National Library of Energy BETA

Sample records for navajo navaho ndebele

  1. Navajo Nation: Navajo Tribal Utility Authority - Wind Energy...

    Energy Savers [EERE]

    Wind Energy Feasibility Study on the Navajo Nation Navajo Wind Energy Feasibility Navajo Wind Energy Feasibility Study on the Navajo Nation Study on the Navajo Nation Navajo Tribal ...

  2. Navajo Electrification Demonstraiton Project

    SciTech Connect (OSTI)

    Larry Ahasteen, Project Manager

    2006-07-17

    This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

  3. Navajo Nation: Navajo Tribal Utility Authority - Wind Energy...

    Office of Environmental Management (EM)

    Niyol (Wind) Project Navajo Niyol (Wind) Project DE DE - - FG36 FG36 - - 05GO15180 05GO15180 - - A000 A000 NAVAJO TRIBAL UTILITY AUTHORITY NAVAJO TRIBAL UTILITY AUTHORITY 2006 2006 ...

  4. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  5. Navajo Nation: Navajo Tribal Utility Authority- 2005 Project

    Broader source: Energy.gov [DOE]

    The Navajo Tribal Utility Authority's primary objective will be to evaluate the wind energy potential of six sites and to determine if there are sufficient wind energy resources to generate electric power to be used by the Navajo Nation. The Navajo Nation seeks three primary objectives: (1) to make electricity available to all the homes within the nation (wind energy development will play a key role); (2) to expand the range of economic development activities that provide long, challenging, and prosperous careers for young Navajos within these communities; and (3) to utilize existing tribal organizations, enterprises, and manpower on the Navajo Nation to develop this feasibility study.

  6. Navajo Hopi Nation- 2012 Project

    Broader source: Energy.gov [DOE]

    The Navajo Hopi Land Commission (NHLCO), together with its partners, will conduct a feasibility study (FS) of a program to develop renewable energy on the Paragon-Bisti ranch lands in northwestern New Mexico, which were set aside under the Navajo-Hopi Land Settlement Act for the benefit of relocatees (defined as Navajo families living on Hopi Partitioned Lands as of December 22, 1974).

  7. Navajo Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Navajo Wind Energy Jump to: navigation, search Name: Navajo Wind Energy Place: Atlanta, Georgia Zip: 30318 Sector: Wind energy Product: Atalanta-based but China-focused wind...

  8. Navajo-Hopi Land Commission

    Energy Savers [EERE]

    Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO May 7, 2015   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside lands for the benefit of relocates  Proceeds from RE development for Relocatee Project Background   Paragon-Bisti Ranch is selected lands :  Located in northwestern New Mexico.  22,000 acres of land 

  9. EIS-0231: Navajo Transmission Project

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to by Dine Power Authority, a Navajo Nation enterprise, to construct, operate, and maintain a 500 kilovolt (kV) transmission line planned...

  10. Project Reports for Navajo Nation: Navajo Tribal Utility Authority- 2005 Project

    Broader source: Energy.gov [DOE]

    The Navajo Tribal Utility Authority's primary objective will be to evaluate the wind energy potential of six sites and to determine if there are sufficient wind energy resources to generate electric power to be used by the Navajo Nation. The Navajo Nation seeks three primary objectives: (1) to make electricity available to all the homes within the nation (wind energy development will play a key role); (2) to expand the range of economic development activities that provide long, challenging, and prosperous careers for young Navajos within these communities; and (3) to utilize existing tribal organizations, enterprises, and manpower on the Navajo Nation to develop this feasibility study.

  11. Final Report - Navajo Electrification Demonstration Project - FY2004

    SciTech Connect (OSTI)

    Kenneth L. Craig, Interim General Manager

    2007-03-31

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

  12. Navajo Hopi Land Commission Office (NHLCO): Navajo Hopi Land Commission Office (NHLCO)- 2012 Project

    Broader source: Energy.gov [DOE]

    The Navajo Hopi Land Commission (NHLCO), together with its partners, will conduct a feasibility study (FS) of a program to develop renewable energy on the Paragon-Bisti ranch lands in northwestern New Mexico, which were set aside under the Navajo-Hopi Land Settlement Act for the benefit of relocatees (defined as Navajo families living on Hopi Partitioned Lands as of December 22, 1974).

  13. Final Report Navajo Transmission Project (NTP)

    SciTech Connect (OSTI)

    Bennie Hoisington; Steven Begay

    2006-09-14

    The Din Power Authority is developing the Navajo Transmission Project (NTP) to relieve the constraints on the transmission of electricity west of the Four Corners area and to improve the operation flexibility and reliability of the extra-high-voltage transmission system in the region. The NTP creates the wholesale transmission capacity for more economical power transfers, sales, and purchases in the region. It will facilitate the development of Navajo energy resources, improve economic conditions on the Navajo Nation as well as allow DPA to participate in the western electrical utility industry.

  14. Project Reports for Navajo Hopi Land Commission Office (NHLCO): Navajo Hopi Land Commission Office (NHLCO)- 2012 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Navajo Hopi Land Commission (NHLCO), together with its partners, will conduct a feasibility study (FS) of a program to develop renewable energy on the Paragon-Bisti ranch lands in northwestern New Mexico, which were set aside under the Navajo-Hopi Land Settlement Act for the benefit of relocatees (defined as Navajo families living on Hopi Partitioned Lands as of December 22, 1974).

  15. LM Continues to Work with the Navajo Nation

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) continues to work with the Navajo Nation to perform long-term surveillance and maintenance (LTS&M) at four Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I sites located on the Navajo Nation

  16. 2016 Navajo Nation Economic Summit & Business Opportunity Day

    Broader source: Energy.gov [DOE]

    The 2016 Navajo Nation Economic Summit and Business Opportunity Day will include contract opportunities, matchmaking, one-on-one with buyers and purchasing agencies, network and evening banquet, and over 24 session topics. Conference registration ends April 5.

  17. Winning the Future: Navajo-Hopi Land Commission Leverages DOE Grant to Advance Solar Ranch Project

    Broader source: Energy.gov [DOE]

    Under the Navajo-Hopi Land Settlement Act of 1974 for the Paragon-Bisti Ranch was set aside for the benefit of Navajo families (relocatees) living on Hopi Partitioned Lands. Now, more than 40 years later, the Navajo Nation is pursuing plans to use those resource-rich lands to cultivate clean, renewable energy.

  18. Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)

    SciTech Connect (OSTI)

    Thomas Benally, Deputy Director,

    2012-05-15

    The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

  19. Geographic information system (G.I.S.) research project at Navajo Community College - Shiprock Campus

    SciTech Connect (OSTI)

    Yazzie, R.; Peter, C.; Aaspas, B.; Isely, D.; Grey, R.

    1995-12-31

    The Navajo and Hopi GIS Project was established to assess the feasibility and impact of implementing GIS techology at Tribal institutions. Los Alamos and Lawrence Livermore National Laboratories funded the Navajo and Hopi Geographic Information System (G.I.S.) Project and assigned a mentor from LANL to help guide the project for three summer months of 1995. The six organizations involved were: LANL, LLNL, Navajo Community College, Navajo Nation Land Office, Northern Arizona University and San Juan College. The Navajo Land Office provided the system software, hardware and training. Northern Arizona University selected two students to work at Hopi Water Resource Department. Navajo Community College provided two students and two faculty members. San Juan College provided one student to work with the N.C.C. group. This made up two project teams which led to two project sites. The project sites are the Water Resource Department on the Hopi reservation and Navajo Community College in Shiprock, New Mexico.

  20. Diné Power Authority - Navajo Transmission Project and other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Denver, CO PA D D I N E ' P O W E R A U T H O R I T Y DPA Overview * Din Power ... Segment 2: 62 miles, crossing 23.66 miles of Bennett Freeze area & 0.44 miles of Navajo ...

  1. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

    2012-01-01

    Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

  2. Navajo Nation Navajo-Hopi Land Commission Feasibility Study for 4,000 MW of Renewable Power at the Paragon-Bisti Ranch

    Energy Savers [EERE]

    4,000 MW of Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO March 25, 2014   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974.  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside certain lands for the benefit of relocatees. HISTORY  HISTORY   Paragon-Bisti Ranch is one of the selected lands :  Located in northwestern New Mexico.  22,000 acres of land  Benefits

  3. Tribal Renewable Energy To'Hajiilee Navajo Case Study

    Energy Savers [EERE]

    Navajo Case Study Delores Apache, President To'Hajiilee Economic Development Corporation, Inc. "TEDI" Douglas C. MacCourt, Project Counsel Ater Wynne LLP Tribal Energy Program Review May 4-7, 2015 Overview of Presentation * Goals and objectives of the tribe in developing the project * History, background and project milestones * Essentials for tribal renewable energy projects New Mexico annual insolation ave 6.58 sun hours Output peak 7.28 kWh/m 2 /day) Distance from Albuquerque 19

  4. Tribal Renewable Energy: To'Hajiilee Navajo Case Study

    Energy Savers [EERE]

    Navajo Case Study Delores Apache, President To'Hajiilee Economic Development Corporation, Inc. "TEDI" Douglas C. MacCourt, Project Counsel Ater Wynne LLP Tribal Energy Program Review March 24-27, 2014 Overview of Presentation * Goals and objectives of the tribe in developing the project * History, background and project milestones * Essentials for tribal renewable energy projects New Mexico annual insolation ave 6.58 sun hours Output peak 7.28 kWh/m 2 /day) Distance from Albuquerque 19

  5. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; Lerch, Harry; Olea, Ricardo A.; Suitt, Stephen E.; Kolker, Allan

    2010-01-01

    Indoormore » air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM 2.5 concentration in 20 homes was 36.0  μ g/ m 3 . This is the first time that PM 2.5 has been quantified and characterized inside Navajo reservation residents' homes.« less

  6. Carbohydrate biofuels II: The need and the potential for rootfuel in the Navajo Nation

    SciTech Connect (OSTI)

    Shultz, E.B.; Jr.; Bragg, W.G.; Whittier, J.

    1995-11-01

    Over 80% of rural Navajos and about two-thirds of all Navajos use scarce woodfuel and low-grade coal for home heating half the year, with coal used mainly as a nighttime adjunct. Serious health problems arise because stoves are old and leak smoke and carbon monoxide. The impacts are gender-biased to women and small children. Respiratory disease is a major cause of Navajo mortality and unusually high admissions to Navajo Indian Health Service hospitals. A 1990 study at a Navajo hospital showed that Navajo children under two years of age from homes with woodstoves are nearly five times more likely to contract acute lower respiratory tract infections than children from homes with no stove. Correctives include improved stoves and fuels. Our previous studies on clean-burning starchy/cellulosic {open_quotes}rootfuels{close_quotes} in Latin America, Africa, and Asia are applicable. We discuss our preliminary work on the Navajo reservation, the current status of household stoves and stovefuels, the health impacts of woodsmoke and coalsmoke from old, faulty stoves, the conditions for growing rootfuel on the reservation, and policy and strategy for coping with the problem.

  7. Second Five-Year Plan to Address Uranium Contamination in the Navajo Nation

    Energy Savers [EERE]

    | Department of Energy Second Five-Year Plan to Address Uranium Contamination in the Navajo Nation Second Five-Year Plan to Address Uranium Contamination in the Navajo Nation April 3, 2015 - 4:31pm Addthis What does this project do? Goal 1. Protect human health and the environment. Federal agencies recently completed a second Five-Year Plan to address uranium contamination on the Navajo Nation, which follows a progress report on the first plan that was initiated in January 2007. Contributing

  8. Coal references index for the Navajo Indian Reservation, Arizona, New Mexico, and Utah

    SciTech Connect (OSTI)

    Bliss, J.D.

    1982-01-01

    The references listed in this document represent the readily available literature about coal resources on or adjacent to the Navajo Indian Reservation. They were selected during the developmental phase of the Navajo Resource Information System (NRIS). The system contains a set of computerized data bases addressing various resource categories. The system was developed by the US Geological Survey in coordination with the Minerals Department, Navajo Nation. Funding support was provided by the Bureau of Indian Affairs. The list of approximately 70 references was selected from a reference data base entitled nref using those citations which contain coal in a keyword list attached to each citation. The main attempt was to list most of the literature published in the 1960's and 1970's for areas in, or adjacent to, the Navajo reservation.

  9. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  10. Livestock impacts for management of reclaimed land at Navajo Mine: The decision-making process

    SciTech Connect (OSTI)

    Estrada, O.J.; Grogan, S.; Gadzia, K.L.

    1997-12-31

    Livestock grazing is the post-mining use for reclaimed land at Navajo Mine, a large surface coal mine on the Navajo Nation in northwest New Mexico. The Navajo Mine Grazing Management Program (GMP) uses holistic management on approximately 2,083 ha of reclaimed land to plan for final liability release and return of the land to the Navajo Nation, and to minimize the potential for post-release liability. The GMP began in 1991 to establish that livestock grazing on the reclaimed land is sustainable. Assuming that sustainability requires alternatives to conventional land management practices, the GMP created a Management Team consisting of company staff, local, Navajo Nation, and Federal government officials, and technical advisors. Community members contributed to the formation of a holistic goal for the GMP that articulates their values and their desire for sustainable grazing. Major decisions (e.g., artificial insemination, water supply, supplemental feed) are tested against the goal. Biological changes in the land and the grazing animals are monitored daily to provide early feedback to managers, and annually to document the results of grazing. To date, the land has shown resilience to grazing and the animals have generally prospered. Community participation in the GMP and public statements of support by local officials indicate that the GMP`s strategy is likely to succeed.

  11. Livestock grazing for management of reclaimed land at Navajo Mine: Animal response

    SciTech Connect (OSTI)

    Gamble, D.C.; Gadzia, K.L.; Raisbeck, M.F.

    1997-12-31

    Livestock responses dining grazing of reclaimed land were monitored at the Navajo Mine since 1994. The Navajo Mine Grazing Management Program (GNP) began in 1991 to prepare for bond release and return of reclaimed land to the Navajo Nation by demonstrating the ability of the land to sustain the post-mining land use of livestock grazing. Local Navajos, whose livestock are used in the GMP, are interested in the ability of the land to sustain their livestock. Sustainable livestock grazing implies the ability of animals to thrive, successfully reproduce and maintain the health of the land. Daily care and monitoring of livestock health was carried out by herders hired by the mining company. General animal health parameters including blood selenium levels were monitored quarterly. Livestock responses to grazing reclaimed land have been largely positive. Cows have produced healthy offspring and owners indicate satisfaction with calf size, and overall performance of the cows. Selenium and other blood testing parameters indicate no adverse effect on animal health to date. Hazards associated with reclamation and ongoing mining activities are important considerations for lands being reclaimed for livestock grazing as a post-mining land use and must be monitored carefully during any grazing program. Preliminary results indicate that planned grazing by cattle on reclaimed land at Navajo Mine is feasible and does not adversely affect animal health.

  12. A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation

    SciTech Connect (OSTI)

    Terry Battiest

    2012-11-30

    The project, A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation, is funded under a solicitation issued by the U.S. Department of Energy Tribal Energy Program. Funding provided by the grant allowed the Navajo Nation to measure wind potential at two sites, one located within the boundaries of the Navajo Nation and the other off-reservation during the project period (September 5, 2005 - September 30, 2009). The recipient for the grant award is the Navajo Tribal Utility Authority (NTUA). The grant allowed the Navajo Nation and NTUA manage the wind feasibility from initial site selection through the decision-making process to commit to a site for wind generation development. The grant activities help to develop human capacity at NTUA and help NTUA to engage in renewable energy generation activities, including not only wind but also solar and biomass. The final report also includes information about development activities regarding the sited included in the grant-funded feasibility study.

  13. Navajo Tribal Utility Authority Moves Forward with First Utility-Scale

    Energy Savers [EERE]

    Solar Plant | Department of Energy Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant January 14, 2016 - 10:29am Addthis A residential solar hybrid unit. Photo from NTUA A residential solar hybrid unit. Photo from NTUA NTUA has the largest residential solar fleet in Indian Country. Photo from NTUA NTUA has the largest residential solar fleet in Indian Country. Photo from NTUA A

  14. Dynamic optimization model of energy related economic planning and development for the Navajo nation

    SciTech Connect (OSTI)

    Beladi, S.A.

    1983-01-01

    The Navajo reservation located in portions of Arizona, New Mexico and Utah is rich in low sulfur coal deposits, ideal for strip mining operation. The Navajo Nation has been leasing the mineral resources to non-Indian enterprises for purposes of extraction. Since the early 1950s the Navajo Nation has entered into extensive coal leases with several large companies and utilities. Contracts have committed huge quantities of Navajo coal for mining. This research was directed to evaluate the shadow prices of Navajo coal and identify optimal coal extraction. An economic model of coal resource extraction over time was structured within an optimal control theory framework. The control problem was formulated as a discrete dynamic optimization problem. A comparison of the shadow prices of coal deposits derived from the dynamic model with the royalty payments the tribe receives on the basis of the present long-term lease contracts indicates that, in most cases, the tribe is paid considerably less than the amount of royalty projected by the model. Part of these discrepancies may be explained in terms of the low coal demand condition at the time of leasing and due to greater uncertainties with respect to the geologic information and other risks associated with mining operations. However, changes in the demand for coal with rigidly fixed terms of royalty rates will lead to non-optimal extraction of coal. A corrective tax scheme is suggested on the basis of the results of this research. The proposed tax per unit of coal shipped from a site is the difference between the shadow price and the present royalty rate. The estimated tax rates over time are derived.

  15. Collaboration and Communication: DOE and Navajo Nation Tour Uranium Mine Reclamation Sites to Share Expertise and Experiences

    Broader source: Energy.gov [DOE]

    In February 2014, U.S. Department of Energy (DOE) Office of Legacy Management (LM) and LM Support (LMS) contractor site managers, along with Navajo Nation technical staff, visited five reclaimed...

