National Library of Energy BETA

Sample records for naval nuclear propulsion

  1. Categorical Exclusion Determinations: Naval Nuclear Propulsion Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Naval Nuclear Propulsion Program Categorical Exclusion Determinations: Naval Nuclear Propulsion Program Categorical Exclusion Determinations issued by Naval Nuclear Propulsion Program. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 2015 CX-014279: Categorical Exclusion Determination Lower Level Guard Post Replacement Project CX(s) Applied: B1.11, B1.15, B2.2 Date: 09/25/2015 Location(s): New York Offices(s): Naval Nuclear Propulsion Program July 6, 2015 CX-013878:

  2. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

  3. Naval Nuclear Propulsion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Klotz visits Bettis Atomic Power Laboratory Lt. Gen. Frank G. Klotz, DOE Undersecretary for Nuclear Security and NNSA Administrator, visited the Bettis Atomic Power Laboratory in West Mifflin, PA on July 2, 2015. Gen. Klotz toured through several test facilities where Bettis personnel reviewed ongoing development efforts to qualify

  4. Naval Nuclear Propulsion Plants | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces radiation, shielding is placed around the reactor to protect the crew. Despite close proximity to a reactor core, a typical crewmember receives less exposure to radiation than one who remains ashore and works in an office building. In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor

  5. 2013 Annual Planning Summary for the Naval Nuclear Propulsion Program

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Naval Nuclear Propulsion Program.

  6. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    and works in an office building. U.S. naval nuclear propulsion plants use a pressurized-water reactor design that has two basic systems: the primary system and the secondary...

  7. Nuclear Naval Propulsion: A Feasible Proliferation Pathway?

    SciTech Connect (OSTI)

    Swift, Alicia L.

    2014-01-31

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navy while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.

  8. More About NNSA's Naval Reactors Office | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    More About NNSA's Naval Reactors Office The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived ...

  9. About Naval Reactors | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    About Naval Reactors What Is the Naval Nuclear Propulsion Program? The Naval Nuclear Propulsion Program comprises the military and civilian personnel who design, build, operate, maintain, and manage the nuclear-powered ships and the many facilities that support the U.S. nuclear-powered naval fleet. The Program has cradle-to-grave responsibility for all naval nuclear propulsion matters. Program responsibilities are delineated in Presidential Executive Order 12344 of February 1, 1982, and

  10. More About NNSA's Naval Reactors Office | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) More About NNSA's Naval Reactors Office The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their

  11. naval reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    on Energy and Water Development, visited the Naval Reactors Facility (NRF) at the... ... propulsion plants use a pressurized-water reactor design that has two basic systems: ...

  12. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  13. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    SciTech Connect (OSTI)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  14. Nuclear Propulsion in Space (1968)

    SciTech Connect (OSTI)

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  15. Nuclear Propulsion in Space (1968)

    ScienceCinema (OSTI)

    None

    2014-06-17

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  16. nr | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nr On Womens Equality Day, we celebrate NNSA's talented Women in STEM About Naval Reactors What Is the Naval Nuclear Propulsion Program? The Naval Nuclear Propulsion Program comprises the military and civilian personnel who design, build, operate, maintain, and manage the nuclear-powered ships and the many facilities that support the U.S. nuclear-powered naval fleet. The Program... Powering the Nuclear Navy Concern for the Environment Protection of People Naval Nuclear Propulsion Plants Annual

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  18. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  19. Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities

    National Nuclear Security Administration (NNSA)

    before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration | (NNSA) Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development February 26, 2013 INTRODUCTION Chairman Frelinghuysen, Ranking Member Kaptur, and distinguished members of the Subcommittee, thank you for having me here today to discuss the National Nuclear

  20. FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval

    National Nuclear Security Administration (NNSA)

    Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration | (NNSA) on Nuclear Nonproliferation and Naval Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee March 02, 2011 Chairman Frelinghuysen and Ranking Member Pastor, thank you for the opportunity to join you today to discuss the investments the President has requested for our nuclear nonproliferation

  1. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    use a pressurized-water reactor design that has two basic systems: the primary system and the secondary system. The primary system circulates ordinary water in an all-welded, ...

  2. A development approach for nuclear thermal propulsion

    SciTech Connect (OSTI)

    Buden, D.

    1992-01-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  3. A development approach for nuclear thermal propulsion

    SciTech Connect (OSTI)

    Buden, D.

    1992-09-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ``acceptable`` nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  4. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Programs Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and

  5. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 30 - Deputy Administrator for Naval Reactors NA 30 - Naval Reactors FY15 Year End Report Semi Annual Report FY14 Year End Report Semi Annual Report NX 3 - Naval Reactors Laboratory Field Office FY15 Year End

  6. Contributions Regarding the Aircraft Nuclear Propulsion

    SciTech Connect (OSTI)

    Mitrica, Bogdan; Petre, Marian; Dima, Mihai Octavian; Stanciu, Virgil; Petre, Carmelia; Precup, Irinel

    2010-01-21

    The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for the nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.

  7. Nuclear propulsion apparatus with alternate reactor segments

    DOE Patents [OSTI]

    Szekely, Thomas

    1979-04-03

    1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

  8. Protection of People | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Protection of People The policy of the U.S. Naval Nuclear Propulsion Program is to reduce personnel exposure to ionizing radiation associated with naval nuclear propulsion plants to the lowest level reasonably achievable. In carrying out this policy, the Program has consistently maintained personnel radiation exposure standards more stringent than those in the civilian nuclear power industry or in other government nuclear programs. The policy of the U.S. Naval Nuclear Propulsion Program is to

  9. Protection of People | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Protection of People The policy of the U.S. Naval Nuclear Propulsion Program is to reduce personnel exposure to ionizing radiation associated with naval nuclear propulsion plants to the lowest level reasonably achievable. In carrying out this policy, the Program has consistently maintained personnel radiation exposure standards more stringent than those in the civilian nuclear power industry or in other government nuclear programs. The policy of the U.S. Naval Nuclear Propulsion Program is to

  10. United States-Russian laboratory-to-laboratory cooperation on protection, control, and accounting for naval nuclear materials

    SciTech Connect (OSTI)

    Sukhoruchkin, V.; Yurasov, N.; Goncharenko, Y.; Mullen, M.; McConnell, D.

    1996-12-31

    In March 1995, the Russian Navy contacted safeguards experts at the Kurchatov Institute (KI) and proposed the initiation of work to enhance nuclear materials protection, control, and accounting (MPC and A) at Russian Navy facilities. Because of KI`s successful experience in laboratory-to-laboratory MPC and A cooperation with US Department of Energy Laboratories, the possibility of US participation in the work with the Russian Navy was explored. Several months later, approval was received from the US Government and the Russian Navy to proceed with this work on a laboratory-to-laboratory basis through Kurchatov Institute. As a first step in the cooperation, a planning meeting occurred at KI in September, 1995. Representatives from the US Department of Energy (DOE), the US Department of Defense (DOD), the Russian Navy, and KI discussed several areas for near-term cooperative work, including a vulnerability assessment workshop and a planning study to identify and prioritize near-term MPC and A enhancements that might be implemented at Russian facilities which store or handle unirradiated highly enriched uranium fuel for naval propulsion applications. In subsequent meetings, these early proposals have been further refined and extended. This MPC and A cooperation will now include enhanced protection and control features for storage facilities and refueling service ships, computerized accounting systems for naval fuel, methods and equipment for rapid inventories, improved security of fresh fuel during truck transportation, and training. This paper describes the current status and future plans for MPC and A cooperation for naval nuclear materials.

  11. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 30 - Deputy Administrator for Naval Reactors NA 30 - Deputy Administrator for...

  12. Public Affairs | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Public Affairs The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission

  13. Public Affairs | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Public Affairs The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission

  14. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. ); Todosow, M. )

    1992-09-22

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  15. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. NNSA's Naval Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. Learn More USS George H.W. Bush conducts flight operations USS George H.W. Bush conducts flight

  16. Concern for the Environment | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    over 14,000 sailors, the Department of Energy S1C Prototype Reactor Site in Windsor, Connecticut, was returned to "green field" conditions. Naval Nuclear Propulsion Program...

  17. Calculation of the Naval Long and Short Waste Package Three-Dimensional Thermal Interface Temperatures

    SciTech Connect (OSTI)

    H. Marr

    2006-10-25

    The purpose of this calculation is to evaluate the thermal performance of the Naval Long and Naval Short spent nuclear fuel (SNF) waste packages (WP) in the repository emplacement drift. The scope of this calculation is limited to the determination of the temperature profiles upon the surfaces of the Naval Long and Short SNF waste package for up to 10,000 years of emplacement. The temperatures on the top of the outside surface of the naval canister are the thermal interfaces for the Naval Nuclear Propulsion Program (NNPP). The results of this calculation are intended to support Licensing Application design activities.

  18. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  19. Reliability comparison of various nuclear propulsion configurations for Mars mission

    SciTech Connect (OSTI)

    Segna, D.R.; Dagle, J.E.; Lyon, W.F. III

    1992-01-01

    Currently, trade-offs are being made among the various propulsion systems being considered for the Space Exploration Initiative (SEI) missions. It is necessary to investigate the reliability aspects as well as the efficiency, mass savings, and experience characteristics of the various configurations. Reliability is a very important factor for the SEI missions because of the long duration and because problems will be fixed onboard. The propulsion options that were reviewed consist of nuclear thermal propulsion (NTP), nuclear electric propulsion (NEP) and various configurations of each system. There were four configurations developed for comparison with the NTP as baselined in the Synthesis (1991): (1) NEP, (2) hybrid NEP/NTP, (3) hybrid with power beaming, and (4) NTP upper stage on the heavy lift launch vehicle (HLLV). The comparisons were based more or less on a qualitative review of complexity, stress levels and operations for each of the four configurations. Each configuration included a pressurized NEP and an NTP ascent stage propulsion system for the Mars mission.

  20. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  1. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  2. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect (OSTI)

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  4. EIS-0251: Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)

    Broader source: Energy.gov [DOE]

    This Final Environmental Impact Statement addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.

  5. Site Map | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Home Site Map Front page Front page of National Nuclear Security Administration Main menu People Mission Powering the Nuclear Navy Concern for the Environment Protection of People Naval Nuclear Propulsion Plants Management and Administration Public Affairs More About NNSA's Naval Reactors Office Emergency Response Counterterrorism Recapitalizing Our Infrastructure Preventing Proliferation Managing the Stockpile Dismantlement and Disposition Stockpile Stewardship Program Quarterly Experiments

  6. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  7. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect (OSTI)

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H.; Sawyer, J.C. Jr.; Bari, R.A.; Brown, N.W.; Cullingford, H.S.; Hardy, A.C.; Niederauer, G.F.; Remp, K.; Rice, J.W.; Sholtis, J.A.

    1992-09-01

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  8. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect (OSTI)

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H. ); Sawyer, J.C. Jr. ); Bari, R.A. ); Brown, N.W. ); Cullingford, H.S.; Hardy, A.C. (National Aeronautics and Space Administ

    1992-01-01

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  9. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    SciTech Connect (OSTI)

    Bruce G. Schnitzler

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as

  10. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  11. Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion...

    Office of Scientific and Technical Information (OSTI)

    the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing...

  12. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine

  13. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    SciTech Connect (OSTI)

    Vishal Patel

    2015-02-01

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predicted carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.

  14. National Nuclear Security Administration Official Tours Cleanup Operations for Navy

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Adm. James F. Caldwell Jr., director of the DOE National Nuclear Security Administration’s Naval Nuclear Propulsion Program, recently toured the Hanford Site cleanup activities managed by EM’s Richland Operations Office (RL). RL Manager Stacy Charboneau welcomed Caldwell to the site.

  15. naval reactors

    National Nuclear Security Administration (NNSA)

    6%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  16. naval reactors

    National Nuclear Security Administration (NNSA)

    6%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  18. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    SciTech Connect (OSTI)

    T.L. Mitchell

    2000-05-31

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M&O 2000a).

  19. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  20. Special nuclear material information, security classification guidance. Instruction

    SciTech Connect (OSTI)

    Flickinger, A.

    1982-12-03

    The Instruction reissues DoD Instruction 5210.67, July 5, 1979, and provides security classification guidance for information concerning significant quantities of special nuclear material, other than that contained in nuclear weapons and that used in the production of energy in the reactor plant of nuclear-powered ships. Security classification guidance for these data in the latter two applications is contained in Joint DoE/DoD Nuclear Weapons Classification Guide and Joint DoE/DoD Classification Guide for the Naval Nuclear Propulsion Program.

  1. Naval Waste Package Design Report

    SciTech Connect (OSTI)

    M.M. Lewis

    2004-03-15

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.

  2. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  3. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  4. Naval Spent Fuel Rail Shipment Accident Exercise Objectives ...

    Office of Environmental Management (EM)

    Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives PDF icon Naval Spent Fuel Rail Shipment Accident Exercise ...

  5. DOE - Office of Legacy Management -- U S Naval Radiological Defense

    Office of Legacy Management (LM)

    Laboratory - CA 0-06 Naval Radiological Defense Laboratory - CA 0-06 FUSRAP Considered Sites Site: U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY (CA.0-06) Eliminated from consideration under FUSRAP - Referred to the DoD Designated Name: Not Designated Alternate Name: None Location: San Francisco , California CA.0-06-1 Evaluation Year: 1987 CA.0-06-1 Site Operations: NRC licensed DoD facility which used small quantities of nuclear materials for R&D purposes and decontaminated ships.

  6. Thermal Evaluation for the Naval SNF Waste Package

    SciTech Connect (OSTI)

    T.L. Mitchell

    2000-04-25

    The purpose of this calculation is to evaluate the thermal performance of the naval long spent nuclear fuel (SNF) waste package (WP) under multiple disposal conditions in a monitored geologic repository (MGR). The scope of this calculation is limited to determination of thermal temperature profiles upon the surface of, and within, the naval long SNF WP. The objective is to develop a temperature profile history within the WP, at time increments up to 10,000 years of emplacement. The results of this calculation are intended to support the Naval SNF WP Analysis and Model Report (AMR) for Site Recommendation (SR). This calculation was performed to the specifications within its Technical Development Plan (TDP) (Ref. 8.16). This calculation is developed and documented in accordance with the AP-3.12Q/REV. 0IICN. 0 procedure, Calculations.

  7. NNSA Timeline | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. ...

  8. Naval Research Laboratory Technology Marketing Summaries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Research Laboratory 8 Technology Marketing Summaries Category Title and Abstract Laboratories Date Solar Photovoltaic Find More Like This Sputtered Thin Film Photovoltaics ...

  9. Congressional Delegation visits Naval Reactors Facility | National...

    National Nuclear Security Administration (NNSA)

    Chuck Fleischmann of the House Appropriations Subcommittee on Energy and Water Development, visited the Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). ...

  10. Geothermal energy at Long Beach Naval Shipyard and Naval Station and at Seal Beach Naval Weapons Station, California. Final report

    SciTech Connect (OSTI)

    Higgins, C.T.; Chapman, R.H.

    1984-01-01

    The purpose of this project was to determine and evaluate sources of geothermal energy at two military bases in southern California, the Long Beach Naval Shipyard and Naval Station and the Seal Beach Naval Weapons Station. One part of the project focused on the natural geothermal characteristics beneath the naval bases. Another part focused on the geothermal energy produced by oilfield operations on and adjacent to each base. Results of the study are presented here for the US Department of the Navy to use in its program to reduce its reliance on petrolem by the development of different sources of energy. The study was accomplished under a cooperative agreement between the US Department of Energy's San Francisco Operations Office and the Department of the Navy's Naval Weapons Center, China Lake, California, for joint research and development of geothermal energy at military installations.

  11. 2012 Annual Planning Summary for Naval Reactors | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reactors 2012 Annual Planning Summary for Naval Reactors The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the ...

  12. Development Wells At Fallon Naval Air Station Area (Sabin, Et...

    Open Energy Info (EERE)

    Fallon Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station...

  13. Naval Spent Fuel Rail Shipment Accident Exercise Objectives

    Office of Environmental Management (EM)

    NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the ...

  14. 2013 Federal Energy and Water Management Award Winner Naval Sea...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Sea Systems Command 2013 Federal Energy and Water Management Award Winner Naval Sea Systems Command PDF icon fewm13nswcphiladelphiahighres.pdf PDF icon ...

  15. hrp | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    hrp Personnel Security Program NNSA is responsible for managing national nuclear security and supports several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and Administration and the Office of the Administrator.

  16. Microsoft Word - Document1

    Office of Environmental Management (EM)

    ... DOE and the Naval Nuclear Propulsion Program shall share budget information concerning ... Support Facility at the Naval Surface Warfare Center, Carderock Division, Acoustic ...

  17. About ORP - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Naval Reactors What Is the Naval Nuclear Propulsion Program? The Naval Nuclear Propulsion Program comprises the military and civilian personnel who design, build, operate, maintain, and manage the nuclear-powered ships and the many facilities that support the U.S. nuclear-powered naval fleet. The Program has cradle-to-grave responsibility for all naval nuclear propulsion matters. Program responsibilities are delineated in Presidential Executive Order 12344 of February 1, 1982, and

  18. USS Nautilus 60th Anniversary | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    Energy for Nuclear SecurityAdministrator, NNSA Washington Naval Yard Thank you very much. I am honored to represent the Department of Energy and the National Nuclear Security ...

  19. 1996 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    1996-12-31

    The results of the radiological and nonradiological environmental monitoring programs for 1996 at the Naval Reactors Facility (NRF) are presented in this report. The NRF is located on the Idaho National Engineering and Environmental Laboratory and contains three naval reactor prototypes and the Expended Core Facility, which examines developmental nuclear fuel material samples, spent naval fuel, and irradiated reactor plant components/materials. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  20. Naval Petroleum Reserves | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a ... 1900s, the government-owned petroleum and oil shale properties were originally envisioned ...

