National Library of Energy BETA

Sample records for natural uranium metal

  1. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  2. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  3. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  4. METHOD OF DISSOLVING URANIUM METAL

    DOE Patents [OSTI]

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  5. SURFACE TREATMENT OF METALLIC URANIUM

    DOE Patents [OSTI]

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  6. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  7. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  8. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  9. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  10. PROCESS FOR PREPARING URANIUM METAL

    DOE Patents [OSTI]

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  11. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOE Patents [OSTI]

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  12. METHOD OF PURIFYING URANIUM METAL

    DOE Patents [OSTI]

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  13. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOE Patents [OSTI]

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  14. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface Citation Details In-Document Search Title: Uranium Biomineralization By ...

  15. PRETREATING URANIUM FOR METAL PLATING

    DOE Patents [OSTI]

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  16. The Electrolytic Production of Metallic Uranium

    DOE Patents [OSTI]

    Rosen, R.

    1950-08-22

    This patent covers a process for producing metallic uranium by electrolyzing uranium tetrafluoride at an elevated temperature in a fused bath consisting essentially of mixed alkali and alkaline earth halides.

  17. Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as...

  18. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    DOE Patents [OSTI]

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  19. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  20. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOE Patents [OSTI]

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  1. Colloids generation from metallic uranium fuel

    SciTech Connect (OSTI)

    Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

    2000-07-20

    The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

  2. SEPARATION OF URANIUM FROM OTHER METALS

    DOE Patents [OSTI]

    Hyman, H.H.

    1959-07-01

    The separation of uranium from other elements, such as ruthenium, zirconium, niobium, cerium, and other rare earth metals is described. According to the invention, this is accomplished by adding hydrazine to an acid aqueous solution containing salts of uranium, preferably hexavalent uranium, and then treating the mixture with a substantially water immiscible ketone, such as hexone. A reaction takes place between the ketone and the hydrazine whereby a complex, a ketazine, is formed; this complex has a greater power of extraction for uranium than the ketone by itself. When contaminating elements are present, they substantially remain in ihe aqueous solution.

  3. METHOD OF HOT ROLLING URANIUM METAL

    DOE Patents [OSTI]

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  4. Deep drawing of uranium metal

    SciTech Connect (OSTI)

    Jackson, R J; Lundberg, M R

    1987-01-19

    A procedure was developed to fabricate uranium forming blanks with high ''draw-ability'' so that cup shapes could be easily and uniformly deep drawn. The overall procedure involved a posttreatment to develop optimum mechanical and structural properties in the deep-drawn cups. The fabrication sequence is casting high-purity logs, pucking cast logs, cross-rolling pucks to forming blanks, annealing and outgassing forming blanks, cold deep drawing to hemispherical shapes, and stress relieving, outgassing, and annealing deep-drawn parts to restore ductility and impart dimensional stability. The fabrication development and the resulting fabrication procedure are discussed in detail. The mechanical properties and microstructural properties are discussed.

  5. DISPERSION HARDENING OF URANIUM METAL

    DOE Patents [OSTI]

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  6. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  7. EA-1290: Disposition of Russian Federation Titled Natural Uranium

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

  8. Uranium metal reactions with hydrogen and water vapour and the reactivity of the uranium hydride produced

    SciTech Connect (OSTI)

    Godfrey, H.; Broan, C.; Goddard, D.; Hodge, N.; Woodhouse, G.; Diggle, A.; Orr, R.

    2013-07-01

    Within the nuclear industry, metallic uranium has been used as a fuel. If this metal is stored in a hydrogen rich environment then the uranium metal can react with the hydrogen to form uranium hydride which can be pyrophoric when exposed to air. The UK National Nuclear Laboratory has been carrying out a programme of research for Sellafield Limited to investigate the conditions required for the formation and persistence of uranium hydride and the reactivity of the material formed. The experimental results presented here have described new results characterising uranium hydride formed from bulk uranium at 50 and 160 C. degrees and measurements of the hydrolysis kinetics of these materials in liquid water. It has been shown that there is an increase in the proportion of alpha-uranium hydride in material formed at lower temperatures and that there is an increase in the rate of reaction with water of uranium hydride formed at lower temperatures. This may at least in part be attributable to a difference in the reaction rate between alpha and beta-uranium hydride. A striking observation is the strong dependence of the hydrolysis reaction rate on the temperature of preparation of the uranium hydride. For example, the reaction rate of uranium hydride prepared at 50 C. degrees was over ten times higher than that prepared at 160 C. degrees at 20% extent of reaction. The decrease in reaction rate with the extent of reaction also depended on the temperature of uranium hydride preparation.

  9. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    DOE Patents [OSTI]

    McLean, II, William; Miller, Philip E.; Horton, James A.

    1995-01-01

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  10. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOE Patents [OSTI]

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  11. Paleo-channel deposition of natural uranium at a US Air Force landfill

    SciTech Connect (OSTI)

    Young, Carl; Weismann, Joseph; Caputo, Daniel [Cabrera Services, Inc., East Hartford, Connecticut (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: The US Air Force sought to identify the source of radionuclides that were detected in groundwater surrounding a closed solid waste landfill at the former Lowry Air Force Base in Denver, Colorado, USA. Gross alpha, gross beta, and uranium levels in groundwater were thought to exceed US drinking water standards and down-gradient concentrations exceeded up-gradient concentrations. Our study has concluded that the elevated radionuclide concentrations are due to naturally-occurring uranium in the regional watershed and that the uranium is being released from paleo-channel sediments beneath the site. Groundwater samples were collected from monitor wells, surface water and sediments over four consecutive quarters. A list of 23 radionuclides was developed for analysis based on historical landfill records. Concentrations of major ions and metals and standard geochemical parameters were analyzed. The only radionuclide found to be above regulatory standards was uranium. A search of regional records shows that uranium is abundant in the upstream drainage basin. Analysis of uranium isotopic ratios shows that the uranium has not been processed for enrichment nor is it depleted uranium. There is however slight enrichment in the U-234:U- 238 activity ratio, which is consistent with uranium that has undergone aqueous transport. Comparison of up-gradient versus down-gradient uranium concentrations in groundwater confirms that higher uranium concentrations are found in the down-gradient wells. The US drinking water standard of 30 {mu}g/L for uranium was exceeded in some of the up-gradient wells and in most of the down-gradient wells. Several lines of evidence indicate that natural uranium occurring in streams has been preferentially deposited in paleo-channel sediments beneath the site, and that the paleo-channel deposits are causing the increased uranium concentrations in down-gradient groundwater compared to up

  12. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    DOE Patents [OSTI]

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  13. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Finally, the minerals produced during this process are stable in low pH conditions or ... strategy to uranium bioreduction in low pH uranium-contaminated environments. ...

  14. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    SciTech Connect (OSTI)

    Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

  15. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  16. Development of uranium metal targets for {sup 99}Mo production

    SciTech Connect (OSTI)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade {sup 99}Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of {sup 99}Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets.

  17. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  18. Uranium Biomineralization By Natural Microbial Phosphatase Activities in

    Office of Scientific and Technical Information (OSTI)

    the Subsurface (Technical Report) | SciTech Connect Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface Citation Details In-Document Search Title: Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge

  19. Nuclear Fuel Facts: Uranium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing

  20. Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.

    2008-09-25

    This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

  1. Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.

    2009-05-27

    This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

  2. FUSED SALT METHOD FOR COATING URANIUM WITH A METAL

    DOE Patents [OSTI]

    Eubank, L.D.

    1959-02-01

    A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

  3. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    SciTech Connect (OSTI)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E. )

    1994-08-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO[sub 2] feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF[sub 4] to produce CF[sub 4] in addition to the reduction of UO[sub 2], but the fraction of metal from the reduction of UF[sub 4] can be decreased by increasing the concentration of dissolved UO[sub 2]. Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF[sub 4].

  4. Melting of Uranium Metal Powders with Residual Salts

    SciTech Connect (OSTI)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-07-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing {approx} 30 wt% residual LiCl-Li{sub 2}O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li{sub 2}O residual salt. (authors)

  5. FLUX COMPOSITION AND METHOD FOR TREATING URANIUM-CONTAINING METAL

    DOE Patents [OSTI]

    Foote, F.

    1958-08-26

    A flux composition is preseated for use with molten uranium and uranium alloys. It consists of about 60% calcium fluoride, 30% calcium chloride and 10% uranium tetrafluoride.

  6. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    SciTech Connect (OSTI)

    Taillefert, Martial

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  7. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect (OSTI)

    Smirnov, A. Yu. Sulaberidze, G. A.; Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A. Proselkov, V. N.; Chibinyaev, A. V.

    2012-12-15

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  8. Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

    2014-03-01

    Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

  9. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    SciTech Connect (OSTI)

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary; Janke, Christopher James; Wai, Chien

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3 H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3 H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.

  10. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary; Janke, Christopher James; Wai, Chien

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3 H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. Themore » Na2CO3 H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less

  11. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    SciTech Connect (OSTI)

    Sobecky, Patricia A.

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  12. uranium

    National Nuclear Security Administration (NNSA)

    to prepare surplus plutonium for disposition, and readiness to begin the Second Uranium Cycle, to start processing spent nuclear fuel.

    H Canyon is also being...

  13. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOE Patents [OSTI]

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  14. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOE Patents [OSTI]

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  15. Paleo-channel deposits of natural uranium at a Former Air Force Landfill

    SciTech Connect (OSTI)

    Young, C.; Weismann, PGJ.; Nelson, CHPK. [Cabrera Services, Inc., Baltimore, MD (United States)

    2007-07-01

    The US Air Force has sought to understand the provenance of radionuclides that were detected in monitor wells surrounding a closed solid-waste landfill at the former Lowry Air Force Base in Denver, Colorado. Groundwater concentrations of gross alpha, gross beta, and total uranium were thought to exceed regulatory standards. Down-gradient concentrations of these parameters exceeded up-gradient concentrations, suggesting that the landfill is leaching uranium to groundwater. Alternate hypotheses for the occurrence of the uranium included that either equipment containing refined uranium had been discarded or that uranium ore may have been disposed in the landfill, or that the uranium is naturally-occurring. Our study has concluded that the elevated radionuclide concentrations stem from naturally-occurring uranium in the regional watershed which has been preferentially deposited in paleo-channel sediments beneath the site. This study shows that a simple comparison of up-gradient versus down-gradient groundwater samples can be an inadequate method for determining whether heterogeneous geo-systems have been contaminated. It is important to understand the geologic depositional system, plus local geochemistry and how these factors impact contaminant transport. (authors)

  16. PLURAL METALLIC COATINGS ON URANIUM AND METHOD OF APPLYING SAME

    DOE Patents [OSTI]

    Gray, A.G.

    1958-09-16

    A method is described of applying protective coatings to uranlum articles. It consists in applying chromium plating to such uranium articles by electrolysis in a chromic acid bath and subsequently applying, to this minum containing alloy. This aluminum contalning alloy (for example one of aluminum and silicon) may then be used as a bonding alloy between the chromized surface and an aluminum can.

  17. Natural uranium/conversion services/enrichment services

    SciTech Connect (OSTI)

    1993-12-31

    This article is the 1993 uranium market summary. During this reporting period, there were 50 deals in the concentrates market, 26 deals in the UF6 market, and 14 deals for enrichment services. In the concentrates market, the restricted value closed $0.15 higher at $9.85, and the unrestricted value closed down $0.65 at $7.00. In the UF6 market, restricted prices fluctuated and closed higher at $31.00, and unrestricted prices closed at their initial value of $24.75. The restricted transaction value closed at $10.25 and the unrestricted value closed at $7.15. In the enrichment services market, the restricted value moved steadily higher to close at $84.00 per SWU, and the unrestricted value closed at its initial value of $68.00 per SWU.

  18. Uranium

    SciTech Connect (OSTI)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-10-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U/sub 3/O/sub 8/; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables. (DP)

  19. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  20. Modeling of Gap Closure in Uranium-Zirconium Alloy Metal Fuel - A Test Problem

    SciTech Connect (OSTI)

    Simunovic, Srdjan; Ott, Larry J; Gorti, Sarma B; Nukala, Phani K; Radhakrishnan, Balasubramaniam; Turner, John A

    2009-10-01

    Uranium based binary and ternary alloy fuel is a possible candidate for advanced fast spectrum reactors with long refueling intervals and reduced liner heat rating [1]. An important metal fuel issue that can impact the fuel performance is the fuel-cladding gap closure, and fuel axial growth. The dimensional change in the fuel during irradiation is due to a superposition of the thermal expansion of the fuel due to heating, volumetric changes due to possible phase transformations that occur during heating and the swelling due to fission gas retention. The volumetric changes due to phase transformation depend both on the thermodynamics of the alloy system and the kinetics of phase change reactions that occur at the operating temperature. The nucleation and growth of fission gas bubbles that contributes to fuel swelling is also influenced by the local fuel chemistry and the microstructure. Once the fuel expands and contacts the clad, expansion in the radial direction is constrained by the clad, and the overall deformation of the fuel clad assembly depends upon the dynamics of the contact problem. The neutronics portion of the problem is also inherently coupled with microstructural evolution in terms of constituent redistribution and phase transformation. Because of the complex nature of the problem, a series of test problems have been defined with increasing complexity with the objective of capturing the fuel-clad interaction in complex fuels subjected to a wide range of irradiation and temperature conditions. The abstract, if short, is inserted here before the introduction section. If the abstract is long, it should be inserted with the front material and page numbered as such, then this page would begin with the introduction section.

  1. Benchmark Evaluation of Uranium Metal Annuli and Cylinders with Beryllium Reflectors

    SciTech Connect (OSTI)

    John D. Bess

    2010-06-01

    An extensive series of delayed critical experiments were performed at the Oak Ridge Critical Experiments Facility using enriched uranium metal during the 1960s and 1970s in support of criticality safety operations at the Y-12 Plant. These experiments were designed to evaluate the storage, casting, and handling limits of the Y-12 Plant and to provide data for the verification of cross sections and calculation methods utilized in nuclear criticality safety applications. Many of these experiments have already been evaluated and included in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook: unreflected (HEU-MET-FAST-051), graphite-reflected (HEU-MET-FAST-071), and polyethylene-reflected (HEU-MET-FAST-076). Three of the experiments consisted of highly-enriched uranium (HEU, ~93.2% 235U) metal parts reflected by beryllium metal discs. The first evaluated experiment was constructed from a stack of 7-in.-diameter, 4-1/8-in.-high stack of HEU discs top-reflected by a 7-in.-diameter, 5-9/16-in.-high stack of beryllium discs. The other two experiments were formed from stacks of concentric HEU metal annular rings surrounding a 7-in.diameter beryllium core. The nominal outer diameters were 13 and 15 in. with a nominal stack height of 5 and 4 in., respectively. These experiments have been evaluated for inclusion in the ICSBEP Handbook.

  2. Process for electroslag refining of uranium and uranium alloys

    DOE Patents [OSTI]

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  3. Charts and graphs: NUKEM Uranium price ange data; NUKEM Uranium historical price graph; U.S. DOE & euratom average contract prices for natural uranium; NUKEM SWU historical price graph; NUKEM SWU spot/secondary price range; U.S. DOE separative work prices data

    SciTech Connect (OSTI)

    1996-04-01

    This article is the uranium market data summary. It contains data for the following subjects: (1) March 1996 transactions, (2) Uranium price range data, (3) Historical uranium price range data, (4) DOE and Euratom average contract prices for natural uranium, (5) SWU historical price data, (6) SWU/spot/secondary price range data, and (7) DOE SWU prices data.

  4. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A; Lee, Denise L; Croft, Stephen; McElroy, Robert Dennis; Hertel, Nolan; Chapman, Jeffrey Allen; Cleveland, Steven L

    2013-01-01

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of

  5. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dewji, Shaheen A.; Lee, Denise L.; Croft, Stephen; Hertel, Nolan E.; Chapman, Jeffrey Allen; McElroy, Jr., Robert Dennis; Cleveland, S.

    2016-03-28

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP).more » In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of gamma

  6. DFT modeling of adsorption onto uranium metal using large-scale parallel computing

    SciTech Connect (OSTI)

    Davis, N.; Rizwan, U.