  16. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts (Revised), Energy Analysis, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Navajo Generating Station Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts David J. Hurlbut, Scott Haase, Gregory Brinkman, Kip Funk, Rachel Gelman, Eric Lantz, Christina Larney, David Peterson, Christopher Worley National Renewable Energy Laboratory Ed Liebsch HDR Engineering, Inc. Prepared under Task No. WFJ5.1000 Technical Report NREL/TP-6A20-53024 * Revised March 2012 Contract No. DE-AC36-08G028308 Produced under direction of the U.S.

  17. DOE Tribal Intern Focuses on Integrating Energy Policy and Navajo Cultural Values

    Broader source: Energy.gov [DOE]

    My interest in energy planning on the Navajo Nation stemmed from the desire to improve energy resource development in my own community. The legacy of environmental and health impacts from uranium and coal mining motivated me to find ways of developing energy resources in a manner more consistent with cultural values and the visions of the Navajo Nation. While I have developed many valuable technical analysis skills and tools in my Ph.D. program, most of the knowledge about Indian energy issues requires significant on-the-ground engagement with communities and their leaders. As a Tribal Energy Program intern, I have developed important connections in the area of tribal energy working with tribal leaders and my fellow interns.

  18. Oil, gas, and helium references index for the Navajo Indian Reservation, Arizona, New Mexico, and Utah. [223 references

    SciTech Connect (OSTI)

    Bliss, J.D.

    1982-02-01

    The references which are listed in this document represent the readily available literature about oil, gas, and helium resources on or adjacent to the Navajo Indian Reservation. They were selected during the developmental phase of the Navajo Resource Information System (NRIS). The system contains a set of computerized data bases addressing various resource categories. The system was developed by the US Geological Survey in coordination with the Minerals Department, Navajo Nation. Literature is the foundation of resource assessment and the absence of such a compilation for the Navajo Nation prompted the development of a reference data base entitled nref, which consists of over 1300 records. The following reference list of approximately 230 references was selected from those citations which contain oil, gas, or helium in a keyword list attached to each citation. References to general literature on oil, gas, or helium may also be present. The main attempt was to list most of the literature published in the 1960's and 1970's for areas in, or adjacent to, the Navajo Reservation. References published prior to this were included only if readily available or if they seemed to represent areas or topics not covered in later publications. 223 references.

  19. A clean-burning biofuel as a response to adverse impacts of woodsmoke and coalsmoke on Navajo health

    SciTech Connect (OSTI)

    Shultz, E.B. Jr.; Bragg, W.G.; Whittier, J.

    1994-12-31

    Because over 60% of Navajo households are heated with woodfuel and coal, and indoor air pollution from woodsmoke and coalsmoke is problematic, most Navajos are probably at risk of respiratory and other smoke-induced illnesses. A previous study has shown that Navajo children living in homes heated by a wood/coal stove are nearly five times more likely to contract acute lower respiratory tract infections than children from homes that do not use those fuels. Stove and flue improvements to reduce leakage of smoke into the home would help. So would clean-burning solid fuels in replacement of woodfuel and coal. The authors describe a clean-burning fast-growing carbohydrate biofuel, prepared by sun-drying the roots of a wild southwestern gourd plant, Cucurbita foetidissima. They call it {open_quotes}rootfuel.{close_quotes} A test plot is growing during the 1994 season at the NMSU Agricultural Science Center on the Navajo Nation, near Farmington, New Mexico. Irrigation requirements are being measured. In the Fall, a preliminary needs assessment will be conducted to learn more about how fuel usage impacts Navajo health. The acceptability of rootfuel in selected homes will be tested during the upcoming heating season.

  20. Weatherization assistance program. Final monitoring report for Arizona, California, the Navajo Nation, and Nevada

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. This final report summarizes both the findings and the recommendations that emerged from the forty (40) visits to grantees and subgrantees. The remarks are not intended to be detailed and exhaustive. Specific problems, achievements, and recommendations are to be found in the narrative reports. But some findings and traits are sufficiently general that they warrant being included in this final report. The recommendations reflect those general characteristics.

  1. Livestock impacts for management of reclaimed land at Navajo Mine: Vegetation responses

    SciTech Connect (OSTI)

    Wood, M.K.; Buchanan, B.A.; Estrada, O.

    1997-12-31

    The post-mining land use for Navajo Mine, a large surface coal mine in northwest New Mexico, is livestock grazing. Reclamation began in the early 1970`s and has been primarily directed toward the development of a grassland with shrubs. However, none of these lands were grazed before 1994 and none have been released back to the Navajo Nation. Therefore, it is not known how these reclaimed lands will respond to livestock impacts once the lands are released. Livestock impacts include grazing, trampling, and adding feces and urine. Cattle impacts were applied in 1994 to a land that had been reclaimed in 1978, 1991 and 1992. Vegetation monitoring procedures were implemented to detect and document successful and unsuccessful impact practices for both impacted areas and areas excluded from cattle. After three impact seasons, there were similar levels of perennial plant cover, production, and density on impacted lands compared to excluded lands. Based on age structure analysis, there is a trend that establishment of seedlings is stimulated by cattle. Cattle also decrease the amount of previous years` growth of standing phytomass with a trend to stimulate new growth. It is possible that some of the previous year`s growth was reduced by cattle trampling as much as by grazing because cattle generally prefer to eat the current year`s growth before it cures. No differences in number of seedheads per plant, animal sign, plant pedestals, and soil rills could be detected after three seasons of impacting.

  2. Cleanup of inactive Uranium Mill Tailings Sites in the Navajo Nation

    SciTech Connect (OSTI)

    Martin, B.

    1994-12-31

    The U.S. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978 to address potential and significant radiation health hazards to the public from active and inactive mill operations. Title I to the UMTRCA identified sites to be designated for remedial action. These include four uranium mill tailings remedial action (UMTRA) sites in the Navajo Nation. These sites are located in Shiprock, New Mexico; Tuba City, Arizona; Cane Valley, Arizona; and Halchita, Utah. The U.S. Department of Energy (DOE) was directed to select and execute a plan of remedial action that provides long-term stabilization and control of radioactive materials and satisfies the U.S. Environmental Protection Agency standards and other applicable laws and regulations.

  3. Weatherization assistance program: Final monitoring report for Arizona; California; the Navajo Nation; Nevada

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization program for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. This report covers the monitoring of grantees and subgrantees for the first option year, or what is the second year of the contract. The first two (2) weeks of the second year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on October 14, 1986, and was completed on May 22, 1987. During this seven-month period, thirty-five (35) agencies were visited and evaluated under this contract.

  4. Lessons Learned: Tribal Community Engagement, Remediation and Restoration of a Uranium Mine Tailings Site, Navajo Nation - 12484

    SciTech Connect (OSTI)

    Wadsworth, Donald K.; Hicks, Allison H.

    2012-07-01

    In May, 2011 New World Environmental Inc. was awarded a contract by the Navajo Nation Environmental Protection Agency to remediate an illegal radioactive waste disposal site located in the Navajo Nation. The initial scope included the excavation and shipment of an estimated 3,000 cubic yards of Uranium mine tailings and associated industrial waste. In this instance Stakeholders were supportive of the project, remediation and restoration, yet the movement of residual radioactive materials through tribal communities was a controversial issue. Other Stakeholder issues included site security, water sources for remediation activities, local residents' temporary re-location and care of livestock, right of way permissions and local workforce development. This presentation recaps the technical and non-technical issues encountered in the remediation and restoration the seven acre site and the outreach to surrounding communities. Cultural and equity issues resulting from historical problems associated with this and other sites in the immediate area and education and training. (authors)

  5. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  6. Navajo-Hopi Land Commission Navajo Nation

    Energy Savers [EERE]

    Paragon-Bisti Solar Ranch webinar for DOE & WAPA: "Exploring Your Energy Markets" February 24, 2016 Wenona Benally Baldenegro, Esq. & Robert Kennedy III, PE NHLC Office Tetra Tech   Phase I - preliminary critical issues analysis & pre-feasibility study (COMPLETED)  Phase II - DOE-TEP-funded Feasibility Study (COMPLETED) * three phases to go:  Phase III - Preconstruction (HERE WE ARE)  Phase IV - Construction  Phase V - long-term Operations and Maintenance

  7. Gravity and magnetic anomalies associated with Tertiary volcanism and a Proterozoic crustal boundary, Hopi Buttes volcanic field, Navajo Nation (Arizona)

    SciTech Connect (OSTI)

    Donovan-Ealy, P.F. . Geology Dept.); Hendricks, J.D. )

    1992-01-01

    The Hopi Buttes volcanic field is located in the Navajo Nation of northeastern Arizona, near the southern margin of the Colorado Plateau. Explosive phreatomagmatic eruptions from late Miocene to mid-Pliocene time produced more than 300 maar-diatremes and deposited limburgite tuffs and tuff breccia and monchiquite dikes, necks and flows within a roughly circular 2,500 km[sup 2] area. The volcanic and volcaniclastic rocks make up the middle member of the Bidahochi Formation, whose lower and upper members are lacustrine and fluvial, respectively. The Bidahochi Formation overlies gently dipping Mesozoic sedimentary rocks exposed in the southwestern portion of the volcanic field. Two significant gravity and magnetic anomalies appear within the Hopi Buttes volcanic field that are unlike the signatures of other Tertiary volcanic fields on the Colorado Plateau. A circular 20 mGal negative gravity anomaly is centered over exposed sedimentary rocks in the southwestern portion of the field. The anomaly may be due to the large volume of low density pyroclastic rocks in the volcanic field and/or extensive brecciation of the underlying strata from the violent maar eruptions. The second significant anomaly is the northeast-trending Holbrook lineament, a 5 km-wide gravity and magnetic lineament that crosses the southeastern part of the volcanic field. The lineament reflects substantial gravity and magnetic decreases of 1.67 mGals/km and 100 gammas/km respectively, to the southeast. Preliminary two-dimensional gravity and magnetic modeling suggests the lineament represents a major Proterozoic crustal boundary and may correlate with one of several Proterozoic faults exposed in the transition zone of central Arizona. Gravity modeling shows a 3--5 km step'' in the Moho near the crustal boundary. The decrease in depth of the Moho to the northwest indicates either movement along the fault or magmatic upwelling beneath the volcanic field.

  8. Navajo Electrification Demonstration Program

    Energy Savers [EERE]

    ... Energy. * More power -More dollars * Request to maintain or troubleshoot other solar units Future Plans Electric Line Extension * Closeout Cooperative Agreement with Golden Field ...

  9. Investigation of exfoliation joints in Navajo sandstone at the Zion National Park and in granite at the Yosemite National Park by tectonofractographic techniques

    SciTech Connect (OSTI)

    Bahat, D.; Grossenbacher, K.; Karasaki, K.

    1995-04-01

    Tectonofractographic techniques have been applied to the study of joint exfoliation in the Navajo sandstone at Zion National Park and in the granite at Yosemite National Park. New types of fracture surface morphologies have been observed which enabled the discerning of incipient joints and consequent fracture growth in these rocks. Incipient jointing in the sandstone is mostly manifested by elliptical and circular fractures (meters to tens meters across) initiating from independent origins. They interfere with each other and grow to larger circular fractures producing exfoliation surfaces up to hundreds of meters across. Less frequently, series of large concentric undulations demonstrate the propagation of a large fracture front producing exfoliation from an individual origin. One such fracture front reveals refraction of undulations at a layer boundary. Certain en echelon fringes surround the joint mirror plane with well defined rims of en echelons and hackles which enable the determination of the tensile fracture stress, {sigma}f. Arches in Zion National Park are ubiquitous in shape and size, revealing stages in their evolution by a mechanical process, which was associated with exfoliation, but independent of local faulting. Exfoliation and arching mostly occurred on vertical surfaces of N-NNW and NE sets of prominent joints, but there are also deviations from this general trend. In Yosemite National Park large exfoliations (hundreds of meters in size) developed on the El Capitan cliff by the interaction and merging of many previous smaller incipient joints that vary in size from meters to tens of meter.

  10. Navajo Nation: Native American Photovoltaics- 1999 Project

    Broader source: Energy.gov [DOE]

    At the end of the twentieth century there are many tens of thousands of Native American residences in the US without electricity. Most of these residences are in remote locations and to provide service by the grid is either too costly or impossible. Photovoltaics are the best way to provide power to these houses, provided certain barriers can be overcome. These include: system cost and end-user financing, maintenance, and size and quality of the systems.

  11. Winning the Future: Navajo-Hopi Land Commission Leverages DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approximately 10,000 acres on five major sites are suitable for hosting 2,100 megawatts (MW) of solar PV power-equal to the entire generating capacity of the state of New Mexico. ...

  12. Project Reports for Navajo Nation: Native American Photovoltaics- 1999 Project

    Broader source: Energy.gov [DOE]

    At the end of the twentieth century there are many tens of thousands of Native American residences in the US without electricity. Most of these residences are in remote locations and to provide service by the grid is either too costly or impossible. Photovoltaics are the best way to provide power to these houses, provided certain barriers can be overcome. These include: system cost and end-user financing, maintenance, and size and quality of the systems.

  13. Navajo County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mesa, Arizona Shongopovi, Arizona Shonto, Arizona Show Low, Arizona Snowflake, Arizona Taylor, Arizona Whiteriver, Arizona Winslow West, Arizona Winslow, Arizona Retrieved from...

  14. Navajo Tribal Utility Authority - Wind Energy Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the present states of Arizona, New Mexico and Utah * Reservation includes an area ... Service * Renewable Energy Sources o Photovoltaic power systems o Hybrid ...

  15. Navajo Tribal Utility Authority Moves Forward with First Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ranch in New Mexico in 2012. The study, which confirmed that approximately 10,000 acres on five major sites are suitable for hosting 2,100 MW of solar photovoltaic power, was ...

  16. DOE Tribal Intern Focuses on Integrating Energy Policy and Navajo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 2014 SandiaTribal Energy Program summer interns: Aaron Cate, Sandra Begay-Campbell, Thomas Jones, and Len Necefer. Photo from Sandra Begay-Campbell, Sandia National ...

  17. Navajo Tribal Utility Association Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    Reading Costs Reduced Operating and Maintenance Costs Improved Electric Service Reliability and Power Quality Reduced Electricity Costs for Customers Reduced Truck Fleet Fuel...

  18. Collaboration and Communication: DOE and Navajo Nation Tour Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the use of technical approaches for controlling and mitigating erosion. Due to the geology of the desert southwest, where many LM disposal sites are located, and the area's...

  19. Green Building: How the Navajo Nation Can Address Renewable Energy Development at the Local Level

    Energy Savers [EERE]

    and Major Renovations of Federal Buildings Final Rule | Department of Energy Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings Final Rule Document details the Green Building Certification Systems Requirement for New Federal Buildings and Major Renovations of Federal Buildings' Final Rule for 10 CFR

  20. EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, and Yavapai Counties (Arizona) and San Juan County (Utah)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of Western’s programmatic operations and management (O&M) process and an integrated vegetation management (IVM) program on the Colorado River Storage Project System. O&M activities would consist of aerial and ground patrols, regular and preventive maintenance, inspections and repairs, and road repair. The IVM program would remove vegetation to protect facilities from fire, control the spread of noxious weeds to protect environmental quality, establish and maintain stable, low-growing plant communities in the ROW, and activities for public and worker safety around transmission lines and other facilities.

  1. DOE/EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, and Yavapai Counties (Arizona) and San Juan County (Utah)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of Westerns programmatic operations and management (O&M) process and an integrated vegetation management (IVM) program on the Colorado River Storage Project System. O&M activities would consist of aerial and ground patrols, regular and preventive maintenance, inspections and repairs, and road repair. The IVM program would remove vegetation to protect facilities from fire, control the spread of noxious weeds to protect environmental quality, establish and maintain stable, low-growing plant communities in the ROW, and activities for public and worker safety around transmission lines and other facilities.

  2. To'Hajilee Economic Development, Inc.- 2012 Project

    Broader source: Energy.gov [DOE]

    The To'Hajiilee Chapter of the Navajo Nation (previously called and occasionally referred to as the Cañoncito Band of Navajos) is engaged in the development of a solar electricity generation facility (solar project).

  3. Project Reports for To'Hajilee Economic Development, Inc.- 2012 Project

    Broader source: Energy.gov [DOE]

    The To'Hajiilee Chapter of the Navajo Nation (previously called and occasionally referred to as the Cañoncito Band of Navajos) is engaged in the development of a solar electricity generation facility (solar project).

  4. TEC Communications Topic Group

    Office of Environmental Management (EM)

    procurement - Routing criteriaemergency preparedness Tribal Issues Topic Group * TEPP Navajo Nation (Tom Clawson) - 1404 - Needs Assessment * Identified strengths and...

  5. EA-2008: Colorado River Storage Project Programmatic Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, ... EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; ...

  6. Microsoft Word - PURPA 2006_FINAL_revised.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... State: Navajo Tribal Utility Auth Political Subdivisions: Salt River Project STATE: ... Political Subdivisions: Imperial Irrigation District Modesto Irrigation District ...

  7. Microsoft Word - PURPA 2008_edited May 2009.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... State: Navajo Tribal Utility Auth Political Subdivisions: Salt River Project STATE: ... Francisco Turlock Irrigation District Political Subdivisions: Imperial Irrigation ...

  8. Microsoft Word - PURPA 2009.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... State: Navajo Tribal Utility Auth Political Subdivisions: Salt River Project STATE: ... Francisco Turlock Irrigation District Political Subdivisions: Imperial Irrigation ...

