Powered by Deep Web Technologies
Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Controlled Source Audio MT Jump to: navigation, search Dictionary.png Controlled Source Audio MT Controlled Source Audio-Magnetotellurics (CSAMT) is an active source application of a magnetotelluric survey aimed at providing a more reliable signal and rapid acquisition time relative to a natural source MT measurement.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

2

Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Audio MT Controlled Source Audio MT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Audio MT Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,866.44186,644 centUSD

3

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP...  

Open Energy Info (EERE)

Details Location Pilgrim Hot Springs Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown References (1 January...

4

GRR/Section 14-MT-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

MT-a - Nonpoint Source Pollution MT-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-a - Nonpoint Source Pollution 14MTANonpointSourcePollution (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Watershed Coordination Council United States Environmental Protection Agency Regulations & Policies Clean Water Act Triggers None specified Click "Edit With Form" above to add content 14MTANonpointSourcePollution (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Nonpoint source (NPS) pollution is the state's single largest source of

5

Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Cove Fort Area - Liquid (Combs 2006) Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Controlled_Source_Audio_MT_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598122"

6

GRR/Section 17-MT-c - Natural Streambed and Land Preservation Act (310  

Open Energy Info (EERE)

c - Natural Streambed and Land Preservation Act (310 c - Natural Streambed and Land Preservation Act (310 Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-c - Natural Streambed and Land Preservation Act (310 Permit) 17MTCNaturalStreambedAndLandPreservationAct310Permit.pdf Click to View Fullscreen Contact Agencies Local Conservation District Montana Department of Natural Resources & Conservation Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and Land Preservation Act of 1975 Triggers None specified Click "Edit With Form" above to add content 17MTCNaturalStreambedAndLandPreservationAct310Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

7

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",25548,15 "..Electric Utilities",16661,18 "..IPP & CHP",8887,13 "Net Generation (megawatthours)",103407706,15...

8

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28...

9

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10,51 "Electric Utilities",, "IPP & CHP",10,51 "Net Generation (megawatthours)",71787,51 "Electric...

10

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",4491,43 "..Electric Utilities",19,49 "..IPP & CHP",4472,22 "Net Generation (megawatthours)",14428596,44...

11

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",2119,48 "Electric Utilities",1946,39 "IPP & CHP",172,50 "Net Generation (megawatthours)",6946419,49 "Electric...

12

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",23485,17 "Electric Utilities",17148,17 "IPP & CHP",6337,17 "Net Generation (megawatthours)",77896588,19 "Electric...

13

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",14321,31 "Electric Utilities",991,42 "IPP & CHP",13330,7 "Net Generation (megawatthours)",36198121,36 "Electric...

14

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",38488,7 "Electric Utilities",29293,3 "IPP & CHP",9195,10 "Net Generation (megawatthours)",122306364,9 "Electric...

15

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",1781,49 "Electric Utilities",8,50 "IPP & CHP",1773,38 "Net Generation (megawatthours)",8309036,48 "Electric...

16

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",32547,9 "Electric Utilities",23615,7 "IPP & CHP",8933,11 "Net Generation (megawatthours)",152878688,6 "Electric...

17

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",39520,6 "Electric Utilities",10739,26 "IPP & CHP",28781,5 "Net Generation (megawatthours)",135768251,7 "Electric...

18

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10476,34 "Electric Utilities",7807,30 "IPP & CHP",2669,34 "Net Generation (megawatthours)",35173263,39 "Electric...

19

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",59139,3 "Electric Utilities",51373,1 "IPP & CHP",7766,15 "Net Generation (megawatthours)",221096136,3 "Electric...

20

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",71329,2 "Electric Utilities",30294,2 "IPP & CHP",41035,3 "Net Generation (megawatthours)",199518567,4 "Electric...

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",3357,46 "Electric Utilities",98,47 "IPP & CHP",3259,29 "Net Generation (megawatthours)",8633694,47 "Electric...

22

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",109568,1 "Electric Utilities",28463,4 "IPP & CHP",81106,1 "Net Generation (megawatthours)",429812510,1 "Electric...

23

A fast, simple, and naturally machine-precision algorithm for calculating both symmetric and asymmetric MT2, for any physical inputs  

E-Print Network [OSTI]

This document describes a stransverse-mass calculation algorithm that has better numerical stability, and therefore accuracy, than the fastest existing implementations. The new algorithm naturally permits computation of MT2 to machine-precision for any valid set of inputs. In addition to being more accurate than existing fast calculators, the new implementation is arguably simpler to understand, comprises fewer lines of active code, and provides the first fast machine-precision asymmetric-MT2 calculator known to the authors.

Christopher G. Lester; Benjamin Nachman

2014-11-16T23:59:59.000Z

24

,,,"Electricity","from Sources",,"Natural Gas","from Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 7.3;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" ,,,,"Electricity",,,"Natural...

25

Natural Gas Regulation - Other Gas-Related Information Sources | Department  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources Natural Gas Regulation - Other Gas-Related Information Sources The single largest source of energy information available is the Department of Energy's Energy Information Administration (EIA). The EIA publishes extensive reports on natural gas and other energy sources. Domestic natural gas markets are regulated in part by the Federal Energy Regulatory Commission. The commission's chief area of concern is the interstate natural gas market. Natural gas moves for the most part by pipeline in the United States. The safety of those pipelines is the concern of the Department of Transportation's Office of Pipeline Safety. In Canada the regulation of interprovincial and international natural gas is the responsibility of the National Energy Board. Their areas of

26

Analysis Of Factors Affecting Natural Source Slf Electromagnetic  

Open Energy Info (EERE)

Factors Affecting Natural Source Slf Electromagnetic Factors Affecting Natural Source Slf Electromagnetic Exploration At Geothermal Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Factors Affecting Natural Source Slf Electromagnetic Exploration At Geothermal Wells Details Activities (0) Areas (0) Regions (0) Abstract: The Super Low Frequency (SLF) electromagnetic exploration was performed by using a nature source SLF electromagnetic detector at two geothermal wells in Peking University. The data of the SLF electromagnetic exploration at well JR-119 and JR-168 were obtained with the observation of continued five days and four times per day at well JR-119 and of one day at well JR-168. Based on these data, the influencing factors of the SI-F electromagnetic exploration were analyzed, which included the relationship

27

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050MT3","N3010MT3","N3020MT3","N3035MT3","NA1570SMT3","N3045MT3" "Date","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports...

28

Mt Playfair Blair Athol  

E-Print Network [OSTI]

Norwich Park Epping Forest Yatton Outstation Injune Lockington Augathella Crystalbrook Bluff Dysart Saraji CALDERVALE BABBILOORA MT MOFFATT FRANKFIELD WETLANDS MT PLAYFAIR LOCHINVAR PENJOBE TM FOREST VALE TM/MAN DERBYSHIRE DOWNS BILLABOO AL CHESTERTON TM/MAN GLEN ROCK AL SPRINGSURE TM/(SYN) ECHO HILLS AL GREEN VALLEY AL

Greenslade, Diana

29

EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

30

MT 300 POZEN  

Science Journals Connector (OSTI)

In September 2003, POZEN announced that it had formed a commercialisation agreement with Xcel Pharmaceuticals. Under the terms of the agreement Xcel will have exclusive rights to commercialise MT...1

2003-11-01T23:59:59.000Z

31

Review of {sup 222}Rn in natural gas produced from unconventional sources  

SciTech Connect (OSTI)

A review of the literature on trace radioactivity in natural gas and natural gas products has been performed and the consequent radioactivity concentrations and dose rates due to natural radioactive elements in natural gas produced from Devonian shale wells, western tight gas sands, geo-pressurized aquifiers and coal beds have been studied. Preliminary data on {sup 222}Rn concentrations from these energy sources fall within the range observed for more conventional sources. Gas produced from reservoirs with higher than average natural /sup 238/U higher than average levels of {sup 222}Rn. Massive fracturing techniques do not appear to raise the relative concentration of radon in natural gas.

Gogolak, C.V.

1980-11-01T23:59:59.000Z

32

Execution Monitoring in MT Icon  

Science Journals Connector (OSTI)

MT Icon allows the execution of multiple Icon programs in almost any configuration, including execution ... monitoring. As motivated in Chapter 4, MT Icon characterizes monitoring as a special case of ... languag...

Clinton L. Jeffery

1999-01-01T23:59:59.000Z

33

Nature of the M87 X-Ray Source  

Science Journals Connector (OSTI)

... nucleus. It is unlikely (although not impossible) that this compact source is radiating by synchroton emission and so a choice must be made between an inverse Compton mechanism in which ...

1971-04-23T23:59:59.000Z

34

Emulating-and Surpassing-Nature | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Stress in Multilayer Laue Lenses Reducing Stress in Multilayer Laue Lenses Novel Magnetic Material Operates under Extreme Stress Conditions Ringing the Hemoglobin Bell Bragg Reflectivity of X-rays: At the Limit of the Possible Sending a Message: How Receptors Talk to G Proteins Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Emulating-and Surpassing-Nature OCTOBER 18, 2011 Bookmark and Share Gold nanoparticles with DNA linkers assemble into lattices that maximize hybridization interactions between neighboring particles. The lattices shown have the same structures as (from left) Cr3Si, AlB2, CsCl, NaCl, and Cs6C60 crystals. (Image courtesy of C. Mirkin). Nature is a master builder. Using a bottom-up approach, nature takes tiny

35

Organic fluorine in human serum: natural versus industrial sources  

Science Journals Connector (OSTI)

...highly inadvisable to locate a chemical waste disposal site adjacent to a radioac-tive waste disposal site. Naturally occur-ring organic substances...EPA-52015-761020 (1977). 3. The hydrology of the Maxey Flats site has been described in H. H. Zehner...

J Belisle

1981-06-26T23:59:59.000Z

36

GRR/Section 17-MT-a - Aesthetic Resource Assessment | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 17-MT-a - Aesthetic Resource Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-a - Aesthetic Resource Assessment 17MTAAestheticResourceAssessment.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-7-101 et seq The Natural Streambed and Land Preservation Act of 1975 MCA 87-5-501 et seq Montana Stream Protection

37

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use  

E-Print Network [OSTI]

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use Dylan B. Millet,*, Eric Apel, Daven K. Henze,§ Jason Hill, Julian D. Marshall, Hanwant B-Chem chemical transport model to constrain present-day North American ethanol sources, and gauge potential long

Mlllet, Dylan B.

38

Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS)  

E-Print Network [OSTI]

of West Africa, which includes one of the most active natural dust sources and the highest population density on the continent, are processed. Sources are identified on the basis of the persistence in the western United States to expansion of livestock grazing in the early twentieth century. In West Africa

39

Table 3. Changes to proved reserves of wet natural gas by source, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves of wet natural gas by source, 2011" Changes to proved reserves of wet natural gas by source, 2011" "trillion cubic feet" ,"Proved",,"Revisions &",,"Proved" ,"Reserves","Discoveries","Other Changes","Production","Reserves" "Source of Gas","Year-End 2010",2011,2011,2011,"Year-End 2011" "Coalbed Methane",17.5,0.7,0.4,-1.8,16.8 "Shale",97.4,33.7,8.5,-8,131.6 "Other (Conventional & Tight)" " Lower 48 Onshore",181.7,14.7,-3.5,-12.8,180.1 " Lower 48 Offshore",12.1,0.8,-0.4,-1.7,10.8 " Alaska",8.9,0,0.9,-0.3,9.5 "TOTAL",317.6,49.9,5.9,-24.6,348.8 "Source: U.S. Energy Information Administration, Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves."

40

Source Signature of Volatile Organic Compounds from Oil and Natural Gas Operations in Northeastern Colorado  

Science Journals Connector (OSTI)

Source Signature of Volatile Organic Compounds from Oil and Natural Gas Operations in Northeastern Colorado ... Only 4% of all samples at BAO had high ROH+VOCO&NG and were from the western sector where the nearest wells are located indicating that they were not the dominant O&NG source at BAO. ... parameters were measured concurrently at a site on the western perimeter of Boulder, Colorado, during Feb., 1991. ...

J. B. Gilman; B. M. Lerner; W. C. Kuster; J. A. de Gouw

2013-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Category:Billings, MT | Open Energy Information  

Open Energy Info (EERE)

MT MT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Billings, MT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Billings MT NorthWestern Corporation.png SVFullServiceRestauran... 64 KB SVHospital Billings MT NorthWestern Corporation.png SVHospital Billings MT... 62 KB SVLargeHotel Billings MT NorthWestern Corporation.png SVLargeHotel Billings ... 62 KB SVLargeOffice Billings MT NorthWestern Corporation.png SVLargeOffice Billings... 62 KB SVMediumOffice Billings MT NorthWestern Corporation.png SVMediumOffice Billing... 62 KB SVMidriseApartment Billings MT NorthWestern Corporation.png SVMidriseApartment Bil... 63 KB SVOutPatient Billings MT NorthWestern Corporation.png SVOutPatient Billings ...

42

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol  

E-Print Network [OSTI]

S1 Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use Dylan B. Millet*,1 , Eric Apel2 , Daven K. Henze3 , Jason Hill1 , Julian D. Marshall1 INFORMATION Supporting Information contains a total of 12 pages, 1 table, and 7 figures. 1. AIRBORNE ETHANOL

Mlllet, Dylan B.

43

Probing the long range nature of pion emission source at SPS energies  

SciTech Connect (OSTI)

The NA49 experiment at CERN SPS has acquired a huge data set of Pb+Pb events over a broad range of energy and centrality during the last several years. This high statistics data set, coupled with a state-of-the-art analysis technique, allows for the first model-independent extraction and energy scan of 3D emission sources for pion pairs at SPS energies. These 3D pion emission sources provide new insights into the nature of a long-range source previously reported by PHENIX at RHIC. The new results indicate that the pion source function is essentially Gaussian from 20 AGeV to 80 AGeV but it displays significant non-Gaussian tails at 158 AGeV.

Chung, P. [Dept of Chemistry, SUNY Stony Brook, Stony Brook, NY 11794 (United States); Danielewicz, P. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI. 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI. 48824-1321 (United States)

2006-11-17T23:59:59.000Z

44

E-Print Network 3.0 - at10 microtelsa-300 mt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HTC PurEnergy EOR Hydrogen Energy Kern County, CA 308 390 MW 2 MtCO2yr IGCC... CoalPetCoke EOR AEP New Haven, WV 334 235 MW 1.5 Mt CO2yr PCC Chilled NH3 Saline ... Source:...

45

" Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components" ,,,,"Electricity","Electricity",,,"Natural Gas","Natural Gas",,,"Steam","Steam" " "," ",,,"from Only","from Both",,,"from Only","from Both",,,"from Only","from Both"," ",," "

46

,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

10.3 Relative Standard Errors for Table 10.3;" 10.3 Relative Standard Errors for Table 10.3;" " Unit: Percents." ,,,"Natural Gas(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",2,8.6,4,21.7,13.8,22.3,59.7,15.9,"X",24.9

47

A Generalized Finite Source Calibration Factor: A Natural Improvement to the Finite Source Correction Factor for Uranium Holdup Measurements  

SciTech Connect (OSTI)

This paper proposes refinements to the finite source correction factor used in holdup measurements. Specifically it focuses on a more general method to estimate the average detector response for a finite source. This proposed method for the average detector response is based directly on the Generalized Geometry Holdup (GGH) assay method. First, the finite source correction factor as originally proposed is reviewed in this paper. Following this review the GGH assay method is described. Lastly, a new finite area calibration factor based on GGH is then proposed for finite point and line sources. As an alternative to the direct use of the finite arca calibration factor, finite source correction factors are also derived from this calibration factor. This new correction factor can be used in a manner similar to the finite source correction factor as currently implemented.

Gunn, C.A.; Oberer, R.B.; chiang, L.G.; Ceo, R.N.

2003-01-28T23:59:59.000Z

48

Mt. Vernon Tap : Environmental Assessment.  

SciTech Connect (OSTI)

The proposed Mt. Vernon project would consist of the construction of a substation and transmission line by the Springfield Utility Board (SUB) to the south of the boundary of the City of Springfield in Lane County, Oregon. Bonneville Power Administration (BPA) would participate in the project by furnishing equipment for the project and modifying its transmission lines to provide a new point of delivery to SUB, its public utility customer at the new site. This document addresses the environmental impacts of various alternative solutions. 3 figs.

United States. Bonneville Power Administration.

1982-09-01T23:59:59.000Z

49

Brightness distribution of synchrotron radiation in the field of a magnetic dipole and the nature of double radio sources  

SciTech Connect (OSTI)

A model of double radio sources is proposed. In it, the radio radiation is produced by the motion of relativistic particles in a dipole magnetic field whose source is the optical galaxy. Calculations of the apparent brightness distribution of the synchroton radiation of electrons in such a field make it possible to explain some observed features of radio sources: a) the double nature of structure, b) the disposition of the components of the double source on a single straight line with the parent galaxy, c) the dependence of the size of the components on the frequency, d) the preferential direction of the field along the principal axis of the source, e) the similarity of the structures of radio sources in wide ranges of linear and angular sizes. Some other features can also be explained.

Zyskin, Y.L.; Stepanyan, A.A.

1985-05-01T23:59:59.000Z

50

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

51

A Portable Elf-Mt System For Shallow Resistivity Sounding | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Portable Elf-Mt System For Shallow Resistivity Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Portable Elf-Mt System For Shallow Resistivity Sounding Details Activities (0) Areas (0) Regions (0) Abstract: In view of recent extensive investigation of shallow resistivity structure for active fault studies and geothermal exploration, we developed a portable magnetotelluric (MT) system for the extremely low frequency (ELF) range. The system aims primarily at making real-time analyses of MT data at the so-called Schumann resonance frequencies of ~ 8, 14 and 20 Hz.

52

Extraction and Characterization of Oil Bodies from Soy Beans: A Natural Source of Pre-Emulsified Soybean Oil  

Science Journals Connector (OSTI)

Extraction and Characterization of Oil Bodies from Soy Beans: A Natural Source of Pre-Emulsified Soybean Oil ... Industrially, edible oils are usually extracted from oilseeds using organic solvents, such as hexane or isopropanol (1, 4, 5). ... The oil stability and refinability aspects of oils from oil seeds, olives, and other fruits are presented. ...

Daigo Iwanaga; David A. Gray; Ian D. Fisk; Eric Andrew Decker; Jochen Weiss; David Julian McClements

2007-09-20T23:59:59.000Z

53

File:INL-geothermal-mt.pdf | Open Energy Information  

Open Energy Info (EERE)

mt.pdf mt.pdf Jump to: navigation, search File File history File usage Montana Geothermal Resources Size of this preview: 728 × 600 pixels. Full resolution ‎(5,100 × 4,200 pixels, file size: 1.99 MB, MIME type: application/pdf) Description Montana Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States Montana File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:41, 16 December 2010 Thumbnail for version as of 12:41, 16 December 2010 5,100 × 4,200 (1.99 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

54

Synthesis and characterization of NaMt biocomposites with corn cob xylan in aqueous media  

Science Journals Connector (OSTI)

In this study synthesis and characterization of biopolymer/clay biocomposites was aimed using naturally occurring polysaccharide (xylan) as biopolymer and montmorillonite type clay (NaMt). Xylan was extracted from corn cobs via alkaline oxidative treatment. Maximum solubility of xylan was determined as 1% (w/v) in water at room temperature. Thus synthesis was realized following two routes; first NaMt concentration was kept constant at 2.0נ10?2g/ml and xylan concentration was changed. Latter xylan concentration was kept constant at 1.0נ10?2g/ml and NaMt concentration was changed. Natural xylan, NaMt and biocomposites were examined in terms of their spectral, electrokinetic, rheologic, morphologic and thermal properties. Results showed that lower amounts of xylan interacted with NaMt on the surface, however, when the xylan amount was increased also intercalation of NaMt has occurred. Biocomposites showed better thermal and rheologic behaviors with respect to the starting materials.

Cneyt H. nl; Ebru Gnister; Oya At?c?

2009-01-01T23:59:59.000Z

55

GRR/Section 6-MT-e - Floodplain Development Permit | Open Energy  

Open Energy Info (EERE)

6-MT-e - Floodplain Development Permit 6-MT-e - Floodplain Development Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-e - Floodplain Development Permit 06MTEFloodplainDevelopmentPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Federal Emergency Management Agency Triggers None specified Click "Edit With Form" above to add content 06MTEFloodplainDevelopmentPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Anyone planning new development within a designated Special Flood Hazard Areas (SFHA). Check with local floodplain [www.mtfloodplain.mt.gov

56

Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274  

SciTech Connect (OSTI)

Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

Hays, David C. [United States Army Corps of Engineers, Kansas City, Missouri, 64106 (United States)

2012-07-01T23:59:59.000Z

57

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

58

Geothermal energy resource investigations at Mt. Spurr, Alaska  

SciTech Connect (OSTI)

Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

Turner, D.L.; Wescott, E.M. (eds.)

1986-12-01T23:59:59.000Z

59

,"Montana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:18 PM" "Back to Contents","Data 1: Montana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MT2" "Date","Montana Natural Gas Underground Storage Capacity (MMcf)" 32324,373963 32689,373960 33054,373960 33419,373960 33785,375010

60

Energy efficiency and color quality limits in artificial light sources emulating natural illumination  

Science Journals Connector (OSTI)

We present in this work a calculation of the theoretical limits attainable for natural light emulation with regard to the joint optimization of the Luminous Efficacy of Radiation and...

Hertog, Wim; Llenas, Aleix; Quintero, Jess M; Hunt, Charles E; Carreras, Josep

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"Montana Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Volume (MMcf)" Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030mt2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030mt2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:07 PM"

62

UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE  

SciTech Connect (OSTI)

This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

2011-10-01T23:59:59.000Z

63

Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,

64

DC-DC converter current source fed naturally commutated brushless DC motor drive  

E-Print Network [OSTI]

, thereby generating switching losses and entail the use of large heatsinks. VSI needs a huge dc link capacitor that is inherently unreliable and is one of the most expensive components of a drive. Hence, a Current Source Inverter (CSI) is used to replace...

Khopkar, Rahul Vijaykumar

2004-11-15T23:59:59.000Z

65

SOURCES AND EFFECTS OF MINING-RELATED AND NATURAL ACID ROCK DRAINAGE QUANTIFIED USING TRACER  

E-Print Network [OSTI]

DILUTION, COAL CREEK WATERSHED, GUNNISON COUNTY, COLORADO by Brianna Shanklin B.S., Auburn University, 2004 written by Brianna Shanklin has been approved for the Department of Civil, Environmental;iii ABSTRACT Shanklin, Brianna L. (M.S., Department of Civil Engineering) Sources and Effects

Ryan, Joe

66

Atmospheric Environment 39 (2005) 32913303 On the contribution of natural Aeolian sources to particulate  

E-Print Network [OSTI]

and resuspension. The methodology consists in testing these hypotheses in the CHIMERE regional chemistry be significant in Europe. We finally assume that resuspension of material available on the ground, explains most results are consistent with the existence of a strong biogenic resuspension aerosol source, but more

Menut, Laurent

67

Source Apportionment of Atmospheric PAHs in the Western Balkans by Natural Abundance Radiocarbon Analysis  

Science Journals Connector (OSTI)

This marks the first time that a CCSRA investigation could be executed on a geographically wide scale, providing a quantitative field-based source apportionment, which points out that also non-fossil combustion processes should be targeted for remedial action. ...

Zdenek Zencak; Jana Klanova; Ivan Holoubek; rjan Gustafsson

2007-04-20T23:59:59.000Z

68

Mt. Baker Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Mt. Baker Geothermal Project Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates 48.777222222222°, -121.81333333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.777222222222,"lon":-121.81333333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

70

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

71

Natural sources of mercury in arid and semiarid landscapes of western North America  

SciTech Connect (OSTI)

Mercury is enriched naturally in three global belts associated with areas in which Tertiary and Quaternary volcanism occurred. one belt, which occurs along the western margin of North America, contains concentrated and disseminated mercury occurrences in semiarid and arid biomes. Mercury enters the atmosphere from these landscapes through three processes: volatilization from enriched substrate, venting of geothermal systems, and resuspension. It is expected that the component of Hg deposited to arid landscapes through wet and dry deposition is negligible. Mercury fluxes to the atmosphere from arid and semiarid landscapes will be greater than that in more mesic environments because of the aridity and the daily amplitude in air temperatures. Resuspension may contribute significantly to the atmospheric burden of Hg due to eolian dispersal and subsequent evasion. To calculate the Hg flux from naturally enriched areas, the concentration, chemical form, and distribution of the Hg must be known. An understanding of the magnitude of natural Hg enrichment in global mercuriferous belts is important because the baseline for addressing human health and ecological risk is likely to be higher in these landscapes.

Gustin, M.S.; Taylor, G.E. Jr. [Univ. of Nevada, Reno, NV (United States). Dept. of Environmental and Resource Sciences

1994-12-31T23:59:59.000Z

72

Wind speed vertical distribution at Mt Graham  

Science Journals Connector (OSTI)

......October 2010 research-article Papers Wind speed vertical distribution at Mt Graham...characterization of the vertical distribution of wind speed, V(h), is fundamental for an...many different reasons: (i) the wind speed shear contributes to trigger optical......

S. Hagelin; E. Masciadri; F. Lascaux

2010-10-01T23:59:59.000Z

73

RAPID/Roadmap/3-MT-b | Open Energy Information  

Open Energy Info (EERE)

3-MT-b.6 - Is a Geothermal Resource to Be Developed? If the geothermal fluids are to be produced, the developer must have the proper appropriation rights. 3-MT-b.7 - Initiate...

74

GRR/Section 20-MT-a - Well Abandonment Process | Open Energy Information  

Open Energy Info (EERE)

20-MT-a - Well Abandonment Process 20-MT-a - Well Abandonment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 20-MT-a - Well Abandonment Process 20MTAWellAbandonmentProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.21.671 - Abandonment of Flowing Wells Rule 36.21.810 - Abandonment Rule Chapter 36.21 Board of Water Well Contractors Triggers None specified Click "Edit With Form" above to add content 20MTAWellAbandonmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana requires the employment of particular engineering standards when

75

GRR/Section 3-MT-a - State Geothermal Resource Lease | Open Energy  

Open Energy Info (EERE)

3-MT-a - State Geothermal Resource Lease 3-MT-a - State Geothermal Resource Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-a - State Geothermal Resource Lease 03MTAStateGeothermalResourceLease.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.25.404 Triggers None specified Click "Edit With Form" above to add content 03MTAStateGeothermalResourceLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to document the process behind the geothermal resource lease in Montana. The procedure is outlined in Rule 36.25.404.

76

GRR/Section 5-MT-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-MT-a - Drilling and Well Development GRR/Section 5-MT-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-MT-a - Drilling and Well Development 05MTADrillingAndWellDevelopment (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Regulations & Policies MCA 37-43-104: Monitoring Wells MCA 37-43-302: License Requirements MCA 37-43-306: Bonding Requirements Triggers None specified Click "Edit With Form" above to add content 05MTADrillingAndWellDevelopment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

77

GRR/Section 3-MT-e - Encroachment Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-MT-e - Encroachment Permit GRR/Section 3-MT-e - Encroachment Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-e - Encroachment Permit 03MTEEncroachmentPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Transportation Triggers None specified Click "Edit With Form" above to add content 03MTEEncroachmentPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to address the permitting requirements for encroachments on Montana Department of Transportation lands.

78

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318  

Open Energy Info (EERE)

GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 GRR/Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-f - Short-term Water Quality Standard for Turbidity (318 Authorization) 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-5-318 Triggers None specified Click "Edit With Form" above to add content 06MTFShortTermWaterQualityStandardForTurbidity318Authorization.pdf Error creating thumbnail: Page number not in range.

79

GRR/Section 6-MT-d - Other Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 6-MT-d - Other Overview GRR/Section 6-MT-d - Other Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-d - Other Overview 06MTDOtherOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Triggers None specified Click "Edit With Form" above to add content 06MTDOtherOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This overview is intended to direct the developer to additional construction permits. For projects intended near waterways, Montana also provides a joint

80

GRR/Section 3-MT-f - Right-of-Way Easement for Utilities | Open Energy  

Open Energy Info (EERE)

3-MT-f - Right-of-Way Easement for Utilities 3-MT-f - Right-of-Way Easement for Utilities < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-f - Right-of-Way Easement for Utilities 03MTFRightOfWayEasementForUtilitiesProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Historic Preservation Office Triggers None specified Click "Edit With Form" above to add content 03MTFRightOfWayEasementForUtilitiesProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to describe the process for obtaining an

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GRR/Section 15-MT-a - Air Quality Permit | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 15-MT-a - Air Quality Permit GRR/Section 15-MT-a - Air Quality Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-MT-a - Air Quality Permit 15MTAAirQualityPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-2 Administrative Rules of Montana 17.8 Triggers None specified Click "Edit With Form" above to add content 15MTAAirQualityPermit (1).pdf 15MTAAirQualityPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Department of Environmental Quality (DEQ) requires a Montana Air Permit to construct and operate a new or modified source of air

82

Microsoft Word - MtRichmond_CX  

Broader source: Energy.gov (indexed) [DOE]

3 3 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Mt. Richmond property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation, and wildlife management. Location: Fairdale and Yamhill quadrangles, in Yamhill County, Oregon (near Yamhill, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to fund the Yamhill Soil and Water Conservation District's (YSWCD) purchase of the Mt. Richmond property (Property), a 284.66-acre parcel of land located west of the City of Yamhill in Yamhill County Oregon.

83

Mt Peak Utility | Open Energy Information  

Open Energy Info (EERE)

Peak Utility Peak Utility Jump to: navigation, search Name Mt Peak Utility Facility Mt Peak Utility Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mnt Peak Utility Energy Purchaser Mnt Peak Utility Location Midlothian TX Coordinates 32.42144978°, -97.02427357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.42144978,"lon":-97.02427357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Mt Poso Cogeneration | Open Energy Information  

Open Energy Info (EERE)

Poso Cogeneration Poso Cogeneration Jump to: navigation, search Name Mt Poso Cogeneration Place Bakersfield, California Zip 93308 Product California-based project developer for the Mt Poso Cogeneration project near Bakersfield, California. Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Developing Mt. Hope: The megawatt line  

SciTech Connect (OSTI)

After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

Rodzianko, P.; Fisher, F.S.

1992-12-01T23:59:59.000Z

86

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

87

Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation  

Science Journals Connector (OSTI)

The effects of pretreatment method of cow dung compost, which was employed as natural hydrogen bacteria source, on the microbial community, population distribution of microbes and hydrogen production potential were investigated in the batch tests. The maximum hydrogen yield of 290.8mL/L-culture appeared in the pretreated method A (infrared drying) by dark fermentation. The pretreated method of compost significantly affected microbial succession, population distribution of microbes. Both Clostridium sp. and Enterobacter sp. were found to be two species of preponderant hydrogen-producing bacteria, the next best was Bacteroides sp. and Veillonella sp., the last was Lactobacillus sp. and Streptococcus sp., which were also essential. The results showed that the mutualism and symbiosis relations of the mixed bacteria played a critical role in hydrogen fermentation process.

Zhao-Xia Song; Yang Dai; Qi-Long Fan; Xiao-Hu Li; Yao-Ting Fan; Hong-Wei Hou

2012-01-01T23:59:59.000Z

88

Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Heat flow analysis. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Marysville_Mt_Area_(Blackwell)&oldid=388982" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

89

E-Print Network 3.0 - arvilla mt-2 evidence Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vol. 44 No. 4 Apr. 2003 IBM pSeries690 Regatta 16 SPEC95FP Summary: 2nd layer 3rd layer MTG0 MT3 (BB) (BB) (BB) (BB) (BB) (BB) (SB)(BB) (RB)(SB) MT1MT2 MT1-3 MT1-2 MTG2... MT2-1...

90

GRR/Section 3-MT-b - State Land Access | Open Energy Information  

Open Energy Info (EERE)

b - State Land Access b - State Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-b - State Land Access 03MTBStateLandAccess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Land Board Regulations & Policies Montana Code 77-4-101 et seq Geothermal Resources Natural Resources and Conservation Rules Triggers None specified Click "Edit With Form" above to add content 03MTBStateLandAccess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 3-MT-b.1 - Application for Lease, Right-of-Way, or Easement

91

RAPID/Roadmap/8-MT-a | Open Energy Information  

Open Energy Info (EERE)

Agency Montana Department of Environmental Quality Position Environmental Management Bureau Chief Name Warren McCullough Email wmccullough@mt.gov Phone 406.444.6791...

92

RAPID/Roadmap/20-MT-a | Open Energy Information  

Open Energy Info (EERE)

Contact Information Agency Montana Department of Environmental Quality Position Environmental Management Bureau Chief Name Warren McCullough Email wmccullough@mt.gov Phone...

93

Vertical Electrical Sounding Configurations At Mt Princeton Hot...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

94

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

WPA Omnibus Award MT Wind Power Outreach  

SciTech Connect (OSTI)

The objective of this grant was to further the development of Montana??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the state??s university system to deliver a workforce trained to enter the wind industry.

Brian Spangler, Manager Energy Planning and Renewables

2012-01-30T23:59:59.000Z

96

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA July 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for July 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

97

Data Update for Mt. Tom, Holyoke, MA February 2006  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA February 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for February 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

98

Data Update for Mt. Tom, Holyoke, MA January 2006  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA January 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

99

Data Update for Mt. Tom, Holyoke, MA February 2008  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA February 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

100

Data Update for Mt. Tom, Holyoke, MA January 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA January 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA June 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for June 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

102

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA March 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

103

Data Update for Mt. Tom, Holyoke, MA August 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA August 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for August 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

104

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA April 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for April 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

105

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA March 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

106

Data Update for Mt. Tom, Holyoke, MA February 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA February 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

107

Data Update for Mt. Tom, Holyoke, MA November 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA November 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for November 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

108

Data Update for Mt. Tom, Holyoke, MA September 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA September 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for September 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

109

Data Update for Mt. Tom, Holyoke, MA September 2005  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA September 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for September 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

110

Data Update for Mt. Tom, Holyoke, MA January 2008  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA January 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

111

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA April 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

112

Data Update for Mt. Tom, Holyoke, MA October 2005  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA October 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for October 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

113

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA March 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for March 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

Massachusetts at Amherst, University of

114

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA May 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

115

Data Update for Mt. Tom, Holyoke, MA October 2007  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA October 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for October 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

116

Data Update for Mt. Tom, Holyoke, MA Prepared for  

E-Print Network [OSTI]

Data Update for Mt. Tom, Holyoke, MA May 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

Massachusetts at Amherst, University of

117

Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Ground Magnetics At Marysville Mt Area (Blackwell) Ground Magnetics At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Magnetics Activity Date Usefulness not useful DOE-funding Unknown Notes A ground magnetic survey located no anomaly with an amplitude of more than 20 or 30 gammas that could be associated with the thermal anomaly, however the magnetic data did outline the Cretaceous stock in great detail and allow the removal from the gravity field of the effect of the stock. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Marysville_Mt_Area_(Blackwell)&oldid=389390"

118

GRR/Section 3-MT-c - Encroachment Overview | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 3-MT-c - Encroachment Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-c - Encroachment Overview 03MTCEncroachmentOverview.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Triggers None specified Click "Edit With Form" above to add content 03MTCEncroachmentOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative There are several individual right of way or encroachment procedures in Montana. This overview is intended to lead the developer to the appropriate

119

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic Sykes, M.T., I.C. Prentice, and W. Cramer. 1996. A bioclimatic model for the potential distributions of north European tree species under present and future climates. Journal of Biogeography 23(2):203- 233. A bioclimatic model based on physiological constraints to plant growth and regeneration is used here in an empirical way to describe the present natural distributions of northern Europe's major trees. Bioclimatic variables were computed from monthly means of temperature, precipitation and sunshine (%) interpolated to a 10' grid taking into account elevation. Minimum values of mean coldest-month temperature (T-c) and 'effective' growing degree days (GDD*) were fitted to species' range limits. GDD* is total annual growing degree days (GDD) minus GDD to budburst (GDD(o)). Each species was assigned to one of the

120

Hydrochemical features of a geothermal test well iin a volcanic caldera, MT. Pinatubo, Phillipines  

SciTech Connect (OSTI)

Mt. Pinatubo is one of several recent-age volcanoes along the west Luzon volcanic arc. A fumarole near the suminit emits gases with magmatic characteristics. Several thermal springs on the east and west flanks yield various fluid typos, including neutral chloride and bicarbonate. Three wellbores probed the Mt. Pinatubo caldera from elevations of +1230 through -1600 mRSL. Trajectories may be described as: central, crossing a boundary wall from the inside, and skirting a wall [probably] on the inside. Brine discharges indicate severe evapo-concentration effects accompanied by other phenomena. Severity of evapo-concentration indicates low fluid mobility near the wellbores. Large variations for ratios of component concentrations were observed, indicating negligible natural circulation (mixing). Implications about fluid movements and heat transfer processes are explored. Three components of steam can be quantified and all are significant: separate entry, adiabatic boiling, and boiling by rock heat.

Michels, D.E.; Clemente, V.C.; Ramos, M.N.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GRR/Section 14-MT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 14-MT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-c - Underground Injection Control Permit 14MTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Triggers None specified Click "Edit With Form" above to add content 14MTCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

122

GRR/Section 11-MT-a - State Cultural Considerations | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 11-MT-a - State Cultural Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-a - State Cultural Considerations 11MTAStateCulturalConsiderations (1).pdf Click to View Fullscreen Contact Agencies Montana State Historic Preservation Office Regulations & Policies MCA 22-3-421: Report of Discovery on State Land MCA 22-3-800: Human Skeletal Remains and Burial Site Protection Act Triggers None specified Click "Edit With Form" above to add content

123

Generation of acoustic-gravity waves in ionospheric HF heating experiments : simulating large-scale natural heat sources  

E-Print Network [OSTI]

In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence ...

Pradipta, Rezy

2012-01-01T23:59:59.000Z

124

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt St Helens Geothermal Area Mt St Helens Geothermal Area (Redirected from Mt St Helens Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt St Helens Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

125

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Details Activities (3) Areas (2) Regions (0) Abstract: MT and TDEM surveys acquired in 2005 were integrated with existing MT and TDEM data recovered from obsolete formats to characterize the geometry of the geothermal reservoir. An interpretation based on the correlation of the 3D MT resistivity with well properties indicated that most of the previous exploration wells had been tarted close to but not in the center of areas tha appeared most likely to be permeable. Such

126

Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information  

Open Energy Info (EERE)

Mt Area (Blackwell) Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping has outlined a structure which may be a partial control on the high heat flow. The Cretaceous intrusive (outlined by the magnetic data) and the heat flow anomaly occupy a broad dome in the Precambrian rocks, the stock outcropping in the northwest portion of the dome, and the heat flow anomaly restricted to the southwest portion of the dome. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa

127

MT Energie GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Saxony, Germany Zip: 27404 Sector: Services Product: MT-Energie provides both turn-key biogas plants and related components and services. Coordinates: 53.295765, 9.27964...

128

RAPID/Roadmap/11-MT-b | Open Energy Information  

Open Energy Info (EERE)

Error creating thumbnail: Page number not in range. Flowchart Narrative 11-MT-b.1 - Cease Operations and Contact County Coroner MCA 22-3-805: (1) A developer who...

129

RAPID/Roadmap/3-MT-f | Open Energy Information  

Open Energy Info (EERE)

3-MT-f Right-of-Way Easement for Utilities 03MTFRightOfWayEasementForUtilitiesProcess.pdf Click to View Fullscreen Permit Overview This flowchart is intended to describe the...

130

GRR/Section 19-MT-a - Water Access & Water Rights Issues | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-MT-a - Water Access & Water Rights Issues GRR/Section 19-MT-a - Water Access & Water Rights Issues < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-MT-a - Water Access & Water Rights Issues 19MTAWaterAccessWaterRightsIssues (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies MCA Title 85 Water Use MCA 77-4-108 Water Rights in Connection with Geothermal Development MCA 85-2-307 MCA 85-2-308 MCA 85-2-309 MCA 85-2-310 MCA 85-2-311 MCA 85-2-313 MCA 85-2-315 Triggers None specified Click "Edit With Form" above to add content 19MTAWaterAccessWaterRightsIssues (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

131

The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic  

E-Print Network [OSTI]

The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of Long Valley caldera by combining geodetic and micro-gravity data. Uplift from GPS and leveling, two intrusion as the primary cause of unrest, and confirm the intrusion of silicic magma beneath Long Valley

Segall, Paul

132

Mt. Wachusett Community College Makes Huge Investment in Wind Power |  

Broader source: Energy.gov (indexed) [DOE]

Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power March 14, 2011 - 1:14pm Addthis Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office What will this project do? The turbines are expected to provide an annual savings of approximately $700,000 based on the area's current utility rates.

133

Mt St Helens Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt St Helens Geothermal Area Mt St Helens Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt St Helens Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

134

Strategic Planning Notes MT AHEC/MORH Advisory Board  

E-Print Network [OSTI]

big, complex issues ­ Montana Healthcare Workforce Advisory Committee, HC Workforce Strategic PlanStrategic Planning Notes MT AHEC/MORH Advisory Board February 7, 2014 Strategic Priorities 1. Healthcare Workforce Training and educating the workforce Montana needs o Educational infrastructure o

Dyer, Bill

135

Going-to-the-Sun Road, Glacier National Park, MT, USA  

E-Print Network [OSTI]

Going-to-the-Sun Road, Glacier National Park, MT, USA Avalanche Path Atlas Erich H. Peitzsch Daniel..................................................................................................................................... 2 Overview of Red Rock Group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT................................................................................................................................................... 3 Overview of Lower GTSR group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT

136

Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Area (Blackwell) Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes A seismic ground noise was carried out but the ground noise in the anomaly area (and the surrounding region) was extremely low, approximately 4 orders of magnitude below that observed in the geothermal areas in the Salton Sea between 1-10 Hz (in units of power density). Because of this very low background noise the micro-earthquake survey was possible with instrument gains well in excess of a million. Regional micro-earthquake activity was located within about 15 km of the geothermal area but no micro-earthquakes

137

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Edgecumbe High School Wind Project Edgecumbe High School Wind Project Jump to: navigation, search Name Mt. Edgecumbe High School Wind Project Facility Mt. Edgecumbe High School Sector Wind energy Facility Type Community Wind Location AK Coordinates 57.053928°, -135.356903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.053928,"lon":-135.356903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes No further mention of infrared photography. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Marysville_Mt_Area_(Blackwell)&oldid=386636" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

139

GRR/Section 17-MT-d - Streamside Management Zone Law | Open Energy  

Open Energy Info (EERE)

d - Streamside Management Zone Law d - Streamside Management Zone Law < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-d - Streamside Management Zone Law 17MTDStreamsideManagementZoneLawProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Triggers None specified Click "Edit With Form" above to add content 17MTDStreamsideManagementZoneLawProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Any landowner or operator conducting a series of commercial forest practices that will access, harvest, or regenerate trees on a defined land

140

GRR/Section 3-MT-d - Land Use License Process | Open Energy Information  

Open Energy Info (EERE)

d - Land Use License Process d - Land Use License Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-d - Land Use License Process 03MTDLandUseLicenseProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Surface Management Rule 36.25.103 Triggers None specified Click "Edit With Form" above to add content 03MTDLandUseLicenseProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The land use license is intended to be used for short-term use of state-owned lands. This license may be used for casual use of the lands

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GRR/Section 11-MT-c - Cultural Resource Discovery | Open Energy Information  

Open Energy Info (EERE)

c - Cultural Resource Discovery c - Cultural Resource Discovery < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-c - Cultural Resource Discovery 11MTCCulturalResourceDiscoveryProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana State Historic Preservation Office Regulations & Policies 36 CFR 800.16: NHPA Definitions MCA 22-3-421: Montana Antiquities Definitions MCA 22-3-429: Consultation, Notice, Appeal MCA 22-3-430: Mitigation MCA 22-3-435: Report of Discovery ARM 36.2.801-813: Antiquities Triggers None specified Click "Edit With Form" above to add content 11MTCCulturalResourceDiscoveryProcess (1).pdf Error creating thumbnail: Page number not in range.

142

Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas  

E-Print Network [OSTI]

, given that natural gas from neighbouring Argentina is not longer available and LNG price projections, the most economic technologies define the system's development. Availability of natural gas from Argentina on import of natural gas from Argentina since 2004 created an unbalance in the Chilean electric market

Dixon, Juan

143

Preliminary Assumptions for Natural Gas Peaking  

E-Print Network [OSTI]

Preliminary Assumptions for Natural Gas Peaking Technologies Gillian Charles GRAC 2/27/14 #12;Today Vernon, WA PSE Klamath Generation Peakers June 2002 (2) 54 MW P&W FT8 Twin- pac 95 MW Klamath, OR IPP; winter-only PPA w/ PSE Dave Gates Generating Station Jan 2011 (3) P&W SWIFTPAC 150 MW Anaconda, MT North

144

LNG trningsmanual fr M/T Bit Viking; LNG training manual.  

E-Print Network [OSTI]

?? Denna uppsats r gjord p uppdrag av Tarbit Shipping som r 2011 konverterade sin tankbt M/T Bit Viking frn konventionell drift p tjockolja till (more)

Albertsson, Robin

2013-01-01T23:59:59.000Z

145

Mt Wheeler Power, Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 13073 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0786/kWh Commercial: $0.0810/kWh Industrial: $0.0610/kWh The following table contains monthly sales and revenue data for Mt Wheeler Power, Inc (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 11.289 138.131 203 9.256 101.356 114 1.61 12.38 14 22.155 251.867 331

146

Village of Mt Horeb, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Horeb, Wisconsin (Utility Company) Horeb, Wisconsin (Utility Company) Jump to: navigation, search Name Mt Horeb Village of Place Wisconsin Utility Id 13036 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

147

Mt Carmel Public Utility Co | Open Energy Information  

Open Energy Info (EERE)

Public Utility Co Public Utility Co Jump to: navigation, search Name Mt Carmel Public Utility Co Place Illinois Utility Id 13032 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service Commercial Commercial Electric Space Heating Service Commercial Large Light and Power Electric Service - Less Than 10 MW Industrial Large Light and Power Electric Service - equal or greater than 10 MW

148

Identification of X-ray Point Sources and Study on the Nature of 62 X-ray Globular Cluster Candidates in M31  

E-Print Network [OSTI]

This paper includes two parts. The first is to present the spectral energy distributions (SEDs) of 49 globular cluster (GC) X-ray sources in the BATC 13 intermediate-band filters from 3800 to 10000 A, and identify 8 unidentified X-ray sources in M31. Using the X-ray data of Einstein observation from 1979 to 1980, ROSAT HRI observation in 1990, Chandra HRC and ACIS-I observations from 1999 to 2001, and the BATC optical survey from 1995 to 1999, we find 49 GC X-ray sources and 8 new unidentified X-ray sources in the BATC M31 field. By analyzing SEDs and FWHMs, 4 of the 8 X-ray sources may be GC candidates. The second is to present some statistical relationships about 62 GC X-ray sources, of which 58 are already known, and 4 are identified in this paper. The distribution of M31 GC X-ray sources' V mags is bimodal, with peaks at m_v = 15.65 and m_v = 17.89, which is different from the distribution of GC candidates. The distribution of B-V color shows that,the GC X-ray sources seem to be associated preferentially ...

Fan, Z; Zhou, X; Chen, J; Jiang, Z; Wu, Z; Fan, Zhou; Ma, Jun; Zhou, Xu; Chen, Jiansheng; Jiang, Zhaoji; Wu, Zhenyu

2005-01-01T23:59:59.000Z

149

Preliminary Assessment of Hydrocarbon Gas Sources from the Mt. Elbert No. 1 Gas Hydrate Test Well  

E-Print Network [OSTI]

in two primary horizons; an upper zone, (D Unit) containing 14 meters of gas hydrate-bearing sands

Thomas D. Lorenson; Timothy S. Collett; Robert B. Hunter

150

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) |  

Open Energy Info (EERE)

Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mt Princeton Hot Springs Area (Richards, Et Al., 2010) Exploration Activity Details Location Mt Princeton Hot Springs Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes Used to map fracture and fluid flow patterns. References K. Richards, A. Revil, A. Jardani, F. Henderson, M. Batzle, A. Haas (2010) Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mt_Princeton_Hot_Springs_Area_(Richards,_Et_Al.,_2010)&oldid=388680"

151

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A dipole-dipole resistivity survey of the area was carried out with estimated penetration up to 700 meters and no indication of low values of resistivity were found associated with the thermal anomaly. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Marysville_Mt_Area_(Blackwell)&oldid=510539

152

GRR/Section 7-MT-a - Energy Facility Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-MT-a - Energy Facility Siting GRR/Section 7-MT-a - Energy Facility Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-MT-a - Energy Facility Siting 07MTAEnergyFacilitySiting (6).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Major Facility Siting Act ARM Title 17 Triggers None specified Click "Edit With Form" above to add content 07MTAEnergyFacilitySiting (6).pdf 07MTAEnergyFacilitySiting (6).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Major Facility Siting Act governs the siting of energy facilities in Montana. 7-MT-a.1 to 7-MT-a.2 - Does the Power Plant Have a Production Capacity of

153

Mt Princeton Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Princeton Hot Springs Geothermal Area Princeton Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Princeton Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.73166667,"lon":-106.17,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

RAPID/Roadmap/17-MT-c | Open Energy Information  

Open Energy Info (EERE)

Conservation District Montana Department of Natural Resources & Conservation Montana Fish, Wildlife & Parks Do I Need This Permit? If your project activity meets any of the sets...

155

RAPID/Roadmap/17-MT-b | Open Energy Information  

Open Energy Info (EERE)

Click to View Fullscreen Permit Overview Montana has a policy to preserve fish and wildlife habitat as well as maintain Montana's streams and rivers in their natural...

156

RAPID/Roadmap/6-MT-f | Open Energy Information  

Open Energy Info (EERE)

of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Regulations & Policies MCA 75-5-318 Triggers Click "Edit With Form"...

157

RAPID/Roadmap/6-MT-d | Open Energy Information  

Open Energy Info (EERE)

of Natural Resources & Conservation Montana Department of Environmental Quality Montana Fish, Wildlife & Parks Triggers Click "Edit With Form" above to add content...

158

MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)  

SciTech Connect (OSTI)

MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

Nutter, C.; Wannamaker, P.E.

1980-11-01T23:59:59.000Z

159

RAPID/Roadmap/14-MT-b | Open Energy Information  

Open Energy Info (EERE)

Elimination system (MPDES) program is to control point source discharges of wastewater such that water quality in state surface water is protected. Levels of water quality...

160

Integrated Dense Array and Transect MT Surveying at Dixie Valley...  

Open Energy Info (EERE)

Fluid Sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference 32th Workshop on Geothermal Reservoir Engineering; Stanford, California; 2007...

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings  

E-Print Network [OSTI]

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings at Whidbey Island Naval Air and Mt. Olympus BOQ) presently heated by steam from the central steam plant. Ground source heat pump source heat pumps provide both heating and cooling, there would essentially be no cost increase

Oak Ridge National Laboratory

162

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

3-D Density Model Of Mt Etna Volcano (Southern Italy) 3-D Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern Italy) Details Activities (0) Areas (0) Regions (0) Abstract: A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern

163

Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Mt Ranier Area Thermal And-Or Near Infrared At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Infrared images acquired through joint US. Department of Energy and U.S. Geological Survey efforts (Kieffer et al., 1982) show a representative pattern of heat emission from the summit area (Fig. 5). References David Frank (1995) Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Retrieved from "http://en.openei.org/w/index.php?title=Thermal_And-Or_Near_Infrared_At_Mt_Ranier_Area_(Frank,_1995)&oldid=386481" Categories: Exploration Activities DOE Funded Activities What links here Related changes

164

Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mt. Cimone Mt. Cimone Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone graphics Graphics data Data Investigators Tiziano Colombo and Riccardo Santaguida Italian Meteorological Service, Via delle Ville, 100-41029 Sestola (MO), Italy Period of Record 1979-1997 Methods Continuous atmospheric CO2 measurements have been carried out at Mt. Cimone since 1979. Since December 1988, air samples have also been collected approximately once per week in a pair of 2-L, electropolished, stainless steel cylindrical flasks. From 1979 until December 1988, a Hartmann and Braun URAS-2T NDIR gas analyzer was used for CO2 determinations. Currently, CO2 determinations are made through the use of a Siemens Ultramat-5E NDIR gas analyzer. Water vapor is eliminated by passing the air through a U-tube

165

Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Area (Frank, 1995) Mt Ranier Area (Frank, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples

166

E-Print Network 3.0 - area mt evidence Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: area mt evidence Page: << < 1 2 3 4 5 > >> 1 University of St Andrews School of Mathematics and Statistics Summary: ;1 HONOURS PROGRAMME IN MATHEMATICS AND...

167

E-Print Network 3.0 - accelerator microtron mt-22 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: accelerator microtron mt-22 Page: << < 1 2 3 4 5 > >> 1 Nuclear Instruments and Methods in PhysicsResearch A 331 (1993)ABS 21 North-Holland Summary:...

168

A Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan  

Open Energy Info (EERE)

Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Large Self-Potential Anomaly And Its Changes On The Quiet Mt Fuji, Japan Details Activities (0) Areas (0) Regions (0) Abstract: Self-potential (SP) surveys were carried out on Mt. Fuji volcano, Japan, and an intense positive anomaly (about 2000 mV) was found in the summit area. The positive SP anomaly was stable on 2001 and 2002, but increased 150 mV in amplitude on September 12, 2003, and suddenly decreased 300 mV two weeks later. This amplitude change coincides with the emergence of the fumaroles, which appeared for the first time in 40 years, on the east-northeast flank 6 km apart from the summit. The SP anomaly is thought

169

GRR/Section 1-MT-a - Land Use Considerations | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 1-MT-a - Land Use Considerations GRR/Section 1-MT-a - Land Use Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 1-MT-a - Land Use Considerations 01MTALandUseConsiderations.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 01MTALandUseConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Add Text Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_1-MT-a_-_Land_Use_Considerations&oldid=685537" Categories: Regulatory Roadmap State Sections Geothermal Regulatory Roadmap Sections

170

CO2 Mitigation Potential of Mineral Carbonation with Industrial Alkalinity Sources in the United States  

Science Journals Connector (OSTI)

CO2 Mitigation Potential of Mineral Carbonation with Industrial Alkalinity Sources in the United States ... We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). ... This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory for the Joint Institute for Strategic Energy Analysis. ...

Abby Kirchofer; Austin Becker; Adam Brandt; Jennifer Wilcox

2013-06-05T23:59:59.000Z

171

3.1 $?$m H$_{2}$O Ice Absorption in LINER-Type Ultraluminous Infrared Galaxies with Cool Far-Infrared Colors: the Centrally-Concentrated Nature of Their Deeply Buried Energy Sources  

E-Print Network [OSTI]

Ground-based 2.8--4.1 $\\mu$m slit spectra of the nuclei of seven ultraluminous infrared galaxies (ULIRGs) that are classified optically as LINERs and have cool far-infrared colors are presented. All the nuclei show 3.3 $\\mu$m polycyclic aromatic hydrocarbon (PAH) emission, with equivalent widths that are systematically lower than those in starburst galaxies. Strong 3.1 $\\mu$m H$_{2}$O ice absorption, with optical depth greater than 0.6, is also detected in five nuclei, and 3.4 $\\mu$m carbonaceous dust absorption is detected clearly in one of the five nuclei. It is quantitatively demonstrated that the large optical depths of the H$_{2}$O ice absorption in the five sources, and the 3.4 $\\mu$m absorption in one source, are incompatible with a geometry in which the energy sources are spatially mixed with dust and molecular gas, as is expected for a typical starburst, but instead require that a large amount of nuclear dust (including ice-covered grains) and molecular gas be distributed in a screen in front of the 3--4 $\\mu$m continuum-emitting sources. This geometrical requirement can naturally be met if the energy sources are more centrally concentrated than the nuclear dust and molecular gas. The low equivalent widths of the PAH emission compared to starbursts and the central concentration of the nuclear energy sources in these five ULIRGs are best explained by the presence of energetically important active galactic nuclei deeply buried in dust and molecular gas.

Masatoshi Imanishi; Philip R. Maloney

2003-02-04T23:59:59.000Z

172

Appendix C Selected Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Recurring Recurring Natural Gas Reports * Natural Gas Monthly, DOE/EIA-0130. Published monthly. Other Reports Covering Natural Gas, Natural Gas Liquids, and Other Energy Sources * Monthly Energy Review, DOE/EIA-0035. Published monthly. Provides national aggregate data for natural gas, natural gas liquids, and other energy sources. * Short-Term Energy Outlook, DOE/EIA-0202. Published quarterly. Provides forecasts for next six quarters for natural gas and other energy sources. * Natural Gas 1996: Issues and Trends, DOE/EIA- 0560(96), December 1996. * U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves -1996 Annual Report, DOE/EIA-0216(96)/Ad- vance Summary, September 1997. * Annual Energy Review 1996, DOE/ EIA-0384(96), July 1997. Published annually. * State Energy Data Report, Consumption Estimates, 1960- 1994, DOE/EIA-0214(94), October 1996. * Annual

173

Human Mitochondrial Transcription Factor B1 Interacts with the C-Terminal Activation Region of h-mtTFA and Stimulates Transcription Independently of Its RNA Methyltransferase Activity  

Science Journals Connector (OSTI)

...promoter locations and where h-mtTFB proteins bridge an interaction between the...h-mtTFB proteins act to bridge an interaction between h-mtRNA polymerase and a...promoter locations and where h-mtTFB proteins bridge an interaction between the...

Vicki McCulloch; Gerald S. Shadel

2003-08-01T23:59:59.000Z

174

Natural Air-Conditioning Systems  

Science Journals Connector (OSTI)

Recent research in summer air conditioning utilizing natural sources of coolness* are discussed. These systems are classified according to the sources of coolness, the modes of heat transfer and airflow, and t...

Mehdi N. Bahadori

1986-01-01T23:59:59.000Z

175

Metabolic engineering of seeds can achieve levels of omega-7 fatty acids comparable to the highest levels found in natural plant sources  

SciTech Connect (OSTI)

Plant oils containing {omega}-7 fatty acids (FAs; palmitoleic 16:1{Delta}{sup 9} and cis-vaccenic 18:1{Delta}{sup 11}) have potential as sustainable feedstocks for producing industrially important octene via metathesis chemistry. Engineering plants to produce seeds that accumulate high levels of any unusual FA has been an elusive goal. We achieved high levels of {omega}-7 FA accumulation by systematic metabolic engineering of Arabidopsis (Arabidopsis thaliana). A plastidial 16:0-ACP desaturase has been engineered to convert 16:0 to 16:1{Delta}{sup 9} with specificity >100-fold than that of naturally occurring paralogs, such as that from cat's claw vine (Doxantha unguis-cati). Expressing this engineered enzyme (Com25) in seeds increased {omega}-7 FA accumulation from <2% to 14%. Reducing competition for 16:0-ACP by down-regulating the {beta}-ketoacyl-ACP synthase II 16:0 elongase further increased accumulation of {omega}-7 FA to 56%. The level of 16:0 exiting the plastid without desaturation also increased to 21%. Coexpression of a pair of fungal 16:0 desaturases in the cytosol reduced the 16:0 level to 11% and increased {omega}-7 FA to as much as 71%, equivalent to levels found in Doxantha seeds.

Nguyen, H.T.; Shanklin, J.; Mishra, G.; Whittle, E.; Bevan, S. A.; Merlo, A. O.; Walsh, T. A.

2010-12-01T23:59:59.000Z

176

On the nature of the hard X-ray sources SWIFTJ1907.3-2050, IGRJ12123-5802 and IGRJ19552+0044  

E-Print Network [OSTI]

The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival nIR/IR data. Swift J1907.3-2050 is highly variable from hours to months-years at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 h) binary period. IGRJ12123-5802 is variable in the X-rays on a tim...

Bernardini, F; Mukai, K; Falanga, M; Andruchow, I; Bonnet-Bidaud, J -M; Masetti, N; Buitrago, D H Gonzalez; Mouchet, M; Tovmassian, G

2013-01-01T23:59:59.000Z

177

Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP  

SciTech Connect (OSTI)

In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

none,

1981-02-13T23:59:59.000Z

178

GRR/Section 4-MT-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 4-MT-a - State Exploration Process GRR/Section 4-MT-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-MT-a - State Exploration Process 04MTAStateExplorationProcess (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Board of Oil and Gas Conservation Regulations & Policies ARM 17.20.202: Geothermal Exploration Plan ARM 17.20.203: Initial Field Report ARM 17.20.204: Periodic Field Report ARM 17.20.205: Final Field Report ARM 17.20.206: Geological Report MCA 82-1-103: Notice of Intent MCA 82-1-104: Bond MCA 82-1-105: Permit Issuance MCA 82-1-106: NOI Forwarded MCA 82-1-107: Notice to Surface Owner MCA 82-1-108: Record of Work Performed Triggers

179

GRR/Section 14-MT-b - MPDES Permitting Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-MT-b - MPDES Permitting Process GRR/Section 14-MT-b - MPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-b - MPDES Permitting Process 14MTBMPDESPermittingProcess.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality United States Environmental Protection Agency Regulations & Policies MCA 75-5-402: Duties of MDEQ MCA 75-5-403: Denial, Modification, Review 75-5-611: Violation, Hearing Triggers None specified Click "Edit With Form" above to add content 14MTBMPDESPermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

180

GRR/Section 14-MT-e - Groundwater Pollution Control System | Open Energy  

Open Energy Info (EERE)

MT-e - Groundwater Pollution Control System MT-e - Groundwater Pollution Control System < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-e - Groundwater Pollution Control System 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Water Quality Act (Montana Codes Annotated 75-5-101 et seq.) Administrative Rules of Montana 17.30.1001 et seq. Triggers None specified Click "Edit With Form" above to add content 14MTEGroundwaterPollutionControlSystemPermit (1).pdf 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal Literature Review At Mt Ranier Area (Frank, 1995) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Mt Rainier Area Geothermal Literature Review At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

182

GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) | Open  

Open Energy Info (EERE)

GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) GRR/Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 17-MT-b - Montana Stream Protection Act (SPA 124 Permit) 17MTBMontanaStreamProtectionActSPA124Permit.pdf Click to View Fullscreen Contact Agencies Montana Fish, Wildlife & Parks Regulations & Policies MCA 87-5-501 et seq Montana Stream Protection Triggers None specified Click "Edit With Form" above to add content 17MTBMontanaStreamProtectionActSPA124Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana has a policy to preserve fish and wildlife habitat as well as

183

GRR/Section 18-MT-b - Hazardous Waste Facility Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-MT-b - Hazardous Waste Facility Permit GRR/Section 18-MT-b - Hazardous Waste Facility Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-b - Hazardous Waste Facility Permit 18MTBHazardousWasteFacilityPermit.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 10, Part 4 Administrative Rules of Montana Title 17, Chapter 53 40 CFR 260 through 40 CFR 270 40 CFR 124 Triggers None specified Click "Edit With Form" above to add content 18MTBHazardousWasteFacilityPermit.pdf 18MTBHazardousWasteFacilityPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

184

GRR/Section 8-MT-a - Transmission Siting Process | Open Energy Information  

Open Energy Info (EERE)

8-MT-a - Transmission Siting Process 8-MT-a - Transmission Siting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-MT-a - Transmission Siting Process 08MTATransmission (3).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated Title 75, Chapter 20 Montana Environmental Policy Act MCA 75-20-301 Findings Necessary for Certification ARM 17.20.1606 Electric Transmission Lines, Need Standard ARM 17.20.907 ARM 17.20.920 ARM 17.20.921 ARM 17.20.923 ARM 17.20.1902 Triggers None specified Click "Edit With Form" above to add content 08MTATransmission (3).pdf 08MTATransmission (3).pdf Error creating thumbnail: Page number not in range.

185

RECIPIENT:MT DEQ u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Broader source: Energy.gov (indexed) [DOE]

MT DEQ MT DEQ u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION PROJECT TITLE: Montana FormauJ SEP Page 1 of2 STATE: MT Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA000643 NT43199 GF0-Q043199-OO1 Based on my review ofthe inrormation concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, [IS APPENDIX AND NUMBER: Description: A9 Information gathering, analysis, and dissemination Information gathering (induding, but not limited to, literature surveys, inventories, site visits, and audits), data analysis (including, but not limited to, computer modeling), document preparation

186

GRR/Section 6-MT-b - Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

MT-b - Construction Storm Water Permit MT-b - Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-b - Construction Storm Water Permit 06MTBConstructionStormWaterPermit (7).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-5 [ARM 17.30.1101] Triggers None specified Click "Edit With Form" above to add content 06MTBConstructionStormWaterPermit (7).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Montana regulates water quality under Montana Code Annotated 75-5. The

187

GRR/Section 12-MT-a - Flora & Fauna Considerations | Open Energy  

Open Energy Info (EERE)

GRR/Section 12-MT-a - Flora & Fauna Considerations GRR/Section 12-MT-a - Flora & Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-MT-a - Flora & Fauna Considerations 12MTAFloraFaunaConsiderations (2).pdf Click to View Fullscreen Contact Agencies Montana Fish, Wildlife & Parks Regulations & Policies Commercial Use Administrative Rules Triggers None specified Click "Edit With Form" above to add content 12MTAFloraFaunaConsiderations (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart and the following content outlines the flora and fauna considerations that are specific to Montana and in addition to federal

188

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit |  

Open Energy Info (EERE)

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-a - Montana Overdimensional or Overweight Load Permit 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Transportation Regulations & Policies Montana Code Annotated 61-10-101 et seq. Administrative Rules of Monatana 18.8 Triggers None specified Click "Edit With Form" above to add content 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

189

GRR/Section 18-MT-a - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

MT-a - Underground Storage Tanks MT-a - Underground Storage Tanks < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-a - Underground Storage Tanks 18MTAUndergroundStorageTanks (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-11-501 Administrative Rules of Montana 17-56 Triggers None specified Click "Edit With Form" above to add content 18MTAUndergroundStorageTanks (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must obtain an Underground Storage Tank Installation Permit

190

GRR/Section 14-MT-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-MT-d - Section 401 Water Quality Certification GRR/Section 14-MT-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-d - Section 401 Water Quality Certification 14MTD401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Federal Clean Water Act (33 USC § 1251 et seq.) Montana Codes Annotated 75-5-401 Aministrative Rules of Montana Chapter 30 Administrative Rules of Montana 17.30.101 through 109 Triggers None specified Click "Edit With Form" above to add content 14MTD401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

191

Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy  

Open Energy Info (EERE)

Helens Area (Shevenell & Goff, 1995) Helens Area (Shevenell & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) Exploration Activity Details Location Mt St Helens Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Mt_St_Helens_Area_(Shevenell_%26_Goff,_1995)&oldid=389549" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

192

Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Water Sampling At Mt Rainier Area (Frank, 1995) Water Sampling At Mt Rainier Area (Frank, 1995) Exploration Activity Details Location Mt Rainier Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples collected during field investigations in 1982-1985 (Frank, 1985), whereas

193

Ion Sources - Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sources Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A variety of metallic ion beams are routinely produced in our low temperature oven (up to 600°C) and our high temperature oven (up to 2100°C). Furthermore, the ability to produce "cocktails" (mixtures of beams) for the Berkeley Accelerator Space Effects (BASE) Facility adds tremendously to the flexibility of the 88-Inch Cyclotron.

194

Experiment operations plan for the MT-4 experiment in the NRU reactor. [PWR  

SciTech Connect (OSTI)

A series of thermal-hydraulic and cladding materials deformation experiments were conducted using light-water reactor fuel bundles as part of the Pacific Northwest Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. This report is the formal operations plan for MT-4 - the fourth materials deformation experiment conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. A major objective of MT-4 was to simulate a pressurized water reactor LOCA that could induce fuel rod cladding deformation and rupture due to a short-term adiabatic transient and a peak fuel cladding temperature of 1200K (1700/sup 0/F).

Russcher, G.E.; Wilson, C.L.; Parchen, L.J.; Marshall, R.K.; Hesson, G.M.; Webb, B.J.; Freshley, M.D.

1983-06-01T23:59:59.000Z

195

Conflicting patterns of nucleotide diversity between mtDNA and nDNA in the Moorish gecko, Tarentola mauritanica  

E-Print Network [OSTI]

RNA) for 154 specimens, and a total of 1876 bp from three nuclear genes (ACM4, MC1R and Rag2) for 51 specimens- pean clade presents a higher nucleotide diversity for the nuclear genes when compared to the combined mtDNA dataset. These analyses suggest that the low mtDNA variability that characterises the European

Carranza, Salvador

196

Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi  

E-Print Network [OSTI]

Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella Pbi. The 314,335-bp genome of MT325 and the 321,240-bp genome of FR483

Graves, Michael V.

197

M.-T. DO, P. MARSAC, Y. DELANNE Prediction of Tire/Wet Road Friction from  

E-Print Network [OSTI]

M.-T. DO, P. MARSAC, Y. DELANNE 1 Prediction of Tire/Wet Road Friction from Road Surface, validation of a contact model for the prediction of low-speed friction from road surface microtexture the friction ­ speed curve from road- and tire measurable parameters. The model development is briefly

Paris-Sud XI, Université de

198

Going Beyond AER: An Extensive Analysis of Word Alignments and Their Impact on MT  

E-Print Network [OSTI]

Going Beyond AER: An Extensive Analysis of Word Alignments and Their Impact on MT Necip Fazil Ayan (AER)--attempts to balance the precision and recall scores at the level of alignment links (Och and Ney et al., 2002) or METEOR (Banerjee and Lavie, 2005)). However, these studies showed that AER and BLEU

Ayan, Necip Fazil

199

Development and recent evaluation of the MT_CKD model of continuum absorption  

Science Journals Connector (OSTI)

...20] Figure 2. For the US standard atmosphere...U.S. Department of Energy, Office of Science...windows. J. Direct. Energy 2, 151-161. 42 Fulghum...radiative cooling and energy balance. Here, we describe the development and status of the MT_CKD (MlawerTobinCloughKneizysDavies...

2012-01-01T23:59:59.000Z

200

Abrupt contraction flow of magnetorheological fluids , M.T. Lpez-Lpez1,2  

E-Print Network [OSTI]

engineering interest, the MR fluids are very attractive from a purely scientific point of view. The coupling1 Abrupt contraction flow of magnetorheological fluids P. Kuzhir1 , M.T. López-López1,2 and G Granada, 18071 Granada, Spain Abstract Contraction and expansion flows of magnetorheological fluids occur

Boyer, Edmond

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural source of tetraalkyllead in air  

Science Journals Connector (OSTI)

... on a 0.45-m membrane filter (Millipore type HAWP 04700) and determined by flameless atomic absorption spectrometry after extraction into acid solution7. Tetraalkyllead was trapped quantitatively downstream of ... downstream of the filter in iodine monochloride solution and the lead concentration was determined by flameless atomic absorption spectrometry after selective extraction into acid solution, by means of a technique ...

ROY M. HARRISON; DUNCAN P. H. LAXEN

1978-10-26T23:59:59.000Z

202

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28 "..Electric Utilities",41844010,2...

203

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

"..Electric Utilities",168,49 "..IPP & CHP",14428428,25 "Emissions",, "..Sulfur Dioxide (short tons)",9071,40 "..Nitrogen Oxide (short tons)",7296,45 "..Carbon Dioxide...

204

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

"Electric Utilities",82486064,12 "IPP & CHP",117032503,4 "Emissions",, "Sulfur Dioxide (short tons)",6078,42 "Nitrogen Oxide (short tons)",92566,5 "Carbon Dioxide (thousand...

205

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

"Electric Utilities",34141690,30 "IPP & CHP",101626561,5 "Emissions",, "Sulfur Dioxide (short tons)",33966,29 "Nitrogen Oxide (short tons)",44395,24 "Carbon Dioxide...

206

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

207

Particles and Sources  

Science Journals Connector (OSTI)

It is proposed that the phenomenological theory of particles be based on the source concept, which is abstracted from the physical possibility of creating or annihilating any particle in a suitable collision. The source representation displays both the momentum and the space-time characteristics of particle behavior. Topics discussed include: spin and statistics, charge and the Euclidean postulate, massless particles, and SU3 and spin. It is emphasized that the source description is logically independent of hypotheses concerning the fundamental nature of particles.

Julian Schwinger

1966-12-23T23:59:59.000Z

208

E-Print Network 3.0 - aerosol particle sources Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sea salt, volcanoes, oceanicterrestrial biological sources, natural fires 12... ;Transport Power Industry Biomass burning Residential Human activity Perspective ... Source:...

209

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

210

Natural Gas  

Science Journals Connector (OSTI)

... CHOOSING an awkward moment, Phillips Petroleum Exploration have announced a new find of natural ...naturalgas ...

1967-02-11T23:59:59.000Z

211

Superluminal sources in astronomy  

Science Journals Connector (OSTI)

......February-March 1997 news News Superluminal sources...manifestations of natural violence in recorded...RAS Librarian. NEWS It is now 30 years...magnetic pres- sure drives a rapid outflow...resulting outflow of gas drags with it small......

Peter Wilkinson; Ralph Spencer

1997-01-01T23:59:59.000Z

212

GRR/Section 9-MT-a - Montana Environmental Policy Act | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 9-MT-a - Montana Environmental Policy Act < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-MT-a - Montana Environmental Policy Act 09MTAMontanaEnvironmentalPolicyAct.pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Montana Environmental Quality Council Regulations & Policies Montana Environmental Policy Act National Environmental Policy Act ARM 36-2-521 et seq ARM 17-4-607 General Requirements for MFWP Triggers None specified Click "Edit With Form" above to add content 09MTAMontanaEnvironmentalPolicyAct.pdf Error creating thumbnail: Page number not in range.

213

Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) | Open Energy  

Open Energy Info (EERE)

Towle, 1983) Towle, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) Exploration Activity Details Location Mt St Helens Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The VLF method has proved useful in mapping the crater and central dome of Mount St. Helens. More detailed and extensive VLF investigations as well as other electrical and electromagnetic studies will be useful in determining the electrical structure of Mount St. Helens in more detail. Electrical and electromagnetic methods would be especially useful in determining the actual electrical conductivity of partial melt beneath the dome. The ability of these methods to determine the correlation of surface features

214

GRR/Section 11-MT-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

b - Human Remains Process b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-MT-b - Human Remains Process 11MTBHumanRemainsProcess (1).pdf Click to View Fullscreen Contact Agencies Montana State Historic Preservation Office Regulations & Policies MCA 22-3-805: Discovery of Human Remains or Burial Material Triggers None specified Click "Edit With Form" above to add content 11MTBHumanRemainsProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 11-MT-b.1 - Cease Operations and Contact County Coroner MCA 22-3-805: (1) A [developer] who by...construction, or other ground-disturbing

215

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

216

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

217

The Natural Gas Advantage  

Science Journals Connector (OSTI)

Environmental think-tank leaders and the new energy secretary are singing the praises of the ever-expanding U.S. natural gas bonanza, but at the same time, they worry about permanent dependence on this fossil fuel. ... This flood of shale-based natural gas finds has been great for U.S. chemical companies because it is a cheap feedstock and fuel source. ... Equally important, it is also revising the greenhouse gas-climate change equation because, when burned to generate electricity, natural gas produces the same electrical output as coal but emits half the amount of carbon dioxide. ...

JEFF JOHNSON

2013-06-24T23:59:59.000Z

218

A variable for measuring masses at hadron colliders when missing energy is expected; mT2: the truth behind the glamour  

E-Print Network [OSTI]

AMSB-like points discussed in section 4.2. The hadronic branching ratios can be found in [10]. m?+1 #7;M?1 Point (GeV) (MeV) ?+1 ? ?01 e+?e ?+1 ? ?01 +? SPS-300 165 886 17.0% 15.9% SPS-250 159 1798 21.9% 21.5% A-250 101 766 15.4% 13.9% A-200 97 1603... natural way. Readers who would prefer a top down description of mT 2, i.e. a description which starts with a definition and then works towards its consequences, are directed to skip to section 3 where this approach is taken. The concrete example which...

Barr, Alan; Lester, Christopher G; Stephens, Phil

219

Sequence Stratigraphy and Detrital Zircon Geochronology of Middle-Late Ordovician Mt. Wilson Quartzite, British Columbia, Canada  

E-Print Network [OSTI]

................................................................................................... viii LIST OF TABLES .................................................................................................... ix 1. INTRODUCTION ............................................................................................... 1 1.1... ............................................................................................................ 9 3.1 Mt. Wilson Measured Sections ............................................................ 9 3.1.1 Wilcox Pass Measured Section ................................................... 9 3.1.2 Morberley Mountain Measured Section...

Hutto, Andrew Paul

2012-07-16T23:59:59.000Z

220

Costs of Crude Oil and Natural Gas Wells Drilled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIA - 2010 International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2010 Natural Gas In the IEO2010 Reference case, natural gas consumption in non-OECD countries grows about three times as fast as in OECD countries. Non-OECD production increases account for 89 percent of the growth in world production from 2007 to 2035. Figure 36. World natural gas consumption 2007-2035. Click to enlarge » Figure source and data excel logo Figure 37. Change in World natural gas production by region, 2007-2035. Click to enlarge » Figure source and data excel logo Figure 38. Natural gas consumption in North America by country, 2007-2035 Click to enlarge » Figure source and data excel logo Figure 39. Natural gas consumption in OECD Europe by end-use sector 2007-2035. Click to enlarge » Figure source and data excel logo

222

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

223

Contaminant Sources  

Science Journals Connector (OSTI)

Contaminant sources include almost every component in the manufacturing process: people, materials, processing equipment, and manufacturing environments. People can generate contaminating particles, gases, conden...

Alvin Lieberman

1992-01-01T23:59:59.000Z

224

Ion source  

DOE Patents [OSTI]

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

225

Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sources » Fossil » Natural Gas Sources » Fossil » Natural Gas Natural Gas July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and nearby states, sponsored by the U.S. Department of Energy, can now provide petroleum companies and related service providers with the geologic, geographic, and engineering data needed to tap into these resources.

226

Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Sources » Fossil » Natural Gas Energy Sources » Fossil » Natural Gas Natural Gas November 20, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Projects Will Determine Whether methane Hydrates Are an Economically and Environmentally Viable Option for America's Energy Future November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. October 31, 2013 Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

227

TR-025 Geomorphology March 2003 Schmidt Creek Sediment Sources  

E-Print Network [OSTI]

TR-025 Geomorphology March 2003 Schmidt Creek Sediment Sources and the Johnstone Strait Killer, Thomas. 2003. Schmidt Creek Sediment Sources and the Johnstone Strait Killer Whale Rubbing Beach. Res.................................................................................................................... 2 3. Sediment Sources - Natural and Logging Related

228

Competitive Sourcing  

Broader source: Energy.gov (indexed) [DOE]

COMPETITIVE SOURCING COMPETITIVE SOURCING ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Report on Competitive Sourcing Results Fiscal Year 2006 May 2007 Executive Office of the President Office of Management and Budget TABLE OF CONTENTS Executive Summary ...................................................................................... 1 Introduction................................................................................................. 4 I. The big picture ......................................................................................... 4 II. How public-private competition was used in FY 2006 .................................... 6 A. Anticipated benefits from competition in FY 2006

229

Chapter 1 - Natural Gas Fundamentals  

Science Journals Connector (OSTI)

Natural gas is the most energy-efficient fossil fuel; it offers important energy-saving benefits when it is used instead of oil or coal. Although the primary use of natural gas is as a fuel, it is also a source of hydrocarbons for petrochemical feedstocks and a major source of elemental sulfur, an important industrial chemical. Its popularity as an energy source is expected to grow substantially in the future because natural gas can help achieve two important energy goals for the twenty-first century: providing the sustainable energy supplies and services needed for social and economic development and reducing adverse impacts on global climate and the environment in general. Natural gas consumption and trade have been growing steadily over the past two decades, and natural gas has strengthened its position in the world energy mix. Although natural gas demand declined in 2009, as a result of the economic slowdown, it is expected to resume growth in both emerging and traditional markets in the coming decades. Such increase in the near future will be driven because of additional demand in current uses, primarily power generation. There is yet little overlap between the use of natural gas and oil in all large markets. However, there are certain moves in the horizon, including the electrifying of transportation, that will push natural gas use to ever higher levels. This book gives the reader an introduction to natural gas by describing the origin and composition of natural gas, gas sources, phase behavior and properties, and transportation methods. Keywords: Absolute Open Flow, bulk modulus of elasticity, coal-bed methane, cricondenbar, cricondentherm, Expected Ultimate Recovery, gas deviation factor, higher heating value, Inflow Performance Relationship, kerogen, laminar flow, liquefied natural gas, primary thermogenic gas, pyrobitumen, secondary thermogenic gas, super-compressibility factor, thiol, Tubing Performance Curve, turbulent flow, unconventional gas resources, Wobbe Index, Wobbe Number.

Saeid Mokhatab; William A. Poe

2012-01-01T23:59:59.000Z

230

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

231

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

232

Sources and Magnetic Charge  

Science Journals Connector (OSTI)

A beginning is made on a phenomenological reconstruction of the theory of magnetic charge. The concept is introduced by reference to a new kind of photon source. It is shown that photon exchange between different source types is relativistically invariant. The space-time generalization of this coupling involves an arbitrary vector. The only way to remove a corresponding arbitrariness of physical predictions is to recognize the localization of charge and impose a charge quantization condition. The consideration of particles that carry both kinds of charge loosens the charge restrictions. The great strength of magnetic attraction indicated by g24?=4(137) suggests that ordinary matter is a magnetically neutral composite of magnetically charged particles that carry fractional electric charge. There is a brief discussion of such a magnetic model of strongly interacting particles, which makes contact with empirical classification schemes. Additional remarks on notation, and on the general nature of the source description, are appended.

Julian Schwinger

1968-09-25T23:59:59.000Z

233

Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest  

E-Print Network [OSTI]

including some naturally occurring radiation, but also E.radiation). However, the SD DEH explained that it was very important to test for naturally occurring

Mumby, William Cade

2013-01-01T23:59:59.000Z

234

Natural catalytic activity in a marine shale for generating natural gas  

Science Journals Connector (OSTI)

...natural catalytic activity in marine shales. Gas is generated at ambient temperatures...differences are in degree. Mowry shale generates gas compositions that are quite different...probably a major source of natural gas. Mowry shale generates gas at thermodynamic...

2010-01-01T23:59:59.000Z

235

Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry  

SciTech Connect (OSTI)

A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its ?-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the ?-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

2013-12-04T23:59:59.000Z

236

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

237

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

238

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

239

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

240

Property:Geothermal/FundingSource | Open Energy Information  

Open Energy Info (EERE)

FundingSource FundingSource Jump to: navigation, search Property Name Geothermal/FundingSource Property Type String Description Funding Source Pages using the property "Geothermal/FundingSource" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + American Recovery and Reinvestment Act of 2009 +

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 86. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 13. Natural Gas Supply, Disposition, and Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South Central Table 27. Carbon Dioxide Emissions by Sector and Source - West South

242

The Venezuelan natural gas industry  

SciTech Connect (OSTI)

Venezuela's consumption energy of comes from three primary sources: hydroelectricity, liquid hydrocarbons and natural gas. In 1986, the energy consumption in the internal market was 95.5 thousand cubic meters per day of oil equivalent, of which 32% was natural gas, 46% liquid hydrocarbons and 22% hydroelectricity. The Venezuelan energy policy established natural gas usage after hydroelectricity, as a substitute of liquid hydrocarbons, in order to increase exports of these. This policy permits a solid development of the natural gas industry, which is covered in this paper.

Silva, P.V.; Hernandez, N.

1988-01-01T23:59:59.000Z

243

Competitive Sourcing  

Broader source: Energy.gov (indexed) [DOE]

Competitive Sourcing Competitive Sourcing The Department of Energy's (DOE) Competitive Sourcing program is a management initiative aimed at improving DOE's performance and reducing the Department's operational costs. The program is governed by Office of Management and Budget (OMB) Circular A- 76, Performance of Commercial Activities, dated May 29, 2003. The commercial activities selected for review and competition include functions performed by government employees that are readily available in the private sector, and where the potential for efficiencies, regardless of the winning provider, are highly likely. The candidate functions are chosen from the Department's annual Federal Activities Inventory Reform (FAIR) Act Inventory and subjected to a feasibility review to determine if a prudent business case can be made to enter

244

EIA - Natural Gas Analysis Basics  

Gasoline and Diesel Fuel Update (EIA)

for Natural Gas Basics for Natural Gas Basics Where Our Natural Gas Comes From Natural Gas Prices Natural Gas Statistics Natural Gas Kid's Page (Not Just for Kids) How natural gas was formed, how we get it, how it is stored and delivered, how it is measured, what it is used for, how it affects the environment and more. Natural Gas Residential Choice This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied natural gas (LNG) play as an energy source for the United States? This Energy In Brief discusses aspects of LNG industry in the United States. LNG is natural gas that has been cooled to about minus 260 degrees Fahrenheit for shipment and/or storage as a liquid. Growth in LNG imports to the United States has been uneven in recent years, with substantial changes in year-over-year imports as a result of suppliers’ decisions to either bring spare cargos to the United States or to divert cargos to countries where prices may be higher. Categories: Imports & Exports/Pipelines (Released, 12/11/2009)

245

natural gasoline  

Science Journals Connector (OSTI)

natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-coloured and of high API gravity (above 6o), that are produced with wet gas] ? Gasbenzin n, Gasolin n ...

2014-08-01T23:59:59.000Z

246

Traffic Management Command, ATTN: MT-INFF, 5611 Columbia Pike, Falls  

Broader source: Energy.gov (indexed) [DOE]

/ 'Vol 52,-No. 212. !/- Tuesday; November 3, -1987 1 Notices.- . / 'Vol 52,-No. 212. !/- Tuesday; November 3, -1987 1 Notices.- . . and responsibility of that company. This is not intented to prevent a carrier from interchanging equipment to allow for the through movement of traffic. Master- leases which do not meet the requirements of a long-term lease or that depend on other documentation and/or subleases to be complete are viewed as trip-leases. DATE: Comments must be received on or before 1 January 1988. ADDRESS: Comments should be addressed to: Headquarters, Military Traffic Management Command, ATTN: MT-INFF, 5611 Columbia Pike, Falls Church, VA 22041-5050. FOR FURTHER INFORMATION CONTACT. Ms. Patricia McCormick, HQMTMC 5611 Columbia Pike, Falls Church, VA 22041- 5050, (202] 756-1887. SUPPLEMENTARY INFORMATION. Master- leases which do not conform to the

247

MT2 to the Rescue -- Searching for Sleptons in Compressed Spectra at the LHC  

E-Print Network [OSTI]

We propose a novel method for probing sleptons in compressed spectra at hadron colliders. The process under study is slepton pair production in R-parity conserving supersymmetry, where the slepton decays to a neutralino LSP of mass close to the slepton mass. In order to pass the trigger and obtain large missing energy, an energetic mono-jet is required. Both leptons need to be detected in order to suppress large standard model backgrounds with one charged lepton. We study variables that can be used to distinguish the signal from the remaining major backgrounds, which include tt, WW+jet, Z+jet, and single top production. We find that the dilepton MT2, bound by the mass difference, can be used as an upper bound to efficiently reduce the backgrounds. It is estimated that sleptons with masses up to about 150 GeV can be discovered at the 14 TeV LHC with 100/fb integrated luminosity.

Han, Zhenyu

2014-01-01T23:59:59.000Z

248

Natural System  

Broader source: Energy.gov (indexed) [DOE]

Natural System Natural System Evaluation and Tool Development - FY11 Progress Report Prepared for U.S. Department of Energy Used Fuel Disposition Program Yifeng Wang (SNL) Michael Simpson (INL) Scott Painter (LANL) Hui-Hai Liu (LBNL) Annie B. Kersting (LLNL) July 15, 2011 FCRD-USED-2011-000223 UFD Natural System Evaluation - FY11 Year-End Report July 15, 2011 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

249

Double Mutant (CA40,82) Barstar Purification pMT643 plasmid in JM109 cells , tac promotor  

E-Print Network [OSTI]

Double Mutant (CA40,82) Barstar Purification pMT643 plasmid in JM109 cells , tac promotor last in water to a final concentration of 1mM. With this dilution ratio the cells should start to double

Movileanu, Liviu

250

Fredric W. Pollnac Montana State University, Leon Johnson Hall, Bozeman, MT 59717406-994-5070 fpollnac@montana.edu  

E-Print Network [OSTI]

, Matt Lavin, and Mark Taper, Weed Science Society of America Annual Meeting poster session, Denver, CO·406-994-5070· fpollnac@montana.edu Education_________________________________________________________________ Montana State University, Bozeman, MT 2008-Present PhD Candidate: Environmental Science and Ecology Montana

Maxwell, Bruce D.

251

URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit  

Science Journals Connector (OSTI)

...Unidentified Reading Frame of Human mtDNA, Codes for an NADH Dehy fogenase Subunit ANNE...antiserum to URF6-I1 or from normal serum (NS2), as in the experiments of Fig. 1...49 kD) (31) or from normal serum (NS2). The immunoprecipitates were run in...

A Chomyn; MW Cleeter; CI Ragan; M Riley; RF Doolittle; G Attardi

1986-10-31T23:59:59.000Z

252

II: MOTION in ONE SPACE DIMENSION -Pt IIb 1st year CLASSICAL MECHANICS MT06 PLR from RCED  

E-Print Network [OSTI]

that this happens for x >> 1/a, then the velocity approaches a limiting value of v0. Why is this ­ no resistance to motion has been included. Indeed what difference would the addition of a resistance term of the form R. To assess the relative importance of the terms one needs the model for M(t) or equivalent data. A linear

Read, Peter L.

253

COMPETITIVE SOURCING  

Broader source: Energy.gov (indexed) [DOE]

COMPETITIVE SOURCING COMPETITIVE SOURCING EXECUTIVE STEERING GROUP MEETING PROCEEDINGS June 17, 2002 8:30 am - 11:00 am Room 5E-069 ATTENDEES John Gordon Robert Card Bruce Carnes Kathy Peery Brendan Danaher, AFGE Tony Lane Karen Evans Bill Sylvester Claudia Cross Brian Costlow Laurie Smith Helen Sherman Frank Bessera Rosalie Jordan Dennis O'Brien Mark Hively Robin Mudd Steven Apicella AGENDA 8:30 a.m. - 8:35 a.m. Opening Remarks 8:35a.m. - 8:55 a.m. Executive Steering Group roles and responsibilities, A-76 status, and talking points Team Briefings 8:55 a.m. - 9:20 a.m. Information Technology Study 9:20 a.m. - 9:45 a.m. Financial Services Study

254

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

LNG Storage Additions & Withdrawals LNG Storage Additions & Withdrawals Definitions Key Terms Definition Liquefied Natural Gas Natural gas (primarily methane) that has been liquefied by reducing its temperature to -260 degrees Fahrenheit at atmospheric pressure. Net Withdrawals The amount by which storage withdrawals exceed storage injections. Storage Additions Volumes of gas injected or otherwise added to underground natural gas reservoirs or liquefied natural gas storage. Storage Withdrawals Total volume of gas withdrawn from underground storage or from liquefied natural gas storage over a specified amount of time. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"

255

NATURE STUDY  

Science Journals Connector (OSTI)

...last two numbers of SCIENCE have appeared articles by Drs. Wheeler and Chapman on the abuses of nature writing as exemplified...imprint of Rand, IeNally and Co., 1903, and its author is Katherine E. Dopp, of the Extension Division of the Chicago University...

E. C. CASE

1904-04-01T23:59:59.000Z

256

Marketing Mother Natures Molecules  

Science Journals Connector (OSTI)

Marketing Mother Natures Molecules ... Yet molecules made by Mother Nature, or derivatives thereof, still account for nearly half of the drugs on the market. ...

LISA JARVIS

2012-02-19T23:59:59.000Z

257

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

258

Flax Response to Nitrogen and Phosphorus Fertilization Grant Jackson, WTARC, Conrad, MT  

E-Print Network [OSTI]

Introduction Flax has the potential to become a major source of oil for bio-diesel or bio- products because

Lawrence, Rick L.

259

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

260

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

262

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

263

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14, 2007 (next release 2:00 p.m. on June 21, 2007) 14, 2007 (next release 2:00 p.m. on June 21, 2007) Natural gas spot and futures prices decreased this week (Wednesday-Wednesday, June 6-13) as weather-related demand was limited amid close-to-normal temperatures for this time of year. Easing prices also likely resulted in part from reduced supply uncertainty in response to the amount of natural gas in underground storage (mostly for use during the winter heating season but also available for periods of hot weather in the summer). Supplies from international sources have grown considerably this spring, as imports of liquefied natural gas (LNG) have increased markedly even as natural gas supplies from Canada (transported by pipeline) likely have decreased. On the week, the Henry Hub spot price decreased 23 cents per MMBtu, or 2.9 percent, to $7.60. At the New York Mercantile Exchange (NYMEX), the contract for July delivery decreased 47.2 cents per MMBtu on the week to a daily settlement of $7.608 yesterday (June 13). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,255 Bcf as of Friday, June 8, reflecting an implied net injection of 92 Bcf. This level of working gas in underground storage is 19.3 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.20 per barrel on the week to $66.17 per barrel, or $11.41 per MMBtu.

264

Coalbed Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

265

COMPETITIVE SOURCING  

Broader source: Energy.gov (indexed) [DOE]

EXECUTIVE STEERING GROUP Meeting Proceedings October 30, 2002 Room 6E-069, 10:30 - 12:00 Agenda Opening Remarks Bruce Carnes Competitive Sourcing Update Denny O'Brien Team Briefings Team Leads ESG Discussion/Wrap up Bruce Carnes Attendees Bruce Carnes, Acting Chair MaryAnn Shebek Robert Card Prentis Cook Ambassador Brooks Tony Lane Kyle McSlarrow Karen Evans Suzanne Brennan, NTEU Claudia Cross Brian Costlow Helen Sherman Frank Bessera Laurie Morman Denny O'Brien Travis McCrory Bill Pearce Jeff Dowl Mark Hively Steven Apicella Robin Mudd Bruce Carnes chaired the meeting and began with welcoming NTEU to the meeting. In regard to the OMB's Balanced Scorecard, the Department has achieved a Green on progress and we are close to achieving a yellow on status.

266

Natural catalytic activity in a marine shale for generating natural gas  

Science Journals Connector (OSTI)

...in a marine shale for generating natural gas Frank D. Mango 1 * Daniel M...be the source of equilibrium in natural gas habitats and in marine shales...palaeoactivity|low-temperature gas|natural gas| 1. Introduction It is broadly...

2010-01-01T23:59:59.000Z

267

E-Print Network 3.0 - accessing natural product Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Natural Gas Production and Use... that natural gas is significantly cleaner than coal in ... Source: Boyer, Elizabeth W. - School of Forest Resources, Pennsylvania State...

268

E-Print Network 3.0 - altitude aerial natural Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Forestry and Natural Resources Clemson University, Clemson Source: Foltz, Jeffrey W. - Department of Forestry and Natural Resources, Clemson University Collection:...

269

EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio  

Broader source: Energy.gov (indexed) [DOE]

EM SSAB NATIONAL CHAIRS MEETING EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio November 5-7, 2013 DAY 1 - Tuesday, November 5, 2013 8:00 a.m. - 8:20 a.m. Welcome and Opening Remarks Cate Alexander, EM SSAB Designated Federal Officer Will Henderson, Chair, Portsmouth Site Specific Advisory Board William Murphie, Manager, Portsmouth Paducah Project Office, DOE-EM 8:20 a.m. - 8:30 a.m. Overview of Meeting Eric Roberts, Facilitator 8:30 a.m. - 9:30 a.m. EM Program Update Alice Williams, Associate Principal Deputy Assistant Secretary for Environmental Management 9:30 a.m. - 10:20 a.m. Round Robin (Chairs' Site Reports) 5 minutes each 10:20 a.m. - 10:30 a.m. Recognition of Departing Chairs 10:30 a.m. - 10:45 a.m. Break 10:45 a.m. - 12:00

270

CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin  

SciTech Connect (OSTI)

Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

O'Connor, William K.; Rush, Gilbert E.

2005-09-01T23:59:59.000Z

271

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas > Natural Gas Information Query System > Definitions, Sources, & Notes Natural Gas > Natural Gas Information Query System > Definitions, Sources, & Notes Definitions, Sources, and Explanatory Notes The EIA-176 form contains responses submitted from an identified universe of pipelines, local distribution companies, and operators of fields, wells or gas processing plants, who distribute gas to end users or transport gas across State borders; or underground natural gas storage operators. Definitions Key Terms Definition Commercial Consumption Gas used by nonmanufacturing establishments or agencies primarily engaged in the sale of goods or services. Included are such establishments as hotels, restaurants, wholesale and retail stores and other service enterprises; gas used by local, State, and Federal agencies engaged in nonmanufacturing activities.

272

Production of Bio-Synthetic Natural Gas in Canada  

Science Journals Connector (OSTI)

The land area within 100 km of Canadas network of natural gas pipelines was estimated to be capable of producing 67?210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. ... Although predicted production costs ($17?21 GJ?1) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. ... The competition between these cost factors leads to an optimum size at which the cost of energy produced from biomass is minimized. ...

Kevork Hacatoglu; P. James McLellan; David B. Layzell

2010-02-22T23:59:59.000Z

273

Biomass as Renewable Source of Energy , Possible Conversion Routes  

Science Journals Connector (OSTI)

Biomass, a renewable source of energy, has been used since the beginning of ... natural gas, wood and other forms of biomass were the most important sources of energy available to humans. Today, biomass accounts ...

Prof. Martin Kaltschmitt

2012-01-01T23:59:59.000Z

274

Biomass as Renewable Source of Energy , Possible Conversion Routes  

Science Journals Connector (OSTI)

Biomass, a renewable source of energy, has been used since the beginning of ... natural gas, wood and other forms of biomass were the most important sources of energy available to humans. Today, biomass accounts ...

Prof. Martin Kaltschmitt

2013-01-01T23:59:59.000Z

275

E-Print Network 3.0 - angb mt clemens Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the sewer system (Clemens, 2001). Models in urban drainage consist of two separate process Source: van Gelder, Pieter - Faculty of Civil Engineering, Technische Universiteit...

276

Radiation source  

DOE Patents [OSTI]

A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

277

Study finds radioactivity around Los Alamos largely due to natural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

natural sources The study was subsequently peer reviewed externally by scientists at Colorado State University and internally within the Lab. December 10, 2008 Los Alamos National...

278

Novel biodiversity of natural products-producing tropical marine cyanobacteria.  

E-Print Network [OSTI]

??During the last three decades, tropical marine cyanobacteria have emerged as an extraordinarily prolific source of promising biomedical natural products (NPs). Creative endeavors have been (more)

Engene, Niclas

2011-01-01T23:59:59.000Z

279

NREL: News - JISEA News: Study on Methane Emissions from Natural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rates are unlikely to be representative of typical natural gas system leakage rates. * Hydraulic fracturing is not likely to be a substantial emissions source, relative to...

280

Natural Gas Infrastructure R&D and Methane Mitigation Woekshop...  

Energy Savers [EERE]

* System pressure losses from pulsation control reduce efficiency * Pulsation and mechanical natural frequency control is challenging * Good for baseline or flow swings Source:...

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

282

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

283

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

284

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

285

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

286

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

287

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

288

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

289

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

290

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

291

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

292

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

293

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

294

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

295

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

296

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

297

The very nearby M/T dwarf binary SCR 1845-6357  

E-Print Network [OSTI]

The recently discovered star SCR 1845-6357 is the first late M/T dwarf binary discovered. SCR 1845 is a particular object due to its tight orbit (currently around 4 AU) and its proximity to the Sun (3.85 pc). We present spatially resolved VLT/NACO images and low resolution spectra of SCR 1845 in the J, H and K near-infrared bands. Since the T dwarf companion, SCR 1845B, is so close to the primary SCR 1845A, orbital motion is evident even within a year. Following the orbital motion, the binary's mass can be measured accurately within a decade, making SCR 1845B a key T-dwarf mass-luminosity calibrator. The NIR spectra allow for accurate determination of spectral type and also for rough estimates of the object's physical parameters. The spectral type of SCR 1845B is determined by direct comparison of the flux calibrated JHK spectra with T dwarf standard template spectra and also by NIR spectral indices obtained from synthetic photometry. Constrained values for surface gravity, effective temperature and metallicity are derived by comparison with model spectra. Our data prove that SCR 1845B is a brown dwarf of spectral type T6 that is co-moving with and therefore gravitationally bound to the M8.5 primary. Fitting the NIR spectrum of SCR 1845B to model spectra yields an effective temperature of about 950K and a surface gravity log(g)=5.1 (cgs) assuming solar metallicity. Mass and age of SCR 1845B are in the range 40 to 50 Jupiter masses and 1.8 to 3.1 Gyr.

Markus Kasper; Beth A. Biller; Adam Burrows; Wolfgang Brandner; Jano Budaj; Laird M. Close

2007-06-26T23:59:59.000Z

298

Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies  

SciTech Connect (OSTI)

We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.; ,

2012-04-03T23:59:59.000Z

299

Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska  

SciTech Connect (OSTI)

This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

1982-04-01T23:59:59.000Z

300

Stand structure and establishment process of an old-growth stand in the mixed deciduous broadleaf/conifer forest of Mt. Moiwa Forest Reserve, central Hokkaido, Northern Japan  

Science Journals Connector (OSTI)

Stand structure of an old-growth forest was studied by tree (?4.0 ... in total) located in the Mt. Moiwa Forest Reserve, central Hokkaido, northern Japan. Major...Acer mono, A. mono var.mayrii, Kalopanax pictus, ...

Kanji Namikawa; Yuki Kawai

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Definition: Natural gas | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Natural gas Jump to: navigation, search Dictionary.png Natural gas A hydrocarbon gas obtained from underground sources, often in association with petroleum and coal deposits.[1] View on Wikipedia Wikipedia Definition Natural gas is a naturally occurring hydrocarbon gas mixture consisting primarily of methane, but commonly includes varying amounts of other higher alkanes and even a lesser percentage of carbon dioxide, nitrogen, and hydrogen sulfide. Natural gas is an energy source often used for heating, cooking, and electricity generation. It is also used as fuel for vehicles and as a chemical feedstock in the manufacture of plastics and other commercially important organic chemicals. Natural gas is found in

302

Sealed source peer review plan  

SciTech Connect (OSTI)

Sealed sources are known quantities of radioactive materials that have been encapsulated in quantities that produce known radiation fields. Sealed sources have multiple uses ranging from instrument calibration sources to sources that produce radiation fields for experimental applications. The Off-Site Source Recovery (OSR) Project at Los Alamos National Laboratory (LANL), created in 1999, under the direction of the Waste Management Division of the U.S. Department of Energy (DOE) Albuquerque has been assigned the responsibility to recover and manage excess and unwanted radioactive sealed sources from the public and private sector. LANL intends to ship drums containing qualified sealed sources to the Waste Isolation Pilot Plant (WIPP) for disposal. Prior to shipping, these drums must be characterized with respect to radiological content and other parameters. The U. S. Environmental Protection Agency (EPA) requires that ten radionulcides be quantified and reported for every container of waste to be disposed in the WIPP. The methods traditionally approved by the EPA include non-destructive assay (NDA) in accordance with Appendix A of the Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (DOE, 2002) (CH WAC). However, because of the nature and pedigree of historical records for sealed sources and the technical infeasibility of performing NDA on these sources, LANL proposes to characterize the content of these waste drums using qualified existing radiological data in lieu of direct measurement. This plan describes the process and documentation requirements for the use of the peer review process to qualify existing data for sealed radiological sources in lieu of perfonning radioassay. The peer review process will be performed in accordance with criteria provided in 40 CFR {section} 194.22 which specifies the use of the NUREG 1297 guidelines. The plan defines the management approach, resources, schedule, and technical requirements for the subject peer review.

Feldman, Alexander [Los Alamos National Laboratory; Leonard, Lee [RETIRED; Burns, Ron [CONTRACTOR

2009-01-01T23:59:59.000Z

303

Observation of High Energy Jets with Emulsion Chambers: Gamma-Rays on Mt. Norikura  

Science Journals Connector (OSTI)

......nuclear interactions occuring within 50 m is not large...the two mr cascades is naturally better for cases of...300Em) 234567 89 Depth (radiation length) Fig. 7-2...of nuclear interaction occuring at a certain interaction......

Makoto Akashi; Zenjir Watanabe; Akeo Misaki; Iwao Mito; Yoshito Oyama; Senzo Tokunaga; Takeshi Ogata; Yoshikazu Tsuneoka; Shoji Dake; Kei Yokoi; Shunichi Hasegawa; Jun Nishimura; Kiyoshi Niu; Toshio Taira; Akio Nishio; Yoichi Fujimoto; Naofumi Ogita

1964-04-01T23:59:59.000Z

304

Risk Estimation; Background Radiation (Natural and Artificial )  

E-Print Network [OSTI]

-threshold mode estimate the response at lower doses. · The Committee on Biological Effects of Ionizing RadiationModule 9 Risk Estimation; Background Radiation (Natural and Artificial ) · sources of background radiation · various risk models. · estimating risk and on the sources of background radiation, both

Massey, Thomas N.

305

International Energy Outlook 2006 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2006 Chapter 4: Natural Gas Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Figure 34. World Natural Gas Consumption by Region, 1990-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. World Natural Gas Consumption by End-Use Sector, 2003-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case

306

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

307

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

308

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

309

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

310

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

311

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

312

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

313

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

314

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

315

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

316

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

317

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

318

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

319

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

320

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

322

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

323

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Plant Processing Plant Processing Definitions Key Terms Definition Extraction Loss The reduction in volume of natural gas due to the removal of natural gas liquid constituents such as ethane, propane, and butane at natural gas processing plants. Natural Gas Processed Natural gas that has gone through a processing plant. Natural Gas Processing Plant A facility designed to recover natural gas liquids from a stream of natural gas which may or may not have passed through lease separators and/or field separation facilities. These facilities also control the quality of the natural gas to be marketed. Cycling plants are classified as natural gas processing plants. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Natural Gas Processed, Total Liquids Extracted, and Extraction Loss Volume: Form EIA-64A, "Annual Report of the Origin of Natural Gas Liquids Production" . Estimated Heat Content of Extraction Loss: Estimated, assuming the makeup to total liquids production as reported on Form EIA-64A for each State was proportional to the components and products ultimately separated in the States as reported on the 12 monthly reports on Energy Information Administration, Form EIA-816, "Monthly Natural Gas Liquids Report," and applying the following conversion factors to the individual component and product production estimates (million Btu extraction loss per barrel of liquid produced): ethane - 3.082; propane - 3.836; normal butane - 4.326; isobutane - 3.974; pentanes plus - 4.620.

324

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

325

The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation  

E-Print Network [OSTI]

We have assembled a large sample of virialized systems, comprising 66 galaxy clusters, groups and elliptical galaxies with high quality X-ray data. To each system we have fitted analytical profiles describing the gas density and temperature variation with radius, corrected for the effects of central gas cooling. We present an analysis of the scaling properties of these systems and focus in this paper on the gas distribution and M-T relation. In addition to clusters and groups, our sample includes two early-type galaxies, carefully selected to avoid contamination from group or cluster X-ray emission. We compare the properties of these objects with those of more massive systems and find evidence for a systematic difference between galaxy-sized haloes and groups of a similar temperature. We derive a mean logarithmic slope of the M-T relation within R_200 of 1.84+/-0.06, although there is some evidence of a gradual steepening in the M-T relation, with decreasing mass. We recover a similar slope using two additional methods of calculating the mean temperature. Repeating the analysis with the assumption of isothermality, we find the slope changes only slightly, to 1.89+/-0.04, but the normalization is increased by 30%. Correspondingly, the mean gas fraction within R_200 changes from (0.13+/-0.01)h70^-1.5 to (0.11+/-0.01)h70^-1.5, for the isothermal case, with the smaller fractional change reflecting different behaviour between hot and cool systems. There is a strong correlation between the gas fraction within 0.3*R_200 and temperature. This reflects the strong (5.8 sigma) trend between the gas density slope parameter, beta, and temperature, which has been found in previous work. (abridged)

A. J. R. Sanderson; T. J. Ponman; A. Finoguenov; E. J. Lloyd-Davies; M. Markevitch

2003-01-03T23:59:59.000Z

326

Montana Department of Natural Resources & Conservation | Open Energy  

Open Energy Info (EERE)

Conservation Conservation Jump to: navigation, search Logo: Montana Department of Natural Resources& Conservation Name Montana Department of Natural Resources& Conservation Address 1625 11th Ave Place Helena, Montana Zip 59620-1601 Phone number 406-444-2074 Website http://dnrc.mt.gov Coordinates 46.589523°, -112.011519° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.589523,"lon":-112.011519,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Natural gas monthly, August 1996  

SciTech Connect (OSTI)

This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

NONE

1996-08-01T23:59:59.000Z

328

Sharpening $m_{T2}$ cusps: the mass determination of semi-invisibly decaying particles from a resonance  

E-Print Network [OSTI]

We revisit mass determination techniques for the minimum symmetric event topology, namely $X$ pair production followed by $X \\to \\ell N$, where $X$ and $N$ are unknown particles with the masses to be measured, and $N$ is an invisible particle, concentrating on the case where $X$ is pair produced from a resonance. We consider separate scenarios, with different initial constraints on the invisible particle momenta, and present a systematic method to identify the kinematically allowed mass regions in the $(m_N, m_X)$ plane. These allowed regions exhibit a cusp structure at the true mass point, which is equivalent to the one observed in the $m_{T2}$ endpoints in certain cases. By considering the boundary of the allowed mass region we systematically define kinematical variables which can be used in measuring the unknown masses, and find a new expression for the $m_{T2}$ variable as well as its inverse. We explicitly apply our method to the case that $X$ is pair produced from a resonance, and as a case study, we consider the process $pp \\to A \\to \\tilde \\chi_1^+ \\tilde \\chi_1^-$, followed by $\\tilde \\chi_1^\\pm \\to \\ell^{\\pm} \\, \\tilde \

Lucian A. Harland-Lang; Chun-Hay Kom; Kazuki Sakurai; Marco Tonini

2013-12-19T23:59:59.000Z

329

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

330

nature photonics | VOL 1 | SEPTEMBER 2007 | www.nature.com/naturephotonics 517 REVIEW ARTICLE  

E-Print Network [OSTI]

nature photonics | VOL 1 | SEPTEMBER 2007 | www.nature.com/naturephotonics 517 REVIEW ARTICLE molecular gas lasers or free-electron lasers. Although many of these sources are very useful, they each have, given their success and ubiquity throughout the Terahertz quantum-cascade lasers Six years after

Jalali. Bahram

331

NewPipeline-Robot-Power-Source.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

332

Topic Sensitive SourceRank: Extending SourceRank for Performing Context-Sensitive Search over Deep Web  

E-Print Network [OSTI]

of the foremost challenges for searching deep-web. For a user query, source selection involves selecting a subset of deep-web sources expected to provide relevant answers to the user query. Existing source selection, given the autonomous and uncurated nature of deep-web, have be- come indispensible for searching deep-web

Kambhampati, Subbarao

333

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network [OSTI]

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

334

Measurements of Methane Emissions at Natural Gas Production Sites  

E-Print Network [OSTI]

Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

Lightsey, Glenn

335

Natural plant chemicals: sources of industrial and medicinal materials  

Science Journals Connector (OSTI)

...150 million flowers still hand-harvested daily in Kenya, Tanzania, and Ecuador (29). Rotenone and the rotenoids have long...extensive compila-tion of Viking Infrared Thermal Mapper (IRTM) solar reflectance and infrared emission observations of the Martian...

MF Balandrin; JA Klocke; ES Wurtele; WH Bollinger

1985-06-07T23:59:59.000Z

336

Is Mercury from Hawaiian Volcanoes a Natural Source of Pollution?  

Science Journals Connector (OSTI)

... ml. with distilled water. Portions of 20 ml. were analysed for mercury content by flameless atomic absorption at the 253.65 nm resonance line. We used a Utopia Instruments ... atomic absorption at the 253.65 nm resonance line. We used a Utopia Instruments flameless mercury analysis kit6 and a 10 cm absorption cell mounted on the burner of a ...

ALAN ESHLEMAN; SANFORD M. SIEGEL; BARBARA Z. SIEGEL

1971-10-15T23:59:59.000Z

337

Natural Sources and Regrowth of Enterococcus in Coastal  

E-Print Network [OSTI]

Pipe Creek bottom surface covered with biofilm String of Coupons Resuspension of bacteria on surfaces highly variable Coupon Study #12;Resuspension and Growth Potential of Enterococci on Coupons Used 3) Firm (Growth potential) 26 - 140 173 - 7465 Moderate & Loose (Resuspension potential) 54 - 2415 311

338

Analysis Of Factors Affecting Natural Source Slf Electromagnetic...  

Open Energy Info (EERE)

relationship between the sensor orientation and the received artificial electromagnetic interference, influence of weather conditions on the data quality and so on. The results...

339

Natural plant chemicals: sources of industrial and medicinal materials  

Science Journals Connector (OSTI)

...to develop a tissue culture system (21). In view of such economic...glyco-sides in tissue culture systems within the next few years...OTA-BP-F-23, Office of Technology Assessment, Washington, D.C., 1983...understanding ofthe Mar-tian climate system. 1160 On Mars, the temperatures...

MF Balandrin; JA Klocke; ES Wurtele; WH Bollinger

1985-06-07T23:59:59.000Z

340

Cadmium sources and exchange rates for Chaoborus larvae in nature  

Science Journals Connector (OSTI)

acceptable analytical variation (coefficient of variation. 5%, n. 10). ..... mulation and toxicity with a concomitant risk for the envi- ronment. References. BOTHWELL...

1999-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cationically polymerizable monomers derived from renewable sources  

SciTech Connect (OSTI)

The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

Crivello, J.V.

1992-10-01T23:59:59.000Z

342

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

343

International Energy Outlook 2001 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas picture of a printer Printer Friendly Version (PDF) Natural gas is the fastest growing primary energy source in the IEO2001 forecast. The use of natural gas is projected to nearly double between 1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is expected to be the fastest growing component of world energy consumption in the International Energy Outlook 2001 (IEO2001) reference case. Gas use is projected to almost double, to 162 trillion cubic feet in 2020 from 84 trillion cubic feet in 1999 (Figure 38). With an average annual growth rate of 3.2 percent, the share of natural gas in total primary energy consumption is projected to grow to 28 percent from 23 percent. The largest increments in gas use are expected in Central and

344

Economics of natural gas upgrading  

SciTech Connect (OSTI)

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

345

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

346

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

347

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

348

Natural Gas Rules (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

349

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

350

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

351

Capital Sources and Providers  

Broader source: Energy.gov [DOE]

The most important elements of a clean energy lending program are the capital source and the capital provider. The capital source provides the funding to pay for clean energy projects, and the capital provider manages those funding sources. For example, a bank might use its customers' deposits as a capital source, but as the capital provider, the bank manages the investment of that capital.

352

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

353

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace Coke Oven (excluding or LPG and Natural Gas

354

Anomaly metrics to differentiate threat sources from benign sources in primary vehicle screening.  

SciTech Connect (OSTI)

Discrimination of benign sources from threat sources at Port of Entries (POE) is of a great importance in efficient screening of cargo and vehicles using Radiation Portal Monitors (RPM). Currently RPM's ability to distinguish these radiological sources is seriously hampered by the energy resolution of the deployed RPMs. As naturally occurring radioactive materials (NORM) are ubiquitous in commerce, false alarms are problematic as they require additional resources in secondary inspection in addition to impacts on commerce. To increase the sensitivity of such detection systems without increasing false alarm rates, alarm metrics need to incorporate the ability to distinguish benign and threat sources. Principal component analysis (PCA) and clustering technique were implemented in the present study. Such techniques were investigated for their potential to lower false alarm rates and/or increase sensitivity to weaker threat sources without loss of specificity. Results of the investigation demonstrated improved sensitivity and specificity in discriminating benign sources from threat sources.

Cohen, Israel Dov; Mengesha, Wondwosen

2011-09-01T23:59:59.000Z

355

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

natural gas Natural Gas natural gas Natural Gas exec summary Executive Summary Natural gas production increases throughout the projection period, allowing the United States to transition from a et importer to a net exporter of natural gas....Read full section Power generation from renewables and natural gas continues to increase ...Read full section Evolving Marcellus shale gas resource estimates....Read full section Mkt trends Market Trends U.S. reliance on imported natural gas from Canada declines as exports grow.... Read full section Trends in petroleum and other liquids markets are defined largely by the developing nations... Read full section Renewable energy sources lead rise in primary energy consumption... Read full section Reliance on natural gas and natural gas liquids rises as industrial

356

GEOMETRIC SOURCE SEPARATION: MERGING CONVOLUTIVE SOURCE  

E-Print Network [OSTI]

adaptive beamforming algorithms by a cross-power criteria, we gain new geometric source separation with convo- lutive blind source separation. We concentrate on cross-power spectral min- imization which is su to ambiguities in the choice of separating lters. There are in theory multiple lters that invert the room

Parra, Lucas C.

357

How regulators should use natural gas price forecasts  

SciTech Connect (OSTI)

Natural gas prices are critical to a range of regulatory decisions covering both electric and gas utilities. Natural gas prices are often a crucial variable in electric generation capacity planning and in the benefit-cost relationship for energy-efficiency programs. High natural gas prices can make coal generation the most economical new source, while low prices can make natural gas generation the most economical. (author)

Costello, Ken

2010-08-15T23:59:59.000Z

358

Research Highlights Nature Nanotechnology  

E-Print Network [OSTI]

© 2009 APS Research Highlights Nature Nanotechnology Published online: 17 July 2009 | doi:10 perfect fluid. Phys. Rev. Lett. 103, 025301 (2009). | Article |1. Nature Nanotechnology ISSN 1748 : Nature Nanotechnology http://www.nature.com/nnano/reshigh/2009/0709/full/nnano.2009.222.html 1 of 1 18

Müller, Markus

359

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

360

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

EIA's latest Short-Term Energy Outlook for natural gas › image chart of U.S. Natural Gas Production and Imports projections as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Natural gas price volatility and uncertainty › Natural gas historical and implied volatility Source: U.S. Energy Information Administration, Short-Term Energy Outlook, Market Prices and Uncertainty Report. Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. North America leads the world in production of shale gas ›

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

362

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, 2007 to Thursday, January 3, 2008) 26, 2007 to Thursday, January 3, 2008) Released: January 4, 2008 Next release: January 10, 2008 · Natural gas spot and futures prices increased this report week (Wednesday to Thursday, December 26, 2007, to January 3, 2008), as frigid temperatures in much of the country increased demand for space heating. During the report week, the Henry Hub spot price increased $0.90 per million Btu (MMBtu) to $7.84. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for February delivery rose about 51 cents per MMBtu on the week to $7.674. · Working gas in storage is well above the 5-year average for this time year, indicating a ready supply source to meet peak demand as the winter heating season progresses. As of Friday, December 28, working gas in storage was 2,921 Bcf, which is 8.2 percent above the 5-year (2002-2006) average.

363

Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun  

E-Print Network [OSTI]

Commentary Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun Paul D. Williams Department of Meteorology, University of Reading, UK a r t i c l e i n f integration of the shallow-water equa- tions using the leapfrog time-stepping scheme [Sun Wen-Yih, Sun Oliver

Williams, Paul

364

Properties of Natural Radiation and Radioactivity  

SciTech Connect (OSTI)

Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ("radon") and 220Rn ("thoron") in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, "Ionizing Radiation Exposure of the Population of the United States," for which the author chaired the subcommittee that wrote Chapter 3 on "Ubiquitous Background Radiation."

Strom, Daniel J.

2009-07-13T23:59:59.000Z

365

International Energy Outlook 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. World natural gas consumption continues to grow, increasing its market share of total primary energy consumption. In the International Energy Outlook 2000 (IEO2000), natural gas remains the fastest growing component of world energy consumption. Over the IEO2000 forecast period from 1997 to 2020, gas use is projected to more than double in the reference case, reaching 167 trillion cubic feet in 2020 from the 1997 level of 82 trillion cubic feet (Figure 46). Over the 1997-2020 period, the role of natural gas in energy use is projected to increase in all regions except the Middle

366

Denver Museum Taps Into Unique Geothermal Source | Department...  

Energy Savers [EERE]

Into Unique Geothermal Source March 9, 2010 - 4:59pm Addthis Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the citys municipal...

367

Global Natural Gas Market Trends, 2. edition  

SciTech Connect (OSTI)

The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

NONE

2007-07-15T23:59:59.000Z

368

Higgs couplings and Naturalness in the littlest Higgs model with T-parity at the LHC and TLEP  

E-Print Network [OSTI]

Motivated by the recent LHC Higgs data and null results in searches for any new physics, we investigate the Higgs couplings and naturalness in the littlest Higgs model with T-parity. By performing the global fit of the latest Higgs data, electroweak precise observables and $R_{b}$ measurements, we find that the scale $f$ can be excluded up to 600 GeV at $2\\sigma$ confidence level. The expected Higgs coupling measurements at the future collider TLEP will improve this lower limit to above 3 TeV. Besides, the top parnter mass $m_{T_{+}}$ can be excluded up to 880 GeV at $2\\sigma$ confidence level. The future HL-LHC can constrain this mass in the region $m_{T_{+}} < 2.2$ TeV corresponding to the fine-tuning being lager than 1%.

Bingfang Yang; Guofa Mi; Ning Liu

2014-09-23T23:59:59.000Z

369

1999 Commercial Buildings Characteristics--Energy Sources and End Uses  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources and End Uses Energy Sources and End Uses Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Energy Sources and End Uses CBECS collects information that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and What kinds of equipment use energy? Energy Sources Nearly all commercial buildings used at least one source of energy for some end use (Figure 1). Electricity was the most commonly used energy source in commercial buildings (94 percent of buildings comprising 98 percent of commercial floorspace). More than half of commercial buildings (57 percent) and two-thirds of commercial floorspace (68 percent) were served by natural gas. Three sources-fuel oil, district heat, and district chilled water-when used, were used more often in larger buildings.

370

The Nature of the Bioterrorism Threat  

SciTech Connect (OSTI)

This analysis provides an overview of the nature of the bioterrorism threat. It identifies potential CDC Class A biological agents that are likely candidates for use in a terrorist incident and describes the known sources of vulnerability. The paper also summarizes S&T resources/needs and assesses response options for achieving effective biodefense against terrorist threats.

Regens, J. L.

2003-02-25T23:59:59.000Z

371

Guayule - natural rubber from the desert  

SciTech Connect (OSTI)

Guayule is the most likely source of home grown natural rubber in the United States and research is currently underway on methods of increasing rubber content, seed germination and survival, climate and soil requirements and rubber content determination by solvent extraction.

Bucks, D.A.

1984-11-01T23:59:59.000Z

372

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

373

Natural Gas Plant Stocks of Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5,419 6,722 6,801 5,826 6,210 6,249 1993-2013 PADD 1 122 121 115 189 246 248 1993-2013 East Coast 1993-2010 Appalachian No. 1 122 121 115 189 246 248 1993-2013 PADD 2 959 891 880 1,129 1,104 1,041 1993-2013 Ind., Ill. and Ky. 311 300 298 308 262 260 1993-2013 Minn., Wis., N. Dak., S. Dak. 56 64 58 60 51 64 1993-2013 Okla., Kans., Mo. 592 527 524 761 791 717 1993-2013 PADD 3 3,810 5,007 5,032 3,817 4,246 4,272 1993-2013

374

2013NatureAmerica,Inc.Allrightsreserved. nature CHeMICaL BIOLOGY | AdvAnce online publicAtion | www.nature.com/naturechemicalbiology 1  

E-Print Network [OSTI]

hepatocytes, we developed a high-throughput liver platform that enables unbiased chemical screening using prim©2013NatureAmerica,Inc.Allrightsreserved. nature CHeMICaL BIOLOGY | AdvAnce online public hepatocyte screening platform To identify factors that permit renewable sourcing of functional human

Bhatia, Sangeeta

375

Nonconventional Renewable Sources in Brazil and Their Impact on the Success of Bioenergy  

Science Journals Connector (OSTI)

Brazil has abundant natural sources of renewable energy. Existing renewable sources of energy are discussed and an overview of the energy options in Brazil is assessed with their current situation and ... the gre...

Lus Cludio Oliveira-Lopes; Cludio H. Ferreira da Silva

2014-01-01T23:59:59.000Z

376

E-Print Network 3.0 - ar-rich source gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

argon (Ar)-rich atmosphere... in natural gas bubble plumes: observations from the Coal Oil Point marine hydrocarbon ... Source: California at Santa Barbara, University of -...

377

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Hay Road","Natural Gas","Calpine Mid-Atlantic Generation LLC",1130 2,"Indian River Generating...

378

International Energy Outlook 1999 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natgas.jpg (4355 bytes) natgas.jpg (4355 bytes) Natural gas is the fastest growing primary energy source in the IEO99 forecast. Because it is a cleaner fuel than oil or coal and not as controversial as nuclear power, gas is expected to be the fuel of choice for many countries in the future. Prospects for natural gas demand worldwide remain bright, despite the impact of the Asian economic recession on near-term development. Natural gas consumption in the International Energy Outlook 1999 (IEO99) is somewhat increased from last year’s outlook, and the fuel remains the fastest growing primary energy source in the forecast period. Worldwide gas use more than doubles in the reference case projection, reaching 174 trillion cubic feet in 2020 from 82 trillion cubic feet in 1996 (Figure

379

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

380

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

"N3050MS3","N3010MS3","N3020MS3","N3035MS3","NA1570SMS3","N3045MS3" "Date","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nature/Culture/Seawater  

E-Print Network [OSTI]

This essay considers seawater as a substance and symbol in anthropological and social theory. Seawater has occupied an ambiguous place with respect to anthropological categories of nature and culture. Seawater as nature ...

Helmreich, Stefan

382

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

383

Natural gas annual 1996  

SciTech Connect (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

384

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3010CT3","N3020CT3","N3035CT3","N3045CT3" "Date","Natural Gas Citygate Price in Connecticut (Dollars per Thousand Cubic Feet)","Connecticut Price of Natural Gas Delivered to...

385

Natural Gas Weekly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Rotary Rig Count Rises to Highest Level since February 2009. The natural gas rotary rig count was 992 as of Friday, August 13, according to data released by Baker...

386

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

The Boston forum is open to the public. Additional information is available at http:www.energy.govnews3197.htm. Natural Gas Rig Count: The number of rigs drilling for natural...

387

An internal seal for repairing natural gas mains  

E-Print Network [OSTI]

Joint leakage from low pressure natural gas distribution mains (typical value: 0.25 ft[superscript 3] at 6 inwg gas pressure) is a persistent source of maintenance problems for utitlites. External encapsulation is the usual ...

Cooper, Samuel A.

1984-01-01T23:59:59.000Z

388

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

389

Natural gas annual 1994  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

390

Natural gas annual 1995  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

391

FR Cnc Nature Revisited  

Science Journals Connector (OSTI)

The results of photometric and spectroscopic monitoring of FR Cnc reported a tricky nature. We carried out...

M. C. Glvez; A. Golovin; M. Hernn-Obispo

2010-01-01T23:59:59.000Z

392

Natural Gas: More Gasbuggies  

Science Journals Connector (OSTI)

... first US experiment in the use of underground nuclear explosions to increase the recovery of natural ...naturalgas ...

1969-04-12T23:59:59.000Z

393

Geology of Natural Gas  

Science Journals Connector (OSTI)

... to an accepted plan have produced a most comprehensive geological account of the occurrence of natural ...naturalgas ...

E. F. A.

1936-01-04T23:59:59.000Z

394

Chapter 9 - Natural Gas Dehydration  

Science Journals Connector (OSTI)

Natural, associated, or tail gas usually contains water, in liquid and/or vapor form, at source and/or as a result of sweetening with an aqueous solution. Operating experience and thorough engineering have proved that it is necessary to reduce and control the water content of gas to ensure safe processing and transmission. Pipeline drips installed near wellheads and at strategic locations along gathering and trunk lines will eliminate most of the free water lifted from the wells in the gas stream. Multistage separators can also be deployed to ensure the reduction of free water that may be present. However, the removal of the water vapor that exists in solution in natural gas requires a more complex treatment. This treatment consists of dehydrating the natural gas, which is accomplished by lowering the dew point temperature of the gas at which water vapor will condense from the gas. There are several methods of dehydrating natural gas. The most common of these are liquid desiccant (glycol) dehydration, solid desiccant dehydration, and cooling the gas. Any of these methods may be used to dry gas to a specific water content. Usually, the combination of the water content specification, initial water content, process character, operational nature, and economic factors determine the dehydration method to be utilized. However, the choice of dehydration method is usually between glycol and solid desiccants. These are presented in depth in subsequent portions of this chapter. Keywords: absorber, adsorption isotherm, bed loading, chemisorption, dehydration, desiccant, desiccant regeneration, equilibrium zone, flash tank, flow distribution, glycol circulation pump, glycol dehydration, inlet feed contamination, liquid carryover, mass transfer zone, molecular sieve, overcirculation, reboiler, solubility, still, surge tank, undercirculation.

Saeid Mokhatab; William A. Poe

2012-01-01T23:59:59.000Z

395

Natural Gas Reforming  

Broader source: Energy.gov [DOE]

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

396

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Number of Producing Gas Wells Number of Producing Gas Wells Definitions Key Terms Definition Gas Well A well completed for the production of natural gas from one or more gas zones or reservoirs. Such wells contain no completions for the production of crude oil. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Form EIA-895A, "Annual Quantity and Value of Natural Gas Production Report" , EIA estimates based on data from the Bureau of Safety and Environmental Enforcement, and predecessor agencies; state agencies; and World Oil Magazine. Background on "Natural Gas Annual" data Natural Gas Survey Forms and Instructions Explanatory Notes Beginning in 2001, the number of Federal offshore Gulf of Mexico producing gas and gas condensate wells is reported separately. For previous years the well counts for the Federal offshore Gulf of Mexico were included in the well counts

397

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

398

Modelling the demand and supply of natural gas from Cyprus and Israel.  

E-Print Network [OSTI]

?? The use of natural gas as a primary energy source has increased over time and is expected to increase even further in the near (more)

Taliotis, Constantinos

2012-01-01T23:59:59.000Z

399

E-Print Network 3.0 - australian natural gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of natural gas). For instance, if demand is held constant at 2004 levels and renewable energy... and Timetables of the Proposed Australian Emissions Trading ... Source: Colorado at...

400

E-Print Network 3.0 - advanced natural gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Currently, natural gas vehicles are less competitive... , and weight of conventional tanks continue to be barriers to ... Source: California Energy Commission Collection: Energy...

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - alam-pedja nature reserve Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reserves and regulation depends on the nature of the variations... Spectral Analysis of Energy-Constrained Reserves Fernando L. ... Source: Arizona State University, Power...

402

Table N8.3. Average Prices of Purchased Electricity, Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Prices of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased...

403

Spallation Neutron Source, SNS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spallation Neutron Source Spallation Neutron Source Providing the most intense pulsed neutron beams in the world... Accumulator Ring Commissioning Latest Step for Spallation Neutron Source The Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. Brookhaven led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world. The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The figure on the right shows a schematic of the accumulator ring and transport beam lines that are being designed and built by Brookhaven

404

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

405

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

406

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

407

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

408

Sources and Electrodynamics  

Science Journals Connector (OSTI)

A new kind of particle theory is being explored, one that is intermediate in concept between the extremes of S matrix and field theory. It employs the methods of neither approach. There are no operators, and there is no appeal to analyticity in momentum space. It is a phenomenological theory, and cognizant that measurements are operations in space and time. Particles are defined realistically by reference to their creation or annihilation in suitable collisions. The source is introduced as an abstraction of the role played by all the other particles involved in such acts. Through the use of sources the production and detection of particles, as well as their interaction, are incorporated into the theoretical description. There is a creative principle that replaces the devices of other formulations. It is an insistence upon the generality of the space-time description of the coupling among sources that is inferred from a specific spatio-temporal arrangement, in which various particles propagate between sources. Standard quantum-mechanical and relativistic requirements, imposed on the source description of noninteracting particles, imply the existence of the two statistics and the connection with spin. In this situation sources are only required to emit and absorb the mass of the corresponding particle. Particle dynamics is introduced by an extension of the source concept. It is considered meaningful for a source to emit several particles with the same total quantum numbers as a single particle, if sufficient mass is available. This is most familiar as the photon radiation that accompanies the emission of charged particles. The new types of sources introduced in this way imply new couplings among sources, which supply still further varieties of sources. This proliferation of interactions spans the full dynamical content of the initial primitive interaction. The ambition of the phenomenological source theory is to represent all dynamical aspects of particles, within a certain context, by a suitable primitive interaction. This paper is devoted to the reconstruction of electrodynamics.

Julian Schwinger

1967-06-25T23:59:59.000Z

409

Publications | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research at the APS. It is the official source for listing APS-related journal articles, conference proceedings and papers, dissertations, books, book chapters, technical reports,...

410

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

411

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

412

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

413

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

414

Convergent Bayesian formulations of blind source separation and electromagnetic source estimation  

E-Print Network [OSTI]

We consider two areas of research that have been developing in parallel over the last decade: blind source separation (BSS) and electromagnetic source estimation (ESE). BSS deals with the recovery of source signals when only mixtures of signals can be obtained from an array of detectors and the only prior knowledge consists of some information about the nature of the source signals. On the other hand, ESE utilizes knowledge of the electromagnetic forward problem to assign source signals to their respective generators, while information about the signals themselves is typically ignored. We demonstrate that these two techniques can be derived from the same starting point using the Bayesian formalism. This suggests a means by which new algorithms can be developed that utilize as much relevant information as possible. We also briefly mention some preliminary work that supports the value of integrating information used by these two techniques and review the kinds of information that may be useful in addressing the...

Knuth, Kevin H

2015-01-01T23:59:59.000Z

415

natural gas supply | OpenEI  

Open Energy Info (EERE)

natural gas supply natural gas supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 13, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA natural gas supply prices Data application/vnd.ms-excel icon AEO2011: Natural Gas Supply, Disposition, and Prices - Reference Case (xls, 91.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

416

liquefied natural gas LNG | OpenEI  

Open Energy Info (EERE)

liquefied natural gas LNG liquefied natural gas LNG Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

417

Unit Cost Natural Gas | OpenEI  

Open Energy Info (EERE)

2 2 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281532 Varnish cache server Unit Cost Natural Gas Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics

418

Dehydration of natural gas using solid desiccants  

Science Journals Connector (OSTI)

Natural gas is an important source of primary energy that, under normal production conditions, is saturated with water vapor. Water vapor increases natural gases' corrosivity, especially when acid gases are present. Several methods can be used to dry natural gas and, in this paper, a solid desiccant dehydrator using silica gel is considered due to its ability to provide extremely low dew points. The design analysis of a two-tower, silica gel dehydration unit to dry one million standard m3 of natural gas per day is presented in this paper and the effects of various operating parameters on the design of the unit are discussed. The study also covers the analysis of energy requirements for the regeneration of the weak desiccant bed based on some simplified assumptions and it is found that the higher the regeneration temperature, the smaller are the required quantities of regeneration gas.

P Gandhidasan; Abdulghani A Al-Farayedhi; Ali A Al-Mubarak

2001-01-01T23:59:59.000Z

419

compressed natural gas | OpenEI  

Open Energy Info (EERE)

compressed natural gas compressed natural gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (3 years ago) Date Updated December 13th, 2010 (3 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

420

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

422

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

423

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

424

Syllabus for Geochemistry (EAS 4803MT) EAS 4803 Lectures: L1105 EST -MWF 10:05-10:55 am  

E-Print Network [OSTI]

- Chemical speciation in natural waters: toxicity of heavy metals 6. Precipitation and Dissolution, and S isotopes in biogeochemical cycling 5. Metal Complexation in Aqueous Solutions - Hydrolysis of metal ions - Natural and anthropogenic inorganic and organic ligands - Metal ions and ligands: classification of metals

Black, Robert X.

425

Radiation Source Replacement Workshop  

SciTech Connect (OSTI)

This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

2010-12-01T23:59:59.000Z

426

Nature: Earth's Atmosphere and Beyond  

Science Journals Connector (OSTI)

Nature: Earth's Atmosphere and Beyond ... The column summarizes research articles from Nature that report on anthropogenic activities and natural phenomena that influence the chemical composition of Earth's atmosphere. ...

Sabine Heinhorst; Gordon Cannon

2003-10-01T23:59:59.000Z

427

Denver Museum Taps Into Unique Geothermal Source | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source March 9, 2010 - 4:59pm Addthis Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the city’s municipal water system. | Photo courtesy of Denver Museum of Nature & Science Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the city's municipal water system. | Photo courtesy of Denver Museum of Nature & Science Stephen Graff Former Writer & editor for Energy Empowers, EERE What will the project do? These energy efficient practices could save the museum up to $7 million over the next 20 years. The heating and air conditioning in the new wing of the Denver Museum if

428

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIA’s Weekly Natural Gas Storage Report.

429

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIA’s Weekly Natural Gas Storage

430

source | OpenEI  

Open Energy Info (EERE)

source source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed Comment

431

Neutron sources and applications  

SciTech Connect (OSTI)

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

432

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (million kWh) (million kWh) (million kWh) (billion cu ft) (billion cu ft)

433

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Total Utility(b) Local Utility(c) Code(a) Subsector and Industry (kWh) (kWh) (kWh) (1000 cu ft) (1000 cu ft) (1000 cu ft) (million Btu)

434

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...

435

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 7","Consumption",11,"Annual",2013,...

436

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1999" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",10,"Annual",2013,...

437

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1999" ,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

438

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

439

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1979" ,"Data 3","Underground Storage",4,"Annual",2013,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",10,"Annual",2013,...

440

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",1,"Annual",2013,"6302012" ,"Data 7","Consumption",11,"Annual",2013,...

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",9,"Annual",2013,"...

442

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",11,"Annual",2013,...

443

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

444

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",6,"Annual",2013,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301969" ,"Data 7","Consumption",11,"Annual",2013,...

445

,"Maine Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Imports and Exports",2,"Annual",2013,"6301982" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301981" ,"Data 4","Consumption",8,"Annual",2013,"...

446

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",4,"Annual",2013,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

447

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301981" ,"Data 5","Consumption",9,"Annual",2013,"...

448

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",8,"Annual",2013,"...

449

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 7","Consumption",11,"Annual",2013,...

450

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",9,"Annual",2013,"...

451

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

452

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",11,"Annual",2013,...

453

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

454

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2013,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301982" ,"Data 4","Consumption",10,"Annual",2013,...

455

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",8,"Annual",2013,"...

456

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",10,"Annual",2013,...

457

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

458

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",10,"Annual",2013,...

459

Natural Resources Specialist  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working ? Western Area Power Administration, Corporate Services Office, Office of the Chief Operating Officer, Natural...

460

Assessment in natural sciences.  

E-Print Network [OSTI]

??This research study focusses on assessment in the Natural Sciences learning area in grades 8 and 9. The aspect under focus is the extent to (more)

Singh, Suresh Kamar

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Unconventional Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(NETL) Anthony Zammerilli General Engineer Strategic Center for Natural Gas and Oil Energy Sector Planning and Analysis (ESPA) Robert C. Murray, Thomas Davis, and James...

462

Natural gas annual 1997  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

463

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2013,"6301967" ,"Release Date:","10312014"...

464

EIA - Natural Gas Publications  

Gasoline and Diesel Fuel Update (EIA)

data collected on Form EIA-914 (Monthly Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, Other States...

465

NETL: Natural Gas Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources Significant volumes of natural gas can also be produced from tight (low permeability) sandstone reservoirs and coal seams, both unconventional reservoir rocks. NETL...

466

Natural Gas Weekly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imbalances. Northern Natural Gas Company declared a force majeure after an unplanned repair issue at the Spearman Compressor Station in Ochiltree County, Texas, on Friday,...

467

Natural Gas Weekly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Gwinville, Mississippi. The pipeline company has isolated the affected section of pipeline and taken it out of service. Southern Natural intends to prepare a plan for...

468

Natural Cooling Retrofit  

E-Print Network [OSTI]

of the most important design considerations for any method of Natural Cool ing is the chil led water temperature range selected for use during Natural Cool ing. Figure VI shows that for a hypo thetical Chicago plant, the hours of operation for a Natural..." system on the Natural Cool ing cycle. As the pressures and flow rates of the condenser and chil led water systems are seldom the same, the designer must pay careful attention to the cross over system design to ensure harmonious operations on both...

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z

469

MIMICKING NATURAL PHOTOSYNTHESIS  

Science Journals Connector (OSTI)

MIMICKING NATURAL PHOTOSYNTHESIS ... O2 Evolution from the Manganese?Oxo Cubane Core Mn4O46+:? A Molecular Mimic of the Photosynthetic Water Oxidation Enzyme? ...

MICHAEL FREEMANTLE

1998-10-26T23:59:59.000Z

470

Cationically polymerizable monomers derived from renewable sources  

SciTech Connect (OSTI)

The objective of this project is to make use of products obtained from renewable plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In this report is described progress in the synthesis and polymerization of cationically polymerizable monomers and oligomers derived from botanical oils, terpenes, natural rubber, and lignin. Nine different botanical oils were obtained from various sources, characterized and then epoxidized. Their photopolymerization was carried out using cationic photoinitiators and the mechanical properties of the resulting polymers characterized. Preliminary biodegradation studies are being conducted on the photopolymerized films from several of these oils. Limonene was cationically polymerized to give dimers and the dimers epoxidized to yield highly reactive monomers suitable for coatings, inks and adhesives. The direct phase transfer epoxidation of squalene and natural rubber was carried out. The modified rubbers undergo facile photocrosslinking in the presence of onium salts to give crosslinked elastomers. 12 refs., 3 figs., 10 tabs.

Crivello, J.V.

1991-10-01T23:59:59.000Z

471

Warner College of Natural Resources Warner College of Natural  

E-Print Network [OSTI]

, and scientific investigation of renewable and nonrenewable natural resources. Programs include the study of everyWarner College of Natural Resources Warner College of Natural Resources Office in Natural Resources, and Conservation Biology Forestry Geology Natural Resource Recreation and Tourism Natural Resources Management

Collett Jr., Jeffrey L.

472

Tunable terahertz radiation source  

SciTech Connect (OSTI)

Terahertz radiation source and method of producing terahertz radiation, said source comprising a junction stack, said junction stack comprising a crystalline material comprising a plurality of self-synchronized intrinsic Josephson junctions; an electrically conductive material in contact with two opposing sides of said crystalline material; and a substrate layer disposed upon at least a portion of both the crystalline material and the electrically-conductive material, wherein the crystalline material has a c-axis which is parallel to the substrate layer, and wherein the source emits at least 1 mW of power.

Boulaevskii, Lev; Feldmann, David M; Jia, Quanxi; Koshelev, Alexei; Moody, Nathan A

2014-01-21T23:59:59.000Z

473

Ultracold Electron Source  

Science Journals Connector (OSTI)

We propose a technique for producing electron bunches that has the potential for advancing the state-of-the-art in brightness of pulsed electron sources by orders of magnitude. In addition, this method leads to femtosecond bunch lengths without the use of ultrafast lasers or magnetic compression. The electron source we propose is an ultracold plasma with electron temperatures down to 10K, which can be fashioned from a cloud of laser-cooled atoms by photoionization just above threshold. Here we present results of simulations in a realistic setting, showing that an ultracold plasma has an enormous potential as a bright electron source.

B. J. Claessens; S. B. van der Geer; G. Taban; E. J. D. Vredenbregt; O. J. Luiten

2005-10-12T23:59:59.000Z

474

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

475

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

S3","N3050KS3","N3010KS3","N3020KS3","N3035KS3","NA1570SKS3","N3045KS3" "Date","Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Kansas Natural Gas Pipeline...

476

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050WY3","N3010WY3","N3020WY3","N3035WY3","NA1570SWY3","N3045WY3" "Date","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Wyoming Natural Gas...

477

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050OK3","N3010OK3","N3020OK3","N3035OK3","NA1570SOK3","N3045OK3" "Date","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Oklahoma Natural Gas...

478

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050MI3","N3010MI3","N3020MI3","N3035MI3","NA1570SMI3","N3045MI3" "Date","Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas...

479

,"Vermont Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","NA1480SVT3","N3050VT3","N3010VT3","N3020VT3","N3035VT3","N3045VT3" "Date","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Vermont Natural Gas Pipeline...

480

,"Arizona Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050AZ3","N3010AZ3","N3020AZ3","N3035AZ3","NA1570SAZ3","N3045AZ3" "Date","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Price of Arizona Natural...

Note: This page contains sample records for the topic "natural source mt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050FL3","N3010FL3","N3020FL3","N3035FL3","NA1570SFL3","N3045FL3" "Date","Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Florida Natural Gas...

482

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050KY3","N3010KY3","N3020KY3","N3035KY3","NA1570SKY3","N3045KY3" "Date","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Kentucky Natural Gas...

483

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

SOH3","N3050OH3","N3010OH3","N3020OH3","N3035OH3","NA1570SOH3","N3045OH3" "Date","Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Ohio Natural Gas Pipeline...

484

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

SUT3","N3050UT3","N3010UT3","N3020UT3","N3035UT3","NA1570SUT3","N3045UT3" "Date","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Utah Natural Gas Pipeline...

485

Natural Gas Infrastructure Modernization  

Broader source: Energy.gov [DOE]

In order to help modernize the nations natural gas transmission and distribution systems and reduce methane emissions through common-sense standards, smart investments, and innovative research to advance the state of the art in natural gas system performance, the Department of Energy has launched several new initiatives and enhanced existing programs.

486

VALUING FLARED NATURAL GAS  

Science Journals Connector (OSTI)

LAST YEAR , enough natural gas to supply 27% of U.S. needs was burned off as waste around the world, according to a new report by the World Bank. Flared natural gas is a by-product of petroleum production and is not generally considered worth capture and ...

2007-09-10T23:59:59.000Z

487

Natural Gas | OpenEI  

Open Energy Info (EERE)

Gas Gas Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

488

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural gas prices rose at most market locations during the week, as consumption increased. The Henry Hub spot price increased 19 cents from $4.14 per million Btu (MMBtu) on Wednesday, April 13 to $4.33 per MMBtu on Wednesday, April 20. Futures prices behaved similar to spot prices; at the New York Mercantile Exchange, the price of the near-month natural gas contract (May 2011) rose from $4.141 per MMBtu to $4.310 per MMBtu. Working natural gas in storage rose to 1,654 billion cubic feet (Bcf) as of Friday, April 15, according to EIA’s Weekly Natural Gas

489

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: September 10, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 2, 2009) Natural gas prices posted significant decreases at both the spot and futures markets since last Wednesday. Spot prices fell at all market locations in the lower 48 States, with decreases ranging between 7 and 68 cents per million Btu (MMBtu). The price at the Henry Hub spot market fell to $2.25 per MMBtu, decreasing by 51 cents or 18 percent. As of yesterday, the price of natural gas at the Henry Hub was the lowest since February 15, 2002, when natural gas at this location traded at $2.18 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas futures

490

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, March 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 9, 2011) Natural gas spot prices remained soft at nearly all domestic pricing points. The Henry Hub price rose an insignificant 2 cents per million Btu (MMBtu) (0.5 percent) for the week ending March 9, to $3.81 per MMBtu. Working natural gas in storage fell to 1,674 billion cubic feet (Bcf) as of Friday, March 4, according to the Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 71 Bcf, with storage volumes positioned 32 Bcf above year-ago levels. At the New York Mercantile Exchange (NYMEX), the April 2011 natural

491

A3. Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Natural Gas Processed and Liquids Extracted at Natural Gas Processing Plants by State, 1996 Table Plant Location Volume of Natural Gas Delivered to Processing Plants a (million cubic feet) Total Liquids Extracted b (thousand barrels) Extraction Loss (million cubic feet) State Production Out of State Production Natural Gas Processed Alabama..................................... 111,656 1,212 112,868 4,009 5,361 Alaska ........................................ 2,987,364 0 2,987,364 33,346 38,453 Arkansas.................................... 214,868 4,609 219,477 383 479 California.................................... 240,566 0 240,566 9,798 12,169 Colorado .................................... 493,748 215 493,963 16,735 23,362 Florida........................................ 5,900 2,614 8,514 1,630 1,649 Illinois.........................................

492

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

493

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, June 30, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 22, 2011) Natural gas prices fell slightly at most market locations from Wednesday, June 15 to Wednesday, June 22. The Henry Hub price fell 10 cents from $4.52 per million Btu (MMBtu) last Wednesday to $4.42 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the July 2011 near-month futures contract fell by 26 cents, or about 6 percent, from $4.58 last Wednesday to $4.32 yesterday. Working natural gas in storage rose to 2,354 this week, according to EIA’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

494

APS News 2008 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From: Nature Research Highlights From: Nature Research Highlights From: Nature Research Highlights DECEMBER 1, 2008 APS Renewal White Paper APS Renewal White Paper November 21, 2008 The white paper prepared for the Department of Energy, Office of Science, Office of Basic Energy Sciences by the management and users of the Advanced Photon Source to set the foundation for renewal of this vital national research facility is now available in PDF format. Winner of AAAS Science Education Prize Visits Argonne Winner of AAAS Science Education Prize Visits Argonne October 23, 2008 Diane Riendeau, winner of the 2008 American Association for the Advancement of Science Leadership in Science Education Prize for High School Teachers, paid a visit to Argonne National Laboratory. SESAME and the APS: Opening Doors Helps the Light Shine In

495

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Offshore Gross Withdrawals Offshore Gross Withdrawals Definitions Key Terms Definition Gas Well A well completed for the production of natural gas from one or more gas zones or reservoirs. Such wells contain no completions for the production of crude oil. Gross Withdrawals Full well-stream volume, including all natural gas plant liquids and all nonhydrocarbon gases, but excluding lease condensate. Also includes amounts delivered as royalty payments or consumed in field operations. Offshore Located in either State or Federal domains, seaward of the coastline. Oil Well (Casinghead) Gas Natural gas produced along with crude oil from oil wells. It contains either dissolved or associated gas or both. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources

496

National Synchrotron Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

497

SOURCE SELECTION INFORMATION -  

Office of Environmental Management (EM)

311 of P.L. 112-74 and as continued in P.L. 113-6 in excess of 1,000,000. This information is source selection information related to the conduct of a Federal agency...

498

SOURCE SELECTION INFORMATION -  

Office of Environmental Management (EM)

budget authority that is not fully funded under P.L. 113-76 Section 301(c). This information is source selection information related to the conduct of a Federal agency...

499

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

500

ION SOURCES FOR CYCLOTRONS  

E-Print Network [OSTI]

These utilize lasers, plasma focus, sparks, and ex plodingextractor voltage A plasma focus device has been used byf n a s Fig. 22: The plasma focus high charge state source

Clark, D.J.

2010-01-01T23:59:59.000Z