  1. Special Analysis: Naval Reactor Waste Disposal Pad

    SciTech Connect (OSTI)

    Cook, J.R.

    2003-03-31

    This report presents the results of a special study of the Naval Reactor Waste Disposal Pad located within the boundary of the E-Area Low-Level Waste Facility at the Savannah River Site.

  2. Our Programs | National Nuclear Security Administration | (NNSA...

    National Nuclear Security Administration (NNSA)

    About Our Programs NNSA's program support is divided into several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, ...

  3. SUPPLEMENT ANALYSIS FOR THE NUCLEAR INFRASTRUCTURE PROGRAMMATIC

    Broader source: Energy.gov (indexed) [DOE]

    ... naval reactor research and development, medical and industrial isotope production, and civilian nuclear research and development activities, at its current operating capacities. ...

  4. Advanced propulsion on a shoestring

    SciTech Connect (OSTI)

    Lerner, E.J.

    1990-05-01

    Consideration is given to propulsion concepts under study by NASA Advanced Propulsion Research Program. These concepts include fusion, antimatter-matter annihilation, microwave electrothermal, and electron cyclotron resonance propulsion. Results from programs to develop fusion technologies are reviewed, including compact fusion devices and inertial confinement experiments. Problems concerning both antimatter and fusion propulsion concepts are examined and the economic issues related to propulsion research are discussed.

  5. Annual Reports | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Annual Reports Environmental Monitoring Report NT-16-1 - May 2016 - ENVIRONMENTAL MONITORING AND DISPOSAL OF RADIOACTIVE WASTES FROM U.S. NAVAL NUCLEAR-POWERED SHIPS AND THEIR SUPPORT FACILITIES Radiation Exposure Monitoring Report NT-16-2 - May 2016 - OCCUPATIONAL RADIATION EXPOSURE FROM U.S. NAVAL NUCLEAR PLANTS AND THEIR SUPPORT FACILITIES Report NT-16-3 - May 2016 - OCCUPATIONAL RADIATION EXPOSURE FROM NAVAL REACTORS' DEPARTMENT OF ENERGY FACILITIES Occupational Safety and Health Report

  6. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell

  7. The Naval Petroleum and Oil Shale Reserves | Department of Energy

    Energy Savers [EERE]

    The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing ...

  8. 2014 Annual Planning Summary for the NNSA Naval Reactors

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the NNSA Naval Reactors.

  9. CX-008819: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility Parking Lot Expansion General Plant Project CX(s) Applied: B1.15 Date: 06/20/2012 Location(s): Idaho Offices(s): Naval Nuclear Propulsion Program, Naval Reactors

  10. nuclear enterprise | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    enterprise New Report from NNSA Highlights Major Achievements for 2015 Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise The National Nuclear Security Administration (NNSA) today released "NNSA Achievements: 2015 By the Numbers," a report highlighting major accomplishments and milestones

  11. National Nuclear Security Administration Highlights FY'17 Budget...

    National Nuclear Security Administration (NNSA)

    secure, and effective nuclear deterrent; reducing the threat posed by nuclear proliferation and terrorism; and providing safe and effective nuclear propulsion for the U.S. ...

  12. Audit Report: OIG-0884 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OIG-0884 Audit Report: OIG-0884 April 12, 2013 Management of Naval Reactors' Cyber Security Program The Naval Reactors Program (Naval Reactors), an organization within the National Nuclear Security Administration, provides the military with safe and reliable nuclear propulsion plants to power warships and submarines. Naval Reactors maintains responsibility for activities supporting the United States Naval fleet nuclear propulsion systems, including research and design, operations and maintenance

  13. Non-nuclear submarine tankers could cost-effectively move Arctic oil and gas

    SciTech Connect (OSTI)

    Kumm, W.H.

    1984-03-05

    Before the advent of nuclear propulsion for U.S. Navy submarines, fuel cells were considered to be the next logical step forward from battery powered submarines which required recharging. But with the launching of the USS Nautilus (SSN-571) in 1954, the development of fuel-cell propulsion was sidelined by the naval community. Nearly 30 years later fuel-cell propulsion on board submarines is actually more cost-effective than the use of nuclear propulsion. In the Artic Ocean, the use of the submarine tanker has long been considered commercially appropriate because of the presence of the polar ice cap, which inhibits surface ship transport. The technical difficulty and high operating cost of Arctic icebreaking tankers are strong arguments in favor of the cheaper, more efficient submarine tanker. Transiting under the polar ice cap, the submarine tanker is not an ''Arctic'' system, but merely a submerged system. It is a system usable in any ocean around the globe where sufficient depth exists (about 65% of the global surface). Ice breakers are another story; their design only makes them useful for transit through heavy sea ice in coastal environments. Used anywhere else, such as in the open ocean or at the Arctic ice cap, they are not a cost-effective means of transport. Arctic sea ice conditions require the Arctic peculiar icebreaking tanker system to do the job the hard way-on the surface. But on the other hand, Arctic sea ice conditions are neatly set aside by the submarine tanker, which does it the energy-efficient, elegant way submerged. The submarine tanker is less expensive to build, far less expensive to operate, and does not need to be nuclear propelled.

  14. Management of Naval Reactors' Cyber Security Program, OIG-0884

    Broader source: Energy.gov (indexed) [DOE]

    ... Specifically, although the site transitioned to training employees using an online service, Naval Reactors Federal employees did not have the necessary application licenses needed ...

  15. United States Naval Surface Warfare Center | Open Energy Information

    Open Energy Info (EERE)

    Warfare Center Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Naval Surface Warfare Center Address Carderock, 9500 MacArthur Boulevard...

  16. Audit Report - Naval Reactors Information Technology System Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EBS) project that included procurement, finance, human resources and logistics modules. ... The procurement module alone is expected to cost approximately 12.8 million, and Naval ...

  17. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    unclassified information and can be broadly categorized as Official Use Only, Unclassified Controlled Nuclear Information, and unclassified Naval Nuclear Propulsion Information. ...

  18. Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. CITE: 10USC7420 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7421 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7422 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7423 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7424 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE: 10USC7425 CHAPTER 641--NAVAL PETROLEUM RESERVES CITE:

  19. Diesel fueled ship propulsion fuel cell demonstration project

    SciTech Connect (OSTI)

    Kumm, W.H.

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  20. Overview of Propulsion Materials | Department of Energy

    Energy Savers [EERE]

    Propulsion Materials Overview of Propulsion Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ...

  1. Lightweighting and Propulsion Materials Roadmapping Workshop...

    Energy Savers [EERE]

    Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief 2012 DOE Hydrogen and Fuel Cells Program ...

  2. REPORT NT-15-1

    National Nuclear Security Administration (NNSA)

    REPORT NT-15-1 MAY 2015 ENVIRONMENTAL MONITORING AND DISPOSAL OF RADIOACTIVE WASTES FROM U.S. NAVAL NUCLEAR-POWERED SHIPS AND THEIR SUPPORT FACILITIES NAVAL NUCLEAR PROPULSION ...

  3. REPORT NT-15-2

    National Nuclear Security Administration (NNSA)

    2 MAY 2015 OCCUPATIONAL RADIATION EXPOSURE FROM U.S. NAVAL NUCLEAR PLANTS AND THEIR SUPPORT FACILITIES NAVAL NUCLEAR PROPULSION PROGRAM DEPARTMENT OF THE NAVY WASHINGTON, D.C. ...

  4. Naval reactors in need of redesign

    SciTech Connect (OSTI)

    Kramer, David

    2015-05-15

    Nonproliferation concerns should propel US Navy to switch to safer nuclear fuel, says FAS task force.

  5. Alternative energy conversion demonstration laboratory at U. S. Naval Academy

    SciTech Connect (OSTI)

    Wu, C.

    1983-12-01

    This paper describes an alternative energy conversion demonstration laboratory which supplements classroom theory in a senior engineering elective course in energy conversion in the Department of Mechanical Engineering at the U.S. Naval Academy. Oil, nuclear energy, and other conventional sources of power have been the dominant sources for industrial society and the U.S. Navy, and will continue to be so for the foreseeable future. There are other possibilities, however, including wind power, solar power, ocean thermal power and tidal power. A need for alternative sources of energy for the Navy was recognized at the time of the Arab oil embargo in 1973, and an academic program in alternative energy has been developed to help satisfy that need. Specific demonstrations included in this paper are as follows: Mechanical modeling of the depletion of energy reserve, Computer graphic simulation of energy consumption and energy resource exhaust, Wind model, Thermax helius rotor wind machine, Solar breeze - an electric sailboat project, Vertical axis wind turbine, Helicopter, airplane propeller and windmill models test in wind tunnel, Ocean Thermal Energy Conversion Device Demonstration, Pneumatic Wave Energy Conversion Device Demonstration, Chemical Energy Storage Device Demonstration, Solar Energy Demonstration.

  6. High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options

    SciTech Connect (OSTI)

    Koppel, Christophe R.; Duchemin, Olivier; Valentian, Dominique

    2006-01-20

    Recent US initiatives in Nuclear Propulsion lend themselves naturally to raising the question of the assessment of various options and particularly to propose the High Power Electric Propulsion Subsystem (HPEPS) for the Nuclear Electric Propulsion (NEP). The purpose of this paper is to present the guidelines for the HPEPS with respect to the mission to Mars, for automatic probes as well as for manned missions. Among the various options, the technological options and the trajectory options are pointed out. The consequences of the increase of the electrical power of a thruster are first an increase of the thrust itself, but also, as a general rule, an increase of the thruster performance due to its higher efficiency, particularly its specific impulse increase. The drawback is as a first parameter, the increase of the thruster's size, hence the so-called 'thrust density' shall be high enough or shall be drastically increased for ions thrusters. Due to the large mass of gas needed to perform the foreseen missions, the classical xenon rare gas is no more in competition, the total world production being limited to 20 -40 tons per year. Thus, the right selection of the propellant feeding the thruster is of prime importance. When choosing a propellant with lower molecular mass, the consequences at thruster level are an increase once more of the specific impulse, but at system level the dead mass may increase too, mainly because the increase of the mass of the propellant system tanks. Other alternatives, in rupture with respect to the current technologies, are presented in order to make the whole system more attractive. The paper presents a discussion on the thruster specific impulse increase that is sometime considered an increase of the main system performances parameter, but that induces for all electric propulsion systems drawbacks in the system power and mass design that are proportional to the thruster specific power increase (kW/N). The electric thruster specific

  7. DOE - Office of Legacy Management -- Naval Gun Factory and Bureau of

    Office of Legacy Management (LM)

    Ordnance - DC 0-01 Gun Factory and Bureau of Ordnance - DC 0-01 FUSRAP Considered Sites Site: NAVAL GUN FACTORY AND BUREAU OF ORDNANCE (DC.0-01) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.0-01-1 Evaluation Year: 1987 DC.0-01-1 Site Operations: Designed guns and nuclear projectiles. DC.0-01-1 Site Disposition: Eliminated - No Authority DC.0-01-1 Radioactive Materials Handled: None Indicated

  8. Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm000_schutte_2012_o.pdf (4.74 MB) More Documents & Publications Overview of Propulsion Materials Overview of Propulsion Materials Vehicle Technologies Office Merit Review 2015: Overview of VTO Propulsion

  9. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...

    Broader source: Energy.gov (indexed) [DOE]

    a summary of the analysis supporting DOE's determination to dispose of the Naval Petroleum Reserve No. 3 through sale of all right, title, interest on the open market. RMOTC...

  10. Fuel Cell Power Plant Experience Naval Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_8_wolak.pdf (1.51 MB) More Documents & Publications Fuel Cell Power Plants Biofuel Case Study - Tulare, CA Fuel Cell Power Plants Renewable and Waste Fuels Co-production of Hydrogen and Electricity (A Developer's Perspective)

  11. DOE - Office of Legacy Management -- Norfolk Naval Station - VA 05

    Office of Legacy Management (LM)

    Norfolk Naval Station - VA 05 FUSRAP Considered Sites Site: NORFOLK NAVAL STATION (VA.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Norfolk , Virginia VA.05-1 Evaluation Year: 1993 VA.05-1 Site Operations: Demonstration of extinguishing a uranium fire at the Fire Fighters School for AEC contractors. VA.05-3 VA.05-2 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantity of materials

  12. Nuclear pursuits

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  13. Mr. Francis J. Veale, Jr. Texas Instruments, Inc.

    Office of Legacy Management (LM)

    relate primarily to provisions of contracts with the former Atomic Energy Commission which TI must address to the appropriate field element of the naval nuclear propulsion program. ...

  14. U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL ANNUAL...

    Broader source: Energy.gov (indexed) [DOE]

    ... River Site- Savannah River Nuclear Solutions 2010-2012 Oak Ridge Y-12- Babcock & Wilcox Y-12 LLC 2013 Naval Reactors- Bechtel Marine Propulsion Corporation 2013 ...

  15. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  16. CX-009246: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility Parking Lot Expansion General Plant Project CX(s) Applied: B1.15 Date: 06/20/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program, NRF

  17. CX-013878: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility (NRF) Storm Sewer West Main Replacement Project CX(s) Applied: B2.5Date: 07/06/2015 Location(s): None ProvidedOffices(s): Naval Nuclear Propulsion Program

  18. CX-013759: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility (NRF) Production Support Complex 3rd Floor General Plant Project CX(s) Applied: B1.15Date: 04/27/2015 Location(s): OtherOffices(s): Naval Nuclear Propulsion Program

  19. Performance enhancement using power beaming for electric propulsion earth orbital transporters

    SciTech Connect (OSTI)

    Dagle, J.E.

    1991-08-01

    An electric propulsion Earth orbital transport vehicle (EOTV) can effectively deliver large payloads using much less propellant than chemical transfer methods. By using an EOTV instead of a chemical upper stage, either a smaller launch vehicle can be used for the same satellite mass or larger satellite can be deployed using the same launch vehicle. However, the propellant mass savings from using the higher specific impulse of electric propulsion may not be enough to overcome the disadvantage of the added mass and cost of the electric propulsion power source. Power system limitations have been a major factor delaying the acceptance and use of electric propulsion. This paper outlines the power requirements of electric propulsion technology being developed today, including arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines. Power supply characteristics are discussed for nuclear, solar, and power-beaming systems. Operational characteristics are given for each, as are the impacts of the power supply alternative on the overall craft performance. Because of its modular nature, the power-beaming approach is able to meet the power requirements of all three electric propulsion types. Also, commonality of approach allows different electric propulsion approaches to be powered by a single power supply approach. Power beaming exhibits better flexibility and performance than on-board nuclear or solar power systems.

  20. Overview of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm000_gibbs_2012_o.pdf (1.53 MB) More Documents & Publications Overview of Propulsion Materials Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief Vehicle Technologies Office Merit Review 2015: Overview of VTO Propulsion Material Technologies

  1. Naval Petroleum and Oil Shale Reserves. Annual report of operations

    SciTech Connect (OSTI)

    Not Available

    1982-10-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR), created to provide a source of liquid fuels for the armed forces during national emergencies, were established by a series of Executive Orders between 1912 and 1924. Following the 1973 to 1974 Arab Oil Embargo, which demonstrated the Nation's vulnerability to oil supply interruptions, the Congress authorized and directed in 1974 that the Reserves be explored and developed to their full economic and productive potential. In October 1981, the President notified the Congress of his decision to extend production of the Naval Petroleum Reserves to April 6, 1985. That decision became final when the Congress did not exercise its authority to disapprove the action. With regard to the Naval Oil Shale Reserves (NOSRs), a program was initiated in 1977 to examine the resource for development and subsequent production should national defense requirements so dictate.

  2. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  3. Limiting factors to advancing thermal-battery technology for naval applications

    SciTech Connect (OSTI)

    Davis, P.B.; Winchester, C.S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and Power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  4. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  5. U.S. Naval Station, Guantanamo Bay, Cuba | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Station, Guantanamo Bay, Cuba U.S. Naval Station, Guantanamo Bay, Cuba Fact sheet describes the Energy Savings Performance Contract (ESPC) success story on environmental stewardship and cost savings at the U.S. Naval Station at Guantanamo Bay, Cuba. Download the U.S. Naval Station at Guantanamo Bay, Cuba fact sheet. (316.37 KB) More Documents & Publications Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency Greenpower Trap Mufflerl System

  6. Final MTI Data Report: Dahlgren Naval Surface Warfare Center

    SciTech Connect (OSTI)

    Parker, M.J.

    2003-03-17

    During the period from February 2001 to August 2002, paved-surface (tarmac) temperatures were collected at the Dahlgren Naval Surface Warfare Center. This effort was led by the Savannah River Technology Center (SRTC), with the assistance of base personnel, as part of SRTC's ground truth mission for the U.S. Department of Energy's Multispectral Thermal Imager (MTI) satellite.

  7. Heavy Vehicle Propulsion Materials Program

    SciTech Connect (OSTI)

    Diamond, S.; Johnson, D.R.

    1999-04-26

    The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

  8. Heatpipe space power and propulsion systems

    SciTech Connect (OSTI)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-12-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: The Heatpipe Power System (HPS), which provides power only; and the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, which greatly facilitates system fabrication and handling. Third, full electrically heated system testing of all modes is possible, with minimal operations required to replace the heaters with fuel and to ready the system for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single-point failures during power mode operation. Eighth, the fuel burnup rate is quite low to help ensure >10-yr system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, full ground nuclear test is not needed, and development costs will be low. One design for a low-power HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of {approximately}500 kg. The unicouple thermoelectric converters have a hot-shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program and has demonstrated an operational lifetime of decades. A core with a larger number of smaller modules (same overall size) can be used to provide up to 500 kWt to a power conversion subsystem, and a slightly larger core using a higher heatpipe to fuel ratio can provide >1 MWt.