  9. Presentations from the 2012 DOE Project Management Workshop | Department of

    Office of Environmental Management (EM)

    ON THE TO'HAJIILEE CHAPTER'S NEW SOLAR FARM TO BE BUILT ON CAÑONCITO BAND OF NAVAJO TRUST LAND Rob Burpo, President First American Financial Advisors, Inc. Albuquerque, New Mexico About To'Hajiilee *Located 60 miles from the Navajo Reservation *One of 64 Navajo Nation Chapters *One delegate out of 88 to the Navajo Tribal Council *Surrounded by two counties and a Pueblo *Have their own 36,000+ acres of trust land *Trust land in their name - not Navajo Nation *Population located about 35 miles

  10. CX-012764: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    764: Categorical Exclusion Determination CX-012764: Categorical Exclusion Determination Kayenta-Navajo 230 Kilovolt Transmission Line Access Road Maintenance Coconini and Navajo Counties, Arizona CX(s) Applied: B1.3 Date: 41872 Location(s): Arizona Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power Administration (Western) proposes to conduct routine road maintenance on its existing access roads along the Kayenta-Navajo 230 kilovolt Transmission Line.

  11. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Office of Environmental Management (EM)

    Kayenta-Navajo 230-kV Transmission Line Access Road Maintenance Coconino and Navajo Counties, Arizona A. Brief Description of Proposal: Western Area Power Administration (Western) proposes to conduct routine road maintenance on its existing access roads along the Kayenta-Navajo 230-kV Transmission Line. The approximate 31.7 miles of road maintenance would occur intermittently along a 50-mile segment of the line from Strncture 41/3, approximately 13 miles west of Shonto, Arizona, to Strncture

  12. Microsoft Word - S05802_FY09 Year-End AST.doc

    Office of Environmental Management (EM)

    Faculty... 22 3.14.4 DOE Office of Engineering and Technology (EM-22) ... 22 3.14.5 Navajo Nation...

  13. Native American Renewable Energy Program Development

    Energy Savers [EERE]

    American Renewable Energy Program Development November 17, 2003 Sandra Begay-Campbell ... The Navajo Nation Electrification Demonstration Program (Public Law 106- 511, Section 602) ...

  14. DOE Prepares Programmatic Environmental Impact Statement for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety; Mesa County Board of Commissioners; Montrose County Board of Commissioners; San Juan County Commission; Southern Ute Indian Tribe; and the Navajo Nation. Additional...

  15. Renewable Energy: Planning for Sustainability and Self-Determination...

    Office of Environmental Management (EM)

    Gepetta S. Billie Student Intern Renewable Energy: Planning for Sustainability & Self-Determination for the Navajo Nation Summer 2008 Sandia is a multiprogram laboratory operated ...

  16. About Us | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indian lands and homes. Led by the Director, Christopher Clark Deschene, a member of the Navajo Nation, the Office of Indian Energy works within DOE, across government agencies,...

  17. Indian Mineral Leasing Act of 1938 | Open Energy Information

    Open Energy Info (EERE)

    Provides for leasing of minerals on tribal lands References IMLA1 United States v. Navajo Nation2 The Indian Mineral Leasing Act of 1938 (IMLA) provides that "unallotted...

  18. Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical...

    Office of Environmental Management (EM)

    CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT ... Ute Growth Fund Sam Woods, Energy Policy Advisor, Navajo Nation 10:15am -11:45am ...

  19. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Fort Defiance, Arizona Navajo Tribal Utility Association Smart Grid Project References US Census Bureau 2005 Place to 2006 CBSA Retrieved from...

  20. 1

    Office of Legacy Management (LM)

    ... on Navajo Nation land and raised in a ... oxide to dinitrogen gas. U.S. Department of Energy Natural & Enhanced ... remediation requirements in a reasonable ...

  1. US Recovery Act Smart Grid Projects - Advanced Metering Infrastructure...

    Open Energy Info (EERE)

    Municipal Light Department Smart Grid Project Marblehead Massachusetts 1,346,175 2,692,350 Navajo Tribal Utility Association Smart Grid Project Ft. Defiance Arizona...

  2. Atlanta, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Global Energy Holdings Group formerly Xethanol Corporation Navajo Wind Energy Plum Combustion Radiance Solar Servidyne SilvaGas Corporation FERCO Enterprises Inc Solar Systems...

  3. DOE Awards Native American, Tribally-Owned Small Business Contract...

    Broader source: Energy.gov (indexed) [DOE]

    The company, NOVA Corp. of Window Rock, Arizona, is owned by the Navajo Nation. NOVA will provide administrative support services and information technology support to the Savannah ...

  4. Indian Energy Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Solutions NPR interviewed Sandra-Begay Campbell, a Navajo tribal member who manages the ... Cecil Ransom of AHA, Sandra Begay-Campbell of Sandia National Laboratories, and ...

  5. NPR Sheds Light on Tribal Energy Challenges and Clean, Affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NPR interviewed Sandra-Begay Campbell, a Navajo tribal member who manages the Tribal ... Begay-Campbell pointed to the technical assistance DOE has provided to enable tribal ...

  6. Energy Department Awards $92.5 Million to 19 States to Weatherize...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and 970 local agencies. Every state, the District of Columbia, the Navajo Nation and the ... These typically include adding insulation, reducing air infiltration, servicing heating ...

  7. DISCLAIMER

    Office of Legacy Management (LM)

    ... Equipment: The turbidity meter and Eh meter were not working at well 669 (dead batteries) and turbidity and Eh measurements were not collected at this well. Regulatory: Navajo ...

  8. Radiation effects in the environment

    SciTech Connect (OSTI)

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B.; Yazzie, A.; Isaac, M.C.P.; Seaborg, G.T.; Leavitt, C.P.

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  9. DOE - Office of Legacy Management -- Tuba City Mill Site - AZ...

    Office of Legacy Management (LM)

    Documents Related to Tuba City Mill Site 2014 Navajo Nation Five-Year Plan 2015 Annual ... LMSTUBS00214. May 2014. February 2015 Groundwater and Surface Water Sampling at the Tuba ...

  10. Len Necefer

    Broader source: Energy.gov [DOE]

    Len Necefer is a member of the Navajo Tribe from Tsaile, Arizona and a participant in the 2014 DOE Tribal Energy Program Summer Internship Program at Sandia National Laboratories. He graduated with...

  11. EIS-0231: Draft Environmental Impact Statement | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    This EIS evaluates the environmental impacts of a proposal to by Dine Power Authority, a Navajo Nation enterprise, to construct, operate, and maintain a 500 kilovolt (kV)...

  12. Applied Studies and Technology Stakeholder Outreach: Helping Native Students Heal the Land

    Broader source: Energy.gov [DOE]

    On a late June afternoon on the high desert east of Tuba City, Arizona, members of a Navajo family scoot along the sand riding all-terrain vehicles, rounding up their horses under a ceramic-blue...

  13. Meet Dr. Stanley Atcitty, PECASE Winner and DOE Researcher |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Since my mother and family members spoke Navajo exclusively, I naturally spoke our language with English becoming my second language. I'm the first generation in my family to ...

  14. Federal Actions to Address Impacts of Uranium

    Office of Legacy Management (LM)

    Federal Actions to Address Impacts of Uranium Contamination in the Navajo Nation 2014 Page | i TABLE OF CONTENTS Executive Summary ....................................................................................................................... 1 Introduction .................................................................................................................................... 2 Summary of Work Completed 2008-2012

  15. Text Transcript of the Tribal Energy and Economic Development...

    Energy Savers [EERE]

    ... executive director for the Navajo-Hopi Land Commission. ... renewables, 47 from natural gas, and then very little from coal. ... That's one of the requirements. If you want to develop a ...

  16. 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937 2,"Navajo","Coal","Salt River ...

  17. Department of Energy Provides Nearly $88 Million to Low-Income...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These costs can include anything from heating and cooling their homes to running the ... Every state, the District of Columbia, the Navajo Nation and the Inter-Tribal Council of ...

  18. Energy Department Provides $140.3 Million to Low-Income Families...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These costs can include anything from heating and cooling their homes to running the ... Every state, the District of Columbia, the Navajo Nation and the Inter-Tribal Council of ...

  19. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Fort Defiance is a census-designated place in Apache County, Arizona.1 US Recovery Act Smart Grid Projects in Fort Defiance, Arizona Navajo Tribal...

  20. National Radon Database. Volume 4. The EPA/state residential radon surveys: CA, HI, ID, LA, NE, NV, NC, OK, SC, the Navajo Nation, and the Billings, MT IHS Area 1989-1990 (5 1/4 inch, 1. 2mb) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The National Radon Database (NRDB) was developed by the United States Environmental Protection Agency (USEPA) to distribute information in two recent radon surveys: the EPA/State Residential Radon Surveys and the National Residential Radon Survey. The National Residential Radon Surveys collected annual average radon measurements on all levels of approximately 5,700 homes nationwide. Information collected during survey includes a detailed questionnaire on house characteristics, as well as radon measurements. The radon survey data for Volume 6 is contained on two diskettes. The data diskettes are accompanied by comprehensive documentation on the design and implementation of the survey, the development and use of sampling weights, a summary of survey results, and information concerning the household questionnaire.

  1. National Radon Database. Volume 4. The EPA/state residential radon survey: CA, HI, ID, LA, NE, NV, NC, OK, SC, the Navajo Nation, and the Billings, MT IHS Area 1989-1990 (3 1/2 inch, 1. 44mb) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The National Radon Database (NRDB) was developed by the United States Environmental Protection Agency (USEPA) to distribute information in two recent radon surveys: the EPA/State Residential Radon Surveys and the National Residential Radon Survey. The National Residential Radon Surveys collected annual average radon measurements on all levels of approximately 5,700 homes nationwide. Information collected during survey includes a detailed questionnaire on house characteristics, as well as radon measurements. The radon survey data for Volume 6 is contained on two diskettes. The data diskettes are accompanied by comprehensive documentation on the design and implementation of the survey, the development and use of sampling weights, a summary of survey results, and information concerning the household questionnaire.

  2. Newsletter Features | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newsletter Features Newsletter Features Below are featured articles from the Indian Energy Beat newsletter. Download full issues of the newsletter. October 22, 2015 Leading the Charge: Doug MacCourt Advises Tribes on Energy Policy Leading the Charge is a regular feature spotlighting the movers and shakers in energy development on tribal lands. October 22, 2015 Winning the Future: Navajo-Hopi Land Commission Leverages DOE Grant to Advance Solar Ranch Project Under the Navajo-Hopi Land Settlement

  3. Tribal Green Building

    Energy Savers [EERE]

    Review eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Tribal Energy Program Review Denver, CO Tribal Green Building Gepetta S. Billie Graduate Intern, Tribal Energy Program MCRP, Community & Regional Planning University of New Mexico A Sustainable Approach to Addressing Energy Efficiency & Renewable Energy on the Navajo Reservation Windcatcher House, Navajo Nation 2 | 2011 Tribal Energy Program Review eere.energy.gov * Introduction * Statement of Need * Community Profile

  4. Tribal Lands Student Internship Program

    Energy Savers [EERE]

    Lands Student Internship Program Sandia National Laboratories National Renewable Energy Laboratories Department of Energy The Navajo Tribal Utility Authority 2003 Tribal Lands Program Interns * Shaun Tsabetsaye - Zuni - University of New Mexico - Electrical Engineering * Velissa Sandoval - Navajo/Zuni - University of Denver - Electrical Engineering * Keith Candelaria - Jemez/San Felipe - Dartmouth College - Environmental/Earth Science Several research methods used to understanding NTUA's O&M

  5. Solar Tour 2008

    Energy Savers [EERE]

    Suzanne L. Singer Graduate Student Intern University of California, Berkeley DOE Program Review Meeting November 19, 2008 Heat Management for Energy Conversion * Heat to electricity: thermoelectrics * Sunlight to electricity: concentrated PV Solar/Wind hybrid - Kayenta, AZ with NTUA Systems power rural areas Navajo Tribe Wind Potential - Aubrey Cliffs, AZ with NTUA Met towers test wind potential Navajo Tribe Sustainable Building Materials in Peach Springs, AZ Earthship flexcrete Recyclable

  6. TEP Technical Asssistance 2010

    Energy Savers [EERE]

    gov The Parker Ranch installation in Hawaii Tribal Energy Program TEP Technical Assistance 2010 Sandra Begay-Campbell Principal Member of the Technical Staff Sandia National Laboratories October 25, 2010 2 | Tribal Energy Program eere.energy.gov Navajo: NTUA Solar Customer Providing rural Navajo families ACCESS to electricity 3 | Tribal Energy Program eere.energy.gov Hopi: Off-Grid Resident Living off-grid does not mean sacrificing comfort but understanding your limits 4 | Tribal Energy Program

  7. Tribal Nations and the United States

    Office of Environmental Management (EM)

    Lands Student Internship Program Sandia National Laboratories National Renewable Energy Laboratories Department of Energy The Navajo Tribal Utility Authority 2003 Tribal Lands Program Interns * Shaun Tsabetsaye - Zuni - University of New Mexico - Electrical Engineering * Velissa Sandoval - Navajo/Zuni - University of Denver - Electrical Engineering * Keith Candelaria - Jemez/San Felipe - Dartmouth College - Environmental/Earth Science Several research methods used to understanding NTUA's O&M

  8. A jewel in the desert: BHP Billiton's San Juan underground mine

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2007-12-15

    The Navajo Nation is America's largest native American tribe by population and acreage, and is blessed with large tracks of good coal deposits. BHP Billiton's New Mexico Coal Co. is the largest in the Navajo regeneration area. The holdings comprise the San Juan underground mine, the La Plata surface mine, now in reclamation, and the expanding Navajo surface mine. The article recounts the recent history of the mines. It stresses the emphasis on sensitivity to and helping to sustain tribal culture, and also on safety. San Juan's longwall system is unique to the nation. It started up as an automated system from the outset. Problems caused by hydrogen sulfide are being tackled. San Juan has a bleederless ventilation system to minimise the risk of spontaneous combustion of methane and the atmospheric conditions in the mine are heavily monitored, especially within the gob areas. 3 photos.

  9. Project SUNN solar home (APTECH AZ-81-54). Final report

    SciTech Connect (OSTI)

    Birkey, R.C.

    1983-01-01

    The design and construction of the SUNN solar home utilizing energy conservation relevant to the constuction needs of the Navajo Nation has met with success, most particularly in its initial student and Navajo leadership training programs. The overall size of the structural concept was increased dramatically (from the modest 700 to 900 square foot model to an 1856 sq. ft. structure) in order to accommodate the Window Rock School District with a practical building and the placement of SUNN home in a highly visible area of the school grounds. A cooperation was formed with the school district with intentions to increase the potential for publicity, community involvement, utilize students in the construction process, and develop professional interest in the utilization and transfer of SUNN home technologies for other Navajo communities.

  10. Feasibility Study for Paragon - Bisti Solar Ranch

    SciTech Connect (OSTI)

    Benally, Thomas

    2015-06-01

    The Navajo Hopi Land Commission Office (NHLCO) and Navajo Nation (NN) plan to develop renewable energy (RE) projects on the Paragon-Bisti Ranch (PBR) lands, set aside under the Navajo Hopi Land Settlement Act (NHLSA) for the benefit of Relocatees. This feasibility study (FS), which was funded under a grant from DOE’s Tribal Energy Program (TEP), was prepared in order to explore the development of the 22,000-acre PBR in northwestern New Mexico for solar energy facilities. Topics covered include: • Site Selection • Analysis of RE, and a Preliminary Design • Transmission, Interconnection Concerns and Export Markets • Financial and Economic Analysis • Environmental Study • Socioeconomic and Cultural Factors • Next Steps.

  11. The Solar Way covers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    h o t o v o l t a i c s o n I n d i a n L a n d s ACKNOWLEDGEMENTS Cover Photo Rock formation, Narbona Pass, Chuska Mountain Range, Navajo Nation, New Mexico. Since childhood, Paul Denetclaw of the Navajo Nation has wondered when the small rock cradled at the top of the red bluff might fall. Now his children watch. The cover photo was chosen to symbolize what endures: the sun, power from the sun, the earth, and things on it. (Photo courtesy Roger Hill, Sandia National Laboratories) SAND

  12. Tribal Utility Policy Issues

    Energy Savers [EERE]

    Utility Policy Issues New Mexico July 27, 2015 Margaret Schaff Kanim Associates, LLC (An Indian Owned Consulting Firm) 303-443-0182 mschaff@att.net *US Energy Information Administration New Mexico Energy Stats  Sixth in crude oil production in the nation in 2013.  5% of U.S. marketed natural gas production in 2012  Largest coal-fired electric power plants in NM both on Navajo Nation  2,100-megawatt Four Corners (Navajo Mine) (APS)  1,643-megawatt San Juan (San Juan Mines) (Public

  13. Tall order in Arizona

    SciTech Connect (OSTI)

    Wright, A.G.

    1997-03-10

    A 7-year, $470 million project to retrofit scrubber units on a coal-fired power plant is summarized. The scrubbers will be retooled at the 2250-MW Navajo Generating Station in a clean air agreement between the US federal government and Salt River Project. A forced oxidation flue gas desulfurization system was selected for the retrofit; design and construction aspects are summarized in the article. Negotiations between the US Environmental Protection Agency, the Environmental Defense Fund, and the Navajo Nation leading to the retrofit action are also outlined.

  14. Remedial action plan for stabilization of the inactive uranium mill tailings site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1986-02-01

    This Remedial Action Plan (RAP) has been developed to serve a two-fold purpose. It presents the series of activities which are proposed by the U.S. Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Monument Valley, Arizona It also serves to document the concurrence of both the Navajo Nation and the U.S. Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

  15. To'Hajilee Economic Development, Inc.- 2010 Project

    Broader source: Energy.gov [DOE]

    The goal of Cañoncito Band of Navajos for this project is to successfully complete a feasibility analysis to make informed decisions on technology selection, development, financing, and management of a large solar energy farm planned to be built on trust lands held by our Cañoncito Band.

