Sample records for naval nuclear propulsion

  1. Nuclear Naval Propulsion: A Feasible Proliferation Pathway?

    SciTech Connect (OSTI)

    Swift, Alicia L.

    2014-01-31T23:59:59.000Z

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navy while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.

  2. Importance of Nuclear DataImportance of Nuclear Data to the Naval Nuclear Propulsion Program

    E-Print Network [OSTI]

    Danon, Yaron

    Importance of Nuclear DataImportance of Nuclear Data to the Naval Nuclear Propulsion Program Don Cores · Project Prometheus · Some Very Recent Criticality Analyses #12;Use of Early RPI Measurements · Criticality Analyses of Under-moderated Systemsy y y · Most Reactive Condition ­ Highest Water Density

  3. Naval Nuclear Propulsion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00 P.M. Next8,NatureNauruEnergy

  4. Naval ship propulsion and electric power systems selection for optimal fuel consumption

    E-Print Network [OSTI]

    Sarris, Emmanouil

    2011-01-01T23:59:59.000Z

    Although propulsion and electric power systems selection is an important part of naval ship design, respective decisions often have to be made without detailed ship knowledge (resistance, propulsors, etc.). Propulsion and ...

  5. Nuclear Propulsion in Space (1968)

    ScienceCinema (OSTI)

    None

    2014-06-17T23:59:59.000Z

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  6. Nuclear Propulsion in Space (1968)

    SciTech Connect (OSTI)

    None

    2012-06-23T23:59:59.000Z

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  7. Naval Nuclear Propulsion | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1ResourceloadingOur Mission / Powering|

  8. Categorical Exclusion Determinations: Naval Nuclear Propulsion Program |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdahoof EnergyProgramsof

  9. Pure Nuclear Fusion Bomb Propulsion

    E-Print Network [OSTI]

    Winterberg, F

    2008-01-01T23:59:59.000Z

    Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving magnetic insulation and GeV electrostatic potentials

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  11. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    SciTech Connect (OSTI)

    Clark, J.S.

    1991-01-01T23:59:59.000Z

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  12. A development approach for nuclear thermal propulsion

    SciTech Connect (OSTI)

    Buden, D.

    1992-09-01T23:59:59.000Z

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ``acceptable`` nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  13. A development approach for nuclear thermal propulsion

    SciTech Connect (OSTI)

    Buden, D.

    1992-01-01T23:59:59.000Z

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  14. Nuclear thermal propulsion engine cost trade studies

    SciTech Connect (OSTI)

    Paschall, R.K. (Rocketdyne Division, Rockwell International Corporation, Mail Stop IB57, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

    1993-01-10T23:59:59.000Z

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp[gt]870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified.

  15. Naval Nuclear Propulsion Plants | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading

  16. Naval Nuclear Propulsion Plants | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1ResourceloadingOur Mission / Powering

  17. Nuclear propulsion system options for Mars missions

    SciTech Connect (OSTI)

    Emrich, W.J. Jr.; Young, A.C. (NASA, Marshall Space Flight Center, Huntsville, AL (United States))

    1992-03-01T23:59:59.000Z

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  18. Fast Track'' nuclear thermal propulsion concept

    SciTech Connect (OSTI)

    Johnson, R.A.; Zweig, H.R. (Rocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States)); Cooper, M.H.; Wett, J. Jr. (Westinghouse Electric Corporation, Post Office Box 158, Madison, Pennsylvania 15663 (United States))

    1993-01-10T23:59:59.000Z

    The objective of the Space Exploration Initiative ( America at the Threshold...,'' 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA Fast Track'' approach (NASA-LeRC Presentation, 1992) could accelerate the manned exploration of Mars to 2007. NERVA-derived nuclear propulsion represents a viable near-term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL-6 for the man-rateable system by 1999, (2) a robotic lunar mission by 2000, (3) the first cargo mission to Mars by 2005, and (4) the piloted Mars mission in 2007. The Rocketdyne-Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state-of-the-art hardware designs from hydrogen-fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

  19. aircraft nuclear propulsion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engine technologies mature. Significant (more) Kirner, Rudi 2013-01-01 3 Pure Nuclear Fusion Bomb Propulsion CERN Preprints Summary: Recent progress towards the non-fission...

  20. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09T23:59:59.000Z

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  1. 2013 Annual Planning Summary for the Naval Nuclear Propulsion Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2 NationalEnergy FERMI

  2. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. (Sandia National Labs., Albuquerque, NM (United States)); Todosow, M. (Brookhaven National Lab., Upton, NY (United States))

    1992-09-22T23:59:59.000Z

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  3. United States-Russian laboratory-to-laboratory cooperation on protection, control, and accounting for naval nuclear materials

    SciTech Connect (OSTI)

    Sukhoruchkin, V. [Kurchatov Inst., Moscow (Russian Federation); Yurasov, N.; Goncharenko, Y. [Russian Navy, Moscow (Russian Federation); Mullen, M. [Los Alamos National Lab., NM (United States); McConnell, D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31T23:59:59.000Z

    In March 1995, the Russian Navy contacted safeguards experts at the Kurchatov Institute (KI) and proposed the initiation of work to enhance nuclear materials protection, control, and accounting (MPC and A) at Russian Navy facilities. Because of KI`s successful experience in laboratory-to-laboratory MPC and A cooperation with US Department of Energy Laboratories, the possibility of US participation in the work with the Russian Navy was explored. Several months later, approval was received from the US Government and the Russian Navy to proceed with this work on a laboratory-to-laboratory basis through Kurchatov Institute. As a first step in the cooperation, a planning meeting occurred at KI in September, 1995. Representatives from the US Department of Energy (DOE), the US Department of Defense (DOD), the Russian Navy, and KI discussed several areas for near-term cooperative work, including a vulnerability assessment workshop and a planning study to identify and prioritize near-term MPC and A enhancements that might be implemented at Russian facilities which store or handle unirradiated highly enriched uranium fuel for naval propulsion applications. In subsequent meetings, these early proposals have been further refined and extended. This MPC and A cooperation will now include enhanced protection and control features for storage facilities and refueling service ships, computerized accounting systems for naval fuel, methods and equipment for rapid inventories, improved security of fresh fuel during truck transportation, and training. This paper describes the current status and future plans for MPC and A cooperation for naval nuclear materials.

  4. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 30 - Deputy Administrator for Naval Reactors NA 30 - Deputy Administrator for...

  5. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    SciTech Connect (OSTI)

    Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

    1992-01-01T23:59:59.000Z

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  6. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  7. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Allen, G.C.

    1992-09-09T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  8. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    SciTech Connect (OSTI)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-08-01T23:59:59.000Z

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs.

  9. An historical collection of papers on nuclear thermal propulsion

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  10. Scoping calculations of power sources for nuclear electric propulsion

    SciTech Connect (OSTI)

    Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1994-05-01T23:59:59.000Z

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  11. Vehicle configuration options using nuclear propulsion for Mars missions

    SciTech Connect (OSTI)

    Emrich, W.J. Jr. (NASA-Marshall Space Flight Center, Huntsville, Alabama 35812 (United States))

    1993-01-20T23:59:59.000Z

    The solid core nuclear thermal rocket (NTR) provides an attractive means of providing the propulsive force needed to accomplish a wide array of space missions. With its factor of two or more advantage in Isp over chemical engines, nuclear propulsion provides the opportunity to accomplish space missions which are impractical by other means. This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle bed reactor (PBR) type nuclear engine was chosen as the baseline engine used to conduct the present study because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study baselines a particle bed reactor engine with an engine thrust-to-weight ratio ([similar to]11.5) and a specific impulse of [similar to]950 s. It is shown that a PBR engine of this type will offer distinct advantages over the larger and heavier NERVA type nuclear engines.

  12. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01T23:59:59.000Z

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  13. Nuclear Power - Deployment, Operation and Sustainability

    E-Print Network [OSTI]

    . Tsvetkov p. cm. ISBN 978-953-307-474-0 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface IX Part 1 Nuclear Power Deployment 1 Chapter 1 Nuclear Naval Propulsion 3 Magdi... to successful development, deployment and operation of nuclear power systems worldwide: Nuclear Power Deployment 1. Nuclear Naval Propulsion 2. Deployment Scenarios for New Technologies 3. The Investment Evaluation of Third-Generation Nuclear Power - from...

  14. Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Qualls, A L [ORNL] [ORNL; Hancock, Emily F [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The Department of Energy is working with NASA to examine fuel options for Nuclear Thermal Propulsion applications. Extensive development and testing was performed on graphite-based fuels during the Nuclear Engineer Rocket Vehicle Application (NERVA) and Rover programs through the early 1970s. This paper explores the possibility of recapturing the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing capabilities, analysis techniques and methods, and knowledge to that of previous development programs and presents a plan to recapture the technology for a flight program.

  15. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

  16. Nuclear space power and propulsion requirements and issues

    SciTech Connect (OSTI)

    Swerdling, M. [IR Associates, North Hills, CA (United States); Isenberg, L. [IR Associates, La Habra, CA (United States)

    1995-12-31T23:59:59.000Z

    The use of nuclear power in space is going through a low point. The kinds of missions that would use nuclear power are expensive and there are few new expensive missions. Both NASA and DoD are in a mode of cheaper, faster, better, which means using what is available as much as possible and only incorporating new technology to reduce mission cost. NASA is performing Mission to Planet Earth and detailed exploration missions of Mars. These NASA missions can be done with solar-battery power subsystems and there is no need for nuclear power. The NASA mission to Pluto does require nuclear radioisotope power. Ways to reduce the power subsystem cost and the power level are being investigated. NASA is studying ways to explore beyond Mars with solar-battery power because of the cost and uncertainty in the availability and launchability of nuclear space power systems. The DoD missions are all in earth orbit and can be done with solar-battery systems. The major DoD requirement at present is to reduce costs of all their space missions. One way to do this is to develop highly efficient upper stage boosters that can be integrated with lower cost Earth to low orbit stages and still place their payloads in to higher orbits. One attractive upper stage is a nuclear bimodal (propulsion and power) engine to accomplished lower booster cost to place space assets in GEO. However this is not being pursued because of DOE`s new policy not to fund nuclear space power research and development as well as the difficulty in obtaining launch approval for nuclear propulsion and power systems.

  17. Definition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear Electric Propulsion and Power Systems

    E-Print Network [OSTI]

    Nuclear Electric Propulsion and Power Systems By Bryan K. Smith Submitted to the System Design, expansion and screening of Nuclear Electric Propulsion and Power concepts capable of achieving planetaryDefinition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear

  18. Nuclear rockets: High-performance propulsion for Mars

    SciTech Connect (OSTI)

    Watson, C.W.

    1994-05-01T23:59:59.000Z

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  19. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01T23:59:59.000Z

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  1. Assessment of a hot hydrogen nuclear propulsion fuel test facility

    SciTech Connect (OSTI)

    Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

    1991-01-01T23:59:59.000Z

    Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

  2. EIS-0251: Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)

    Broader source: Energy.gov [DOE]

    This Final Environmental Impact Statementaddresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.

  3. Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems

    E-Print Network [OSTI]

    White, Daniel B., Jr

    2011-01-01T23:59:59.000Z

    High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

  4. A New Capability for Nuclear Thermal Propulsion Design

    SciTech Connect (OSTI)

    Amiri, Benjamin W. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nuclear and Radiological Engineering Department, University of Florida, Gainesville, FL 32611 (United States); Kapernick, Richard J. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sims, Bryan T. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Simpson, Steven P. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2007-01-30T23:59:59.000Z

    This paper describes a new capability for Nuclear Thermal Propulsion (NTP) design that has been developed, and presents the results of some analyses performed with this design tool. The purpose of the tool is to design to specified mission and material limits, while maximizing system thrust to weight. The head end of the design tool utilizes the ROCket Engine Transient Simulation (ROCETS) code to generate a system design and system design requirements as inputs to the core analysis. ROCETS is a modular system level code which has been used extensively in the liquid rocket engine industry for many years. The core design tool performs high-fidelity reactor core nuclear and thermal-hydraulic design analysis. At the heart of this process are two codes TMSS-NTP and NTPgen, which together greatly automate the analysis, providing the capability to rapidly produce designs that meet all specified requirements while minimizing mass. A PERL based command script, called CORE DESIGNER controls the execution of these two codes, and checks for convergence throughout the process. TMSS-NTP is executed first, to produce a suite of core designs that meet the specified reactor core mechanical, thermal-hydraulic and structural requirements. The suite of designs consists of a set of core layouts and, for each core layout specific designs that span a range of core fuel volumes. NTPgen generates MCNPX models for each of the core designs from TMSS-NTP. Iterative analyses are performed in NTPgen until a reactor design (fuel volume) is identified for each core layout that meets cold and hot operation reactivity requirements and that is zoned to meet a radial core power distribution requirement.

  5. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect (OSTI)

    Howe, S. (Los Alamos National Lab., NM (United States)); Borowski, S. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Motloch, C. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Helms, I. (Nuclear Utility Services, Damascus, MD (United States)); Diaz, N.; Anghaie, S. (Florida Univ., Gainesville, FL (United States)); Latham, T. (United

    1991-01-01T23:59:59.000Z

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  6. Ground Test Facility for Propulsion and Power Modes of Nuclear Engine Operation

    SciTech Connect (OSTI)

    Michael, WILLIAMS

    2004-11-22T23:59:59.000Z

    Existing DOE Ground Test Facilities have not been used to support nuclear propulsion testing since the Rover/NERVA programs of the 1960's. Unlike the Rover/NERVA programs, DOE Ground Test facilities for space exploration enabling nuclear technologies can no longer be vented to the open atmosphere. The optimal selection of DOE facilities and accompanying modifications for confinement and treatment of exhaust gases will permit the safe testing of NASA Nuclear Propulsion and Power devices involving variable size and source nuclear engines for NASA Jupiter Icy Moon Orbiter (JIMO) and Commercial Space Exploration Missions with minimal cost, schedule and environmental impact. NASA site selection criteria and testing requirements are presented.

  7. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Ballard, Richard O. [Nuclear and Advanced Propulsion Systems Engineering Branch, NASA Marshall Space Flight Center, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.

  8. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect (OSTI)

    Marshall, A.C.; Sawyer, J.C. Jr.; Bari, R.A.; Brown, N.W.; Cullingford, H.S.; Hardy, A.C.; Lee, J.H.; Mcculloch, W.H.; Niederauer, G.F.; Remp, K. (Sandia National Laboratories, Albuquerque, NM (United States) NASA, Washington (United States) Brookhaven National Laboratory, Upton, NY (United States) General Electric Co., San Jose, CA (United States) NASA, Johnson Space Center, Houston, Tn (United States) L

    1992-07-01T23:59:59.000Z

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top-level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of safety functional requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed. 9 refs.

  9. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect (OSTI)

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H. (Sandia National Labs., Albuquerque, NM (United States)); Sawyer, J.C. Jr. (National Aeronautics and Space Administration, Washington, DC (United States)); Bari, R.A. (Brookhaven National Lab., Upton, NY (United States)); Brown, N.W. (General Electric Co., San Jose, CA (United States)); Cullingford, H.S.; Hardy, A.C. (National Aeronautics and Space Administ

    1992-01-01T23:59:59.000Z

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  10. NSPWG-recommended safety requirements and guidelines for SEI nuclear propulsion

    SciTech Connect (OSTI)

    Marshall, A.C.; Lee, J.H.; McCulloch, W.H. [Sandia National Labs., Albuquerque, NM (United States); Sawyer, J.C. Jr. [National Aeronautics and Space Administration, Washington, DC (United States); Bari, R.A. [Brookhaven National Lab., Upton, NY (United States); Brown, N.W. [General Electric Co., San Jose, CA (United States); Cullingford, H.S.; Hardy, A.C. [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center; Niederauer, G.F. [Los Alamos National Lab., NM (United States); Remp, K. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Rice, J.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Sholtis, J.A. [Department of the Air Force, Kirtland AFB, NM (United States)

    1992-09-01T23:59:59.000Z

    An Interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top- level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition the NSPWG reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. Safety requirements were developed for reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, and safeguards. Guidelines were recommended for risk/reliability, operational safety, flight trajectory and mission abort, space debris and meteoroids, and ground test safety. In this paper the specific requirements and guidelines will be discussed.

  11. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    SciTech Connect (OSTI)

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01T23:59:59.000Z

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

  12. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    SciTech Connect (OSTI)

    Frischauf, Norbert [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Koudelka, Otto [Institute of Communication Networks and Satellite Communication, Graz University of Technology, Inffeldgasse 12/I, A-8010 Graz (Austria)

    2006-07-01T23:59:59.000Z

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  13. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    SciTech Connect (OSTI)

    Bruce G. Schnitzler

    2012-01-01T23:59:59.000Z

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.

  14. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    SciTech Connect (OSTI)

    King, D.B. [DSWA/FC, Thermionic Evaluation Facility 801 University Blvd. SE Albuquerque, New Mexico (United States); Marshall, A.C. [DSWA/FC, Thermionic Evaluation Facility 801 University Blvd. SE Albuquerque, New Mexico (United States)

    1997-01-01T23:59:59.000Z

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models. {copyright} {ital 1997 American Institute of Physics.}

  15. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    SciTech Connect (OSTI)

    King, Donald B.; Marshall, Albert C. [DSWA/FC, Thermionic Evaluation Facility 801 University Blvd. SE Albuquerque, New Mexico (United States); DSWA/FC, Thermionic Evaluation Facility 801 University Blvd. SE Albuquerque, New Mexico (United States)

    1997-01-10T23:59:59.000Z

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I and C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  16. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01T23:59:59.000Z

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  17. Application of the enabler to nuclear electric propulsion

    SciTech Connect (OSTI)

    Pierce, B.L. (Westinghouse Electric Corporation Advanced Energy Systems P.O Box 158 Madison, PA 15663-0158 (US))

    1991-01-01T23:59:59.000Z

    This paper describes a power system concept that provides the electric power for a baseline electric propulsion system for a piloted mission to Mars. A 10-MWe space power system is formed by coupling an Enabler reactor with a simple non-recuperated closed Brayton cycle. The Enabler reactor is a gas-cooled reactor based on proven reactor technology developed under the NERVA/Rover programs. The selected power cycle, which uses a helium-xenon mixture at 1920 K at the turbine inlet, is diagramed and described. The specific mass of the power system over the power range from 5 to 70 MWe is given. The impact of operating life on the specific mass of a 10-MWe system is also shown.

  18. Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Trammell, Michael P [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Qualls, A L [ORNL; Harrison, Thomas J [ORNL

    2013-01-01T23:59:59.000Z

    ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

  19. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    SciTech Connect (OSTI)

    Borowski, S.K.

    1994-09-01T23:59:59.000Z

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  20. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01T23:59:59.000Z

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

  1. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    SciTech Connect (OSTI)

    Pelaccio, D.G.; El-Genk, M.S. [Univ. of New Mexico, Albuquerque, NM (United States). Inst. for Space Nuclear Power Studies; Butt, D.P. [Los Alamos National Lab., NM (United States)

    1993-12-01T23:59:59.000Z

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico`s Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  2. Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options

    SciTech Connect (OSTI)

    Joyner, Russell [Pratt and Whitney Rocketdyne, West Palm Beach, Florida (United States); Lentati, Andrea [Georgia Institute of Technology, Atlanta, Georgia (United States); Cichon, Jaclyn [University of Florida, Gainesville, Florida (United States)

    2007-01-30T23:59:59.000Z

    The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt and Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt and Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.

  3. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    SciTech Connect (OSTI)

    Powell, J.R.; Ludewig, H.; Horn, F.L.; Araj, K.; Benenati, R.; Lazareth, O.; Slovik, G.; Solon, M.; Tappe, W.; Belisle, J.

    1987-01-01T23:59:59.000Z

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ..delta..V missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined.

  4. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    SciTech Connect (OSTI)

    Frischauf, Norbert; Hamilton, Booz Allen [ESA/ESTEC, Keplerlaan 1, P.O. Box 29, NL-2200 AG Noordwijk (Netherlands)

    2004-07-01T23:59:59.000Z

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission- and fusion-based Nuclear Power and Propulsion system concepts and tries to compare these systems' different working principles and technical implementations with each other. The overview and comparison will be complemented by a closer look at ongoing activities related to research and development in this area and by an outlook on what kind of systems might be employed to carry the first astronauts to Mars and beyond. (autho0008.

  5. Hydrogen loops in existing reactors for testing fuel elements for nuclear propulsion

    SciTech Connect (OSTI)

    Olsen, C.S.; Welland, H.; Abraschoff, J. (Idaho National Engineering Laboratory, EG G Idaho Inc., P.O. Box 1625, Idaho Falls, Idaho 83415 (United States)); Thoms, K. (Oak Ridge National Laboratory, P.O. Box, Oak Ridge, Tennessee 37831-8087 (United States))

    1993-01-15T23:59:59.000Z

    The Space Exploration Initiative (SEI) has revitalized interest in adapting nuclear energy for power and propulsion. Prior to the selection of a nuclear thermal propulsion (NTP) system, extensive testing of the various proposed concepts will be required. In today's environmental, safety and health culture, full size rocket engine tests as were done under the Rover/NERVA program will be extremely difficult and expensive to perform and meet NASA's schedules. A different test strategy uses a hydrogen loop in an existing reactor to test a wide variety of single elements or clusters of elements for fuel qualification. This approach is expected to reduce operating and capital costs and expedite the testing schedule. This paper examines the potential of performing subscale tests in a hydrogen loop in an existing reactor such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. The HFIR is expected to achieve power densities comparable to those achieved in ATR because of the 85 MWt power level and the high thermal and fast flux levels. The available length and diameter of the test region of FHIR are 60 cm and 10 cm whereas the available length and diameter of the test region of ATR are 120 cm and 12 cm respectively.

  6. Mars mission opportunity and transit time sensitivity for a nuclear thermal rocket propulsion application

    SciTech Connect (OSTI)

    Young, A.C.; Mulqueen, J.A.; Nishimuta, E.L.; Emrich, W.J. (George C. Marshall Space Flight Center, Marshall Space Flight Center, Alabama 35812 (United States))

    1993-01-10T23:59:59.000Z

    President George Bush's 1989 challenge to America to support the Space Exploration Initiative (SEI) of Back to the Moon and Human Mission to Mars'' gives the space industry an opportunity to develop effective and efficient space transportation systems. This paper presents stage performance and requirements for a nuclear thermal rocket (NTR) Mars transportation system to support the human Mars mission of the SEI. Two classes of Mars mission profiles are considered in developing the NTR propulsion vehicle performance and requirements. The two Mars mission classes include the opposition class and conjunction class. The opposition class mission is associated with relatively short Mars stay times ranging from 30 to 90 days and total mission duration of 350 to 600 days. The conjunction class mission is associated with much longer Mars stay times ranging from 500 to 600 days and total mission durations of 875 to 1,000 days. Vehicle mass scaling equations are used to determine the NTR stage mass, size, and performance range required for different Mars mission opportunities and for different Mars mission durations. Mission opportunities considered include launch years 2010 to 2018. The 2010 opportunity is the most demanding launch opportunity and the 2018 opportunity is the least demanding opportunity. NTR vehicle mass and size sensitivity to NTR engine thrust level, engine specific impulse, NTR engine thrust-to-weight ratio, and Mars surface payload are presented. NTR propulsion parameter ranges include those associated with NERVA, particle bed reactor (PBR), low-pressure, and ceramic-metal-type engine design.

  7. Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems

    E-Print Network [OSTI]

    , use of electric primary propulsion in flight systems has been limited to low-power, solar electric thruster output power are identified. Design evolutions are presented for three thrusters that would1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power

  8. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    SciTech Connect (OSTI)

    Irwin, Ryan W. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 (United States); Tinker, Michael L. [Spacecraft and Vehicle Systems Department, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2005-02-06T23:59:59.000Z

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  9. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    SciTech Connect (OSTI)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.; Mughabghab, S.F.; Schmidt, E.; Todosow, M. [Brookhaven National Lab., Upton, NY (United States); Parma, E.J. [Sandia National Labs., Albuquerque, NM (United States); Ball, R.M.; Hoovler, G.S. [Babcock and Wilcox Co., Lynchburg, VA (United States)

    1993-06-01T23:59:59.000Z

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate very good agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors.

  10. Preliminary assessment of high power, NERVA-class dual-mode space nuclear propulsion and power systems

    SciTech Connect (OSTI)

    Buksa, J.J.; Kirk, W.L.; Cappiello, M.W. (Nuclear Technology and Engineering Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (US))

    1991-01-05T23:59:59.000Z

    A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the ROVER reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.