    2013-07-01

    There is a dearth of atomistic simulations involving the surface chemistry of 7-uranium which is of interest as the key fuel component of a breeder-burner stage in future fuel cycles. Recent availability of high-performance computing hardware and software has rendered extended quantum chemical surface simulations involving actinides feasible. With that motivation, data for bulk and surface 7-phase uranium metal are calculated in the plane-wave pseudopotential density functional theory method. Chemisorption of atomic hydrogen and oxygen on several un-relaxed low-index faces of 7-uranium is considered. The optimal adsorption sites (calculated cohesive energies) on the (100), (110), and (111) faces are found to be the one-coordinated top site (8.8 eV), four-coordinated center site (9.9 eV), and one-coordinated top 1 site (7.9 eV) respectively, for oxygen; and the four-coordinated center site (2.7 eV), four-coordinated center site (3.1 eV), and three-coordinated top2 site (3.2 eV) for hydrogen. (authors)

  7. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    SciTech Connect (OSTI)

    S. D. Herrmann; S. X. Li

    2010-09-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  8. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaffé, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; et al

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore » the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  9. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    SciTech Connect (OSTI)

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaff, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.65.8) conditions using U L?-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (UC bond distance at ~2.88 ), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  10. Model of a Generic Natural Uranium Conversion Plant ? Suggested Measures to Strengthen International Safeguards

    SciTech Connect (OSTI)

    Raffo-Caiado, Ana Claudia; Begovich, John M; Ferrada, Juan J

    2009-11-01

    This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.

  11. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    SciTech Connect (OSTI)

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaffé, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  12. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.; Brock, W.R.; Denton, D.R.

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  13. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-03-01

    This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

  14. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    SciTech Connect (OSTI)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-07-01

    The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  15. EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel.  The uranium is currently stored...

  16. Preliminary design studies for a (D-D) or (D-T) driven cold fusion-fission (hybrid) reactor with metallic uranium

    SciTech Connect (OSTI)

    Sahin, S. ); Baltacioglu, E.; Yapici, H. )

    1991-01-01

    Based on the possibility of (D,D) fusion at room temperature in a heavy metal (palladium) matrix, a cold fusion-fission (hybrid) reactor design has been evaluated in this paper. The reactor is composed of a number of modular and uniform fuel lattices. The cold fusion neutrons induce fission reactions in the natural metallic uranium fuel, imbedded in the lattice. The neutron spectrum, and consequently the fission power density are nearly constant in the reactor core so that the rector performance becomes almost independent on the reactor size. The energy multiplication for each fusion neutron production in the (D,T) and (D,D) reactors are about 3.3 and 7.0, respectively. The (D,T) reactor mode is self-sufficient in respect to tritium breeding ratio (TBR = 1.2).

  17. Uranium Reduction by Clostridia

    SciTech Connect (OSTI)

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  18. Characterization and testing of amidoxime-based adsorbent materials to extract uranium from natural seawater

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuo, Li-Jung; Janke, Christopher James; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary

    2015-11-19

    Extraction of uranium (U) from seawater for use as a nuclear fuel is a significant challenge due to the low concentration of U in seawater (~3.3 ppb) and difficulties to selectively extract U from the background of major and trace elements in seawater. The Pacific Northwest National Laboratory (PNNL) s Marine Sciences Laboratory (MSL) has been serving as a marine test site for determining performance characteristics (adsorption capacity, adsorption kinetics, and selectivity) of novel amidoxime-based polymeric adsorbents developed at Oak Ridge National Laboratory (ORNL) under natural seawater exposure conditions. This report describes the performance of three formulations (38H, AF1, AI8)more » of amidoxime-based polymeric adsorbent produced at ORNL in MSL s ambient seawater testing facility. The adsorbents were produced in two forms, fibrous material (40-100 mg samples) and braided material (5-10 g samples), exposed to natural seawater using flow-through columns and recirculating flumes. All three formulations demonstrated high 56 day uranium adsorption capacity (>3 gU/kg adsorbent). The AF1 formulation had the best uranium adsorption performance, with 56-day capacity of 3.9 g U/kg adsorbent, saturation capacity of 5.4 g U/kg adsorbent, and ~25 days half-saturation time. The two exposure methods, flow-through columns and flumes were demonstrated to produce similar performance results, providing confidence that the test methods were reliable, that scaling up from 10 s of mg quantities of exposure in flow-through columns to gram quantities in flumes produced similar results, and that the manufacturing process produces a homogenous adsorbent. Adsorption kinetics appear to be element specific, with half-saturation times ranging from minutes for the major cations in seawater to 8-10weeks for V and Fe. Reducing the exposure time provides a potential pathway to improve the adsorption capacity of U by reducing the V/U ratio on the adsorbent.« less

  19. Transition metal catalysis in the generation of natural gas

    SciTech Connect (OSTI)

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  20. COATING URANIUM FROM CARBONYLS

    DOE Patents [OSTI]

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  1. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect (OSTI)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  2. Improving Natural Uranium Utilization By Using Thorium in Low Moderation PWRs - A Preliminary Neutronic Scoping Study

    SciTech Connect (OSTI)

    Gilles Youinou; Ignacio Somoza

    2010-10-01

    The Th-U fuel cycle is not quite self-sustainable when used in water-cooled reactors and with fuel burnups higher than a few thousand of MWd/t characteristic of CANDU reactors operating with a continuous refueling. For the other industrially mature water-cooled reactors (i.e. PWRs and BWRs) it is economically necessary that the fuel has enough reactivity to reach fuel burnups of the order of a few tens of thousand of MWd/t. In this particular case, an additional input of fissile material is necessary to complement the bred fissile U-233. This additional fissile material could be included in the form of Highly Enriched Uranium (HEU) at the fabrication of the Th-U fuel. The objective of this preliminary neutronic scoping study is to determine (1) how much HEU and, consequently, how much natural uranium is necessary in such Th-U fuel cycle with U recycling and (2) how much TRansUranics (TRU=Pu, Np, Am and Cm) are produced. These numbers are then compared with those of a standard UO2 PWR. The thorium reactors considered have a homogeneous hexagonal lattice made up of the same (Th-U)O2 pins. Furthermore, at this point, we are not considering the use of blankets inside or outside the core. The lattice pitch has been varied to estimate the effect of the water-to-fuel volume ratio, and light water as well as heavy water have been considered. For most cases, an average burnup at discharge of 45,000 MWd/t has been considered.

  3. Pulsed Neutron Measurments With A DT Neutron Generator for an Annular HEU Uranium Metal Casting

    SciTech Connect (OSTI)

    Mihalczo, John T [ORNL; Archer, Daniel E [ORNL; Wright, Michael C [ORNL; Mullens, James Allen [ORNL

    2007-09-01

    Measurements were performed with a single annular, stainless-steel-canned casting of uranium (93.17 wt% 235U) metal ( ~18 kg) to provide data to verify calculational methods for criticality safety. The measurements used a small portable DT generator with an embedded alpha detector to time and directionally tag the neutrons from the generator. The center of the time and directional tagged neutron beam was perpendicular to the axis of the casting. The radiation detectors were 1x1x6 in plastic scintillators encased in 0.635-cm-thick lead shields that were sensitive to neutrons above 1 MeV in energy. The detector lead shields were adjacent to the casting and the target spot of the generator was about 3.8 cm from the casting at the vertical center. The time distribution of the fission induced radiation was measured with respect to the source event by a fast (1GHz) processor. The measurements described in this paper also include time correlation measurements with a time tagged spontaneously fissioning 252Cf neutron source, both on the axis and on the surface of the casting. Measurements with both types of sources are compared. Measurements with the DT generator closely coupled with the HEU provide no more additional information than those with the Cf source closely coupled with the HEU and are complicated by the time and directionally tagged neutrons from the generator scattering between the walls and floor of the measurements room and the casting while still above detection thresholds.

  4. Evaluating metal-organic frameworks for natural gas storage

    SciTech Connect (OSTI)

    Mason, JA; Veenstra, M; Long, JR

    2014-01-01

    Metal-organic frameworks have received significant attention as a new class of adsorbents for natural gas storage; however, inconsistencies in reporting high-pressure adsorption data and a lack of comparative studies have made it challenging to evaluate both new and existing materials. Here, we briefly discuss high-pressure adsorption measurements and review efforts to develop metal-organic frameworks with high methane storage capacities. To illustrate the most important properties for evaluating adsorbents for natural gas storage and for designing a next generation of improved materials, six metal-organic frameworks and an activated carbon, with a range of surface areas, pore structures, and surface chemistries representative of the most promising adsorbents for methane storage, are evaluated in detail. High-pressure methane adsorption isotherms are used to compare gravimetric and volumetric capacities, isosteric heats of adsorption, and usable storage capacities. Additionally, the relative importance of increasing volumetric capacity, rather than gravimetric capacity, for extending the driving range of natural gas vehicles is highlighted. Other important systems-level factors, such as thermal management, mechanical properties, and the effects of impurities, are also considered, and potential materials synthesis contributions to improving performance in a complete adsorbed natural gas system are discussed.

  5. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect (OSTI)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  6. PRODUCTION OF PURIFIED URANIUM

    DOE Patents [OSTI]

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  7. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect (OSTI)

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  8. JACKETING URANIUM

    DOE Patents [OSTI]

    Saller, H.A.; Keeler, J.R.

    1959-07-14

    The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.

  9. Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Kluth, T.; Quade, U.; Lederbrink, F. W.

    2003-02-26

    Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

  10. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect (OSTI)

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  11. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1958-04-15

    The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

  12. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  13. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  14. PROCESS OF PREPARING URANIUM CARBIDE

    DOE Patents [OSTI]

    Miller, W.E.; Stethers, H.L.; Johnson, T.R.

    1964-03-24

    A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

  15. Results of chemical decontamination of DOE`s uranium-enrichment scrap metal

    SciTech Connect (OSTI)

    Levesque, R.G.

    1997-02-01

    The CORPEX{reg_sign} Nuclear Decontamination Processes were used to decontaminate representative scrap metal specimens obtained from the existing scrap metal piles located at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. In September 1995, under contract to Lockheed Martin Energy Systems, MELE Associates, Inc. performed the on-site decontamination demonstration. The decontamination demonstration proved that significant amounts of the existing DOE scrap metal can be decontaminated to levels where the scrap metal could be economically released by DOE for beneficial reuse. This simple and environmentally friendly process can be used as an alternative, or in addition to, smelting radiologically contaminated scrap metal.

  16. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component in the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.

  17. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  18. Analysis of natural radionuclides from uranium and thorium series in briney groundwaters

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Thomas, C.W.; Jackson, P.O.; Hubbard, N.

    1985-06-01

    Analytical procedures for measuring various radionuclides in the /sup 238/U and /sup 232/Th chains in briney waters are described. Using methods such as mass spectrometry, and alpha, beta and gamma spectrometry, the desired measurement sensitivity required for each of the radionuclides is achieved. Uranium-233, /sup 230/Th, /sup 208/Po, /sup 212/Pb, and /sup 133/Ba are used as tracers for chemical yield recoveries. Typical precision of the results range from 5 to 20%. 14 refs., 6 figs., 3 tabs.

  19. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  20. Uranium Purchases Report

    Reports and Publications (EIA)

    1996-01-01

    Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

  1. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  2. URANIUM PRECIPITATION PROCESS

    DOE Patents [OSTI]

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  3. A record of uranium-series transport at Nopal I, Sierra Pena Blanca, Mexico: Implications for natural uranium deposits and radioactive waste repositories

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denton, J. S.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.

    2016-04-10

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  4. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect (OSTI)

    Hays, David C.

    2012-07-01

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  5. Thermal Reactions of Uranium Metal, UO2, U3O8, UF4, and UO2F2 with NF3 to Produce UF6

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Scheele, Randall D.; Kozelisky, Anne E.; Edwards, Matthew K.

    2009-11-01

    he objective of this paper is to demonstrate that NF3 fluorinates uranium metal, UO2, UF4, UO3, U3O8, and UO2F22H2O to produce the volatile UF6 at temperatures between 100 and 500?C. Thermogravimetric reaction profiles are described that reflect changes in the uranium oxidation state and discrete chemical speciation. Differences in the onset temperatures for each system indicate that NF3-substrate interactions are important for the temperature at which NF3 reacts: U metal > UO3 > UO2 > UO2F2 > UF4 and in fact may indicate different fluorination mechanisms for these various substrates. These studies demonstrate that NF3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in oft-proposed actinide volatility reprocessing.

  6. Bio-/Photo-Chemical Separation and Recovery of Uranium

    SciTech Connect (OSTI)

    Francis,A.J.; Dodge, C.J.

    2008-03-12

    Citric acid forms bidentate, tridentate, binuclear or polynuclear species with transition metals and actinides. Biodegradation of metal citrate complexes is influenced by the type of complex formed with metal ions. While bidentate complexes are readily biodegraded, tridentate, binuclear and polynuclear species are recalcitrant. Likewise certain transition metals and actinides are photochemically active in the presence of organic acids. Although the uranyl citrate complex is not biodegraded, in the presence of visible light it undergoes photochemical oxidation/reduction reactions which result in the precipitation of uranium as UO{sub 3} {center_dot} H{sub 2}O. Consequently, we developed a process where uranium is extracted from contaminated soils and wastes by citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, whereas uranyl citrate which is recalcitrant remains in solution. Photochemical degradation of the uranium citrate complex resulted in the precipitation of uranium. Thus the toxic metals and uranium in mixed waste are recovered in separate fractions for recycling or for disposal. The use of naturally-occurring compounds and the combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in cost.

  7. METHOD OF ROLLING URANIUM

    DOE Patents [OSTI]

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  8. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquife

    SciTech Connect (OSTI)

    Campbell, K M; K Kukkadapu, R K; Qafoku, N P; Peacock, A D; Lesher, E; Williams, K H; Bargar, J R; Wilkins, M J; Figueroa, L; Ranville, J; Davis, J A; Long, P E

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.

  9. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  10. Uranium dioxide electrolysis

    SciTech Connect (OSTI)

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  11. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  12. PURIFICATION OF URANIUM FUELS

    DOE Patents [OSTI]

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  13. Depleted uranium plasma reduction system study

    SciTech Connect (OSTI)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  14. METHOD OF ELECTROPLATING ON URANIUM

    DOE Patents [OSTI]

    Rebol, E.W.; Wehrmann, R.F.

    1959-04-28

    This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

  15. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    SciTech Connect (OSTI)

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik Saat, Ahmad; Hamzah, Zaini

    2015-04-29

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The K{sub d} values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The K{sub d} values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  16. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  17. ELECTROLYSIS OF THORIUM AND URANIUM

    DOE Patents [OSTI]

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  18. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  19. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  20. Revealing the True Nature of a Metal Oxide | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revealing the True Nature of a Metal Oxide Extensive calculations revealed that the calcium-iridium-oxygen compound CaIrO3 is a Slater-type insulator, putting to rest the debate of whether the insulating nature of the metal oxide is Mott-type or Slater-type. While both types are insulators, the insulating properties in Mott types arise from electron repulsion while in Slater types magnetic ordering plays a prominent role. Through a series of calculations, the team described the types of

  1. Speciation of Uranium in Biologically Reduced Sediments in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speciation of Uranium in Biologically Reduced Sediments in the Old Rifle Aquifer ... Juan S. Lezama Pacheco The speciation and dynamics of Uranium(IV) in naturally and ...

  2. Behavior of natural uranium, thorium, and radium isotopes in the Wolfcamp brine aquifers, Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1984-10-01

    Previously reported results for Palo Duro deep brines show that Ra is highly soluble and not retarded. Relative to Ra, U and Th are highly sorbed. Uranium, like thorium, is in the +4 valence state, indicating a reducing environment. Additional data reported here support these results. However, one Wolfcamp brine sample gives somewhat different results. Radium appears to be somewhat sorbed. Uranium is largely in the +6 valence state, indicating a less reducing condition. In all brines, kinetics for sorption (/sup 228/Th) and desorption (/sup 224/Ra) are rapid. This Wolfcamp brine was tested for the effects of colloids for Ra, U, and Th concentrations. No effects were found.

  3. Uranium enrichment. Printed at the request of the Committee on Energy and Natural Resources, United States Senate, May 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Two congressional reports outline the need for new uranium-enrichment plants and their costs. Part I, The Need for Additional Uranium Enrichment Capacity to Meet Demand, examines DOE's case for continuing construction of the Portsmouth, Ohio gas centrifuge plant on the basis of projected demand. The report concludes that DOE projections are high and that future demand can be met through preproduction and stockpiling. Part II, Necessity for GCEP (Gas Centrifuge Enrichment Plant) Under Low Nuclear Power Growth Conditions, concludes that continued construction is economically valid because of the uncertainty of demand forecasts. 79 references, 12 tables. (DCK)

  4. ANODIC TREATMENT OF URANIUM

    DOE Patents [OSTI]

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  5. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  6. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes

    SciTech Connect (OSTI)

    Ward, Ashleigh; Lukens, Wayne; Lu, Connie; Arnold, John

    2014-04-01

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  7. Safeguards Options for Natural Uranium Conversion Facilities ? A Collaborative Effort between the U.S. Department of Energy (DOE) and the National Nuclear Energy Commission of Brazil (CNEN)

    SciTech Connect (OSTI)

    Raffo-Caiado, Ana Claudia; Begovich, John M; Ferrada, Juan J

    2008-01-01

    In 2005, the National Nuclear Energy Commission of Brazil (CNEN) and the U.S. Department of Energy (DOE) agreed on a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE's Oak Ridge National Laboratory and CNEN. A generic model of an NUCP was developed and typical processing steps were defined. The study, completed in early 2007, identified potential safeguards measures and evaluated their effectiveness and impacts on operations. In addition, advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was framed by the International Atomic Energy Agency's (IAEA's) 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Before this policy, only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and, therefore, subject to AEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, and the IAEA. This paper highlights the findings of this joint collaborative effort and identifies technical measures to strengthen international safeguards in NUCPs.