  16. Shandiin/DOE intertribal energy programs: technology transfer series

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    This project entailed the continuation of solar design and construction workshops for the Navajo, Hopi, and Apache Tribes, including tribal planners, tribal staff, engineers, architects, and installers of energy systems. The project also entailed the continuation of support for the development of an energy self-sufficient community school system for the many rural Navajo communities. Great emphasis was placed in completing the second phase of development of the intertribal computer network. The development of this network will greatly benefit our nation in increased efficiency and coordination of tribal energy programs. A series of workshops was held in energy programs training for planners from the Navajo, Hopi, and Apache Tribes. The initial assessment of this program concludes that the greatest impact and return came from the Navajo Tribe's Division of Economic Development, with lesser impact upon the Community Development branches of the Hopi and Apache Tribes. The impact of microcomputer technologies upon the tribes has been shown to be profound, and the development of the intertribal computer network can be seen as a true asset to both the tribes and to the nation.

  17. Environmentally conscious coal combustion

    SciTech Connect (OSTI)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  18. Annual site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    1996-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program. Western markets power from 56 hydroelectric power generating plants in its service area. Additionally, Western markets the US entitlement from the Navajo coal-fired plant near Page, Arizona. The significant environmental projects and issues Western was involved with in 1996 are discussed in this report.

  19. CX-010544: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Glen Canyon Switchyard - 230 Kilovolt Wavetrap Removal - TZ9A2 on the Navajo Line CX(s) Applied: B4.11 Date: 06/21/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  20. NPR Sheds Light on Tribal Energy Challenges and Clean, Affordable Solutions

    Broader source: Energy.gov [DOE]

    NPR interviewed Sandra-Begay Campbell, a Navajo tribal member who manages the Tribal Energy Program at DOE’s Sandia National Laboratories, about the technical and financial barriers associated with running transmission lines to remote, sparsely populated areas of Indian reservations.

  1. Project Reports for To'Hajilee Economic Development, Inc.- 2010 Project

    Broader source: Energy.gov [DOE]

    The goal of Caoncito Band of Navajos for this project is to successfully complete a feasibility analysis to make informed decisions on technology selection, development, financing, and management of a large solar energy farm planned to be built on trust lands held by our Caoncito Band.

  2. Project Reports for To'Hajilee Economic Development, Inc.- 2010 Project

    Broader source: Energy.gov [DOE]

    The goal of Cañoncito Band of Navajos for this project is to successfully complete a feasibility analysis to make informed decisions on technology selection, development, financing, and management of a large solar energy farm planned to be built on trust lands held by our Cañoncito Band.

  3. CX-010681: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    "Herbicide Application at Two Substations: Kayenta and Long House Valley Located on the Navajo Nation During Fiscal Year 2014 CX(s) Applied: B1.3 Date: 07/01/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region"

  4. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs.

  5. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix E. Final report

    SciTech Connect (OSTI)

    1988-07-01

    This document provides Appendix E of the Remedial Action Plan (RAP) presented in 1988 for the stabilization of the inactive uranium mill tailings at the Mexican Hat, Utah site. The RAP was developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. The RAP has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action.

  6. Air quality studies in the western United States

    SciTech Connect (OSTI)

    Yamada, T.

    1989-01-01

    Los Alamos investigators participated in SCENES, WHITEX, Winter Intensive Tracer Experiments conducted from January 7 through February 18, 1987, in the area 400 km (east-west) /times/ 250 km (north-south) centered around Page, Arizona. The purpose of the experiment was to quantify the attribution of a local source (Navajo Generating Station) and remote sources (copper smelters in southern Arizona, Mojave generating station, power plants and large urban areas) to the haze occurrences in the Grand Canyon and Canyonlands National Parks, and Glen Canyon National Recreation area. In order to ''tag'' plumes emitted from the Navajo Generating Station (NGS), a trace gas was released from the NGS stack during the entire experimental period. The purpose of this paper is to illustrate, by using Los Alamos three-dimensional atmospheric flow models, large diurnal and spatial variations of wind, turbulence and plume characteristics over complex topographic areas. 7 refs., 6 figs.

  7. Naval Spent Fuel Rail Shipment Accident Exercise Objectives

    Office of Environmental Management (EM)

    NAVAJO TRIBAL UTILITY NAVAJO TRIBAL UTILITY AUTHORITY AUTHORITY N a v a j o E l e c t r i f i c a t i o n D e m o n s t r a t i o n N a v a j o E l e c t r i f i c a t i o n D e m o n s t r a t i o n P r o g r a m P r o g r a m U.S. Department of Energy Tribal Energy Program 2004 Program Review Meeting Golden, Colorado October 20, 2004 Presented By: Paul Denetclaw Jr.- Electric Engineer Supervisor Larry Ahasteen- Renewable Energy Specialist Overview of NTUA Presentation Overview of NTUA

  8. Christopher Clark Deschene | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Christopher Clark Deschene About Us Christopher Clark Deschene - Director, Office of Indian Energy Policy and Programs Christopher Clark Deschene Christopher Clark Deschene (Navajo Nation) is the director of the U.S. Department of Energy (DOE) Office of Indian Energy. Mr. Deschene has more than 20 years of management and policy experience, along with extensive tribal relationships and deep expertise in business and energy development, natural resources, and environmental policies, federal Indian

  9. Tribal Energy Program - Technical Assistance - Sandia National Laboratories

    Energy Savers [EERE]

    Tribal Energy Program - Technical Assistance Sandra Begay-Campbell Sandia National Laboratories Tribal Energy Program skbegay@sandia.gov November 17, 2009 SANDIA NATIONAL LABORATORIES 2 | Tribal Energy Program eere.energy.gov/tribalenergy Sandra Begay-Campbell * Navajo engineer * Principal Member of the Technical Staff * Education advocate 3 | Tribal Energy Program eere.energy.gov/tribalenergy DOE-HQ DOE-GO SNL NREL DOE TEP Organization Thomas Sacco DOE Program Director Sandra Begay- Campbell

  10. Sandia National Laboratories and Internships

    Energy Savers [EERE]

    November 17, 2008 DOE-HQ DOE-GO SNL NREL DOE's Tribal Energy Program Organization Thomas Sacco DOE, Program Manager Sandra Begay-Campbell SNL Roger Taylor NREL Lizana Pierce DOE, Project Manager Victoria DeHerrera Navarro, Sr. Project Analyst Scott Haase NREL Sandra Begay-Campbell *Navajo engineer *Principal Member of the Technical Staff *Education advocate New Mexico Site - Albuquerque, New Mexico  Support Tribal Energy Program Activities  Support Tribal technical assistance requests 

  11. Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant |

    Energy Savers [EERE]

    Department of Energy Waste Isolation Pilot Plant Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant Waste Isolation Pilot Plant (WIPP) The DOE Carlsbad Field Office funds a number of tribes and pueblos along the WIPP transportation corridors. The funds are for first responder training and support. The following tribes and pueblos are involved with WIPP transportation corridors: Acoma Pueblo Nambe Pueblo Navajo Nation Pojoaque Pueblo San Ildefonso Pueblo Laguna Pueblo

  12. DOE/NV/11718--602

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    602 August 2001 REMOTE SENSING LABORATORY Operated by Bechtel Nevada for the U.S. Department of Energy National Nuclear Security Administration An Aerial Radiological Survey of Abandoned Uranium Mines in the Navajo Nation Overview of Acquisition and Processing Methods Used for Aerial Measurements of Radiation Data for the U.S. Environmental Protection Agency by the U.S. Department of Energy under IAG DW 8955235-01-5 October 1994 - October 1999 Survey conducted in Arizona, New Mexico, Utah Thane

  13. Uranium Mill Tailings Remedial Action Program. Annual status report

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    The FY 1983 project accomplishments are: completed the Remedial Action Plan and Phase I engineering design for the Canonsburg processing site; completed remedial action on an additional 52 vicinity properties and the inclusion of an additional 303 properties in the Uranium Mill Tailings Remedial Action Project; executed cooperative agreements with four states and the Navajo Nation; published the draft environmental impact statement for Salt Lake City site; and issued the approved Project Plan.

  14. Program Update: 1st Quarter 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Program Update: 1st Quarter 2015 Inside this update: Successful Transition from Mound Site to Mound Business Park Continues; Second Five-Year Plan to Address Uranium Contamination in the Navajo Nation; Nuclear Weapons Program Workers Honored; New Guidance Helps LM Manage Institutional Controls; Recent Eclipse Viewing Staged at the Fernald Preserve; UMTRCA Title II Audit; LMBC Records-Emergency Exercise; FY 2016 Budget Summary; GEMS Mapping and Specific Information; Environmental Justice

  15. Program Update: 4th Quarter 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Program Update: 4th Quarter 2012 Inside this Update: Saw What? Saw-Whet!; LM Communication and Stakeholder Satisfaction Independent Survey; LM Completes X-Ray Film Digitization Project; LM Receives Sustainability Award; LM Sees Increase in Information Requests; LM FIMS Database; Environmental Justice Activities; Why Won't My Groundwater Plume Come Clean?; LM Continues Work with the Navajo Nation; LM Travels to Canada for Workshop; LM Welcomes New Employee; LM Creates Sustainable Workplaces

  16. CX-013551: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    26: Categorical Exclusion Determination CX-013526: Categorical Exclusion Determination Herbicide Application at 51 Substations Located in Arizona, California, and Nevada CX(s) Applied: B1.3 Date: 03/23/2015 Location(s): Multiple Locations Offices(s): Western Area Power Administration-Desert Southwest Region Western plans to apply pre-emergent, post-emergent, UV Inhibitor herbicides, which will include spray marking dyes, at 51 substations in Coconino, Cochise, La Paz, Maricopa, Mohave, Navajo

  17. [SITE NAME] Fact Sheet

    Office of Legacy Management (LM)

    Shiprock, New Mexico, Disposal Site This fact sheet provides information about the Shiprock, New Mexico, Disposal Site. These sites are managed by the U.S. Department of Energy Office of Legacy Management under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Shiprock Disposal Site Site Description and History The Shiprock site is the location of a former uranium- and vanadium-ore processing facility within the Navajo Nation in the northwest corner of New

  18. Natural Phenomena Hazards (NPH) Workshop | Department of Energy

    Office of Environmental Management (EM)

    American Renewable Energy Program Development November 17, 2003 Sandra Begay-Campbell Principal Member of the Technical Staff Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. Native American RE activities featured in Sandia Technology Quarterly & Lockheed Martin Customer Focus Newsletter Sandra Begay-Campbell with two Navajo electrical technicians checking an NTUA PV

  19. The many partnerships at McKinley

    SciTech Connect (OSTI)

    Whitman, G.

    1996-12-31

    The McKinley Mine embarked on a path of partnership building with a diverse group of institutions and organizations about five years ago, without realizing it at the time. The partnerships now include a formal agreement with The Gallup/McKinley County School District, and a semi-formal agreement with the Forestry Department of the Navajo Nation. It is, of course, important to identify the goal and expected benefits of these partnerships. In some cases the benefits to the Company are tangible, and in some cases they are not. An example of a tangible benefit would be the partnership with the Navajo Nation where an economic benefit is derived by purchasing a high quality product (trees) at an attractive price. In this case there are tangible, mutual benefits since the Navajo Nation Forestry has a handy laboratory (McKinley) to test its product. The partnership with the US Navy can be classified as having intangible benefits. In this case, there is no measurable economic gain for the company, but something of considerable more potential for the country. These two partnerships are discussed in detail.

  20. Water-Balance Cover Performance

    Energy Savers [EERE]

    0 Conference, March 7-10, 2010, Phoenix, AZ Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site-10281 W.J. Waugh, D.E. Miller, S.A. Morris, and L.R. Sheader S.M. Stoller Corporation, Grand Junction, CO E.P. Glenn, D. Moore, and K.C. Carroll University of Arizona, Tucson, AZ L. Benally and M. Roanhorse Navajo Nation, Window Rock, AZ R.P. Bush U.S. Department of Energy, Grand Junction, CO ABSTRACT The U.S. Department of Energy (DOE), the

  1. Contacts and Staff | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts and Staff Contacts and Staff Contacts Contact the U.S. Department of Energy (DOE) Office of Indian Energy by mail, email, or phone. Washington, D.C. DOE Office of Indian Energy 1000 Independence Ave. SW Room 8E-060 Washington, D.C. 20585 Help Desk Phone: 720-356-1352 Email: tribal@ee.doe.gov Leadership Christopher Clark Deschene Director, Office of Indian Energy Policy and Programs Christopher Clark Deschene (Navajo Nation) is the director of the Office of Indian Energy. Mr. Deschene

  2. Tribal Colleges Initiative project. Quarterly report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    1998-07-01

    The Tribal Colleges Initiative (TCI) grant is in the second year of funding from the US Department of Energy Environmental Management program. This quarterly report includes activities for the first three months (April 1--June 30, 1998) of the Year 2 funding period. The TCI program office requested each Tribal College to write a quarterly report of activities at their respective institutions. These reports are attached. These institutions are Southwestern Indian Polytechnic Institute (SIPI), Crownpoint Institute of Technology (CIT) and the Dine` College (DC, formerly Navajo Community College). The purpose of this program is to offer educational opportunities to Native Americans in the environmental field.

  3. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  4. AS&T Selected Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AS&T Selected Publications AS&T Selected Publications Waugh, W.J., E.P. Glenn, P.H. Charley, B. Maxwell, and M.K. O'Neill. 2011. Helping Mother Earth Heal: Diné College and Enhanced Natural Attenuation Research at U.S. Department of Energy Uranium Processing Sites on Navajo Land. In: Burger, J. (ed.) Stakeholders and Scientists: Achieving Implementable Solutions to Energy and Environmental Issues. Springer, New York, New York. Benson, C.H., W.J. Waugh, W.H. Albright, and R.P. Bush,

  5. Department of Energy Provides Nearly $112 Million to Low-Income Families

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Home Weatherization | Department of Energy 112 Million to Low-Income Families for Home Weatherization Department of Energy Provides Nearly $112 Million to Low-Income Families for Home Weatherization March 29, 2007 - 12:17pm Addthis Funding is First Installment of $204.5 Million in Total Weatherization Grants for FY 2007 WASHINGTON, DC - U.S. Department of Energy (DOE) today announced $111.6 million in weatherization grants to 30 states and the Navajo Nation to make energy efficiency

  6. Exploring Your Energy Markets

    Energy Savers [EERE]

    Exploring Your Energy Markets February 24, 2016 11:00 am - 12:30 PM MST Tribal Energy Development Operation and Management Best Practices 2 Todays Presenters * Randy Manion manion@wapa.gov * Doug MacCourt Douglas.Maccourt@hq.doe.gov * Philipp Beiter philipp.beiter@nrel.gov * Al Austin austin@wapa.gov * Todd Hegwer toddhegwer@gmail.com * Wenona Benally Baldenegro wbenally@navajo- nsn.gov * Robert Kennedy Robert.Kennedy@tetratech.com 3 Link to the Webinar Slides and Audio Everyone will receive a

  7. Contacts for MicroBooNE plots and other data representations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts and Staff Contacts and Staff Contacts Contact the U.S. Department of Energy (DOE) Office of Indian Energy by mail, email, or phone. Washington, D.C. DOE Office of Indian Energy 1000 Independence Ave. SW Room 8E-060 Washington, D.C. 20585 Help Desk Phone: 720-356-1352 Email: tribal@ee.doe.gov Leadership Christopher Clark Deschene Director, Office of Indian Energy Policy and Programs Christopher Clark Deschene (Navajo Nation) is the director of the Office of Indian Energy. Mr. Deschene

  8. Tenth anniversary of the Surface Mining Control and Reclamation Act of 1977. Oversight hearing before the Subcommittee on Energy and the Environment of the Committee on Interior and Insular Affairs, House of Representatives, One Hundredth Congress, First Session

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    Testimony was heard from representatives from the Society of American Archeology, the Office of Surface Mining and Reclamation Enforcement, the Office of Environmental Energy Management of Pennsylvania, National Wildlife Federation, Sierra Club, Western Organizations of Resource Councils, Southwest Research and Information Center, West Virginia Highlands Conservancy, Illinois South Project, Concern About Water Loss Due to Mining, Mountain Stream Monitors, Citizens Organized Against Longwalling, Environmental Policy Institute, Kentucky Fair Tax Coalition, Save Our Cumberland Mountains, Navajo Nation, several coal mining companies, the National Coal Association, and Small Coal Operator Advisory Council. Prepared statements from all witnesses plus additional materials are included.

  9. Energy Department Provides $140.3 Million to Low-Income Families for Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization | Department of Energy 140.3 Million to Low-Income Families for Home Weatherization Energy Department Provides $140.3 Million to Low-Income Families for Home Weatherization April 3, 2006 - 9:55am Addthis Funding is first installment of $243 million in total weatherization grants for FY 2006 WASHINGTON, D.C. - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced $140.3 million in weatherization program grants to 31 states and the Navajo Nation to make

  10. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Text, Appendices A--C. Final report

    SciTech Connect (OSTI)

    1988-07-01

    This Remedial Action Plan (RAP) has been developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Appendices A,B, and C are provided as part of this document. Appendix A presents regulatory compliance issues, Appendix B provides details of the engineering design, and Appendix C presents the radiological support plan.