  11. Low Energy Nuclear Reaction Research at the Naval Research Laboratory D.A. Kidwell1

    E-Print Network [OSTI]

    Noble, James S.

    have explored the field of Low Energy Nuclear Reactions (LENR) for about eight years focusing experiments and therefore harder to characterize as unconventional chemistry. In both approaches to LENR only, but that acceptance can change on a moments notice when new data arises. Although simple in concept, LENR experiments

  12. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    SciTech Connect (OSTI)

    Voss, S.S. [Los Alamos National Lab., NM (United States); Reynolds, E.L. [Applied Physics Laboratory, Laurel, MD (United States)

    1994-06-01T23:59:59.000Z

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz 11 system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal Year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended.

  13. A radiological assessment of nuclear power and propulsion operations near Space Station Freedom. Contract report, January 1988-January 1990

    SciTech Connect (OSTI)

    Bolch, W.E.; Thomas, J.K.; Peddicord, K.L.; Nelson, P.; Marshall, D.T.; Busche, D.M.

    1990-03-01T23:59:59.000Z

    Scenarios were identified which involve the use of nuclear power systems in the vicinity of Space Station Freedom (SSF) and their radiological impact on the SSF crew was quantified. Several of the developed scenarios relate to the use of SSF as an evolutionary transportation node for lunar and Mars missions. In particular, radiation doses delivered to SSF crew were calculated for both the launch and subsequent return of a Nuclear Electric Propulsion (NEP) cargo vehicle and a Nuclear Thermal Rocket (NTR) personnel vehicle to low earth orbit. The use of nuclear power on co-orbiting platforms and the storage and handling issues associated with radioisotope power systems were also explored as they relate to SSF. A central philosophy in these analyses was the utilization of a radiation dose budget, defined as the difference between recommended dose limits from all radiation sources and estimated doses received by crew members from natural space radiations. Consequently, for each scenario examined, the dose budget concept was used to identify and quantify constraints on operational parameters such as launch separation distances, returned vehicle parking distances, and reactor shutdown times prior to vehicle approach. The results indicate that realistic scenarios do not exist which would preclude the use of nuclear power sources in the vicinity of SSF. The radiation dose to the SSF crew can be maintained at safe levels solely by implementing proper and reasonable operating procedures.

  14. Analyzing the effects of component reliability on naval Integrated Power System quality of service

    E-Print Network [OSTI]

    Hawbaker, Benjamin F. (Benjamin Forrest)

    2008-01-01T23:59:59.000Z

    The Integrated Power System (IPS) is a key enabling technology for future naval vessels and their advanced weapon systems. While conventional warship designs utilize separate power systems for propulsion and shipboard ...

  15. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  16. Numerical Simulation of Plasma Behavior in a Magnetic Nozzle of a Laser-plasma Driven Nuclear Electric Propulsion System

    SciTech Connect (OSTI)

    Kajimura, Y. [Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Science and Technology Agency (JST), CREST 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan); Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H. [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate school of Engineering Sciences, Kyushu University, Kasugakouen 6-1, Kasuga, Fukuoka 816-580 (Japan)

    2008-12-31T23:59:59.000Z

    Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  18. Naval Engineering A National Naval Obligation

    E-Print Network [OSTI]

    Chryssostomidis, Chryssostomos

    2000-05-16T23:59:59.000Z

    As part of its national obligations, ONR must ensure US world leadership in those unique technology areas that insure naval superiority. ONR accomplishes this mission through research, recruitment and education, maintaining ...

  19. LETTER REPORT. INDEPENDENT CONFIRMATORY SURVEY RESULTS OF SOILS ASSOCIATED WITH THE ARGYLE STREET SEWER LINE AT THE UNITED NUCLEAR CORPORATION NAVAL PRODUCTS SITE, NEW HAVEN, CONNECTICUT

    SciTech Connect (OSTI)

    Adams, Wade C.

    2012-01-24T23:59:59.000Z

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the United Nuclear Corporation (UNC) Naval Products site on three separate occasions during the months of October and November 2011. The purpose of these visits was to conduct confirmatory surveys of soils associated with the Argyle Street sewer line that was being removed. Soil samples were collected from six different, judgmentally determined locations in the Argyle Street sewer trench. In addition to the six soil samples collected by ORISE, four replicate soil samples were collected by Cabrera Services, Inc. (CSI) for analysis by the ORISE laboratory. Replicate samples S0010 and S0011 were final status survey (FSS) bias samples; S0012 was an FSS systematic sample; and S0015 was a waste characterization sample. Six soil samples were also collected for background determination. Uranium-235 and uranium-238 concentrations were determined via gamma spectroscopy; the spectra were also reviewed for other identifiable photopeaks. Radionuclide concentrations for these soil samples are provided. In addition to the replicate samples and the samples collected by ORISE, CSI submitted three soil samples for inter-laboratory comparison analyses. One sample was from the background reference area, one was from waste characterization efforts (material inside the sewer line), and one was a FSS sample. The inter-laboratory comparison analyses results between ORISE and CSI were in agreement, except for one sample collected in the reference area. Smear results For Argyle Street sewer pipes are tabulated.

  20. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    SciTech Connect (OSTI)

    T.L. Mitchell

    2000-05-31T23:59:59.000Z

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M&O 2000a).

  1. Submersion Criticality Safety Analysis of Tungsten-Based Fuel for Nuclear Power and Propulsion Applications

    SciTech Connect (OSTI)

    A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

    2014-07-01T23:59:59.000Z

    The Center for Space Nuclear Research (CSNR) is developing tungsten-encapsulated fuels for space nuclear applications. Aims to develop NTP fuels that are; Affordable Low impact on production and testing environment Producible on a large scale over suitable time period Higher-performance compared to previous graphite NTP fuel elements Space nuclear reactors remain subcritical before and during launch, and do not go critical until required by its mission. A properly designed reactor will remain subcritical in any launch abort scenario, where the reactor falls back to Earth and becomes submerged in terrestrial material. Submersion increases neutron reflection and thermalizes the neutrons, which typically increases the reactivity of the core. This effect is usually very significant for fast-spectrum reactors. This research provided a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor. Determine the submersion behavior of a reactor fueled by tungsten-based fuel. Considered fuel compositions with varying: Rhenium content (wt% rhenium in tungsten) Fuel loading fractions (UO2 vol%)

  2. THE NAVAL RESEARCH ENTERPRISE AND PLASMA PHYSICS RESEARCH AT THE NAVAL RESEARCH LAB

    E-Print Network [OSTI]

    Shyy, Wei

    , to create Xray simulators for testing nuclear weapons effects, and to understand high altitude nuclear ex and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power also participates in two Innovative Naval Prototype programs: the electromagnetic railgun and the free

  3. Design and evaluation of a nuclear-electric hybrid power/propulsion system

    E-Print Network [OSTI]

    Keil, Ralph

    1989-01-01T23:59:59.000Z

    element volume in the core ms w = Radiator mass per unit area ikg/ms] Greek symbols: Specific mass [kg/W] 6 = Difl'erence Radiator emissivity e, ?, = Core void fraction ef, = Volume fraction of UC in the fuel peHet efficiency P? Average fluid... cycles. Open-Loop Brayton Cycle In this cycle the working fluid, which is also used as the propellant, is heated by going through a nuclear reactor and expanded through a turbine in order to generate the electric power needed for the operation...

  4. Naval petroleum reserves

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    A hearing to consider two bills (S. 1744 and H.R. 3023) authorizing appropriations to operate the Naval Petroleum Reserve during fiscal 1982 brought testimony from officials of the Departments of Energy and Defense; from Chevron, USA; and from the Independent Refiners Association. Both bills authorize $228,463,000, of which $2.56 million will be available for the naval oil shale reserves and the remainder for the naval petroleum reserves. Chevron spokesmen noted that 8-11 months were required to reach full production at the Elk Hills site rather than the 60-90 days estimated by DOE, although both Chevron and the Independent Refiners Association of the west coast support the President's decision that it is in the national interest to continue the production of crude from naval petroleum reserves for the next three years.

  5. NPS Research supports Naval

    E-Print Network [OSTI]

    Management Stanley Arthur Chair of Logistics RADM George F. Wagner Chair in Public Management Chair WAYNE E. MEYER INSTITUTE OF SYSTEMS ENGINEERING FY08 Naval Sponsored Program Research and Education: $36

  6. Use of High-Power Brayton Nuclear Electric Propulsion (NEP) for a 2033 Mars Round-Trip Mission

    SciTech Connect (OSTI)

    McGuire, Melissa L. [Space Propulsion and Mission Analysis Office (Code: PBM), NASA Glenn Research Center, MS 500-103, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Martini, Michael C.; Packard, Thomas W. [Space Propulsion and Mission Analysis Office (Code: PBM), NASA Glenn Research Center, MS 500-103, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Analex Corporation, 1100 Apollo Drive, Brook Park, OH 44142 (United States); Weglian, John E. [Space Propulsion and Mission Analysis Office (Code: PBM), NASA Glenn Research Center, MS 500-103, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Ohio Aerospace Institute, 22800 Cedar Point Rd., Brook Park, OH 44142 (United States); Gilland, James H. [Ohio Aerospace Institute, 22800 Cedar Point Rd., Brook Park, OH 44142 (United States)

    2006-01-20T23:59:59.000Z

    The Revolutionary Aerospace Systems Concepts (RASC) team, led by the NASA Langley Research Center, is tasked with exploring revolutionary new approaches to enabling NASA to achieve its strategic goals and objectives in future missions. This paper provides the details from the 2004-2005 RASC study of a point-design that uses a high-power nuclear electric propulsion (NEP) based space transportation architecture to support a manned mission to Mars. The study assumes a high-temperature liquid-metal cooled fission reactor with a Brayton power conversion system to generate the electrical power required by magnetoplasmadynamic (MPD) thrusters. The architecture includes a cargo vehicle with an NEP system providing 5 MW of electrical power and a crewed vehicle with an NEP system with two reactors providing a combined total of 10 MW of electrical power. Both vehicles use a low-thrust, high-efficiency (5000 sec specific impulse) MPD system to conduct a spiral-out of the Earth gravity well, a low-thrust heliocentric trajectory, and a spiral-in at Mars with arrival late in 2033. The cargo vehicle carries two moon landers to Mars and arrives shortly before the crewed vehicle. The crewed vehicle and cargo vehicle rendezvous in Mars orbit and, over the course of the 60-day stay, the crew conducts nine-day excursions to Phobos and Deimos with the landers. The crewed vehicle then spirals out of Martian orbit and returns via a low-thrust trajectory to conduct an Earth flyby. The crew separates from the vehicle prior to Earth flyby and aerobrakes for a direct-entry landing.

  7. Radiological surveys of Naval facilities on Puget Sound. Final report

    SciTech Connect (OSTI)

    Lloyd, V.D.; Blanchard, R.L.

    1989-06-01T23:59:59.000Z

    This report presents results of surveys conducted to assess levels of environmental radioactivity resulting from maintenance and operation of nuclear-powered warships at Puget Sound Naval Shipyard, Naval Submarine Base, Bangor, and the proposed Carrier Battle Group Homeporting Site in northwestern Washington. The purpose of the survey was to determine if activities related to nuclear-powered warships resulted in release of radionuclides that may contribute to significant population exposure or contamination of the environment.

  8. Naval Architecture and Marine Engineering

    E-Print Network [OSTI]

    Eustice, Ryan

    knowledge of mathematics, science, and engineering within naval architecture and marine engineering and marine engineering problems; an ability to apply basic knowledge in fluid mechanics, dynamicsNaval Architecture and Marine Engineering Undergraduate Program The University of Michigan #12

  9. BOARD OF ADVISORS TO THE PRESIDENTS OF THE NAVAL POSTGRADUATE SCHOOL & NAVAL WAR COLLEGE

    E-Print Network [OSTI]

    BOARD OF ADVISORS TO THE PRESIDENTS OF THE NAVAL POSTGRADUATE SCHOOL & NAVAL WAR COLLEGE October 17 attendance (choose all that apply): Naval Postgraduate School Subcommittee, 17 October 2012 Naval War College

  10. Radiological survey of the Mare Island Naval Shipyard, Alameda Naval Air Station, and Hunters Point Shipyard

    SciTech Connect (OSTI)

    Semler, M.O.; Blanchard, R.L. (Environmental Protection Agency, Montgomery, AL (USA). Eastern Environmental Radiation Facility)

    1989-06-01T23:59:59.000Z

    Since 1963, the Eastern Environmental Radiation Facility (EERF), US Environmental Protection Agency (USEPA), in cooperation with the US Naval Sea Systems Command (NAVSEA) has surveyed facilities serving nuclear-powered warships on the Atlantic and Pacific coasts and the Gulf of Mexico. These surveys assess whether the operation of nuclear-powered warships, during construction, maintenance, overhaul, or refueling, have created elevated levels of radioactivity. The surveys emphasize sampling those areas and pathways that could expose the public. In 1984, NAVSEA requested that EPA survey all active facilities serving nuclear-powered warships over the next three years. This report contains the results of surveys conducted at Naval facilities located at Mare Island, Alameda, and Hunters Point in the San Francisco region. The locations of these facilities are shown. 3 refs., 4 figs., 3 tabs.

  11. The case for naval arms control

    SciTech Connect (OSTI)

    Fieldhouse, R. (Natural Resources Defense Council in Washington, DC (USA))

    1990-02-01T23:59:59.000Z

    Resurfacing at the Malta summit, the issue of naval arms control has once again become prominent as START and other potential treaties near completion. The time has come when we should begin discussing naval forces, said Soviet leader Mikhail Gorbachev, arguing that limiting only ground and air forces would not be equitable. The United States has opposed naval arms control - although some prominent U.S. officials, such as former chairman of the Joint Chiefs of Staff, Admiral William J. Crowe, Jr., have advocated some type of limitations. The official US position is that as a maritime power, the United States requires an unrestrained navy to fulfill its defense obligations. This issue of Arms Control Today presents here two views on this controversy. In the article, Richard Fieldhouse, senior research associate with the Nuclear Weapons Data Project, argues that there are indeed areas, such as controlling nuclear weapons on ships and confidence-building measures, that will enhance, not diminish, U.S. security. Following this, James R. Blaker, a former deputy assistant secretary of defense, presents a counter argument.

  12. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading newNaturalNatureNaval

  13. Naval Reactors | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCENationalNaval Reactors

  14. Fracture of aluminum naval structures

    E-Print Network [OSTI]

    Galanis, Konstantinos, 1970-

    2007-01-01T23:59:59.000Z

    Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

  15. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01T23:59:59.000Z

    Resources at Naval Base Ventura Country Building 1512 7.August 2001. Naval Base Ventura County Standby GeneratorEnergy Resources at Naval Base Ventura Country Building 1512

  16. A comparison of propulsion systems for potential space mission applications

    SciTech Connect (OSTI)

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01T23:59:59.000Z

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback.

  17. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  18. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  19. Naval Petroleum Reserves | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Petroleum Reserves For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military. All that...

  20. Naval Petroleum Reserve No. 1

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    For several years, the administration has proposed selling the government's ownership interest in the Naval Petroleum Reserves, arguing that it would help reduce the federal budget deficit. The administration's latest proposal calls for the sale of reserves in fiscal year 1990. DOE estimates that if the reserves are sold in 1990, proceeds would amount to about $3.4 billion. The Naval Petroleum Reserve at Elk Hills, California, is the largest of the reserves. This report has reviewed and analyzed the new reserve data and found that DOE's reserve estimates for Elk Hills are still neither accurate nor up-to-date.

  1. NAVAL POSTGRADUAm SCHOOL Monterey, California

    E-Print Network [OSTI]

    NAVAL POSTGRADUAm SCHOOL Monterey, California A WHOLESALE LEVEL CONSUMABLE ITEM DEMAND PATI TYPE AND DATES COVERED Master's Thesis 4. TITLE AND SUBTITLE A WHOLESALE LEVEL CONSUMABLE DEMAND is unlimited. A Wholesale Level Consumable Item Inventory Model for Non-Stationary Demand Patterns Glenn C

  2. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  3. LCEs for Naval Reactor Benchmark Calculations

    SciTech Connect (OSTI)

    W.J. Anderson

    1999-07-19T23:59:59.000Z

    The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.

  4. The form, function, and interrelationships of naval rams: a study of naval rams from antiquity

    E-Print Network [OSTI]

    Pridemore, Matthew Garnett

    1996-01-01T23:59:59.000Z

    The discovery of several naval rams from sites around the Mediterranean has given scholars a brief glimpse of one of the most widely used naval weapons of the ancient world. Examining these physical examples provides information that is unavailable...

  5. naval reactors | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97,1996 http://www.eia.doe.gov N Y M Enaval

  6. About Naval Reactors | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA could reduceCustomerEIA's 2015questionsNNSA

  7. andreyev bay naval: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    led by my Marine Corps staff and battalion New Mexico, University of 2 Naval Architecture Marine Engineering Engineering Websites Summary: Naval Architecture Marine...

  8. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...

    Energy Savers [EERE]

    Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline This Report to Congress provides a...

  9. Naval Research Laboratory Stennis Space Center

    E-Print Network [OSTI]

    Naval Research Laboratory Stennis Space Center Mississippi 39529 www7320.nrlssc.navy.mil/ Ocean Ocean prediction technology The Naval Research Laboratory (NRL) is the US Navy corporate laboratory, dedicated to addressing Navy unique problems and enabling the Navy to operate efficiently and safely. Unique

  10. 1996 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 1996 at the Naval Reactors Facility (NRF) are presented in this report. The NRF is located on the Idaho National Engineering and Environmental Laboratory and contains three naval reactor prototypes and the Expended Core Facility, which examines developmental nuclear fuel material samples, spent naval fuel, and irradiated reactor plant components/materials. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  11. Progress in colloid propulsion

    E-Print Network [OSTI]

    Lpez Urdiales, Jse Mariano, 1977-

    2004-01-01T23:59:59.000Z

    In the early decades of the Space Age, a great deal of work was put into the development of the Colloid Thruster as an electric propulsion system for spacecraft. In spite of the effort by the end of the 70s the programs ...

  12. Comparative naval architecture analysis of diesel submarines

    E-Print Network [OSTI]

    Torkelson, Kai Oscar

    2005-01-01T23:59:59.000Z

    Many comparative naval architecture analyses of surface ships have been performed, but few published comparative analyses of submarines exist. Of the several design concept papers, reports and studies that have been written ...

  13. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special in the National Nuclear Security Administration, including official reception and representation expenses, and Naval Reactors appropriations including the National Nuclear Security Administration (NNSA) field of

  14. U.S. NAVAL ACADEMY COMPUTER SCIENCE DEPARTMENT

    E-Print Network [OSTI]

    Crabbe, Frederick

    U.S. NAVAL ACADEMY COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT Mobile Vehicle Teleoperated Over Akin and Frederick L. Crabbe U.S. Naval Academy Computer Science Department 572M Holloway Rd, Stop 9F

  15. Engineering Challenges in Antiproton Triggered Fusion Propulsion

    SciTech Connect (OSTI)

    Cassenti, Brice [Department. of Engineering and Science, Rensselaer Polytechnic Institute, 275 Windsor Avenue, Hattford, CT 06120 (United States); Kammash, Terry [Nuclear Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-01-21T23:59:59.000Z

    During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

  16. Lightweighting and Propulsion Materials Roadmapping Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief 2012 DOE Hydrogen and Fuel Cells Program...

  17. Jet propulsion without inertia

    E-Print Network [OSTI]

    Saverio E. Spagnolie; Eric Lauga

    2010-05-04T23:59:59.000Z

    A body immersed in a highly viscous fluid can locomote by drawing in and expelling fluid through pores at its surface. We consider this mechanism of jet propulsion without inertia in the case of spheroidal bodies, and derive both the swimming velocity and the hydrodynamic efficiency. Elementary examples are presented, and exact axisymmetric solutions for spherical, prolate spheroidal, and oblate spheroidal body shapes are provided. In each case, entirely and partially porous (i.e. jetting) surfaces are considered, and the optimal jetting flow profiles at the surface for maximizing the hydrodynamic efficiency are determined computationally. The maximal efficiency which may be achieved by a sphere using such jet propulsion is 12.5%, a significant improvement upon traditional flagella-based means of locomotion at zero Reynolds number. Unlike other swimming mechanisms which rely on the presentation of a small cross section in the direction of motion, the efficiency of a jetting body at low Reynolds number increases as the body becomes more oblate, and limits to approximately 162% in the case of a flat plate swimming along its axis of symmetry. Our results are discussed in the light of slime extrusion mechanisms occurring in many cyanobacteria.

  18. EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

    E-Print Network [OSTI]

    EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY Marine Biological Laboratory t, T "B and Wildlife Service, John L. Farley, Director EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY of Medicine, Univ. of Puerto Rico. #12;#12;EFFECTS OF NAVAL ORDNANCE TESTS ON THE PATUXENT RIVER FISHERY

  19. Non-nuclear submarine tankers could cost-effectively move Arctic oil and gas

    SciTech Connect (OSTI)

    Kumm, W.H.

    1984-03-05T23:59:59.000Z

    Before the advent of nuclear propulsion for U.S. Navy submarines, fuel cells were considered to be the next logical step forward from battery powered submarines which required recharging. But with the launching of the USS Nautilus (SSN-571) in 1954, the development of fuel-cell propulsion was sidelined by the naval community. Nearly 30 years later fuel-cell propulsion on board submarines is actually more cost-effective than the use of nuclear propulsion. In the Artic Ocean, the use of the submarine tanker has long been considered commercially appropriate because of the presence of the polar ice cap, which inhibits surface ship transport. The technical difficulty and high operating cost of Arctic icebreaking tankers are strong arguments in favor of the cheaper, more efficient submarine tanker. Transiting under the polar ice cap, the submarine tanker is not an ''Arctic'' system, but merely a submerged system. It is a system usable in any ocean around the globe where sufficient depth exists (about 65% of the global surface). Ice breakers are another story; their design only makes them useful for transit through heavy sea ice in coastal environments. Used anywhere else, such as in the open ocean or at the Arctic ice cap, they are not a cost-effective means of transport. Arctic sea ice conditions require the Arctic peculiar icebreaking tanker system to do the job the hard way-on the surface. But on the other hand, Arctic sea ice conditions are neatly set aside by the submarine tanker, which does it the energy-efficient, elegant way submerged. The submarine tanker is less expensive to build, far less expensive to operate, and does not need to be nuclear propelled.

  20. AIAA 94-4688 Topaz II Nuclear Powered

    E-Print Network [OSTI]

    Y Y AIAA 94-4688 Topaz II Nuclear Powered SAR Satellite M. Feuerstein and Dr. 9. Agrawal Naval Astronautics 370 L'EnfantPromenade, S.W., Washington, D.C. 20024 #12;AIAA-94-4688 TOPAZ 11NUCLEAR POWERED SAR at the Naval Postgraduate School. Thc design team integrated a Topaz I1 nuclear power system with an EOS

  1. DEPARTMENT OF THE NAVY NAVAL POSTGRADUATE SCHOOL

    E-Print Network [OSTI]

    DEPARTMENT OF THE NAVY NAVAL POSTGRADUATE SCHOOL 1 UNIVERSITY CIR MONTEREY, CA 93943-5000 IN REPLY FOR ADMINISTRATION AND MANAGEMENT OF NAVY FULLY-FUNDED GRADUATE EDUCATION PROGRAMS AT CIVILIAN INSTITUTIONS guidance for the U.S. Navy's fully funded graduate education programs at Civilian Institutions (CIVINS

  2. Yangtze Patrol: American Naval Forces in China

    E-Print Network [OSTI]

    Yangtze Patrol: American Naval Forces in China A Selected, Partially-Annotated Bibliography literature of the United States Navy in China. mvh #12;"Like Chimneys in Summer" The thousands of men who served on the China Station before World War II have been all but forgotten, except in the mythology

  3. Strategic Technology JET PROPULSION LABORATORY

    E-Print Network [OSTI]

    Waliser, Duane E.

    Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12; 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

  4. Russian naval bases due commercial development

    SciTech Connect (OSTI)

    Not Available

    1992-04-27T23:59:59.000Z

    Tecnogrid Group, New York, has signed a joint venture with the Russian Navy for commercial development of a wide range of sea dn land based assets owned by the former Soviet Navy. This paper reports that among other things, the venture aims for projects that will allow greater volumes of oil exports by revamping several naval bases. Tecnogrid's partner in the joint venture is AO Navicon, A Russian stock holding company that is the commercial arm of the Navy. Navicon has the sole right to commercially develop and deploy the Navy's assets. The Navy can no longer depend on the state for support, and Adm. Ig. Malhonin. With that in mind, the Navy is looking to become the leading force in moving toward a free market economy. Mahonin is Russia's second ranking naval official.

  5. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01T23:59:59.000Z

    by a DER system. Distributed Energy Resources at Naval BaseFebruary 2003. Distributed Energy Resources in Practice: A2004. Distributed Energy Resources Customer Adoption Model

  6. Naval Construction Battalion Center Gulfport- Mississippi Power Partnership Success Story

    Broader source: Energy.gov [DOE]

    Presentation covers the Naval Construction Battalion Center Gulfport - Mississippi Power Partnership success storygiven at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting...

  7. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01T23:59:59.000Z

    system. Distributed Energy Resources at Naval Base Ventura2003. Distributed Energy Resources in Practice: A Case2004. Distributed Energy Resources Customer Adoption Model

  8. 13.400 Introduction to Naval Architecture, Fall 2004

    E-Print Network [OSTI]

    Herbein, David

    Introduction to principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damaged stability, hull structure strength calculations and ship resistance. Projects ...

  9. Department of Energy, Office of Naval Petroleum & Oil Shale Reserves

    Broader source: Energy.gov (indexed) [DOE]

    Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5...

  10. Elastic tail propulsion at low Reynolds number

    E-Print Network [OSTI]

    Yu, Tony S. (Tony Sheung)

    2007-01-01T23:59:59.000Z

    A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive flexible filament. Here we present a macroscopic experimental investigation of such a propulsive mechanism. A robotic swimmer ...

  11. Naval Research Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00 P.M.Innovation Portal Naval

  12. Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2005-01-01T23:59:59.000Z

    Resources at Naval Base Ventura Country Building 1512 6.Resources at Navy Base Ventura County Building 1512. August 2001. Naval Base Ventura County Standby Generator

  13. Peter C. Chu Naval Ocean Analysis and Prediction Laboratory,

    E-Print Network [OSTI]

    Chu, Peter C.

    , such as using the wind tunnel, we present a new efficient and low cost method to determine the drag, liftPeter C. Chu Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Naval Postgraduate School, and no fin and no-tail section) conducted at the SRI test site. The cost of this method is much lower than

  14. STATEMENT OF CONSIDERATIONS CLASS WAIVER OF THE GOVERNMENT'S...

    Energy Savers [EERE]

    security; 2) Relate to the Naval Nuclear Propulsion Program; 3) Relate to the Uranium Enrichment (including Isotope Separation) Program; 4) Are classified or sensitive under...

  15. Microsoft Word - WD Proposed Plan D5 R8 MASTER 10-29-14 _final...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffusion process enriched uranium for DOE and its predecessor organization (Atomic Energy Commission), the Naval Nuclear Propulsion Program, and commercial customers. The...

  16. Microsoft Word - PB Proposed Plan D4 R6 MASTER 10-29-14 _final...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffusion process enriched uranium for DOE and its predecessor organization (Atomic Energy Commission), the Naval Nuclear Propulsion Program, and commercial customers. The...

  17. NNSA and Small Business Partnering for Success

    Broader source: Energy.gov (indexed) [DOE]

    robust surveillance and assessment activities, both enabled by investments in the science, technology, and engineering base; * Advance Naval Nuclear Propulsion by supporting...

  18. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  19. Sandia National Laboratories: Carderock Naval Surface War-fare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carderock Naval Surface War-fare Center Inter-Agency Agreement Signed between DOE's Wind and Water Power Program and Carderock On December 3, 2014, in Energy, News, News & Events,...

  20. Congressional Delegation visits Naval Reactors Facility | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputerConfirmed: Stellar Behemoth

  1. Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,Enriched UraniumPhysical| Nationaltechnicalbefore the Housebefore

  2. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|GranbyChamplain HudsonDraft EISFuel Handling

  3. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB - H, Page i

  4. FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts&51Reactor Programs

  5. More About NNSA's Naval Reactors Office | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 ThisBackground

  6. More About NNSA's Naval Reactors Office | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 ThisBackgroundAdministration

  7. Life Cycle Modeling of Propulsion Materials

    Broader source: Energy.gov (indexed) [DOE]

    * Start - Oct. 2008 * Finish - Sept. 2010 & beyond * 10% Complete for FY10 Budget * Total project funding - 80Kyear (FY'09) - 185K (FY'10) Barriers * Advanced propulsion...

  8. 368 SDSU General Catalog 2013-2014 Naval Science

    E-Print Network [OSTI]

    Gallo, Linda C.

    and celestial navigation; nautical rules of the road; ship char- acteristics, design and propulsion; theory turbine, and diesel propulsion engines receive in-depth study. Leadership topics in an engineering setting road. Use of charts, visual and electronic aids, operation of magnetic and gyro compasses, relative

  9. 362 SDSU General Catalog 2012-2013 Naval Science

    E-Print Network [OSTI]

    Gallo, Linda C.

    and celestial navigation; nautical rules of the road; ship char- acteristics, design and propulsion; theory turbine, and diesel propulsion engines receive in-depth study. Leadership topics in an engineering setting road. Use of charts, visual and electronic aids, operation of magnetic and gyro compasses, relative

  10. Enabling Green Energy and Propulsion Systems via Direct Noise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research...

  11. air independent propulsion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013 Engineering Websites Summary: The 33st International Electric Propulsion...

  12. Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress Report 2010 annual progress report focusing on enabling...

  13. Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report 2008propulsionmaterials.pdf More Documents &...

  14. Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report 2011 annual...

  15. 2008 Annual Merit Review Results Summary - 12. Propulsion Materials

    Broader source: Energy.gov (indexed) [DOE]

    2-1 12. Propulsion Materials Introduction Propulsion materials research is critical to bringing advanced high-efficiency powertrains to the marketplace. The use of innovative...

  16. Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual...

    Energy Savers [EERE]

    3 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report This report describes the progress made during...

  17. advanced space propulsion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 NASA Procedural Requirements NRPTA National Rocket Propulsion Testing Alliance OIG Office of Inspector General RPT Rocket Propulsion Test SLS Space Launch System...

  18. advanced electric propulsion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distant electric propulsion missions ... Goycoolea, Martin 2013-01-01 7 Simplest AB-Thermonuclear Space Propulsion and Electric Generator CERN Preprints Summary: The author...

  19. Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report...

  20. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE's Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES H/QA programs was conducted.

  1. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE`s Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES&H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES&H/QA programs was conducted.

  2. Problems in developing bimodal space power and propulsion system fuel element

    SciTech Connect (OSTI)

    Nikolaev, Yu. V.; Gontar, A. S.; Zaznoba, V. A.; Parshin, N. Ya.; Ponomarev-Stepnoi, N. N.; Usov, V. A. [Research Institute of SIA 'Lutch' Podolsk, Moscow Region, 142100 (Russian Federation); RRC 'Kurchatov Institute' Moscow, 123182 (Russian Federation)

    1997-01-10T23:59:59.000Z

    The paper discusses design of a space nuclear power and propulsion system fuel element (PPFE) developed on the basis of an enhanced single-cell thermionic fuel element (TFE) of the 'TOPAZ-2' thermionic converter-reactor (TCR), and presents the PPFE performance for propulsion and power modes of operation. The choice of UC-TaC fuel composition is substantiated. Data on hydrogen effect on the PPFE output voltage are presented, design solutions are considered that allow to restrict hydrogen supply to an interelectrode gap (IEG). Long-term geometric stability of an emitter assembly is supported by calculated data.

  3. Carl Vinson and pre-war naval legislation 1932-1940

    E-Print Network [OSTI]

    Svonavec, Stephen Charles

    1994-01-01T23:59:59.000Z

    , House and Senate debates, and behind the scenes conferences between Vinson and officials of the Navy Department and Roosevelt Administration which helped decide the course of naval expansion. It shows that while many people contributed passing naval...

  4. Propulsive Efficiency of Rowing Oars David S. Cabrera1

    E-Print Network [OSTI]

    Ruina, Andy L.

    Propulsive Efficiency of Rowing Oars David S. Cabrera1 Andy L. Ruina2 Department of Theoretical Is the common folklore, that oars are less efficient at propulsion than propellers, correct? Here we examine the propulsive efficiency of the oars used in competitive rowing. We take the propulsive efficiency of rowing

  5. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06T23:59:59.000Z

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  6. Propulsion mechanisms in a helicon plasma thruster

    E-Print Network [OSTI]

    Sinenian, Nareg

    2008-01-01T23:59:59.000Z

    Electric thrusters offer an attractive option for various in-space propulsion tasks due to their high thrust efficiencies. The performance characteristics of a compact electric thruster utilizing a helicon plasma source ...

  7. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01T23:59:59.000Z

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  8. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01T23:59:59.000Z

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  9. Page 1 of 16 Naval Power and Globalization

    E-Print Network [OSTI]

    Aronov, Boris

    years China has followed the same path as its predecessor modernizing Asian neighbors. It has committed size and the scale, China is affecting both the regional and worldwide economic balances of power and India are influenced by the potential for China's increasing role as both an economic and naval power

  10. Colleagues and Friends of NPS: Recently the Naval Postgraduate

    E-Print Network [OSTI]

    @nps.edu Journalists Barbara Honegger MC2 (SW) Corey Truax MC3 Kellie Arakawa Photographers Javier Chagoya MC2 (SW) Corey Truax MC2 Kellie Arakawa Naval Postgraduate School President Daniel T. Oliver Provost Executive. Full versions of all articles are available at www.nps.edu #12;July 2008 Contents 7 New GSEAS Dean Dr

  11. http://lez1.pppl.gov/pub/LiMagPropulsion.ps http://lez1.pppl.gov/pub/LiMagPropulsion.pdf

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    http://lez1.pppl.gov/pub/LiMagPropulsion.ps http://lez1.pppl.gov/pub/LiMagPropulsion.pdf Magnetic propulsion for driving liquid Li walls L. E. Zakharov, PPPL Background: The mechanism of magnetic propulsion the technical aspects of magnetic propulsion, the issues and the necessary R & D. Electro-magnetic propulsion

  12. Space Propulsion Field Exam: Space Propulsion/Plasma Physics REQUIRED BY ALL STUDENTS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Space Propulsion Field Exam: Space Propulsion/Plasma Physics REQUIRED BY ALL STUDENTS From) Both devices use magnetic fields, even though they both are electrostatic ion accelerators. Explain the role of the magnetic field in each of them, and how this guides the layout of these fields. 3) One

  13. DC, AC and advanced EV propulsion systems

    SciTech Connect (OSTI)

    O'Neil, W.

    1983-08-01T23:59:59.000Z

    Battery development and liquid fuel availability and cost are still the pacing factors in wide scale electric vehicle introduction. Propulsion systems also require technical development, however, if electric vehicles are to be acceptable in the marketplace in competition against ICE vehicles. Eaton Corporation has undertaken a program designed to identify and investigate three broad types of propulsion systems in identical test vehicles on the same test track under conditions as similar as possible. Characteristics of dc, ac and advanced systems are compared to date, and projections of anticipated results and further work are provided. The compelling advantages of multiple mechanical ratios in EV propulsion systems are reviewed. An emerging, but less obvious, advantage is higher overall system efficiency.

  14. Energy use baselining study for the National Naval Medical Center

    SciTech Connect (OSTI)

    Parker, G.B.; Halverson, M.A.

    1992-04-01T23:59:59.000Z

    This report provides an energy consumption profile for fourteen buildings at the National Naval Medical Center (NNMC) in Bethesda, Maryland. Recommendations are also made for viable energy efficiency projects funded with assistance from the servicing utility (Potomic Electric Power Company) in the form of rebates and incentives available in their Demand Side Management (DSM) program and through Shared Energy Savings (SES) projects. This report also provides estimates of costs and potential energy savings of the recommended projects.

  15. Boston University Physics Colloquium Microscale propulsion in biological and

    E-Print Network [OSTI]

    Mohanty, Raj

    Boston University Physics Colloquium Microscale propulsion in biological and engineered systems biological locomotion and engineered propulsion. In the first example, we examine swimming microorganisms the microstructure. In the second example, we examine engineered magnetic artificial microswimmers which can

  16. Experimental Investigations of Elastic Tail Propulsion At Low Reynolds Number

    E-Print Network [OSTI]

    Yu, Tony S.

    2007-05-04T23:59:59.000Z

    A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive flexible filament. Here we present a macroscopic experimental investigation of such a propulsive mechanism. A robotic swimmer ...

  17. Propulsive Efficiency of the Underwater Dolphin Kick in Humans

    E-Print Network [OSTI]

    Fish, Frank

    Propulsive Efficiency of the Underwater Dolphin Kick in Humans Alfred von Loebbecke Rajat Mittal's propulsive efficiencies. These estimates are compared with those of a ceta- cean performing the dolphin kick kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency

  18. Magnetic propulsion of liquid Li in tokamaks 1

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Magnetic propulsion of liquid Li in tokamaks 1 Leonid E. Zakharov, Princeton University, Princeton of the torus. This effect of magnetic propulsion can be used for developing new approaches for protecting circumference. On the other hand, when the liquid lithium is held in a closed volume, magnetic propulsion

  19. PROPULSION AND ENERGY 54 AEROSPACE AMERICA/DECEMBER 2005

    E-Print Network [OSTI]

    Walker, Mitchell

    PROPULSION AND ENERGY 54 AEROSPACE AMERICA/DECEMBER 2005 Electric propulsion Several significant advancements in electric propulsion (EP) systems and related technolo- gies occurred this year. Flight programs throughout the discharge and includes the effects of magnetic fields on the primary electrons. PRIMA is used

  20. Naval Petroleum and Oil Shale Reserves annual report of operations for fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    During fiscal year 1996, the Department of Energy continued to operate Naval Petroleum Reserve No. 1 in California and Naval Petroleum Reserve No. 3 in Wyoming through its contractors. In addition, natural gas operations were conducted at Naval Petroleum Reserve No. 3. All productive acreage owned by the Government at Naval Petroleum Reserve No. 2 in California was produced under lease to private companies. The locations of all six Naval Petroleum and Oil Shale Reserves are shown in a figure. Under the Naval Petroleum Reserves Production Act of 1976, production was originally authorized for six years, and based on findings of national interest, the President was authorized to extend production in three-year increments. President Reagan exercised this authority three times (in 1981, 1984, and 1987) and President Bush authorized extended production once (in 1990). President Clinton exercised this authority in 1993 and again in October 1996; production is presently authorized through April 5, 2000. 4 figs. 30 tabs.

  1. Maintenance practices for emergency diesel generator engines onboard United States Navy Los Angeles class nuclear submarines

    E-Print Network [OSTI]

    Hawks, Matthew Arthur

    2006-01-01T23:59:59.000Z

    The United States Navy has recognized the rising age of its nuclear reactors. With this increasing age comes increasing importance of backup generators. In addition to the need for decay heat removal common to all (naval ...

  2. Propulsion in a viscoelastic fluid Eric Laugaa

    E-Print Network [OSTI]

    Lauga, Eric

    and a healthy respiratory system.8 Cilia are short flagella which produce fluid motion by means mechanisms and propulsion.9 In the upper respiratory tract, cilia are located in a thin layer of low influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway

  3. MEDIA RELATIONS OFFICE JET PROPULSION LABORATORY

    E-Print Network [OSTI]

    Christian, Eric

    MEDIA RELATIONS OFFICE JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY NATIONAL FROM SHATTERED STAR The signal of a cataclysmic magnetic flare emanating from a star that cracked apart about some of the most unusual stars in the universe. The magnetic burst from the star SGR1900

  4. PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY

    E-Print Network [OSTI]

    Christian, Eric

    PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY NATIONAL are above the current sheet, they detect magnetic fields directed outward from the sun. When spacecraft observing magnetic field lines pointing inward only," Marsden said. A pair of magnetometers, each able

  5. 2012 Annual Planning Summary for Naval Reactors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1The ongoing andDepartment ofNaval

  6. DOE - Office of Legacy Management -- Westinghouse Naval Ordnance - MI 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal - MAWesternPlantNaval

  7. Naval Academy, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy InformationNatura Bio FuelsNautilusNaval

  8. United States Naval Surface Warfare Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSC JumpNaval

  9. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01T23:59:59.000Z

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  10. James P. Mosquera Director, Reactor Plant Components

    E-Print Network [OSTI]

    of the application of nuclear reactor power to capital ships of the U.S. Navy, and other assigned projects. Mr for steam generator technology (within the Nuclear Components Division); and power plant systems engineer working for the U.S. Naval Nuclear Propulsion Program (a.k.a. Naval Reactors). This program is a joint

  11. Fluidic electrodynamics: Approach to electromagnetic propulsion

    SciTech Connect (OSTI)

    Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

    2009-03-16T23:59:59.000Z

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  12. The 2006 Naval S&T Partnership Conference is presented by NDIA with technical support from ONR The Naval Postgraduate School's Role

    E-Print Network [OSTI]

    Directed Energy Systems Software Engineering Combat System Physics Electronic Warfare SIGINT 1 Kenya 1 Nigeria 1 Rwanda 1 Senegal 1 Tanzania 1 Tunisia 4 11 #12;The 2006 Naval S&T Partnership

  13. a contaminant in decline: long-term tbt monitoring at a naval base in Western australia

    E-Print Network [OSTI]

    Burgman, Mark

    a contaminant in decline: long-term tbt monitoring at a naval base in Western australia john a planulatus) in and around the RAN naval base in Cockburn Sound, WesternAustralia, was initiated and continued, Australia. 2 Current address: ES Link Services Pty Ltd, PO Box 10, Castlemaine, VIC 3450, Australia. 3

  14. DEPARTMENT OF THE NAVY OFfiCE OF THE CHIEF OF NAVAL OPERATIONS

    E-Print Network [OSTI]

    DEPARTMENT OF THE NAVY OFfiCE OF THE CHIEF OF NAVAL OPERATIONS 2000 NAVY PENTAGON WASHINGTON, DC: Chief of Naval Operations Subj , NAVY PASSENGER TRAVEL Ref: (al 000 Di rective 5154.29 of 9 Marc h 1993 on the management , execution, and funding of passenger travel for Navy personne l . This i n struction

  15. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  16. Coastal Inundation due to Tide, Surge, Waves, and Sea Level Rise at Naval Station Norfolk

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Coastal Inundation due to Tide, Surge, Waves, and Sea Level Rise at Naval Station Norfolk Honghai of future sea level rise (SLR) scenarios and to evaluate the potential coastal inundation at Naval Station and sea level rise threats to coastal residents and coastal military facilities, the US Strategic

  17. SERAPHIM: A propulsion technology for fast trains

    SciTech Connect (OSTI)

    Kelly, B.; Turman, B.; Marder, B.; Rohwein, G.; Aeschliman, D.; Cowan, B.

    1995-06-01T23:59:59.000Z

    The Segmented Rail Phased Induction Motor (SERAPHIM) is a compact, pulsed linear induction motor (LIM) offering a unique capability for very high speed train propulsion. It uses technology developed for the Sandia coilgun, an electromagnetic launcher designed to accelerate projectiles to several kilometers per second. Both aluminum cylinders and plates were accelerated to a kilometer per second (Mach 3) by passing through a sequence of coils which were energized at the appropriate time. Although this technology was developed for ultra-high velocity, it can be readily adapted to train propulsion for which, at sea level, the power required to overcome air resistance limits the operational speed to a more modest 300 mph. Here, the geometry is reversed. The coils are on the vehicle and the ``projectiles`` are fixed along the roadbed. SERAPHIM operates not by embedding flux in a conductor, but by excluding it. In this propulsion scheme, pairs of closely spaced coils on the vehicle straddle a segmented aluminum reaction rail. A high frequency current is switched on as a coil pair crosses an edge and remains off as they overtake the next segment. This induces surface currents which repel the coil. In essence, the pulsed coils push off segment edges because at the high frequency of operation, the flux has insufficient time to penetrate. In contrast to conventional LIMs, the performance actually improves with velocity, even for a minimal motor consisting of a single coil pair reacting with a single plate. This paper will present results of proof-of-principle tests, electromagnetic computer simulations, and systems analysis. It is concluded that this new linear induction motor can be implemented using existing technology and is a promising alternative propulsion method for very high speed rail transportation.

  18. Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage

    SciTech Connect (OSTI)

    Guskov, Vladimir; Korotkov, Gennady [JSC 'KBSM' (Russian Federation); Barnes, Ella [US Environmental Protection Agency - EPA (United States); Snipes, Randy [Oak Ridge National Laboratory - ORNL, 1 Bethel Valley Rd, Oak Ridge, TN 37830 (United States)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distribution of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108/1 drying facility; a pilot facility has been manufactured. This report describes key issues of cask drying technology, justification of terms of dry storage of naval SNF in no-108/1, design features of the mobile drying facility, results of tests of the pilot facility at the Far Eastern plant Zvezda. (authors)

  19. Vitrification of contaminated soils from the Charleston Naval Complex

    SciTech Connect (OSTI)

    O'Connor, William K.; Turner, Paul C.; Brosnan, D.A. (CECM, CLemson Univ.); Mussro, R. (CECM, Clemson Univ.); Addison, G.W. (AJT Enterprises, Inc.); Jackson, V.B. (AJT Enterprises, Inc.); Teaster, G.F. (AJT Enterprises, Inc.)

    1998-05-01T23:59:59.000Z

    Demonstration melting tests for vitrifying chrome- and lead-bearing wastes from the Charleston Naval Complex, and organic-contaminated dredging spoils from the Ashley River (part of the greater Charleston Harbor), were conducted in a 3-phase AC, graphite electrode arc furnace located at the Albany Research Center (ALRC) of the U.S. Department of Energy (DOE). These tests were conducted in cooperation with the Center for Engineering Ceramic Manufacturing (CECM) of Clemson University, and AJT Enterprises, Inc., of Charleston, South Carolina, and were funded by the DOE Office of Environmental Restoration. The two waste streams were composited into separate furance feed mixtures by blending and agglomeration with readily available industrial minerals. Over 11,340 kg (25,000 lb) of feed was processed during the demonstration melting test, at feed rates up to 523 kg/h (1,150 lb/h). Continuous feeding and glass tapping was achieved for both the dredging spoils feed mixture and the naval complex mixture. Roughly 85% of all feed reported to the glass products, which readily passed the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP). ASTM aggregate tests using the vitrified aggregate in concrete and asphaltic cements indicated a potential for utilization of these materials in concentrations from 5-15% of the total aggregate, without negative impact on the mix. Toxicological tests performed on the galss products found that this material appears to be nonhazardous and its use is not likely to result in a public health risk.

  20. Habitat restoration on naval petroleum reserves in Kern County, California

    SciTech Connect (OSTI)

    Anderson, D.C. [EG& G Energy Measurements, Inc., Tupman, CA (United States)

    1990-12-31T23:59:59.000Z

    One of several task performed under contract to the Department of Energy (DOE) by EG & G Energy Measurements as part of the endangered species program is the restoration of abandoned well pads, roads, pipelines and soil borrow sites resulting from oil and gas production activities on Naval Petroleum Reserves in California (NPRC). Naval Petroleum Reserves in California is located in the Elk Hills approximately 30 miles southwest of Bakersfield in the rain shadow of the coastal range. Annual precipitation is approximately five inches. Reclamation of disturbed habitat on NPRC began with research plots and test trials in the early 1980s. Full scale reclamation began in 1985 and has continued through the 1989 planting season. Almost 700 acres have been revegetated, which represents over 1,200 sites distributed over the 47,250 acres of NPRC and averaging less than .75 acre in size. Monitoring of the sites began in 1987 to establish reclamation success and evaluate reclamation techniques. Reclamation objectives include the improvement of wildlife habitat for four endangered species living on NPRC, and the protection of the soils from wind and water erosion on the disturbed sites.