  8. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes

    SciTech Connect (OSTI)

    Marsh, Terence L.

    2013-07-30

    Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

  9. Occurrence of Metastudtite (Uranium Peroxide Dihydrate) at a FUSRAP Site

    SciTech Connect (OSTI)

    Young, C.M.; Nelson, K.A.; Stevens, G.T.; Grassi, V.J.

    2006-07-01

    Uranium concentrations in groundwater in a localized area of a site exceed the USEPA Maximum Contaminant Level (MCL) by a factor of one thousand. Although the groundwater seepage velocity ranges up to 0.7 meters per day (m/day), data indicate that the uranium is not migrating in groundwater. We believe that the uranium is not mobile because of local geochemical conditions and the unstable nature of the uranium compound present at the site; uranium peroxide dihydrate (metastudtite). Metastudtite [UO{sub 4}.2(H{sub 2}O) or (U(O{sub 2})|O|(OH){sub 2}).3H{sub 2}O] has been identified at other sites as an alteration product in casks of spent nuclear fuel, but neither enriched nor depleted uranium were present at this site. Metastudtite was first identified as a natural mineral in 1983, although documented occurrences in the environment are uncommon. The U.S. Army Corps of Engineers (USACE) is conducting a remedial investigation at the DuPont Chambers Works in Deep water New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP) to evaluate radioactive contamination resulting from historical activities conducted in support of Manhattan Engineering District operations. From 1942 to 1947, Chambers Works converted uranium oxides to uranium tetrafluoride and uranium metal. More than half of the production at this facility resulted from the recovery process, where uranium-bearing dross and scrap were reacted with hydrogen peroxide to produce uranium peroxide dihydrate. The 280-hectare Chambers Works has produced some 600 products, including petrochemicals, aromatics, fluoro-chemicals, polymers, and elastomers. Contaminants resulting from these processes, including separate-phase petrochemicals, have also been detected within the boundaries of the FUSRAP investigation. USACE initiated remedial investigation field activities in 2002. The radionuclides of concern are natural uranium (U{sub nat}) and its short-lived progeny. Areas of impacted soil generally

  10. ELECTRODEPOSITION OF NICKEL ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  11. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  12. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    The natural UF 6 and enriched UF 6 weighted-average price represent only the U 3 O 8 equivalent uranium-component price specified in the contract for each delivery of natural UF 6 ...

  13. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  14. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOE Patents [OSTI]

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  15. METHOD OF APPLYING COPPER COATINGS TO URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.

  16. URANIUM ALLOYS

    DOE Patents [OSTI]

    Colbeck, E.W.

    1959-12-29

    A uranium alloy is reported containing from 0.1 to 5 per cent by weight of molybdenum and from 0.1 to 5 per cent by weight of silicon, the balance being uranium.

  17. Numerical comparison of hydrogen desorption behaviors of metal hydride beds based on uranium and on zirconium-cobalt

    SciTech Connect (OSTI)

    Kyoung, S.; Yoo, H.; Ju, H.

    2015-03-15

    In this paper, the hydrogen delivery capabilities of uranium (U) and zirconium-cobalt (ZrCo) are compared quantitatively in order to find the optimum getter materials for tritium storage. A three-dimensional hydrogen desorption model is applied to two identically designed cylindrical beds with the different materials, and hydrogen desorption simulations are then conducted. The simulation results show superior hydrogen delivery performance and easier thermal management capability for the U bed. This detailed analysis of the hydrogen desorption behaviors of beds with U and ZrCo will help to identify the optimal bed material, bed design, and operating conditions for the storage and delivery system in ITER. (authors)

  18. METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Cooke, W.H.; Crawford, J.W.C.

    1959-05-12

    An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.

  19. Nuclear forensic analysis of uranium oxide powders interdicted in Victoria, Australia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kristo, Michael Joseph; Keegan, Elizabeth; Colella, Michael; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; et al

    2015-04-13

    Nuclear forensic analysis was conducted on two uranium samples confiscated during a police investigation in Victoria, Australia. The first sample, designated NSR-F-270409-1, was a depleted uranium powder of moderate purity (~1000 μg/g total elemental impurities). The chemical form of the uranium was a compound similar to K2(UO2)3O4·4H2O. While aliquoting NSR-F-270409-1 for analysis, the body and head of a Tineid moth was discovered in the sample. The second sample, designated NSR-F-270409-2, was also a depleted uranium powder. It was of reasonably high purity (~380 μg/g total elemental impurities). The chemical form of the uranium was primarily UO3·2H2O, with minor phases ofmore » U3O8 and UO2. While aliquoting NSR-F-270409-2 for analysis, a metal staple of unknown origin was discovered in the sample. The presence of 236U and 232U in both samples indicates that the uranium feed stocks for these samples experienced a neutron flux at some point in their history. The reactor burn-up calculated from the isotopic composition of the uranium is consistent with that of spent fuel from natural uranium (NU) fueled Pu production. These nuclear forensic conclusions allow us to categorically exclude Australia as the origin of the material and greatly reduce the number of candidate sources.« less

  20. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  1. Melting characteristics of the stainless steel generated from the uranium conversion plant

    SciTech Connect (OSTI)

    Choi, W.K.; Song, P.S.; Oh, W.Z.; Jung, C.H.; Min, B.Y.

    2007-07-01

    The partition ratio of cerium (Ce) and uranium (U) in the ingot, slag and dust phases has been investigated for the effect of the slag type, slag concentration and basicity in an electric arc melting process. An electric arc furnace (EAF) was used to melt the stainless steel wastes, simulated by uranium oxide and the real wastes from the uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). The composition of the slag former used to capture the contaminants such as uranium, cerium, and cesium during the melt decontamination process generally consisted of silica (SiO{sub 2}), calcium oxide (CaO) and aluminum oxide (Al{sub 2}O{sub 3}). Also, Calcium fluoride (CaF{sub 2} ), nickel oxide (NiO), and ferric oxide (Fe{sub 2}O{sub 3}) were added to provide an increase in the slag fluidity and oxidative potential. Cerium was used as a surrogate for the uranium because the thermochemical and physical properties of cerium are very similar to those of uranium. Cerium was removed from the ingot phase to slag phase by up to 99% in this study. The absorption ratio of cerium was increased with an increase of the amount of the slag former. And the maximum removal of cerium occurred when the basicity index of the slag former was 0.82. The natural uranium (UO{sub 2}) was partitioned from the ingot phase to the slag phase by up to 95%. The absorption of the natural uranium was considerably dependent on the basicity index of the slag former and the composition of the slag former. The optimum condition for the removal of the uranium was about 1.5 for the basicity index and 15 wt% of the slag former. According to the increase of the amount of slag former, the absorption of uranium oxide in the slag phase was linearly increased due to an increase of its capacity to capture uranium oxide within the slag phase. Through experiments with various slag formers, we verified that the slag formers containing calcium fluoride (CaF{sub 2}) and a high amount of silica were more

  2. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to

  3. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  4. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  5. Inherently safe in situ uranium recovery.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  6. METAL COMPOSITIONS

    DOE Patents [OSTI]

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  7. Method for producing uranium atomic beam source

    DOE Patents [OSTI]

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  8. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    and enriched UF6 weighted-average price represent only the U3O8 equivalent uranium-component price specified in the contract for each delivery of natural UF6 and enriched UF6, ...

  9. URANIUM COMPOSITIONS

    DOE Patents [OSTI]

    Allen, N.P.; Grogan, J.D.

    1959-05-12

    This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

  10. MELTING AND PURIFICATION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Gray, C.F.

    1958-09-16

    A process is described for treating uranium ingots having inner metal portions and an outer oxide skin. The method consists in partially supporting such an ingot on the surface of a grid or pierced plate. A sufficient weight of uranium is provided so that when the mass becomes molten, the oxide skin bursts at the unsupported portions of its bottom surface, allowing molten urantum to flow through the burst skin and into a container provided below.

  11. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  12. Uranium Processing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility

  13. METHOD OF PRODUCING URANIUM

    DOE Patents [OSTI]

    Foster, L.S.; Magel, T.T.

    1958-05-13

    A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

  14. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOE Patents [OSTI]

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  15. Uranium Fate and Transport Modeling, Guterl Specialty Steel Site, New York - 13545

    SciTech Connect (OSTI)

    Frederick, Bill; Tandon, Vikas

    2013-07-01

    The Former Guterl Specialty Steel Corporation Site (Guterl Site) is located 32 kilometers (20 miles) northeast of Buffalo, New York, in Lockport, Niagara County, New York. Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Uranium transport from the site involves legacy on-site pickling fluid handling, the leaching of uranium from soil to groundwater, and the groundwater transport of dissolved uranium to the Erie Canal. Groundwater fate and transport modeling was performed to assess the transfer of dissolved uranium from the contaminated soils and buildings to groundwater and subsequently to the nearby Erie Canal. The modeling provides a tool to determine if the uranium contamination could potentially affect human receptors in the vicinity of the site. Groundwater underlying the site and in the surrounding area generally flows southeasterly towards the Erie Canal; locally, groundwater is not used as a drinking water resource. The risk to human health was evaluated outside the Guterl Site boundary from the possibility of impacted groundwater discharging to and mixing with the Erie Canal waters. This condition was evaluated because canal water is infrequently used as an emergency water supply for the City of Lockport via an intake located approximately 122 meters (m) (400 feet [ft]) southeast of the Guterl Site. Modeling was performed to assess whether mixing of groundwater with surface water in the Erie Canal could result in levels of uranium exceeding the U.S. Environmental Protection Agency (USEPA) established drinking water standard for total uranium; the Maximum Concentration Limit (MCL). Geotechnical test

  16. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-31

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

  17. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  18. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  19. Disequilibrium study of natural radionuclides of uranium and thorium series in cores and briny groundwaters from Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.

    1988-05-01

    The concentrations of natural radionuclides of the /sup 238/U and /232/Th series are reported in several cores and in ten deep and five shallow briny groundwaters from various formations in the Palo Duro Basin. The formations include Granite Wash, Pennsylvanian Granite Wash, Wolfcamp Carbonate, Pennsylvanian Carbonate, Seven River, Queen Grayburg, San Andres, Yates and Salado. The natural radionuclide data in cores suggest that the radionuclides have not migrated or been leached for at least a period of about 1 million years. Relative to the U and Th concentrations in cores, the brines are depleted by a factor of 10/sup 4/ to 10/sup 5/, indicating extremely low solubility of U and Th in brines. The natural radionuclide data in brines suggest that radium is not sorbed significantly and thus not retarded in nine deep brines. Radium is somewhat sorbed in one deep brine of Wolfcamp Carbonate and significantly sorbed in shallow brines. Relative to radium, the U, Th, Pb, Bi, and Po radionuclides are highly retarded by sorption. The retardation factors for /sup 228/Th range from 10/sup 2/ to 10/sup 3/, whereas those for /sup 230/Th and /sup 234/U range from 10/sup 3/ to 10/sup 5/, depending on the formation. The /sup 234/U//sup 238/U ratios in these brines are constant at about 1.5. The magnitude of the /sup 234/U//sup 230/Th ratio appears to reflect the degree of redox state of the aquifer's environment. The /sup 234/U//sup 230/Th ratio in nine deep brines is about unity, suggesting that U, like Th/sup +4/, is in the +4 state, which in turn suggests a reduced environment. 49 refs., 23 figs., 18 tabs.

  20. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage

    SciTech Connect (OSTI)

    Borah, B; Zhang, HD; Snurr, RQ

    2015-03-03

    Diffusion of methane, ethane, propane and n-butane was studied within the micropores of several metal organic frameworks (MOFs) of varying topologies, including the MOFs PCN-14, NU-125, NU-1100 and DUT-49. Diffusion coefficients of the pure components, as well as methane/ethane, methane/ propane and methane/butane binary mixtures, were calculated using molecular dynamics simulations to understand the effect of the longer alkanes on uptake of natural gas in MOB. The calculated self diffusion coefficients of all four components are on the order of 10(-8) m(2)/s. The diffusion coefficients of the pure components decrease as a function of chain length in all of the MOFs studied and show different behaviour as a function of loading in different MOB. The self-diffusivities follow the trend DPCN-14 < DNU-125 approximate to DNU-1100 < DDUT-49, which is exactly the reverse order of the densities of the MOFs: PCN-14 > NU-125 approximate to NU-1100 > DUT-49. By comparing the diffusion of pure methane and methane mixtures vvith the higher alkancs, it is observed that the diffusivity of methane is unaffected by the presence of the higher alkanes in the MOFs considered, indicating that the diffusion path of methane is not blocked by the higher alkanes present in natural gas. (C) 2014 Elsevier Ltd. All rights reserved.

  1. Separation of uranium from (Th,U)O.sub.2 solid solutions

    DOE Patents [OSTI]

    Chiotti, Premo; Jha, Mahesh Chandra

    1976-09-28

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.

  2. METHOD OF PROTECTIVELY COATING URANIUM

    DOE Patents [OSTI]

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  3. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOE Patents [OSTI]

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  4. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOE Patents [OSTI]

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  5. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  6. Y-12 Knows Uranium | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Knows Uranium Y-12 Knows Uranium Posted: July 22, 2013 - 3:45pm | Y-12 Report | Volume 10, Issue 1 | 2013 Y-12 produces many forms of uranium. They may be used in chemical processing steps on-site or shipped elsewhere to serve as raw materials for nuclear fuel or as research tools. All of uranium's uses, defense related and otherwise, are critical to the nation. Y-12's understanding of uranium, coupled with the site's work with enriched uranium metal, alloys, oxides, compounds and

  7. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  8. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A.

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  9. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar weld metals. Part 1 -- Nucleation and growth

    SciTech Connect (OSTI)

    Nelson, T.W.; Lippold, J.C.; Mills, M.J.

    1999-10-01

    A fundamental investigation of fusion boundary microstructure evolution in dissimilar-metal welds (DMWs) between ferritic base metals and a face-centered-cubic (FCC) filler metal was conducted. The objective of the work presented here was to characterize the nature and character of the elevated-temperature fusion boundary to determine the nucleation and growth characteristics of DMWs. Type 409 ferritic stainless steel and 1080 pearlitic steel were utilized as base metal substrates, and Monel (70Ni-30Cu) was used as the filler metal. The Type 409 base metal provided a fully ferritic or body-centered-cubic (BCC) substrate at elevated temperatures and exhibited no on-cooling phase transformations to mask or disguise the original character of the fusion boundary. The 1080 pearlitic steel was selected because it is austenitic at the solidus temperature, providing an austenite substrate at the fusion boundary. The weld microstructure generated with each of the base metals in combination with Monel was fully austenitic. In the Type 409/Monel system, there was no evidence of epitaxial nucleation and growth as normally observed in homogeneous weld metal combinations. The fusion boundary in this system exhibited random grain boundary misorientations between the heat-affected zone (HAZ) and weld metal grains. In the 1080/Monel system, evidence of normal epitaxial growth was observed at the fusion boundary, where solidification and HAZ grain boundaries converged. The fusion boundary morphologies are a result of the crystal structure present along the fusion boundary during the initial stages of solidification. Based on the results of this investigation, a model for heterogeneous nucleation along the fusion boundary is proposed when the base and weld metals exhibit ferritic (BCC) and FCC crystal structures, respectively.

  10. Uranium Isotopic Assay Instrument

    SciTech Connect (OSTI)

    Anheier, Norman C.; Wojcik, Michael D.; Bushaw, Bruce A.

    2006-12-01

    The isotopic assay instrument under development at Pacific Northwest National Laboratory (PNNL) is capable of rapid prescreening to detect small and rare particles containing high concentrations of uranium in a heterogeneous sample. The isotopic measurement concept is based on laser vaporization of solid samples followed with sensitive isotope specific detection using either uranium atomic fluorescence emission or uranium atomic absorbance. Both isotopes are measured concurrently, following a single ablation laser pulse, using two external-cavity violet diode lasers. The simultaneous measurement of both isotopes enables the correlation of the fluorescence and absorbance signals on a shot-to-shot basis. This measurement approach demonstrated negligible channel crosstalk between isotopes. Rapid sample scanning provides high spatial resolution isotopic fluorescence and absorbance sample imagery of heterogeneous samples. Laser ablation combined with measurements of laser-induced fluorescence (LALIF) and through-plume laser absorbance (LAPLA) was applied to measure gadolinium isotope ratios in solid samples. Gadolinium has excitation wavelengths very close to the transitions of interest in uranium. Gadolinium has seven stable isotopes, and the natural 152Gd:160Gd ratio of 0.009 is in the range of what will be encountered for 235U:238U isotopic ratios. LAPLA measurements were demonstrated clearly using 152Gd (0.2% isotopic abundance) with a good signal-to-noise ratio. The ability to measure gadolinium abundances at this level indicates that measurements of 235U/238U isotopic ratios for natural (0.72%), depleted (0.25%), and low enriched uranium samples will be feasible.