  11. U.S. Department of Energy Office of Legacy Management's Tribal Interactions - 12513

    SciTech Connect (OSTI)

    Gil, April; Shafer, David; Elmer, John

    2012-07-01

    Effective government-to-government interactions with tribal nations and maintaining stakeholder relations with members of tribes are increasingly important to the U.S. Department of Energy (DOE) Office of Legacy Management (LM). As of October 2011, LM was responsible for long-term surveillance and maintenance of 87 sites and facilities in the continental U.S. and Puerto Rico, including some sites on tribal lands. The sites on tribal lands can affect natural resources that are managed or used by tribes, or the sites can potentially affect areas of cultural significance to tribal nations in Alaska, Arizona, Colorado, New Mexico, Utah, Washington, and Wyoming. Tribes are separate sovereign governments recognized in the U.S. Constitution and are significant stakeholders for LM sites. The tribes are individual nations with diverse histories, cultures, customs, religions, and laws. LM has regular communication with the affected tribes to inform members of issues, to allow the tribe to participate in decision making, to provide technical reviews, and to ensure tribal concerns are addressed. Four LM sites are in the Navajo Nation. Three of those sites contain uranium mill tailings disposal cells regulated under long-term surveillance and maintenance programs that require monitoring and annual inspections. The fourth site was remediated but still has a groundwater plume that LM is responsible for. DOE and LM have worked with the Navajo Nation for almost 30 years on technical issues and to ensure tribal concerns are addressed. (authors)

  12. Modification to the Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Volume 1, Text, Attachments 1--6. Final report

    SciTech Connect (OSTI)

    1989-01-01

    This document provides the modifications to the 1988 Remedial Action Plan (RAP) of the contaminated materials at the Monument Valley, Arizona, and Mexican Hat, Utah. The text detailing the modifications and attachments 1 through 6 are provided with this document. The RAP was developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents.

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project.

  14. ToHajiilee Economic Development, Inc.(TEDI) Feasibility Study for Utility-Scale Solar

    SciTech Connect (OSTI)

    Burpo, Rob

    2012-02-29

    To??Hajiilee Economic Development, Inc. (TEDI) is the economic development entity representing the ToHajiilee Chapter of the Navajo Nation, also known as the Ca??oncito Band of Navajo (CBN). Using DOE funding, TEDI assembled a team of qualified advisors to conduct a feasibility study for a utility-scale 30 MW Photovoltaic (PV) solar power generation facility on TEDI trust lands. The goal for this project has been to gather information and practical business commitments to successfully complete the feasibility analysis. The TEDI approach was to successively make informed decisions to select an appropriate technology best suited to the site, determine environmental viability of the site, secure options for the sale of generated power, determine practicality of transmission and interconnection of power to the local grid, and secure preliminary commitments on project financing. The feasibility study has been completed and provides TEDI with a practical understanding of its business options in moving forward with developing a solar project on CBN tribal lands. Funding from DOE has allowed TEDI and its team of professional advisors to carefully select technology and business partners and build a business model to develop this utility-scale solar project. As a result of the positive feasibility findings, TEDI is moving forward with finalizing all pre-construction activities for its major renewable energy project.

  15. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities which are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site near Tuba City, Arizona. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the Navajo Nation, the Hopi Tribe, US Bureau of Indian Affairs (BIA), and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE, the Navajo Nation, and the Hopi Tribe, and concurrence by NRC, becomes Appendix B of the Cooperative Agreement. Following the introduction, contents are as follows: Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 summarizes the plan for ensuring environmental, health, and safety protection for the surrounding community and the on-site workers. Section 6.0 presents a detailed listing of the responsibilities of the project participants. Section 7.0 describes the features of the long-term surveillance and maintenance plan. Section 8.0 presents the quality assurance aspects of the project. Section 9.0 documents the ongoing activities to keep the public informed and participating in the project.

  16. Uranium Mill Tailings Remedial Action Program. Annual status report

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The purpose, scope, history, requirements, and management organization of the UMTRA Program are summarized in the Introduction. The remainder of the report describes progress made during the past year (F 1980) and discusses future plants and activities. Early emphasis has been on the four highest-priority sites because of their proximity to population centers. These sites are: (1) Canonsburg, Pennsylvania; (2) Salt Lake City, Utah; (3) Durango, Colorado; and (4) Shiprock, New Mexico (Navajo Reservation). To date, twenty-five vicinity properties near the Canonsburg site and two such properties near the Salt Lake City site have been designated for remedial action. A research effort was undertaken at a major vicinity property, the Mountain States Supply Company in Salt Lake City, to study the effects of heating-and-ventilating-system modification on indoor radon-daughter concentrations. A cooperative agreement was executed between DOE and the Commonwealth of Pennsylvania. A similar agreement with the State of Utah is expected to be executed in early FY 1981. Further, it is expected that additional cooperative agreements will be negotiated during FY 1981 with the States of Colorado and Wyoming and the Navajo Nation. It is expected that the processing site at Canonsburg, PA (the Canonsburg Industrial Park) will be acquired during FY 1981. Draft Environmental Impact Statements for the four highest-priority sites will be completed during FY 1981.

  17. Mines in the Four Corners anticipate growth

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2008-02-15

    Productive mines in the southwest deplete reserves, while the government drags its heels on new power projects. Production in Arizona and New Mexico has fallen 18% over the last four years to 34.1 million tons. With Chevron Mining's McKinley mine rapidly depleting its reserves the industry will continue to contract. In the last three years at least three large mines in the Four Corners have terminated operations. Three others remain captive operations: BHP Billiton's San Juan Underground and Navajo Surface operations and Peabody Energy's Kayenta surface mine. In 2006 the Black Mesa mine stopped producing coal. These four mines are isolated from the national railways. Peabody's new El Segundo surface mine near Grants, NM is increasing production. If the planned $3 billion Desert Rock coal-fired power plant is built this will present a new market for the Navajo mine. The article gives details about the state of the aforementioned mines and of the new King II coal mine on the northern periphery of the San Juan basin and discusses the state of plans for the Desert Rock Energy Project. 5 photos.

  18. U.S. Energy Information Administration | Annual Coal Report 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Average Sales Price of Coal by State, County, and Number of Mines, 2014 Coal-Producing State and County Number of Mines Sales (thousand short tons) Average Sales Price (dollars per short ton) Alabama 32 17,359 87.17 Bibb 1 w w Franklin 2 w w Jefferson 9 5,764 103.31 Shelby 2 w w Tuscaloosa 6 8,693 79.37 Walker 10 1,886 79.19 Winston 2 w w Alaska 1 w w Denali 1 w w Arizona 1 w w Navajo 1 w w Arkansas 1 w w Sebastian 1 w w Colorado 9 24,536 38.64 Delta 1 w w Gunnison 1 w w La Plata 1 w w Moffat

  19. Wintertime meteorology of the Grand Canyon region

    SciTech Connect (OSTI)

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  20. National radon database documentation. Volume 4. The EPA/state residential radon surveys: Year 4. Final report 1986-1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The National Radon Database has been developed by the U.S. Environmental Protection Agency (EPA) to distribute information collected in two recently completed radon surveys: the EPA/State Residential Radon Surveys, Years 1 to 6; and The National Residential Radon Survey. The goals of the state radon surveys were twofold. Some measure of the distribution of radon levels among residences was desired for major geographic areas within each state and for each state as a whole. In addition, it was desired that each state survey would be able to identify areas of potentially high residential radon concentrations (hot spots) in the state, enabling the state to focus its attention on areas where indoor radon concentrations might pose a greater health threat. The document discusses year 4, 1989-90. The areas surveyed are: California; Hawaii; Idaho; Louisiana; Nebraska; Billings, MT IHS Area; Nevada; North Carolina; Oklahoma; South Carolina; and Navajo Nation.

  1. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1985-12-01

    FY 1985 project accomplishments include: completed 90% of the processing site remedial actions at Canonsburg, Pennsylvania, and initiated remedial actions at Salt Lake City, Utah, and Shiprock, New Mexico; awarded remedial action contracts on 329 vicinity properties at seven designated locations and completed survey and inclusion activities on a total of 1620 vicinity properties; published the Environmental Assessment (EA) for Lakeview, Oregon, issued the draft and prepared the final Environmental Impact Statement (EIS) for Durango, Colorado; completed the Remedial Action Plan (RAP) for Lakeview, Oregon, and prepared the draft RAP for Durango, Colorado; executed cooperative agreements with Idaho, New Mexico, and the Navajo Nation/Hopi Tribe; executed a Memorandum of Understanding with the Nuclear Regulatory Commission; and developed proposed UMTRA Project design review criteria between DOE and the NRC.

  2. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  3. Town of Pagosa Springs geothermal heating system

    SciTech Connect (OSTI)

    Garcia, M.B.

    1997-08-01

    The Town of Pagosa Springs has owned and operated a geothermal heating system since December 1982 to provide geothermal heating during the fall, winter and spring to customers in this small mountain town. Pagosa Springs is located in Archuleta County, Colorado in the southwestern corner of the State. The Town, nestled in majestic mountains, including the Continental Divide to the north and east, has an elevation of 7,150 feet. The use of geothermal water in the immediate area, however, dates back to the 1800`s, with the use of Ute Bands and the Navajo Nation and later by the U.S. Calvery in the 1880`s (Lieutenant McCauley, 1878). The Pagosa area geothermal water has been reported to have healing and therapeutic qualities.

  4. Tribal Colleges Initiative project. Quarterly report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    1998-07-01

    The Tribal Colleges Initiative (TCI) grant is in the second year of funding from the US Department of Energy Environmental Management Program. The project period has been determined to be 7.5 months, April 1 to November 14, 1998 in order to align with the federal fiscal year. This quarterly report includes activities for the first three months (April 1--June 30, 1998) of the Year 2 funding period. The TCI Program office requested each Tribal College to write a quarterly report of activities at their respective institutions. These reported are attached. These institutions are Southwestern Indian Polytechnic Institute (SIPI), Crownpoint Institute of Technology (CIT) and the Dine` College (DC, formerly Navajo Community College).

  5. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  6. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  7. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  8. College Bound American Indian Math and Science Enrichment Program (AIMS). Final report

    SciTech Connect (OSTI)

    1998-09-01

    Southwestern Indian Polytechnic Institute (SIPI), was founded in 1971 and is located on 164 acres in northwest Albuquerque, New Mexico in the center of New Mexico`s agricultural and high-tech corridors. SIPI became accredited as a community college in 1993, serves Native Americans nationwide, and is governed by a nationally-tribally appointed Board of Regents (Jicarilla Apache, Joint Oklahoma Tribes, Mescalero Apache, Navajo Nation-Arizona, Navajo Nation-New Mexico, Ten Southern Pueblos, and Eight Northern Pueblos, Southern Ute, Inter-tribal Council of Arizona, and Oglala Sioux). In 1993, The US Department of Education, TRIO Programs no longer funded the Southwestern Indian Polytechnic Institute (SIPI) Summer Math and Science Enrichment Program. However, with US Department of Energy funding SIPI was able to continue service to the Native American community under the new title of College Bound American Indian Math and Science (AIMS) Enrichment Program. This new program continued the goals and objectives of the TRIO program with an expanded focus that included students from more Native American communities nationwide. The program also interfaced with a teacher enrichment program (Rural American Indian Science Education-RAISE) sponsored by the Bureau of Indian Affairs and Sandia National Labs (SNL). SIPI in collaboration with Sandia National Laboratories and Lawrence Livermore National (LLNL) Laboratory established a mathematics and science enrichment program at SIPI for students attending rural high schools serving predominantly Native American populations. The primary goal of the program was to provide 9th--12th grade students, mostly Native American, the skills and knowledge, interest and motivation, and strategies to remain in high school and pursue a college education in a math, science, or technology based field. Each year, the program included a six-week intensive residential summer program located at SIPI as well as academic year support activities at the student`s high school. A summary of the program activities during the grant period is given.

  9. Remedial Action Plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Shiprock, New Mexico

    SciTech Connect (OSTI)

    Hill, T.V.; Morley, J.A. . Uranium Mill Tailings Remedial Action Project Office); Began, E.T. )

    1985-06-01

    This Remedial Action Plan (RAP) has been developed to serve a twofold purpose. It presents the series of activities which are proposed by the Department of Energy (DOE) to effect long-term control of radioactive materials at the inactive uranium processing site located on the Navajo Reservation at Shiprock, New Mexico. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Shiprock site. Detailed supporting information can be found in appendices and referenced documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3.0 traces the history of operations at the Shiprock site with a description of the present site characteristics. Section 4.0 provides a definition of site-specific problems, a listing of remedial action alternatives which have been considered, and the action which is being proposed. Section 5.0 presents a summary of the conceptual design for the proposed action which includes objectives, design features, schedule, cost, and implementation methods. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the onsite workers. Section 7.0 presents a detailed listing of the responsibilities of the project participants. Section 8.0 describes the quality assurance process that will be used by the RAC during construction. Section 9.0 describes the features of the long-term maintenance and surveillance plan. Section 10.0 documents the on-going activities to keep the public informed and participating in the project. Attached as part of the RAP are five appendices which describe in more detail various aspects of the remedial action.

  10. Status of activities on the inactive uranium mill tailings sites remedial action program. Office of the Assistant Secretary for Environment

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    This report on the status of the Office of Environment's program for inactive uranium mill tailings sites is an analysis of the current status and a forecast of future activities of the Office of Environment. The termination date for receipt of information was September 30, 1980. Aerial radiological surveys and detailed ground radiological assessments of properties within the communities in the vicinity of the designated processing sites in Canonsburg, Pennsylvania, Salt Lake City, Utah, and Boise, Idaho led to the designation of an initial group of vicinity properties for remedial action. The potential health effects of the residual radioactive materials on or near these properties were estimated, and the Assistant Secretary for Environment recommended priorities for performing remedial action to the Department's Assistant Secretary for Nuclear Energy. In designating these properties and establishing recommended priorities for performing remedial action, the Office of Environment consulted with the Environmental Protection Agency, the Nuclear Regulatory Commission, representatives from the affected State and local governments, and individual property owners. After notifying the Governors of each of the affected States and the Navajo Nation of the Secretary of Energy's designation of processing sites within their areas of jurisdiction and establishment of remedial action priorities, a Sample Cooperative Agreement was developed by the Department in consultation with the Nuclear Regulatory Commission and provided to the affected States and the Navajo Nation for comments. During September 1980, a Cooperative Agreement with the Commonwealth of Pennsylvania for the designated Canonsburg processing site was executed by the Department. It is anticipated that a Cooperative Agreement between the State of Utah and the Department to perform remedial actions at the designated Salt Lake City site will be executed in the near future.

  11. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah

    SciTech Connect (OSTI)

    1993-02-01

    This document is a revision of the original Mexiacan Hat Remedial Action Plan (RAP) and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. This RAP has been developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3. 0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 presents the water resources protection strategy. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the on- site workers. Section 7.0 lists the responsibilities of the project participants. Section 8.0 describes the features of the long-term surveillance and maintenance plan.

  12. Annual site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program that has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1995 are discussed in this annual site environmental report. It is written to show the nature and effectiveness of the environmental protection program. Western operates and maintains nearly 17,000 miles of transmission lines, 257 substations, and various appurtenant power facilities in fifteen central and western states. Western is also responsible for planning, construction, and operation and maintenance of additional federal transmission facilities that may be authorized in the future. There is a combined total of 55 hydroelectric power generating plants in the service area. Additionally, Western markets the US entitlement from the Navajo coal-fired plant near Page, Arizona. The Department of Energy requires the preparation of an annual site environmental report. Because Western has over 400 facilities located in these states, this report addresses the environmental activities in all the facilities as one site.

  13. Annual site environmental report for calendar year 1988

    SciTech Connect (OSTI)

    1988-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program which has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1988 are discussed in this annual site environmental report. It is written to demonstrate the nature and effectiveness of the environmental protection program. Western is responsible for the operation and maintenance of 16,376 miles of transmission lines, 254 substations, and various appurtenant power facilities in the above geographic areas. Western also is responsible for planning, construction, and operation and maintenance of additional Federal transmission facilities that may be authorized in the future. There is a combined total of 51 hydroelectric power generating plants in the service areas. Additionally, Western markets the US entitlement from the large Navajo coal-fired plant near Page, Arizona, and power generated at a wind farm in Wyoming. The Department of Energy requires the preparation of an annual site environmental report. Because Western has numerous facilities located in these states, this report was written to address the environmental activities in all of the facilities as one site.

  14. Annual site environmental report for calendar year 1991

    SciTech Connect (OSTI)

    1991-12-31

    The Western Area Power Administration (Western) has established a formal environmental protection, auditing, monitoring, and planning program which has been in effect since 1978. The significant environmental projects and issues Western was involved with in 1991 are discussed in this annual site environmental report. It is written to demonstrate the nature and effectiveness of the environmental protection program. Western is responsible for the operation and maintenance of 16,664 miles of transmission lines, 265 substations, and various appurtenant power facilities in fifteen central and western states. Western also is responsible for planning, construction, and operation and maintenance of additional federal transmission facilities that may be authorized in the future. There is a combined total of 51 hydroelectric power generating plants in the service area. Additionally, Western markets the US entitlement from the Navajo coal-fired plant near Page, Arizona. The Department of Energy requires the preparation of an annual site environmental report. Because Western has numerous facilities located in these states, this report was written to address the environmental activities in all of the facilities as one site.

  15. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  16. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-07-14

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  17. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-08-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide (CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  19. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1992-06-01

    In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona's Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

  20. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  1. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1992-06-01

    In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona`s Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

  2. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  3. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  4. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  5. Proposed coal product valuation rules. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, First Session, November 16, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to discuss the proposed rules issued by the Department of the Interior relating to the valuation of coal production from Federal and Indian leases for royalty purposes. The rules would base the value of coal on the gross proceeds obtained under a contract. The rules would exclude Federal black lung excise tax payments and abandoned mine payments from value, but would include state severance taxes. Considerable controversy arose such that Congress imposed a moratorium on implementation to allow further public comment. An alternative proposal from a joint industry group would base value on the depletable income provisions of the Internal Revenue Code. However, several western governors have voiced concerns over this alternative which analysis shows would result in significantly lower revenues to the Federal government, the states, and to the Tribes. Testimony was heard from eight witnesses, representing the DOI Land and Minerals Management, electric power associations, Western Organization of Resource Councils, the Navajo nation, National Coal Association, and Montana. Additional materials were submitted by the Energy Information Administration, the Western Coal Traffic League, the Western Fuels Association, and the States of Wyoming, North Dakota, Colorado, and New Mexico.