  1. Comparison of Space Propulsion Methods for a Manned Mission to Mars

    E-Print Network [OSTI]

    Guerra, A G C; Gil, P J S

    2015-01-01T23:59:59.000Z

    We undertake a comparison of the latest developments in propulsion technologies, for a manned mission to Mars. The main objective is to assess the possibility of reducing travel time keeping the mass at departure within bounds. For the sake of comparison we used representative systems of different state of the art or proposed technologies, from the chemical engine to the "Pure Electro-Magnetic Thrust" (PEMT) concept, using a nuclear engine proposed by Rubbia. A mission architecture is suggested, based on existing mission proposals to Mars, to estimate the mass budget that influences the performance of the propulsion system. The trajectory of the spacecraft is determined by a numerical integration of the equations of motion and a partial optimization procedure, for the interplanetary phase with continuous thrust, and by conics and instant manoeuvres in the regions of influence of the departure and arrival planets. Pareto curves of the duration of the mission and time of flight versus mass of mission are drawn....

  2. Cryochemical and CVD processing of shperical carbide fuels for propulsion reactors

    SciTech Connect (OSTI)

    Blair, H.T.; Carroll, D.W.; Matthews, R.B. (Los Alamos National Laboratory, MS E505, Los Alamos, New Mexico (USA))

    1991-01-10T23:59:59.000Z

    Many of the nuclear propulsion reactor concepts proposed for a manned mission to Mars use a coated spherical particle fuel form similar to that used in the Rover and NERVA propulsion reactors. The formation of uranium dicarbide microspheres using a cryochemical process and the coating of the UC{sub 2} spheres with zirconium carbide using chemical vapor deposition are being developed at Los Alamos National Laboratory. The cryochemical process is described with a discussion of the variables affecting the sphere formation and carbothermic reduction to produce UC{sub 2} spheres from UO{sub 2}. Emphasis is placed on minimizing the wastes produced by the process. The ability to coat particles with ZrC was recaptured, and improvements in the process and equipment were developed. Volatile organometallic precursors were investigated as alternatives to the original ZrCl{sub 4} precursor.

  3. Naval Petroleum Reserve No. 1 (Elk Hills): Supplemental environmental impact statement. Record of decision

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Pursuant to the Council on Environmental Quality regulations, which implement the procedural provisions of the National Environmental Policy Act, and the US Department of Energy National Environmental Policy Act regulations, the Department of Energy, Office of Fossil Energy, is issuing a Record of Decision on the continued operation of Naval Petroleum Reserve No. 1, Kern County, California. The Department of Energy has decided to continue current operations at Naval Petroleum Reserve No. 1 and implement additional well drilling, facility development projects and other activities necessary for continued production of Naval Petroleum Reserve No. 1 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976. The final Supplemental Environmental Impact Statement, entitled ``Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California (DOE/SEIS-0158),`` was released on September 3, 1993.

  4. Simplest AB-Thermonuclear Space Propulsion and Electric Generator

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-19T23:59:59.000Z

    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

  5. Enabling Green Energy and Propulsion Systems via Direct Noise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Umesh Paliath, GE Global Research; Joe Insley, Argonne National Laboratory Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI...

  6. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion...

    Broader source: Energy.gov (indexed) [DOE]

    7-1 7. Materials Technologies: Propulsion Materials Introduction Advanced materials, including metals, polymers, composites, and intermetallic compounds, can play an important role...

  7. automotive propulsion system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 49 Mini-Micro Thrusters, LOX Hydrocarbon Propulsion, and Attitude Control...

  8. automotive propulsion systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 49 Mini-Micro Thrusters, LOX Hydrocarbon Propulsion, and Attitude Control...

  9. advanced propulsion systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the tail's motion. Index terms--Fish propulsion, underwater robot, fish design. I. INTRODUCTION LTHOUGH almost all marine vehicles use propellers Papadopoulos,...

  10. aircraft propulsion reactors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to produce adequate thrust, reduce ... Dicara, Daniel L 2006-01-01 13 Simplest AB-Thermonuclear Space Propulsion and Electric Generator CERN Preprints Summary: The author...

  11. Naval Reactors Facility environmental monitoring report, calendar year 2001

    SciTech Connect (OSTI)

    NONE

    2002-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 2001 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U. S. Environmental Protection Agency and the U. S. Department of Energy.

  12. Naval Reactors Facility Environmental Monitoring Report, Calendar Year 2003

    SciTech Connect (OSTI)

    None

    2003-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 2003 at the Naval Reactors Facility are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with Federal and State regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the U.S. Environmental Protection Agency and the U.S. Department of Energy.

  13. 1997 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The results of the radiological and nonradiological environmental monitoring programs for 1997 at the Naval Reactors Facility (NRF) are presented in this report. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  14. Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982

    SciTech Connect (OSTI)

    Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

    1981-08-01T23:59:59.000Z

    Legislation authorizing production from two Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents an assessment of the trade-offs of extending production or returning to a shut-in status. Strategic, economic, and energy factors at the national, regional, and local levels are considered. The results of the study indicate that the only major local impact of shut-in will be on small refineries near NPR-1. At the national level, shut-in increases the size of the national petroleum reserve system. However, economic losses as measured by changes in the present value of real GNP also occur. The estimate of the increase in the size of the national petroleum reserve with shut-in of the NPRs was found to be most sensitive to the assumed length of future import interruptions.

  15. Naval Petroleum Reserve No. 1: an assessment of production alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-30T23:59:59.000Z

    Under existing legislation, every 3 years the President must decide whether to shut-in or continue production of the Naval Petroleum Reserve No. 1 (NPR-1) oil field at Elk Hills, California. The current authorization for production expires on April 5, 1985. GAO discusses the geologic, budgetary, local economic, and national security implications of three production alternatives for NPR-1: continued production, shut-in, and partial shut in. In addition, GAO discusses the advantages and disadvantages of establishing a Defense Petroleum Reserve, a crude oil reserve for the military, using part of the revenues from continued production at NPR-1 to fund it. During the course of its review, GAO found that production rates at Elk Hills may be too high, causing problems within the reserve that could decrease ultimate recovery of oil by about 139 million barrels. The Department of Energy plans to analyze this situation and, if need be, adjust the rate. 2 figures, 2 tables.

  16. Annual report of operations. [Naval Petroleum Reserves No. 1, 2, 3; oil shale reserves

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves during FY 1980 deliver 59,993,213 bbl of crude oil and substantial quantities of natural gas, butane, propane and natural gasoline to the United States market. During September, Naval Petroleum Reserve oil was utilized to resume filling the Strategic Petroleum Reserve. During FY 1980, Naval Petroleum Reserve No. 1, Elk Hills, became the largest producing oil field in California and the second largest producing field in the United States. Production at the end of September was 165,000 bbl/d; production is expected to peak at about 190,000 bbl/d early in calender year 1982. Production from Naval Petroleum Reserves Nos. 2 and 3 in California and Wyoming, contributed 1,101,582 and 1,603,477 bbl of crude oil to the market, respectively. Enhanced oil recovery work has been inititated at Naval Petroleum Reserve no. 3. Total revenues from the Naval Petroleum Reserves during FY 1980 were 1.6 billion. The three Naval Oil Shale Reserves in Colorado and Utah have substantial potential. In addition to containing approximately 2.5 billion bbl recoverable shale oil. They probably contain significant quantities of conventional oil and gas.

  17. Mission analysis for hybrid thermionic nuclear reactor LEO-to-GEO transfer applications

    SciTech Connect (OSTI)

    Widman, F.W. Jr.; North, D.M. (Rockwell International/Rocketdyne Division, 6633 Canoga Avenue, Canoga Park, California 91303 (United States)); Choong, P.T.; Teofilo, V.L. (Lockheed Missiles and Space Company, Inc., 1111 Lockheed Way, Synnyvale, California 94088 (United States))

    1993-01-10T23:59:59.000Z

    This paper details the results of mission analyses concerning a hybrid STAR-C based system, which is based on a safe solid fuel form for high-temperature reactor core operation and a rugged planar thermionic energy converter for long-life steady-state electric power production. Hybrid power/propulsion system concepts are shown to offer superior performance capabilities for Low-Earth-Orbit (LEO) to Geosynchronous-Earth-Orbit (GEO) orbital transfer applications over chemical propulsion systems. A key feature of the hybrid power/propulsion system is that the propulsion system uses the on-board payload power system. Mission results for hybrid concepts using Nuclear Thermal Propulsion (NTP), Nuclear Electric Propulsion (NEP), and combination of NTP and NEP are discussed.

  18. Fusion Propulsion and Power for Future Flight

    SciTech Connect (OSTI)

    Froning, H.D. Jr.

    1996-02-01T23:59:59.000Z

    There are innovative magnetic and electric confinement fusion power and propulsion system designs with potential for: vacuum specific impulses of 1500-2000 seconds with rocket engine thrust/mass ratios of 5-10 g`s; environmentally favorable exhaust emissions if aneutronic fusion propellants can be used; a 2 to 3-fold reduction in the mass of hypersonic airliners and SSTO aerospace planes; a 10 to 20 fold reduction in Mars expedition mass and cost (if propellant from planetary atmospheres is used); and feasibility or in-feasibility of these systems could be confirmed with a modest applied research and exploratory development cost.

  19. Advanced Propulsion Technology Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment ofDepartment ofMachines Advanced||Propulsion

  20. Rise and fall of a tactic: the ram in nineteenth century naval doctrine

    E-Print Network [OSTI]

    Johnson, Robert Leroy

    1989-01-01T23:59:59.000Z

    . , 158; "A Royal Navy Officer", "Tactical Results of Recent Naval Construction, " Naval Science, Vol. 2 No. 2 (AP '1, 1873), 1397 Ed d J 2 d, ~0 ~ld 88 ((. o d: JoR M 9, 1869), 20. Baxter, Introduction of the Ironclad Warshi , 100. U. S. , Department...? son ( ~&ember) J. Richard St (Member) L rry D. Hill (He d of Department) December 1989 ABSTRACT Rise and Fall of a Tactic: The Ram in Nineteenth Century Naval Doctrine. (December 1989) Robert Leroy Johnson II, B. A. , Kansas State University...

  1. Naval petroleum reserves: Sales procedures and prices received for Elk Hills oil

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The Congress expressed concern about the Department of Energy's actions in selling oil from the Elk Hills Naval Petroleum Reserve at what appeared to be unreasonably low prices. DOE officials believe that Naval Petroleum Reserve oil has been and is currently being produced at the appropriate rate and that no recoverable oil has been lost. This fact sheet provides information on the basis for the procedures followed by DOE in selling Naval Petroleum Reserve oil and sales data for the period extending from October 1985 through April 1986.

  2. ab-ramjet space propulsion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 NASA Procedural Requirements NRPTA National Rocket Propulsion Testing Alliance OIG Office of Inspector General RPT Rocket Propulsion Test SLS Space Launch System...

  3. ab-thermonuclear space propulsion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 NASA Procedural Requirements NRPTA National Rocket Propulsion Testing Alliance OIG Office of Inspector General RPT Rocket Propulsion Test SLS Space Launch System...

  4. Advances in Magnetized Plasma Propulsion and Radiation Shielding Robert Winglee

    E-Print Network [OSTI]

    Shepherd, Simon

    Advances in Magnetized Plasma Propulsion and Radiation Shielding Robert Winglee Department of Earth Propulsion (M2P2)3,4 . In this scheme a magnetic field attached to the spacecraft is expanded-mangetosphere, that is magnetic field inflated by the injection of plasma have several applications key to the exploration

  5. JET PROPULSION LAB 0 RAT 0 R Y

    E-Print Network [OSTI]

    Waliser, Duane E.

    JET PROPULSION LAB 0 RAT 0 R Y ANN U A L REP 0 R T #12;#12;------ - - ~ CON TEN T S DIRECTOR Administration for the penod January 1 through December 31, 1986. JET PROPULSION LABORATORY Califorrua Institute, Voyager 2 gave us our first close view of the distant giant Uranus, its complex rings, inclined magnetic

  6. Energy cost and muscular activity required for propulsion during walking

    E-Print Network [OSTI]

    Kram, Rodger

    Energy cost and muscular activity required for propulsion during walking Jinger S. Gottschall Kram. Energy cost and muscular activity required for propulsion during walk- ing. J Appl Physiol 94 there was a positive linear relationship between a horizontal impeding force and energy expen- diture. Using a wind

  7. Emissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    is designed that reduces smoke generation on an experimental marine Diesel engine equipped with a variable and emission generation in marine diesel propulsion. In comparison to the MIMO controller we considerEmissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion Anna Stefanopoulouy

  8. Interplanetary missions with the GDM propulsion system

    SciTech Connect (OSTI)

    Kammash, T.; Emrich, W. Jr. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)

    1998-01-15T23:59:59.000Z

    The Gasdynamic Mirror (GDM) fusion propulsion system utilizes a magnetic mirror machine in which a hot dense plasma is confined long enough to produce fusion energy while allowing a fraction of its charged particle population to escape from one end to generate thrust. The particles escaping through the opposite end have their energy converted to electric power which can be used to sustain the system in a steady state operation. With the aid of a power flow diagram the minimum demands on energy production can be established and the propulsive capability of the system can be determined by solving an appropriate set of governing equations. We apply these results to several missions within the solar system and compute the trip time by invoking a continuous burn, acceleration/deceleration type of trajectory with constant thrust and specific impulse. Ignoring gravitational effects of the planets or the sun, and neglecting the change in the Earth's position during the flight we compute the round trip time for missions from Earth to Mars, Jupiter, and Pluto using linear distances and certain payload fractions. We find that a round trip to Mars with the GDM rocket takes about 170 days while those to Jupiter and Pluto take 494 and 1566 days respectively.

  9. Evaluation of an Impulse Gravity Generator Based Beamed Propulsion Concept

    E-Print Network [OSTI]

    Giovanni Modanese; Chris Y. Taylor

    2002-09-05T23:59:59.000Z

    This paper analyzes the suitability of a beamed propulsion concept having properties consistent with the impulse gravity generator described by Podkletnov et al. [physics/0108005]. The use of this propulsion concept for orbital maneuver, Earth-to-orbit, interplanetary, and interstellar applications based on presently available experimental results and theory is considered, and areas for future research needed to better characterize this phenomenon are discussed. A beam of radiation or particles with the properties described for the impulse gravity generator would appear to be an excellent candidate for use in beamed spacecraft propulsion. Besides the usual benefits of beamed propulsion, it would not need sails or other special spacecraft components to function, could safely provide high accelerations to delicate components, and might operate at higher efficiencies than other beamed propulsion concepts.

  10. Light-weight materials selection for high-speed naval craft

    E-Print Network [OSTI]

    Torrez, Joseph B. (Joseph Benjamin)

    2007-01-01T23:59:59.000Z

    A decision analysis study was conducted on the process of materials selection for high-speed naval craft using the Modified Digital Logic (MDL) method proposed by B. Dehgham-Manshadi et al in ref [17]. The purpose is to ...

  11. EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY

    Broader source: Energy.gov [DOE]

    Final Sitewide Environmental Assessment (EA) This Sitewide EA evaluates activities that DOE would conduct in anticipation of possible transfer of Naval Petroleum Reserve No. 3 (NPR-3) out of Federal operation.

  12. Modular machinery arrangement and its impact in early-stage naval electric ship design

    E-Print Network [OSTI]

    Jurkiewicz, David J. (David James)

    2012-01-01T23:59:59.000Z

    Electrical power demands for naval surface combatants are projected to rise with the development of increasingly complex and power intensive combat systems. This trend also coincides with the need of achieving maximum fuel ...

  13. Design and analysis of a permanent magnet generator for naval applications

    E-Print Network [OSTI]

    Rucker, Jonathan E. (Jonathan Estill)

    2005-01-01T23:59:59.000Z

    This paper discusses the electrical and magnetic design and analysis of a permanent magnet generation module for naval applications. Numerous design issues are addressed and several issues are raised about the potential ...

  14. US Department of Energy Naval petroleum reserve number 1. Financial statement audit

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the United States taxpayer. NPOSR was established by a series of Executive Orders in the early 1900s as a future source of liquid fuels for the military. NPOSR remained largely inactive until Congress, responding to the Arab oil embargo of 1973-74, passed the Naval Petroleum Reserves Production Act of 1976. The law authorized production for six years. Thereafter, NPOSR production could be reauthorized by the President in three-year increments. Since enactment of the law, every President has determined that continuing NPOSR production is in the nation`s best interest. NPOSR currently is authorized to continue production through April 5, 2000.

  15. A study of the Naval Construction Force project material supply chain

    E-Print Network [OSTI]

    Stasick, Steven J. (Steven James), 1970-

    2004-01-01T23:59:59.000Z

    The Naval Construction Force (NCF) performs construction projects in all areas of the world during both peacetime and war. While some of these projects occur in populated areas where project materials are readily available, ...

  16. Application and analysis of stiffened side shell panel failure for naval patrol craft

    E-Print Network [OSTI]

    Mothander, Matthew K. A., Lieutenant (Matthew Kristian Alden)

    2009-01-01T23:59:59.000Z

    Over their lifetime, naval patrol craft are subjected to many different types of loading scenarios, most of which are perfectly safe. In rare instances, through a variety of different reasons, these craft are loaded beyond ...

  17. EIS-0158: Sale of the Naval Petroleum Reserve No. 1 at Elk Hills, California (1997)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the potential environmental impacts of the continued operation of the Naval Petroleum Reserve No. 1 at the Maximum Efficient Rate authorized by Public Law 94-258.

  18. CX-008339: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prototype Staff Building 114 CX(s) Applied: B1.15, B1.16, B1.23 Date: 04/20/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  19. CX-008337: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Air System Replacement CX(s) Applied: B1.31, B2.2 Date: 04/20/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  20. CX-010093: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kesselring Site K&L Load Center Relocation Project CX(s) Applied: B1.15 Date: 04/10/2013 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  1. CX-008340: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    L-Building Demolition and Site Restoration CX(s) Applied: B1.16, B1.17, B1.23 Date: 04/19/2020 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  2. CX-012099: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kesselring Site Crafts Facility Building 118 CX(s) Applied: B1.15, B1.31, B1.33 Date: 04/14/2014 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  3. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  4. ECR-GDM Thruster for Fusion Propulsion

    SciTech Connect (OSTI)

    Brainerd, Jerome J.; Reisz, Al [Reisz Engineers 2909 Johnson Rd. Huntsville, Alabama 35805 256-325-2531 (United States)

    2009-03-16T23:59:59.000Z

    The concept of the Gasdynamic Mirror (GDM) device for fusion propulsion was proposed by and Lee (1995) over a decade ago and several theoretical papers has supported the feasibility of the concept. A new ECR plasma source has been built to supply power to the GDM experimental thruster previously tested at the Marshall Space Flight Center (MSFC). The new plasma generator, powered by microwaves at 2.45 or 10 GHz. is currently being tested. This ECR plasma source operates in a number of distinct plasma modes, depending upon the strength and shape of the local magnetic field. Of particular interest is the compact plasma jet issuing form the plasma generator when operated in a mirror configuration. The measured velocity profile in the jet plume is bimodal, possibly as a result of the GDM effect in the ECR chamber of the thruster.

  5. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy's Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  6. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy`s Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  7. NALDA (Naval Aviation Logistics Data Analysis) CAI (computer aided instruction)

    SciTech Connect (OSTI)

    Handler, B.H. (Oak Ridge K-25 Site, TN (USA)); France, P.A.; Frey, S.C.; Gaubas, N.F.; Hyland, K.J.; Lindsey, A.M.; Manley, D.O. (Oak Ridge Associated Universities, Inc., TN (USA)); Hunnum, W.H. (North Carolina Univ., Chapel Hill, NC (USA)); Smith, D.L. (Memphis State Univ., TN (USA))

    1990-07-01T23:59:59.000Z

    Data Systems Engineering Organization (DSEO) personnel developed a prototype computer aided instruction CAI system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project was to provide a CAI prototype that could be used as an enhancement to existing NALDA training. The CAI prototype project was performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. The findings from Phase I are documented in Recommended CAI Approach for the NALDA System (Duncan et al., 1987). In Phase II, a structured design and specifications were developed, and a prototype CAI system was created. A report, NALDA CAI Prototype: Phase II Final Report, was written to record the findings and results of Phase II. NALDA CAI: Recommendations for an Advanced Instructional Model, is comprised of related papers encompassing research on computer aided instruction CAI, newly developing training technologies, instructional systems development, and an Advanced Instructional Model. These topics were selected because of their relevancy to the CAI needs of NALDA. These papers provide general background information on various aspects of CAI and give a broad overview of new technologies and their impact on the future design and development of training programs. The paper within have been index separately elsewhere.

  8. Renewable Energy Optimization Report for Naval Station Newport

    SciTech Connect (OSTI)

    Robichaud, R.; Mosey, G.; Olis, D.

    2012-02-01T23:59:59.000Z

    In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

  9. Distributed energy resources at naval base ventura county building 1512

    SciTech Connect (OSTI)

    Bailey, Owen C.; Marnay, Chris

    2004-10-01T23:59:59.000Z

    This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year.

  10. ONR Symposium on Naval Hydrodynamics, Val de Reuil, France, 17-22 September. Forces, Moment and Wave Pattern for Naval Combatant

    E-Print Network [OSTI]

    Gui, Lichuan

    ABSTRACT A model-scale naval surface combatant, DTMB 5512, is studied experimentally in steady forward and Stern (1996) applied traditional 5-hole pitot probes to measure the time mean velocities. Laser Ohkusu (1990) described two methods, i.e. with wave probes installed on the towing carriage for acquiring

  11. Molecular dynamics modeling of ionic liquids in electrospray propulsion

    E-Print Network [OSTI]

    Takahashi, Nanako

    2010-01-01T23:59:59.000Z

    Micro-propulsion has been studied for many years due to its applications in small-to-medium sized spacecraft for precise satellite attitude control. Electrospray thrusters are promising thrusters built upon the state of ...

  12. Porous material and process development for electrospray propulsion applications

    E-Print Network [OSTI]

    Arestie, Steven Mark

    2014-01-01T23:59:59.000Z

    Ion electrospray propulsion devices rely on the transportation of ionic liquid propellant to emission regions where ions are extracted at high velocities. One such method involves the use of porous substrates to passively ...

  13. Diffusion driven object propulsion in density stratified fluids

    E-Print Network [OSTI]

    Lenahan, Conor (Conor P.)

    2009-01-01T23:59:59.000Z

    An experimental study was conducted in order to verify the appropriateness of a two dimensional model of the flow creating diffusion driven object propulsion in density stratified fluids. Initial flow field experiments ...

  14. Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion

    E-Print Network [OSTI]

    . Lozano June 2010 SSL # 6-10 #12;#12;Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion Nanako Takahashi, Paulo C. Lozano June 2010 SSL # 6-10 This work is based on the unaltered text

  15. Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion

    E-Print Network [OSTI]

    . Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 #12;#12;Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion Daniel A. Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 This work

  16. Design of repeating projectile toy based on bistable spring propulsion

    E-Print Network [OSTI]

    Blanco, Matthew C. (Matthew Corwin)

    2007-01-01T23:59:59.000Z

    Recently, bistable springs have been proven as a viable propulsion method for the standard 1.75" foam balls used in Nerf projectile toys. This technology was developed at M.I.T. by William Fienup and Barry Kudrowitz, who ...

  17. Development of a high power density motor for aircraft propulsion

    E-Print Network [OSTI]

    Dibua, Imoukhuede Tim Odion

    2007-04-25T23:59:59.000Z

    are currently powered by heavy gas turbine engines that require fueling. The development of electric motors to replace gas turbines would be a big step towards accomplishing more efficient aircraft propulsion. The primary objective of this research extends...

  18. Application of ion electrospray propulsion to lunar and interplanetary missions

    E-Print Network [OSTI]

    Whitlock, Caleb W. (Caleb Wade)

    2014-01-01T23:59:59.000Z

    High specific impulse electric propulsion systems enable ambitious lunar and interplanetary missions that return a wealth of scientific data. Many of these technologies are difficult to scale down, meaning the spacecraft ...

  19. Novel turbomachinery concepts for highly integrated airframe/propulsion systems

    E-Print Network [OSTI]

    Shah, Parthiv N

    2007-01-01T23:59:59.000Z

    Two novel turbomachinery concepts are presented as enablers to advanced flight missions requiring integrated airframe/propulsion systems. The first concept is motivated by thermal management challenges in low-to-high Mach ...

  20. Assessment of propfan propulsion systems for reduced environmental impact

    E-Print Network [OSTI]

    Peters, Andreas, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    Current aircraft engine designs tend towards higher bypass ratio, low-speed fan designs for improved fuel burn, reduced emissions and noise. Alternative propulsion concepts include counter-rotating propfans (CRPs) which ...