  11. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  12. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOE Patents [OSTI]

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  13. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  14. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    and Development Drilling","Mine Production of Uranium ","Uranium Concentrate Production ","Uranium Concentrate Shipments ","Employment " "Year","Drilling (million feet)"," ...

  15. DOE - Office of Legacy Management -- Nuclear Metals Inc - MA 09

    Office of Legacy Management (LM)

    Metals Inc - MA 09 FUSRAP Considered Sites Site: NUCLEAR METALS, INC. (MA.09) Eliminated from consideration under FUSRAP - Licensed facility - included in NRC action plan (Site Decommissioning Management Plan) in 1990 for cleanup Designated Name: Not Designated Alternate Name: None Location: 1555 Massachusetts Ave. , Cambridge , Massachusetts MA.09-2 Evaluation Year: 1987 MA.09-1 Site Operations: Produced natural uranium tubes for Savannah River reactor program and fabricated power reactor fuel

  16. SEPARATION OF PLUTONIUM FROM URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  17. DEPOSITION OF METAL ON NONMETAL FILAMENT

    DOE Patents [OSTI]

    Magel, T.T.

    1959-02-10

    A method is described for purifying metallic uranium by passing a halogen vapor continuously over the impure uranium to form uranium halide vapor and immediately passing the halide vapor into contact with a nonmetallic refractory surface which is at a temperature above the melting point of uranium metal. The halide is decomposed at the heated surface depositing molten metal, which collects and falls into a receiver below.

  18. Coated metal articles and method of making

    DOE Patents [OSTI]

    Boller, Ernest R. (Van Buren Township, IN); Eubank, Lowell D. (Wilmington, DE)

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  19. Coated Metal Articles and Method of Making

    DOE Patents [OSTI]

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  20. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  1. Rescuing a Treasure Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Goldberg, Dr. Steven A.; Hutcheon, Dr. Ian D.

    2011-01-01

    Uranium-233 (233U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium (232Th). At high purities, this synthetic isotope serves as a crucial reference for accurately quantifying and characterizing natural uranium isotopes for domestic and international safeguards. Separated 233U is stored in vaults at Oak Ridge National Laboratory. These materials represent a broad spectrum of 233U from the standpoint isotopic purity the purest being crucial for precise analyses in safeguarding uranium. All 233U at ORNL currently is scheduled to be down blended with depleted uranium beginning in 2015. Such down blending will permanently destroy the potential value of pure 233U samples as certified reference material for use in uranium analyses. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of returning to operation this currently shut down capability. This paper will describe the efforts to rescue the purest of the 233U materials arguably national treasures from their destruction by down blending.

  2. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book presents the GAO's views on the Department of Energy's (DOE) program to develop a new uranium enrichment technology, the atomic vapor laser isotope separation process (AVLIS). Views are drawn from GAO's ongoing review of AVLIS, in which the technical, program, and market issues that need to be addressed before an AVLIS plant is built are examined.

  3. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  4. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  5. DIRECT INGOT PROCESS FOR PRODUCING URANIUM

    DOE Patents [OSTI]

    Leaders, W.M.; Knecht, W.S.

    1960-11-15

    A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.

  6. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  7. Geochemical Evaluation of Uranium Fate and Transport Guterl Specialty Steel Site, New York - 12077

    SciTech Connect (OSTI)

    Frederick, Bill; Tandon, Vikas

    2012-07-01

    Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Site soils are composed of anthropogenic fill and re-worked, glacially-derived native soil. This overburden is underlain by the weathered and fractured Lockport Dolostone bedrock. Shallow groundwater levels fluctuate seasonally and allow groundwater to contact U contaminated soil, which promotes transport. This condition is exemplified through coincident increases in specific conductivity and groundwater levels, which flush soluble constituents in the fill/soil to groundwater during recharge events. In addition, water-level fluctuations affect reduction-oxidation (redox) conditions at the site. The U in soils is subject to wetting and drying cycles that promote oxidation more than stable redox conditions (e.g., dry soil or fully saturated conditions). This oxidizing mechanism increases uranium solubility and mobility. Site groundwater also receives uranium via leaching from near-surface contaminated fill. The strong correlation between nitrate and uranium in groundwater indicates that uranium is mobile where oxidizing conditions occur. Analytical models of contaminant leaching determined that multiple pathways and transport mechanisms govern site risk. Uranium transport to groundwater involves three mechanisms: 1) direct contact of contaminated soil with groundwater, 2) the oxidation-state or chemical valence of uranium, and 3) the leaching of near-surface contamination to groundwater. These mechanisms require an integrated remedial solution that is sustainable and cost effective. (authors)

  8. Nuclear forensic analysis of uranium oxide powders interdicted in Victoria, Australia

    SciTech Connect (OSTI)

    Kristo, Michael Joseph; Keegan, Elizabeth; Colella, Michael; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Knight, Kim; Loi, Elaine; Hotchkis, Michael; Moody, Kenton; Singleton, Michael; Robel, Martin; Hutcheon, Ian

    2015-04-13

    Nuclear forensic analysis was conducted on two uranium samples confiscated during a police investigation in Victoria, Australia. The first sample, designated NSR-F-270409-1, was a depleted uranium powder of moderate purity (~1000 μg/g total elemental impurities). The chemical form of the uranium was a compound similar to K2(UO2)3O4·4H2O. While aliquoting NSR-F-270409-1 for analysis, the body and head of a Tineid moth was discovered in the sample. The second sample, designated NSR-F-270409-2, was also a depleted uranium powder. It was of reasonably high purity (~380 μg/g total elemental impurities). The chemical form of the uranium was primarily UO3·2H2O, with minor phases of U3O8 and UO2. While aliquoting NSR-F-270409-2 for analysis, a metal staple of unknown origin was discovered in the sample. The presence of 236U and 232U in both samples indicates that the uranium feed stocks for these samples experienced a neutron flux at some point in their history. The reactor burn-up calculated from the isotopic composition of the uranium is consistent with that of spent fuel from natural uranium (NU) fueled Pu production. These nuclear forensic conclusions allow us to categorically exclude Australia as the origin of the material and greatly reduce the number of candidate sources.

  9. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    SciTech Connect (OSTI)

    PLYS, M.G.

    2000-10-10

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method

  10. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOE Patents [OSTI]

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  11. PROCESS FOR PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Crawford, J.W.C.

    1959-09-29

    A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

  12. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  13. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  14. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector.

  15. Continuous reduction of uranium tetrafluoride

    SciTech Connect (OSTI)

    DeMint, A.L.; Maxey, A.W.

    1993-10-21

    Operation of a pilot-scale system for continuous metallothermic reduction of uranium tetrafluoride (UF{sub 4} or green salt) has been initiated. This activity is in support of the development of a cost- effective process to produce uranium-iron (U-Fe) alloy feed for the Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) program. To date, five runs have been made to reduce green salt (UF{sub 4}) with magnesium. During this quarter, three runs were made to perfect the feeding system, examine feed rates, and determine the need for a crust breaker/stirrer. No material was drawn off in any of the runs; both product metal and by-product salt were allowed to accumulate in the reactor.

  16. COPPER COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Various techniques and methods for obtaining coppercoated uranium are given. Specifically disclosed are a group of complex uranium coatings having successive layers of nickel, copper, lead, and tin.

  17. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. Maximum anticipated uranium market requirements of owners and operators of U.S. ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  18. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOE Patents [OSTI]

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  19. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  20. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  1. METAL COATING BATHS

    DOE Patents [OSTI]

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  2. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  3. Uranium chloride extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  4. Uranium chloride extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  5. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOE Patents [OSTI]

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  6. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2015 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Spot 1 Contracts Long-Term Contracts 2 Total Material Type Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price U3O8 6,175 36.40 24,107 45.76 30,282 43.85 Natural UF6 3,879 38.52 12,292 48.13

  7. URANIUM EXTRACTION

    DOE Patents [OSTI]

    Harrington, C.D.; Opie, J.V.

    1958-07-01

    The recovery of uranium values from uranium ore such as pitchblende is described. The ore is first dissolved in nitric acid, and a water soluble nitrate is added as a salting out agent. The resulting feed solution is then contacted with diethyl ether, whereby the bulk of the uranyl nitrate and a portion of the impurities are taken up by the ether. This acid ether extract is then separated from the aqueous raffinate, and contacted with water causing back extractioa of the uranyl nitrate and impurities into the water to form a crude liquor. After separation from the ether extract, this crude liquor is heated to about 118 deg C to obtain molten uranyl nitrate hexahydratc. After being slightly cooled the uranyl nitrate hexahydrate is contacted with acid free diethyl ether whereby the bulk of the uranyl nitrate is dissolved into the ethcr to form a neutral ether solution while most of the impurities remain in the aqueous waste. After separation from the aqueous waste, the resultant ether solution is washed with about l0% of its volume of water to free it of any dissolved impurities and is then contacted with at least one half its volume of water whereby the uranyl nitrate is extracted into the water to form an aqueous product solution.

  8. PRODUCTION OF URANIUM TETRACHLORIDE

    DOE Patents [OSTI]

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  9. PRODUCTION OF URANIUM MONOCARBIDE

    DOE Patents [OSTI]

    Powers, R.M.

    1962-07-24

    A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

  10. :- : DRILLING URANIUM BILLETS ON A

    Office of Legacy Management (LM)

    'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO -

  11. DECONTAMINATION OF URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Chellew, N.R.

    1958-02-01

    This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

  12. SHEATHING URANIUM

    DOE Patents [OSTI]

    Colbeck, E.W.

    1959-02-01

    A method is deseribed for forming a conveniently handled corrosion resistant U articlc comprising pouring molten U into an open-ended corrosion resistant metal eontainer such as Cu and its alloys, Al, or austenitic Ni stainless steel. The exposed surface of the cast U is covered with a metallic packing material such as a brazing flux consisting of Al-Si alloy. The container is sealed iii contact with substantially the entire exposed surface of the packing material. The article is then worked mechanically to reduce the cross section. l3651 A thorium--carbon alloy containing 0.1 to 0.5% by weight carbon, whieh is more resistant to water corrosion than pure thorium metal is presented. The alloy is prepared by fusing thorium metal with the desired amount of carbon at a temperature of about 1850 C. It is found that the carbon is present in the alloy as thorium monocarbide

  13. Reducing Emissions from Uranium Dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.

    1992-01-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. The trays are steam coil heated. The process has operated satisfactorily, with few difficulties, for decades. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. Because NO{sub x} is hazardous, fumes should be suppressed whenever the electric blower system is inoperable. Because the tray dissolving process has worked well for decades, as much of the current capital equipment and operating procedures as possible were preserved. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2}, which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  14. URANIUM DECONTAMINATION

    DOE Patents [OSTI]

    Buckingham, J.S.; Carroll, J.L.

    1959-12-22

    A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.

  15. Adsorption study for uranium in Rocky Flats groundwater

    SciTech Connect (OSTI)

    Laul, J.C.; Rupert, M.C.; Harris, M.J.; Duran, A.

    1995-01-01

    Six adsorbents were studied to determine their effectiveness in removing uranium in Rocky Flats groundwater. The bench column and batch (Kd) tests showed that uranium can be removed (>99.9%) by four adsorbents. Bone Charcoal (R1O22); F-1 Alumina (granular activated alumina); BIOFIX (immobilized biological agent); SOPBPLUS (mixed metal oxide); Filtrasorb 300 (granular activated carbon); and Zeolite (clinoptilolite).

  16. Uranium industry annual 1994

    SciTech Connect (OSTI)

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  17. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  18. Uranium Mining, Conversion, and Enrichment Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Potential Impacts of Uranium Transfers on the Domestic Uranium Mining, Conversion, and Enrichment Industries May 1, 2015 ii EXECUTIVE SUMMARY: The Department of Energy ("Department" or "DOE") plans to transfer the equivalent of up to 2,100 metric tons ("MTU") of natural uranium per year (with a higher total for calendar year 2015, mainly because of transfers already executed or under way before today's determination). These transfers would include 1,600

  19. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  20. Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; J.C. Price; R.D. Mariani

    2011-11-01

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

  1. Method of recovering uranium hexafluoride

    DOE Patents [OSTI]

    Schuman, S.

    1975-12-01

    A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

  2. Uranium at Y-12: Casting | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Casting Uranium at Y-12: Casting Posted: July 22, 2013 - 3:42pm | Y-12 Report | Volume 10, Issue 1 | 2013 Buttons and other recycled metal are used in casting components for ...

  3. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  4. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  5. A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks

    SciTech Connect (OSTI)

    Zhang, HD; Deria, P; Farha, OK; Hupp, JT; Snurr, RQ

    2015-01-01

    Metal-organic frameworks (MOFs) are promising materials for storing natural gas in vehicular applications. Evaluation of these materials has focused on adsorption of pure methane, although commercial natural gas also contains small amounts of higher hydrocarbons such as ethane and propane, which adsorb more strongly than methane. There is, thus, a possibility that these higher hydrocarbons will accumulate in the MOF after multiple operating (adsorption/desorption) cycles, and reduce the storage capacity. To study the net effect of ethane and propane on the performance of an adsorbed natural gas (ANG) tank, we developed a mathematical model based on thermodynamics and mass balance equations that describes the state of the tank at any instant. The required inputs are the pure-component isotherms, and mixture adsorption data are calculated using the Ideal Adsorbed Solution Theory (IAST). We focused on how the "deliverable energy'' provided by the ANG tank to the engine changed over 200 operating cycles for a sample of 120 MOF structures. We found that, with any MOF, the ANG tank performance monotonically declines during early operating cycles until a "cyclic steady state'' is reached. We determined that the best materials when the fuel is 100% methane are not necessarily the best when the fuel includes ethane and propane. Among the materials tested, some top MOFs are MOF-143 > NU-800 > IRMOF-14 > IRMOF-20 > MIL-100 > NU-125 > IRMOF-1 > NU-111. MOF-143 is predicted to deliver 5.43 MJ L-1 of tank to the engine once the cyclic steady state is reached. The model also provided insights that can assist in future work to discover more promising adsorbent materials for natural gas storage.

  6. NICKEL COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  7. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Shipments of uranium feed by owners and operators of U.S. civilian nuclear power ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  8. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    Inventories of uranium by owner as of end of year, 2011-15 thousand pounds U3O8 equivalent Inventories at the end of the year Owner of uranium inventory 2011 2012 2013 2014 P2015 ...

  9. Uranium Marketing Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2013-15 2013 2014 2015 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. AREVA ...

  10. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Contracted purchases of uranium from suppliers by owners and operators of U.S. civilian ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  11. Uranium Marketing Annual Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a. Foreign purchases, foreign sales, and uranium inventories owned by U.S. suppliers and ... Foreign sales U.S. supplier owned uranium inventories Owners and operators of U.S. ...

  12. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors by year, 2011-15 thousand pounds U3O8 equivalent Origin of uranium 2011 2012 2013 2014 P2015 ...

  13. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  14. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  15. Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters

    SciTech Connect (OSTI)

    Das, Sadananda; Tsouris, Costas; Zhang, Chenxi; Brown, Suree; Janke, Christopher James; Mayes, Richard T.; Kuo, Li -Jung; Gill, Gary; Dai, Sheng; Kim, J.; Oyola, Y.; Wood, J. R.

    2015-09-07

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration of ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long conditioning

  16. Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sadananda; Tsouris, Costas; Zhang, Chenxi; Brown, Suree; Janke, Christopher James; Mayes, Richard T.; Kuo, Li -Jung; Gill, Gary; Dai, Sheng; Kim, J.; et al

    2015-09-07

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration ofmore » ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long

  17. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  18. Uranium industry annual 1995

    SciTech Connect (OSTI)

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  19. PROCESS OF PURIFYING URANIUM

    DOE Patents [OSTI]

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  20. PREPARATION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  1. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    DOE Patents [OSTI]

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  2. PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

    1959-08-01

    A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

  3. Final Uranium Leasing Program Programmatic Environmental Impact...

    Energy Savers [EERE]

    Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing ...