  9. Rocketdyne Propulsion & Power DOE Operations Annual Site Environmental Report 1996

    SciTech Connect (OSTI)

    Tuttle, R. J.

    1997-11-10

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by Rocketdyne Propulsion & Power of Boeing North American. Inc. (formerly Rockwell International Corporation). These are identified as the Santa Susana Field Laboratory (SSFL and the De Soto site. The sites have been used for manufacturing; R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warrants comprehensive monitoring to ensure protection of the environment.

  10. Mission | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Mission Mission Statement "Enhancing and ensuring the future of the Nuclear Security Enterprise through effective nuclear production operations" Mission Execute effective contract management and oversight to safely and securely maintain the nuclear weapon stockpile for the Nuclear Security Enterprise; provide enriched uranium for naval, research, and isotope production reactors, and support nonproliferation activities to reduce the global nuclear threat. Vision Make the world safer by

  11. Space propulsion: The antimatter advantage (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Space propulsion: The antimatter advantage Citation Details In-Document ... Publication Date: 1993-11-01 OSTI Identifier: 5657366 Resource Type: Journal Article ...

  12. Powering | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. NNSA's Naval Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. Learn More USS George H.W. Bush conducts flight operations USS George H.W. Bush conducts flight

  13. Energy use baselining study for the National Naval Medical Center

    SciTech Connect (OSTI)

    Parker, G.B.; Halverson, M.A.

    1992-04-01

    This report provides an energy consumption profile for fourteen buildings at the National Naval Medical Center (NNMC) in Bethesda, Maryland. Recommendations are also made for viable energy efficiency projects funded with assistance from the servicing utility (Potomic Electric Power Company) in the form of rebates and incentives available in their Demand Side Management (DSM) program and through Shared Energy Savings (SES) projects. This report also provides estimates of costs and potential energy savings of the recommended projects.

  14. DOE - Office of Legacy Management -- Naval Research Laboratory - DC 02

    Office of Legacy Management (LM)

    Research Laboratory - DC 02 FUSRAP Considered Sites Site: NAVAL RESEARCH LABORATORY (DC.02 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Washington , D.C. DC.02-4 Evaluation Year: 1987 DC.02-4 Site Operations: Research and development on thermal diffusion. DC.02-4 Site Disposition: Eliminated - No Authority - AEC licensed - Military facility DC.02-4 DC.02-1 Radioactive Materials Handled: Yes Primary Radioactive

  15. Feasibility of MHD submarine propulsion

    SciTech Connect (OSTI)

    Doss, E.D. ); Sikes, W.C. )

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  16. Ablative Laser Propulsion: An Update, Part II

    SciTech Connect (OSTI)

    Pakhomov, Andrew V.; Lin Jun; Thompson, M. Shane

    2004-03-30

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the experimental technique developed for determination of specific impulses from plasma plume imaging with an intensified CCD camera.

  17. Ablative Laser Propulsion: An Update, Part I

    SciTech Connect (OSTI)

    Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A.

    2004-03-30

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets.

  18. Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    08 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report PDF icon 2008propulsionmaterials.pdf More ...

  19. 2008 Annual Merit Review Results Summary - 12. Propulsion Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Propulsion Materials 2008 Annual Merit Review Results Summary - 12. Propulsion Materials DOE Vehicle Technologies Annual Merit Review 2008meritreview12.pdf (2.52 MB) More ...

  20. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII...

    Office of Scientific and Technical Information (OSTI)

    Conference: Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1) Citation Details In-Document Search Title: Hydrogen peroxide propulsion for smaller satellites ...

  1. A Microwave Thruster for Spacecraft Propulsion (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion This presentation ...

  2. Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2013ProgressReportforPropulsionMaterials.pdf More Documents & Publications NOx sensor development Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual ...

  3. Looking From A Hilltop: Automotive Propulsion System Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Looking From A Hilltop: Automotive Propulsion System Technology Looking From A Hilltop: Automotive Propulsion System Technology Outlook for global fuel economy requirements and ...

  4. Enabling Green Energy and Propulsion Systems via Direct Noise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research ...

  5. Naval Petroleum and Oil Shale Reserves annual report of operations for fiscal year 1996

    SciTech Connect (OSTI)

    1996-12-31

    During fiscal year 1996, the Department of Energy continued to operate Naval Petroleum Reserve No. 1 in California and Naval Petroleum Reserve No. 3 in Wyoming through its contractors. In addition, natural gas operations were conducted at Naval Petroleum Reserve No. 3. All productive acreage owned by the Government at Naval Petroleum Reserve No. 2 in California was produced under lease to private companies. The locations of all six Naval Petroleum and Oil Shale Reserves are shown in a figure. Under the Naval Petroleum Reserves Production Act of 1976, production was originally authorized for six years, and based on findings of national interest, the President was authorized to extend production in three-year increments. President Reagan exercised this authority three times (in 1981, 1984, and 1987) and President Bush authorized extended production once (in 1990). President Clinton exercised this authority in 1993 and again in October 1996; production is presently authorized through April 5, 2000. 4 figs. 30 tabs.

  6. Sale of the Elk Hills Naval Petroleum Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Petroleum Reserves » Naval Reserves » Sale of the Elk Hills Naval Petroleum Reserve Sale of the Elk Hills Naval Petroleum Reserve Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia Godley, DOE's Assistant Secretary for Fossil Energy, who orchestrated the sale, looking on. Energy Secretary Federico Pena (left) and Occidental Petroleum's David Hentschel sign the historic transfer agreement with Patricia

  7. DOE - Office of Legacy Management -- Naval Ordnance Test Station - CA 06

    Office of Legacy Management (LM)

    Test Station - CA 06 FUSRAP Considered Sites Site: NAVAL ORDNANCE TEST STATION (CA.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: China Lake Naval Weapons Center Salt Wells Pilot Plant CA.06-1 Location: Inyokern , California CA.06-1 Evaluation Year: 1987 CA.06-1 Site Operations: Naval facility; experimental development work on shape charges and quality castings on a pilot plant scale. CA.06-1 Site Disposition: Eliminated - No indication that

  8. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  9. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  10. Nuclear Navy Turns 50 | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Navy Turns 50 Nuclear Navy Turns 50 Washington, DC Crew members of the U.S.S. Enterprise, the first nuclear-powered aircraft carrier, spell out NR-50! To commemorate the 50th anniversary of the Nuclear Navy. Admiral Hyman G. Rickover formed the Nuclear Power Branch within the Navy's Bureau of Ships in August 1948. The Office of Naval Reactors is an integrated organization of DOE and the Department of Navy. The Enterprise's eight A2W nuclear reactors were developed by Bettis Laboratory, with the

  11. A Review of Laser Ablation Propulsion

    SciTech Connect (OSTI)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-08

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  12. Application of a neptune propulsion concept to a manned mars excursion. Master's thesis

    SciTech Connect (OSTI)

    Finley, C.J.

    1993-04-01

    NEPTUNE is a multimegawatt electric propulsion system. It uses a proven compact nuclear thermal rocket, NERVA, in a closed cycle with a magnetohydrodynamic (MHD) generator to power a magnetoplasmadynamic (MPD) thruster. This thesis defines constraints on an externally sourced propulsion system intended to carry out a manned Martian excursion. It assesses NEPTUNE's ability to conform to these constraints. Because an unmodified NEPTUNE system is too large, the thesis develops modifications to the system which reduce its size. The result is a far less proven, but more useful derivative of the unmodified NEPTUNE system.

  13. SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVII

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L. E-mail: wih@usno.navy.mil

    2011-08-15

    The results of 3362 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1970 mean relative positions and range in separation from 0.''78 to 72.''17, with a mean separation of 14.''76. This is the 17th in this series of papers and covers the period 2010 January 6 through December 20. Also presented are 10 pairs that are resolved for the first time.

  14. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  15. Naval Petroleum Reserve No. 1 (Elk Hills): Supplemental environmental impact statement. Record of decision

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Pursuant to the Council on Environmental Quality regulations, which implement the procedural provisions of the National Environmental Policy Act, and the US Department of Energy National Environmental Policy Act regulations, the Department of Energy, Office of Fossil Energy, is issuing a Record of Decision on the continued operation of Naval Petroleum Reserve No. 1, Kern County, California. The Department of Energy has decided to continue current operations at Naval Petroleum Reserve No. 1 and implement additional well drilling, facility development projects and other activities necessary for continued production of Naval Petroleum Reserve No. 1 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976. The final Supplemental Environmental Impact Statement, entitled ``Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California (DOE/SEIS-0158),`` was released on September 3, 1993.

  16. Personnel Security Program | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Personnel Security Program NNSA is responsible for managing national nuclear security and supports several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and Administration and the Office of the Administrator. Each program area is focused on specific challenges. The Office of Personnel & Facility Clearances & Classification (OPFCC) is part of the NNSA, Office of

  17. Naval Reactors Facility environmental monitoring report, calendar year 2001

    SciTech Connect (OSTI)

    2002-12-31

    The results of the radiological and nonradiological environmental monitoring programs for 2001 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U. S. Environmental Protection Agency and the U. S. Department of Energy.

  18. Naval Reactors Facility Environmental Monitoring Report, Calendar Year 2003

    SciTech Connect (OSTI)

    2003-12-31

    The results of the radiological and nonradiological environmental monitoring programs for 2003 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency and the U.S. Department of Energy.

  19. SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVIII

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Friedman, Elizabeth A. E-mail: wih@usno.navy.mil

    2012-05-15

    The results of 2490 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over 2000 short-exposure images. These observations are averaged into 1462 mean relative positions and range in separation from 0.''56 to 71.''80, with a mean separation of 14.''81. This is the 18th in this series of papers and covers the period 2011 January 3 through 2011 December 18. Also presented are four pairs which are resolved for the first time, thirteen other pairs which appear to be lost, and linear elements for four additional pairs.

  20. Naval Reactors Facility environmental monitoring report, calendar year 1999

    SciTech Connect (OSTI)

    2000-12-01

    The results of the radiological and nonradiological environmental monitoring programs for 1999 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE).

  1. 1997 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    1997-12-31

    The results of the radiological and nonradiological environmental monitoring programs for 1997 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  2. Naval Reactors Facility environmental monitoring report, calendar year 2000

    SciTech Connect (OSTI)

    2001-12-01

    The results of the radiological and nonradiological environmental monitoring programs for 2000 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE).

  3. SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XIX

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Hurowitz, Haley M. E-mail: wih@usno.navy.mil

    2013-09-15

    The results of 2916 intensified CCD observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 1584 mean relative positions and range in separation from 0.''54 to 98.''09, with a median separation of 11.''73. This is the 19th in this series of papers and covers the period 2012 January 5 through 2012 December 18. Also presented are 10 pairs that are reported for the first time, 17 pairs that appear to be lost, linear elements for 18 pairs, and orbital elements for 2 additional pairs.

  4. National Nuclear Security Administration - Juliana Heynes | Department of

    Energy Savers [EERE]

    Energy Juliana Heynes National Nuclear Security Administration - Juliana Heynes Presented at the 15th Annual DOE Small Business Forum & Expo by: Juliana Heynes, Assistant Director Contracts Division, Naval Reactors Laboratory Field Office National Nuclear Security Administration - Juliana Heynes (6.26 MB) More Documents & Publications Small Business Program Manager Directory Acquisition Forecast Download DOE Contracting Offices Directory

  5. A Microwave Thruster for Spacecraft Propulsion

    SciTech Connect (OSTI)

    Chiravalle, Vincent P

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  6. HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Opportunity with the Naval Nuclear Propulsion Program (NNPP) Juliana Heynes Director - Contracts Division Naval Reactors Laboratory Field Office (NRLFO) 2 The NNPP Business Model * DOE field element's role in the NNPP * Naval Reactors Laboratory Field Office (NRLFO) * The M&O prime contractor * Bechtel Marine Propulsion Corporation (BMPC) 3 * Prime contractor main sites * Bettis Atomic Power Laboratory in West Mifflin, PA * Knolls Atomic Power Laboratory in Niskayuna, NY *

  7. Space propulsion by fusion in a magnetic dipole

    SciTech Connect (OSTI)

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-07-15

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs.

  8. Vehicle Technologies Office Merit Review 2015: Overview of VTO Propulsion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Technologies | Department of Energy Propulsion Material Technologies Vehicle Technologies Office Merit Review 2015: Overview of VTO Propulsion Material Technologies Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of VTO Propulsion Material Technologies. pm000_gibbs_2015_o.pdf (1.5 MB) More Documents & Publications Overview of Propulsion

  9. Site Map | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Site Map Front page Front page of National Nuclear Security Administration Main menu People Mission Powering the Nuclear Navy Concern for the Environment Protection of People Naval Nuclear Propulsion Plants Management and Administration Public Affairs More About NNSA's Naval Reactors Office Emergency Response Counterterrorism Recapitalizing Our Infrastructure Preventing Proliferation Managing the Stockpile Dismantlement and Disposition Stockpile Stewardship Program Quarterly Experiments

  10. Our Leadership | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Leadership The NNSA plays a critical role in ensuring the security of our Nation by maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; reducing the global danger from the proliferation of nuclear weapons and materials; providing the U.S. Navy with safe and effective nuclear propulsion; and providing the Nation with an effective nuclear counterterrorism and incident response capability. The NNSA plays a critical role in ensuring the

  11. US Department of Energy Naval petroleum reserve number 1. Financial statement audit

    SciTech Connect (OSTI)

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the United States taxpayer. NPOSR was established by a series of Executive Orders in the early 1900s as a future source of liquid fuels for the military. NPOSR remained largely inactive until Congress, responding to the Arab oil embargo of 1973-74, passed the Naval Petroleum Reserves Production Act of 1976. The law authorized production for six years. Thereafter, NPOSR production could be reauthorized by the President in three-year increments. Since enactment of the law, every President has determined that continuing NPOSR production is in the nation`s best interest. NPOSR currently is authorized to continue production through April 5, 2000.

  12. EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

  13. EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY

    Broader source: Energy.gov [DOE]

    Final Sitewide Environmental Assessment (EA) This Sitewide EA evaluates activities that DOE would conduct in anticipation of possible transfer of Naval Petroleum Reserve No. 3 (NPR-3) out of Federal operation.

  14. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  15. 2013 Federal Energy and Water Management Award Winner Naval Sea Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Command | Department of Energy Naval Sea Systems Command 2013 Federal Energy and Water Management Award Winner Naval Sea Systems Command fewm13_nswcphiladelphia_highres.pdf (5.43 MB) fewm13_nswcphiladelphia.pdf (1.75 MB) More Documents & Publications CX-005670: Categorical Exclusion Determination U.S. Navy Marine Diesel Engines and the Environment - Part 1 EIS-0259: Record of Decision

  16. DOE - Office of Legacy Management -- Naval Ordnance Laboratory - MD 0-03

    Office of Legacy Management (LM)

    Laboratory - MD 0-03 FUSRAP Considered Sites Site: NAVAL ORDNANCE LABORATORY (MD.0-03 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: Naval Ordnance Laboratory - White Oak Location: White Oak Area , Silver Spring , Maryland MD.0-03-1 MD.0-03-2 Evaluation Year: 1987 MD.0-03-2 Site Operations: Research and development - may have involved radioactive materials because the site was identified on a 1955 Accountability Station

  17. DOE - Office of Legacy Management -- Naval Petroleum Reserve No 3 - 046

    Office of Legacy Management (LM)

    Petroleum Reserve No 3 - 046 FUSRAP Considered Sites Site: Naval Petroleum Reserve No. 3 (046) More information at http://www.fossil.energy.gov/ Designated Name: Not Designated under FUSRAP Alternate Name: Naval Petroleum Reserve No 3 Landfill/Landfarm Location: Natrona County, Wyoming Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Energy research Site Disposition: Site managed by DOE Office of Fossil Energy Radioactive Materials Handled: Unknown Primary

  18. Measurement Issues In Pulsed Laser Propulsion

    SciTech Connect (OSTI)

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-05-06

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  19. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  20. Renewable Energy Optimization Report for Naval Station Newport

    SciTech Connect (OSTI)

    Robichaud, R.; Mosey, G.; Olis, D.

    2012-02-01

    In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

  1. SPECKLE INTERFEROMETRY AT THE U.S. NAVAL OBSERVATORY. XVI

    SciTech Connect (OSTI)

    Mason, Brian D.; Hartkopf, William I.; Wycoff, Gary L. E-mail: wih@usno.navy.mil

    2011-05-15

    The results of 1031 speckle-interferometric observations of double stars, made with the 26 inch refractor of the U.S. Naval Observatory, are presented. Each speckle-interferometric observation of a system represents a combination of over two thousand short-exposure images. These observations are averaged into 457 mean relative positions and range in separation from 0.''15 to 16.''94, with a median separation of 3.''03. The range in V-band magnitudes for the primary (secondary) of observed targets is 3.1-12.9 (3.2-13.3). This is the sixteenth in a series of papers presenting measurements obtained with this system and covers the period 2009 January 12 through 2009 December 17. Included in these data are 12 older measurements whose positions were previously deemed possibly aberrant, but are no longer classified this way following a confirming observation. Also, 10 pairs with a single observation are herein confirmed. This paper also includes the first data obtained using a new ICCD with fiber optic cables.