  1. A doubly-fed machine for propulsion applications

    E-Print Network [OSTI]

    Tomovich, Michael S. (Michael Stephen)

    2014-01-01T23:59:59.000Z

    A doubly fed machine for propulsion applications is proposed, which, given the presence of AC and DC power sources, can be utilized in order to improve efficiency, weight, volume, and sizing of the rotor power electronics. ...

  2. Propulsion engineering study for small-scale Mars missions

    SciTech Connect (OSTI)

    Whitehead, J.

    1995-09-12T23:59:59.000Z

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

  3. This document was downloaded on May 22, 2013 at 14:37:52 Author(s) Naval Postgraduate School (U.S.)

    E-Print Network [OSTI]

    Officer in Charge Naval Engineering J. E. Fradd D. R. Frakes J. P. Craft Capt. USN Cmdr. USN Cmdr. USN

  4. Nuclear Power - Deployment, Operation and Sustainability

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    and Plutonium Denaturing as an Effective Method for Nuclear Fuel Proliferation Protection in Open and Closed Fuel Cycles 331 Kryuchkov E.F., Tsvetkov P.V., Shmelev A.N., Apse V.A., Kulikov G.G., Masterov S.V., Kulikov E.G. and Glebov V.B Part 5 Thorium 363... Talbot Laboratory, Urbana, Illinois USA 1. Introduction T h e largest experien c e in operatin g nuclear power plants has been in nuclear naval propulsi o n , particul a r l y aircraft carriers and subma r i n e s . This accumul a t e d exper i e n c...

  5. Potential geothermal energy use at the Naval Air Rework Facilities, Norfolk, Virginia and Jacksonville, Florida, and at the naval shipyard, Charleston, South Carolina

    SciTech Connect (OSTI)

    Costain, J.K.; Glover, L. III; Newman, R.W.

    1984-05-01T23:59:59.000Z

    The feasibility of geothermal energy use at naval installations in Norfolk, VA, Jacksonville, FL, and Charleston, SC was assessed. Geophysical and geological studies of the above areas were performed. Engineering and economic factors, affecting potential energy use, were evaluated. The Norfolk and Jacksonville facilities are identified as candidates for geothermal systems. System costs are predicted. Economic benefits of the proposed geothermal systems are forecast, using the net present value method of predicting future income.

  6. A Propellantless Propulsion Experiment Design and Testing Plan

    SciTech Connect (OSTI)

    Goodwin, David P. [United States Department of Energy, Office of High Energy Physics, SC-20/Germantown Building, 1000 Independence Ave SW, Washington, D.C. 20585-1290 (United States)

    2004-02-04T23:59:59.000Z

    A propellantless propulsion experiment design and testing plan are described. The concept was initially presented during the Space Technology and Applications International Forum of 2001 and the experiment was initially presented during the Joint Propulsion Conference of 2001. New information is provided on how the experiment relates to the Human Exploration of Development of Space, the results of peer reviews, a cost estimate performed by a major U.S. aerospace company, and an alternative magnet design to reduce the cost of the experiment and potentially improve the reliability of the system. Recent improvements in high power solid state switches and superconducting magnets may have made propellantless propulsion possible. Propulsion may occur during the non-steady state ramp-up of a very rapidly pulsed, high power magnet. Propulsion would not occur after the first 100 nanoseconds of each pulse, since the magnetic field will have reached steady state. The United States Department of Energy Office of High Energy Physics provided some of the funding for the developed a no maintenance superconducting magnet that can carry 2,000 amperes per square millimeter and a switch which can provide 100 nanosecond ramp-ups at a rate of 0.4 megahertz, and at 9,000 volts and 30 amperes.

  7. Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, U.S.A.

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling of Coastal Inundation, Storm Surge, and Relative Sea- Level Rise at Naval Station Norfolk. Modeling of coastal inundation, storm surge, and relative sea-level rise at Naval Station Norfolk, Norfolk, and relative sea-level-rise (RSLR) scenarios were examined at the U.S. Naval Station, Norfolk, Virginia

  8. TRANSCRIPT OF NAVAL SERVICE FOR ADMIRAL MICHAEL GLENN MULLEN

    E-Print Network [OSTI]

    1971 Nuclear Weapons Training Group, Atlantic, FEB 1971 FEB 1971 Norfolk, VA (DUINS) USS BLANDY (DD 943) (Weapons/Operations FEB 1971 NOV 1972 Officer) Fleet Training Center, Norfolk, VA (DUINS) NOV 1972 JAN 1973, DC (Military Staff Assistant to Director, Operational Test and Evaluation) Harvard University

  9. Thorium dioxide: properties and nuclear applications

    SciTech Connect (OSTI)

    Belle, J.; Berman, R.M. (eds.)

    1984-01-01T23:59:59.000Z

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  10. Self-propulsion of V-shape micro-robot

    E-Print Network [OSTI]

    Vladimir A. Vladimirov

    2012-09-13T23:59:59.000Z

    In this paper we study the self-propulsion of a symmetric V-shape micro-robot (or V-robot) which consists of three spheres connected by two arms with an angle between them; the arms' lengths and the angle are changing periodically. Using an asymptotic procedure containing two-timing method and a distinguished limit, we obtain analytic expressions for the self-propulsion velocity and Lighthill's efficiency. The calculations show that a version of V-robot, aligned perpendicularly to the direction of self-swimming, is both the fastest one and the most efficient one. We have also shown that such $V$-robot is faster and more efficient than a linear three-sphere micro-robot. At the same time the maximal self-propulsion velocity of V-robots is significantly smaller than that of comparable microorganisms.

  11. Naval Research Laboratory Memorandum Report, 2003 Perceptual and Ergonomic Issues in

    E-Print Network [OSTI]

    Swan II, J. Edward

    Naval Research Laboratory Memorandum Report, 2003 1 Perceptual and Ergonomic Issues in Mobile paradigm, the field needs a much better understanding of the fundamental perceptual and ergonomic issues aimed at both understanding the fundamental perceptual and ergonomic issues in AR display

  12. Karen Swider-Lyons, Peter Bouwman, Norma Ugarte Naval Research Laboratory

    E-Print Network [OSTI]

    supported on MOxH2O supported on carbon Pt MOx e- carbon H+ OO H+ H+ Nafion H+ O2 O H2O Catalyst development via electrochemical and structural analysis #12;Naval Research Lab DOE review 19May2003 Pt-MOx

  13. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  14. High performance path following for marine vehicles using azimuthing podded propulsion

    E-Print Network [OSTI]

    Greytak, Matthew B. (Matthew Bardeen)

    2006-01-01T23:59:59.000Z

    Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis to a specified azimuth angle, the ...

  15. Power conversion and scaling for vanishingly small satellites with electric propulsion

    E-Print Network [OSTI]

    Hansel, George J

    2014-01-01T23:59:59.000Z

    The development of ion electrospray propulsion systems (iEPS) as integrated microelectromechanical systems (i.e. MEMS) effectively miniaturizes propulsion for nanosatellites. Current iEPS thrusters consist of arrays of ion ...

  16. Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions

    E-Print Network [OSTI]

    Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide the bipolar electrochemical propulsion mechanism for bimetallic nanorods. Introduction Catalyic molecular nonbiological schemes for making micro/nanoscale ma- chines involve externally applied magnetic2 or electrical

  17. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    SciTech Connect (OSTI)

    D. Ray Johnson; Sidney Diamond

    2000-06-19T23:59:59.000Z

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

  18. Propulsion Mechanisms for Leidenfrost Solids on Ratchet Surfaces

    E-Print Network [OSTI]

    Baier, Tobias; Herbert, Stefan; Hardt, Steffen; Quere, David

    2012-01-01T23:59:59.000Z

    We propose a model for the propulsion of Leidenfrost solids on ratchets based on viscous drag due to the flow of evaporating vapor. The model assumes pressure-driven flow described by the Navier-Stokes equations and is mainly studied in lubrication approximation. A scaling expression is derived for the dependence of the propulsive force on geometric parameters of the ratchet surface and properties of the sublimating solid. We show that the model results as well as the scaling law compare favorably with experiments and are able to reproduce the experimentally observed scaling with the size of the solid.

  19. Author's personal copy A versatile implicit iterative approach for fully resolved simulation of self-propulsion

    E-Print Network [OSTI]

    Hartmann, Mitra J. Z.

    . This approach uses a constraint-based formulation of the problem of self-propulsion developed by Shirgaonkar et

  20. International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013

    E-Print Network [OSTI]

    Walker, Mitchell

    1 The 33rd International Electric Propulsion Conference, The George Washington University, USA Electric Propulsion Conference, The George Washington University Washington, D.C. USA October 6 10.t.yim@nasa.gov. #12;2 The 33rd International Electric Propulsion Conference, The George Washington University, USA

  1. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field Leonid E. Zakharov the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks takes into account the propulsion e#11;ect, viscosity and the drag force due to magnetic pumping

  2. Magnetic propulsion of a conducting fluid and the theory of a

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Magnetic propulsion of a conducting fluid and the theory of a controlled tokamak fusion reactor) Abstract Effect of magnetic propulsion has been discovered for conducting fluid in toroidal magnetic field. The theory has been developed for intensive, driven by magnetic propulsion, freesurface streams

  3. Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be

    E-Print Network [OSTI]

    Rangarajan, Govindan

    applied rotating magnetic field. The method of helical propulsion becomes especially important at smallerVelocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be Arijit Ghosh,,# Debadrita propulsion is at the heart of locomotion strategies utilized by various natural and artificial swimmers. We

  4. Divergence of a Propulsive Plasma Flow Expanding through a Magnetic Nozzle

    E-Print Network [OSTI]

    Choueiri, Edgar

    Divergence of a Propulsive Plasma Flow Expanding through a Magnetic Nozzle IEPC-2009-260 Presented frequency waves have renewed interest in magnetic nozzles for plasma propulsion applications in space.1 at the 31st International Electric Propulsion Conference, University of Michigan Ann Arbor, Michigan USA

  5. Nuclear technologies for Moon and Mars exploration

    SciTech Connect (OSTI)

    Buden, D.

    1991-01-01T23:59:59.000Z

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  6. Design, Analysis, and Simulation of Rocket Propulsion System

    E-Print Network [OSTI]

    Kulhanek, Sarah Logan

    2012-08-31T23:59:59.000Z

    . The program currently provides a symbolic link in the form of a button on the output page which will open Unigraphics NX CAD program. The post-processing simulation of the rocket propulsion system is done in a computational fluid dynamics (CFD) program...

  7. Electric Propulsion for Cars: New Directions for Energy Research

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric Propulsion for Cars: New Directions for Energy Research University of Delaware Energy #12;US Gasoline Consumption Unsustainable Low Cost Cars 250,000 first year Millions within 5 years a Prius 220 gal/year #12;Substitute Alternative Fuels for Gasoline Electricity Natural gas Methanol ? Bio

  8. International Electric Propulsion Conference IEPC-2007-153

    E-Print Network [OSTI]

    King, Lyon B.

    30th International Electric Propulsion Conference IEPC-2007-153 1 Confinement time in an electron and magnetic fields of a Hall-effect thruster with the goal of understanding the mechanism(s) responsible for anomalous cross-field mobility. A low-density electron plasma is confined using vacuum electric and magnetic

  9. Integration of Electric Propulsion Systems with Spacecraft An Overview

    E-Print Network [OSTI]

    Walker, Mitchell

    (Gravity field and steady-state Ocean Circulation Explorer), and JAXA's Hayabusa. Around the world, various to support robotic and human solar system exploration efforts to low-power (i.e., pace of electric propulsion technologies being infused into space missions, a growing need exists

  10. Nuclear emergency preparedness in the Nordic and Baltic Sea countries

    E-Print Network [OSTI]

    Jaworska, A

    2002-01-01T23:59:59.000Z

    Radiation emergency preparedness systems must be able to deal with the threats posed to each country and the region as a whole. The threats from nuclear accidents differ in the various countries of the region. The most serious nuclear threats are those with cross-border implications and are generally assumed to be due to the presence of nuclear reactors of various kinds. Some countries in the region, Finland, Germany, Lithuania, the Russian Federation and Sweden, have nuclear power plants, and several countries in the region possess smaller research reactors. Other nuclear threats arise from nuclear powered naval vessels or submarines, and from nuclear powered satellites. Production, transportation, use, and disposal of radioactive materials constitute potential local nuclear hazards. Finally, terrorist use of radioactive material poses a nuclear threat to all countries. (au)

  11. "The Fourth Dimension of Naval Tactics": The U.S. Navy and Public Relations, 1919-1939

    E-Print Network [OSTI]

    Wadle, Ryan David

    2012-07-16T23:59:59.000Z

    Prior to 1917, the United States Navy only utilized public relations techniques during times of war or to attract recruits into naval service. Following World I, the Navy confronted several daunting problems, including the ...

  12. EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...

  13. Technical Safety Appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    This report presents the results of a focused Technical Safety Appraisal (TSA) of the Naval Petroleum Reserve No. 1 (NPR-1), Elk Hills, California, conducted during November 27 through December 8, 1989. The Department of Energy (DOE) program organization responsible for NPR-1 is the Assistant Secretary for Fossil Energy (FE); the responsible Field Office is the Naval Petroleum Reserves California (NPRC) Office. This appraisal is an application of the program that was initiated in 1985 to strengthen the DOE Environment, Safety and Health Program. The appraisal was conducted by the staff of the DOE Assistant Secretary for Environment, Safety and Health (EH), Office of Safety Appraisals, with support from experts in specific appraisal areas, including a number from the petroleum industry, and a liaison representative from FE. The Senior EH Manager for the appraisal was Mr. Robert Barber, Acting Director, Office of Compliance Programs; the Team Leader was Dr. Owen Thompson, Office of Safety Appraisals.

  14. Investigation on the continued production of the Naval Petroleum Reserves beyond April 5, 1991

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    The authority to produce the Naval Petroleum Reserves (NPRs) is due to expire in April 1991, unless extended by Presidential finding. As provided in the Naval Petroleum Reserves Production act of 1976 (Public Law 94-258), the President may continue production of the NPRs for a period of up to three years following the submission to Congress, at least 180 days prior to the expiration of the current production period, of a report that determines that continued production of the NPRs is necessary and a finding by the President that continued production is in the national interest. This report assesses the need to continue production of the NPRs, including analyzing the benefits and costs of extending production or returning to the shut-in status that existed prior to 1976. This continued production study considers strategic, economic, and energy issues at the local, regional, and national levels. 15 figs., 13 tabs.

  15. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  16. Nuclear power: key to man's extraterrestrial civilization

    SciTech Connect (OSTI)

    Angelo, J.A. Jr.; Buden, D.

    1982-01-01T23:59:59.000Z

    The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are (1) the availability of compact energy sources for power and propulsion, (2) the creation of permanent manned habitats in space, and (3) the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear power plant technologies will be discussed, with emphasis on derivatives from the nuclear rocket technology.

  17. Gravity Control Propulsion: Towards a General Relativistic Approach

    E-Print Network [OSTI]

    O. Bertolami; F. G. Pedro

    2006-10-16T23:59:59.000Z

    Evaluation of gravity control concepts should be examined with respect to currently known physical theories. In this work we study the hypothetical conversion of gravitational potential energy into kinetic energy using the formalism of general relativity. We show that the energy involved in the process greatly exceeds the Newtonian estimate, given the nature of general relativity. We conclude that the impact of any gravity manipulation for propulsion greatly depends fundamentally on its exact definition.

  18. Propellantless propulsion in magnetic fields by partially shielded current

    E-Print Network [OSTI]

    Bergamin, L; Pinchook, A

    2006-01-01T23:59:59.000Z

    A new device for propellantless propulsion in presence of a magnetic field is discussed. The functional principle shares some features with electrodynamic tethers. However, the tether structure is replaced by a closed wire, which is partially shielded from the magnetic field by means of a superconductor. Therefore, it does not depend on the presence of a plasma. We show that even a relatively small device can yield interesting propulsivet forces for drag compensation or for orbital transfers.

  19. Advancements in Dense Plasma Focus (DPF) for Space Propulsion

    SciTech Connect (OSTI)

    Thomas, Robert [Department of Aerospace Engineering, University of Illinois at Urbana - Champaign, Urbana, Illinois 61801 (United States); Yang Yang; Miley, G.H. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-- Champaign, Urbana, Illinois 61801 (United States); Mead, F.B. [AFRL/PRSP, 10 E. Saturn Blvd., Edwards AFB CA 93524-7680 (United States)

    2005-02-06T23:59:59.000Z

    The development of a dense plasma focus (DPF) propulsion device using p-11B is described. A propulsion system of this type is attractive because of its high thrust-to-weight ratio capabilities at high specific impulses. From a fuel standpoint, p-11B is advantageous because of the aneutronic nature of the reaction, which is favorable for the production of thrust since the charged particles can be channeled by a magnetic field. Different fusion mechanisms are investigated and their implication to the p-11B reaction is explored. Three main requirements must be satisfied to reach breakeven for DPF fusion: a high Ti/Te ratio ({approx}20), an order of magnitude higher pinch lifetime, and the reflection and absorption of at least 50% radiation. Moreover, a power re-circulation method with high efficiency must be available for the relatively low Q value of the DPF fusion reactor. A possible direct energy conversion scheme using magnetic field compression is discussed. DPF parameters are estimated for thrust levels of 1000 kN and 500 kN, and possible propulsion applications are discussed, along with developmental issues.

  20. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05T23:59:59.000Z

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  1. Vo l . 4 4 , N o . 2 , 2 0 1 1 c o n t e n t s

    E-Print Network [OSTI]

    Pennycook, Steve

    nuclear power plant. ORNL led the effort to bring researchers together from a number of Department Accident ·RifleSightingSystemScoresa Bull's-eye ·SolarCellsCrankupEfficiency Reactor core simulation development, extending from nuclear power to medical isotopes and from naval propulsion to nuclear

  2. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01T23:59:59.000Z

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  3. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04T23:59:59.000Z

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  4. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOE Patents [OSTI]

    Rote, Donald M. (Lagrange, IL); He, Jianliang (Woodridge, IL); Johnson, Larry R. (Naperville, IL)

    1994-01-01T23:59:59.000Z

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  5. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    SciTech Connect (OSTI)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01T23:59:59.000Z

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds to the complexity of the mission architecture.

  6. Evaluation of non-intrusive monitoring for condition based maintenance applications on US Navy propulsion plants

    E-Print Network [OSTI]

    Greene, William C. (William Calvin)

    2005-01-01T23:59:59.000Z

    The thesis explores the use of the Non-intrusive Load Monitor (NILM) in Condition Based Maintenance (CBM) applications on US Navy ships as part of the Office of Naval Research Electric Ship Integration (ESI) Initiative. ...

  7. Summer Undergraduate Research Opportunities in the Electric Propulsion and Plasmadynamics Laboratory (EPPDyL)*

    E-Print Network [OSTI]

    will then be detected using a mass spectrometer. Prior experience with basic electronic instruments is desirableSummer Undergraduate Research Opportunities in the Electric Propulsion and Plasmadynamics

  8. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

  9. Rise and fall of a tactic: the ram in nineteenth century naval doctrine

    E-Print Network [OSTI]

    Johnson, Robert Leroy

    1989-01-01T23:59:59.000Z

    collision between a steamer and another vessel at anchor which resulted in the sinking of the latter. In 1846, George L. Schuyler proposed a ram to Congress, supporting his concept with the evidence of two maritime accidents. The first occurred when... THE EMERGENCE OF THE RAM IN THE 1860'S About 1860, two important events happened that mark a new phase in the history of the ram, as well as naval history in general. In 1858, the French laid down the first ocean-going ironclad warship, the Gloire, to which...

  10. Influence of physiography and vegetation on small mammals at the Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Cypher, B.L.

    1995-02-13T23:59:59.000Z

    Influence of physiography and vegetation on small mammal abundance and species Composition was investigated at Naval Petroleum Reserve No. 1 in California to assess prey abundance for Federally endangered San Joaquin kit foxes (Vulpes macrotis mutica) and to assess the distribution of two Federal candidate species, San Joaquin antelope squirrels (Ammospermophilus nelsoni) and short-nosed kangaroo rats (Dinodomys nitratoides brevinasus). The specific objectives of this investigation were to determine whether small mammal abundance and community composition varied with north-south orientation, terrain, ground cover, and Cypher shrub density, and whether these factors influenced the distribution and abundance of San Joaquin antelope squirrels and short-nosed kangaroo rats.

  11. U.S. Naval Station, Guantanamo Bay, Cuba | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&Department of Energy U.S.Naval

  12. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    SciTech Connect (OSTI)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01T23:59:59.000Z

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  13. Phase 1 Space Fission Propulsion Energy Source Design

    SciTech Connect (OSTI)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert [NASA MSFC, TD40, Marshall Space Flight Center, Alabama, 35812 (United States)

    2002-07-01T23:59:59.000Z

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor (PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a 'Phase 1' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. (authors)

  14. The Use of Steady and Pulsed Detonations for Propulsion Systems

    SciTech Connect (OSTI)

    Adelman, H.G.; Menees, G.P.; Cambier, J.L.; Bowles, J.V.

    1996-02-01T23:59:59.000Z

    Objectives of the ODWE concept studies are: demonstrate the feasibility of the oblique detonation wave engine (ODWE) for hypersonic propulsion; demonstrate the existance and stability of an oblique detonation wave in hypersonic wind tunnels; develop engineering codes which predict the performance characteristics of the ODWE including specific impulse and thrust coefficients for various operating conditions; develop multi-dimensional computer codes which can model all aspects of the ODWE including fuel injection, mixing, ignition, combustion and expansion with fully detailed chemical kinetics and turbulence models; and validate the codes with experimental data use the simulations to predict the ODWE performance for conditions not easily obtained in wind tunnels.

  15. Nature-inspired microfluidic propulsion using magnetic actuation

    E-Print Network [OSTI]

    Khaderi, S N; Anderson, P D; Ioan, D; Toonder, J M J den; Onck, P R

    2009-01-01T23:59:59.000Z

    In this work we mimic the efficient propulsion mechanism of natural cilia by magnetically actuating thin films in a cyclic but non-reciprocating manner. By simultaneously solving the elasto-dynamic, magnetostatic and fluid mechanics equations, we show that the amount of fluid propelled is proportional to the area swept by the cilia. By using the intricate interplay between film magnetization and applied field we are able to generate a pronounced asymmetry and associated flow. We delineate the functional response of the system in terms of three dimensionless parameters that capture the relative contribution of elastic, inertial, viscous and magnetic forces.

  16. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect (OSTI)

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01T23:59:59.000Z

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | Department of Energy Propulsion

  18. Propulsion Materials R&D | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromising MagnesiumDOE/RichlandStructure andPropulsion

  19. Environmental assessment, aircraft chemical warfare survivability test program, Naval Air Warfare Center, Aircraft Division, Patuxent River, Maryland

    SciTech Connect (OSTI)

    NONE

    1992-02-01T23:59:59.000Z

    The proposed project, the Aircraft Chemical Warfare Survivability Test Program at Patuxent River Naval Air Station, involves the testing and development of aircraft systems and operating procedures for use in an environment contaminated with chemical/biological warfare agents. The tests will be performed in accordance with a directive from the chief of Naval Operations to obtain and maintain the capability to operate in a chemically-contaminated environment. These tests will be performed under outdoor, warm-weather conditions on a dredge disposal area and adjacent runways to simulate the conditions under which a real-life threat would be encountered.

  20. Endangered Species Program, Naval Petroleum Reserves in California. Annual report FY93

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The Naval Petroleum Reserves in California (NPRC) are operated by the US Department of Energy (DOE) and Chevron USA. Production Company (CPDN). Four federally-listed endangered animal species and one federally-threatened plant species are known to occur on NPRC: San Joaquin kit fox, blunt-nosed leopard lizard, giant kangaroo rat, Tipton kangaroo rat, and Hoover`s wooly-star. All five are protected under the Endangered Species Act of 1973, which declares that it is ``...the policy of Congress that all Federal departments and agencies shall seek to conserve endangered species and threatened species and shall utilize their authorities in furtherance of the purposes of the Act.`` DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 will have any effects on endangered species or their habitats. The major objective of the EG&G Energy Measurements, Inc. Endangered Species Program on NPRC is to provide DOE with the scientific expertise necessary for compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during fiscal year 1993.