  4. IRON COATED URANIUM AND ITS PRODUCTION

    DOE Patents [OSTI]

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  5. Nuclear & Uranium - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › Japan's electricity prices rising or stable despite recent fuel cost changes natural

  6. Method for the production of uranium chloride salt

    DOE Patents [OSTI]

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  7. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    Major U.S. Uranium Reserves

  8. Matrix Infrared Spectroscopic and Computational Investigations of Novel Small Uranium Containing Molecules - Final Technical Report

    SciTech Connect (OSTI)

    Andrews, Lester

    2014-10-17

    Direct reactions of f-element uranium, thorium and lanthanide metal atoms were investigated with small molecules. These metal atoms were generated by laser ablation and mixed with the reagent molecules then condensed with noble gases at 4K. The products were analyzed by absorption of infrared light to measure vibrational frequencies which were confirmed by quantum chemical calculations. We have learned more about the reactivity of uranium atoms with common molecules, which will aid in the develolpment of further applications of uranium.

  9. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  10. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  11. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  12. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOE Patents [OSTI]

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  13. Fabrication of Natural Uranium UO2 Disks (Phase II): Texas A&M Work for Others Summary Document

    SciTech Connect (OSTI)

    Gerczak, Tyler J.; Baldwin, Charles A.; Schmidlin, Joshua E.; Henry, Jr, John James

    2015-08-28

    The steps to fabricate natural UO2 disks for an irradiation campaign led by Texas A&M University are outlined. The process was initiated with stoichiometry adjustment of parent, U3O8 powder. The next stage of sample preparation involved exploratory pellet pressing and sintering to achieve the desired natural UO2 pellet densities. Ideal densities were achieved through the use of a bimodal powder size blend. The steps involved with disk fabrication are also presented, describing the coring and thinning process executed to achieve final dimensionality.

  14. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    SciTech Connect (OSTI)

    REGUERA, GEMMA

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  15. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  16. METAL COATED ARTICLES AND METHOD OF MAKING

    DOE Patents [OSTI]

    Eubank, L.D.

    1958-08-26

    A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.

  17. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect (OSTI)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na2CO3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...

  18. METAL SURFACE TREATMENT

    DOE Patents [OSTI]

    Eubank, L.D.

    1958-08-12

    Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.

  19. Efficacy of chitosan and other natural polymers in removing COD, TSS, heavy metals and pahs from municipal wastewater at Deer Island, Massachusetts. Technical report

    SciTech Connect (OSTI)

    Murcott, S.; Harleman, D.R.F.

    1992-10-01

    A series of tests was conducted at the Deer Island Primary Treatment Plant during the spring and summer of 1992 to determine the efficacy of chitosan and other natural polymers as coagulants, coagulant aids and flocculents in wastewater treatment. Prior to this undertaking, as part of the MIT Investigation of Chemically Enhanced Primary Treatment at the MWRA Project, the efficacy of metal salts and synthetic polymers had been studied at Deer Island. Those tests provided the standard against which to measure the viability of natural polymer use in municipal wastewater treatment. The major conclusions of the chitosan and other natural polymers study for Deer Island wastewater are included.

  20. About the Uranium Mine Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Mine Team About the Uranium Mine Team Text coming

  1. The uranium cylinder assay system for enrichment plant safeguards

    SciTech Connect (OSTI)

    Miller, Karen A; Swinhoe, Martyn T; Marlow, Johnna B; Menlove, Howard O; Rael, Carlos D; Iwamoto, Tomonori; Tamura, Takayuki; Aiuchi, Syun

    2010-01-01

    Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

  2. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOE Patents [OSTI]

    Willit, James L.

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  3. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOE Patents [OSTI]

    Willit, James L.

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  4. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark E.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammon, Glenn; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2010-02-01

    The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust

  5. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2010 to January 2011

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2011-02-01

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of “Modeling” and “Well-Field Mitigation” plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for

  6. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2011 to January 2012

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

    2012-03-05

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the

  7. Uranium Oxide as a Highly Reflective Coating from 100-400 eV

    SciTech Connect (OSTI)

    Sandberg, Richard L.; Allred, David D.; Bissell, Luke J.; Johnson, Jed E.; Turley, R. Steven

    2004-05-12

    We present the measured reflectances (Beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium and naturally oxidized nickel thin films from 100-460 eV (2.7 to 11.6 nm) at 5 and 15 degrees grazing incidence. These show that uranium, as UO2, can fulfill its promise as the highest known single surface reflector for this portion of the soft x-ray region, being nearly twice as reflective as nickel in the 124-250 eV (5-10 nm) region. This is due to its large index of refraction coupled with low absorption. Nickel is commonly used in soft x-ray applications in astronomy and synchrotrons. (Its reflectance at 10 deg. exceeds that of Au and Ir for most of this range.) We prepared uranium and nickel thin films via DC-magnetron sputtering of a depleted U target and resistive heating evaporation respectively. Ambient oxidation quickly brought the U sample to UO2 (total thickness about 30 nm). The nickel sample (50 nm) also acquired a thin native oxide coating (<2nm). Though the density of U in UO2 is only half of the metal, its reflectance is high and it is relatively stable against further changes.

  8. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  9. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  10. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  11. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 million pounds U3O8 equivalent million separative work units (SWU) Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors U.S.-origin enrichment services purchased Foreign-origin enrichment services purchased Total purchased enrichment services

  12. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (OSTI)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  13. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  14. highly enriched uranium

    National Nuclear Security Administration (NNSA)

    and radioisotope supply capabilities of MURR and Nordion with General Atomics' selective gas extraction technology-which allows their low-enriched uranium (LEU) targets to remain...

  15. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Resources, Inc., dba Cameco Resources Smith Ranch-Highland Operation Converse, Wyoming ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  16. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  17. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    SciTech Connect (OSTI)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted

    2012-07-01

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

  18. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  19. U.S.Uranium Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Reserves Data for: 2003 Release Date: June 2004 Next Release: Not determined Uranium Reserves Estimates The Energy Information Administration (EIA) has reported the...

  20. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  1. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Minimum ...

  2. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Origin of ...

  3. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  4. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  5. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  6. PROCESS FOR MAKING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Rosen, R.

    1959-07-14

    A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

  7. 2015 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium ... received in 2015 Weighted-average price Number of purchase contracts for ...

  8. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Number of purchasers Quantity with reported price ...

  9. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http:www.eia.govcneafnuclearpagereservesures.html. ...

  10. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Number of Holes Feet (thousand) Number of Holes ...

  11. URANIUM LEACHING AND RECOVERY PROCESS

    DOE Patents [OSTI]

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  12. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Goodknight, C.S.; Burger, J.A.

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

  13. Secretarial Determination of No Adverse Material Impact for Uranium Transfers

    Broader source: Energy.gov [DOE]

    The determination covers the Department’s sales or transfers of no more than 2,705 metric tons (MTU) of natural uranium (NU) or NU equivalent in a calendar year.  The proposed transfers include up...

  14. DECONTAMINATION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Butler, T.A.

    1962-05-15

    A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)

  15. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  16. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOE Patents [OSTI]

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  17. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Kennedy, J.W.; Segre, E.G.

    1958-08-26

    A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.

  18. Metal-smelting facility

    SciTech Connect (OSTI)

    Kellogg, D.R.; Mack, J.E.; Thompson, W.T.; Williams, L.C.

    1982-01-01

    Currently there are 90,000 tons of contaminated ferrous and nonferrous scrap metal stored in aboveground scrap yards at the Department of Energy's Uranium Enrichment Facilities in Tennessee, Kentucky, and Ohio. This scrap is primarily contaminated with 100 to 500 ppM uranium at an average enrichment of 1 to 1.5% /sup 235/U. A study was performed that evaluated smelting of the ORGDP metal in a reference facility located at Oak Ridge. The study defined the process systems and baseline requirements, evaluated alternatives to smelting, and provided capital and operating costs for the reference facility. A review of the results and recommendations of this study are presented.

  19. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect (OSTI)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  20. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  1. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    9. Summary production statistics of the U.S. uranium industry, 1993-2015 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium (million pounds U3O8) Uranium concentrate production (million pounds U3O8) Uranium concentrate shipments (million pounds U3O8) Employment (person-years) 1993 1.1 5.7 2.1 3.1 3.4 871 1994 0.7 1.1 2.5 3.4 6.3 980 1995 1.3 2.6 3.5 6.0 5.5 1,107 1996 3.0 7.2 4.7 6.3

  2. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    4. Deliveries of uranium feed for enrichment by owners and operators of U.S. civilian nuclear power reactors by origin country and delivery year, 2013-15 thousand pounds U3O8 ...

  3. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2015, by delivery year, 2016-25 thousand pounds U3O8 equivalent Year ...

  4. Method for cleaning bomb-reduced uranium derbies

    DOE Patents [OSTI]

    Banker, J.G.; Wigginton, H.L.; Beck, D.E.; Holcombe, C.E.

    The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppM by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

  5. Method for cleaning bomb-reduced uranium derbies

    DOE Patents [OSTI]

    Banker, John G.; Wigginton, Hubert L.; Beck, David E.; Holcombe, Cressie E.

    1981-01-01

    The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppm by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

  6. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    SciTech Connect (OSTI)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  7. Decrease of the demand for natural uranium

    SciTech Connect (OSTI)

    Nikipelov, B.V.

    1994-09-01

    The elimination of the State`s monopoly and liberalization of the conditions for external trade in Russia and CIS have increased the number of products from these countries offered on the world market. Many products from the CIS have always been offered on the world market, but their number is now even larger.

  8. URANIUM EXTRACTION PROCESS

    DOE Patents [OSTI]

    Baldwin, W.H.; Higgins, C.E.

    1958-12-16

    A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

  9. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect (OSTI)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G.

    2013-07-01

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  10. Uranium Marketing Annual Report - Release Date: May 31, 2011

    Gasoline and Diesel Fuel Update (EIA)

    4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and material type, 2015 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries Uranium concentrate Natural UF6 Enriched UF6 Natural UF6 and Enriched UF6 Total U.S.-origin uranium Purchases 2,733 W W 686 3,419 Weighted-average price 46.23 W W 34.44 43.86 Foreign-origin uranium Purchases 28,179 W W 24,927 53,106 Weighted-average price 43.61 W W 44.77 44.14 Total

  11. Volume plummets, restricted uranium below $10 per pound

    SciTech Connect (OSTI)

    1993-12-01

    This article is the November 1993 uranium market summary. The pace of deals slackened dramatically during this period, with only six deals occurring. Five were in the natural uranium spot market and one was in the conversion services market. Total spot concentrates volume came to just 994,000 lbs U3O8 equivalent. This compares to the 15 deals and 2.8 millions lbs volume during the previous reporting period. The bottom of the restricted uranium spot market price range dipped back below $10.00. In the unrestricted market, the range stayed the same. The same holds true for the enrichment services price range.

  12. Aluminum and polymeric coatings for protection of uranium

    SciTech Connect (OSTI)

    Colmenares, C.; McCreary, T.; Monaco, S.; Walkup, C.; Gleeson, G.; Kervin, J.; Smith, R.L.; McCaffrey, C.

    1983-12-21

    Ion-plated aluminum films on uranium will not provide adequate protection for 25 years. Magnetron-plated aluminum films on uranium are much better than ion-plated ones. Kel-F 800 films on uranium can provide adequate protection for 25 years. Their use in production must be delayed until the following factors are sorted out: water permeability in Kel-F 800 must be determined between 30 and 60/sup 0/C; the effect of UF/sub 3/, at the Kel-F/metal interface, on the permeability of water must be assessed; and the effect of crystallinity on water permeability must be evaluated. Applying Kel-F films on aluminum ion-plated uranium provides a good interim solution for long term storage.

  13. Uranium Processing Facility Team Signs Partnering Agreement ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Facility ... Uranium Processing Facility Team Signs Partnering Agreement ... Nuclear Security, LLC; John Eschenberg, Uranium Processing Facility Project Office; Brian ...

  14. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    SciTech Connect (OSTI)

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.; Kuo, Li-Jung; Bonheyo, George T.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  15. Activities of isotopes of uranium, thorium, radium, and lead of Antarctic coals

    SciTech Connect (OSTI)

    Gilbert, G.E.; Casella, V.R.; Bishop, C.T.

    1984-06-11

    Five coal samples from the Transantarctic Mountains of Antarctica were analyzed for the primordial radionuclides uranium-238, thorium-232, and uranium-235, the parents of the naturally occurring uranium, thorium, and actinium disintegration series, respectively. In most of the samples, the radionuclides uranium-234, thorium-230 radium-226, and lead-210 of the uranium series and radium-228 and thorium-228 of the thorium series were also measured and found to be in secular equilibrium with their parents. Activities of uranium-238, thorium-232, and uranium-235 ranged from about 0.1 to 1.0 pCi/g, 0.09 to 1.1 pCi/g, and 0.006 to 0.06 pCi/g, respectively. These results are comparable to corresponding activities reported for United States coals. 10 references, 3 tables.

  16. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect (OSTI)

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium

  17. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  18. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 thousand pounds U 3 O 8 equivalent Year Maximum ...

  19. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 2014 2015 2014 2015 2014 2015 Weighted-average price ...

  20. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Figure 3. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2011-15 Figure 4. Weighted-average price of uranium ...

  1. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. ...

  2. 2015 Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 ...

  3. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M.; Ludtka, Gerard M.

    1990-01-01

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  4. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  5. Excess Uranium Inventory Management Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department’s surplus uranium inventory in support of meeting its critical...

  6. Method for providing uranium with a protective copper coating

    DOE Patents [OSTI]

    Waldrop, Forrest B.; Jones, Edward

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  7. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  8. uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    uranium Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the Radiogical... NNSA Announces Arrival of Plutonium and Uranium from Japan's Fast Critical Assembly at

  9. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOE Patents [OSTI]

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  10. EXTRACTION OF URANIUM

    DOE Patents [OSTI]

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  11. Process for recovering uranium

    DOE Patents [OSTI]

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  12. Uranium industry annual, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-29

    This report provides current statistical data on the US uranium industry for the Congress, federal and state agencies, the uranium and utility industries, and the public. It utilizes data from the mandatory ''Uranium Industry Annual Survey,'' Form EIA-858; historical data collected by the Energy Information Administration (EIA) and by the Grand Junction (Colorado) Project Office of the Idaho Operations Office of the US Department of Energy (DOE); and other data from federal agencies that preceded the DOE. The data provide a comprehensive statistical characterization of the industry's annual activities and include some information about industry plans and commitments over the next several years. Where these data are presented in aggregate form, care has been taken to protect the confidentiality of company-specific data while still conveying an accurate and complete statistical representation of the industry data.

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by supplier and delivery year, 2011-15 thousand pounds U3O8 equivalent, dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 Purchased from U.S. producers Purchases of U.S.-origin and foreign-origin uranium 550 W W W 1,455 Weighted-average price 58.12 W W W 52.35 Purchased from U.S. brokers and traders Purchases of U.S.-origin and foreign-origin uranium 14,778 11,545 12,835 17,111 13,852

  14. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2011-15 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 U.S.-Origin Uranium Purchases 5,205 9,807 9,484 3,316 3,419 Weighted-Average Price 52.12 59.44 56.37 48.11 43.86 Foreign-Origin Uranium Purchases 49,626 47,713 47,919 50,033 53,106 Weighted-Average Price 55.98 54.07 51.13 46.03 44.14 Total Purchases 54,831 57,520 57,403

  15. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    0. U.S. broker and trader purchases of uranium by origin, supplier, and delivery year, 2011-15 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 Received U.S.-origin uranium Purchases 1,668 1,194 W 410 2,702 Weighted-average price 54.85 51.78 W 33.55 35.04 Received foreign-origin uranium Purchases 24,695 24,606 W 28,743 33,014 Weighted-average price 49.69 47.75 W 38.42 39.58 Total received by U.S. brokers and traders Purchases 26,363 25,800

  16. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2011-15 thousands pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries to foreign suppliers and utilities 2011 2012 2013 2014 2015 U.S.-origin uranium Foreign sales 4,387 4,798 4,148 4,210 4,258 Weighted-average price 53.08 47.53 43.10 32.91 37.85 Foreign-origin uranium Foreign sales 12,297 13,185 14,717 15,794 21,465 Weighted-Average Price

  17. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    3. U.S. uranium concentrate production, shipments, and sales, 2003-15 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Estimated contained U3O8 (thousand pounds) Ore from Mines and Stockpiles Fed to Mills1 0 W W W 0 W W W W W W W 0 Other Feed Materials 2 W W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W W W Uranium Concentrate

  18. PROCESS FOR RECOVERING URANIUM

    DOE Patents [OSTI]

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  19. Uranium Removal from Contaminated Groundwater by Synthetic Resins

    SciTech Connect (OSTI)

    Phillips, Debra H.; Gu, Baohua; Watson, David B; Parmele, C. S.