  6. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  7. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  8. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1997-02-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Three activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buidups in the Paradox basin: (1) interpretation of new seismic data in the Mule field area, (2) reservoir engineering analysis of the Anasazi field, and (3) technology transfer.

  9. Environmental assessment: South microwave communication facilities

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  10. Rio Grande pipeline introduces LPG to Mexico

    SciTech Connect (OSTI)

    1997-06-01

    Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

  11. Eolian event stratigraphy - A conceptual framework

    SciTech Connect (OSTI)

    Kocurek, G.; Havholm, K.G. (Univ. of Texas, Austin (United States))

    1991-03-01

    A basis for eolian event stratigraphy is to distill the impact of events into fundamental processes and products. For accumulation (net deposit through time) to occur, the sediment budget must be positive. If the sediment budget becomes neutral or negative, accumulation ceases and a bypass or erosional super bounding surface, respectively, forms capping the genetic unit. Within the three types of eolian systems (dry, wet, stabilized), the mechanisms of accumulation and super-surface formation differ. In the dry system, accumulation occurs because of areal deceleration of sand-carrying winds. Because of dune-interdune flow conditions, accumulation begins when interdune flats are closed, requiring sand supply, time, and conditions for dune growth at the expense of interdune flats. In the wet system, accumulation of dune and interdune deposits occurs by trapping with a rising water table. Accumulations vary with the nature of the water table rise, proportion of dunes and interdune flats, and interdune topography. In the stabilized system, accumulation occurs with rapid stabilization of elements of active eolian systems; super surfaces form when the causes of stabilization cease. The eolian rock record consists of preserved accumulations and super surfaces. Accumulation space is distinct from preservation space. Preservation space is made by subsidence and water table rise. Without preservation space, an unconformity results. The dominance of subsidence versus water table rise is reflected in dry and wet accumulations respectively, such as the Jurassic Navajo and Entrada sandstones.

  12. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    SciTech Connect (OSTI)

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the same conditions as alkali-feldspar dissolution experiments with and without the presence of CO{sub 2} performed in the first year to check the validation of the experiments and analysis. The changes of solution chemistry as dissolution experiments progressed were monitored with on-line sampling of the aqueous phase at the constant temperature and pressure. These data allow calculating overall apparent mineral (feldspars and sandstones) dissolution rates and secondary mineral precipitation rates as a function of saturation states. State-of-the-art atomic resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electron microprobe was used to characterize the products and reactants. Reaction-path geochemical modeling was used to interpret the experimental results of alkali-feldspar dissolution experiments without the presence of CO{sub 2}. Two manuscripts are near completion. Also during the second year, our education goal of graduate student training has been advanced. A Ph. D. student at Indiana University is progressing well in the degree program and has taken geochemical modeling, SEM, and TEM courses, which will facilitate research in the third year. A Ph. D. student at University of Minnesota had graduated. With the success of training of graduate students and excellent experimental data in the second year, we anticipate a more fruitful year in the third year.

  13. Analysis of Potential Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO(sub 2}

    SciTech Connect (OSTI)

    Evans, James

    2012-11-30

    We used a multifaceted approach to investigate the nature of caprocks above, and the interface between, reservoir-?quality rocks that might serve as targets for carbon storage. Fieldwork in southeastern Utah examined the regional-? to m-?scale nature of faults and fractures across the sedimentiological interfaces. We also used microscopic analyses and mechanical modeling to examine the question as to how the contacts between units interact, and how fractures may allow fluids to move from reservoirs to caprock. Regional-?scale analyses using ASTER data enabled us to identify location of alteration, which led to site-?specific studies of deformation and fluid flow. In the Jurassic Carmel Formation, a seal for the Navajo Sandstone, we evaluated mesoscale variability in fracture density and morphology and variability in elastic moduli in the Jurassic Carmel Formation, a proposed seal to the underlying Navajo Sandstone for CO{sub 2} geosequestration. By combining mechano-?stratigraphic outcrop observations with elastic moduli derived from wireline log data, we characterize the variability in fracture pattern and morphology with the observed variability in rock strength within this heterolithic top seal. Outcrop inventories of discontinuities show fracture densities decrease as bed thickness increases and fracture propagation morphology across lithologic interfaces vary with changing interface type. Dynamic elastic moduli, calculated from wireline log data, show that Youngs modulus varies by up to 40 GPa across depositional interfaces, and by an average of 3 GPa across the reservoir/seal interface. We expect that the mesoscale changes in rock strength will affect the distributions of localized stress and thereby influence fracture propagation and fluid flow behavior within the seal. These data provide a means to closely tie outcrop observations to those derived from subsurface data and estimates of subsurface rock strength. We also studied damage zones associated normal faults in the Permian Cedar Mesa Sandstone, southeastern Utah. These faults are characterized by a single slip surfaces and damage zones containing deformation bands, veins, and joints. Field observations include crosscutting relationships, permeability increase, rock strength decrease, and ultraviolet light induced mineral fluorescence within the damage zone. These field observations combined with the interpreted paragenetic sequence from petrographic analysis, suggests a deformation history of reactivation and several mineralization events in an otherwise low-?permeability fault. All deformation bands and veins fluoresce under ultraviolet light, suggesting connectivity and a shared mineralization history. Pre-?existing deformation features act as loci for younger deformation and mineralization events, this fault and its damage zone illustrate the importance of the fault damage zone to subsurface fluid flow. We model a simplified stress history in order to understand the importance of rock properties and magnitude of tectonic stress on the deformation features within the damage zone. The moderate confining pressures, possible variations in pore pressure, and the porous, fine-?grained nature of the Cedar Mesa Sandstone results in a fault damage zone characterized by enhanced permeability, subsurface fluid flow, and mineralization. Structural setting greatly influences fracture spacing and orientation. Three structural settings were examined and include fault proximity, a fold limb of constant dip, and a setting proximal to the syncline hinge. Fracture spacing and dominant fracture orientation vary at each setting and distinctions between regional and local paleo-?stress directions can be made. Joints on the fold limb strike normal to the fold axis/bedding and are interpreted to be sub-?parallel to the maximum regional paleo-?stress direction as there is no fold related strain. Joints proximal to faults and the syncline hinge may have formed under local stress conditions associated with folding and faulting, and

  14. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect (OSTI)

    Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Wilson, Thomas; H Stanko, Dennis C.

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 2030% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  15. SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2004-04-01

    The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in monitoring and verification approaches needed to validate long-term storage efforts.

  16. Renewable energy in Indian country

    SciTech Connect (OSTI)

    1995-12-31

    On June 25--27, 1995, at Mesa Verde National Park in southwestern Colorado, the Center for Resource Management (CRM), organized and sponsored a conference in conjunction with the Navajo Nation, EPA, and Bechtel Group, Inc., to deal with issues associated with developing renewable energy resources on Indian lands. Due to the remoteness of many reservation homes and the cost of traditional power line extensions, a large percentage of the Indian population is today without electricity or other energy services. In addition, while they continue to develop energy resources for export, seeing only minimal gain in their own economies, Indian people are also subject to the health and environmental consequences associated with proximity to traditional energy resource development. Renewable energy technologies, on the other hand, are often ideally suited to decentralized, low-density demand. These technologies--especially solar and wind power--have no adverse health impacts associated with generation, are relatively low cost, and can be used in applications as small as a single home, meeting power needs right at a site. Their minimal impact on the environment make them particularly compatible with American Indian philosophies and lifestyles. Unfortunately, the match between renewable energy and Indian tribes has been hampered by the lack of a comprehensive, coordinated effort to identify renewable energy resources located on Indian lands, to develop practical links between Indian people`s needs and energy producers, and to provide the necessary training for tribal leaders and members to plan, implement, and maintain renewable energy systems. Summaries of the presentations are presented.

  17. Haze in the Grand Canyon: An evaluation of the Winter Haze Intensive Tracer Experiment

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The Grand Canyon is one of the most spectacular natural sights on earth. Approximately 4 million visitors travel to Grand Canyon National Park (GCNP) each year to enjoy its majestic geological formations and intensely colored views. However, visibility in GCNP can be impaired by small increases in concentrations of fine suspended particles that scatter and absorb light; the resulting visibility degradation is perceived as haze. Sulfate particles are a major factor in visibility impairment at Grand Canyon in summer and winter. Many wintertime hazes at GCNP are believed to result from the accumulation of emissions from local sources during conditions of air stagnation, which occur more frequently in winter than in summer. In January and February 1987, the National Park Service (NPS) carried out a large-scale experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX) to investigate the causes of wintertime haze in the region of GCNP and Canyonlands National Park. The overall objective of WHITEX was to assess the feasibility of attributing visibility impairment in specific geographic regions to emissions from a single point source. The experiment called for the injection of a tracer, deuterated methane (CD{sub 4}), into one of the stacks of the Navajo Generating Station (NGS), a major coal-fired power plant located 25 km from the GCNP boundary and 110 km northeast of Grand Canyon Village. A network of field stations was established in the vicinity -- mostly to the northeast of GCNP and NGS -- to measure CD{sub 4} concentrations, atmospheric aerosol and optical properties, and other chemical and physical attributes. 19 refs., 3 figs.

  18. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  19. BUILDING TRIBAL CAPABILITIES IN ENERGY AND ENVIRONMENTAL MANAGEMENT

    SciTech Connect (OSTI)

    Unknown

    2000-03-01

    The following activities were completed by the end of the quarter: (1) The CERT Executive Director invited a cross section of CERT member Tribes to participate in the project. By the end of the quarter, three Tribes had the invitation under active consideration, four Tribes expressed interest but wanted to see the detailed workplan prior to making a final decision and one Tribe, the Navajo Nation has accepted the invitation. (2) The CERT Board of Directors Executive Committee has endorsed two significant environmental policy priorities for consideration in the project. First, how does the federal Indian trust responsibility to land and natural resources as well as for the health, safety and political integrity of Indian Tribes affect the federal responsibility for facility cleanup and other statutory mandates under federal environmental statutes? And second, What are the protocols of government-to-government relations within a federal system of shared sovereignty and shared governmental responsibilities? And the corollaries to that question, What is the federal obligation for consultation with Tribes and how is that different and similar to consultation with states? And, What is the federal obligation to work cooperatively with Tribes and states in recognition of the three sovereigns of the American federal system? (3) The CERT consulted with political leaders and environmental staff of member and non-member Tribes. This consultation centered on three environmental policy priorities: issues concerning the intergovernmental interface between states, Tribes and federal government agencies and programs; Issues with the cleanup of federal facilities and activities that have damaged Tribal environmental resources; and issues concerning the DOE cleanup of federal facilities used in the production of nuclear weapons.

  20. Resources of the future in environmental management

    SciTech Connect (OSTI)

    Bhada, R.K.; Morgan, D.; Jacquez, R.

    1994-12-31

    A major issue facing the generation and application of environmental technology is that of educating and training the work force that is needed to resolve the problems of the past and those for the next few decades. By necessity, this professional level workforce must have multidisciplinary education combined with research experience at the leading edge of technology. In order to satisfy this critical need, a unique type of organization was created for education and technology development in environmental areas. The Waste-management Education and Research Consortium (WERC) was created in 1990 by a cooperative agreement with the U.S. Department of Energy as a partnership of New Mexico State University, The University of New Mexico, and the New Mexico Institute of Mining and Technology in collaboration with Los Alamos National Laboratory and Sandia National Laboratories; the Navajo Community College joined as an affiliate in 1991. WERC has conclusively demonstrated that such a partnership collaborating with industry can be an effective tool to expand the nation`s resources to address issues related to the management of all forms of waste, via education, technology development and information transfer. The WERC program has implemented the following items: (1) College education at the technologist, undergraduate and graduate level; (2) Pre-college programs to involve young students in environmental activities; (3) Professional development and restraining series by satellite TV; (4) Technology development projects for solutions at the leading edge; (5) Four measurement and testing laboratories; (6) Technology transfer for information to communities, industry and government; (7) A University Design Contest for interaction between universities; and (8) A First Response Training Academy for emergency personnel. Currently this program is serving over 2000 students and professionals on an international bases.

  1. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  2. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    SciTech Connect (OSTI)

    Not Available

    1993-02-15

    In February, 1990, The Secretary of Energy, James Watkins, approved a grant for a waste (management) education and research consortium program proposed by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, ``WERC`` includes as its founding members NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology the Los Alamos National Laboratory, and the Sandia National Laboratories. The Navajo Community College joined the program later in 1991. The program has the mission of expanding the nation`s capability to address the issues related to management of all types of waste. The program is unique and innovative in many aspects. It provides an integrated approach to this national need, and includes: (1) Education in waste management at the educational institutions resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing hands-on training at the leading edge to students and information feeding into the education programs. (4) Education by technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos & Sandia) located in New Mexico and with the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach programs of special interest to precollege students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the third year.

  3. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992

    SciTech Connect (OSTI)

    Not Available

    1992-04-07

    In February, 1990, the Secretary of Energy, James Watkins approved a grant for a waste (management) education and research consortium program by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, WERC'' includes NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology (NMIMT), Navajo Community College, the Los Alamos National Laboratory and the Sandia National Laboratories. The program is designed to provide an integrated approach to the national need via the following: (1) Education in waste management to reach thousands of students by the three Consortium universities and the affiliate college resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (The term waste or environmental management is used in a broad sense throughout this paper and includes all aspects of environmental management and environmental restoration.) (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing training to students and information to faculty feeding into the education programs. (4) Education and technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos Sandia) located in New Mexico, the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach program of special interest to pre-college students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the second year.

  4. Applications of permeable barrier technology to ground water contamination at the Shiprock, NM, UMTRA site

    SciTech Connect (OSTI)

    Thomson, B.M.; Henry, E.J.; Thombre, M.S.

    1996-12-31

    The Shiprock uranium mill tailings pile in far northwestern New Mexico consists of approximately 1.5 million tons of uranium mill tailings from an acid leach mill which operated from 1954 to 1968. Located on land owned by the Navajo Nation, it was one of the first tailings piles stabilized under the Uranium Mill Tailings Remedial Action (UMTRA) project. Stabilization activities were completed in 1986 and consisted principally of consolidating the tailings, contouring the pile to achieve good drainage, and covering the pile with a multi-layer cap to control infiltration of water, radon emanation, and surface erosion. No ground water protection or remediation measures were implemented other than limiting infiltration of water through the pile, although a significant ground water contamination plume exists in the flood plain adjacent to the San Juan River. The major contaminants at the Shiprock site include high concentrations of sulfate, nitrate, arsenic, and uranium. One alternative for remediation may be the use of a permeable barrier in the flood plain aquifer. As proposed for the Shiprock site, the permeable barrier would be a trench constructed in the flood plain that would be backfilled with a media that is permeable to ground water, but would intercept or degrade the pollutants. Work to date has focused on use of a mixed microbial population of sulfate and nitrate reducing organisms. These organisms would produce strongly reducing conditions which would result in precipitation of the metal contaminants (i.e., Se(IV) and U(IV)) in the barrier. One of the first considerations in designing a permeable barrier is developing an understanding of ground water flow at the site. Accordingly, a steady state numerical model of the ground water flow at the site was developed using the MODFLOW code.

  5. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992

    SciTech Connect (OSTI)

    Not Available

    1992-04-07

    In February, 1990, the Secretary of Energy, James Watkins approved a grant for a waste (management) education and research consortium program by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, ``WERC`` includes NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology (NMIMT), Navajo Community College, the Los Alamos National Laboratory and the Sandia National Laboratories. The program is designed to provide an integrated approach to the national need via the following: (1) Education in waste management to reach thousands of students by the three Consortium universities and the affiliate college resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (The term waste or environmental management is used in a broad sense throughout this paper and includes all aspects of environmental management and environmental restoration.) (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing training to students and information to faculty feeding into the education programs. (4) Education and technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos & Sandia) located in New Mexico, the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach program of special interest to pre-college students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the second year.

  6. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site10281

    SciTech Connect (OSTI)

    Waugh, W.J.; Miller, D.E.; Morris, S.A.; Sheader, L.R.; Glenn, E.P.; Moore, D.; Carroll, K.C.; Benally, L.; Roanhorse, M.; Bush, R.P.; none,

    2010-03-07

    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

  7. Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993

    SciTech Connect (OSTI)

    Not Available

    1993-02-15

    In February, 1990, The Secretary of Energy, James Watkins, approved a grant for a waste (management) education and research consortium program proposed by New Mexico State University (NMSU) to the US Department of Energy (DOE). This program known by the acronym, WERC'' includes as its founding members NMSU, the University of New Mexico (UNM), the New Mexico Institute of Mining and Technology the Los Alamos National Laboratory, and the Sandia National Laboratories. The Navajo Community College joined the program later in 1991. The program has the mission of expanding the nation's capability to address the issues related to management of all types of waste. The program is unique and innovative in many aspects. It provides an integrated approach to this national need, and includes: (1) Education in waste management at the educational institutions resulting in graduate, undergraduate, and associate degrees with concentration in environmental management. (2) Professional development via teleconference for industry and government. (3) Technology development programs at the leading edge, providing hands-on training at the leading edge to students and information feeding into the education programs. (4) Education by technology development at the campuses, as well as from four field sites. (5) Ties with other multidisciplinary university facilities. (6) Ties with two National Laboratories (Los Alamos Sandia) located in New Mexico and with the Oak Ridge Associated Universities and others. (7) Technology transfer and education via an existing fiber optic network, a satellite link, and an existing state-wide extension program. (8) Outreach programs of special interest to precollege students, communities and business and government leaders throughout the United States. This report summarizes the accomplishments and status at the end of the third year.

