engineers Constructors from making plans to explore new light water reactor technologies for commercial markets. The Lexington, Mass.-based company, which has extensive experience in nuclear power engineering and construction, has a vision for the light water reactor of the future - one that is based on the use of thorium-232, an element that decays over several steps to uranium-233. The use of thorium and a small amount of uranium that is 20 percent enriched is seen as providing operational, environmental, and safety advantages over reactors using the standard fuel mixture of uranium-238 and enriched uranium-235. According to Raytheon, the system could improve the economics of some reactors' operations by reducing fuel costs and lowering related waste volumes. At the same time, reactor safety could be improved by simpler control rod systems and the absence from reactor coolant of corrosive boric acid, which is used to slow neutrons in order to enhance reactions. Using thorium is also attractive because more of the fuel is burned up by the reactor, an estimated 12 percent as compared to about 4 percent for U-235. However, the technology's greatest attraction may well be its implications for nuclear proliferation. Growing plutonium inventories embedded in spent fuel rods from light water reactors have sparked concern worldwide. But according to Raytheon, using a thorium-based fuel core would alleviate this concern because it would produce only small quantities of plutonium. A thorium-based fuel system would produce 12 kilograms of plutonium over a decade versus 2,235 kilograms for an equivalent reactor operating with conventional uranium fuel.

  11. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01T23:59:59.000Z

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  12. Power calibrations for TRIGA reactors

    SciTech Connect (OSTI)

    Whittemore, W.L.; Razvi, J.; Shoptaugh, J.R. Jr. [General Atomics, San Diego, CA (United States)

    1988-07-01T23:59:59.000Z

    The purpose of this paper is to establish a framework for the calorimetric power calibration of TRIGA reactors so that reliable results can be obtained with a precision better than {+-} 5%. Careful application of the same procedures has produced power calibration results that have been reproducible to {+-} 1.5%. The procedures are equally applicable to the Mark I, Mark II and Mark III reactors as well as to reactors having much larger reactor tanks and to TRIGA reactors capable of forced cooling up to 3 MW in some cases and 15 MW in another case. In the case of forced cooled TRIGA reactors, the calorimetric power calibration is applicable in the natural convection mode for these reactors using exactly the same procedures as are discussed below for the smaller TRIGA reactors (< 2 MW)

  13. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect (OSTI)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  14. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  15. Reed Reactor Facility Annual Report

    SciTech Connect (OSTI)

    Frantz, Stephen G.

    2000-09-01T23:59:59.000Z

    This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

  16. Department of Reactor Technology Ris#-H-2101 Ris National Laboratory SRE-7-78

    E-Print Network [OSTI]

    . April 1978 Denmark NUCLEAR DISTRICT HEATING PLANT PRELIMINARY DESIGN CONCEPT by Kurt Hansen * Hans Erik-M-fnoi I Title and authors) NUCLEAR DISTRICT HEATING PLANT PRELIMINARY DESIGN CONCEPT by Kurt Hansen ft-7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed

  17. Floating nuclear power plant safety assurance principles

    SciTech Connect (OSTI)

    Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

    1993-12-31T23:59:59.000Z

    In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described.

  18. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01T23:59:59.000Z

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  19. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  20. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  1. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

    1994-01-01T23:59:59.000Z

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  2. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05T23:59:59.000Z

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  3. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    None

    2013-07-24T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  4. The naval Research Laboratory has been actively involved in research in unmanned and autonomous systems since its opening in 1923. From one of the first unmanned

    E-Print Network [OSTI]

    systems since its opening in 1923. From one of the first unmanned ground vehicles to the developmentThe naval Research Laboratory has been actively involved in research in unmanned and autonomous of more than 200 prototype air, ground, underwater, and space platforms, and from smart sensors to smart

  5. US Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements and management overview and supplemental financial and management information, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-15T23:59:59.000Z

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on the NPOSR internal control structure and compliance with laws and regulations are also provided.

  6. Phase II - final report study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3, Wyoming

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Appraiser under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase II Final Report for that study.

  7. An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors

    SciTech Connect (OSTI)

    Menlove, Howard O [Los Alamos National Laboratory; Lee, Sang - Yoon [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

  8. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect (OSTI)

    Lester M. Waganer

    2011-01-04T23:59:59.000Z

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  9. Reactor vessel support system. [LMFBR

    DOE Patents [OSTI]

    Golden, M.P.; Holley, J.C.

    1980-05-09T23:59:59.000Z

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  10. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01T23:59:59.000Z

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  11. Reactor technology assessment and selection utilizing systems engineering approach

    SciTech Connect (OSTI)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-02-12T23:59:59.000Z

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  12. Gas-Cooled Thermal Reactor Program. Semiannual technical progress report, April 1, 1983-September 30, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-12-01T23:59:59.000Z

    An assessment of the HTGR opportunities from the year 2000 through 2045 was the principal activity on the Market Definition Task (WBS 03). Within the Plant Technology (WBS 13) task, there were activities to develop analytical methods for investigation of Coolant Transport Behavior and to define methods and criteria for High Temperature Structural Engineering design. The activities in support of the HTGR-SC/C Lead Plant (WBS 30 and 31) were the participation in the Lead Plant System Engineering (LPSE) effort and the plant simulation task. The efforts on the Advanced HTGR systems was performed under the Modular Reactor Systems (MRS) (WBS 41) to study the potential for multiple small reactors to provide lower costs, improved safety, and higher availability than the large monolithic core reactors.

  13. Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report

    SciTech Connect (OSTI)

    Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A. [Nuclear Regulatory Commission, Washington, DC (United States). Associate Directorate for Advanced Reactors and License Renewal

    1994-02-01T23:59:59.000Z

    This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

  14. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  15. Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)

    SciTech Connect (OSTI)

    Williams, W.C.

    2002-08-01T23:59:59.000Z

    The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft{sup 2}, the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft{sup 2}-degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation.

  16. CFD Analysis of Core Bypass Flow and Crossflow in the Prismatic Very High Temperature Gas-cooled Nuclear Reactor 

    E-Print Network [OSTI]

    Wang, Huhu 1985-

    2012-12-13T23:59:59.000Z

    Very High Temperature Rector (VHTR) had been designated as one of those promising reactors for the Next Generation (IV) Nuclear Plant (NGNP). For a prismatic core VHTR, one of the most crucial design considerations is the bypass flow and crossflow...

  17. Nuclear reactor construction with bottom supported reactor vessel

    DOE Patents [OSTI]

    Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1987-01-01T23:59:59.000Z

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  18. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

    2012-07-01T23:59:59.000Z

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  19. Accounting for a feature of the configuration of the loops in the primary circuit of VVER-440 reactors

    SciTech Connect (OSTI)

    Khazanov, A. L. [FBU 'Scientific and Engineering Center for Nuclear and Radiation Safety' (FBU 'NTTs YaRB') (Russian Federation)] [FBU 'Scientific and Engineering Center for Nuclear and Radiation Safety' (FBU 'NTTs YaRB') (Russian Federation)

    2013-09-15T23:59:59.000Z

    A feature of the configuration of the loops of the primary circuit of VVER-440 reactors and its influence on the characteristics of the main circulation pumps are analyzed. It is proposed that differences in the characteristics of the main reactor circulation pumps be taken account during the design and operation of nuclear power plants.

  20. DISMANTLING OF THE UPPER RPV COMPONENTS OF THE KARLSRUHE MULTI-PURPOSE RESEARCH REACTOR (MZFR), GERMANY

    SciTech Connect (OSTI)

    Prechtl, E.; Suessdorf, W.

    2003-02-27T23:59:59.000Z

    The Multi-purpose Research Reactor was a pressurized-water reactor cooled and moderated with heavy water. It was built from 1961 to 1966 and went critical for the first time on 29 September 1965. After nineteen years of successful operation, the reactor was de-activated on 3 May 1984. The reactor had a thermal output of 200 MW and an electrical output of 50 MW. The MZFR not only served to supply electrical power, but also as a test bed for: - research into various materials for reactor building (e. g. zirkaloy), - the manufacturing and operating industry to gain experience in erection and operation, - training scientific and technical reactor staff, and - power supply (first nuclear combined-heat-and-power system, 1979-1984). The experience gained in operating the MZFR was very helpful for the development and operation of power reactors. At first, safe containment and enclosure of the plant was planned, but then it was decided to dismantle the plant completely, step by step, in view o f the clear advantages of this approach. The decommissioning concept for the complete elimination of the plant down to a green-field site provides for eight steps. A separate decommissioning license is required for each step. As part of the dismantling, about 72,000 Mg [metric tons] of concrete and 7,200 Mg of metal (400 Mg RPV) must be removed. About 700 Mg of concrete (500 Mg biological shield) and 1300 Mg of metal must be classified as radioactive waste.