    2008-01-01

    Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing ground waters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex{trademark} 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g{sup -1} before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L{sup -1} uranium, the uranium concentrations ranged from 0.95 mg L{sup -1} at 1-h equilibrium to 0.08 mg L{sup -1} at 24-h equilibrium for Diphonix and 0.17 mg L{sup -1} at 1-h equilibrium to 0.03 mg L{sup -1} at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (5 mg L{sup -1} uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kinetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs.

  20. METHOD OF ELECTROPOLISHING URANIUM

    DOE Patents [OSTI]

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  1. TREATMENT OF URANIUM SURFACES

    DOE Patents [OSTI]

    Slunder, C.J.

    1959-02-01

    An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

  2. PREPARATION OF URANIUM TRIOXIDE

    DOE Patents [OSTI]

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  3. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    b. Weighted-average price of uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 dollars per pound U3O8 equivalent Delivery year Total purchased (weighted-average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007)1 Purchased from foreign suppliers U.S.-origin uranium (weighted-average price)

  4. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2011-15 Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) Operating status at end of the year 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EPR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing

  5. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    10. Uranium reserve estimates at the end of 2014 and 2015 million pounds U3O8 End of 2014 End of 2015 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 154.6 24.3 W 151.6 Properties Under Development for Production and Development

  6. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Price, T.D.; Jeung, N.M.

    1958-06-17

    An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

  7. Potential of Melastoma malabathricum as bio-accumulator for uranium and

    Office of Scientific and Technical Information (OSTI)

    thorium from soil (Journal Article) | SciTech Connect Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil Citation Details In-Document Search Title: Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma

  8. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-07-08

    Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  9. Extracting uranium from seawater: Promising AI series adsorbents

    SciTech Connect (OSTI)

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-01-01

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.

  10. Extracting uranium from seawater: Promising AI series adsorbents

    SciTech Connect (OSTI)

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.

  11. Extracting uranium from seawater: Promising AI series adsorbents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less

  12. Uranium Lease and Take-Back | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Lease and Take-Back

  13. RECOVERY OF URANIUM FROM PITCHBLENDE

    DOE Patents [OSTI]

    Ruehle, A.E.

    1958-06-24

    The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.

  14. STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS

    DOE Patents [OSTI]

    Crouse, D.J. Jr.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

  15. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOE Patents [OSTI]

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  16. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect (OSTI)

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding

  17. Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico

    SciTech Connect (OSTI)

    M. Fayek; M. Ren

    2007-02-14

    Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue of spent nuclear fuel.

  18. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    SciTech Connect (OSTI)

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.; Baryshnikov, M.V.; Kryukov, O.V.; Khaperskaya, A.V.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  19. Illicit Trafficking of Natural Radionuclides

    SciTech Connect (OSTI)

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  20. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  1. California-Nevada uranium logging. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    The purpose of this project was to obtain geophysical logs of industry drill holes to assess the uranium resource potential of geologic formations of interest. The work was part of the US Department of Energy's National Uranium Resource Evaluation (NURE) Program. The principal objective of the logging program was to determine radioelement grade of formations through natural gamma ray detectors. Supplementary information was obtained from resistivity (R), self-potential (SP), point resistance (RE), and neutron density (NN) logs for formation interpretation. Additional data for log interpretation was obtained from caliper logs, casing schedules, and downhole temperature. This data was obtained from well operators when available, with new logs obtained where not formerly available. This report contains a summary of the project and data obtained to date.

  2. Uranium Immobilization through Fe(II) bio-oxidation: A Column study

    SciTech Connect (OSTI)

    Coates, John D.

    2009-09-14

    Current research on the bioremediation of heavy metals and radionuclides is focused on the ability of reducing organisms to use these metals as alternative electron acceptors in the absence of oxygen and thus precipitate them out of solution. However, many aspects of this proposed scheme need to be resolved, not the least of which is the time frame of the treatment process. Once treatment is complete and the electron donor addition is halted, the system will ultimately revert back to an oxic state and potentially result in the abiotic reoxidation and remobilization of the immobilized metals. In addition, the possibility exists that the presence of more electropositive electron acceptors such as nitrate or oxygen will also stimulate the biological oxidation and remobilization of these contaminants. The selective nitrate-dependent biooxidation of added Fe(II) may offer an effective means of capping off and completing the attenuation of these contaminants in a reducing environment making the contaminants less accessible to abiotic and biotic reactions and allowing the system to naturally revert to an oxic state. Our previous DOE-NABIR funded studies demonstrated that radionuclides such as uranium and cobalt are rapidly removed from solution during the biogenic formation of Fe(III)-oxides. In the case of uranium, X-ray spectroscopy analysis indicated that the uranium was in the hexavalent form (normally soluble) and was bound to the precipitated Fe(III)-oxides thus demonstrating the bioremediative potential of this process. We also demonstrated that nitrate-dependent Fe(II)- oxidizing bacteria are prevalent in the sediment and groundwater samples collected from sites 1 and 2 and the background site of the NABIR FRC in Oakridge, TN. However, all of these studies were performed in batch experiments in the laboratory with pure cultures and although a significant amount was learned about the microbiology of nitrate-dependent bio-oxidation of Fe(II), the effects of

  3. file://\\fs-f1\shared\uranium\uranium.html

    U.S. Energy Information Administration (EIA) Indexed Site

    Glossary Home > Nuclear > U.S. Uranium Reserves Estimates U.S. Uranium Reserves Estimates Data for: 2008 Report Released: July 2010 Next Release Date: 2012 Summary The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. The update is based on analysis of company annual reports, any additional information reported by companies at conferences and in news releases,

  4. Method of preparing uranium nitride or uranium carbonitride bodies

    DOE Patents [OSTI]

    Wilhelm, Harley A.; McClusky, James K.

    1976-04-27

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

  5. Utilizing Isotopic Uranium Ratios in Groundwater Evaluations at FUSRAP Sites

    SciTech Connect (OSTI)

    Frederick, W.T.; Keil, K.G.; Rhodes, M.C.; Peterson, J.M.; MacDonell, M.M.

    2007-07-01

    The U.S. Army Corps of Engineers Buffalo District is evaluating environmental radioactive contamination at several Formerly Utilized Sites Remedial Action Program (FUSRAP) sites throughout New York, Pennsylvania, Ohio, and Indiana. The investigations follow the process defined in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Groundwater data from the Niagara Falls Storage Site (NFSS) in Lewiston, New York were evaluated for isotopic uranium ratios, specifically uranium-234 versus uranium-238 (U- 234 and U-238, respectively), and the results were presented at Waste Management 2006. Since uranium naturally occurs in all groundwater, it can be difficult to distinguish where low-concentration impacts from past releases differ from the high end of a site-specific natural background range. In natural groundwater, the ratio of U-234 to U-238 exceeds 1 (unity) due to the alpha particle recoil effect, in which U-234 is preferentially mobilized to groundwater from adjacent rock or soil. This process is very slow and may take hundreds to thousands of years before a measurable increase is seen in the natural isotopic ratio. If site releases are the source of uranium being measured in groundwater, the U-234 to U-238 ratio is commonly closer to 1, which normally reflects FUSRAP-related, uranium-contaminated wastes and soils. This lower ratio occurs because not enough residence time has elapsed since the 1940's and 1950's for the alpha particle recoil effect to have significantly altered the contamination-derived ratio. An evaluation of NFSS-specific and regional groundwater data indicate that an isotopic ratio of 1.2 has been identified as a signature value to help distinguish natural groundwater, which may have a broad background range, from zones impacted by past releases. (authors)

  6. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOE Patents [OSTI]

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  7. PREPARATION OF DENSE URANIUM DIOXIDE PARTICLES FROM URANIUM HEXAFLUORI...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... A fluid-bed method was developed for the direct preparation from uranium hexafluoride of ...

  8. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  9. Preparation of uranium nitride

    DOE Patents [OSTI]

    Potter, Ralph A.; Tennery, Victor J.

    1976-01-01

    A process for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride.

  10. Prices dip, activity increases in unrestricted uranium market. [Uranium market overview

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    April's activity in the restricted uranium market fluctuated in the same range as that observed in March. At the same time, NUKEM detects a weakening of prices in the unrestricted market to $7.45-$7.65. Unrestricted buyers seem to have detected lower prices as well; much of the new demand noted this month emerged in the unrestricted segment of the market. With this issue, NUKEM inaugurates a new market statistic. To better follow developments in the conversion market, we will report a spot price range for conversion services. This price measure will be derived in a manner analogous to NUKEM's other spot market price ranges. We will continue to publish the current NUKEM price range for new contracts for a few months. If you wish to retain the old conversion contract price range in future editions, please contact our US office. Four deals for near term delivery occurred in the uranium market in April, resulting in spot market transaction volume of 2.5 million lbs U3O8 equivalent. In the first week, a US non-utility purchased a small quantity of enriched uranium product from an intermediary in a spot transaction representing about 75,000 lbs U3O8. The second week saw the stealthy purchase of Portland General Electric's inventory of natural and enriched uranium. The buyer of PGE's 1.1 million lbs U3O8 equivalent has achieved an unusual degree of anonymity. Also during the second week, a US utility bought a small quantity of enriched uranium containing less than 25,000 lbs natural U3O8 equivalent.

  11. PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Harvey, B.G.

    1954-09-14

    >This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.

  12. WELDED JACKETED URANIUM BODY

    DOE Patents [OSTI]

    Gurinsky, D.H.

    1958-08-26

    A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2013-15 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries in 2013 Deliveries in 2014 Deliveries in 2015 Distribution of purchasers Number of purchasers Quantity with reported price Weighted-average price Number of purchasers Quantity with reported price Weighted-average price Number of purchasers Quantity with reported price

  14. VANE Uranium One JV | Open Energy Information

    Open Energy Info (EERE)

    VANE Uranium One JV Jump to: navigation, search Name: VANE-Uranium One JV Place: London, England, United Kingdom Zip: EC4V 6DX Product: JV between VANE Minerals Plc & Uranium One....

  15. SEPARATION OF THORIUM FROM URANIUM

    DOE Patents [OSTI]

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  16. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  17. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    By law, EIA's data, analyses, and forecasts are independent ... on information reported on Form EIA-858, "Uranium Marketing ... nuclear power reactors by contract type and material type, ...

  18. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Quantity with reported price Weighted-average price Quantity with reported price ...

  19. 2015 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    received in 2015","Weighted-average price","Number of purchase contracts for ... Administration, Form EIA-858 ""Uranium Marketing Annual Survey"" (2015)." "16 ...

  20. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    5 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Quantity with reported price Weighted-average price Quantity with reported price ...

  1. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  2. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Resources Inc., dba Cameco Resources Smith Ranch-Highland Operation Converse, ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  3. Domestic Uranium Production Report - Quarterly

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Resources, Inc. dba Cameco Resources Smith Ranch-Highland Operation Converse, Wyoming ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  4. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Resources Inc., dba Cameco Resources","Smith Ranch-Highland Operation","Converse, ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  5. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    SciTech Connect (OSTI)

    Hatfield, Kirk

    2015-02-10

    controlled field conditions. In the third and fourth year a suite of larger field studies were conducted. For these studies, the uranium flux sensor was used with uranium speciation measurements and molecular-biological tools to characterize microbial community and active biomass at synonymous wells distributed in a large grid. These field efforts quantified spatial changes in uranium flux and field-scale rates of uranium attenuation (ambient and stimulated), uranium stability, and quantitatively assessed how fluxes and effective reaction rates were coupled to spatial variations in microbial community and active biomass. Analyses of data from these field experiments were used to generate estimates of Monod kinetic parameters that are ‘effective’ in nature and optimal for modeling uranium fate and transport at the field-scale. This project provided the opportunity to develop the first sensor that provides direct measures of both uranium (VI) and groundwater flux. A multidisciplinary team was assembled to include two geochemists, a microbiologist, and two quantitative contaminant hydrologists. Now that the project is complete, the sensor can be deployed at DOE sites to evaluate field-scale uranium attenuation, source behavior, the efficacy of remediation, and off-site risk. Because the sensor requires no power, it can be deployed at remote sites for periods of days to months. The fundamental science derived from this project can be used to advance the development of predictive models for various transport and attenuation processes in aquifers. Proper development of these models is critical for long-term stewardship of contaminated sites in the context of predicting uranium source behavior, remediation performance, and off-site risk.

  6. Uranium for hydrogen storage applications : a materials science perspective.

    SciTech Connect (OSTI)

    Shugard, Andrew D.; Tewell, Craig R.; Cowgill, Donald F.; Kolasinski, Robert D.

    2010-08-01

    Under appropriate conditions, uranium will form a hydride phase when exposed to molecular hydrogen. This makes it quite valuable for a variety of applications within the nuclear industry, particularly as a storage medium for tritium. However, some aspects of the U+H system have been characterized much less extensively than other common metal hydrides (particularly Pd+H), likely due to radiological concerns associated with handling. To assess the present understanding, we review the existing literature database for the uranium hydride system in this report and identify gaps in the existing knowledge. Four major areas are emphasized: {sup 3}He release from uranium tritides, the effects of surface contamination on H uptake, the kinetics of the hydride phase formation, and the thermal desorption properties. Our review of these areas is then used to outline potential avenues of future research.

  7. METHOD FOR RECOVERING URANIUM FROM OILS

    DOE Patents [OSTI]

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  8. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-03-11

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less

  9. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  10. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  11. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting Apparatus, systems, and methods for...

  12. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting You are accessing a document from...

  13. Uranium Resources Inc URI | Open Energy Information

    Open Energy Info (EERE)

    exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References: Uranium Resources, Inc. (URI)1 This article...

  14. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOE Patents [OSTI]

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  15. Structural Sequestration of Uranium in Bacteriogenic Manganese...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestration of Uranium in Bacteriogenic Manganese Oxides Samuel M. Webb (Stanford ... Uranium is a key contaminant of concern at US DOE sites and shuttered mining and ore ...

  16. Uranium Processing Facility team signs partnering agreement ...

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility team signs partnering agreement Thursday, July 24, 2014 - 9:40am Officials from NNSA's Uranium Processing Facility Project Office and Consolidated ...

  17. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  18. NATURAL RESOURCES ASSESSMENT

    SciTech Connect (OSTI)

    D.F. Fenster

    2000-12-11

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology

  19. SOLVENT EXTRACTION OF URANIUM VALUES

    DOE Patents [OSTI]

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  20. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOE Patents [OSTI]

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  1. Oxidation behavior and segregation of uranium in the intermetallic compound UFe/sub 2/

    SciTech Connect (OSTI)

    Erbudak, M.; Stucki, F.

    1985-08-15

    Ion scattering and Auger-electron spectroscopies show that there is a large segregation of uranium at the surface of UFe/sub 2/. Adsorbed oxygen reacts only with this uranium and forms a stable oxide layer at the surface, which prevents further oxygen diffusing into the solid. As a result of this process, the iron remains in metallic form even after prolonged oxygen exposures.

  2. Uranium-Series Constraints on Subrepository Water Flow at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    L.A. Neymark; J.B. Paces; S.J. Chipera; D.T. Vaniman

    2006-03-10

    Mineral abundances and whole-rock chemical and uranium-series isotopic compositions were measured in unfractured and rubble core samples from borehole USWSD-9 in the same layers of variably zeolitized tuffs that underlie the proposed nuclear waste repository at Yucca Mountain, Nevada. Uranium concentrations and isotopic compositions also were measured in pore water from core samples from the same rock units and rock leachates representing loosely bound U adsorbed on mineral surfaces or contained in readily soluble secondary minerals. The chemical and isotopic data were used to evaluate differences in water-rock interaction between fractured and unfractured rock and between fracture surfaces and rock matrix. Samples of unfractured and rubble fragments (about 1 centimeter) core and material from fracture surfaces show similar amounts of uranium-series disequilibrium, recording a complex history of sorption and loss of uranium over the past 1 million years. The data indicate that fractures in zeolitized tuffs may not have had greater amounts of water-rock interaction than the rock matrix. The data also show that rock matrix from subrepository units is capable of scavenging uranium with elevated uranium-234/uranium-238 from percolating water and that retardation of radionuclides and dose reduction may be greater than currently credited to this aspect of the natural barrier. Uranium concentrations of pore water and the rock leachates are used to estimate long-term in situ uranium partition coefficient values greater than 7 milliliters per gram.