  8. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  9. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  10. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

  11. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    SciTech Connect (OSTI)

    Mozley, Peter; Evans, James; Dewers, Thomas

    2014-10-31

    We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) and Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO2. (2) Significant flow of CO2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault-to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO2.

  12. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  13. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  14. DEFORMATION AND FRACTURE OF POORLY CONSOLIDATED MEDIA - Borehole Failure Mechanisms in High-Porosity Sandstone

    SciTech Connect (OSTI)

    Bezalel c. Haimson

    2005-06-10

    We investigated failure mechanisms around boreholes and the formation of borehole breakouts in high-porosity sandstone, with particular interest to grain-scale micromechanics of failure leading to the hitherto unrecognized fracture-like borehole breakouts and apparent compaction band formation in poorly consolidated granular materials. We also looked at a variety of drilling-related factors that contribute to the type, size and shape of borehole breakouts. The objective was to assess their effect on the ability to establish correlations between breakout geometry and in situ stress magnitudes, as well as on borehole stability prediction, and hydrocarbon/water extraction in general. We identified two classes of medium to high porosity (12-30%) sandstones, arkosic, consisting of 50-70% quartz and 15 to 50% feldspar, and quartz-rich sandstones, in which quartz grain contents varied from 90 to 100%. In arkose sandstones critical far-field stress magnitudes induced compressive failure around boreholes in the form of V-shaped (dog-eared) breakouts, the result of dilatant intra-and trans-granular microcracking subparallel to both the maximum horizontal far-field stress and to the borehole wall. On the other hand, boreholes in quartz-rich sandstones failed by developing fracture-like breakouts. These are long and very narrow (several grain diameters) tabular failure zones perpendicular to the maximum stress. Evidence provided mainly by SEM observations suggests a failure process initiated by localized grain-bond loosening along the least horizontal far-field stress springline, the packing of these grains into a lower porosity compaction band resembling those discovered in Navajo and Aztec sandstones, and the emptying of the loosened grains by the circulating drilling fluid starting from the borehole wall. Although the immediate several grain layers at the breakout tip often contain some cracked or even crushed grains, the failure mechanism enabled by the formation of the compaction band is largely non-dilatant, a major departure from the dilatant mechanism observed in Tablerock sandstone. The experimental results suggest that unlike our previous assertion, the strength of grain bonding and the mineral composition, rather than the porosity, are major factors in the formation of compaction bands and the ensuing fracture-like breakouts. Some breakout dimensions in all rocks were correlatable to the far-field principal stresses, and could potentially be used (in conjunction with other information) as indicators of their magnitudes. However, we found that several factors can significantly influence breakout geometry. Larger boreholes and increased drilling-fluid flow rates produce longer fracture-like breakouts, suggesting that breakouts in field-scale wellbores could reach considerable lengths. On the other hand, increased drilling-fluid weight and increased drill-bit penetration rate resulted in a decrease in breakout length. These results indicate that breakout growth can be controlled to some degree by manipulating drilling variables. Realizing how drilling variables impact borehole breakout formation is important in understanding the process by which breakouts form and their potential use as indicators of the far-field in situ stress magnitudes and as sources of sand production. As our research indicates, the final breakout size and mechanism of formation can be a function of several variables and conditions, meaning there is still much to be understood about this phenomenon.

  15. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) Absaroka thrust - Paleozoic-cored structures. The Mesozoic-cored structures subplay represents a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in this subplay produce crude oil and associated gas. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplay. It represents a very continuous and linear, hanging wall, ramp anticline where the Twin Creek is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in both subplays consist of long, narrow, doubly plunging anticlines.

  16. COMPNAME","COMPID","YEAR","PLANTNAME","KIND","CONSTRUC","INSTALLED","MAXCAP","NE

    U.S. Energy Information Administration (EIA) Indexed Site

    EQUIP","TOTCOST","COSTCAP","GROSSEXP","OPERENG","FUEL","COOLANTS","STEXP","STOTH","STTRANS","ELECEXP","MISCST","RENTS","MAINSUP","MAINSTRUC","MAINBOIL","MAINELEC","MAINMISC","TOTPROD","EXPKWH","UNITCL","QUANTCL","AVGHEATCL","ACDELCL","ACBURNCL","ACBTUCL","ACNETGENCL","ABTUNETGCL","UNITGAS","QUANTGAS","AVGHEATGAS","ACDELGAS","ACBURNGAS","ACBTUGAS","ACNETGNGAS","ABTUNETGAS","UNITOIL","QUANTOIL","AVGHEATOIL","ACDELOIL","ACBURNOIL","ACBTUOIL","ACNETGNOIL","ABTUNETOIL" "Tennessee Valley Authority",18642,1999,"Sequoyah","Nuclear","01/01/81",,2441160,2303000,8760,1008,1.8570502e+10,3184031,533636867,2488511062,3025331960,1239,33187938,21080862,86166618,4316783,11925073,0,0,13329621,28360769,0,16330987,1528775,8295886,3650336,7012139,201997849,11,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",189924066,0,0,0,0.43,0.04,10230 "Tennessee Valley Authority",18642,1999,"Watts Bar","Nuclear","01/01/96","1/1/1996",1269000,1200000,8208,728,8230350000,1953589,2108999339,4827648621,6938601549,5468,30551823,12179502,38261150,3963151,7056493,0,0,10400580,24553068,0,14243155,2328791,9244870,870737,990214,124091711,15,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",84467683,0,0,0,0.43,0.04,10260 "Tennessee Valley Authority",18642,1999,"Johnsonville","Gas Turbine","01/01/75","1/1/1975",1088000,1407000,8760,14,256798000,0,6064116,119609619,125673735,116,112893140,2747882,9870790,0,0,0,0,0,477926,0,2274,1326,0,475339,7436,13582973,53,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Gallons",24224936,139600,0,0.41,0.03,0,13170 "Tennessee Valley Authority",18642,1999,"Gallatin","Gas Turbine","01/01/75","1/1/1975",325200,431000,8760,8,176258000,0,3324533,63486109,66810642,205,80539157,665541,6810251,0,0,0,0,0,151587,0,1339166,1553,0,3922,4338,8976358,51,,0,0,0,0,0,0,0,"Mcf",2252179,1024,0,2.67,2.61,0,0,"Gallons",2063233,139100,0,0.37,0,0.03,14710 "Tennessee Valley Authority",18642,1999,"Browns Ferry","Nuclear","01/01/74","1/1/1977",3456000,2529000,8760,1085,1.771301e+10,890631,909522117,3830292072,4740704820,1372,47061477,58344025,102890781,3642332,11672365,0,0,16130309,26099224,0,5560106,0,25822517,1921329,0,252082988,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",186421503,0,0,0,0.53,0,10520 "Tennessee Valley Authority",18642,1999,"Cumberland","Steam","01/01/73","1/1/1973",2600000,2591000,8760,323,1.6530325e+10,1829568,103903145,1638681020,1744413733,671,63827428,5077791,197194700,0,86656,0,0,3945,13987241,0,1210473,1306476,16946838,4232440,841362,240887922,15,"Tons",6868849,10459,26.16,27.86,1.2,0.01,9746,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Gas Turbine","01/01/71","1/1/1972",820300,622000,8760,9,264695000,0,3063638,102977658,106041296,129,1709273,879771,11709062,0,0,0,0,0,72128,0,301000,0,0,150309,2816,13115086,50,,0,0,0,0,0,0,0,"Mcf",3589538,1024,0,3.06,3.03,0,0,"Gallons",1173222,139500,0,0.55,0,0.03,14460 "Tennessee Valley Authority",18642,1999,"Colbert","Gas Turbine","01/01/72","1/1/1972",476000,420000,8760,7,326221000,0,2826177,64911682,67737859,142,3078759,1248563,12167389,0,0,0,0,0,69117,0,27275,0,0,74,2699,13515117,41,,0,0,0,0,0,0,0,"Mcf",3866688,1024,0,2.8,2.71,0,0,"Gallons",3619161,138400,0,0.35,0,0.03,13670 "Tennessee Valley Authority",18642,1999,"Bull Run","Steam","01/01/67","1/1/1967",950000,912000,8760,87,4389788000,2220883,35786684,300943172,338950739,357,21987402,2324904,50419615,0,2286709,0,0,1742,6906593,0,754423,481980,8505768,2788903,314448,74785085,17,"Tons",1593346,11895,28.85,30.74,1.24,0.01,9257,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Steam","01/01/59","1/1/1959",990000,858000,8760,122,4102572000,142024,73025058,451231229,524398311,530,20254094,1206283,60294160,0,16,0,0,0,9854407,0,392524,824748,8011764,5402527,184253,86170682,21,"Tons",2039487,9680,25.5,29.45,1.39,0.01,10585,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Watts Bar","Steam","01/01/42","1/1/1945",240000,0,8760,0,-1381000,11997,4933530,18578656,23524183,98,-6629,177,0,0,0,0,0,0,109802,0,908,5,0,0,0,110892,-80,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Paradise","Steam","01/01/63","1/1/1970",2558200,2286000,8760,296,1.4181992e+10,8519495,115906466,1287447341,1411873302,552,57696636,6093708,168293657,0,752026,0,0,536,10779025,0,3529172,4127133,18094770,3094627,676700,215441354,15,"Tons",6332104,10413,21.43,26.2,1.14,0.01,10280,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Gallatin","Steam","01/01/56","1/1/1959",1255200,992000,8760,131,7002818000,690082,44703289,427469961,472863332,377,5073325,1612720,80238724,0,1258244,0,0,73323,7350012,0,1803476,714460,6039653,3054984,792751,102938347,15,"Tons",3266195,9540,22.99,24.49,1.19,0.01,9651,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"John Sevier","Steam","01/01/55","1/1/1957",800000,748000,8760,129,5522165000,1570328,37309270,253176616,292056214,365,2993416,946133,70531483,0,3286201,0,0,0,4864155,0,569877,953882,3537596,666934,559907,85916168,16,"Tons",2120222,11710,32.44,33.21,1.3,0.01,9802,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Kingston","Steam","01/01/54","1/1/1955",1700000,1583000,8760,275,1.0147089e+10,3475653,55125946,433125237,491726836,289,31839874,1201130,133624099,0,732904,0,0,671,15993919,0,2888077,697638,10886872,3114678,359796,169499784,17,"Tons",4038449,11134,31.75,32.96,1.34,0.01,9845,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Colbert","Steam","01/01/55","1/1/1965",1350000,1283000,8760,222,6557785000,279029,50717782,608908796,659905607,489,12808186,3684548,92134159,0,115314,0,0,3096,11894009,0,1552144,1216679,16776178,4392373,150021,131918521,20,"Tons",2890398,10787,27.4,31.47,1.38,0.01,10066,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Shawnee","Steam","01/01/53","1/1/1956",1750000,1368000,8760,264,8060005000,504507,64076435,534941906,599522848,343,20760203,5379072,113531307,0,6565666,0,0,278,7470171,0,2988378,2163530,11022440,5415043,396055,154931940,19,"Tons",3766896,10234,28.54,29.83,1.34,0.01,10474,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Johnsonville","Steam","01/01/51","1/1/1959",1485200,1213000,8760,269,6638234000,87967,76839994,522564850,599492811,404,5328716,12443723,83697340,0,-481100,0,0,6321,6501533,0,2973740,1891947,6444598,2867797,430252,116776151,18,"Tons",2922958,11389,26.49,28.52,1.16,0.01,10912,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Widows Creek","Steam","01/01/52","1/1/1965",1968760,1652000,8760,332,8498846000,855691,74795817,748521437,824172945,419,22653730,3695032,119092329,0,6555644,0,0,1697,9854746,0,1449646,2594983,13869309,4635675,4932791,166681852,20,"Tons",3858785,10808,28.8,30.16,1.27,0.01,10896,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"PALO VERDE 17.49%","n","01/01/86","01/01/88",666364,659000,8760,0,5317709000,1244457,281584974,735793972,1018623403,1529,6013000,4282694,25651422,2986065,4032493,0,0,2276671,26939892,0,5837013,1933729,6303817,3749209,2418208,86411213,16,,0,0,0,0,0,0,0,"BBTU",57406,0,0,440.13,0.44,0.01,10795,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"San Tan","Combined Cy","01/01/74","01/01/75",414000,292000,4112,43,714062000,149179,2773141,65463525,68385845,165,-5000,380221,14107193,0,1594474,0,0,0,845877,0,332730,170816,0,7389209,249749,25070269,35,,0,0,0,0,0,0,0,"MCF",6579686,1017,2.12,2.12,2.08,0.02,9372,"BBL",291,485968,0,24.61,4.22,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"SOLAR PV1 & PV2","So1ar","01/01/98","01/01/98",216,100,3000,0,119493,0,0,1676818,1676818,7763,1852000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Steam","01/01/52","01/01/54",108000,106000,736,12,50072000,313326,2433283,15283485,18030094,167,726000,180057,1483303,0,338591,0,0,169009,304652,0,157896,27729,608781,344347,214929,3829294,76,,0,0,0,0,0,0,0,"MCF",651225,1016,2.16,2.16,2.12,0.03,13215,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Gas Turbine","01/01/71","01/01/73",226850,149000,290,0,18990000,0,0,16888448,16888448,74,0,114913,724438,0,85074,0,0,0,40298,0,64493,11249,0,291038,96634,1428137,75,,0,0,0,0,0,0,0,"MCF",281631,1017,2.09,2.09,2.06,0.04,15094,"BBL",60,488889,0,24.61,4.19,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"MOHAVE 10%","Steam","01/01/71","01/01/71",163620,158000,8715,0,996913000,42812,5046928,50920964,56010704,342,1221000,250561,13703464,0,389195,0,0,245787,1776796,-12611,497248,178489,1673455,685271,112185,19499840,20,"Tons",457815,10939,28.47,29.64,1.35,0.01,10093,"MCF",45107,1028,0,2.94,2.86,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CORONADO","Steam","01/01/79","01/01/80",821880,760000,8760,213,5039392000,8300198,158523884,696108809,862932891,1050,7523000,1228492,96325127,0,4607490,0,0,403466,4002498,10446,1754276,1703703,12035645,3902862,1238765,127212770,25,"Tons",2632698,9886,34.53,35.42,1.79,0.02,10357,,0,0,0,0,0,0,0,"BBL",24155,137315,24.21,26.79,4.65,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CRAIG 29%","Steam","01/01/79","01/01/81",259414,248000,8760,0,2050747000,83589,52424794,181936864,234445247,904,680000,368849,22362014,0,1036824,0,0,425951,1689040,12271,323682,251566,1760910,701820,370069,29302996,14,"Coal",1040589,10060,22.56,21.42,1.06,0.01,10223,"MCF",28100,1000,0,2.49,2.49,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CROSS CUT","Steam","01/01/42","01/01/49",30000,3000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 21.7%","Steam","01/01/74","01/01/76",522857,488000,8760,539,3676183000,42866,27115117,246304509,273462492,523,5605000,1396220,45545213,0,1123640,0,0,257918,3750053,132023,667722,165042,7069421,2110905,434407,62652564,17,"Tons",1685726,10956,23.51,26.74,1.22,0.01,10061,,0,0,0,0,0,0,0,"BBL",8625,139078,22.75,28.63,4.9,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 100%","Steam","01/01/74","01/01/76",2409480,2250000,8760,539,1.6020912e+10,197537,124954457,1135043822,1260195816,523,25829493,6236459,196347455,0,5554459,0,0,1293757,8406791,0,3306198,769371,29759456,10024854,2263428,263962228,16,"Tons",7339290,10979,23.5,26.63,1.21,0.01,10074,,0,0,0,0,0,0,0,"BBL",39756,139079,22.75,22.47,3.85,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"FOUR CORNERS 10%","Steam","01/01/69","01/01/70",163620,148000,8760,0,1176172000,11573,7334703,91939839,99286115,607,37000,105696,11684589,0,978340,0,0,90099,1040379,83795,135949,61864,1112429,291525,340786,15925451,14,"Tons",644302,8885,17.41,17.97,1.01,0.01,9757,"MCF",26430,1008,0,4.13,4.1,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"HAYDEN 50%","Steam","01/01/76","01/01/76",137700,131000,6809,0,812423000,482702,13855905,64632670,78971277,574,16419000,157050,8427442,0,469402,0,0,101091,1360780,0,245277,92834,431566,123971,241674,11651087,14,"Tons",413486,10561,22.49,20.28,0.96,0.01,10759,,0,0,0,0,0,0,0,"BBL",1248,138870,26.63,32.67,5.6,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Steam","01/01/57","01/01/61",390472,407000,4062,62,888092000,139014,5833721,51714773,57687508,148,23000,345003,21091146,0,1032200,0,0,1186582,715713,0,741888,530777,2232219,897096,413430,29186054,33,,0,0,0,0,0,0,0,"MCF",9553025,1009,2.14,2.14,2.12,0.02,10859,"BBL",3,500000,0,24.61,4.1,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Gas Turbine","01/01/74","01/01/75",222950,197000,451,0,42223000,0,299904,22692012,22991916,103,0,108584,1469697,0,233742,0,0,0,36481,0,284381,9332,0,296342,34359,2472918,59,,0,0,0,0,0,0,0,"MCF",617372,1007,2.12,0,2.1,0.03,14371,,0,0,0,0,0,0,0 "Alexandria City",298,1999,,"STEAM","01/01/56","01/01/74",171000,170000,5326,20,194429,0,0,0,0,0,0,708998,0,0,0,0,0,0,0,0,199997,14994,0,404462,0,1328451,6833,,0,0,0,0,0,0,0,"MCF",2346281,10,2.24,2.24,2.14,0.03,12.45,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"STEAM","01/01/50",,102500,103000,8760,45,381623000,0,0,0,0,0,0,4120850,6152121,0,0,0,0,0,0,0,0,0,0,0,0,10272971,27,,239196,8800,25.72,25.72,1.46,0.02,11031,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"GAS TURBINE","01/01/72","1/1/1972",22000,18000,95,0,1007000,0,0,0,0,0,0,9422,53460,0,0,0,0,0,0,0,0,0,0,0,0,62882,62,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,99000,137300,0.54,0.54,3.93,0.05,13498 "Anaheim City of",590,1999,,"GAS TRUBINE","01/01/90","01/01/91",49270,45998,638,6,27719000,0,9226000,27237000,36463000,740,0,280835,699954,0,0,0,0,0,0,0,187223,0,0,0,1146979,2314991,84,,0,0,0,0,0,0,0,"MCF",258683,1009,2.76,2.76,2.74,25.7,9394,,0,0,0,0,0,0,0 "Anchorage City of",599,1999,"#1","4 Gas 2 Int","01/01/62","01/01/72",85000,33000,1010,14,9983618,80839,3457655,22418738,25957232,305,380194,55796,353989,0,0,0,0,809120,0,3922,67280,67353,0,442853,0,1800313,180,,0,0,0,0,0,0,0,273580,0,1000,1.38,1.38,1.38,0.03,19744,778,0,133500,33.82,33.82,6.03,0,0 "Anchorage City of",599,1999,"#2","3 Gas 1 Ste","01/01/75","01/01/84",243200,151000,19516,30,759258360,11240,8928538,75136820,84076598,346,5364843,257796,10642281,0,678572,0,0,1623991,233929,0,330573,231135,303990,1190866,118352,15611485,21,,0,0,0,0,0,0,0,7701758,0,1000,1.38,1.38,1.38,0.01,10144,570,0,133500,34.71,34.71,6.19,0,0 "Austin City of",1009,1999,"Downtown","Gas Turbine","01/01/54","01/01/54",5500,5000,0,0,493000,0,0,1065016,1065016,194,0,142,36663,0,0,0,0,7532,0,0,143,0,0,142049,0,186529,378,,0,0,0,0,0,0,0,"MCF",1347,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Northeast","Steam","01/01/71","01/01/71",31500,31300,7566,24,120607160,70498,2376720,5711293,8158511,259,0,42490,2760067,0,395223,0,0,366434,798118,0,24135,51518,290200,20129,3652,4751966,39,"TON",58175,12000,39.8,39.48,1.64,0.02,12637,"MCF",125541,1020,2.75,2.75,2.7,0.03,12648,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Downtown","Steam","01/01/35","01/01/54",27500,22500,465,11,4508000,24099,1221355,5587700,6833154,248,0,31568,193351,0,41643,0,0,12652,492890,0,23781,136549,88433,55977,1897,1078741,239,,0,0,0,0,0,0,0,"MCF",70119,1020,2.75,2.75,2.7,0.04,15874,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER TURBINES","GAS TURBINE","01/01/88","01/01/88",200000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER SOLAR","SOLAR","01/01/86","01/01/86",300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER","STEAM","01/01/70","01/01/77",726000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"HOLLY","STEAM","01/01/60","01/01/74",558000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"SEAHOLM","STEAM","01/01/51","01/01/55",120000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Braintree Town of",2144,1999,"Potter II","Gas Turbine","01/01/77","01/01/77",97500,79500,1284,27,72929000,20271,3762859,18429374,22212504,228,132748,176565,2625145,0,1154442,0,0,0,0,0,158096,316309,488498,491410,262035,5672500,78,,0,0,0,0,0,0,0,"MCF",931167,1035,3.03,3.03,2.92,0.03,11631,"BBLS",14190,138809,15.72,15.72,2.7,0.03,10520 "Brownsville Public Utils Board",2409,1999,"SILAS RAY","STEAM GAS T","01/01/46","01/01/77",155000,197000,5256,29,206,528443,4499041,192117166,197144650,1272,0,205477,6239714,0,1311,0,0,155739,309455,0,74856,224382,203068,176038,1264465,8854505,42983034,,0,0,0,0,0,0,0,"MCF",2346974,1059,2.65,2.65,2.5,0.03,12048,,0,0,0,0,0,0,0 "Bryan City of",2439,1999,,"Gas Turbine","01/01/70","01/01/87",39,30,265,8,5177,0,0,0,0,0,0,0,311874,0,0,0,0,499578,0,0,0,0,0,216081,0,1027533,198480,,0,0,0,0,0,0,0,"Mcf",72688,1000,3.8,3.8,3.8,0.06,29839,"Bbl29839",639,128000,55.63,55.63,7.12,0.06,29839 "Bryan City of",2442,1999,"Bryan Municipal","STEAM, GAS","01/01/55","01/01/74",138000,115000,0,20,118273000,0,7590674,7546886,15137560,110,46427,76607,3529286,0,372623,0,0,606045,154868,9320,63805,20315,520977,159461,31344,5544651,47,,0,0,0,0,0,0,0,"MCF",1626575,1,2.25,2.25,2.21,0.03,14.05,,0,0,0,0,0,0,0 "Bryan City of",2442,1999,"Roland C. Dandy","STEAM","01/01/77","01/01/77",105000,106000,0,19,461142000,1183486,10201555,18752019,30137060,287,105283,76291,11510542,0,391030,0,0,512056,181517,12858,53081,31539,405327,91686,57727,13323654,29,,0,0,0,0,0,0,0,"MCF",5120070,1,2.24,2.24,2.21,0.02,11.36,,0,0,0,0,0,0,0 "Burlington City of",2548,1999,"Gas Turbine","Gas Turbine","01/01/71","01/01/71",25500,25000,106,1,2093500,13587,531143,3214616,3759346,147,17164,6073,130467,0,0,0,0,324,5442,16648,0,0,0,75762,0,234716,112,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",6016,137674,20.61,21.69,3.75,0.06,16616 "Burlington City of",2548,1999,"Joseph C McNeil GenrЬ ","Steam","01/01/84","01/01/84",50,53,4305,48,183109400,278455,18147811,50484579,68910845,1378217,571376,140467,6439721,0,788415,0,0,291816,360657,0,131396,35661,553086,1325161,20193,10086573,55,"Wood-Tons",263762,4750,23.46,23.52,2.47,0.03,13742,"MCF",66041,1012124,2.82,2.82,2.78,0.24,86785,"BBL",2260,136430,20.13,21.19,3.7,0,71.02 "Cedar Falls City of",3203,1999,"Streeter Station","Steam","01/01/63","01/01/73",51500,50000,1650,23,38111600,281328,3758281,14375110,18414719,358,699506,97410,1113417,0,230220,0,0,102634,142771,0,90418,180725,588058,55402,9122,2610177,68,"Tons",19527,12429,38.79,36.49,1.47,0.02,14033.99,"MCF",49410,1000,2.75,2.75,2.75,0.04,14033.99,,0,0,0,0,0,0,0 "Cedar Falls City of",3203,1999,"Combustion Turbine","Combustion","01/01/68","01/01/68",25000,20000,193,0,2814300,70777,134588,3497629,3702994,148,3062,4978,122537,0,0,0,0,5713,0,0,6674,9708,0,32837,0,182447,65,,0,0,0,0,0,0,0,"MCF",50599,1000,2.42,2.42,2.42,0.04,17979.25,,0,0,0,0,0,0,0 "California Dept-Wtr Resources",3255,1999,"Reid Garner #4","Steam-coal","01/01/83","01/01/83",275000,250000,0,96,1597086000,319709000,0,0,319709000,1163,0,0,22054817,0,0,0,0,0,21659183,0,0,0,0,0,0,43714000,27,"Tons",672949,11858,0,13.11,1.31,0.01,11079,,0,0,0,0,0,0,0,"Barrels",7515,133622,0,25,4.55,0.05,11570 "California Dept-Wtr Resources",3255,1999,"BottleRock & S Geysep","Steam-Geoth","01/01/85","01/01/85",55000,0,0,0,0,10000,0,0,10000,0,0,0,0,0,0,0,0,0,553000,0,0,0,0,0,0,553000,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Chanute City of",3355,1999,"Plant #3","Internal Co","01/01/85","01/01/91",31915,39975,595,8,10378156,50000,612000,15500000,16162000,506,0,369525,245371,0,0,0,0,0,0,0,166666,0,0,136912,0,918474,89,"N/A",0,0,0,0,0,0,0,"MCF",78668,1000,2.66,2.66,2.66,0.02,0.02,"Barrels",3969,138000,26.57,26.57,0.08,0.01,0.01 "PUD No 1 of Clark County",3660,1999,"River Road CCCT","Gas Turbine","01/01/97","01/01/97",248000,258504,7058,21,1711891704,1053160,141767983,13187783,156008926,629,2319343,4203148,23066109,0,0,0,0,0,0,0,0,91900,0,0,0,27361157,16,,0,0,0,0,0,0,0,"MCF",11463,1060,2042,2012,1.9,0.01,7114,,0,0,0,0,0,0,0 "Clarksdale City of",3702,1999,,"Combine Cyc","01/01/71","01/01/71",25550,24000,2149,6,43507,0,0,4581109,4581109,179,0,10000,1053091,0,0,0,0,130000,80000,0,10000,0,12009,328580,0,1623680,37320,,0,0,0,0,0,0,0,"MCF",374997,1000,2.8,2.8,2.8,0.02,8.62,"BBL",70,142.5,23.14,23.14,3.86,0.05,13.99 "Clarksdale City of",3702,1999,,"Gas Turbine","01/01/65","01/01/65",11500,11500,754,6,12158,0,0,1445133,1445133,126,0,10000,478409,0,0,0,0,100000,50000,0,20000,0,0,226974,0,885383,72823,,0,0,0,0,0,0,0,"MCF",169662,1000,2.8,2.8,2.8,0.03,13.99,"BBL",115,142.5,23.14,23.14,3.86,0.07,20.18 "Coffeyville City o",3892,1999,"COFFEYVILLE","STEAM","01/01/01","01/01/73",56985,55900,4013,23,68578900,0,0,0,0,0,0,57285,2419645,0,0,0,0,0,1146750,0,0,0,8610,0,0,3632290,53,,0,0,0,0,0,0,0,"MMBTU",938070,1000,2.25,2.58,2.58,0.03,1368,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Steam","01/01/00","01/01/64",11125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68864,7301,41,105,51389,127700,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Diesel","01/01/48","01/01/78",13250,45933,1719,6,7081208,0,0,0,0,0,0,40423,214682,0,0,0,0,37863,0,0,0,12739,0,71418,0,377125,53,,0,0,0,0,0,0,0,"Mcf",65604,9530000,2.84,0,0,0,0,"Barrels",1725,126000,17.7,0,0,0,0 "Colorado Springs City of",3989,1999,"Birdsall","Steam-Gas","01/01/53","01/01/57",62500,4500,1717,4,20716000,10761,2593301,11384249,13988311,224,0,67716,1180669,0,107787,0,0,227078,88988,0,31363,89311,290603,224308,38374,2346197,113,,0,0,0,0,0,0,0,"MCF",412714,806,2.83,2.83,3.52,0.06,16212,"GALLONS",22000,137420,0.11,0.11,0.81,0.01,16212 "Colorado Springs City of",3989,1999,"Drake","Steam-Gas","01/01/25","01/01/74",257300,256000,8760,106,1484262000,2725551,23014851,80547185,106287587,413,0,1059853,25816108,0,1094453,0,0,3228406,1184954,0,462905,237248,4111443,1735831,152472,39083673,26,"TONS",769313,10914,29.13,31.49,1.44,0.01,11585,"MCF",494125,808,2.73,2.73,3.38,0.03,11585,"BARRELS",0,0,0,0,0,0,0 "Colorado Springs City of",3989,1999,"Nixon","Steam-Gas","01/01/80","01/01/80",207000,214000,6081,81,1117841000,5059222,39785705,107090082,151935009,734,0,969721,11571054,0,779121,0,0,1343687,1057607,0,489855,218501,3309067,2974204,146609,22859426,20,"TONS",538337,10432,18.31,18.84,0.9,0,10120,,0,0,0,0,0,0,0,"BARRELS",13952,136738,24.87,24.87,4.33,0.04,10120 "Colorado Springs City of",3989,1999,"CTS","Gas","01/01/99","01/01/99",71660,73000,458,0,22292000,418573,123167,32084223,32625963,455,0,0,715385,0,0,0,0,0,0,0,0,0,0,26204,0,741589,33,,0,0,0,0,0,0,0,"MCF",291394,983,2.89,2.87,2.92,0.03,12852,,0,0,0,0,0,0,0 "Columbia City of",4045,1999,,"Steam/Gas T","01/01/10","01/01/70",86000,226000,8760,46,62152000,115894,3578025,15986526,19680445,229,5320808,43503,2133251,0,531664,0,0,967929,376491,0,170114,28005,512239,452108,0,5215304,84,"Tons",37319,13265,53.83,53.69,2.02,3.22,15930,"Mcf",34179,0,3.64,3.64,0,0,0,,0,0,0,0,0,0,0 "Columbus City of",4065,1999,"O'Shaughnessy",,,,5000,5000,0,1,5860000,0,0,0,0,0,0,0,0,0,0,0,0,49898,0,0,0,0,0,2864,0,52762,9,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Concord City of",4150,1999,,,,,0,0,0,0,545243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Connecticut Mun Elec Engy Coop",4180,1999,"Millstone Unit 3","Nuclear (e)","01/01/86","01/01/86",1253100,1164700,7329,933,8277624400,0,20415627,29930688,50346315,40,0,324496,363329,24201,162455,0,0,48209,296706,13608,313554,74201,315415,228127,1354,2165655,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Wansley 1 & 2","Coal fired","01/01/76","01/01/78",22220,0,0,0,149590620,0,0,9113036,9113036,410,28304,29233,2186381,0,24950,0,0,15863,81536,0,42895,19710,138435,167350,13819,2720172,18,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Scherer 1 & 2","Coal fired","/ /","01/01/84",22680,0,0,0,144814966,0,0,13467749,13467749,594,50818,27106,2605498,0,25617,0,0,15303,77539,0,34949,22981,256897,16076,11927,3093893,21,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Denton City of",5063,1999,"SPENCER PLANT","STEAM","01/01/55","01/01/73",179000,259100,11980,36,305539695,0,0,0,0,0,0,233373,9138796,0,348227,0,0,468112,432003,0,71604,11794,211613,467529,210327,11593378,38,,0,0,0,0,0,0,0,"Mcf",3800668,1,2.24,2.24,2.24,2.99,12.43,"BBl",0,139.68,7.82,0,0,0,0 "Eugene City of",6022,1999,"Willamette","Steam","01/01/31","01/01/50",25000,0,0,0,0,0,0,1189332,1189332,48,0,0,260,0,1204,0,0,-975,0,0,0,0,0,5095,7459,13043,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Eugene City of",6022,1999,"Energy Center","Steam","01/01/76","01/01/76",51200,41000,0,0,192829000,1280,320371,7521672,7843323,153,0,13058,1366594,0,0,0,0,261785,0,0,0,94,0,127793,0,1769324,9,,0,0,0,0,0,0,0,,321587,0,2.51,0,0,0,2495.24,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"ANIMAS","STEAM-COMBI","01/01/55","01/01/94",32180,28000,7808,14,170805000,5968,1109574,25033191,26148733,813,0,70145,3611891,0,225548,0,0,460952,226694,0,122984,0,217797,1021413,38103,5995527,35,,0,0,0,0,0,0,0,"MCF",1668856,1013,2.13,2.13,2.1,0.02,9897,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"SAN JUAN","STEAM-COAL","/ /","/ /",4300042200,43000,7919,10,293222700,0,5471749,62874731,68346480,0,0,71242,5641682,0,114021,0,0,120758,93838,131,62021,34762,382623,77158,65298,6663534,23,"TONS",167448,9421,32.33,32.33,1.72,0.01,10774,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Fayetteville Public Works Comm",6235,1999,"Butler-Warner Gen PtP","Gas-Turbine","01/01/76","01/01/88",303400,276500,1134,33,0,749336,5123088,100277060,106149484,350,4108529,0,-6665,0,0,0,0,0,0,0,0,0,0,292639,-141172,144802,0,,0,0,0,0,0,0,0,"Mcf",1724674,1046,2.72,2.72,2.6,0.03,12249.5,"Barrels",4,138800,27.15,27.87,4.78,0.06,13375.25 "Fort Pierce Utilities Auth",6616,1999,"Steam","Steam","01/01/21","01/01/89",120011,0,0,0,0,0,0,0,0,0,0,564929,6990,0,231196,0,0,428922,138247,0,21508,56082,204594,1437831,87424,3177723,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Freeport Village of Inc",6775,1999,"Power Plant #1","Internal Co",,"01/01/64",13190,0,0,9,2066120,5022,1113459,3036221,4154702,315,51721,42612,209909,0,0,0,0,518539,0,0,0,79604,0,0,0,850664,412,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",293755,138788,0.81,0.68,0.18,0.97,14.88 "Freeport Village of Inc",6775,1999,"Power Plant #2","Internal Co","1/1/1968","01/01/73",37390,57000,1,9,1277200,1827,3178208,8088951,11268986,301,0,52596,205053,0,0,0,0,634322,0,28573,0,101784,0,0,0,1022328,800,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",319336,138788,0.86,0.64,0.13,0.16,9.2 "Fremont City of",6779,1999,"Wright","Steam","01/01/56","01/01/76",132700,83390,8760,47,336075,202231,5905920,42850719,48958870,369,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0