  2. Links | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Links NNSA HQ National Nuclear Security Administration Advanced Simulation & Computing NNSA Graduate Program NNSA Small Business Program Office of Defense Nuclear Nonproliferation Field Offices NNSA Albuquerque Complex Kansas City Field Office Livermore Field Office Los Alamos Field Office Naval Reactors Idaho Branch Office Nevada Field Office Sandia Field Office DOE Oak Ridge Sites Oak Ridge Office Oak Ridge National Laboratory UCOR Oak Ridge Institute for Science and Education Oak Ridge

  3. Our History | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    History The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. In 2002 NNSA reorganized, removing a layer of management by eliminating its regional operations offices in New Mexico, California and Nevada. Contract and project management oversight responsibility for NNSA's labs, plants and special facilities

  4. NNSA Timeline | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    History NNSA Timeline The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. In 2002 NNSA reorganized, removing a layer of management by eliminating its regional operations offices in New Mexico, California and Nevada. NNSA headquarters retained responsibility for strategic and program planning, budgeting

  5. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    SciTech Connect (OSTI)

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs.

  6. An Integrated Analysis of a NERVA Based Nuclear Thermal Propulsion...

    Office of Scientific and Technical Information (OSTI)

    require that self-consistent neutronicthermal-hydraulicstress analyses be carried out. ... SYSTEMS; PULSES; REACTOR SAFETY; STRESS ANALYSIS; THERMAL HYDRAULICS; WATER; ...

  7. Concrete Industry Benefits from Ancient Romans and the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Concern for the Environment Long before protection of the environment became a prevalent endeavor, it was a high priority in the Naval Nuclear Propulsion Program. From the beginning, the Program recognized that the environmental safety of operating U.S. nuclear-powered ships would be key to their acceptance at home and abroad. Long before protection of the environment became a prevalent endeavor, it was a high priority in the Naval Nuclear Propulsion Program. From the beginning, the

  8. Fluidic electrodynamics: Approach to electromagnetic propulsion

    SciTech Connect (OSTI)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2009-03-16

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  9. Interplanetary space transport using inertial fusion propulsion

    SciTech Connect (OSTI)

    Orth, C.D.

    1998-04-20

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

  10. SERAPHIM: A propulsion technology for fast trains

    SciTech Connect (OSTI)

    Kelly, B.; Turman, B.; Marder, B.; Rohwein, G.; Aeschliman, D.; Cowan, B.

    1995-06-01

    The Segmented Rail Phased Induction Motor (SERAPHIM) is a compact, pulsed linear induction motor (LIM) offering a unique capability for very high speed train propulsion. It uses technology developed for the Sandia coilgun, an electromagnetic launcher designed to accelerate projectiles to several kilometers per second. Both aluminum cylinders and plates were accelerated to a kilometer per second (Mach 3) by passing through a sequence of coils which were energized at the appropriate time. Although this technology was developed for ultra-high velocity, it can be readily adapted to train propulsion for which, at sea level, the power required to overcome air resistance limits the operational speed to a more modest 300 mph. Here, the geometry is reversed. The coils are on the vehicle and the ``projectiles`` are fixed along the roadbed. SERAPHIM operates not by embedding flux in a conductor, but by excluding it. In this propulsion scheme, pairs of closely spaced coils on the vehicle straddle a segmented aluminum reaction rail. A high frequency current is switched on as a coil pair crosses an edge and remains off as they overtake the next segment. This induces surface currents which repel the coil. In essence, the pulsed coils push off segment edges because at the high frequency of operation, the flux has insufficient time to penetrate. In contrast to conventional LIMs, the performance actually improves with velocity, even for a minimal motor consisting of a single coil pair reacting with a single plate. This paper will present results of proof-of-principle tests, electromagnetic computer simulations, and systems analysis. It is concluded that this new linear induction motor can be implemented using existing technology and is a promising alternative propulsion method for very high speed rail transportation.

  11. Office of Nuclear Material Integration (ONMI), NA-73

    National Nuclear Security Administration (NNSA)

    Office of Nuclear Material Integration (ONMI), NA-73 Over 420 Government & Commercial Nuclear Entities currently report to NMMSS Mission U.S. Government's Official Database to Track Transactions, Movements and Inventories of Nuclear Materials throughout the U.S. as well as Imports and Exports Jointly funded by the NRC & NNSA - Managed by NA-73 Fuel Cycle Facilities  Conversion  Enrichment  Fuel Fabrication  Power Reactors, etc. DOE/NNSA  Defense Programs  Naval

  12. About Us | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Home About Us Established by Congress in 2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing; works to reduce the global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and

  13. Our Mission | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Home Our Mission Established by Congress in 2000, NNSA is a semi-autonomous agency within the U.S. Department of Energy responsible for enhancing national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; works to reduce the global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear propulsion; and responds to

  14. THE FOURTH US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC4)

    SciTech Connect (OSTI)

    Zacharias, N.; Finch, C. T.; Bartlett, J. L.; Girard, T. M.; Henden, A.; Monet, D. G.; Zacharias, M. I.

    2013-02-01

    The fourth United States Naval Observatory (USNO) CCD Astrograph Catalog, UCAC4, was released in 2012 August (double-sided DVD and CDS data center Vizier catalog I/322). It is the final release in this series and contains over 113 million objects; over 105 million of them with proper motions (PMs). UCAC4 is an updated version of UCAC3 with about the same number of stars also covering all-sky. Bugs were fixed, Schmidt plate survey data were avoided, and precise five-band photometry was added for about half the stars. Astrograph observations have been supplemented for bright stars by FK6, Hipparcos, and Tycho-2 data to compile a UCAC4 star catalog complete from the brightest stars to about magnitude R = 16. Epoch 1998-2004 positions are obtained from observations with the 20 cm aperture USNO Astrograph's 'red lens', equipped with a 4k by 4k CCD. Mean positions and PMs are derived by combining these observations with over 140 ground- and space-based catalogs, including Hipparcos/Tycho and the AC2000.2, as well as unpublished measures of over 5000 plates from other astrographs. For most of the faint stars in the southern hemisphere, the first epoch plates from the Southern Proper Motion program form the basis for PMs, while the Northern Proper Motion first epoch plates serve the same purpose for the rest of the sky. These data are supplemented by 2MASS near-IR photometry for about 110 million stars and five-band (B, V, g, r, i) APASS data for over 51 million stars. Thus the published UCAC4, as were UCAC3 and UCAC2, is a compiled catalog with the UCAC observational program being a major component. The positional accuracy of stars in UCAC4 at mean epoch is about 15-100 mas per coordinate, depending on magnitude, while the formal errors in PMs range from about 1 to 10 mas yr{sup -1} depending on magnitude and observing history. Systematic errors in PMs are estimated to be about 1-4 mas yr{sup -1}.

  15. Enabling Green Energy and Propulsion Systems via Direct Noise Computation |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research Allocation Program: INCITE Allocation Hours at ALCF: 45,000,000 Year: 2012 Research Domain: Engineering Advanced "green" energy and propulsion systems that deliver improved energy efficiency and yields from renewable sources have driven the development of accurate,

  16. 2010 DOE EERE Vehicle Technologies Program Merit Review - Propulsion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Propulsion Materials 2010 DOE EERE Vehicle Technologies Program Merit Review - Propulsion Materials Propulsion materials research and development merit review results 2010_amr_07.pdf (1.29 MB) More Documents & Publications 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review -

  17. DOE Scientist Earns Chairman's Award from Propulsion and Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliance | Department of Energy Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance DOE Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance October 2, 2009 - 1:00pm Addthis Washington, DC - A researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been presented with the Chairman's Award by the Propulsion and Power Systems Alliance (PPSA). Mary Anne Alvin, a physical scientist in NETL's Office of Research

  18. CX-012099: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kesselring Site Crafts Facility Building 118 CX(s) Applied: B1.15, B1.31, B1.33 Date: 04/14/2014 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  19. CX-008336: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pad 90 Overflow Parking Lot Project CX(s) Applied: B1.15 Date: 05/01/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  20. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    AN 241.3 Small Business Innovative Research AN 241.3 Small Business Technology Transfer Research AN 241.3 Naval Nuclear Propulsion Information AN 241.1 Batch Upload AN 241.1 Web ...

  1. CX-010093: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kesselring Site K&L Load Center Relocation Project CX(s) Applied: B1.15 Date: 04/10/2013 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  2. CX-009245: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building A10 Construction Project CX(s) Applied: B1.15 Date: 08/04/2010 Location(s): New York Offices(s): Naval Nuclear Propulsion Program, Knolls Site

  3. CX-007824: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bettis Atomic Power Laboratory- MRTC Office Building CX(s) Applied: B1.15 Date: 02/22/2012 Location(s): CX: none Offices(s): Naval Nuclear Propulsion Program

  4. CX-007810: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    4160 Volt Upgrade Project CX(s) Applied: B1.15, B2.5 Date: 10/05/2011 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  5. CX-009400: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electrical Load Shedding General Plant Project CX(s) Applied: B1.3 Date: 06/23/2011 Location(s): Idaho Offices(s): Naval Nuclear Propulsion Program

  6. CX-008340: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    L-Building Demolition and Site Restoration CX(s) Applied: B1.16, B1.17, B1.23 Date: 04/19/2020 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  7. CX-009093: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Knolls Laboratory Q14 Sprinkler System Upgrade Project CX(s) Applied: B1.15, B2.2 Date: 08/03/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  8. CX-014279: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lower Level Guard Post Replacement Project CX(s) Applied: B1.11, B1.15, B2.2Date: 09/25/2015 Location(s): New YorkOffices(s): Naval Nuclear Propulsion Program

  9. CX-009405: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    S8Q Plant Supervision Building 113 CX(s) Applied: B1.15 Date: 08/01/2011 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  10. CX-013877: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kesselring Site Gate 5 Project CX(s) Applied: B1.15Date: 06/05/2015 Location(s): None ProvidedOffices(s): Naval Nuclear Propulsion Program

  11. CX-007809: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    KAPL-Hillside, Area of Concern-001 (G2/H2 Portion), Remediation Project CX(s) Applied: B6.1 Date: 09/27/2011 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  12. CX-008337: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Air System Replacement CX(s) Applied: B1.31, B2.2 Date: 04/20/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  13. CX-009402: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Overpack Transfer Path Extension General Plant Project CX(s) Applied: B1.13 Date: 01/31/2011 Location(s): Idaho Offices(s): Naval Nuclear Propulsion Program

  14. OSTIblog Articles in the spaceship propulsion Topic | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    ribbons of colors from a fluorescent green to brilliant purple to a vivid crimson ... physics, chemistry, energy security, advanced space propulsion, and material science. ...

  15. Integrated Mathematical Modeling Software Series of Vehicle Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road WheelTrack Sprocket Integrated Mathematical Modeling Software ...

  16. Marine Hybrid Propulsion Market Revenue is anticipated to Reach...

    Open Energy Info (EERE)

    ferry operators are the major adopters of marine hybrid propulsion systems across the world. These vessels primarily operate in coastal areas and inland waterways, where emission...

  17. MHK Technologies/Wave Energy Propulsion | Open Energy Information

    Open Energy Info (EERE)

    MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations...

  18. FY2013 Propulsion Materials R&D Annual Progress Report

    SciTech Connect (OSTI)

    none,

    2014-01-01

    This report describes the progress made during 2013 on the research and development projects funded by the Propulsion Materials subprogram in the Vehicle Technologies Office.

  19. Vehicle Technologies Office: Propulsion Materials for Cars and Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine,...

  20. A Microwave Thruster for Spacecraft Propulsion Chiravalle, Vincent...

    Office of Scientific and Technical Information (OSTI)

    that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is...

  1. Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report PDF icon 2008propulsionmaterials.pdf More Documents & Publications Vehicle ...

  2. A Microwave Thruster for Spacecraft Propulsion (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these ...

  3. Large-Eddy Simulation for Green Energy and Propulsion Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large-Eddy Simulation for Green Energy and Propulsion Systems PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: General Electric Allocation Program: INCITE Allocation ...

  4. 2008 Propulsion Materials Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ProPulsion Materials annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m this document highlights work sponsored by agencies of the u.s. Government. neither the u.s. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  5. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline |

    Broader source: Energy.gov (indexed) [DOE]

    Energy Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook Mark Blackburn P.E. Office of Nuclear Facility Safety Programs AU, 32 October 21, 2014 Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook (267.25 KB) More Documents & Publications Application of Engineering and Technical Requirements for DOE Nuclear Facilities Standard Review Plan (SRP) DOE-STD-1020-2012 DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities

    0-2002

  6. Idaho_National_Laboratory

    Office of Environmental Management (EM)

    Stacey Francis Small Business Program Manager Idaho National Laboratory 2 Idaho National Laboratory Prime Contractors * Idaho National Laboratory - Managed and Operated by Battelle Energy Alliance, LLC - Office of Nuclear Energy * Idaho Cleanup Project - Managed by Fluor Idaho, LLC - Office of Environmental Management * Naval Reactor Facility - Managed by Bechtel Marine Propulsion Corporation - Naval Nuclear Propulsion Program Department of Energy - Idaho 3 We Maintain: * 890 square miles * 111

  7. Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 8 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report 2008_propulsion_materials.pdf (16.36 MB) More Documents & Publications Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Propulsion Materials

  8. Advanced hybrid vehicle propulsion system study

    SciTech Connect (OSTI)

    Schwarz, R.

    1982-05-01

    Results of a study of an advanced heat engine/electric automotive hybrid propulsion system are presented. The system uses a rotary stratified charge engine and an ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system parameters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 l/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  9. Propulsion and stabilization system for magnetically levitated vehicles

    DOE Patents [OSTI]

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  10. FY2009 Annual Progress Report for Propulsion Materials

    SciTech Connect (OSTI)

    none,

    2010-01-16

    The Propulsion Materials program focuses on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines. Projects within the Propulsion Materials Program address materials concerns that directly impact the critical technical barriers in each of these programs—barriers such as fuel efficiency, thermal management, emissions reduction, and reduced manufacturing costs.

  11. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect (OSTI)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  12. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study details Naval Air Station Oceana findings that its heating needs could be met more efficiently by replacing its central plant with a combination of distributed boilers and ground source heat pumps. The results saved more than 1 million MBtu in energy and 19,574 Kgal of water annually.

  13. Initiative for the 21st century: Advanced space power and propulsion based on lasers

    SciTech Connect (OSTI)

    Logan, B.G.

    1989-02-01

    This paper discusses the use of lasers in spacecraft propulsion systems. Cost, efficiencies and comparisons with other propulsion systems are discussed. (LSP)

  14. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    1998-01-01

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  15. Thorium dioxide: properties and nuclear applications

    SciTech Connect (OSTI)

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  16. Assessment of fuel cell propulsion systems

    SciTech Connect (OSTI)

    Altseimer, J.H.; Frank, J.A.; Nochumson, D.H.; Thayer, G.R.; Rahm, A.M.; Williamson, K.D. Jr.; Hardie, R.W.; Jackson, S.V.

    1983-11-01

    This report assesses the applicability of fuel cells to a wide variety of transportation vehicles and compares them with competing propulsion systems. The assessments include economic evaluations (initial capital cost and levelized-life-cycle costs) and noneconomic evaluations (vehicle performance, power plant size, environmental effects, safety, convenience and reliability). The report also recommends research and development areas to support the development of fuel cell systems. The study indicates that fork-lift trucks are an excellent application for fuel cells. Fuel cell use in urban delivery vans and city buses is promising because it would reduce air pollution. Fuel-cell-powered automobiles, pickup trucks, and intercity buses only look promising over the long term. Based on economic criteria, the use of fuel cells for small marine craft does not appear feasible. Because of economic uncertainties, further study is needed to assess the application of fuel cell systems to freight locomotives and large marine craft.

  17. Beamed Energy Propulsion: Research Status And Needs--Part 1

    SciTech Connect (OSTI)

    Birkan, Mitat

    2008-04-28

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas.

  18. Rocketdyne Propulsion and Power DOE Operations annual site environmental report 1997

    SciTech Connect (OSTI)

    Robinson, K.S.

    1998-11-23

    This annual report discusses environmental monitoring at two manufacturing and test sites operated in the Los Angeles area by Rocketdyne Propulsion and Power of Boeing North American, Inc. These are identified as Area 4 of the SSFL and the De Soto site. These sites have been used for research and development (R and D), engineering, and testing in a broad range of technical fields primarily in energy research and nuclear reactor technology. The De Soto site had research and development laboratories involved with nuclear research. This work was terminated in 1995 and only D and D activities will have potential for impact on the environment. Since 1956, Area 4 has been used for work with nuclear materials, including fabricating nuclear reactor fuels, testing nuclear reactors, and dissembling used fuel elements. This work ended in 1988 and subsequent efforts have been directed toward decommissioning and decontamination of the former nuclear facilities. The primary purpose of this report is to present information on environmental and effluent monitoring of DOE-sponsored activities to the regulatory agencies responsible for oversight. Information presented here concentrates on Area 4 at SSFL, which is the only area at SSFL where DOE operations were performed.

  19. EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...

  20. Investigation on the continued production of the Naval Petroleum Reserves beyond April 5, 1991

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    The authority to produce the Naval Petroleum Reserves (NPRs) is due to expire in April 1991, unless extended by Presidential finding. As provided in the Naval Petroleum Reserves Production act of 1976 (Public Law 94-258), the President may continue production of the NPRs for a period of up to three years following the submission to Congress, at least 180 days prior to the expiration of the current production period, of a report that determines that continued production of the NPRs is necessary and a finding by the President that continued production is in the national interest. This report assesses the need to continue production of the NPRs, including analyzing the benefits and costs of extending production or returning to the shut-in status that existed prior to 1976. This continued production study considers strategic, economic, and energy issues at the local, regional, and national levels. 15 figs., 13 tabs.

  1. FY2011 Annual Progress Report for Propulsion Materials

    SciTech Connect (OSTI)

    Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.

    2011-12-01

    Annual Progress Report for Propulsion Materials focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development.

  2. COLLOQUIUM: EXTERNAL PROPULSION AND THE FUTURE OF SPACE ACCESS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: EXTERNAL PROPULSION AND THE FUTURE OF SPACE ACCESS Dr. Dmitriy Tseliakhovich Escape Dynamics, Inc. At Escape Dynamics we...

  3. Investigation of waste rag generation at Naval Station Mayport. Project report, May 1990-July 1993

    SciTech Connect (OSTI)

    1995-08-01

    The report presents the results of an investigation examining pollution prevention alternatives for reducing the volume of waste rags generated at Naval Station Mayport, located near Jacksonville Beach, Florida. The report recommends five specific pollution prevention alternatives: better operating practices, installation of equipment cleaning stations to remove contaminants normally removed with rags; replacement of SERVE MART rags with disposable wipers; use of recyclable rats for oil and great removal; and confirmation that used rags are fully contaminated prior to disposal.

  4. DOE - Office of Legacy Management -- Naval Oil Shale Reserves Site - 013

    Office of Legacy Management (LM)

    Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) More information at http://www.fossil.energy.gov/ Designated Name: Not Designated under FUSRAP Alternate Name: None Location: Anvil Points, Colorado Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Energy research Site Disposition: Site previously managed by DOE Office of Fossil Energy; transferred to Bureau of Land Management Radioactive Materials Handled: Unknown

  5. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  6. Full Fuel-Cycle Comparison of Forklift Propulsion Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Full Fuel-Cycle Comparison of Forklift Propulsion Systems Full Fuel-Cycle Comparison of Forklift Propulsion Systems This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Developed for the U.S. Department of Energy by Argonne National Laboratory. Full Fuel-Cycle Comparison of Forklift Propulsion Systems (2.02 MB) More Documents

  7. A Microwave Thruster for Spacecraft Propulsion (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this

  8. FY2010 Annual Progress Report for Propulsion Materials

    SciTech Connect (OSTI)

    Davis, Patrick B.; Schutte, Carol L.; Gibbs, Jerry L.

    2011-01-01

    The Propulsion Materials Technology actively supports the energy security and reduction of greenhouse emissions goals of the Vehicle Technologies Program by developing advanced materials that enable development of higher efficiency powertrains for ground transportation. Propulsion Materials works closely with the other disciplines within the VT Program to identify the materials properties essential for the development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light duty powertrains.

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials Merit review of DOE Vehicle Technologies Program research efforts 2009_merit_review_7.pdf (697.66 KB) More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and Lubricants DOE Vehicle Technologies Program 2009 Merit Review Report -

  10. 2008 Annual Merit Review Results Summary - 12. Propulsion Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2. Propulsion Materials 2008 Annual Merit Review Results Summary - 12. Propulsion Materials DOE Vehicle Technologies Annual Merit Review 2008_merit_review_12.pdf (2.52 MB) More Documents & Publications 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 13. Health Impacts

  11. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 7. Materials Technologies: Propulsion Materials Introduction Advanced materials, including metals, polymers, composites, and intermetallic compounds, can play an important role in improving the efficiency of transportation engines and vehicles. Weight reduction is one of the most effective ways to increase the fuel economy of vehicles while reducing exhaust emissions. The development of propulsion materials and enabling technologies will help reduce costs while improving the durability,

  12. Propulsion engineering study for small-scale Mars missions

    SciTech Connect (OSTI)

    Whitehead, J.

    1995-09-12

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

  13. Integrated Mathematical Modeling Software Series of Vehicle Propulsion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System: (1) Tractive Effort (T sub ew) of Vehicle Road Wheel/Track Sprocket | Department of Energy Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road Wheel/Track Sprocket Integrated Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road Wheel/Track Sprocket Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit,

  14. Beamed Energy Propulsion: Research Status And Needs--Part 2

    SciTech Connect (OSTI)

    Birkan, Mitat

    2008-04-28

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be covers Part 2 covers the present research status and needs.

  15. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    SciTech Connect (OSTI)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  16. Nuclear technologies for Moon and Mars exploration

    SciTech Connect (OSTI)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  17. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    SciTech Connect (OSTI)

    Han Bing; Li Beibei; Zhang Hongchao; Chen Jun; Shen Zhonghua; Lu Jian; Ni Xiaowu

    2010-10-08

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. The numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.

  18. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

  19. Australian Science and Technology with Relevance to Beamed Energy Propulsion

    SciTech Connect (OSTI)

    Froning, H. David Jr

    2008-04-28

    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.

  20. Tanker under retrofit for arctic service gets new propulsion design

    SciTech Connect (OSTI)

    Not Available

    1993-07-26

    The world's largest azimuthing propulsion drive will be installed on an oil tanker under retrofit for arctic service by a Finnish shipyard. And plans call for the drive's installation on four 135,000 cu m LNG carriers. The 11.4-mw (15,275 hp) Azipod azimuthing electric propulsion drive is being installed on Nemarc's 16,000 dwt arctic tanker M/T Uikku. The major difference between the Azipod system and traditional Z-type thrusters is that the Azipod's propulsion motor is an electric ac synchronous motor located inside the azimuthing unit. The motor drives a fixed-pitch propeller and is speed-controlled (0--100%) by a cycloconverter. The rotatable Azipod drive enables full power thrust in any desired direction.

  1. Arms control during the pre-nuclear era

    SciTech Connect (OSTI)

    Kaufman, R.G.

    1990-01-01

    This paper analyzes the first extended effort to limit arms in the history of the United States. The author adopts a broad international approach in its examination of the naval arms limitation process that culminated with treaties intended to end the naval competition between the United States, Great Britain, and Japan--the Washington treaties of 1922, the London Treaty of 1930, and the London Treaty of 1936. The author focuses on the following questions in presenting the history and analysis of these treaties: what motivated the U.S. to pursue naval limitation; what did American decisionmakers hope and expect the treaties to achieve; what was the impact of domestic politics on the negotiations and their outcomes; how did negotiators address the problem of verification; and what was the impact of the treaties on naval doctrine and deployment The author has based this study on the premise that a systematic study of prenuclear ideas and events can improve our understanding of the relationship between arms limitation and national security. The author draws comparisons and contrasts between arms limitation during the interwar years and arms control in the nuclear age, offering specific, direct, and compelling considerations of the relevance of the interwar experience to contemporary arms negotiations.

  2. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    SciTech Connect (OSTI)

    D. Ray Johnson; Sidney Diamond

    2000-06-19

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

  3. Revitalizing Y-12's Infrastructure: Building 9995 | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Revitalizing Y-12's Infrastructure: Building 9995 Friday, May 6, 2016 - 11:15am Y-12 National Security Complex in Oak Ridge, TN. Y-12's Analytical Chemistry Operations provides comprehensive analytical services in support of the site's core missions, environmental compliance and overall worker health and safety. ACO scientists, for example, analyze impurity levels to ensure the materials destined for nuclear weapons or naval reactor fuel are of suitably high

  4. 2014 Propulsion Materials R&D Annual Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Propulsion Materials R&D Annual Report 2014 Propulsion Materials R&D Annual Report The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion

  5. Endangered species and cultural resources program, Naval Petroleum Reserves in California, annual report FY97

    SciTech Connect (OSTI)

    1998-05-01

    The Naval Petroleum Reserves in California (NPRC) are oil fields administered by the DOE in the southern San Joaquin Valley of California. Four federally endangered animal species and one federally threatened plant species are known to occur on NPRC: San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides), and Hoover`s wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act (ESA) of 1973. The DOE/NPRC is obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The primary objective of the Endangered Species and Cultural Resources Program is to provide NPRC with the scientific expertise necessary for compliance with the ESA, the National Environmental Policy Act (NEPA), and the National Historic Preservation Act (NHPA). The specific objective of this report is to summarize progress, results, and accomplishments of the program during fiscal year 1997 (FY97).

  6. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplement to a Department of Navy statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Naval Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California.

  7. FY2014 Propulsion Materials R&D Annual Progress Report

    SciTech Connect (OSTI)

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  8. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    SciTech Connect (OSTI)

    A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

    2014-07-01

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  9. EIS-0158-S2: Supplemental Environmental Impact Statement Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement, the supplement to DOE/EIS-0158, to analyze the environmental and socioeconomic impacts of the sale of Naval Petroleum Reserve No. 1 in Kern County, California to Occidental Petroleum Corporation.

  10. EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOE’s Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

  11. Assessment Report: OAS-V-15-01 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Assessment Report: OAS-V-15-01 November 25, 2014 Assessment of Audit Coverage of Cost Allowability for Bechtel Marine Propulsion Corporation During October 1, 2012, Through September 30, 2013, Under Department of Energy Contract No. DE-NR0000031 Bechtel Marine Propulsion Corporation (BMPC) was established solely to operate the Naval Nuclear Propulsion Program, which is a joint Navy-Department of Energy program responsible for the research, design, construction, operation, and maintenance of

  12. Environmental Survey preliminary report, Naval Petroleum Reserves in California (NPRC), Tupman, California

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Naval Petroleum Reserves 1 (NPR-1) and 2 (NPR-2) in California (NPRC), conducted May 9--20, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPRC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involved the review of existing site environmental data, observations of the operations carried on at NPRC, and interviews with site personnel. 120 refs., 28 figs., 40 tabs.

  13. Industrial hygiene survey report of worker exposures to organotins at Norfolk Naval Shipyard, Portsmouth, Virginia

    SciTech Connect (OSTI)

    Eissler, A.W.; Ferrel, T.W.; Bloom, T.F.; Fajen, J.M.

    1985-06-24

    Breathing-zone samples were analyzed for organotin compounds, copper, and xylene during spray application of organotin containing marine antifouling paint at Norfolk Naval Shipyard, Portsmouth, Virginia, March, 1984. The survey was part of a NIOSH study of occupational exposures to organotin compounds, conducted as a component of an assessment to determine the feasibility of conducting a study of reproductive effects. Company personnel records were reviewed. Work practices were observed. The authors conclude that a potential exists for exposures to organotins and copper. As all employees were wearing respiratory protective equipment, actual exposures may be less than that indicated by the analytical data. The facility could contribute 16 potentially exposed workers to the reproductive effects study.

  14. Assessment of Fleet Inventory for Naval Air Station Whidbey Island. Task 1

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Task 1includes a survey of the inventory of non-tactical fleet vehicles at Naval Air Station Whidbey Island (NASWI) to characterize the fleet. This information and characterization are used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the assessments and observations of the current non-tactical fleet, fulfilling the Task 1 requirements.

  15. Laser induced extraplanar propulsion for three-dimensional microfabrication

    SciTech Connect (OSTI)

    Birnbaum, A. J.; Pique, A.

    2011-03-28

    The laser induced extraplanar propulsion process is presented for the creation of controllable three-dimensional deformation of on-substrate components. It is demonstrated that the process is compatible with transparent substrates and ductile materials and is highly controllable in terms of the desired deformation via the adjustment of incident laser energy density. Copper films with thicknesses varying from 0.1-1 {mu}m are deformed over bending angles ranging from 0 deg. - 180 deg. A 355 nm laser at fluences ranging from 10-40 mJ/cm{sup 2} is used in conjunction with an indium-tin-oxide propulsion layer to demonstrate the process. Characterization is performed via electron and laser confocal microscopy.

  16. Enabling Green Energy and Propulsion Systems via Direct Noise Computation |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility High-fidelity simulation of exhaust nozzle under installed configuration Umesh Paliath, GE Global Research; Joe Insley, Argonne National Laboratory Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research Allocation Program: INCITE Allocation Hours at ALCF: 105 Million Year: 2013 Research Domain: Engineering GE Global Research is using the Argonne Leadership

  17. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  18. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect (OSTI)

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  19. Preserving Nuclear Grade Knowledge

    SciTech Connect (OSTI)

    Lange, Bob

    2008-02-05

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most don’t really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding the ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)

  20. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  1. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    SciTech Connect (OSTI)

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  2. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    SciTech Connect (OSTI)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds

  3. Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress Report 2010 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development. 2010_propulsion_materials.pdf (21.92 MB) More Documents & Publications

  4. Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report 2011 annual progress report focusing on enabling and innovative materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics development. 2011_propulsion_materials.pdf (21.95 MB) More Documents & Publications

  5. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  6. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  7. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  8. Using Net-Zero Energy Projects to Enable Sustainable Economic Redevelopment at the Former Brunswick Air Naval Base

    SciTech Connect (OSTI)

    Huffman, S.

    2011-10-01

    A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites. The Brunswick Naval Air Station is a naval air facility and Environmental Protection Agency (EPA) Super Fund site that is being cleaned up, and closed down. The objective of this report is not only to look at the economics of individual renewable energy technologies, but also to look at the systemic benefits that can be gained when cost-effective renewable energy technologies are integrated with other systems and businesses in a community; thus multiplying the total monetary, employment, and quality-of-life benefits they can provide to a community.

  9. Report to the President on agreements and programs relating to the Naval Petroleum and Oil Shale Reserves

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.

  10. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  11. Nuclear programs in India and Pakistan

    SciTech Connect (OSTI)

    Mian, Zia

    2014-05-09

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  12. Final sitewide environmental assessment for continued development of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming

    SciTech Connect (OSTI)

    1995-07-01

    The Secretary of Energy is required by law to explore, prospect, conserve, develop, use, and operate the Naval Petroleum and Oil Shale Reserves. The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258), requires that the Naval Petroleum Reserves be produced at their maximum efficient rate (MER), consistent with sound engineering practices, for a period of six years. To fulfill this mission, DOE is proposing continued development activities which would include the drilling of approximately 250 oil production and injection (gas, water, and steam) wells, the construction of between 25 and 30 miles of associated gas, water, and steam pipelines, the installation of several production and support facilities, and the construction of between 15 and 20 miles of access roads. These drilling and construction estimates include any necessary activities related to the operation of the Rocky Mountain Oilfield Testing Center (RMOTC). The purpose of RMOTC will be to provide facilities and necessary support to government and private industry for testing and evaluating new oilfield and environmental technologies, and to transfer these results to the petroleum industry through seminars and publications. Continued development activities either have no potential to result in adverse environmental impacts or would only result in adverse impacts that could be readily mitigated. The small amounts of disturbed surface area will be reclaimed to its original natural state when production operations terminate. The preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (FONSI). 73 refs.

  13. Naval Petroleum Reserve Number 1 financial statements September 30, 1997 and 1996 (with independent auditors` report thereon)

    SciTech Connect (OSTI)

    1997-12-31

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserve No. 1 (NPR-1) in a manner to achieve the greatest value and benefits to the US taxpayer. As required by the 1996 National Defense Authorization Act, the Department of Energy offered NPR-1 for sale during FY 1997. DOE structured the sale so as to offer two types of ownership segments: one operatorship segment, consisting of 74% of the US interest in NPR-1, and 13 nonoperating segments, each consisting of 2% of the US interest. Potential purchasers could bid on one, some, or all of the segments. If a single purchaser wanted to buy all of the Government`s interest, then its bid would have to exceed the total of the highest bids for all of the individual segments. Bids were due October 1, 1997, at which time DOE received 22 bids from 15 parties acting alone or in concert. The report and management letter present the results of the independent certified public accountants` audits of the Department of Energy`s Naval Petroleum Reserve Number 1 (NPR-1) financial statements as of, and for the years ended, September 30, 1997 and 1996.

  14. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  15. Analysis of the Space Propulsion System Problem Using RAVEN

    SciTech Connect (OSTI)

    diego mandelli; curtis smith; cristian rabiti; andrea alfonsi

    2014-06-01

    This paper presents the solution of the space propulsion problem using a PRA code currently under development at Idaho National Laboratory (INL). RAVEN (Reactor Analysis and Virtual control ENviroment) is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities. It is designed to derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures) and to perform both Monte- Carlo sampling of random distributed events and Event Tree based analysis. In order to facilitate the input/output handling, a Graphical User Interface (GUI) and a post-processing data-mining module are available. RAVEN allows also to interface with several numerical codes such as RELAP5 and RELAP-7 and ad-hoc system simulators. For the space propulsion system problem, an ad-hoc simulator has been developed and written in python language and then interfaced to RAVEN. Such simulator fully models both deterministic (e.g., system dynamics and interactions between system components) and stochastic behaviors (i.e., failures of components/systems such as distribution lines and thrusters). Stochastic analysis is performed using random sampling based methodologies (i.e., Monte-Carlo). Such analysis is accomplished to determine both the reliability of the space propulsion system and to propagate the uncertainties associated to a specific set of parameters. As also indicated in the scope of the benchmark problem, the results generated by the stochastic analysis are used to generate risk-informed insights such as conditions under witch different strategy can be followed.

  16. Endangered species and cultural resources program Naval petroleum Reserves in California. Annual report FY96

    SciTech Connect (OSTI)

    1997-07-01

    In FY96, Enterprise Advisory Services, Inc. (EASI) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on federal properties. Population monitoring activities were conducted for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. Kit fox abundance and distribution was assessed by live-trapping over a 329-km{sup 2} area. Kit fox reproduction and mortality were assessed by radiocollaring and monitoring 22 adults and two pups. Reproductive success and litter size were determined through live-trapping and den observations. Rates and sources of kit fox mortality were assessed by recovering dead radiocollared kit foxes and conducting necropsies to determine cause of death. Abundance of coyotes and bobcats, which compete with kit foxes, was determined by conducting scent station surveys. Kit fox diet was assessed through analysis of fecal samples collected from live-trapped foxes. Abundance of potential prey for kit foxes was determined by conducting transect surveys for lagornorphs and live-trapping small mammals.

  17. Naval Petroleum Reserves in California site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This summary for Naval Petroleum Reserves in California (NPRC) is divided into NPR-1 and NPR-2. Monitoring efforts at NPR-1 include handling and disposal of oilfield wastes; environmental preactivity surveys for the protection of endangered species and archaeological resources; inspections of topsoil stockpiling; monitoring of revegetated sites; surveillance of production facilities for hydrocarbons and oxides of nitrogen (NO{sub x}) emissions; monitoring of oil spill prevention and cleanup; and monitoring of wastewater injection. No major compliance issues existed for NPR-1 during 1989. Oil spills are recorded, reviewed for corrective action, and reported. Environmental preactivity surveys for proposed projects which may disturb or contaminate the land are conducted to prevent damage to the federally protected San Joaquin kit fox, blunt-nosed leopard lizard, Tipton kangaroo rat and the giant kangaroo rat. Projects are adjusted or relocated as necessary to avoid impact to dens, burrows, or flat-bottomed drainages. A major revegetation program was accomplished in 1989 for erosion control enhancement of endangered species habitat. The main compliance issue on NPR-2 was oil and produced water discharges into drainages by lessees. An additional compliance issue on NPR-2 is surface refuse from past oilfield operations. 17 refs.

  18. Evaluation of EHD enhancement and thermoacoustic refrigeration for naval applications. Technical report, Jul-Sep 91

    SciTech Connect (OSTI)

    Memory, S.B.

    1991-12-01

    An evaluation has been made of two different techniques which could prove valuable for Naval refrigeration needs in the future. The first is electrohydrodynamic (EHD) enhancement of pool boiling and condensation heat transfer; this has been shown to provide significant enhancements for both modes of heat transfer under certain conditions and could provide increases in efficiency of present vapor-compression systems. EHD techniques are quite advanced and prototype condenser and evaporator bundles are currently being tested. The second technique is an alternative refrigeration technology called thermoacoustic refrigeration; alternative technologies have become increasingly attractive over recent years due to environmental concerns over CFCs. Thermoacoustic refrigeration uses acoustic power to pump heat from a low temperature source to a high temperature sink. It is still in the early stages of development and can presently accommodate only small thermal loads. However, its general principles of operation have been proven and its resent capacity and efficiency limitations are not seen as a problem in the long term. Electrohydrodynamic Enhancement, Boiling and Condensation, Thermoacoustic Refrigeration.

  19. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  20. Full Fuel-Cycle Comparison of Forklift Propulsion Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also

  1. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect (OSTI)

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  2. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    SciTech Connect (OSTI)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  3. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weapons Stockpile | Department of Energy to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will

  4. EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York

    Broader source: Energy.gov [DOE]

    The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors.

  5. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. nuclear outages this summer were higher than in summer 2015

  6. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the

  7. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC

    2009-07-14

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  8. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  9. Conservation plan for protected species on Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Otten, M.R.M.; Cypher, B.L.

    1997-07-01

    Habitats in and around Naval Petroleum Reserve No. 1 (NPR-1) support populations of various vertebrates and plants, including a number of threatened and endangered species. Adequate conservation of habitats and species, particularly protected species, can be facilitated through development and implementation of management plans. This document provides a comprehensive plan for the conservation of protected species on NPR-1, through compliance with terms and conditions expressed in Biological Opinions rendered by the U.S. Fish and Wildlife Service for NPR-1 activities. Six conservation strategies by which threatened and endangered species have been, and will be, protected are described: population monitoring, mitigation strategies, special studies, operating guidelines and policies, information transfer and outreach, and the endangered species conservation area. Population monitoring programs are essential for determining population densities and for assessing the effects of oil field developments and environmental factors on protected species. Mitigation strategies (preactivity surveys and habitat reclamation) are employed to minimize the loss of important habitats components and to restore previously disturbed lands to conditions more suitable for species` use. A number of special studies were undertaken between 1985 and 1995 to investigate the effectiveness of a variety of population and habitat management techniques with the goal of increasing the density of protected species. Operating guidelines and policies governing routine oil field activities continue to be implemented to minimize the potential for the incidental take of protected species and minimize damage to wildlife habitats. Information transfer and outreach activities are important means by which technical and nontechnical information concerning protected species conservation on NPR-1 is shared with both the scientific and non-scientific public.

  10. Endangered species and cultural resources program, Naval Petroleum Reserves in California: Annual report FY95

    SciTech Connect (OSTI)

    1996-04-01

    In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.

  11. Use of microbes for paraffin cleanup at Naval Petroleum Reserve No. 3

    SciTech Connect (OSTI)

    Giangiacomo, L.; Khatib, A.

    1995-12-31

    Naval Petroleum Reserve No. 3 (NPR-3), also known as Teapot Dome, is a government-owned oil field in Natrona County, Wyoming. It is an asymmetrical anticline located on the western edge of the Powder River Basin, just south of the Salt Creek Anticline. Production started in 1922, and today the field is a marginally economic stripper field with average production of less than 3 BOPD (0.5 m{sup 3}/D) per well. Total field production is about 1,800 BOPD (286 m{sup 3}/D). The Second Wall Creek Formation was waterflooded from 1979 until June 1992 with poor results due to the extensive natural fracture system in this sandstone unit. Since water injection ceased, reservoir pressure has declined to very low levels. Liquids extraction and reinjection of the gas produced from high-GOR wells along the gas-oil contact continues, but the average gas cap pressure has fallen to approximately 150 psi (1.03 MPa) from an original pressure of 1,120 psi (7.72 MPa). Since the oil is highly paraffinic, wax deposition in the hydraulic fractures and the perforations has become a serious production problem. Microbial treatment was considered as a possible low-cost solution. Four wells were selected in the Second Wall Creek Reservoir with severe paraffin problems and production rates high enough to economically justify the treatment. Problems were experienced with the production of thick oil after approximately three months. This was interpreted to be a result of previously immobile paraffin being cleaned up. A slight decrease in the decline rate was seen in the wells, although some external factors cloud the interpretation. Microbial treatments were discontinued because of marginal economics. Three of the four wells produced additional oil and had a positive incremental cash flow. Oil viscosity tests did indicate that some positive microbial thinning was occurring, and changes to the treatment procedure may potentially yield more economic results in the future.

  12. Report of endangered species studies on Naval Petroleum Reserve No. 2, Kern County, California

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Warrick, G.D.; Mathews, N.E.; Kato, T.T.

    1987-09-01

    Between 1983 and 1986 the size of the population of San Joaquin kit foxes (Vulpes macrotis mutica) on Naval Petroleum Reserve No. 2 (NPR-2), Kern County, California, was estimated semiannually using capture-recapture techniques. Although summer population estimates varied between 222 in 1983 and 121 in 1986, and winter estimates varies between 258 in 1984 and 91 in 1983, the population appeared to remain relatively stable at an apparent norm of 165. Kit foxes were abundant even in the intensely developed areas, and numbers and densities (1.12 to 2.49/sq mile) were consistently higher on NPR-2 than on neighboring NPR-1. The percentage of adult vixens that successfully raised pups was 55%, average litter size was 4.0 +- 0.0, and the sex ratio (M:F) of 25 pups was 1:1.5. Most (45.2%) foxes were killed by coyotes (Canis latrans), vehicles killed 6.4%, and 6.5% died of other causes. A cause could not be determined for 41.9% of the deaths. There was a general increase in coyote visitation rates at scent stations, but kit fox visitation rates generally decreased. Kit fox indices were consistently higher on NPR-2 than on NPR-1. Approximately 15% of the kit foxes on NPR-2 dispersed an average of 2.2 +- 0.2 miles. Average dispersal distance did not differ between the sexes. The longest dispersal was 6.9 miles. Proportionately more male than female pups dispersed. Remains of lagomorphs (jackrabbits and cottontails) and kangaroo rats had the highest frequency of occurrence in scats. Frequency of occurrence of lagomorph remains was greater in developed than in undeveloped habitats. Proportions of lagomorph remains increased and kangaroo rat remains decreased between 1983 and 1984. 62 refs., 9 figs., 24 tabs.

  13. Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

    SciTech Connect (OSTI)

    D. Ray Johnson; Sidney Diamond

    2001-05-14

    The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.

  14. Space propulsion by fusion in a magnetic dipole

    SciTech Connect (OSTI)

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-04-12

    A conceptual design is discussed for a fusion rocket propulsion system based on the magnetic dipole configuration. The dipole is found to have features well suited to space applications. Example parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power toward 10 kW/kg are discussed, as in an approach to implementing the concept through proof-testing on the moon. 21 refs., 14 figs., 2 tabs.

  15. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  16. Inflatable concentrators for solar propulsion and dynamic space power

    SciTech Connect (OSTI)

    Grossman, G.; Williams, G. )

    1990-11-01

    This paper describes the development of an inflatable concentrator for solar propulsion, providing the source of heat to a hydrogen engine aboard the Solar Rocket. The latter is a device designed to carry payloads from a low earth orbit (LEO) to a geosynchronous orbit (GEO) at significant mass savings in comparison to chemical propulsion; it involves two light-weight parabolic reflectors in an off-axis configuration focusing solar radiation into the absorbers of the engine, which causes the emission of a hot hydrogen jet. Each of the reflectors has an elliptical rim with a 40 m major axis, providing heat to the propellant sufficient to produce about 40 lbs. of thrust. The same concentrator concept is contemplated for space power application to focus solar radiation on a conversion device, e.g., a photovoltaic array or the high temperature end of a dynamic engine. Under the present project, a one-fourth scale, 9X7 m off-axis inflatable concentrator has been under development as a pilot for the full-scale flight unit. The reflector component consists of a reflective membrane made of specially designed gores and a geometrically identical transparent canopy. The two form together an inflatable lenslike structure which, upon inflation, assumes the accurate paraboloidal shape. This inflatable structure is supported along its rim by a strong, bending-resistant torus. The paper describes the development of this system including the analysis leading to determination of the gore shapes, the reflector membrane design and testing, the analysis of the supporting torus, and a discussion of the effects of the space environment.

  17. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

    Broader source: Energy.gov [DOE]

    This EIS considers programmatic (DOE-wide) alternative approaches to safely, efficiently, and responsibly manage existing and projected quantities of spent nuclear fuel until the year 2035. This amount of time may be required to make and implement a decision on the ultimate disposition of spent nuclear fuel. DOE's spent nuclear fuel responsibilities include fuel generated by DOE production, research, and development reactors; naval reactors; university and foreign research reactors; domestic non-DOE reactors such as those at the National Institute of Standards and Technology and the Armed Forces Radiobiology Research Institute; and special-case commercial reactors such as Fort St. Vrain and the Lynchburg Technology Center.

  18. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  19. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    SciTech Connect (OSTI)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical

  20. Nuclear Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  1. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  2. A plan for implementation of innovative hazardous waste minimization techniques at an eastern US Naval Plating Shop

    SciTech Connect (OSTI)

    Walker, J.F. Jr.; Villiers-Fisher, J.F.; Brown, C.H. Jr.

    1987-01-01

    Oak Ridge National Laboratory (ORNL) was contracted by the Naval Energy and Environmental Support Activity (NEESA) to analyze the wastewater problems at a Naval Ordnance Station (NOS) plating shop in the eastern United States to recommend innovative wastewater treatment technologies for handling those problems and to implement the recommended treatment technology. Hexavalent chromium was identified as the major problem area at NOS. Water conservation measures were recommended which would reduce the volume of chromium-contaminated wastewater from approximately 300 L/min to approximately 20 L/min. A treatment scheme consisting of RO followed by evaporation of the RO concentrate steam was recommended. Paint-stripping operations at NOS potentially contaminate the wastewater with phenol, trichloroethane, and possibly other organics. However, the need for a treatment unit for removal of organics could not be established due to a lack of organic analytical data. A characterization study was therefore recommended for the NOS plating shop. If treatment for organics is necessary, the treatment unit might include two-stage filtration for removal of paint flakes or other solids, air stripping for removal of volatile organics, and carbon adsorption for removal of residual organics. 7 refs., 6 figs., 3 tabs.

  3. Naval Air Warfare Center, Aircraft Division at Warminster Environmental Materials Program. Phase 1. Interim report, October 1989-May 1992

    SciTech Connect (OSTI)

    Spadafora, S.J.; Hegedus, C.R.; Clark, K.J.; Eng, A.T.; Pulley, D.F.

    1992-06-24

    With the recent increase in awareness about the environment, there is an expanding concern of the deleterious effects of current materials and processes. Federal, state and local environmental agencies such as the EPA, State Air Resource Boards and local Air Quality Management Districts (AQMD) have issued legislation that restrict or prohibit the use and disposal of hazardous materials. National and local laws like the Clean Air and Clean Water Acts, Resource Conservation and Recovery Act, and AQMD regulations are examples of rules that govern the handling and disposal of hazardous materials and waste. The Department of Defense (DoD), in support of this effort, has identified the major generators of hazardous materials and hazardous waste to be maintenance depots and operations, particularly cleaning, pretreating, plating, painting and paint removal processes. Reductions of waste in these areas has been targeted as a primary goal in the DOD. The Navy is committed to significantly reducing its current hazardous waste generation and is working to attain a near zero discharge of hazardous waste by the year 2000. In order to attain these goals, the Naval Air Warfare Center Aircraft Division at Warminster has organized and is carrying out a comprehensive program in cooperation with the Naval Air Systems Command, the Air Force and the Department of Energy that deal with the elimination or reduction of hazardous materials. .... Environmental materials, Organic coatings, Inorganic pretreatments, Paint removal techniques, Cleaners, CFC'S.

  4. Public health assessment for Treasure Island Naval Station, Hunters Point Annex, San Francisco, San Francisco County, California, Region 9. Cerclis No. CA1170090087. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-30

    Naval Station Treasure Island, Hunters Point Annex (HPA), an inactive Naval shipyard located on a peninsula in the San Francisco Bay, San Francisco, California, was listed for base closure in 1990. Metals, pesticides, radium-226, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds, semivolatile organic compounds, petroleum products, and asbestos have been found in various media such as soil, groundwater, surface water, air, and sediments. Navy contractors have identified 58 HPA areas where there may be contamination; investigations at these areas are ongoing.

  5. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  6. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    SciTech Connect (OSTI)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  7. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  8. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear science nuclear chemistry Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line

  9. Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    This report describes the progress made during 2013 on the research and development projects funded by the Propulsion Materials subprogram in the Vehicle Technologies Office. Past year's reports are listed on the Annual Progress Reports page.

  10. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect (OSTI)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  11. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2002-03-13

    The paper gives the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integro-differential equation which takes into account the propulsion effect, viscosity and the drag force due to magnetic pumping and other interactions with the magnetic field. A criterion is obtained for the stabilization of the ''sausage'' instability of the streams by centrifugal force.

  12. Evaluation of pulse power devices in electric vehicle propulsion systems

    SciTech Connect (OSTI)

    Burke, A.F. ); Dowgiallo, E.J. )

    1990-01-01

    The application of pulse power devices in electric vehicle propulsion systems to load level the main energy storage battery has been studied. Both high energy density capacitors (ultracapacitors) and high power density, bipolar batteries are considered. Computer simulations of vehicle operation with hybrid (two power source) powertrains indicated the energy storage capacities of the pulse power devices required to load level the main battery are 300 to 500 Wh for the capacitors and 5 to 10 Ah for the bipolar batteries can be reduced from 79 W/kg to about 40 W/kg depending on the vehicle gradeability (speed, percent grade, and length of grade) desired. Evaluation of the status of the technology for the pulse power devices indicated that for both devices, improvements in technology are needed before the devices can be used in EV applications. In the case of the ultracapacitor, the energy density of present devices are 1 to 2 Wh/kg. A minimum energy density of about 5 Wh/kg is needed for electric vehicle applications. Progress in increasing the energy density of ultracapacitors has been rapid in recent years and the prospects for meeting the 5 Wh/kg requirement for EVs appear to be good. For bipolar batteries, a minimum power density of 500 W/kg is needed and the internal resistance must be reduced by about a factor of ten from that found in present designs.

  13. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Nuclear Energy Nuclear Energy Tara Camacho-Lopez 2016-06-29T14:02:38+00:00 Contributing to the Next Generation of Nuclear Power Generation Our nuclear energy and fuel cycle technologies supports the safe, secure, reliable, and sustainable use of nuclear power worldwide through strengths in repository science, nonproliferation, safety and security, transportation, modeling, and system demonstrations. Areas of Expertise Defense Waste Management Sandia advises the U.S. Department

  14. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  15. US Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements and management overview and supplemental financial and management information, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    1996-02-15

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on the NPOSR internal control structure and compliance with laws and regulations are also provided.

  16. EIS-0158: Supplemental Environmental Impact Statement to the 1979 Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1(Elk Hills), Kern County, California (1993)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the potential environmental impacts of the continued operation of the Naval Petroleum Reserve No. 1 at the Maximum Efficient Rate authorized by Public Law 94-258. This EIS supplements DOE/EIS-0012.

  17. CX-009403: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 20 Fleet Interactive Display Equipment Facility Expansion CX(s) Applied: B1.15, B1.16, B2.2, B2.5 Date: 08/01/2011 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  18. CX-009401: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fire Protection Upgrade Major Construction Project CX(s) Applied: B1.15, B1.16, B2.2, B2.5 Date: 09/25/2010 Location(s): Idaho Offices(s): Naval Nuclear Propulsion Program

  19. CX-008818: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Utility Corridor Extension CX(s) Applied: B4.7, B4.11, B5.2, B5.5 Date: 06/13/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program, Bettis Site

  20. CX-008338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades Major Construction Project CX(s) Applied: B1.11, B1.15, B1.16, B1.23, B2.2 Date: 04/20/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  1. CX-011845: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials Characterization Laboratory & Radiological/Environment, Safety and Health Training Facility Construction Project CX(s) Applied: B1.15, B1.16, B1.17, B1.23, B1.33, B3.15 Date: 02/18/2014 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  2. CX-010874: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cleaning of the L4 Pump House Galley, Trash Rack, Concrete Inlet Channel and Settling Tank CX(s) Applied: B1.3, B1.5 Date: 08/21/2003 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  3. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    SciTech Connect (OSTI)

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core

  4. Development of remedial process options: Phase II, Feasibility study: Installation Restoration Program, Naval Air Station Fallon, Fallon, Nevada

    SciTech Connect (OSTI)

    Cronk, T.A.; Smuin, D.R.; Schlosser, R.M.

    1991-11-01

    This technical memorandum develops process options which are appropriate for environmental restoration activities at Naval Air Station Fallon (NAS Fallon), Nevada. Introduction of contaminants to the environment has resulted from deliberate disposal activities (both through dumping and landfilling) and accidental spills and leaks associated with normal activities at NAS Fallon over its lifetime of operation. Environmental sampling results indicate that the vast majority of contaminants of concern are petroleum hydrocarbon related. These contaminants include JP-4, JP-5, leaded and unleaded gasoline, waste oils and lubricants, hydraulic fluids, and numerous solvents and cleaners. The principal exposure pathways of concern associated with NAS Fallon contaminants appear to be the surface flows and shallow drainage systems to which the base contributes. Available data indicate NAS Fallon IR Program sites are not contributing excessive contamination to surface flows emanating from the base. Contaminants appear to be contained in a relatively immobile state in the shallow subsurface with little or no contaminant migration off site.

  5. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  6. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  7. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  8. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  9. EA-0962: Construction and Routine Operation of a 12-kilovolt Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to install an overhead powerline extension from the U.S. Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) power source to the...

  10. Model of a nuclear thermal test pipe using ATHENA

    SciTech Connect (OSTI)

    Dibben, M.J.

    1992-03-01

    Nuclear thermal propulsion offers significant improvements in rocket engine specific impulse over rockets employing chemical propulsion. The computer code ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) was used in a parametric analysis of a fuelpipe. The fuelpipe is an annular particle bed fuel element of the reactor with radially inward flow of hydrogen through it. The outlet temperature of the hydrogen is parametrically related to key effects, including the effect of reactor power at two different pressure drops, the effect of the power coupling factor of the Annular Core Research Reactor, and the effect of hydrogen flow. Results show that the outlet temperature is linearly related to the reactor power and nonlinearly to the change in pressure drop. The linear relationship at higher temperatures is probably not valid due to dissociation of hydrogen. Once thermal properties of hydrogen become available, the ATHENA model for this study could easily be modified to test this conjecture.

  11. Accident Investigation of the June 17, 2012, Construction Accident- Structural Steel Collapse at The Over pack Storage Expansion #2 at the Naval Reactors Facility at the Idaho National Laboratory, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This report documents the Naval Reactors investigation into the collapse ofa partially-erected spent fuel storage building, Overpack Storage Expansion #2 (OSE2), at the Naval Reactors Facility. The Accident Investigation Board inspected the scene, collected physical and photographic evidence, interviewed involved personnel, and reviewed relevant documents to determine the key causes of the accident. Based on the information gathered during the investigation, the Board identified several engineering and safety deficiencies that need to be addressed to prevent recurrence.

  12. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad approach to different, but related, scientific

  13. Nuclear Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  14. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  15. NUCLEAR ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP Table of Contents List of Acronyms ................................................................................................... iii Executive Summary ............................................................................................... v 1. Introduction ...................................................................................................... 1 2. Background

  16. nuclear smuggling

    National Nuclear Security Administration (NNSA)

    13, 2015

    SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense...

  17. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  18. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  19. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  20. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  1. Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

  2. Superfund Record of Decision (EPA Region 5): Naval Industrial Reserve Ordnance Plant, Fridley, MN. (First remedial action), September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    The 82.6-acre Naval Industrial Reserve Ordnance Plant (NIROP) site is a weapons system manufacturing facility in Fridley, Minnesota, which began operations in 1940. The site is a government-owned, contractor-operated, plant located just north of the FMC Corp. During the 1970s, paint sludge and chlorinated solvents were disposed of onsite in pits and trenches. In 1981, State investigations identified TCE in onsite water supply wells drawing from the Prairie DuChien/Jordan aquifer, and the wells were shut down. In 1983, EPA found drummed waste in the trenches or pits at the northern portion of the site, and as a result, during 1983 and 1984, the Navy authorized an installation restoration program, during which approximately 1,200 cubic yards of contaminated soil and 42 drums were excavated and landfilled offsite. The Record of Decision (ROD) addresses the remediation of a shallow ground water operable unit. The primary contaminants of concern affecting the ground water are VOCs including PCE, TCE, toluene, and xylene.

  3. Empirical, probabilistic, and modelling approaches to assess cross-media impacts to marine sediments at Puget Sound Naval Shipyard

    SciTech Connect (OSTI)

    Rohrer, W.L.; Vita, C.L.; Schrock, W.; Leicht, G.

    1996-12-31

    Dredge spoils, industrial fill, and liquid wastes from the 1940s to 1970s have resulted in inorganic and organic contamination of soils, groundwater, and marine sediments near the U.S.S. Missouri and Charleston Beach parking lots at Puget Sound Naval Shipyard (PSNS), in Bremerton, Washington. Extensive collection of environmental data from several studies including the recently completed Remedial Investigation conducted under CERCLA have confirmed contaminant levels above federal risk screening levels and state regulatory criteria for several heavy metals and organic compounds, including pesticides and PCBs. Although the correlation between contamination in marine sediments and those in on-shore fill appears to be strong, there is little evidence that a viable transport pathway currently exists from soils to groundwater and thence to sediments. Several methods used to estimate chemical mass flux from soil to groundwater to sediments and marine waters of Sinclair Inlet are corroborative in this regard. Nonetheless, this result is vexing because present groundwater concentrations exceed ARARs, yet are below levels of concern in terms of mass flux to marine waters. Despite the marginal risks posed by groundwater, various remedial alternatives, including perimeter containment using a subsurface waste-stabilized containment wall, were evaluated to determine whether chemical flux could be reduced to levels below those observed at the present time. Three-dimensional flow modelling and transport modelling also confirmed that chemical fluxes were limited in magnitude and could be addressed with more conventional remedial approaches.

  4. Geophysical investigation at Mustard Gas Burial Ground, Naval Surface Warfare Center, Crane Division, Crane, Indiana. Final report

    SciTech Connect (OSTI)

    Llopis, J.L.; Sjostrom, K.J.; Murphy, W.L.

    1997-06-01

    A geophysical investigation was conducted at the Mustard Gas Burial Ground (MGBG) at the Naval Surface Warfare Center, Crane Division, Crane, IN. The MGBG, an approximately 2-acre area, is a former Solid Waste Management Unit. The objective of the investigation was to detect and delineate anomalies indicating the locations of buried structures, objects, or disturbed zones associated with past hazardous waste burial at the MGBG. The locations of these objects are needed so they can be excavated for removal to a permanent treatment or disposal site. Frequency and time domain electromagnetic (EM) along with magnetic survey methods were used at the MGBG. All the surveys performed at the MGBG indicated an anomalous area approximately 10 ft in diameter centered on Station 255 on Line 130. The estimated depth of the anomaly, based on results of the transient EM surveys, is 1 to 2 ft. The anomaly is presumed to be ferrous in nature since it was detected by the magnetometer. An additional, 2- to 3-ft diameter anomaly, caused by a small metallic object was detected by the transient EM surveys.

  5. Dedicated Laboratory Setup for CO{sub 2} TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    SciTech Connect (OSTI)

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-10-08

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO{sub 2} lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 {mu}s); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  6. SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS

    SciTech Connect (OSTI)

    Curtis Smith; James Knudsen

    2006-05-01

    As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure using the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to

  7. Overview of the United States spent nuclear fuel program

    SciTech Connect (OSTI)

    Hurt, W.L.

    1997-12-01

    As a result of the end of the Cold War, the mission of the US Department of Energy (DOE) has shifted from an emphasis on nuclear weapons development and production to an emphasis on the safe management and disposal of excess nuclear materials including spent nuclear fuel from both production and research reactors. Within the US, there are two groups managing spent nuclear fuel. Commercial nuclear power plants are managing their spent nuclear fuel at the individual reactor sites until the planned repository is opened. All other spent nuclear fuel, including research reactors, university reactors, naval reactors, and legacy material from the Cold War is managed by DOE. DOE`s mission is to safely and efficiently manage its spent nuclear fuel and prepare it for disposal. This mission involves correcting existing vulnerabilities in spent fuel storage; moving spent fuel from wet basins to dry storage; processing at-risk spent fuel; and preparing spent fuel in road-ready condition for repository disposal. Most of DOE`s spent nuclear fuel is stored in underwater basins (wet storage). Many of these basins are outdated, and spent fuel is to be removed and transferred to more modern basins or to new dry storage facilities. In 1995, DOE completed a complex-wide environmental impact analysis that resulted in spent fuel being sent to one of three principal DOE sites for interim storage (up to 40 years) prior to shipment to a repository. This regionalization by fuel type will allow for economies of scale yet minimize unnecessary transportation. This paper discusses the national SNF program, ultimate disposition of SNF, and the technical challenges that have yet to be resolved, namely, release rate testing, non-destructive assay, alternative treatments, drying, and chemical reactivity.

  8. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 ...

  9. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Myths Topics: Can a Nuclear Reactor Explode Like a Bomb? Will Nuclear Waste Be Around for Millions of Years? Is Nuclear Energy Dangerous? Moderator: Suzy Hobbs ...

  10. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  11. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, ...

  12. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, International ...

  13. nuclear | National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA)

    nuclear Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  14. Chernobyl Nuclear Accident | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor 4 in the then Soviet Republic of Ukraine

  15. Nuclear Nonproliferation Program Offices | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and monitor nuclear weapons production, proliferation, and nuclear explosions worldwide. ...

  16. Report

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Laboratory - Knolls Site/Kesselring Site Naval Nuclear Laboratory - Bettis Site Los Alamos National Laboratory (LANL) Nevada National Security Site Naval Nuclear Laboratory - Naval Reactors Facility Sandia National Laboratories (SNL) Lawrence Livermore National Laboratory (LLNL) Savannah River Site (SRS) DOE/NNSA Headquarters Pantex Plant (PX) Albuquerque Complex Headquarters National Security Laboratories Plants and Sites Naval Nuclear Laboratories The Nuclear Security Enterprise

  17. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  18. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  19. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  20. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  1. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    1996-05-01

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  2. Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging

    SciTech Connect (OSTI)

    Zacharias, N.; Zacharias, M. I.

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.

  3. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  4. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  5. Nuclear option

    SciTech Connect (OSTI)

    Olson, P.S.

    1983-03-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.

  6. Dynamics sensor validation for reusable launch vehicle propulsion.

    SciTech Connect (OSTI)

    Herzog, J. P.

    1998-05-27

    Expert Microsystems teamed with Argonne National Laboratory (ANL), a DOE contractor, to develop an innovative dynamics sensor validation system under a Small Business Technology Transfer (STTR) Phase I contract with NASA. The project improves launch vehicle mission safety and system dependability by enabling rapid development and cost effective maintenance of embeddable real-time software to reliably detect process-critical sensor failures. The project focused on verifying the feasibility of two innovative software methods developed by ANL to provide high fidelity sensor data validation for nuclear power generating stations, the Sequential Probability Ratio Test (SPRT) algorithm and the Multivariate State Estimation Technique (MSET) algorithm, as core elements of a commercial Dynamics Sensor Validation System (DSVS). The research verified that ANL algorithms enable highly reliable data validation for high frequency Space Shuttle Main Engine (SSME) dynamics sensors, such as accelerometers and strain gauges. Phase I culminated in production of a prototype run-time module which validates SSME flight accelerometer data with very high reliability. The resulting sensor validation development system is widely applicable to reusable launch vehicle (RLV) and ground support control and monitoring systems.

  7. Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  8. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  9. TEC Meeting Summaries - April 2005 Presentations | Department of Energy

    Office of Environmental Management (EM)

    5 Presentations TEC Meeting Summaries - April 2005 Presentations Phoenix, Arizona Presentations (April 2005) Documents Available for Download Plenary I - United States Naval Nuclear Propulsion Program (1.75 MB) Plenary I - National Academies Update (65.42 KB) Plenary I - Transportation Resources Exchange Center (1.43 MB) Plenary I - Transportation Communications (3.07 MB) Plenary II - San Onofre Nuclear Generating Station (3.13 MB) Plenary II - Yucca Mountain Transportation (55.88 KB) Plenary II

  10. Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999

    SciTech Connect (OSTI)

    Johnson, D.R.

    2000-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  11. Numerical models analysis of energy conversion process in air-breathing laser propulsion

    SciTech Connect (OSTI)

    Hong Yanji; Song Junling; Cui Cunyan; Li Qian

    2011-11-10

    Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.

  12. OSTIblog Articles in the spaceship propulsion Topic | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information spaceship propulsion Topic Plasmas - The Greatest Show on Earth by Kathy Chambers 24 Jun, 2013 in Products and Content Perhaps the most beautiful and eerie displays of light in our sky are a phenomenon known as the auroras. This natural glow of light in the sky in high latitude regions usually displays ribbons of colors from a fluorescent green to brilliant purple to a vivid crimson somewhat like an unexpected beautiful sunrise or sunset.

  13. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEHICLES TECHNOLOGIES OFFICE WORKSHOP REPORT: Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials February 2013 FINAL REPORT This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  14. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  15. CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant

    SciTech Connect (OSTI)

    Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya; Sakai, Takeharu; Sasoh, Akihiro; Tsukiyama, Yosuke; Umehara, Noritsugu

    2010-05-06

    The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms of the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.

  16. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  17. Health-hazard evaluation report HETA-86-381-1934, Nuclear Fuel Services, Erwin, Tennessee

    SciTech Connect (OSTI)

    Thun, M.J.; Schober, S.

    1988-10-01

    In response to a request from the U.S. Nuclear Regulatory Commission, a study was made of excessive kidney disease at Nuclear Fuel Services, Erwin, Tennessee. This facility was the sole producer of nuclear fuel rods for the United States Navy. The major operations involved the production of highly enriched uranium fuel for naval nuclear reactors and the recovery from scrap of low enriched uranium for commercial light water reactors. Highly enriched uranium-hexafluoride was converted to oxides and ultimately into finished nuclear fuel. A medical questionnaire revealed more frequent kidney stones (19%) and urinary tract infections (28%) among the workers than among the guards used as a comparison group, 7 and 12%, respectively. Dairy farmers from a nearby town used as an additional comparison group reported kidney stones more frequently (26 versus 21%) and infections less frequently (20 versus 30%) than the current and former senior workers at the nuclear facility. Kidney function was similar in both groups. Workers in both groups had frequent risk factors for kidney stones, particularly high calcium, oxalate, sodium, uric-acid, phosphorus and low urinary volume on testing. The authors conclude that the urinary tract disorders in the nuclear workers were not the result of occupational hazards at this site.

  18. Nuclear Controls | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Controls Challenge: Detect/deter illicit transfers of nuclear/dual-use materials, technology, and commodities. Solution: Build domestic and international capacity to implement and meet export control obligations. Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification International Nuclear Safeguards Nonproliferation Policy Nonproliferation and Arms Control NIS

  19. Nuclear Verification | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements, implement regimes to reduce nuclear weapons, and detect and dismantle undeclared nuclear programs. Specific subprogram activities include: Implementing current and developing future

  20. nuclear controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    controls Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  1. Defense Nuclear Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Facility NNSA's safety office accredited and recognized for leadership in safe operation of defense nuclear facilities Part of NNSA's commitment to maintaining the nation's safe, secure, and effective nuclear deterrent are relentlessly high standards for technically capable nuclear enterprise personnel qualifications for all aspects of Defense Nuclear Facility operations. In December 2015, the Department of Energy

  2. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  3. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Impact Topics: Today's & Tomorrow's New Nuclear Energy Construction & the Workforce Outlook Current New Nuclear Energy Construction Projects Small Modular...

  4. Naval electrochemical corrosion reducer

    DOE Patents [OSTI]

    Clark, Howard L.

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  5. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  6. Petroleum production at Maximum Efficient Rate Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Final Supplemental Environmental Impact Statement

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).

  7. Annual Report: 2010-2011 Storm Season Sampling For NON-DRY DOCK STORMWATER MONITORING FOR PUGET SOUND NAVAL SHIPYARD, BREMERTON, WA

    SciTech Connect (OSTI)

    Brandenberger, Jill M.; Metallo, David; Johnston, Robert K.; Gebhardt, Christine; Hsu, Larry

    2012-09-01

    This interim report summarizes the stormwater monitoring conducted for non-dry dock outfalls in both the confined industrial area and the residential areas of Naval Base Kitsap within the Puget Sound Naval Shipyard (referred to as the Shipyard). This includes the collection, analyses, and descriptive statistics for stormwater sampling conducted from November 2010 through April 2011. Seven stormwater basins within the Shipyard were sampled during at least three storm events to characterize non-dry dock stormwater discharges at selected stormwater drains located within the facility. This serves as the Phase I component of the project and Phase II is planned for the 2011-2012 storm season. These data will assist the Navy, USEPA, Ecology and other stakeholders in understanding the nature and condition of stormwater discharges from the Shipyard and inform the permitting process for new outfall discharges. The data from Phase I was compiled with current stormwater data available from the Shipyard, Sinclair/Dyes Inlet watershed, and Puget Sound in order to support technical investigations for the Draft NPDES permit. The permit would require storm event sampling at selected stormwater drains located within the Shipyard. However, the data must be considered on multiple scales to truly understand potential impairments to beneficial uses within Sinclair and Dyes Inlets.

  8. Defense Nuclear Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Nonproliferation NNSA Announces Elimination of Highly Enriched Uranium (HEU) from Indonesia All of Southeast Asia Now HEU-Free (WASHINGTON, D.C.) - The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA), Indonesian Nuclear Industry, LLC (PT INUKI), the National Nuclear Energy Agency (BATAN), and the Nuclear Energy Regulatory Agency (BAPETEN) of the... NNSA program strengthens national security from afar The Nuclear Smuggling Detection and Deterrence

  9. Nuclear Forensics | National Nuclear Security Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy ...

  10. Nuclear Security Enterprise | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Our Programs Defense Programs Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective ...

  11. Nuclear Verification | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: ...

  12. Nuclear Suppliers Group & Regimes | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency ...

  13. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  14. Nuclear structure and nuclear reactions | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear structure and nuclear reactions PI Name: James Vary PI Email: jvary@iastate.edu Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 15 ...

  15. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  16. nuclear emergency | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home nuclear emergency nuclear emergency Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ...

  17. Nuclear / Radiological Advisory Team | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Nuclear Radiological Advisory Team (NRAT) provides an emergency response capability for on-scene scientific and technical advice for both domestic and international nuclear or ...

  18. Nuclear Incident Team | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Incident Team NNSA houses the Nuclear Incident Team (NIT), which is responsible for deploying assets at the request of coordinating agencies in response to a nuclear or ...

  19. Nuclear Energy Systems Laboratory (NESL) / Transient Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient Nuclear Fuels Testing - Sandia Energy Energy Search Icon Sandia Home Locations ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  20. nuclear science week | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    science week Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  1. Nuclear Security Enterprise | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Nuclear Security Enterprise The Nuclear Security Enterprise ... efficient 21stcentury NSE with less environmental impact. ... is referred to as Stockpile Stewardship and Management. ...

  2. Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Moving Forward to Address Nuclear Waste Storage and Disposal Three trucks transport nuclear waste

  3. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  4. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  5. DOE/EIS-0453-D DRAFT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting Naval Spent Nuclear Fuel Handling COVER SHEET RESPONSIBLE AGENCY: ... Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory ...

  6. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  7. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect (OSTI)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-04-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R&D issues.

  8. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    SciTech Connect (OSTI)

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R D issues.

  9. Experimental and Numerical Investigation of Propellant of Different Thickness for Laser Micro Propulsion

    SciTech Connect (OSTI)

    Jian Cai; Long Li; Yu Du; Tang Zhiping; Hu Xiaojun

    2010-05-06

    The thickness of propellant is an important experimental parameter under T-mode, which has a direct impact on the performance of the laser Micro propulsion. In this paper, the prolusion performance of four propellants with different thickness is measured respectively, the experimental results show that the momentum coupling coefficient C{sub m} rises with the increase of thickness, while the specific impulse I{sub sp} falls on the contrary. The same trend for I{sub sp} also has been obtained from the simulated result by the Discrete Element Program (DEM).

  10. Flight Experiments On Energy Scaling For In-Space Laser Propulsion

    SciTech Connect (OSTI)

    Scharring, Stefan; Eckel, Hans-Albert; Wollenhaupt, Eric; Roeser, Hans-Peter

    2010-05-06

    As a preparatory study on space-borne laser propulsion, flight experiments with a parabolic thruster were carried out on an air cushion table. The thruster was mounted like a sail on a puck, allowing for laser-driven motion in three degrees of freedom (3 DOF) in artificial weightlessness. Momentum coupling is derived from point explosion theory for various parabolic thruster geometries with respect to energy scaling issues. The experimental data are compared with theoretical predictions and with results from vertical free flights. Experimental results for the air-breakdown threshold and POM ablation inside the thruster are compared with fluence data from beam propagation modeling.

  11. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    SciTech Connect (OSTI)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

  12. Radionuclide inventories for short run-time space nuclear reactor systems

    SciTech Connect (OSTI)

    Coats, R.L.

    1992-10-22

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems.

  13. Nuclear Detonation Detection | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Research and Development Nuclear Detonation Detection The Office of Nuclear Detonation Detection (NDD) develops and provide continuous, global capabilities to detect foreign nuclear weapon detonations, including for test ban treaty monitoring needs and military requirements. These efforts are aligned along three functional areas: Space-based Detection of Nuclear Detonations: Develops and builds space sensors for the nation's operational nuclear test treaty monitoring and Integrated

  14. nuclear threat science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    threat science Counterterrorism Counterterrorism Policy and Cooperation Nuclear Threat Science Office of Nuclear Threat Science The Office of Nuclear Threat Science is responsible for overseeing the Nuclear Counterterrorism Program, an NNSA program that sustains specialized expertise and integrates and executes key activities to advise and enable technical aspects of U.S. Government nuclear counterterrorism and... Office of Counterterrorism Policy and Cooperation The 2011 National Strategy for

  15. nuclear science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    science Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on... Consortium Led by University of California, Berkeley Awarded $25M NNSA Grant for Nuclear Science and Security

  16. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  17. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  18. Propulsion Materials

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Assessment of impacts and evaluation of restoration methods on areas affected by a well blowout, Naval Petroleum Reserve No. 1, California

    SciTech Connect (OSTI)

    Warrick, G.D.; Kato, T.T.; Phillips, M.V.

    1996-12-01

    In June 1994, an oil well on Naval Petroleum Reserve No. 1 blew-out and crude oil was deposited downwind. After the well was capped, information was collected to characterize the release and to assess effects to wildlife and plants. Oil residue was found up to 13.7 km from the well site, but deposition was relatively light and the oil quickly dried to form a thin crust on the soil surface. Elevated levels of hydrocarbons were found in livers collected from Heermann`s kangaroo rats (Dipodomys heermanni) from the oiled area but polycyclic aromatic hydrocarbons (known carcinogens or mutagens) were not detected in the livers. Restoration techniques (surface modification and bioremediation) and natural recovery were evaluated within three portions of the oiled area. Herbaceous cover and production, and survival and vigor of desert saltbush (Atriplex polycarpa) were also monitored within each trapping grid.

  20. Review of mineral estate of the United States at Naval Petroleum Reserve No. 2, Buena Vista Hills Field, Kern County, California

    SciTech Connect (OSTI)

    1996-08-09

    The purpose of this report is to present this Consultant`s findings regarding the nature and extent of the mineral estate of the United States at National Petroleum Reserve No. 2 (NPR-2), Buena Vista Hills Field, Kern County, California. Determination of the mineral estate is a necessary prerequisite to this Consultant`s calculation of estimated future cash flows attributable to said estate, which calculations are presented in the accompanying report entitled ``Phase II Final Report, Study of Alternatives for Future Operations of the Naval Petroleum and Oil Shale Reserves, NPR-2, California.`` This Report contains a discussion of the leases in effect at NPR-2 and subsequent contracts affecting such leases. This Report also summarizes discrepancies found between the current royalty calculation procedures utilized at NPR-2 and those procedures required under applicable agreements and regulations. Recommendations for maximizing the government`s income stream at NPR-2 are discussed in the concluding section of this Report.

  1. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    SciTech Connect (OSTI)

    Johnson, D.R.

    1999-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  2. Medium-speed diesel propulsion plant for new shallow-draft LPG tankers

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Propulsion equipment from engine builder Krupp MaK and power transmission specialist Lohmann Stolterfoht has been specified for a series of liquefied petroleum gas tankers being built for various customers by Pattje Shipyards, of Waterhuizen, Holland. Pattje reports that the tankers are built using an innovative system of modular construction that has led to the very short building time of only nine months per ship. The tankers have a capacity of 4200 m[sup 3] of gas and a draft of only 5.2 m when fully loaded, to enable the use of shallow water ports. Further particulars of the vessels include an overall length of 100 m, beam dimension of 15.9 m and maximum speed of 14 knots. The tankers' propulsion system is based on a single, in-line, nine-cylinder type 9M453C medium-speed diesel from the [open quotes]C[close quotes] engine series of Krupp MaK, Kiel, Germany. The 33.8 L/cyl engine (bore 320 x stroke 420 mm) develops 3000 kW at 600 r/min. 2 figs.

  3. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    SciTech Connect (OSTI)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  4. Computational model of collisional-radiative nonequilibrium plasma in an air-driven type laser propulsion

    SciTech Connect (OSTI)

    Ogino, Yousuke; Ohnishi, Naofumi

    2010-05-06

    A thrust power of a gas-driven laser-propulsion system is obtained through interaction with a propellant gas heated by a laser energy. Therefore, understanding the nonequilibrium nature of laser-produced plasma is essential for increasing available thrust force and for improving energy conversion efficiency from a laser to a propellant gas. In this work, a time-dependent collisional-radiative model for air plasma has been developed to study the effects of nonequilibrium atomic and molecular processes on population densities for an air-driven type laser propulsion. Many elementary processes are considered in the number density range of 10{sup 12}/cm{sup 3}<=N<=10{sup 19}/cm{sup 3} and the temperature range of 300 K<=T<=40,000 K. We then compute the unsteady nature of pulsively heated air plasma. When the ionization relaxation time is the same order as the time scale of a heating pulse, the effects of unsteady ionization are important for estimating air plasma states. From parametric computations, we determine the appropriate conditions for the collisional-radiative steady state, local thermodynamic equilibrium, and corona equilibrium models in that density and temperature range.

  5. An Ansatz Regarding Relativistic Space Travel Part II-Propulsion Realities

    SciTech Connect (OSTI)

    Murad, Paul A

    2008-01-21

    Travel to the stars can involve a perilous journey in an unfriendly space-time continuum that can include singularities, nonlinear events, gravity as a function of both position and vehicle velocity, and extra dimensional effects discussed in Part I. Such a device may possibly use field propulsion technology. Although several field propulsion schemes exist, a proposed candidate is based upon using an electromagnetic drive that uses a rotating magnetic field superimposed on the spacecraft's stationary or static electric field. This is comparable to a Searl generator and the field interaction would generate an electromagnetic vortex to create nonlinear gravitational effects possibly due to an inverse Gertsenshtein relationship to push against the intrinsic gravitational field of a planet. Moreover, changing alignment of the magnetic field axis with the electric field will induce a margin of lateral controllability. Issues such as assessing this combined effect of using both electric and magnetic fields are discussed. Finally, the need for experimental data is stressed to validate these otherwise very speculative theoretical notions.

  6. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    SciTech Connect (OSTI)

    Noble, Robert J.; Amini, Rashied; Beauchamp, Patricia M.; Bennett, Gary L.; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; Fernandez, Yan R.; Grundy, Will; Khan, Mohammed Omair; King, David Q.; Lang, Jared; Meech, Karen J.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; Spilker, Thomas; West, John L.; /Caltech, JPL

    2010-05-26

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  7. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. Department of Energy. National Nuclear Data Center: Brookhaven National Laboratory; Evaluated Nuclear Structure Data Files (ENSDF), Nuclear Science References (NSR) and other databases. Isotopes Project: (E.O.L. Berkeley National Laboratory) Table of Isotopes, Isotope Explorer, XUNDL, Nuclear Data Dissemination Homepage, and

  8. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  9. EA-1900-NOA-DEA-2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Availability of a Draft Environmental Assessment for Construction and Operation of a Radiological Work and Storage Building TITLE: Notice of Availability of a Draft Environmental Assessment for Construction and Operation of a Radiological Work and Storage Building AGENCY: U.S. Department of Energy, Naval Nuclear Propulsion Program ACTION: Notice of Availability of a Draft Environmental Assessment. SUMMARY: Pursuant to the National Environmental Policy Act of 1969, as amended (NEPA) (42

  10. CX-012098: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    S8G Prototype Refueling Overhaul CX(s) Applied: B1.3, B1.5, B1.7, B1.14, B1.30, B1.31, B2.1, B2.4, B2.5, B6.3 Date: 04/01/2014 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  11. CX-009806: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    C-CA-CAM Building Complex Demolition and Site Restoration CX(s) Applied: B1.11, B1.16, B1.17, B1.23, B1.24, B1.27, B1.30, B1.33, B1.34 Date: 01/09/2013 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  12. DOE - Office of Legacy Management -- Bettis Atomic Power Laboratories - PA

    Office of Legacy Management (LM)

    44 Bettis Atomic Power Laboratories - PA 44 FUSRAP Considered Sites Site: Bettis Atomic Power Laboratories (PA.44 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Allegheny County , West Mifflin , Pennsylvania PA.44-1 Evaluation Year: Circa 1987 PA.44-2 Site Operations: Conducted activities directed toward the design, development, testing, and operational follow of nuclear reactor propulsion plants for Naval surface and

  13. Turning points in reactor design

    SciTech Connect (OSTI)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  14. SOLICITATION, OFFER AND AWARD

    National Nuclear Security Administration (NNSA)

    Section B Page 1 of 2 Mod 001 1. SERVICES BEING ACQUIRED The contractor shall be responsible for planning, managing, and executing work described in Section C. This work is entirely in support of the Naval Nuclear Propulsion Program. The contract consists of the following phases: 1. Transition Period (beginning on award date). a. For the Bettis sites the transition period ends on January 31, 2009. b. For the Knolls sites the transition period ends on February 1, 2009. 2. Initial Operating Phase

  15. Market Potential for Non-electric Applications of Nuclear Energy

    SciTech Connect (OSTI)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-07-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  16. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and ...

  17. Fifty years of nuclear fission: Nuclear data and measurements...

    Office of Scientific and Technical Information (OSTI)

    Fifty years of nuclear fission: Nuclear data and measurements series Citation Details In-Document Search Title: Fifty years of nuclear fission: Nuclear data and measurements series ...

  18. Nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  19. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  20. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  1. TUNL Nuclear Data Evaluation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TUNL Nuclear Data Evaluation Group As a part of the United States Nuclear Data Network and the international Nuclear Structure and Decay Data Evaluators' Network, the Nuclear Data...

  2. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  3. Office of Nuclear Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  4. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  5. The National Academies of Sciences, Engineering, and Medicine Release Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions

    Broader source: Energy.gov [DOE]

    The National Academies of Sciences, Engineering, and Medicine releases the Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions report, which focuses on large (single- and twin-aisle) planes that transport more than 100 people. These aircraft account for more than 90% of greenhouse gas emissions from all commercial aircraft.

  6. Nuclear Incident Team | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Nuclear Incident Team Nuclear Incident Team Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  7. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments [OSTI]

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  8. Civilian Nuclear Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Program Civilian Nuclear Program Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Venkateswara Rao Dasari (Rao) (505) 667-5098 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Program is the focal point for

  9. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services » Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these

  10. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  11. Nuclear Forensics | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security Council-sponsored policy initiative that establishes federal agency missions and institutionalizes roles and responsibilities to enable operational support for materials, pre-detonation device, and post-detonation nuclear or radiological forensics programs with the broader goal of attribution. Technical nuclear forensics utilizes the data from

  12. International Nuclear Security | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) International Nuclear Security The International Nuclear Security program collaborates with partners world-wide to improve the security of proliferation-sensitive materials, particularly weapons-usable nuclear material in both civilian and non-civilian use in key countries. As part of these efforts, INS works with partner countries to: Upgrade and sustain physical security and material control and accounting systems; Develop national-level nuclear security infrastructure in areas such

  13. Nuclear Materials Information Program | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Information Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  14. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  15. Nuclear War Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear War Against Cancer 1663 Los Alamos science and technology magazine Latest Issue:March 2016 past issues All Issues submit Nuclear War Against Cancer Los Alamos, in ...

  16. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  17. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  18. Nuclear Energy Systems Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  19. NUCLEAR REGULATORY COMMISSION

    Office of Environmental Management (EM)

    NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: ...

  20. Nuclear Safety Regulatory Framework

    Energy Savers [EERE]

    Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural ...

  1. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration Office of ...

  2. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical Services Y-12, LLC Performance Evaluation Report NNSA Production Office Y-12 Nuclear Security Complex ...

  3. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and ...

  4. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration 1000 Independence ...

  5. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    15 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical ... The National Nuclear Security Administration (NNSA) Production Office (NPO) took into ...

  6. Nuclear | Open Energy Information

    Open Energy Info (EERE)

    High construction costs for nuclear plants, especially relative to natural-gas-fired plants, make other options for new nuclear capacity uneconomical even in the alternative...

  7. Nuclear Security Summit

    National Nuclear Security Administration (NNSA)

    Joint Research Centre and the United States Department of Energy's National Nuclear Security Administration regarding the reduction of excess nuclear material http:...

  8. Sandia Energy Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  9. Nuclear Energy University Programs

    Energy Savers [EERE]

    (NSUF) Gateway to Nuclear Research J. Rory Kennedy Director, NSUF Idaho National ... to NSUF (Integration into CINR) * Nuclear Energy Infrastructure Database (NEID) * ...

  10. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Mission Ensuring that the nation's stockpile is safe, secure and effective, and that it meets military requirements America's Nuclear Weapons Systems Engineering ...

  11. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  12. Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  13. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Useful Online Nuclear Physics Journals Important Online Resources Science Direct ... Elsevier Physics Online: Nuclear Physics A, B, Physics Repots, Physics Letters B and more. ...

  14. Nuclear Controls Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Controls Yes No 1) Is your Facility involved in the research on or development, design, manufacture, construction, testing or maintenance of any nuclear explosive ...

  15. Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

  16. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  17. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Practice in Nuclear Medicine Radiopharmacy Patient Care Medical Imaging & Computers Moderator: Deborah M. Gibbs, MEd, PET, CNMT Lead Nuclear Medicine PET Facility...

  18. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national laboratories

  19. International Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and Member States to implement and meet safeguards obligations. The Office of International Nuclear Safeguards develops and supports the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to

  20. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOE Patents [OSTI]

    Tamor, Michael Alan; Gale, Allan Roy

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.