  3. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    3. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin country and delivery year, 2011-15 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries in 2011 Deliveries in 2012 Deliveries in 2013 Deliveries in 2014 Deliveries in 2015 Origin country Purchases Weighted-average price Purchases Weighted-average price Purchases Weighted-average price Purchases Weighted-average price Purchases Weighted-average price Australia 6,001 57.47 6,724

  4. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    5. Average price and quantity for uranium purchased by owners and operators of U.S. civilian nuclear power reactors by pricing mechanisms and delivery year, 2014-15 dollars per pound U3O8 equivalent; thousand pounds U3O8 equivalent Pricing mechanisms Domestic purchases1 Foreign purchases2 Total purchases 2014 2015 2014 2015 2014 2015 Contract-specified (fixed and base-escalated) pricing Weighted-average price 41.87 40.34 49.87 44.93 45.47 42.88 Quantity with reported price 15,711 13,862 12,815

  5. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2013-15 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries in 2013 Deliveries in 2014 Deliveries in 2015 Quantity 1 distribution Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price First 7,175 34.34 6,665 30.26 6,807 29.68

  6. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    SciTech Connect (OSTI)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 8001800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.

  7. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimummore » is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.« less

  8. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    SciTech Connect (OSTI)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.

  9. Geology and uranium favorability of the Sonora Pass region, Alpine and Tuolumne Counties, California

    SciTech Connect (OSTI)

    Rapp, J.S.; Short, W.O.

    1981-06-01

    Uranium mineralization at the Juniper Mine is restricted to host rocks of the Relief Peak Formation and is most common in coarse-grained lithic sandstone, conglomerate, and lithic wacke. The richest beds contain as much as 0.5% U/sub 3/O/sub 8/. Uranium is present as coffinite, uraninite, and unidentified minerals. Thorium/uranium ratios are generally low and erratic. Equivalent uranium determinations are low in comparison with chemical uranium values, indicating that uranium mineralization of the Juniper Mine is geologically young. Core drilling at 16 localities shows that widely separated exposures of the Relief Peak Formation have very similar lithology, geochemistry, and stratigraphy. Some sections are similar to the Juniper Mine section. Core from the bottom of drill hole SP-1 contains 83 ppM uranium, the greatest known concentration outside the mine area. Significant uranium deposits may be concealed beneath the thick Tertiary volcanic cover of the region. The quartz latitic Eureka Valley Tuff is fairly widespread in east-central California and western Nevada. It contains 12 to 14 ppM uranium and stratigraphically overlies the Relief Peak Formation. It is permeable and contains abundant alkali metals and volcanic glass. Because of its petrology, geochemistry, and position, this formation is the most likely source for uranium mineralization of the Sonora Pass region. It should be examined as a potential source rock in other areas with special regard to its relationship to carbonaceous sedimentary formations. The uraniferous granite pegmatitite dike that crops out in the Niagara Creek area appears too small to be a significant source rock. The most favorable rocks in the Sonora Pass region occur near the Juniper Mine and west of it, in the Dardanelles, the Whittakers Dardanelles, and the area of the Big Meadow Quadrangle. Potential uranium host rocks crop out in areas along the crest of the Sierra Nevada from Lake Tahoe to Yosemite.

  10. Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.; Eiden, Gregory C.

    2013-05-19

    We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses. We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.

  11. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  12. THE RECOVERY OF URANIUM FROM GAS MIXTURE

    DOE Patents [OSTI]

    Jury, S.H.

    1964-03-17

    A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

  13. Process for removing carbon from uranium

    DOE Patents [OSTI]

    Powell, George L.; Holcombe, Jr., Cressie E.

    1976-01-01

    Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.

  14. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOE Patents [OSTI]

    McLean, W. II; Miller, P.E.

    1997-12-16

    A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.

  15. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOE Patents [OSTI]

    McLean, II, William; Miller, Philip E.

    1997-01-01

    A method for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction.

  16. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    SciTech Connect (OSTI)

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert; and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  17. Evaluation of Uranium Measurements in Water by Various Methods - 13571

    SciTech Connect (OSTI)

    Tucker, Brian J.; Workman, Stephen M.

    2013-07-01

    In December 2000, EPA amended its drinking water regulations for radionuclides by adding a Maximum Contaminant Level (MCL) for uranium (so called MCL Rule)[1] of 30 micrograms per liter (?g/L). The MCL Rule also included MCL goals of zero for uranium and other radionuclides. Many radioactively contaminated sites must test uranium in wastewater and groundwater to comply with the MCL rule as well as local publicly owned treatment works discharge limitations. This paper addresses the relative sensitivity, accuracy, precision, cost and comparability of two EPA-approved methods for detection of total uranium: inductively plasma/mass spectrometry (ICP-MS) and alpha spectrometry. Both methods are capable of measuring the individual uranium isotopes U-234, U- 235, and U-238 and both methods have been deemed acceptable by EPA. However, the U-238 is by far the primary contributor to the mass-based ICP-MS measurement, especially for naturally-occurring uranium, which contains 99.2745% U-238. An evaluation shall be performed relative to the regulatory requirement promulgated by EPA in December 2000. Data will be garnered from various client sample results measured by ALS Laboratory in Fort Collins, CO. Data shall include method detection limits (MDL), minimum detectable activities (MDA), means and trends in laboratory control sample results, performance evaluation data for all methods, and replicate results. In addition, a comparison will be made of sample analyses results obtained from both alpha spectrometry and the screening method Kinetic Phosphorescence Analysis (KPA) performed at the U.S. Army Corps of Engineers (USACE) FUSRAP Maywood Laboratory (UFML). Many uranium measurements occur in laboratories that only perform radiological analysis. This work is important because it shows that uranium can be measured in radiological as well as stable chemistry laboratories and it provides several criteria as a basis for comparison of two uranium test methods. This data will

  18. METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Chellew, N.R.

    1960-08-16

    Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.

  19. Validation of the WATEQ4 geochemical model for uranium

    SciTech Connect (OSTI)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite (UO/sub 2/(OH)/sub 2/ . H/sub 2/O), UO/sub 2/(OH)/sub 2/, and rutherfordine ((UO/sub 2/CO/sub 3/) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions.

  20. ELUTION OF URANIUM FROM RESIN

    DOE Patents [OSTI]

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  1. Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil

    SciTech Connect (OSTI)

    Saat, Ahmad; Kamsani, Ain Shaqina; Kamri, Wan Nur Aina Nadzira; Talib, Nur Hasyimah Mat; Wood, Ab Khalik; Hamzah, Zaini

    2015-04-29

    Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as ‘pokok senduduk’) as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF), in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration.

  2. Enrichment Determination of Uranium in Shielded Configurations

    SciTech Connect (OSTI)

    Crye, Jason Michael; Hall, Howard L; McConchie, Seth M; Mihalczo, John T; Pena, Kirsten E

    2011-01-01

    The determination of the enrichment of uranium is required in many safeguards and security applications. Typical methods of determining the enrichment rely on detecting the 186 keV gamma ray emitted by {sup 235}U. In some applications, the uranium is surrounded by external shields, and removal of the shields is undesirable. In these situations, methods relying on the detection of the 186 keV gamma fail because the gamma ray is shielded easily. Oak Ridge National Laboratory (ORNL) has previously measured the enrichment of shielded uranium metal using active neutron interrogation. The method consists of measuring the time distribution of fast neutrons from induced fissions with large plastic scintillator detectors. To determine the enrichment, the measurements are compared to a calibration surface that is created from Monte Carlo simulations where the enrichment in the models is varied. In previous measurements, the geometry was always known. ORNL is extending this method to situations where the geometry and materials present are not known in advance. In the new method, the interrogating neutrons are both time and directionally tagged, and an array of small plastic scintillators measures the uncollided interrogating neutrons. Therefore, the attenuation through the item along many different paths is known. By applying image reconstruction techniques, an image of the item is created which shows the position-dependent attenuation. The image permits estimating the geometry and materials present, and these estimates are used as input for the Monte Carlo simulations. As before, simulations predict the time distribution of induced fission neutrons for different enrichments. Matching the measured time distribution to the closest prediction from the simulations provides an estimate of the enrichment. This presentation discusses the method and provides results from recent simulations that show the importance of knowing the geometry and materials from the imaging system.

  3. A Uranium Bioremediation Reactive Transport Benchmark

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  4. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    DOE Patents [OSTI]

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  5. SEPARATION OF URANIUM FROM THORIUM

    DOE Patents [OSTI]

    Hellman, N.N.

    1959-07-01

    A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

  6. URANIUM RECOVERY FROM NUCLEAR FUEL

    DOE Patents [OSTI]

    Vogel, R.C.; Rodger, W.A.

    1962-04-24

    A process of recovering uranium from a UF/sub 4/-NaFZrF/sub 4/ mixture by spraying the molten mixture at about 200 deg C in nitrogen of super- atmospheric pressure into droplets not larger than 100 microns, and contacting the molten droplets with fluorine at about 200 deg C for 0.01 to 10 seconds in a container the walls of which have a temperature below the melting point of the mixture is described. Uranium hexafluoride is formed and volatilized and the uranium-free salt is solidified. (AEC)

  7. Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.; Jarman, Kenneth D.; Robinson, John W.; Endres, Mackenzie C.; Hart, Garret L.; Gonzalez, Jhanis J.; Oropeza, Dayana; Russo, Richard; Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.; Eiden, Gregory C.

    2015-02-06

    We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling also allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.

  8. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective...

  9. Uranium Processing Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly,...

  10. DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity...

    Energy Savers [EERE]

    DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing ...

  11. Researchers use light to create rare uranium molecule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare uranium molecule Researchers use light to create rare uranium molecule Uranium nitride materials show promise as advanced nuclear fuels due to their high density, high ...

  12. URANIUM PURIFICATION PROCESS

    DOE Patents [OSTI]

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    3. Deliveries of uranium feed by owners and operators of U.S. civilian nuclear power reactors by enrichment country and delivery year, 2013-15 thousand pounds U3O8 equivalent Feed deliveries in 2013 Feed deliveries in 2014 Feed deliveries in 2015 Enrichment country U.S.-origin Foreign-origin Total U.S.-origin Foreign-origin Total U.S.-origin Foreign-origin Total China 0 W W W W W 0 W W France 0 1,606 1,606 0 3,055 3,055 W W 3,299 Germany W W W W W 2,140 W W W Netherlands 1,058 2,773 3,831 0

  14. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    9. Foreign purchases of uranium by U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by delivery year, 2011-15 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 U.S. suppliers Foreign purchases 19,318 20,196 23,233 24,199 27,233 Weighted-average price 48.80 46.80 43.25 39.13 40.68 Owners and operators of U.S. civilian nuclear power reactors Foreign purchases 35,071 36,037 34,095 34,404 36,912 Weighted-average

  15. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    1. U.S. uranium drilling activities, 2003-15 Exploration drilling Development drilling Exploration and development drilling Year Number of holes Feet (thousand) Number of holes Feet (thousand) Number of holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904

  16. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    6. Employment in the U.S. uranium production industry by category, 2003-15 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161 787 2015 58 251 W W 116

  17. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    7. Employment in the U.S. uranium production industry by state, 2003-15 person-years State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 343 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 79 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W W 0 0

  18. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. uranium mine production and number of mines and sources, 2003-15 Production / Mining method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W W W W Total Mine Production (thousand pounds U3O8)

  19. Uranium hexafluoride bibliography

    SciTech Connect (OSTI)

    Burnham, S.L.

    1988-01-01

    This bibliography is a compilation of reports written about the transportation, handling, safety, and processing of uranium hexafluoride. An on-line literature search was executed using the DOE Energy files and the Nuclear Science Abstracts file to identify pertinent reports. The DOE Energy files contain unclassified information that is processed at the Office of Scientific and Technical Information of the US Department of Energy. The reports selected from these files were published between 1974 and 1983. Nuclear Science Abstracts contains unclassified international nuclear science and technology literature published from 1948 to 1976. In addition, scientific and technical reports published by the US Atomic Energy Commission and the US Energy Research and Development Administration, as well as those published by other agencies, universities, and industrial and research organizations, are included in the Nuclear Science Abstracts file. An alphabetical listing of the acronyms used to denote the corporate sponsors follows the bibliography.

  20. Moderate positive spin Hall angle in uranium

    SciTech Connect (OSTI)

    Singh, Simranjeet; Anguera, Marta; Barco, Enrique del E-mail: cwmsch@rit.edu; Springell, Ross; Miller, Casey W. E-mail: cwmsch@rit.edu

    2015-12-07

    We report measurements of spin pumping and the inverse spin Hall effect in Ni{sub 80}Fe{sub 20}/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni{sub 80}Fe{sub 20} (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 10{sup 19} m{sup −2} and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.

  1. METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM

    DOE Patents [OSTI]

    Wiswall, R.H.

    1958-06-24

    A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.

  2. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 ... Total Uranium Concentrate Shipped from U.S. Mills and In-Situ-Leach Plants Table 3. U.S. ...

  3. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Concentrate Sales by U.S. Producers 3" "Deliveries (thousand pounds U3O8)","W","W","W",3786,3602,3656,2044,2684,2870,3630,4447,4746,3634 "Weighted-Average Price ...

  4. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Deliveries 2011 2012 2013 2014 2015 Purchases 1,668 1,194 W 410 2,702 Weighted-average price ...

  5. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Table S3b. Weighted-average price of foreign purchases and foreign sales by U.S. ...

  6. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2013-15 deliveries" "thousand pounds U3O8 ...

  7. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Forward costs are neither the full costs of production nor the market price at which the uranium, when produced, might be sold." "Note: Totals may not equal sum of components ...

  8. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    6a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2013-15 deliveries" "thousand pounds U3O8 ...

  9. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2013-15" 2013,2014,2015 "American Fuel Resources, LLC","Advance Uranium Asset Management Ltd.","AREVA AREVA NC, Inc." "AREVA NC, Inc.","AREVA AREVA NC, Inc.","ARMZ ...

  10. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Next Release Date: May 2017 2013 2014 2015 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. AREVA AREVA NC, Inc. AREVA NC, Inc. AREVA AREVA NC, Inc. ARMZ ...

  11. 2015 Uranium Marketing Annual Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, ... Purchased from other owners and operators of U.S. civilian nuclear power reactors, other ...

  12. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    5 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Production Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ...

  13. 2015 Uranium Marketing Annual Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    owners and operators of U.S. civilian nuclear power reactors, 1994-2015 Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel ...

  14. 2015 Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Capacity (short tons of ore per day) 2011 2012 2013 2014 2015 Anfield Resources ...

  15. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    9 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 ...

  16. Y-12 and uranium history

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    did happen six days after he was given the assignment. The history of uranium at Y-12 began with that decision, which will be commemorated on September 19, 2012, at...

  17. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    May 5, 2016" "Next Release Date: May 2017" "Table 4. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status at end of the year, 2011-15" ...

  18. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Employment in the U.S. uranium production industry by state, 2003-15" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015 ...

  19. Conceptual design of a high throughput electrorefining of a uranium by using graphite cathode

    SciTech Connect (OSTI)

    Lee, J.H.; Kang, Y.H.; Hwang, S.C.; Park, S.B.; Shim, J.B.; Lee, H.S.; Kim, E.H.; Park, S.W.

    2007-07-01

    Conceptual designing of a high throughput electro-refiner was performed by using basic experimental data and a commercial computational fluid dynamic code, CFX. An electro-refiner concept equipped with a graphite cathode bundle was designed to recover a high purity uranium product continuously without a noble metal contamination. The performance of the process for a decontamination of a noble metal in a uranium product was evaluated as a function of the process parameters such as the rotation speeds of the stirrer and the anode basket. (authors)

  20. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    DOE Patents [OSTI]

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  1. PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-10-22

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

  2. METAL EXTRACTION PROCESS

    DOE Patents [OSTI]

    Lewis, G.W. Jr.; Rhodes, D.E.

    1957-11-01

    An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.

  3. Influence of Carbon and Microbial Community Priming on the Attenuation of Uranium in a Contaminated Floodplain Aquifer

    SciTech Connect (OSTI)

    Mouser, Paula J.; N'Guessan, A. Lucie; Qafoku, Nikolla; Sinha, M.; Williams, K. H.; Dangelmayr, M.; Resch, Charles T.; Peacock, Aaron D.; Wang, Zheming; Figueroa, Linda A.; Long, P. E.

    2015-07-01

    The capacity for subsurface sediments to sequester metal contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to site stewardship. Sediments enriched in natural organic matter are capable of sequestering significant quantities of U, but may also serve as sources to the aquifer, contributing to plume persistence. Two types of sediments were compared to better understand the mechanisms contributing to the sequestration and release of U in the presence of organic matter. Artificially bioreduced sediments were retrieved from a field experimental plot previously stimulated with acetate while naturally bioreduced sediments were collected from a location enriched in organic matter but never subject to acetate amendment. Batch incubations demonstrated that the artificially bioreduced sediments were primed to rapidly remove uranium from the groundwater whereas naturally bioreduced sediments initially released a sizeable portion of sediment U before U(VI)-removal commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally bioreduced sediments, demonstrating the sink-source behavior of this sediment. Acetate addition to artificially bioreduced sediments shifted the microbial community from one dominated by sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing family Geobacteraceae and Firmicutes during U(VI) reduction. In contrast, initial Geobacteraceae communities innaturally reduced sediments were replaced by clone sequences with similarity to opportunistic Pseudomonas spp. during U release, while U(VI) removal occurred concurrent with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U contaminated sites prior to the determination of a remedial strategy.