  1. Endangered species and cultural resources program, Naval Petroleum Reserves in California, annual report FY97

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Naval Petroleum Reserves in California (NPRC) are oil fields administered by the DOE in the southern San Joaquin Valley of California. Four federally endangered animal species and one federally threatened plant species are known to occur on NPRC: San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides), and Hoover`s wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act (ESA) of 1973. The DOE/NPRC is obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The primary objective of the Endangered Species and Cultural Resources Program is to provide NPRC with the scientific expertise necessary for compliance with the ESA, the National Environmental Policy Act (NEPA), and the National Historic Preservation Act (NHPA). The specific objective of this report is to summarize progress, results, and accomplishments of the program during fiscal year 1997 (FY97).

  2. T E C H N I C A L N O T E Advantages of Natural Propulsive Systems

    E-Print Network [OSTI]

    Fish, Frank

    of this technical note is concerned with how thrust is generated by the various propulsive mechanisms exhibited biomimetic propulsive systems will be dependent on particular ap- plications, where the specifications

  3. naval reactors

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich57/%2A en4/%2A en5/%2A

  4. The 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011

    E-Print Network [OSTI]

    The 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011 1 Electric Propulsion Conference, Wiesbaden Germany September 11 15, 2011 K. Matyash1 , Max-Planck-Institut fr Plasmaphysik, EURATOM Association, Greifswald, D-17491, Germany R. Schneider2 , Greifswald

  5. Design and Control of the Induction Motor Propulsion of an Electric Vehicle

    E-Print Network [OSTI]

    Brest, Universit de

    Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

  6. The 33st International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013

    E-Print Network [OSTI]

    Walker, Mitchell

    The 33st International Electric Propulsion Conference, The George Washington University, USA, 30332, USA Abstract: Accurate measurement of ion charge flux in the plume of spacecraft electric.walker@ae.gatech.edu #12;The 33st International Electric Propulsion Conference, The George Washington University, USA

  7. The 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011

    E-Print Network [OSTI]

    International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011 2 magnetic fieldThe 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011 1 Effect of Magnetic Shielding on Plasma Plume of the Cylindrical Hall Thrusters IEPC-2011-175 Presented

  8. The 33st International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013

    E-Print Network [OSTI]

    King, Lyon B.

    The 33st International Electric Propulsion Conference, The George Washington University, USA with FerroTec EFH-1 in a non- uniform magnetic field IEPC-2013-319 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington, D.C. USA October 6 10

  9. The 29th International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005

    E-Print Network [OSTI]

    Walker, Mitchell

    The 29th International Electric Propulsion Conference, Princeton University, October 31 November International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005 James H magnetic field transient with the vacuum facility. The thrust stand has been revamped to allow for active

  10. International Electric Propulsion Conference, Florence, Italy September 17-20, 2007

    E-Print Network [OSTI]

    Walker, Mitchell

    The 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 1-236 Presented at the 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 b = annulus outer diameter c = speed of light B = perturbed magnetic field B0 = equilibrium magnetic

  11. Principles of Rotating Plasma in Plasma Propulsion Systems N. J. Fisch

    E-Print Network [OSTI]

    Principles of Rotating Plasma in Plasma Propulsion Systems N. J. Fisch Department of Astrophysical Sciences Princeton University 33rd International Electric Propulsion Conference (IEPC2013 in crossed electric and magnetic fields. This talk reviews at a tutorial level some of the interesting

  12. International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005

    E-Print Network [OSTI]

    King, Lyon B.

    The 29th International Electric Propulsion Conference, Princeton University, October 31 November at the 29th International Electric Propulsion Conference, Princeton University, October 31 November 4 consisting of a magnetic monopole with a constant axial E-field is used to identify fundamentals of electron

  13. International Electric Propulsion Conference, Princeton University, October 31 November 4, 2005

    E-Print Network [OSTI]

    King, Lyon B.

    The 29th International Electric Propulsion Conference, Princeton University, October 31 November-effect Thruster IEPC-2005-274 Presented at the 29th International Electric Propulsion Conference, Princeton electron plasma in a pristine environment. A purely radial magnetic field is applied with a crossed

  14. An Analysis of Energy Balance in a Helicon Plasma Source for Space Propulsion

    E-Print Network [OSTI]

    An Analysis of Energy Balance in a Helicon Plasma Source for Space Propulsion by Justin Matthew;An Analysis of Energy Balance in a Helicon Plasma Source for Space Propulsion by Justin Matthew Pucci are optical radiation emission, wall losses due to poor magnetic confinement, and poor antenna-plasma coupling

  15. The Rotational Propulsion Characteristics of Scaled-up Helical Microswimmers with different heads and magnetic positioning

    E-Print Network [OSTI]

    of the cut-off frequency. The rotational propulsion characteristics of helical swimmers with a magnetic headThe Rotational Propulsion Characteristics of Scaled-up Helical Microswimmers with different heads and magnetic positioning Tiantian Xu1, Gilgueng Hwang2, Nicolas Andreff3 and Stephane Regnier1 Abstract

  16. Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study M. Zeraoulia1 and on an effective comparison of the performances of the four main electric propulsion systems that are the dc motor, the induction motor, the permanent magnet synchronous motor, and the switched reluctance motor. The main

  17. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC

    2009-07-14T23:59:59.000Z

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  18. Beamed Core Antimatter Propulsion: Engine Design and Optimization

    E-Print Network [OSTI]

    Ronan Keane; Wei-Ming Zhang

    2012-05-16T23:59:59.000Z

    A conceptual design for beamed core antimatter propulsion is reported, where electrically charged annihilation products directly generate thrust after being deflected and collimated by a magnetic nozzle. Simulations were carried out using the Geant4 (Geometry and tracking) software toolkit released by the CERN accelerator laboratory for Monte Carlo simulation of the interaction of particles with matter and fields. Geant permits a more sophisticated and comprehensive design and optimization of antimatter engines than the software environment for simulations reported by prior researchers. The main finding is that effective exhaust speeds Ve ~ 0.69c (where c is the speed of light) are feasible for charged pions in beamed core propulsion, a major improvement over the Ve ~ 0.33c estimate based on prior simulations. The improvement resulted from optimization of the geometry and the field configuration of the magnetic nozzle. Moreover, this improved performance is realized using a magnetic field on the order of 10 T at the location of its highest magnitude. Such a field could be produced with today's technology, whereas prior nozzle designs anticipated and required major advances in this area. The paper also briefly reviews prospects for production of the fuel needed for a beamed core engine.

  19. Is Nuclear Energy the Solution?

    E-Print Network [OSTI]

    Saier, Milton H.; Trevors, Jack T.

    2010-01-01T23:59:59.000Z

    Savannah River Site (SC), as well as the reprocessing of naval irradiated fuel at the Idaho National Laboratory (

  20. A versatile implicit iterative approach for fully resolved simulation of self-propulsion Oscar M. Curet a

    E-Print Network [OSTI]

    Curet, Oscar M.

    . This approach uses a constraint-based formulation of the problem of self-propulsion developed by Shirgaonkar et

  1. Deuterium-Tritium Pulse Propulsion with Hydrogen as Propellant and the Entire Spacecraft as a Gigavolt Capacitor for Ignition

    E-Print Network [OSTI]

    Friedwardt Winterberg

    2012-07-31T23:59:59.000Z

    A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus.

  2. Deuterium-Tritium Pulse Propulsion with Hydrogen as Propellant and the Entire Spacecraft as a Gigavolt Capacitor for Ignition

    E-Print Network [OSTI]

    Winterberg, Friedwardt

    2012-01-01T23:59:59.000Z

    A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus.

  3. Preserving Nuclear Grade Knowledge

    SciTech Connect (OSTI)

    Lange, Bob

    2008-02-05T23:59:59.000Z

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most dont really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding the ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)

  4. JOB DESCRIPTION: E06, Senior Principal Naval Architect with a minimum of 10 + years experience in the design and construction of naval and/or commercial vessels, with a

    E-Print Network [OSTI]

    Eustice, Ryan

    + Years Naval Architecture experience International Experience Experience with Earned Value Management Demonstrated team management, task management and capture/proposal experience Desired Qualifications: 15 Program and/or Subcontract Management Experience To Apply On line, go to Raytheon.com under the careers

  5. EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOEs Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

  6. The Immortal Fausto: The Life, Works, and Ships of the Venetian Humanist and Naval Architect Vettor Fausto (1490-1546)

    E-Print Network [OSTI]

    Campana, Lilia

    2014-06-11T23:59:59.000Z

    in the Mediterranean, the Republic of Venice strongly encouraged Venetian shipwrights to submit new designs for war galleys. The undisputed founder and champion of this naval program was not a skilled shipwright but a young professor of Greek in the School of Saint...

  7. EIS-0158-S2: Supplemental Environmental Impact Statement Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement, the supplement to DOE/EIS-0158, to analyze the environmental and socioeconomic impacts of the sale of Naval Petroleum Reserve No. 1 in Kern County, California to Occidental Petroleum Corporation.

  8. Superfund record of decision (EPA Region 3): Naval Weapons Station, operable unit 2, Yorktown, VA, September 29, 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This decision document presents a determination that the No Further Remedial Action Decision with Institutional Controls is sufficient to protect human health and the environment for Operable Unit No. II (OU II), Site 16, the West Road Landfill and Site Screening Area (SSA) 16, the Building 402 Metal Disposal Area at the Naval Weapons Station (WPNSTA) Yorktown (Site 16/SSA 16).

  9. EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York

    Broader source: Energy.gov [DOE]

    The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors.

  10. Trouble in the Family: New Zealand's Anti-Nuclear Policy

    E-Print Network [OSTI]

    Hanson, F. Allen

    1987-01-01T23:59:59.000Z

    or deny that a given vessel is carrying nuclear weapons, the port ban effectively barred most U.S. naval craft from docking in New Zealand's ports. Although New Zealand is small, remote, and not strategically located, the significance of this diplomatic.... The matter came to a head in February 1985 when New Zealand refused to accept a visit by the conventionally powered U.S. destroyer Buchanan, on the grounds that the ship might have been carrying nuclear weapons. This was the first test of New Zealand...

  11. Development of a computational model for nuclear electric orbital transfer vehicles

    E-Print Network [OSTI]

    Lyon, William Fountain

    1989-01-01T23:59:59.000Z

    been initiated concerning the application of advanced propulsion concepts such as nuclear thermal, nuclear electric and space-based OTVs (Ramsthaler et a1. 1988). To that end, the objective of this project was to develop a simplified computational... the potential to provide much higher power levels at lower specific powers. One project currently under development is the SP-100 space nuclear power system. This pmject is the product of a triagency consortium of the Department of Energy (DOE...

  12. Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

    SciTech Connect (OSTI)

    D. Ray Johnson; Sidney Diamond

    2001-05-14T23:59:59.000Z

    The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.

  13. Macroscopic and direct light propulsion of bulk graphene material

    E-Print Network [OSTI]

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01T23:59:59.000Z

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  14. Maximum velocity of self-propulsion for an active segment

    E-Print Network [OSTI]

    Recho, Pierre

    2015-01-01T23:59:59.000Z

    The motor part of a crawling eukaryotic cell can be represented schematically as an active continuum layer. The main active processes in this layer are protrusion, originating from non-equilibrium polymerization of actin fibers, contraction, induced by myosin molecular motors and attachment due to active bonding of trans-membrane proteins to a substrate. All three active mechanisms are regulated by complex signaling pathways involving chemical and mechanical feedback loops whose microscopic functioning is still poorly understood. In this situation, it is instructive to take a reverse engineering approach and study a problem of finding the spatial organization of standard active elements inside a crawling layer ensuring an optimal cost-performance trade-off. In this paper we assume that (in the range of interest) the energetic cost of self-propulsion is velocity independent and adopt, as an optimality criterion, the maximization of the overall velocity. We then choose a prototypical setting, formulate the corr...

  15. Naval petroleum reserves: Preliminary analysis of future net revenues from Elk Hills production

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This is an interim report on the present value of the net revenues from Elk Hills Naval Petroleum Reserve. GAO calculated alternative present values of the net revenues applying (1) low, medium, and high forecasts of future crude oil prices and (2) alternative interest rates for discounting the future net revenues to their present values. The calculations are sensitive to both the oil price forecasts and discount rates used; they are preliminary and should be used with caution. They do not take into account possible added tax revenues collected by the government if Elk Hills were sold nor varying production levels and practices, which could either increase or decrease the total amount of oil that can be extracted.

  16. Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982. Analysis and supporting data

    SciTech Connect (OSTI)

    Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

    1981-06-01T23:59:59.000Z

    Legislation authorizing production from two of the Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents analyses and supporting data concerning the trade-offs of extending production or returning to a shut-in status in order to provide the Department of Energy with information needed to formulate a recommendation. The primary objective of the study is to evaluate a range of possible futures (through 1990) to determine technical, economic, energy, strategic and political trade-offs between the two options. A secondary objective is to develop a data base for use by DOE to respond to questions and issues raised by interested parties during executive branch and Congressional reviews.

  17. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  18. Environmental Survey preliminary report, Naval Petroleum Reserves in California (NPRC), Tupman, California

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Naval Petroleum Reserves 1 (NPR-1) and 2 (NPR-2) in California (NPRC), conducted May 9--20, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPRC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involved the review of existing site environmental data, observations of the operations carried on at NPRC, and interviews with site personnel. 120 refs., 28 figs., 40 tabs.

  19. Occurrence and distribution of special status plant species on the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Anderson, D.C.; Cypher, B.L.; Holmstead, G.L.; Hammer, K.L.; Frost, N.

    1994-10-01T23:59:59.000Z

    Several special status plant species occur or potentially occur at the Naval Petroleum Reserves in California (NPRC). Special status species are defined as those species that are either federally listed as endangered or threatened, or candidate taxa. Candidate species are classified as Category 1 or Category 2. Category 1 taxa are those species for which there is sufficient evidence to support listing, while Category 2 taxa are those species for which listing may possibly be appropriate, but for which sufficient data are lacking to warrant immediate listing. Determining the presence and distribution of these species on NPRC is necessary so that appropriate conservation or protection measures can be implemented. In the spring of 1988, a survey of Naval Petroleum Reserve No. 1 (NPR-1) was conducted to determine the occurrence of Hoover`s wooly-star (Eriastrum hooveri), Kern Mallow (Eremalche kemensis), San Joaquin wooly-threads (Lembertia congdonii), and California jewelflower (Caulanthus califonicus), all listed by the US Fish and Wildlife Service (FWS) as Category 2 species at that time. Of the four species, only Hoover`s wooly-star was found. It was concluded that Kern mallow and San Joaquin wooly-threads could potentially be found on NPR-1, but habitat for California jewelflower did not occur on NPR-1 and its occurrence was unlikely. As part of an ongoing effort to document the presence or absence of sensitive plant species on NPRC, surveys for species other than Hoover`s wooly-star were conducted in the spring of 1993. Abundant spring rains in 1993 created favorable growing conditions for annual forbs. Surveys in 1993 focused on potential habitat of several endangered and candidate species. The results of those surveys are presented in this report.

  20. Wildlife management plan, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Scrivner, J.H.

    1987-01-01T23:59:59.000Z

    Under the Naval Petroleum Act of 1976, Congress directed the Secretary of the Navy and subsequently the Secretary of Energy, to produce petroleum products from Naval Petroleum Reserve No. 1 (NPR-1) in Kern County, California, at the maximum efficient rate consistent with sound engineering practices. Because of the presence of two endangered species and the quality, quantity, and contiguous nature of habitat on NPR-1, the area is unique and management of its resources deserves special attention. The purpose of this wildlife management plan is to: (1) draw together specific information on NPR-1 wildlife resources; (2) suggest management goals that could be implemented, which if achieved, would result in diverse, healthy wildlife populations; and (3) reinitiate cooperative agreements between the US Department of Energy (DOE) and other conservation organizations regarding the management of wildlife on NPR-1. NPR-1 supports an abundant and diverse vertebrate fauna. Twenty-five mammalian, 92 avian, eight reptilian, and two amphibian species have been observed on Elk Hills. Of these, three are endangered (San Joaquin kit fox, Vulpes macrotis mutica; giant kangaroo rat, Dipodomys ingens; blunt-nosed leopard lizard, Gambelia silus). Nine vertebrates, six invertebrates, and four plant species known to occur or suspected of occurring on Elk Hills are potential candidates for listing. A major objective of this management plan is to minimize the impact of petroleum development activities on the San Joaquin kit fox, giant kangaroo rat, blunt-nosed leopard lizard, and their essential habitats. This will mainly be achieved by monitoring the status of these species and their habitat and by restoring disturbed habitats. In general, management policies designed to benefit the above three species and other species of concern will also benefit other wildlife inhabiting NPR-1.

  1. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  2. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    SciTech Connect (OSTI)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01T23:59:59.000Z

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payloads communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

  3. aircraft propulsion systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    College of Nuclear Science Zha, Gecheng 160 The 2011 Cessna Aircraft CompanyRaytheon Missile Systems DesignBuildFly Competition Flyoff was held at TIMPA Field in...

  4. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  5. Nuclear programs in India and Pakistan

    SciTech Connect (OSTI)

    Mian, Zia [Program on Science and Global Security, Princeton University, Princeton, New Jersey (United States)

    2014-05-09T23:59:59.000Z

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  6. Submarine propulsion shaft life : probabilistic prediction and extension through prevention of water ingress

    E-Print Network [OSTI]

    Jonart, Douglas E. (Douglas Edward)

    2014-01-01T23:59:59.000Z

    Submarine propulsion shafts have demonstrated acceptable reliability performance when inspected and refurbished at least every 6 years. Designers wish to extend the inspection interval to 12 years without sacrificing ...

  7. Analysis of Advanced Actinide-Fueled Energy Systems for Deep Space Propulsion Applications

    E-Print Network [OSTI]

    Guy, Troy Lamar

    2011-02-22T23:59:59.000Z

    The present study is focused on evaluating higher actinides beyond uranium that are capable of supporting power and propulsion requirements in robotic deep space and interstellar exploration. The central technology in this ...

  8. A fully microfabricated two-dimensional electrospray array with applications to space propulsion

    E-Print Network [OSTI]

    Gassend, Blaise L. P. (Blaise Laurent Patrick), 1978-

    2007-01-01T23:59:59.000Z

    This thesis presents the design, fabrication and testing of a fully-integrated planar electrospray thruster array, which could lead to more efficient and precise thrusters for space propulsion applications. The same ...

  9. The design and feasibility of a 10 mN chemical space propulsion thruster

    E-Print Network [OSTI]

    Bruccoleri, Alexander Robert

    2009-01-01T23:59:59.000Z

    This thesis discusses the design of a ten milli Newton chemical propulsion system for providing approximately 200 m/s delta velocity to a five kg satellite. The nozzle is the focus of the experimental work, which involves ...

  10. An impulse framework for hydrodynamic force analysis : fish propulsion, water entry of spheres, and marine propellers

    E-Print Network [OSTI]

    Epps, Brenden P

    2010-01-01T23:59:59.000Z

    This thesis presents an impulse framework for analyzing the hydrodynamic forces on bodies in flow. This general theoretical framework is widely applicable, and it is used to address the hydrodynamics of fish propulsion, ...

  11. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect (OSTI)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  12. Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005

    SciTech Connect (OSTI)

    None

    2000-07-01T23:59:59.000Z

    This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.

  13. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2002-03-13T23:59:59.000Z

    The paper gives the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integro-differential equation which takes into account the propulsion effect, viscosity and the drag force due to magnetic pumping and other interactions with the magnetic field. A criterion is obtained for the stabilization of the ''sausage'' instability of the streams by centrifugal force.

  14. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  15. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  16. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  17. This document was downloaded on May 22, 2013 at 14:24:38 Author(s) Naval Postgraduate School (U.S.)

    E-Print Network [OSTI]

    state-of- the-art laboratories, numerous academic buildings, a library, government housing and impressive recreational facilities. The Students Nearly 2,000 students attend the Naval Postgraduate School Engineering, Applied Mathematics, Astronautical Engineering, Computer Science, Electrical Engineering

  18. Disruptive innovation and naval power : strategic and financial implications of unmanned underwater vehicles (UUVs) and long-term underwater power sources

    E-Print Network [OSTI]

    Larson, Richard Winston

    2014-01-01T23:59:59.000Z

    The naval warfare environment is rapidly changing. The U.S. Navy is adapting by continuing its blue-water dominance while simultaneously building brown-water capabilities. Unmanned systems, such as unmanned airborne drones, ...

  19. Nuclear space power safety and facility guidelines study

    SciTech Connect (OSTI)

    Mehlman, W.F.

    1995-09-11T23:59:59.000Z

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  20. The solid-core heat-exchanger nuclear rocket program

    SciTech Connect (OSTI)

    Malenfant, R.E. [Los Alamos National Lab., NM (United States)

    1994-12-31T23:59:59.000Z

    As measured by the results of its accomplishments, the nuclear rocket program was a success. Why, then, was it cancelled? In my opinion, the cancellation resulted from the success of the Apollo program. President Kennedy declared that putting a man on the moon by 1969 would be a national objective. Upon the Apollo program`s completion, space spectaculars lost their attraction, and the manned exploration of Mars, which could have been accomplished with nuclear rockets, was shelved. Perhaps another generation of physicists and engineers will experience the thrill and satisfaction of participating in a nuclear-propulsion-based program for space exploration in decades to come.

  1. Using Net-Zero Energy Projects to Enable Sustainable Economic Redevelopment at the Former Brunswick Air Naval Base

    SciTech Connect (OSTI)

    Huffman, S.

    2011-10-01T23:59:59.000Z

    A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites. The Brunswick Naval Air Station is a naval air facility and Environmental Protection Agency (EPA) Super Fund site that is being cleaned up, and closed down. The objective of this report is not only to look at the economics of individual renewable energy technologies, but also to look at the systemic benefits that can be gained when cost-effective renewable energy technologies are integrated with other systems and businesses in a community; thus multiplying the total monetary, employment, and quality-of-life benefits they can provide to a community.

  2. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  3. Report to the President on agreements and programs relating to the Naval Petroleum and Oil Shale Reserves

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.

  4. A tandem mirror hybrid plume plasma propulsion facility

    SciTech Connect (OSTI)

    Chang-Diaz, F.R.; Yang, T.F.; Krueger, W.A.; Peng, S.; Urbahn, J.; Yao, X.; Griffin, D.

    1988-01-01T23:59:59.000Z

    A concept in electrodeless plasma propulsion, which is also capable of delivering a variable Isp, is presented. The concept involves a three-stage system of plasma injection, heating, and subsequent ejection through a magnetic nozzle. The nozzle produces the hybrid plume by the coaxial injection of hypersonic neutral gas. The gas layer, thus formed, protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The physics of this concept is evaluated numerically through full spatial and temporal simulations; these explore the operating characteristics of such a device over a wide region of parameter space. An experimental facility to study the plasma dynamics in the hybrid plume was built. The device consists of a tandem mirror operating in an asymmetric mode. A later upgrade of this system will incorporate a cold plasma injector at one end of the machine. Initial experiments involve the full characterization of the operating envelope, as well as extensive measurements of plasma properties at the exhaust. The results of the numerical simulations are described.

  5. MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest

    SciTech Connect (OSTI)

    Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (USA)); Roy, G.D. (Office of Naval Research, Arlington, VA (USA))

    1990-01-01T23:59:59.000Z

    This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.

  6. Design and evaluation of a nuclear-electric hybrid power/propulsion system

    E-Print Network [OSTI]

    Keil, Ralph

    1989-01-01T23:59:59.000Z

    investigating and comparing various closed and open cycles. El ? Genk et al. ' have investiga, ted three different cycles: A potassium Rankine cycle, a. closed and an open Brayton cycle. These systems v'ere optimized for a power level of 160 MWe and compared... with each other. The optimized systems were also analyzed v;hen used for the generation of only 3. 3 MWe. However, since the above mentioned optimization is performed at a power level well above our design point, it can no longer be considered optimal...

  7. Naval Petroleum Reserve Number 1 financial statements September 30, 1997 and 1996 (with independent auditors` report thereon)

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserve No. 1 (NPR-1) in a manner to achieve the greatest value and benefits to the US taxpayer. As required by the 1996 National Defense Authorization Act, the Department of Energy offered NPR-1 for sale during FY 1997. DOE structured the sale so as to offer two types of ownership segments: one operatorship segment, consisting of 74% of the US interest in NPR-1, and 13 nonoperating segments, each consisting of 2% of the US interest. Potential purchasers could bid on one, some, or all of the segments. If a single purchaser wanted to buy all of the Government`s interest, then its bid would have to exceed the total of the highest bids for all of the individual segments. Bids were due October 1, 1997, at which time DOE received 22 bids from 15 parties acting alone or in concert. The report and management letter present the results of the independent certified public accountants` audits of the Department of Energy`s Naval Petroleum Reserve Number 1 (NPR-1) financial statements as of, and for the years ended, September 30, 1997 and 1996.

  8. Final sitewide environmental assessment for continued development of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Secretary of Energy is required by law to explore, prospect, conserve, develop, use, and operate the Naval Petroleum and Oil Shale Reserves. The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258), requires that the Naval Petroleum Reserves be produced at their maximum efficient rate (MER), consistent with sound engineering practices, for a period of six years. To fulfill this mission, DOE is proposing continued development activities which would include the drilling of approximately 250 oil production and injection (gas, water, and steam) wells, the construction of between 25 and 30 miles of associated gas, water, and steam pipelines, the installation of several production and support facilities, and the construction of between 15 and 20 miles of access roads. These drilling and construction estimates include any necessary activities related to the operation of the Rocky Mountain Oilfield Testing Center (RMOTC). The purpose of RMOTC will be to provide facilities and necessary support to government and private industry for testing and evaluating new oilfield and environmental technologies, and to transfer these results to the petroleum industry through seminars and publications. Continued development activities either have no potential to result in adverse environmental impacts or would only result in adverse impacts that could be readily mitigated. The small amounts of disturbed surface area will be reclaimed to its original natural state when production operations terminate. The preparation of an environmental impact statement is not required, and the DOE is issuing this Finding of No Significant Impact (FONSI). 73 refs.

  9. Safe testing nuclear rockets economically

    SciTech Connect (OSTI)

    Howe, S. D. (Steven D.); Travis, B. J. (Bryan J.); Zerkle, D. K. (David K.)

    2002-01-01T23:59:59.000Z

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the RoverMERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  10. Naval Petroleum Reserves in California site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This summary for Naval Petroleum Reserves in California (NPRC) is divided into NPR-1 and NPR-2. Monitoring efforts at NPR-1 include handling and disposal of oilfield wastes; environmental preactivity surveys for the protection of endangered species and archaeological resources; inspections of topsoil stockpiling; monitoring of revegetated sites; surveillance of production facilities for hydrocarbons and oxides of nitrogen (NO{sub x}) emissions; monitoring of oil spill prevention and cleanup; and monitoring of wastewater injection. No major compliance issues existed for NPR-1 during 1989. Oil spills are recorded, reviewed for corrective action, and reported. Environmental preactivity surveys for proposed projects which may disturb or contaminate the land are conducted to prevent damage to the federally protected San Joaquin kit fox, blunt-nosed leopard lizard, Tipton kangaroo rat and the giant kangaroo rat. Projects are adjusted or relocated as necessary to avoid impact to dens, burrows, or flat-bottomed drainages. A major revegetation program was accomplished in 1989 for erosion control enhancement of endangered species habitat. The main compliance issue on NPR-2 was oil and produced water discharges into drainages by lessees. An additional compliance issue on NPR-2 is surface refuse from past oilfield operations. 17 refs.

  11. Endangered species and cultural resources program Naval petroleum Reserves in California. Annual report FY96

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    In FY96, Enterprise Advisory Services, Inc. (EASI) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on federal properties. Population monitoring activities were conducted for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. Kit fox abundance and distribution was assessed by live-trapping over a 329-km{sup 2} area. Kit fox reproduction and mortality were assessed by radiocollaring and monitoring 22 adults and two pups. Reproductive success and litter size were determined through live-trapping and den observations. Rates and sources of kit fox mortality were assessed by recovering dead radiocollared kit foxes and conducting necropsies to determine cause of death. Abundance of coyotes and bobcats, which compete with kit foxes, was determined by conducting scent station surveys. Kit fox diet was assessed through analysis of fecal samples collected from live-trapped foxes. Abundance of potential prey for kit foxes was determined by conducting transect surveys for lagornorphs and live-trapping small mammals.

  12. Distributed Energy Resources at Naval Base Ventura County Building1512: A Sensitivity Analysis

    SciTech Connect (OSTI)

    Bailey, Owen C.; Marnay, Chris

    2005-06-05T23:59:59.000Z

    This report is the second of a two-part study by BerkeleyLab of a DER (distributed energy resources) system at Navy Base VenturaCounty (NBVC). First, a preliminary assessment ofthe cost effectivenessof distributed energy resources at Naval Base Ventura County (NBVC)Building 1512 was conducted in response to the base s request for designassistance to the Federal Energy Management Program (Bailey and Marnay,2004). That report contains a detailed description of the site and theDER-CAM (Consumer Adoption Model) parameters used. This second reportcontains sensitivity analyses of key parameters in the DER system modelof Building 1512 at NBVC and additionally considers the potential forabsorption-powered refrigeration.The prior analysis found that under thecurrent tariffs, and given assumptions about the performance andstructure of building energy loads and available generating technologycharacteristics, installing a 600 kW DER system with absorption coolingand recovery heat capabilities could deliver cost savings of about 14percent, worth $55,000 per year. However, under current conditions, thisstudy also suggested that significant savings could be obtained ifBuilding 1512 changed from its current direct access contract to a SCETOU-8 (Southern California Edison time of use tariff number 8) ratewithout installing a DER system. Evaluated on this tariff, the potentialsavings from installation of a DER system would be about 4 percent of thetotal bill, or $16,000 per year.

  13. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    SciTech Connect (OSTI)

    Samim Anghaie

    2002-08-13T23:59:59.000Z

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core. Still there are problems of containment since many of the proposed vessel materials such as W or Mo have high neutron cross sections making the design of a critical system difficult. There is also the possibility for a GCR to remain in a subcritical state, and by the use of a shockwave mechanism, increase the pressure and temperature inside the core to achieve criticality. This type of GCR is referred to as a shockwave-driven pulsed gas core reactor. These two basic designs were evaluated as advance concepts for space power and propulsion.

  14. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  15. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

  16. CX-009401: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fire Protection Upgrade Major Construction Project CX(s) Applied: B1.15, B1.16, B2.2, B2.5 Date: 09/25/2010 Location(s): Idaho Offices(s): Naval Nuclear Propulsion Program

  17. CX-010874: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cleaning of the L4 Pump House Galley, Trash Rack, Concrete Inlet Channel and Settling Tank CX(s) Applied: B1.3, B1.5 Date: 08/21/2003 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  18. Endangered species program Naval Petroleum Reserves in California. Annual report FY94

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In FY94, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to conserve endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly star. To mitigate impacts of oil field activities on listed species, 400 preactivity surveys covering approximately 315 acres were conducted in FY94. Mitigation measures implemented as a result of survey findings resulted in avoidance of incidental takes of listed species during construction activities. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. Third-party projects in FY94 included three pipeline projects and two well abandonment/clean-up projects. Cultural resource support provided to NPRC consisted primarily of conducting preliminary surveys for cultural resources, and preparing a Cultural Resource Management Plan and Programmatic Agreement for NPR-1. These two documents will be finalized in FY95. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY94, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was initiated to assess reclamation efficacy. Results will be used to direct future habitat reclamation efforts at NPRC. In addition to this effort, 347 reclaimed sites were assessed to evaluate reclamation success.

  19. Conservation plan for protected species on Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Otten, M.R.M.; Cypher, B.L.

    1997-07-01T23:59:59.000Z

    Habitats in and around Naval Petroleum Reserve No. 1 (NPR-1) support populations of various vertebrates and plants, including a number of threatened and endangered species. Adequate conservation of habitats and species, particularly protected species, can be facilitated through development and implementation of management plans. This document provides a comprehensive plan for the conservation of protected species on NPR-1, through compliance with terms and conditions expressed in Biological Opinions rendered by the U.S. Fish and Wildlife Service for NPR-1 activities. Six conservation strategies by which threatened and endangered species have been, and will be, protected are described: population monitoring, mitigation strategies, special studies, operating guidelines and policies, information transfer and outreach, and the endangered species conservation area. Population monitoring programs are essential for determining population densities and for assessing the effects of oil field developments and environmental factors on protected species. Mitigation strategies (preactivity surveys and habitat reclamation) are employed to minimize the loss of important habitats components and to restore previously disturbed lands to conditions more suitable for species` use. A number of special studies were undertaken between 1985 and 1995 to investigate the effectiveness of a variety of population and habitat management techniques with the goal of increasing the density of protected species. Operating guidelines and policies governing routine oil field activities continue to be implemented to minimize the potential for the incidental take of protected species and minimize damage to wildlife habitats. Information transfer and outreach activities are important means by which technical and nontechnical information concerning protected species conservation on NPR-1 is shared with both the scientific and non-scientific public.

  20. Endangered species and cultural resources program, Naval Petroleum Reserves in California: Annual report FY95

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.

  1. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect (OSTI)

    Polansky, G.F. [Phillips Lab., Albuquerque, NM (United States); Schmidt, G.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States); Voss, S.S. [Los Alamos National Lab., NM (United States); Reynolds, E.L. [Applied Physics Lab., Laurel, MD (United States)

    1994-08-01T23:59:59.000Z

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  2. Excitation and propagation of Electrostatic Ion Cyclotron waves in rf-sustained plasmas of interest to propulsion research

    E-Print Network [OSTI]

    Choueiri, Edgar

    it is thus necessary to heat these ions considerably. Various types of electrodeless plasma heating provideExcitation and propagation of Electrostatic Ion Cyclotron waves in rf-sustained plasmas of interest to propulsion research Rostislav Spektor and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics

  3. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 5, OCTOBER 2008 2095 Permanent Magnet Helicon Source for Ion Propulsion

    E-Print Network [OSTI]

    Chen, Francis F.

    IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 36, NO. 5, OCTOBER 2008 2095 Permanent Magnet Helicon Source for Ion Propulsion Francis F. Chen, Life Fellow, IEEE Abstract--Helicon sources have been proposed by at least two groups for generating ions for space propulsion: the Helicon Dou- ble Layer Thruster (HDLT

  4. 1Pre-Decisional --For Planning and Discussion Purposes Only. Copyright 2013. All rights reserved. 1Jet Propulsion Laboratory,

    E-Print Network [OSTI]

    Rathbun, Julie A.

    . 1Jet Propulsion Laboratory, California Institute of Technology 2Applied Physics Laboratory, Johns Propulsion Laboratory (JPL) and Johns Hopkins University's Applied Physics Laboratory (APL). The team and the structure of the icy shell. IO.2 Determine Europa's magnetic induction response to estimate ocean salinity

  5. The CU Aerospace / VACCO Propulsion Unit for CubeSats (PUC) is a complete high-performance and

    E-Print Network [OSTI]

    Carroll, David L.

    such as solar panels and magnetic torquers. For increased performance, or to meet customer specific missionThe CU Aerospace / VACCO Propulsion Unit for CubeSats (PUC) is a complete high necessary propulsion subsystems, including controller, power processing unit, micro-cavity discharge

  6. Detailed kinetic computations and experiments for the choice of a fuel-oxidiser couple for hybrid propulsion.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    the heat diffusion in the solid. Time variations are possible in the system. The control of injection valve for hybrid propulsion. N. Gascoina* , P. Gillarda , A. Mangeota , A. Navarro-Rodrigueza a PRISME Institute of a solid reducer for hybrid propulsion is generally based on the quantity of gaseous combustible it can

  7. Electron cyclotron resonant multicusp magnetic field microwave plasma source for electric propulsion

    SciTech Connect (OSTI)

    Dahimene, M.; Mahoney, L.; Asmussen, J.

    1987-05-01T23:59:59.000Z

    The development of electrodeless microwave ion and plasma sources has been a recent, very active research project at Michigan State University. The results are efficient, compact microwave discharge configurations that operate at low pressures (0.5 mtorr to 100 mtorr) and efficiently produce low energy ions and free radicals and broad ion beams for oxidation, deposition, and etching experiments. The microwave discharge technology developed for these applications may be useful for application in electric propulsion. This paper reviews this microwave applicator technology and indicates how it may be extended to higher power levels and applied to electric propulsion systems. 12 references.

  8. Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid

    E-Print Network [OSTI]

    Felderhof, B U

    2014-01-01T23:59:59.000Z

    The self-propulsion of a sphere immersed in a polar liquid or ferrofluid is studied on the basis of ferrohydrodynamics. In the electrical case an oscillating charge density located inside the sphere generates an electrical field which polarizes the fluid. The lag of polarization with respect to the electrical field due to relaxation generates a time-independent electrical torque density acting on the fluid causing it to move. The resulting propulsion velocity of the sphere is calculated in perturbation theory to second order in powers of the charge density.

  9. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  10. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    SciTech Connect (OSTI)

    B. Levine

    2006-01-27T23:59:59.000Z

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  11. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect (OSTI)

    Sovie, R.J.; Bozek, J.M.

    1994-09-01T23:59:59.000Z

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  12. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

  13. Naval Research Laboratory`s programs in advanced indium phosphide solar cell development

    SciTech Connect (OSTI)

    Summers, G.P.

    1995-10-01T23:59:59.000Z

    The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AMO, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials.

  14. Nuclear weapons and nuclear war

    SciTech Connect (OSTI)

    Cassel, C.; McCally, M.; Abraham, H.

    1984-01-01T23:59:59.000Z

    This book examines the potential radiation hazards and environmental impacts of nuclear weapons. Topics considered include medical responsibility and thermonuclear war, the threat of nuclear war, nuclear weaponry, biological effects, radiation injury, decontamination, long-term effects, ecological effects, psychological aspects, the economic implications of nuclear weapons and war, ethics, civil defense, arms control, nuclear winter, and long-term biological consequences of nuclear war.

  15. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Broader source: Energy.gov [DOE]

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplemental statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Navel Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California. This SEIS is a supplement to DOE/EIS-0020, Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California.

  16. Public health assessment for Treasure Island Naval Station, Hunters Point Annex, San Francisco, San Francisco County, California, Region 9. Cerclis No. CA1170090087. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-30T23:59:59.000Z

    Naval Station Treasure Island, Hunters Point Annex (HPA), an inactive Naval shipyard located on a peninsula in the San Francisco Bay, San Francisco, California, was listed for base closure in 1990. Metals, pesticides, radium-226, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds, semivolatile organic compounds, petroleum products, and asbestos have been found in various media such as soil, groundwater, surface water, air, and sediments. Navy contractors have identified 58 HPA areas where there may be contamination; investigations at these areas are ongoing.

  17. Nuclear Matter and Nuclear Dynamics

    E-Print Network [OSTI]

    M Colonna

    2009-02-26T23:59:59.000Z

    Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

  18. Solar power-propulsion plant using heat accumulators of solar energy

    SciTech Connect (OSTI)

    Popov, E.B.; Salnikov, V.A.; Fedik, I.I. [Scientific Production Association ``Lutch``, Podolsk, Moscow Region (Russia)

    1996-03-01T23:59:59.000Z

    This work covers the concept of a power-propulsion plant (PPP) for spacecraft. The PPP is intended: (a) to transport a spacecraft from one orbit to another to perform the spacecraft tasks; (b) to provide the spacecraft with electric power. {copyright} {ital 1996 American Institute of Physics.}

  19. Rsum--La pile combustible est une technologie alternative pour la propulsion des vhicules lectriques.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Rsum-- La pile combustible est une technologie alternative pour la propulsion des vhicules...) pour assurer l'alimentation et la gestion de l'hydrogne et de l'air. Un modle du gnrateur pile standard utilis dans les applications transport. I. INTRODUCTION La pile combustible (PAC) est un

  20. National Aeronautics and Space Administration In-Space propulSIon SyStemS roadmap

    E-Print Network [OSTI]

    Waliser, Duane E.

    National Aeronautics and Space Administration In-Space propulSIon SyStemS roadmap Technology Area Missions TA02-24 Acknowledgements TA02-24 #12;Foreword NASA's integrated technology roadmap, including both Roadmap, an integrated set of fourteen technology area roadmaps, recommending the overall technology

  1. Modeling the Characteristics of Propulsion Systems Providing Less Than 10 N Thrust

    E-Print Network [OSTI]

    . Chiasson, Paulo C. Lozano May 2012 SSL#8-12 1 #12;2 #12;Modeling the Characteristics of Propulsion Systems Providing Less Than 10 N Thrust Thomas M. Chiasson, Paulo C. Lozano May 2012 SSL#8-12 1 1 This work is based

  2. A Flux-Limited Numerical Method for the MHD Equations to Simulate Propulsive Plasma Flows

    E-Print Network [OSTI]

    Choueiri, Edgar

    to be effective tools in plasma propulsion research, a higher order accu- rate solver that captures MHD shocks approach, numerical simulations are valuable tools in plasma thruster research. More- over, simulations can Simula- tions The importance of numerical simulation in advancing plasma thruster research was realized

  3. Passive Robotic Models of Propulsion by the Bodies and Caudal Fins of Fish

    E-Print Network [OSTI]

    Lauder, George V.

    SYMPOSIUM Passive Robotic Models of Propulsion by the Bodies and Caudal Fins of Fish George V, freely-swimming fishes. In this article, we discuss the use of simple robotic models of flexing fish/or pitch motion using a robotic flapping controller that allowed moving foils to swim at their self

  4. MRI-based Microrobotic system for the Propulsion and Navigation of Ferromagnetic Microcapsules

    E-Print Network [OSTI]

    Boyer, Edmond

    MRI-based Microrobotic system for the Propulsion and Navigation of Ferromagnetic Microcapsules 3-D navigation of a microdevice in blood ves- sels, namely: (i) vessel path planner, (ii) magnetic, magnetic resonance imaging, minimally invasive interventions, real-time control Email address: antoine

  5. IEPC paper-01-060, 27th International Electric Propulsion Conference,

    E-Print Network [OSTI]

    IEPC paper-01-060, 27th International Electric Propulsion Conference, Pasadena, CA, October 2001 potential drop in the fringing magnetic field outside the thruster channel. In this paper we investigate is almost not sensitive to changes of the electrode potential, but depends on the magnetic field

  6. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  7. A Critical History of Electric Propulsion: The First Fifty Years (1906-1956)

    E-Print Network [OSTI]

    Choueiri, Edgar

    m = Propellant mass flow rate P = Input electric power p P/Mv = Input electric power per unit Physics Group, MAE Department. e-mail: choueiri@princeton.edu. Presented at the 40th AIAA/ASME by the AIAA with permission. Also published in the Journal of Propulsion and Power, Vol. 20, No. 2, pp. 193

  8. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect (OSTI)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01T23:59:59.000Z

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  9. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    SciTech Connect (OSTI)

    Chen, Shucheng S. [NASA Glenn Research Center, Cleveland, Ohio 44135 (United States); Veres, Joseph P. [Compressor Branch, NASA Glenn Research Center, Cleveland, Ohio 44135 (United States); Fittje, James E. [Analex Corporation, 1100 Apollo Drive, Brook Park, Ohio 44142 (United States)

    2006-01-20T23:59:59.000Z

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.

  10. The naval Research Laboratory has been actively involved in research in unmanned and autonomous systems since its opening in 1923. From one of the first unmanned

    E-Print Network [OSTI]

    systems since its opening in 1923. From one of the first unmanned ground vehicles to the developmentThe naval Research Laboratory has been actively involved in research in unmanned and autonomous of more than 200 prototype air, ground, underwater, and space platforms, and from smart sensors to smart

  11. US Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements and management overview and supplemental financial and management information, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-15T23:59:59.000Z

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on the NPOSR internal control structure and compliance with laws and regulations are also provided.

  12. Phase II - final report study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3, Wyoming

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Appraiser under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase II Final Report for that study.

  13. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01T23:59:59.000Z

    to Journal of Nuclear Technology. [46] C.J. Hagmann and J.Library for Nuclear Science and Technology, Nuclear Dataof Standards and Technology daughter nuclear data processing

  14. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    Jerry R. Bergeso and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. Volume one contains the following: summary; introduction; and reservoir studies for tulare, dry gas zone, eastern shallow oil zone, western shallow oil zone, and Stevens --MBB/W31S, 31S NA/D.

  15. Five-year resurvey for endangered species on Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Mathews, N.E.

    1987-09-01T23:59:59.000Z

    A transect survey of Naval Petroleum Reserve No. 1 (NPR-1), Kern County, California, was conducted in 1984 to determine the distribution and relative abundance of endangered species and other wildlife. A total of 589.8 miles of transects were walked through approximately 47,235 acres in all or parts of 81 sections. A total of 16,401 observations of 58 species of wildlife were made which demonstrated the richness and abundance of wildlife on NPR-1 in spite of the intensity of recent petroleum developments. Although most construction activities associated with increased petroleum production took place between the first transect survey in 1979 and this resurvey, no adverse changes in relative densities of kit fox dens, prey base, or other wildlife were observed. NPR-1 should be resurveyed again in 1989. 33 refs., 5 figs., 13 tabs.

  16. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01T23:59:59.000Z

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  17. The Design and Feasibility of a 10 mN Chemical Space Propulsion Alexander Bruccoleri , Paulo Lozano

    E-Print Network [OSTI]

    , Paulo Lozano June 2009 SSL # 3-09 #12;#12;The Design and Feasibility of a 10 mN Chemical Space Propulsion Thruster Alexander Bruccoleri , Paulo Lozano June 2009 SSL # 3-09 This work is based

  18. On the identification and mitigation of life-limiting mechanisms of ionic liquid ion sources envisaged for propulsion of microspacecraft

    E-Print Network [OSTI]

    Brikner, Natalya Anna

    2015-01-01T23:59:59.000Z

    Life-limiting processes affecting ionic liquid ion sources (ILIS) are investigated in this research, motivated by the development of ILIS for propulsion of microspacecraft and other industrial applications. Micropropulsion ...

  19. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Executive summary

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    The Naval Petroleum Reserve No. 1 (Elk Hills) is located in Kern County, California, and is jointly owned by the US Department of Energy and Chevron USA Inc. The Elk Hills Field is presently producing oil and gas from five geologic zones. These zones contain a number of separate and geologically complex reservoirs. Considerable field development and production of oil and gas have occurred since initial estimates of reserves were made. Total cumulative field production through December 1987 is 850 MMBbls of oil, 1.2 Tcf of gas and 648.2 MMBbls of water. In December 1987, field producing rates expressed on a calendar day basis amounted to 110,364 BOPD, 350,946 Mcfd and 230,179 BWPD from 1157 producers. In addition, a total of two reservoirs have gas injection in progress and four reservoirs have water injection in progress and four reservoirs have water injection in progress. Cumulative gas and water injection amounted to 586 Bcf of gas and 330 MMB of water. December 1987 gas and water injection rates amounted to 174 MMcfd and 234 MBWPD, into 129 injectors. In addition, a steamflood pilot program is currently active in the Eastern Shallow Oil Zone. Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. 28 figs., 37 tabs.

  20. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01T23:59:59.000Z

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  1. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety bases...

  2. Nuclear Navy

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This video tells the story of the Navy's development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  3. Nuclear Navy

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  4. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

  5. On self-propulsion of $N$-sphere micro-robot

    E-Print Network [OSTI]

    Vladimir A. Vladimirov

    2012-09-02T23:59:59.000Z

    The aim of this paper is to describe the self-propulsion of a micro-robot (or micro-swimmer) consisting of $N$ spheres moving along a fixed line. The spheres are linked to each other by arms with the lengths changing periodically. For the derivation, we use the asymptotic procedure containing the two-timing method and a distinguished limit. We show that in the main approximation, the self-propulsion velocity appears as a linear combination of velocities of all possible triplets of spheres. Velocities and efficiencies of three-, four-, and five-swimmers are calculated. The paper is devoted to H.K.Moffatt, who initiated the author's interests in low-Reynolds-number fluid dynamics.

  6. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  7. Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999

    SciTech Connect (OSTI)

    Johnson, D.R.

    2000-01-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  8. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect (OSTI)

    Bing, G.F.

    1991-08-20T23:59:59.000Z

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  9. Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    E-Print Network [OSTI]

    David A. Gagnon; Nathan C. Keim; Xiaoning Shen; Paulo E. Arratia

    2014-09-13T23:59:59.000Z

    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex fluid that possesses a network using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar (WLM) solution that is known to be susceptible to the formation of shear bands and other localized structures due to shear-induced remodeling of its microstructure. Results show that the nonlinearities present in this WLM solution break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead-end of the particle at low De, net motion towards the rod-end of the particle at intermediate De, and no appreciable propulsion at high De. At low De, where the particle time-scale is longer then the fluid relaxation time, we believe that propulsion is caused by an imbalance in the fluid first normal stress differences between the two ends of the particle (bead and rod). At De~1, however, we observe the emergence of a region of network anisotropy near the rod using birefringence imaging. This anisotropy suggests alignment of the micellar network, which is "locked in" due to the shorter time-scale of the particle relative to the fluid.

  10. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  11. Vettor Fausto (1490-1546), Professor of Greek and a Naval Architect: A New Light on the 16th-century Manuscript Misure di vascelli etc. diproto dellArsenale di Venetia

    E-Print Network [OSTI]

    Campana, Lilia 1975-

    2010-12-06T23:59:59.000Z

    This thesis investigates the significant role that the Venetian humanist Vettor Fausto (1490-1546), professor of Greek at the School of Saint Mark, played during the first half of the 16th century in Venetian naval ...

  12. EA-0962: Construction and Routine Operation of a 12-kilovolt Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to install an overhead powerline extension from the U.S. Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) power source to the...

  13. Design, qualification and operation of nuclear rockets for safe Mars missions

    SciTech Connect (OSTI)

    Buden, D.; Madsen, W.W.; Olson, T.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Redd, L.R. (USDOE Idaho Field Office, Idaho Falls, ID (United States))

    1993-01-01T23:59:59.000Z

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests.

  14. Design, qualification and operation of nuclear rockets for safe Mars missions

    SciTech Connect (OSTI)

    Buden, D.; Madsen, W.W.; Olson, T.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Redd, L.R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1993-04-01T23:59:59.000Z

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests.

  15. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    SciTech Connect (OSTI)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01T23:59:59.000Z

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASAs recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.

  16. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Workforce Development Day Tuesday, October 22, 2013 Nuclear Medicine Topics: Pathways of Practice in Nuclear Medicine Radiopharmacy Patient Care ...

  17. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26T23:59:59.000Z

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Cancels DOE O 457.1 and DOE M 457.1-1.

  18. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  19. Gunboat diplomacy and the bomb: Nuclear proliferation and the U. S. Navy

    SciTech Connect (OSTI)

    Arnett, E.H.

    1989-01-01T23:59:59.000Z

    The effect of nuclear proliferation on U.S. regional interests is examined, particularly the prospects for naval power projection. After an introductory chapter setting the context and defining terms, a technical assessment is performed. It finds U.S. warships to be more vulnerable to nuclear weapons than might be appreciated if effects other than overpressure are neglected, as they frequently are. Further, it assesses the utilities of delivery systems available to proliferants and discusses the likely composition of proliferant arsenals. These arsenals are found to be capable of destroying U.S. aircraft carriers, escorting warships, and naval installations. In order to avoid falling victim to threat of the week thinking, the study goes on to construct scenarios that test the relevance of the proliferant arsenals to U.S. capability and willingness to protect its interests in future crises. The countries selected for the scenarios are India, Iran, and Libya. Although steps can be taken to mitigate the effects of proliferation, the study finds that these effects cannot prevent a nuclear attack with complete certainty, and thus leave the U.S. with the prospect of revising its interests.

  20. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

  1. Non Nuclear NTR Environmental Simulator

    SciTech Connect (OSTI)

    Emrich, William J. Jr. [NASA Marshall Space Flight Center, M.S. XD21, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today's best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Current planning calls for such a simulator to be constructed at the Marshall Space Flight Center over the coming year, and it is anticipated that it will be used in the future to evaluate a wide variety of fuel element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the NTR simulator with regard to reproducing the fuel degradation patterns previously observed during the NERVA testing.

  2. Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

  3. Empirical, probabilistic, and modelling approaches to assess cross-media impacts to marine sediments at Puget Sound Naval Shipyard

    SciTech Connect (OSTI)

    Rohrer, W.L.; Vita, C.L. [URS Consultants, Inc., Seattle, WA (United States); Schrock, W. [Navy, Poulsbo, WA (United States). Engineering Field Activity Northwest; Leicht, G. [Navy, Bremerton, WA (United States)

    1996-12-31T23:59:59.000Z

    Dredge spoils, industrial fill, and liquid wastes from the 1940s to 1970s have resulted in inorganic and organic contamination of soils, groundwater, and marine sediments near the U.S.S. Missouri and Charleston Beach parking lots at Puget Sound Naval Shipyard (PSNS), in Bremerton, Washington. Extensive collection of environmental data from several studies including the recently completed Remedial Investigation conducted under CERCLA have confirmed contaminant levels above federal risk screening levels and state regulatory criteria for several heavy metals and organic compounds, including pesticides and PCBs. Although the correlation between contamination in marine sediments and those in on-shore fill appears to be strong, there is little evidence that a viable transport pathway currently exists from soils to groundwater and thence to sediments. Several methods used to estimate chemical mass flux from soil to groundwater to sediments and marine waters of Sinclair Inlet are corroborative in this regard. Nonetheless, this result is vexing because present groundwater concentrations exceed ARARs, yet are below levels of concern in terms of mass flux to marine waters. Despite the marginal risks posed by groundwater, various remedial alternatives, including perimeter containment using a subsurface waste-stabilized containment wall, were evaluated to determine whether chemical flux could be reduced to levels below those observed at the present time. Three-dimensional flow modelling and transport modelling also confirmed that chemical fluxes were limited in magnitude and could be addressed with more conventional remedial approaches.

  4. Summary and evaluation of the coyote control program on Naval Petroleum Reserve No. 1, Kern County, California, 1987

    SciTech Connect (OSTI)

    Scrivner, J.H.

    1987-09-01T23:59:59.000Z

    For the third consecutive year (1987) the US Department of Energy (DOE) funded a coyote (Canis latrans) control program in an attempt to reduce coyote predation on the endangered San Joaquin kit fox (Vulpes macrotis mutica) on Naval Petroleum Reserve No. 1 (NPR-1, Elk Hills) in Kern County, California. During approximately 8 weeks of control activities, personnel from the US Department of Agriculture, Division of Animal Damage Control (ADC), removed 16 adult coyotes: 14 were trapped, 2 were shot. Data were gathered on standard measurements, weights, ages, and reproductive condition. No kit foxes were accidently trapped. Based on the results of canid scent-station surveys, the coyote population on NPR-1 declined and the kit fox population was relatively stable. Recommendations were made to conduct the 1987/1988 coyote control program between December 1987 and February 1988, use helicopters for aerial gunning and locating coyote dens, and develop a cooperative agreement between DOE, ADC, US Fish and Wildlife Service, Bureau of Land Management, and the California Department of Fish and Game to conduct the coyote control program on lands surrounding NPR-1 owned by DOE and others. 8 refs., 2 figs., 2 tabs.

  5. U.S. Department of Energy Naval Petroleum Reserve Number 1 quarterly financial statements, December 31, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-03-18T23:59:59.000Z

    The report presents the results of the independent certified public accountants` review of the Department of Energy`s Naval Petroleum Reserve Number 1 interim financial statements as of December 31, 1996 and 1995. The review was done in accordance with Statements on Standards for Accounting and Review Services issued by the American Institute of Certified Public Accountants. A review of interim financial statements consists principally of inquiries of NPR-1 personnel and analytical procedures applied to financial data. It is substantially less in scope than an audit in accordance with generally accepted auditing standards, the objective of which is the expression of an opinion regarding the financial statements take as a whole. Accordingly, the certified public accountants do not express such an opinion. The auditors have stated that, except for the omission of certain disclosures, they are not aware of any material modifications that should be made to the financial statements in order for them to be in conformity with the other comprehensive basis of accounting described in Note 1 to the financial statements.

  6. U.S. Department of Energy Naval Petroleum Reserve Number 1 quarterly financial statements, March 31, 1997 and 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-17T23:59:59.000Z

    The report presents the results of the independent certified public accountants` review of the Department of Energy`s Naval Petroleum Reserve Number 1 interim financial statements as of March 31, 1997 and 1996. The review was done in accordance with Statements on Standards for Accounting and Review Services issued by the American Institute of Certified Public Accountants. A review of interim financial statements consist principally of inquires of NPR-1 personnel and analytical procedures applied to financial data. It is substantially less in scope than an audit in accordance with generally accepted auditing standards, the objective of which is the expression of an opinion regarding the financial statements taken as a whole. Accordingly, the certified public accountants do not express such an opinion. The auditors have stated that, except for the omission of certain disclosures, they are not aware of any material modifications that should be made to the financial statements in order for them to be in conformity with the other comprehensive basis of accounting described in Note 1 to the financial statements.

  7. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. Nuclear war, nuclear proliferation, and their consequences

    SciTech Connect (OSTI)

    Aga Khan, S.

    1986-01-01T23:59:59.000Z

    This book presents papers on nuclear weapons proliferation. Topics considered include the Nuclear Non-Proliferation Treaty and its future, the spread of nuclear weapons among nations, the link between horizontal and vertical proliferation, national security, nuclear disarmament, the impact of nuclear weapons on Third World regional conflicts, the global effects of a nuclear war, medical effects on human populations, the nuclear winter, the nuclear arms race, and arms control.

  9. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pzsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

  10. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07T23:59:59.000Z

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  11. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    SciTech Connect (OSTI)

    Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL; ,

    2010-05-26T23:59:59.000Z

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  12. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    SciTech Connect (OSTI)

    Johnson, D.R.

    1999-01-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  13. Reconciling a Reactionless Propulsive Drive with the First Law of Thermodynamics

    E-Print Network [OSTI]

    Higgins, Andrew J

    2015-01-01T23:59:59.000Z

    A "space drive" is a hypothetical device that generates a propulsive force in free space using an input of power without the need for a reaction mass. Any device that generates photons (e.g., a laser) would qualify as a propellantless "photon rocket," but the force generated by emitting photons per power input (3.33 $\\mu$N/kW) is too small to be a practical propulsion device. The ability to generate greater force per power input would be highly desirable, but, as demonstrated in this paper, such a device would be able to operate as a perpetual motion machine of the first kind. Since applying a constant force results in a constant acceleration, the kinetic energy of a mass driven by such a device increases quadratically with time, while the energy input increases only linearly with time. Thus, at some point, the kinetic energy of the device-driven mass exceeds the energy input, and if this energy is collected via decelerating the mass (via regenerative electromagnetic braking, for example), then there would be...

  14. An Ansatz Regarding Relativistic Space Travel Part II-Propulsion Realities

    SciTech Connect (OSTI)

    Murad, Paul A

    2008-01-21T23:59:59.000Z

    Travel to the stars can involve a perilous journey in an unfriendly space-time continuum that can include singularities, nonlinear events, gravity as a function of both position and vehicle velocity, and extra dimensional effects discussed in Part I. Such a device may possibly use field propulsion technology. Although several field propulsion schemes exist, a proposed candidate is based upon using an electromagnetic drive that uses a rotating magnetic field superimposed on the spacecraft's stationary or static electric field. This is comparable to a Searl generator and the field interaction would generate an electromagnetic vortex to create nonlinear gravitational effects possibly due to an inverse Gertsenshtein relationship to push against the intrinsic gravitational field of a planet. Moreover, changing alignment of the magnetic field axis with the electric field will induce a margin of lateral controllability. Issues such as assessing this combined effect of using both electric and magnetic fields are discussed. Finally, the need for experimental data is stressed to validate these otherwise very speculative theoretical notions.

  15. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergy NationalDepartment of31548 Vol. 77, No. 1032

  16. Nuclear Celebrations

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-11-01T23:59:59.000Z

    Broadcast Transcript: The North Korean situation is frightening for many reasons but none, perhaps, more eerily disturbing than images of North Koreans celebrating in brightly colored costumes just days after the nation's underground nuclear test...

  17. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10T23:59:59.000Z

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  18. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclear Science/Nuclear

  19. Reproduction of the San Joaquin kit fox on Naval Petroleum Reserve No. 1, Elk Hills, California: 1980-1985

    SciTech Connect (OSTI)

    Zoellick, B.W.; O'Farrell, T.P.; McCue, P.M.; Harris, C.E.; Kato, T.T.

    1987-01-01T23:59:59.000Z

    Reproduction of the San Joaquin kit fox (Vulpes macrotis mutica) was studied in areas of petroleum development and areas relatively undisturbed by development on and adjacent to Elk Hills Naval Petroleum Reserve No. 1 (NPR-1), California from 1980-1985. Pregnancy rates of adults did not differ between habitats (93 to 100%), but the yearling pregnancy rate in developed habitat (56%) was lower than the adult rates and the yearling rate for undeveloped habitat (100%). Mean corpora lutea and placental scar counts did not differ between undeveloped and developed habitats, but adults had greater corpora lutea and placental scar counts than yearlings. Litter sizes averaged 4.1 and 4.4 for undeveloped and developed habitats respectively from 1980-1985 and did not differ between years or habitats. Mean number of litters observed per square mile during 1980-1985 did not differ between undeveloped (0.34) and developed habitats (0.29). The percentage of all females successfully raising pups in developed habitat declined significantly from 1980-1985 in comparison with the percent success of females in undeveloped habitat. Numbers of litters per square mile in developed habitat also declined significantly after 1981. The sex ratio of pups trapped in developed habitat was skewed towards males during the decline in litters produced per square mile from 1982-1985, but the ratio of males to females in undeveloped habitat did not differ from 1:1 during this time. The decline in some measures of reproductive success in developed habitat after 1981 coincided with a decrease in black-tailed jackrabbit and desert cottontail numbers on the NPR-1 study area. The decreased reproductive success of foxes in developed habitat after 1981 may have resulted from habitat degradation caused by oil field production activities, declining lagomorph numbers, or other unknown causes. 49 refs., 7 figs., 8 tabs.

  20. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  1. Non-nuclear power sources for deep space

    SciTech Connect (OSTI)

    Kennel, E.B.; Tang, C.; Santarius, J.F.

    1998-07-01T23:59:59.000Z

    Electric propulsion and non-nuclear power can be used in tandem as a replacement for the current chemical booster and radioisotope thermoelectric generators now in use for deep space applications (i.e., to the asteroid belt and beyond). In current generation systems, electric propulsion is usually considered to be impractical because of the lack of high power for deep space, and non-nuclear power is thought to be impractical partly due to its high mass. However, when taken in combination, a solar powered electric upper stage can provide ample power and propulsion capability for use in deep space. Radioisotope thermoelectric generator (RTG) systems have generally been selected for missions only when other systems are absolutely unavailable. The disadvantages of radioisotopes include the need for nuclear safety as another dimension of concern in payload integration; the lack of assured availability of plutonium in the post-cold-war world; the enormous cost of plutonium-238; and the system complexity introduced by the need to continuously cool the system during the pre-launch phase. A conservative estimate for the total power for the solar array at beginning of life (BOL) may be in the range of 25 kW in order to provide 500 W continuous power at Jupiter. The availability of {approximately} 25 kW(e) in earth orbit raises the interesting possibility of coupling electric propulsion units to this free electric power. If electric propulsion is used to raise the probe from low-earth-orbit to an earth-escape trajectory, the system could actually save on low-earth orbit mass. Electric propulsion could be used by itself in a spiral trajectory orbit raising maneuver to earth escape velocity, or it could be used in conjunction with a chemical upper stage (either solid rocket or liquid), which would boost the payload to an elliptical orbit. The concept is to begin the Earth-Jupiter trip with a swing-by near the Sun close to the orbit of Venus and perhaps even closer if thermal loads can be tolerated. During the solar swing-by, much more power will be produced by the solar panels, allowing the spacecraft's velocity to be increased significantly. The outbound leg of the journey can, therefore, be made much more quickly than with the classical trajectory. For the purposes of a Jupiter mission, it is assumed that 20 km/sec total delta-v would be required. For a payload envelope of 17,304 kg, a 1,900 sec Isp capability means that 11,386 kg of propellant would have to be consumed, leaving 5,917 kg for the mass of the probe plus dry mass of the upper stage. The thruster subsystem would require 765 kg of thruster subsystem mass, and probably less. Assuming tanks, regulators and valves amount to 10% of the propellant mass (very likely a pessimistic assumption), it is possible to assign a mass of 1,150 kg for the tankage subsystem. This results in a mass allowance of at least 4,000 kg for the probe. This compares favorably with the dry mass of 1,637 kg for Galileo, for example, and suggests that more than adequate margin exists. If the payload margin is used for battery storage, flyby missions to the outer planets may be possible.

  2. A Fuzzy-Based Strategy to Improve Control Reconfiguration Performance of a Sensor Fault-Tolerant Induction Motor Propulsion

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    utilization of the limited battery capacity (extension of the running distance per battery charge-Tolerant Induction Motor Propulsion Bekheira Tabbache1,2 , Mohamed Benbouzid1 , Abdelaziz Kheloui2 and Jean decision approach. Copyright 2011 Praise Worthy Prize S.r.l. - All rights reserved. Keywords: Induction

  3. Fundamentals of Propulsion Class/Laboratory Schedule: four lecture hours per week, eight hours outside preparation. 12

    E-Print Network [OSTI]

    Wang, Deli

    and space vehicle propulsion. Analysis and design of gas turbines, inlets, compressors, combustion chambers to formulate and solve problems involving air breathing engines Objective 2 2.1 Student will demonstrate ability to apply principles of analysis to formulate and solve problems involving rockets Objective 3 3

  4. Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"

    E-Print Network [OSTI]

    Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except of Southern California, Los Angeles, CA 90089-1453 Introduction Hydrocarbon-fueled internal combustion engines towards the use of hydrocarbon fueled internal combustion engines was the discovery of "large" amounts

  5. Power Balance in a Helicon Plasma Source for Space Propulsion Daniel B. White Jr., Manuel Martinez-Sanchez

    E-Print Network [OSTI]

    -Sanchez June 2008 SSL # 9-08 #12;#12;1 Power Balance in a Helicon Plasma Source for Space Propulsion Daniel B. White Jr., Manuel Martinez-Sanchez June 2008 SSL # 9-08 This work is based on the unaltered text

  6. A Model-Driven Architecture for Highly Distributed, Data-Intensive Systems Jet Propulsion Laboratory, May 2008

    E-Print Network [OSTI]

    Mattmann, Chris

    from unstructured and semi-structure information (ii) Scalable, secure, federated search (iii The Jet Propulsion Laboratory (JPL) has been researching and building data intensive systems for highly for both solar system and earth exploration, these systems have a number of critical architectural

  7. Most fish have a forward undulatory swimming mechanism that involves a kinematic propulsive wave travelling down the

    E-Print Network [OSTI]

    D'Août, Kristiaan

    Most fish have a forward undulatory swimming mechanism that involves a kinematic propulsive wave backwards in a similar way. We compared the kinematics (wave speed, cycle frequency, amplitude, local in the direction opposite to that of swimming. We observe two major kinematic differences. First, the slope of wave

  8. Locomotive Micro-Implant with Active Electromagnetic Propulsion Daniel Pivonka, Ada S. Y. Poon, and Teresa H. Meng

    E-Print Network [OSTI]

    Poon, Ada

    Locomotive Micro-Implant with Active Electromagnetic Propulsion Daniel Pivonka, Ada S. Y. Poon An active locomotive technique requiring only an ex- ternal power source and a static magnetic field is pre- sented, and its operation is analyzed and simulated. For a modest static MRI magnetic field of 1 T

  9. Shielding, Levitation, Propulsion G. W. Jewell, Chariman Method for expanding the uniformly shielded area in a short-length

    E-Print Network [OSTI]

    Paperno, Eugene

    Shielding, Levitation, Propulsion G. W. Jewell, Chariman Method for expanding the uniformly shielded area in a short-length open-ended cylindrical magnetic shield K. Oshita, I. Sasada,a) H. Naka shielded area of the axial magnetic field in a relatively short, open-structure axial magnetic shield can

  10. Tuning the Passive Structural Response of an Oscillating-foil Propulsion Mechanism for Improved Thrust Generation and Efficiency

    E-Print Network [OSTI]

    Victoria, University of

    Thrust Generation and Efficiency by Andrew James Richards B.A.Sc., The University of British Columbia of an Oscillating-foil Propulsion Mechanism for Improved Thrust Generation and Efficiency by Andrew James Richards B for the use of flexible oscillating foils which, under suitable conditions, have been demon- strated

  11. Advanced transport codes for nuclear thermal rocket analysis

    SciTech Connect (OSTI)

    Perry, R.T.; Buksa, J.J.; Houts, M.G. (Los Alamos National Lab., NM (United States))

    1992-01-01T23:59:59.000Z

    Nuclear thermal rocket (NTR) propulsion systems will enable the manned exploration of our solar system. In the context of current and future safety standards and environmental constraints, the likelihood of any large nuclear engine testing program similar in scope to the ROVER/NERVA program is remote. Consequently, extensive computational verification of the safety, reliability, and performance of the reactor and spacecraft will be required. Fortunately, the development of new codes coupled with computer hardware advances will make this feasible and cost-effective. Although coupled-phenomena and separate-effects modeling at the component and system levels will be necessary, this paper addresses only radiation transport modeling of NTR systems and reviews the status and applicability of several codes that Los Alamos National Laboratory (LANL) is using.

  12. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    SciTech Connect (OSTI)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01T23:59:59.000Z

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

  13. Superfund record of decision (EPA Region 3): Patuxent River Naval Air Station, St. Mary`s County, MD, July 29, 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The decision document presents the selected interim remedial action for Operable Unit 1 (OU1) of the Former Sanitary Landfill site, at the U.S. Naval Air Station Patuxent River, MD. The interim remedy will reduce the potential of human exposure to wastes remaining at the landfill, precipitation filtering through landfill waste, and the potential risk posed by inhalation and ingestion of contaminated surficial soil at the landfill. The interim action will allow for the continued investigation of the landfill while evaluating final remedial options for groundwater, surface water, and sediment at the site.

  14. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  15. NUCLEAR PROXIMITY FORCES

    E-Print Network [OSTI]

    Randrup, J.

    2011-01-01T23:59:59.000Z

    One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

  16. Propulsion Velocity and ETT on Biomagnetic Assessment of the Human Esophagus

    SciTech Connect (OSTI)

    Cordova-Fraga, T.; Cano, E.; Bravo-Miranda, C.; De la Roca-Chiapas, J. M.; Bernal, J. J.; Sosa, M. [Instituto de Fisica, Universidad de Guanajuato, Loma del Bosque 103, 37150 Leon, Gto. (Mexico); Huerta, R. [Instituto de Investigaciones sobre el Trabajo, Universidad de Guanajuato, Leon, Gto. (Mexico)

    2008-08-11T23:59:59.000Z

    Esophagus transit time measurement is a common clinical practical. Biomagnetic techniques and modern instrumentation can perform non invasive and functional assessments of the gastrointestinal tract. This study presents the evaluation of the esophagus transit time and propulsion velocity of a magnetic marker from the mouth to stomach using water vs. a swallow easy substance recently patented. A group of ten healthy subjects from 45 to 55 years, were evaluated in identical conditions for two times, they ingested randomly a magnetic marker in an anatomical body position of 45 deg., one times with water and the other one with a patented substance developed in order to help the subjects to swallow pills. The esophagus transit time was shorter when the subjects ingested the magnetic marker with the swallow easy substance than they ingested the magnetic marker with same quantity of water.

  17. A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

    SciTech Connect (OSTI)

    Polansky, G.F. [Sandia National Labs., Albuquerque, NM (United States); Gunther, N.A. [Gunther (Norman A.), San Jose, CA (United States); Rochow, R.F. [Novatech, Lynchburg, VA (United States); Bixler, C.H. [Bixler (Charles H.), Mannford, OK (United States)

    1995-05-01T23:59:59.000Z

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies.

  18. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

    1999-01-01T23:59:59.000Z

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  19. Absence of jamming in ant trails: Feedback control of self propulsion and noise

    E-Print Network [OSTI]

    Chaudhuri, Debasish

    2014-01-01T23:59:59.000Z

    We present a model of ant traffic considering individual ants as self-propelled particles undergoing single file motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-formed natural trails showed that the collective velocity of ants remains approximately unchanged, leading to absence of jamming even at very high densities [ John et. al., Phys. Rev. Lett. 102, 108001 (2009) ]. Assuming a feedback control mechanism of self-propulsion force generated by each ant using information about the distance from the ant in front, our model captures all the main features observed in the experiment. The distance headway distribution shows a maximum corresponding to separations within clusters. The position of this maximum remains independent of average number density. We find a non-equilibrium first order transition, with the formation of an infinite cluster at a threshold density where all the ants in the system suddenly become part of a single cluster.

  20. Nuclear scales

    SciTech Connect (OSTI)

    Friar, J.L.

    1998-12-01T23:59:59.000Z

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.