  4. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect (OSTI)

    Davison, Brian H.; Kuritz, Tanya

    2000-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  5. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect (OSTI)

    Davison, Brian H.

    2002-04-30

    The proposed research aimed to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies include the following: decreased exposure hazards for workers; decreased secondary waste generation; increased efficiency of decontamination; positive public appeal and development of novel, nature-friendly business opportunities; and lower cost of cleanup to the government. We proposed to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) was to be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  6. ''Green'' Biopolymers for Improved Decontamination of Metals from Surfaces: Sorptive Characterization and Coating Properties

    SciTech Connect (OSTI)

    Davison, Brian H.; Kurtiz,Tanya

    1999-06-01

    The proposed research aims to develop a fundamental understanding of important biological and physical chemical parameters for effective decontamination of metal surfaces using environmentally benign aqueous-based biopolymer solutions. Understanding how heavy metal-chelating biopolymers coat and interact with contaminated surfaces will benefit the development of novel, safe, easy-to-apply decontamination methodologies for removal of radionuclides and heavy metals. The benefits of these methodologies will include the following: (1) decreased exposure hazards for workers; (2) decreased secondary waste generation; (3) increased efficiency of decontamination; (4) positive public appeal and development of novel, nature-friendly business opportunities; and (5) lower cost of cleanup to the government. We propose to use aqueous biopolymer solutions to coat a contaminated metal surface (i.e., steel), solubilize the heavy metals (e.g., uranium) from the surface, and bind the heavy metals into the biopolymer. The biopolymer coating (containing the immobilized hazardous metal contaminants) will then be removed as a viscous film, as a dry powder, or by washing. This ''apply, wait, and remove'' procedure will reduce the amount of worker time spent in decontamination activities.

  7. 230Th-234U Age-Dating Uranium by Mass Spectrometry

    SciTech Connect (OSTI)

    Williams, R W; Gaffney, A M

    2012-04-18

    This is the standard operating procedure used by the Isotope Ratio Mass Spectrometry Group of the Chemical Sciences Division at LLNL for the preparation of a sample of uranium oxide or uranium metal for {sup 230}Th-{sup 234}U age-dating. The method described here includes the dissolution of a sample of uranium oxide or uranium metal, preparation of a secondary dilution, spiking of separate aliquots for uranium and thorium isotope dilution measurements, and purification of uranium and thorium aliquots for mass spectrometry. This SOP may be applied to uranium samples of unknown purity as in a nuclear forensic investigation, and also to well-characterized samples such as, for example, U{sub 3}O{sub 8} and U-metal certified reference materials. The sample of uranium is transferred to a quartz or PFA vial, concentrated nitric acid is added and the sample is heated on a hotplate at approximately 100 C for several hours until it dissolves. The sample solution is diluted with water to make the solution approximately 4 M HNO{sub 3} and hydrofluoric acid is added to make it 0.05 M HF. A secondary dilution of the primary uranium solution is prepared. Separate aliquots for uranium and thorium isotope dilution measurements are taken and spiked with {sup 233}U and {sup 229}Th, respectively. The spiked aliquot for uranium isotope dilution analysis is purified using EiChrom UTEVA resin. The spiked aliquot for thorium isotope dilution analysis is purified by, first, a 1.8 mL AG1x8 resin bed in 9 M HCl on which U adsorbs and Th passes through; second, adsorbing Th on a 1 mL AG1x8 resin bed in 8 M HNO{sub 3} and then eluting it with 9 M HCl followed by 0.1 M HCl + 0.005 M HF; and third, by passing the Th through a final 1.0 mL AG1x8 resin bed in 9 M HCl. The mass spectrometry is performed using the procedure 'Th and U Mass Spectrometry for {sup 230}Th-{sup 234}U Age Dating'.

  8. Reactions of plutonium and uranium with water: Kinetics and potential hazards

    SciTech Connect (OSTI)

    Haschke, J.M.

    1995-12-01

    The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the metals in near-neutral solutions produce a fine hydridic powder plus hydrogen. The corrosion rate for plutonium in sea water is a thousand-fold faster than for the metal in distilled water and more than a thousand-fold faster than for uranium in sea water. Reaction rates for immersed hydrides of plutonium and uranium are comparable and slower than the corrosion rates for the respective metals. However, uranium trihydride is reported to react violently if a quantity greater than twenty-five grams is rapidly immersed in water. The possibility of a similar autothermic reaction for large quantities of plutonium hydride cannot be excluded. In addition to producing hydrogen, corrosion reactions convert the massive metals into material forms that are readily suspended in water and that are aerosolizable and potentially pyrophoric when dry. Potential hazards associated with criticality, environmental dispersal, spontaneous ignition and explosive gas mixtures are outlined.

  9. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  10. Speciation of Uranium in Biologically Reduced Sediments in the Old Rifle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aquifer | Stanford Synchrotron Radiation Lightsource Speciation of Uranium in Biologically Reduced Sediments in the Old Rifle Aquifer Wednesday, May 16, 2012 - 1:30pm SSRL Conference Room 137-322 Juan S. Lezama Pacheco The speciation and dynamics of Uranium(IV) in naturally and artificially bioreduced sediments, as well as its local nanometer-to-millimeter scale physical and chemical environment, controls its stability, susceptibility to oxidation, and subsequent transport behavior in

  11. Uranium reference materials

    SciTech Connect (OSTI)

    Donivan, S.; Chessmore, R.

    1987-07-01

    The Technical Measurements Center has prepared uranium mill tailings reference materials for use by remedial action contractors and cognizant federal and state agencies. Four materials were prepared with varying concentrations of radionuclides, using three tailings materials and a river-bottom soil diluent. All materials were ground, dried, and blended thoroughly to ensure homogeneity. The analyses on which the recommended values for nuclides in the reference materials are based were performed, using independent methods, by the UNC Geotech (UNC) Chemistry Laboratory, Grand Junction, Colorado, and by C.W. Sill (Sill), Idaho National Engineering Laboratory, Idaho Falls, Idaho. Several statistical tests were performed on the analytical data to characterize the reference materials. Results of these tests reveal that the four reference materials are homogeneous and that no large systematic bias exists between the analytical methods used by Sill and those used by TMC. The average values for radionuclides of the two data sets, representing an unbiased estimate, were used as the recommended values for concentrations of nuclides in the reference materials. The recommended concentrations of radionuclides in the four reference materials are provided. Use of these reference materials will aid in providing uniform standardization among measurements made by remedial action contractors. 11 refs., 9 tabs.

  12. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    8. U.S. uranium expenditures, 2003-15 million dollars Year Drilling1 Production2 Land and other 3 Total expenditures Total land and other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6

  13. Uranium Leasing Program Environmental Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Documents Uranium Leasing Program Environmental Documents Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report (March 2016) The DOE Uranium Leasing Program's 2015 Mitigation Action Plan Activity Summary fulfills the mitigation plan's requirement to annually notify the public of mitigation activities completed by Uranium Leasing Program lessees. Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental

  14. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    SciTech Connect (OSTI)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 6 consisted of six phases, A through F. In each phase a critical configuration was constructed to simulate a very simple shape such as a slab, cylinder or sphere that could be analyzed with the limited analytical tools available in the 1950s. In each case the configuration consisted of a core region of metal plates surrounded by a thick depleted uranium metal reflector. The average compositions of the core configurations were essentially identical in phases A - F. ZPR-3

  15. Determination of the origin of elevated uranium at a Former Air Force Landfill using non-parametric statistics analysis and uranium isotope ratio analysis

    SciTech Connect (OSTI)

    Weismann, J.; Young, C.; Masciulli, S.; Caputo, D.

    2007-07-01

    Lowry Air Force Base (Lowry) was closed in September 1994 as part of the Base Realignment and Closure (BRAC) program and the base was transferred to the Lowry Redevelopment Authority in 1995. As part of the due diligence activities conducted by the Air Force, a series of remedial investigations were conducted across the base. A closed waste landfill, designated Operable Unit 2 (OU 2), was initially assessed in a 1990 Remedial Investigation (RI; [1]). A Supplemental Remedial Investigation was conducted in 1995 [2] and additional studies were conducted in a 1998 Focused Feasibility Study. [3] The three studies indicated that gross alpha, gross beta, and uranium concentrations were consistently above regulatory standards and that there were detections of low concentrations other radionuclides. Results from previous investigations at OU 2 have shown elevated gross alpha, gross beta, and uranium concentrations in groundwater, surface water, and sediments. The US Air Force has sought to understand the provenance of these radionuclides in order to determine if they could be due to leachates from buried radioactive materials within the landfill or whether they are naturally-occurring. The Air Force and regulators agreed to use a one-year monitoring and sampling program to seek to explain the origins of the radionuclides. Over the course of the one-year program, dissolved uranium levels greater than the 30 {mu}g/L Maximum Contaminant Level (MCL) were consistently found in both up-gradient and down-gradient wells at OU 2. Elevated Gross Alpha and Gross Beta measurements that were observed during prior investigations and confirmed during the LTM were found to correlate with high dissolved uranium content in groundwater. If Gross Alpha values are corrected to exclude uranium and radon contributions in accordance with US EPA guidance, then the 15 pCi/L gross alpha level is not exceeded. The large dataset also allowed development of gross alpha to total uranium correlation

  16. Radioactivity studies. Progress report. Volume I. [An improved model of uranium metabolism in the primate

    SciTech Connect (OSTI)

    Cohen, N.

    1981-09-01

    A model was developed to be used to calculate the accumulation of uranium in the organs of the human body for different kinds of exposure. The proposed model divides the human body into compartments: red cell, short-term bone, long-term bone, kidney, and urine. The transfer rate between compartments is governed by 1st order kinetics. Transfer from plasma to the other compartments is instantaneous. Feedback from compartments to plasma is taken into account. The division of blood into plasma and red cell compartment is important to the calculations of uranium transport during the first few days after exposure. It was noted that uranium in bone has two different half-lives depending on the site of deposition, a short-term and a long-term bone component. An analytical solution to the model was proposed for any time-dependent exposure to uranium. This methodology is unique to this model and represents a significant change in analytical solutions. Specific analytical solutions for common cases of uranium exposure were derived. These include: single injection dose to the blood; exposure to background levels of natural uranium by ingestion; exposure through inhalation during working hours for uranium workers; single inhalation dose; constant inhalation exposure during a finite interval of time; and single ingestion dose. For model verification five baboons were injected intravenously with uranium nitrate and the partition of uranium between plasma and red cells was studied. The half-life in short-term bone was derived and the distribution in soft tissues four days after injection was studied: the kidney was the main organ for uranium deposition. The concentration in human skeleton was equal to 0.02 ..mu..g U/g ash. For this concentration in skeleton the gastrointestinal absorption factor was calculated as 23% and the daily excretion as 0.24 ..mu..g U/day.

  17. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments [OSTI]

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  18. Uranium Marketing Annual Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Uranium purchases and prices Owners and operators of U.S. civilian nuclear power reactors ... Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors during 2015 ...

  19. Inherently safe in situ uranium recovery

    SciTech Connect (OSTI)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  20. RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS

    DOE Patents [OSTI]

    Michal, E.J.; Porter, R.R.

    1959-06-16

    Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)

  1. Lead, Uranium, and Nickel Compound Data from the XAFS Library at the Stanford Synchrotron Radiation Laboratory (SSRL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The x-ray absorption fine structure spectroscopy (XAFS) library at the Stanford Synchrotron Radiation Laboratory is intended to be a reference library of XAFS spectra for various lead, uranium, and nickel compounds. Compounds are organized by central atom and all spectra are transmission data. Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in the biosphere with the goal of elucidating global elemental cycles and anthropogenic influences on the environment. Key areas of investigation include the: (a) Structural chemistry of water and dissolved solutes, (b) Structural chemistry and reactivity of complex natural environmental materials with respect to heavy metals and metalloids (biominerals, Fe- and Mn-oxides, biofilms, and organic materials), (c) Reactions at environmental interfaces, including sorption, precipitation and dissolution processes that affect the bioavailability of heavy metals and other contaminants, and (d) Microbial transformations of metals and anions. SSRL-based MES research utilizes synchrotron-based x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS), x-ray standing wave (XSW) spectroscopy, and photoemission spectroscopy (PES) because of their unique capabilities to probe structure/composition relationships in complex, non-crystalline, and dilute materials. [copied from http://www-ssrl.slac.stanford.edu/mes/index.html

  2. PROCESS FOR THE RECOVERY OF URANIUM

    DOE Patents [OSTI]

    Morris, G.O.

    1955-06-21

    This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

  3. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    1981-01-01

    Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

  4. Excess Uranium Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Management Excess Uranium Management Request for Information - July 2016 On July 19, 2016, the Department issued a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries. The Request for Information established an August 18, 2016 deadline for the submission of written comments. The Request for Information is available here. On August 1, 2016, the Department extended the comment period to September

  5. Uranium Management and Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Management and Policy Uranium Management and Policy The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United States. The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United

  6. Uranium Downblending and Disposition Project Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download Uranium Downblending and Disposition Project Technology Readiness Assessment (1.11 MB) Summary - Uranium233 Downblending and Disposition Project (146.5 KB) More Documents & Publications Compilation of TRA Summaries EA-1574: Final

  7. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update (EIA)

    2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium concentrate processing facilities End of Mills - conventional milling 1 Mills - other operations 2 In-situ-leach plants 3 Byproduct recovery plants 4 Total 1996 0 2 5 2 9 1997 0 3 6 2 11 1998 0 2 6 1 9 1999 1 2 4 0 7 2000 1 2 3 0 6 2001 0 1 3 0 4 2002 0 1 2 0 3 2003 0 0 2 0 2 2004 0 0 3 0 3 2005 0 1 3 0 4 2006 0 1 5 0 6 2007 0 1 5 0 6 2008 1 0 6 0 7 2009 0 1 3 0 4 2010 1 0 4 0 5 2011 1 0 5 0 6 2012 1

  8. Uranium distribution and geology in the Fish Lake surficial uranium deposit, Esmeralda County, Nevada

    SciTech Connect (OSTI)

    Macke, D.L.; Schumann, R.R.; Otton, J.K.

    1990-01-01

    This paper reports on approximately 675 acres of uranium-enriched lacustrine and marsh sediments in Fish Lake Valley, in southern Nevada and California. Uranium concentrations from 253 samples averaged 64.3 ppm uranium, with a range from 6 to 800 ppm. Uranium was supplied to the marsh sediments by ground water derived from Tertiary volcanic rocks of the Silver Peak Range. Reconnaissance sampling in the surrounding areas shows minor enrichment of uranium in other wetland areas.

  9. PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS

    DOE Patents [OSTI]

    Spedding, F.H.; Butler, T.A.; Johns, I.B.

    1959-03-10

    The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

  10. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOE Patents [OSTI]

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  11. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  12. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  13. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update (EIA)

    3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating status at the end of Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) 2015 1st Quarter 2016 2nd quarter 2016 Anfield Resources Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating-Processing Alternate Feed

  14. EXTRACTION OF URANIUM

    DOE Patents [OSTI]

    Schmieding, E.G.; Ruehle, A.E.

    1961-04-11

    A method is given for extracting metal values from an aqueous feed wherein the aqueous feed is passed countercurrent to an organic extractant through a plurality of decanting zones and a portion of the mixture contained in each decanting zone is recycled through a mixing zone associated therewith. The improvement consists of passing more solvent from the top of one decanting zone to the bottom of the preceding decanting zone than can rise to the top thereof and recycling that portion of the solvent that does not rise to the top back to the first named decanting zone through its associated mixing zone.

  15. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J.; Kelly, Ann Marie; Clarke, Amy J.; Field, Robert D.; Wenk, H. R.

    2012-07-25

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion

  16. Domestic Uranium Production Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report - Annual With Data for 2015 | Release Date: May 5, 2016 | Next Release Date: May 2017 | full report Previous domestic uranium production reports Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Total uranium drilling was 1,518 holes covering 0.9 million feet, 13% fewer holes than in 2015. Expenditures for uranium drilling in the United States were $29 million in 2015, an increase of 2% compared with 2014. Figure 1. U.S. Uranium drilling

  17. Development of pulsed neutron uranium logging instrument

    SciTech Connect (OSTI)

    Wang, Xin-guang; Liu, Dan; Zhang, Feng

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  18. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  19. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  20. Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; D. Vaden; S.X. Li; G.L. Fredrickson; R.D. Mariani

    2009-09-01

    During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontally displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel