Powered by Deep Web Technologies
Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network [OSTI]

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate% · Natural Gas-fired Power Plant: Adv. 7F Gas Turbine Capacity Factor 75% · Cost Basis: 2007$, constant 7

2

The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants  

E-Print Network [OSTI]

1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Estimates for Natural GasNatural Gas--Fired Power PlantsFired Power Plants · 2007: Rubin, et al., Energy utilities again looking to natural gas combined cycle (NGCC) plants for new or replacement capacity

3

The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants  

E-Print Network [OSTI]

1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

4

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network [OSTI]

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

5

A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics  

E-Print Network [OSTI]

1 A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume contended the gas-fired plants would slow Norway's dependence on imported electricity from Denmark, which 81-71 in favor of building Norway's first natural gas-fired power plant.1 As a result Bondevik

6

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network [OSTI]

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

8

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

SciTech Connect (OSTI)

Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-08-13T23:59:59.000Z

9

E-Print Network 3.0 - advanced natural gas-fired Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Change Joint Program Collection: Environmental Sciences and Ecology 45 The Price of Electricity from Private Power Producers Summary: . . . . . . . . . . . . . . . . . . . ....

10

Estimated size and performance of a natural gas fired duplex Stirling for domestic refrigeration applications  

SciTech Connect (OSTI)

Calibrated calculations are used to size an integrated Stirling cooler and engine (Duplex configuration). Fuel for the engine is natural gas and the working fluid is helium. The potential exists for long life and low noise. Performance is shown to be very competitive when compared to standard vapor compression systems. 10 refs., 8 figs., 1 tab.

Berchowitz, D.M. (Sunpower, Inc., Athens, OH (United States)); Shonder, J. (Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

11

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

wear and tear on gas-fired power plants from the increasedon natural gas and wholesale power prices has also made itcheap natural gas and wind power in the years ahead (Lee et

Bolinger, Mark

2014-01-01T23:59:59.000Z

12

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

average peaking natural gas power plant (NGCT) supplies the13 categories. Natural gas- fired power plants comprise over= Combined heat and power; GHG = Greenhouse gas emissions;

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

13

Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes  

SciTech Connect (OSTI)

Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

Petrov, Andrei Y [ORNL; Sand, James R [ORNL; Zaltash, Abdolreza [ORNL

2006-01-01T23:59:59.000Z

14

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network [OSTI]

Profiles of Renewable and Natural Gas Electricity Contracts:Price Risk: Using Forward Natural Gas Prices Instead of Gas2001). Which way the natural gas price: an attempt to

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

15

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

SciTech Connect (OSTI)

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

16

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

to lower the carbon intensity of the power generationelectricity grid carbon-intensities are considered: importance of grid carbon intensity. Natural-gas-fired CHP

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

17

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network [OSTI]

Associates, citing NYMEX natural gas bid-offer spreadAnalysis of the Market for Natural Gas Futures. The Energyas a Physical Hedge Against Natural Gas Price Movements.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

18

Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology  

SciTech Connect (OSTI)

The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

Cox, Daryl [ORNL

2009-05-01T23:59:59.000Z

19

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

20

Residential gas-fired sorption heat Test and technology evaluation  

E-Print Network [OSTI]

..........................................................................................10 1.3.2 Adsorption heat pumpsResidential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications  

SciTech Connect (OSTI)

The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

NONE

1997-03-01T23:59:59.000Z

22

Gas-Fired Reciprocating Engines  

Broader source: Energy.gov [DOE]

The reciprocating, or piston-driven, engine is a widespread and well-known technology. Also called internal combustion engines, reciprocating engines require fuel, air, compression, and a combustion source to function. Depending on the ignition source, they generally fall into two categories: (1) spark-ignited engines, typically fueled by gasoline or natural gas, and (2) compression-ignited engines, typically fueled by diesel oil fuel.

23

Direct Gas Fired Air Heating For 40 to 50% Fuel Savings  

E-Print Network [OSTI]

the safety aspects of direct gas fired air heating, the most important qUe~tion is whether there would be a harmful build up of carbon monoxide within the building as a result of!the products of combustion being released directly into the air stream.... The unvented infrared heaterslhave long been proven safe from this standpoint. By looking at the fundamental chemistry of combustion! of natural gas, the direct gas-fired make-up air heaters can be shown to produce lower concentrationsII of carbon monoxide...

Searcy, J. A.

1979-01-01T23:59:59.000Z

24

Assessment of gas-fired commercial refrigeration. Final report Mar-Aug 1982  

SciTech Connect (OSTI)

Gas-fired commercial refrigeration is not common today. However, today's and tomorrow's gas engines (internal combustion, Stirling, gas turbines) could power cost-effective refrigeration systems. One key is effectively utilizing the prime mover's reject heat to economic advantage. Another is the capacity control afforded by a variable-speed prime mover. The best example of such a system is comparatively near-term. It serves the large and steady supermarket refrigeration market with an industrial-grade internal combustion engine driving an open-shaft reciprocating compressor. The gas engine's exhaust enables a reciprocating steam engine to boost shaft power by 20%.

Hynek, S.J.; Krepchin, I.P.; Harvey, A.C.; Demler, R.L.; Borhanian, H.H.

1983-02-01T23:59:59.000Z

25

Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports  

SciTech Connect (OSTI)

Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

1980-01-01T23:59:59.000Z

26

Results of gas-fired flash-smelting tests. Phase 1-3. Topical technical report, November 1987-April 1989  

SciTech Connect (OSTI)

A natural gas-fired burner for the HRD FLAME REACTOR Process was designed and successfully tested on over 450 tons of Electric Arc Furnace (EAF) dust, and over a wide range of operating conditions. The coal/coke-fired FLAME REACTOR Process has already been demonstrated as an efficient and economic means of recovering zinc from EAF dust as a salable oxide product, and a salable nonhazardous, iron-rich slag product. The results of the work indicate that the natural gas-fired process has a higher zinc capacity for a given reactor size, with zinc recoveries 5-10 percentage points higher than coal/coke processing at high throughputs. Gas-fired capital costs are about 15% less than coal for a 20,000 STPY EAF dust plant. Smaller plants show even higher break-even costs. Net processing costs are about $100/ton of EAF dust, which is extremely competitive with land-filling and other recycling options.

Pusateri, J.F.

1990-06-01T23:59:59.000Z

27

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network [OSTI]

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

Karp, A. D.; Simbeck, D. R.

28

Application of advanced Stirling engine technology to a commercial size gas-fired heat pump  

SciTech Connect (OSTI)

The Gas Research Institute sponsored work on the kinematic Stirling engine-driven heat pump, which offers practical improvements in the use of natural gas. Results from the first phase of the program led to the selection of a method of introducing low pressure natural gas into the V160 engine's combustor and testing of the ejector system. Further engine modifications will be needed as well as demonstrations of the performance and reliability of the units. The first phase found all developmental needs to be achievable, making the concept technically feasible. Computer projections based on the system performance of components indicate the gas-fired pump will work better than electric models and be economically feasible as well. 5 figures, 1 table.

Johansson, L.; Agno, J.; Wurm, J.

1985-08-01T23:59:59.000Z

29

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

30

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor DATE: March 25, 2013  

E-Print Network [OSTI]

TO: Interested Parties FROM: Craig Hoffman, Compliance Project Manager SUBJECT: GILROY COGENERATION a revised petition with the California Energy Commission requesting to modify the Gilroy Cogeneration the district. The Gilroy Cogeneration Project is a 115-megawatt, natural gas-fired power plant located

31

Laboratory Development of A High Capacity Gas-Fired paper Dryer  

SciTech Connect (OSTI)

Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300???????????????ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400???????????????ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

2005-09-30T23:59:59.000Z

32

Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer  

SciTech Connect (OSTI)

Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

2005-09-30T23:59:59.000Z

33

Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems  

SciTech Connect (OSTI)

With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M. [GE Energy, Santa Ana, CA (United States)

2007-01-15T23:59:59.000Z

34

Strategic Eurasian Natural Gas Model for Energy Security  

E-Print Network [OSTI]

capacities would constitute 23% of the EUs 4 Natural gas is in a favourable position in the European electricity generation industry, especially in the context of regulating greenhouse gas emissions... . Gas-fired power plants emit roughly half the CO2 per KWh of electricity output compared to coal-fired power plants. 5 Although, on average, annual growth in gas consumption in Europe during the past twenty years exceeded the annual growth of energy...

Chyong, Chi-Kong; Hobbs, Benjamin F.

2011-04-06T23:59:59.000Z

35

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network [OSTI]

related to natural gas combustion and air pollution wereemitted from natural gas combustion are predominately lessGas- fired Appliances," Proceedings: How Significant Are Residential Combustion

Traynor, G.W.

2011-01-01T23:59:59.000Z

36

Low NOx burner retrofits and enhancements for a 518 MW oil and gas fired boiler  

SciTech Connect (OSTI)

Low NOx oil/gas burners originally supplied to Jacksonville Electric Authority, Northside No. 3 .500 MW unit, were based on a duplex air register design with lobed spray oil atomizers providing additional fuel staging. Although the burners could meet the targeted NOx levels of 0.3 and 0.2 lbs/10{sup 6} BTU on oil and gas respectively. There was insufficient margin on these NOx levels to enable continuous low NOx operation to be achieved. Further burner development was undertaken based on improved aerodynamic control within the burner design to give an approximate 25% improvement in NOx emission reduction thus providing an adequate operating margin. This `RoBTAS` (Round Burner with Tilted Air Supply) burner design based on techniques developed successfully for front wall coal firing applications achieved the required NOx reductions in full scale firing demonstrations on both heavy fuel oil and natural gas firing. The paper describes the development work and the subsequent application of the `RoBTAS` burners to the Northside No. 3 boiler. The burner will also be test fired on Orimulsion fuel and thus the comparison between heavy fuel oil firing and Orimulsion firing under ultra low NOx conditions will be made.

King, J.J. [Jacksonville Electric Authority, FL (United States); Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom). Rolls-Royce Industrial Power Group

1995-12-31T23:59:59.000Z

37

Combined cycle meets Thailand's growing power demands  

SciTech Connect (OSTI)

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

38

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

Glenn C. England; Stephanie Wien; Mingchih O. Chang

2002-08-01T23:59:59.000Z

39

Natural Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3InformationofServices TMS Inc || OpenNatronClick to returnPower

40

Measurement and analysis of heating of paper with gas-fired infrared burner  

E-Print Network [OSTI]

. Gas-fired IR heaters produce combustion on the burner surface by ignition of a pre-mixed air and fuel streams. The combustion raises the surface temperature to ranges of 800-1,100C to emit radiation, mainly in the medium IR range, which has a...

Husain, Abdullah Nadir

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Psm Nature Power Service Management Formerly Umweltkontor Renewable...  

Open Energy Info (EERE)

Psm Nature Power Service Management Formerly Umweltkontor Renewable Energy AG Jump to: navigation, search Name: psm Nature Power Service & Management (Formerly Umweltkontor...

42

Before Subcommittee on Water and Power - House Committee on Natural...  

Energy Savers [EERE]

Subcommittee on Water and Power - House Committee on Natural Resources Before Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Mark Gabriel,...

43

Before the Subcommittee on Water and Power - House Natural Resources...  

Energy Savers [EERE]

the Subcommittee on Water and Power - House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of William K....

44

Before House Subcommittee on Water and Power - Committee on Natural...  

Energy Savers [EERE]

House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on...

45

Before the Subcommittee on Water, Power, and Oceans - House Natural...  

Energy Savers [EERE]

Water, Power, and Oceans - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg,...

46

Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices  

SciTech Connect (OSTI)

Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-07-17T23:59:59.000Z

47

Rates and rites of passage: The use of natural gas in power plants  

SciTech Connect (OSTI)

There are many advantages to the use of natural gas in new or repowered electric generating facilities. These include lower capital costs, positive environmental impacts, the use of proven technology, and an adequate resource base with a highly reliable and flexible transportation system. However, it is also clear that FERC`s regulation of pipeline rates and operating practices has a direct impact on the bottom line of electric generators. a sober understanding of these rules, a careful integration of the rules into project documents, and a more commercial approach to transportation contracts will enhance the revenues and control the risks of the financially successful gas-fired electric generators.

Bloom, D.I. [Mayer, Brown & Platt, Washington, DC (United States)

1995-12-31T23:59:59.000Z

48

E-Print Network 3.0 - analysis power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the plant... - obtains a higher CO2 reduction than a natural gas- fired micro CHP ... Source: Ris National Laboratory Collection: Multidisciplinary Databases and...

49

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

generation: 50% of electricity from central grid natural gas plantsgeneration: 100% of electricity from central grid natural gas plantselectricity comes from central station natural-gas- fired combined cycle generation, and the other half comes from natural-gas-fired single cycle plants.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

50

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network [OSTI]

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

51

Gas-Fired Boilers and Furnaces | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergy Issues Related-GammaGas

52

A Gas-Fired Heat Pipe Zone Heater  

E-Print Network [OSTI]

in this table were obtained from the 1983 Qas Rel~earch Inrtitute Baseline Projection Data Book. 4verage Resldentlal Gas Prlces ($/Wtu) (1982 do1 lars) New England Middle Atlantlc South Atlantlc East North Central West North Central East South Central... West South Central kuntaln #I Mountaln I2 Paclflc #I Paclf lc 12 The conservation factor may be exprerred as lABLEm Gas Research lnstltute Fuel lnflatlon Estlmates natural Gas 1- ~2 1983-1990 1990-ZMO Nc* England 1.7 2.1 Mlddle Atlantlc 2.1 2...

Winn, C. B.; Burns, P.; Guire, J.

1984-01-01T23:59:59.000Z

53

Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines  

SciTech Connect (OSTI)

This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

Barthelemy, N.M.; Lynn, S.

1991-07-01T23:59:59.000Z

54

Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report  

SciTech Connect (OSTI)

Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

NONE

1995-05-01T23:59:59.000Z

55

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect (OSTI)

On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

2008-01-07T23:59:59.000Z

56

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect (OSTI)

On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark; Wiser, Ryan

2009-01-28T23:59:59.000Z

57

Chelan County PUD- Sustainable Natural Alternative Power Producers Program  

Broader source: Energy.gov [DOE]

The Sustainable Natural Alternative Power (SNAP) program encourages customers to install alternative power generators such as solar panels and wind turbines and connect them to the District's...

58

Before the Subcommittee on Water and Power - House Natural Resources...  

Energy Savers [EERE]

House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Christopher M. Turner, Administrator SWPA Before the...

59

Before the Subcommittee on Water and Power - House Natural Resources...  

Office of Environmental Management (EM)

House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Kenneth E. Legg, Administrator SEPA...

60

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect (OSTI)

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network [OSTI]

Impact of Natural Gas Infrastructure on Electric Power Systems MOHAMMAD SHAHIDEHPOUR, FELLOW, IEEE of electricity has introduced new risks associated with the security of natural gas infrastructure on a sig the essence of the natural gas infrastructure for sup- plying the ever-increasing number of gas-powered units

Fu, Yong

62

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

63

Title: Ontario Wind Power Allocation Ontario Ministry of Natural Resources  

E-Print Network [OSTI]

Title: Ontario Wind Power Allocation Data Creator / Copyright Owner: Ontario Ministry of Natural/A Updates: N/A Abstract: This data consists of a polygon shapefile, Wind Power Allocation Block. A Wind Power Allocation Block is an area that could be allocated for the exploration of wind power generation

64

,"New Mexico Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"3292015 10:05:26 PM" "Back to Contents","Data 1: New Mexico Natural Gas Deliveries to Electric Power Consumers (MMcf)"...

65

,"New Mexico Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"3292015 10:05:26 PM" "Back to Contents","Data 1: New Mexico Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

66

,"New York Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:52 PM" "Back to Contents","Data 1: New York Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045NY2"...

67

,"Colorado Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:54:29 PM" "Back to Contents","Data 1: Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

68

Electric Power Consumption of Natural Gas (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471 2,1146,872,533 7,387,184 7,573,863

69

Duplex Stirling gas-fired heat pump. Phase 2. Breadboard demonstration. Final report, May 1981-November 1982  

SciTech Connect (OSTI)

This program represents the first attempt to design, fabricate, and test a breadboard gas-fired duplex Stirling heat pump in a heating only mode. The system was designed to obtain a COP of 1.5 at an ambient temperature of 17F and have an output sufficient for an average residential home. The design methodology, detailed system description and test results for sub components and the entire system are discussed. Technical problems encountered in the program, and recommendations for further efforts are detailed.

Gedeon, D.; Penswick, B.; Beale, W.

1982-11-01T23:59:59.000Z

70

New DOE Report Finds Wind Power Can Serve as Cost-Effective Long...  

Broader source: Energy.gov (indexed) [DOE]

pressure on natural gas prices across the nation, prompting massive fuel-switching from coal- to gas-fired generation. Though arguably a near-term positive for both consumers and...

71

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network [OSTI]

EIA) (2000). Annual Energy Outlook 2001. DOE/EIA- 0383(DC. _______________ (2001). Annual Energy Outlook 2002. DOE/DC. _______________ (2003). Annual Energy Outlook 2003. DOE/

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

72

Concerning the Nature of the Cosmic Ray Power Law Exponents  

E-Print Network [OSTI]

We have recently shown that the cosmic ray energy distributions as detected on earthbound, low flying balloon or high flying satellite detectors can be computed by employing the heats of evaporation of high energy particles from astrophysical sources. In this manner, the experimentally well known power law exponents of the cosmic ray energy distribution have been theoretically computed as 2.701178 for the case of ideal Bose statistics, 3.000000 for the case of ideal Boltzmann statistics and 3.151374 for the case of ideal Fermi statistics. By "ideal" we mean virtually zero mass (i.e. ultra-relativistic) and noninteracting. These results are in excellent agreement with the experimental indices of 2.7 with a shift to 3.1 at the high energy ~ PeV "knee" in the energy distribution. Our purpose here is to discuss the nature of cosmic ray power law exponents obtained by employing conventional thermal quantum field theoretical models such as quantum chromodynamics to the cosmic ray sources in a thermodynamic scheme wherein gamma and zeta function regulation is employed. The key reason for the surprising accuracy of the ideal boson and ideal fermion cases resides in the asymptotic freedom or equivalently the Feynman "parton" structure of the ultra-high energy tails of spectral functions.

A. Widom; J. Swain; Y. N. Srivastava

2014-10-15T23:59:59.000Z

73

STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

developed an approach to converting annual natural gas price forecasts to monthly burner tip price estimates. Forecasted annual natural gas commodity prices from the World Gas Trade Model, and transportation rates from. Natural gas burner tip prices represent the cost of gas for a natural gas-fired electric generator. Burner

74

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas....................................................................... 1 Analysis of the Direct Use of Natural Gas for the Sixth Power Plan electricity to natural gas for residential space and water heating a lower-cost and lower-risk alternative

75

228 POWER FLOW ANALYSIS parties, it is crucial to recognize the inherently subjective nature of OPF. Power flow  

E-Print Network [OSTI]

228 POWER FLOW ANALYSIS parties, it is crucial to recognize the inherently subjective nature of OPF. Power flow analysis by itself basically answers a question of physics. By contrast, OPF answers criteria. In short, "optim- ality" does not arise from a power system's intrinsic technical properties

Kammen, Daniel M.

76

System definition and analysis gas-fired industrial advanced turbine systems  

SciTech Connect (OSTI)

The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

Holloway, G.M.

1997-05-01T23:59:59.000Z

77

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

78

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I  

SciTech Connect (OSTI)

The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

Raymond Hobbs

2007-05-31T23:59:59.000Z

79

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network [OSTI]

Storage Water Heater.draft gas-fired storage water heater. The flue damper waswater heater, gas-fired storage water heater, flue damper,

Lutz, James D.

2009-01-01T23:59:59.000Z

80

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Understanding the nature of nuclear power plant risk  

SciTech Connect (OSTI)

This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

Denning, R. S. [Ohio State Univ., 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)

2012-07-01T23:59:59.000Z

82

Resource Contingency Program - Oregon : Final Environmental Impact Statement, Hermiston Power Project.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. In 1990, to cover the outer range of potential load growth with new resources, BPA embarked upon the Resource Contingency Program (RCP). Instead of buying or building generating plants now, BPA has purchased options to acquire power later, if and when it is needed. The decision to acquire any of these option energy projects to fulfill statutory supply obligations will be influenced by Federal system load growth, the outcome of BPA`s Business Plan, required operational changes in Columbia-Snake River Hydroelectric facilities, and the loss of major generating resources. In September 1993, three option development agreements were signed with three proposed natural gas-fired, combined cycle combustion turbine CT projects near Chehalis and Satsop, Washington, and near Hermiston, Oregon. Together these three projects could supply BPA with 1,090 average megawatts (aMW) of power. Under these agreements, sponsors are obtaining permits and conducting project design work, and BPA is completing this EIS process. In September 1993, BPA published a Notice of Intent to prepare an environmental impact statement (EIS) on these three proposed gas-fired combustion turbine projects and held public scoping meetings in October 1993 at each site. In February 1994, BPA released an Implementation Plan on the proposed scope of the EIS. A draft EIS on the three proposed projects was published in February 1995. The impacts of the Chehalis and Satsop projects located in Washington State will be covered in one EIS document, while the impacts of the Hermiston project located in Oregon are covered in this final EIS document. It is BPA`s intent to continue to base the analysis of impacts on the assumption that all three projects may be constructed at some point in the future.

United States. Bonneville Power Administration.

1995-09-01T23:59:59.000Z

83

Carbon pricing, nuclear power and electricity markets  

SciTech Connect (OSTI)

In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)

Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

2012-07-01T23:59:59.000Z

84

Before the Subcommittee on Water, Power, and Oceans - House Natural  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdf MoreEnergyNatural Resourses |

85

West Virginia Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion CubicCubic39,287Sales1 1 1 1 0 0

86

Wisconsin Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 2010 20110 0 0 0 0

87

Wyoming Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14

88

Wyoming Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural

89

Iowa Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan

90

Kansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009 20106 50 0

91

Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases (BillionFeet) Decade

92

Louisiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet)2009Year0 0 0

93

Maine Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 Nov-140 1 1 0 0

94

Maryland Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0Sep-14Year

95

Massachusetts Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89Sep-1423,448Cubic

96

Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet) (Millionper

97

Michigan Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3 1979-2013 Adjustments

98

Minnesota Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues, with theMay65Feet)

99

Mississippi Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr May Jun Jul

100

Missouri Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Montana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413NewSep-14

102

Colorado Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear Jan Feb Mar Apr0

103

Connecticut Natural Gas Deliveries to Electric Power Consumers (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number

104

Delaware Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan FebFeet) Decade

105

District of Columbia Natural Gas Deliveries to Electric Power Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and Commercial

106

Florida Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments 0 1 -1Feet)

107

Georgia Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8 49.4Year Jan FebFeet)

108

Hawaii Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998

109

Idaho Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0Feet) Decade Year-0 Year-1

110

Illinois Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (MillionSep-14 Oct-1444,805Feet)

111

Indiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005. 61,707Year

112

Nevada Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb MarDry NaturalYearFeet)

113

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in ItsStationHydrogenNatural

114

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

115

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network [OSTI]

EIA). 1996a. Annual Energy Outlook 1996. DOE/EIA- 0383(DC. _______________. 1996b. Annual Energy Outlook 1997. DOE/DC. _______________. 1997. Annual Energy Outlook 1998. DOE/

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

116

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network [OSTI]

Renewable Energy. Proceedings of WINDPOWER 1992. Seattle,for the proceedings of WINDPOWER 2002 and ACEEE 2002 Summerseminar participants at WINDPOWER 2002, ACEEE 2002 Summer

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

117

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

SciTech Connect (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

118

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

119

Building new power plants in a CO2 constrained world: A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and  

E-Print Network [OSTI]

consumption per capita in the world, with demand on the rise at about 2% per year. Consequently electricity of Development in the government led by Mr. Bondevik, Member of the Norwegian Parliament; ?yvind Slåke, political Minister Kjell Magne Bondevik's minority government resigned over a disagreement with the opposition about

120

Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles  

DOE Patents [OSTI]

A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

2005-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network [OSTI]

This work introduces a model of Future Technology Transformations for the power sector (FTT:Power), a representation of global power systems based on market competition, induced technological change (ITC) and natural resource use and depletion. It is the first component of a family of sectoral bottom-up models of technology, designed for integration into the global macroeconometric model E3MG. ITC occurs as a result of technological learning produced by cumulative investment and leads to highly nonlinear, irreversible and path dependent technological transitions. The model uses a dynamic coupled set of logistic differential equations. As opposed to traditional bottom-up energy models based on systems optimisation, such differential equations offer an appropriate treatment of the times and structure of change involved in sectoral technology transformations, as well as a much reduced computational load. Resource use and depletion are represented by local cost-supply curves, which give rise to different regional...

Mercure, J -F

2012-01-01T23:59:59.000Z

122

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

the last decade, significant amounts of new natural gas-fired generating facilities have been developed of natural gas-fired generation, including increased supplies and low market prices for natural gas large amounts of new wind power resources. As a result, the growing use of natural gas for power

123

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

Nexus of Natural Gas and Renewable Energy. The Electricity2007. Can Deployment of Renewable Energy Put DownwardDetermining the Real Cost: Why Renewable Power is More Cost-

Bolinger, Mark

2014-01-01T23:59:59.000Z

124

innovati nNREL Melds Nature with Nanotech for Solar-Powered  

E-Print Network [OSTI]

are nanoparticles of the same semiconductors used to make solar cells. Light hitting a quantum dot will freeinnovati nNREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production NREL researchers an electron--in a solar cell, the electrons would be collected to produce an electrical current. But because

125

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

126

Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments  

SciTech Connect (OSTI)

In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

Jose Reyes

2005-02-14T23:59:59.000Z

127

100-kWp photovoltaic power system at Natural Bridges National Monument  

SciTech Connect (OSTI)

The Natural Bridges National Monument in southeastern Utah is the location of the world's largest solar photovoltaic power system. This system, which operates in a stand-alone mode without utility backup, supplies from 300 to 400 kWh/day of 60-Hz AC electrical energy to the diversified loads in the monument headquarters area. A diesel-powered generator serves as backup for the system. The solutions to a number of problems encountered in the design, fabrication, testing and early operation of the system are discussed.

Solman, F.J.; Helfrich, J.H.; Lyon, E.F.; Benoit, A.E.

1980-01-01T23:59:59.000Z

128

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect (OSTI)

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-01-01T23:59:59.000Z

129

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect (OSTI)

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-07-01T23:59:59.000Z

130

The nature of the optical---radio correlations for powerful radio galaxies  

E-Print Network [OSTI]

The nature of the optical--radio correlations for powerful radio galaxies is investigated using spectroscopic observations of a complete sample of southern 2Jy radio sources. In line with previous work, we find that significant correlations exist between the luminosities of the [OIII]5007, [OII]3727 and Hbeta emission lines and the radio luminosity. However, our observations are not easily reconciled with the idea that these correlations are caused by the increase in the power of the photoionizing quasar as the jet power increases, with average ISM properties not changing appreciably with redshift or radio power: not only do we find that the scatter in the L_[OIII] vs. L_radio correlation is significantly larger than in L_[OII]} vs. L_radio and L_Hbeta vs. L_radio correlations, but the ionization state deduced from the emission lines does not increase with radio power as predicted by the simple, constant ISM, photionization model. We conclude that: (a) there exists a considerable range in the quasar ionizing luminosity at a given redshift; and (b) that the mean density of the emission line clouds is larger in the high redshift/high power radio sources. The latter density enhancement may either be a consequence of the increased importance of jet-cloud interactions or, alternatively, due to a higher pressure in the confining hot ISM, in the high redshift objects. Deep spectra show that many of the sources in our sample are broad line radio galaxies (BLRG). The fact that the BLRG are observed out the redshift limit of the survey, overlapping in redshift with the quasars, argues against the idea that BLRG are simply the low radio power counterparts of high power, high redshift quasars.

C. N. Tadhunter; R. Morganti; A. Robinson; R. Dickson; M. Villar-Martin; R. A. E. Fosbury

1998-07-23T23:59:59.000Z

131

Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales  

E-Print Network [OSTI]

We point out three correlated predictions of the axion monodromy inflation model: large amplitude of gravitational waves, suppression of power on horizon scales and on scales relevant for the formation of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton potential, the axion monodromy model naturally accommodates the required running spectral index through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of Planck, ACT, SPT, and WMAP low-$\\ell$ polarization cosmic microwave background (CMB) data, we find a best-fit tensor-to-scalar ratio $r_{0.05} = 0.07^{+0.05}_{-0.04}$ due to gravitational waves, which may have been observed by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales (CMB power spectrum at low multipoles) is lower than the standard $\\Lambda$CDM cosmology with a power-law spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large scales. There is also a reduction in the matter power spectrum of 20-30\\% at scales corresponding to $k = 10~{\\rm Mpc}^{-1}$, which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved small-scale structure problems in the standard $\\Lambda$CDM cosmology. The inferred matter power spectrum is also found to be consistent with recent Lyman-$\\alpha$ forest data, which is in tension with the Planck-favored $\\Lambda$CDM model with power-law primordial power spectrum.

Quinn E. Minor; Manoj Kaplinghat

2015-03-08T23:59:59.000Z

132

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

Glenn C. England

2004-10-20T23:59:59.000Z

133

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

134

Inflation that runs naturally: Gravitational waves and suppression of power at large and small scales  

E-Print Network [OSTI]

We point out three correlated predictions of the axion monodromy inflation model: large amplitude of gravitational waves, suppression of power on horizon scales and on scales relevant for the formation of dwarf galaxies. While these predictions are likely generic to models with oscillations in the inflaton potential, the axion monodromy model naturally accommodates the required running spectral index through Planck-scale corrections to the inflaton potential. Applying this model to a combined data set of Planck, ACT, SPT, and WMAP low-$\\ell$ polarization cosmic microwave background (CMB) data, we find a best-fit tensor-to-scalar ratio $r_{0.05} = 0.07^{+0.05}_{-0.04}$ due to gravitational waves, which may have been observed by the BICEP2 experiment. Despite the contribution of gravitational waves, the total power on large scales (CMB power spectrum at low multipoles) is lower than the standard $\\Lambda$CDM cosmology with a power-law spectrum of initial perturbations and no gravitational waves, thus mitigating some of the tension on large scales. There is also a reduction in the matter power spectrum of 20-30\\% at scales corresponding to $k = 10~{\\rm Mpc}^{-1}$, which are relevant for dwarf galaxy formation. This will alleviate some of the unsolved small-scale structure problems in the standard $\\Lambda$CDM cosmology.

Quinn E. Minor; Manoj Kaplinghat

2014-11-03T23:59:59.000Z

135

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

gas emissions from conven- tional power sources like coal.total emissions from coal- or natural gas-fired power plantsemissions, the lifecycle for natural gas power production is more complicated than that of coal.

Hagan, Colin R.

2012-01-01T23:59:59.000Z

136

QuarterlyCouncilNorthwest Power and Conservation Council > Spring 2013 STRIKING A BALANCE BETWEEN ENERGY AND THE ENVIRONMENT IN THE COLUMBIA RIVER BASIN  

E-Print Network [OSTI]

and federal agency, and energy groups together to discuss the challenges surrounding this key planning issue on recommendations from state and federal fish and wildlife agencies and Indian tribes in the Northwest,but anyone of natural gas-fired generation, as well as an emphasis on energy efficiency and development of renewable

137

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

SciTech Connect (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: Phase 1 market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. Phase 2 Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

138

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Helium Power Conversion Cycle  

E-Print Network [OSTI]

The analysis of an indirect helium power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

139

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Steam Power Conversion Cycle  

E-Print Network [OSTI]

The analysis of an indirect steam power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

140

Toward a new, integrated interactive electric power and natural gas industry  

SciTech Connect (OSTI)

The movement toward a new, integrated interactive electric power and natural gas industry is discussed. This movement envisions more competition and fewer competitors. The key capabilities of the new market are described. It is concluded that what will make an energy business succeed is the ability to aggregate supply and markets, to optimize routing, to improve load factors, and to provide added levels of reliability through diversity. The strong organization that is able to deal in all forms of energy is a necessary part of this new paradigm of the integrated energy market.

NONE

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndiana Natural Gas Powers Milk Delivery

142

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network [OSTI]

Gas Pricing by Regulated Natural Gas Utilities, Docket No.A HEDGE AGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger,A HEDGE AGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger,

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

143

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network [OSTI]

such as wind and solar irradiation. For grid stability, demand and supply must be met at every second, and therefore some flexibility must exist to make both meet. This is done with power plants which have the ability to vary their output rapidly... ), such as nuclear reactors or coal power stations, or have an uncontrollable variable output, such as so- lar panels or wind turbines. Figure 2 sketches a typical daily demand and supply situation, where in green is represented the variable renewables contribution...

Mercure, Jean-Francois

2011-08-25T23:59:59.000Z

144

Concentrating Solar Power: Technology Overview  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

145

The new economics of the electric power industry and some implication for the natural gas industry  

SciTech Connect (OSTI)

The current restructuring of the natural gas industry and its regulation have important implications for the natural gas industry. Some of these implications are positive, some negative. As in all situations of change and uncertainty, look before you leap, is good advice to those in the natural gas industry seeking to take advantage of the opportunities created by the startling changes that are occurring.

Hall, G.R. [Putnam, Hayes & Bartlett, Washington, DC (United States)

1995-12-31T23:59:59.000Z

146

Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry  

SciTech Connect (OSTI)

The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

NONE

1995-12-31T23:59:59.000Z

147

Steps being taken to resolve questions on natural gas use for power generation in the New England region  

SciTech Connect (OSTI)

Steps being taken to resolve questions on natural gas use for power generation in the New England Region are outlined. The following topics are discussed: bridging the gap, gas/electric discussion group, energy consumption by fuel, NEPOOL energy mix forecast, the players and their needs, pipelines serving New England, evaluation of pipeline reliability, industry survey, summary of survey conclusions, communications, operational differences, recommended red alert information sequence, handling a crisis, and major accomplishments to date.

Gulick, C. [Boston Gas Company, Boston, MA (United States)

1995-12-31T23:59:59.000Z

148

Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436  

SciTech Connect (OSTI)

Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

2013-07-01T23:59:59.000Z

149

Low natural gas prices may drive up FY 2014-2015 power rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

natural gas prices? Production Much has been written over the past few years about "fracking," the technology of hydraulic fracturing in horizontally drilled wells that has made...

150

Applications for Coal and Natural Gas Power Plants in a Smart...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rating Can be achieved through real-time determination of an element's (e.g., line, transformer etc.) ability to carry load based on electrical and environmental conditions. Power...

151

Financial constraints and firms' investment: results of a natural experiment measuring firm response to power interruption  

E-Print Network [OSTI]

size on k because of increasing returns to scale in electric power generation. Reinikka and Svensson (2002, p. 55) however note that this second-order eect is small, and this assumption "seems like a reasonable ?rst approximation." 28Kaplan... ?entrepreneurial ability. This is because poor infrastructure, including power shortages, bad roads, inadequate water and sanitation, and unreliable communications is the outcome of public policies not ?rms?decisions. This study exploits these exogenous shocks to identify...

Steinbuks, J

152

Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)  

SciTech Connect (OSTI)

This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

Heath, G.; O'Donoughue, P.; Whitaker, M.

2012-12-01T23:59:59.000Z

153

Option valuation of flexible investments : the case of a coal gasifier  

E-Print Network [OSTI]

This paper examines the use of contingent claim analysis to evaluate the option of retrofitting a coal gasifier on an existing gas-fired power plant in order to take advantage of changes in the relative prices of natural ...

Herbelot, Olivier

1994-01-01T23:59:59.000Z

154

Neural Network Technology as a Pollution Prevention Tool in the Electric Utility Industry  

E-Print Network [OSTI]

This paper documents efforts by the Lower Colorado River Authority (LCRA) to pilot test the use of neural network technology as a pollution prevention tool for reducing stack emissions from a natural gas-fired power generating facility. The project...

Johnson, M. L.

155

Direct Use of Natural Gas: Economic Fuel Choices from the Regional Power  

E-Print Network [OSTI]

and furnaces or to generate electricity for electrical space and water heating systems that provide space and water heating systems to gas systems.1 That study showed there were many cost- effective fuel. The Council has not promoted conversion of electric space and water heat equipment to natural gas equipment

156

Natural convection phenomena in a nuclear power plant during a postulated TMLB' accident  

SciTech Connect (OSTI)

After the TMI (Three Mile Island) accident, there has been significant interest in analyzing and understanding the phenomena that may occur in a PWR (Pressurized Water Reactor) accident which may lead to partial or total core meltdown and degradation. Natural convection is one of the important phenomena. In the present paper the results of two numerical simulations of (1) four-loop PWR and (2) three-loop PWR are presented. The simulations were performed with the COMMIX(2) computer code. Our analysis shows that in severe accident scenarios, natural convection phenomena does occur and that it helps to delay core degradation by transferring decay heat from the reactor core to other internal structures of the reactor system. The amount of heat transfer and delay in core degradation depends on the geometry and internal structures of the system and on the events of an accident.

Domanus, H.M.; Schmitt, R.C.; Sha, W.T.; Shah, V.L.; Han, J.T.

1987-01-01T23:59:59.000Z

157

,"New Mexico Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice Sold to Electric PowerCoalbed Methane

158

The Nature of Power Synthesizing the History of Technology and Environmental History  

E-Print Network [OSTI]

see and smell the smoke rising from the factories, produc- ing a dense cloud of smog hovering over the city. You can see pistons mov- ing as a result of this burned energy, and you see how those pistons turn line shafts and belts throughout the vast... the shippers. The Gran- ger movement, and later the Populist revolts of the 1890s, can thus be viewed in a wider context as social movements responding to the loss of power within a sociotechnical system designed to make solar energy har- vested in one area...

Russell, Edmund P.; Allison, James; Finger, Thomas; Brown, John K.; Balogh, Brain; Carlson, W. Bernard

2011-04-01T23:59:59.000Z

159

,"North Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPrice Sold to Electric PowerNetGas, WetDeliveries

160

West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010 2011 2012 2013 View

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wisconsin Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 2010

162

Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million2008

163

Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year JanDecadeCommercialThousand

164

Kansas Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear JanFuelProvedThousand

165

Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers

166

Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0FuelFuel2,208,920

167

Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 (MillionThousand

168

Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0Thousand Cubic Feet)

169

Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb2008 2009 2010

170

Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand Cubic Feet) Decade

171

Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million2008 2009 2010

172

Missouri Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousand Cubic Feet) Decade

173

Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384Fuel ConsumptionThousand Cubic

174

Before the Subcommittee on Water, Power, and Oceans House Natural Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdf MoreEnergyNatural Resourses |Committee |

175

U.S. Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYear Jan Feb MarFeet)

176

U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYear Jan Feb

177

U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYear Jan FebYear Jan Feb

178

Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic

179

Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (Million Cubic

180

Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year (Million CubicThousand

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

District of Columbia Natural Gas Price Sold to Electric Power Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and CommercialCubicCubic

182

Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel

183

Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8IndustrialThousand Cubic

184

Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219Thousand Cubic Feet) Decade

185

Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million Cubic Feet) IdahoThousand

186

Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (MillionPlant

187

Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0WithdrawalsPlant LiquidsThousand

188

,"West Virginia Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural Gas Expected Future Production

189

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

SciTech Connect (OSTI)

The AVESTAR Center located at the U.S. Department of Energys National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a gasification with CO{sub 2} capture process simulator with a combined cycle power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTARs IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

190

NREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production (Fact Sheet)  

SciTech Connect (OSTI)

NREL researchers are finding ways to mimic photosynthesis by combining enzymes with nanoparticles - particles on the scale of a billionth of a meter - to produce hydrogen directly from water and sunlight. This breakthrough project began in 2008 with scientists and researchers asking how they might learn from nature and develop a synthetic process that is more efficient than plants at converting sunlight to hydrogen. The goal was to find a new way to produce hydrogen that could then be commercialized inexpensively for fuel cells and other uses. Among the various approaches to making hydrogen, the NREL researchers wondered about a hybrid molecular assembly that might pair the best natural molecule with a synthesized nanoparticle. Researchers looked at using hydrogenase enzymes as one part of the equation. These biological catalysts can convert electrons and protons into hydrogen gas, or convert hydrogen into electrons and protons. The choice seemed worthwhile because the hydrogenase enzyme has some intriguing properties: a high substrate selectivity, meaning a very high preference for catalyzing reactions with protons rather than with other atoms and molecules; and fast turnover, which enables it to produce a hydrogen molecule in milliseconds.

Not Available

2011-09-01T23:59:59.000Z

191

Phase I-B development of kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, September 1983-December 1985  

SciTech Connect (OSTI)

The Kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-ton, and a COP (heating) of 1.8 and COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1989. In this phase, an HVAC systems manufacturer (Borg-Warner) is working with SPS to develop a prototype gas-heat-pump system. To date, a piston-type open-shaft refrigeration compressor was selected as the best match for the engine. Both the engine and compressor have been tested and characterized by performance maps, and the experimental heat-pump systems designed, built, and preliminary testing performed. Close agreement with computer model output has been achieved. SPS has continued to focus on improving the Stirling-engine performance and reliability for the gas-heat-pump application.

Monahan, R.E.

1986-07-01T23:59:59.000Z

192

Phase 1-supplemental development of a kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, January 1989-June 1989  

SciTech Connect (OSTI)

The kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial size Stirling engine-driven gas heat pump with a cooling capacity of 10 tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for the mid-1990's. In previous phases, an HVAC-systems manufacturer (York International) had been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Under the program, a number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described. The adaptation and operation of a computer optimization code was accomplished under the program and is reported herein.

Monahan, R.

1989-06-01T23:59:59.000Z

193

The slow-mode nature of compressible wave power in solar wind turbulence  

E-Print Network [OSTI]

We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross correlation C(delta n, delta B_parallel) between proton density fluctuations delta n and the field-aligned (compressible) component of the magnetic field delta B_parallel is negative and close to -1. The typical dependence of C(delta n,delta B_parallel) on the ion plasma beta_i is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.

Howes, G G; Klein, K G; Chen, C H K; Salem, C S; TenBarge, J M

2011-01-01T23:59:59.000Z

194

Understanding the use of natural gas storage for generators of electricity  

SciTech Connect (OSTI)

Underground natural gas storage is aggressively used by a handful of utility electric generators in the United States. While storage facilities are often utilized by the natural gas pipeline industry and the local distribution companies (LDCs), regional electric generators have taken advantgage of abundant storage and pipeline capacity to develop very cost efficient gas fired electric generating capacity, especially for peaking demand. Most types of natural gas storage facilities are located underground, with a few based above-ground. These facilities have served two basic types of natural gas storage service requirements: seasonal baseload and needle peakshaving. Baseload services are typically developed in depleted oil and gas reservoirs and aquifers while mined caverns and LNG facilities (also Propane-air facilities) typically provide needle peakshaving services. Reengineering of the natural gas infrastructure will alter the historical use patterns, and will provide the electric industry with new gas supply management tools. Electric generators, as consumers of natural gas, were among the first open access shippers and, as a result of FERC Order 636, are now attempting to reposition themselves in the {open_quotes}new{close_quotes} gas industry. Stated in terms of historical consumption, the five largest gas burning utilities consume 40% of all the gas burned for electric generation, and the top twenty accounted for approximately 70%. Slightly more than 100 utilities, including municipals, have any gas fired generating capacity, a rather limited number. These five are all active consumers of storage services.

Beckman, K.L. [International Gas Consulting, Inc., Houston, TX (United States)

1995-12-31T23:59:59.000Z

195

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

Downward Pressure on Natural Gas Prices? Energy Policy.Tensions at the Nexus of Natural Gas and Renewable Energy. Profiles of Renewable and Natural Gas Electricity Contracts:

Bolinger, Mark

2014-01-01T23:59:59.000Z

196

Testing of a naturally aged nuclear power plant inverter and battery charger  

SciTech Connect (OSTI)

A naturally aged inverter and battery charger were obtained from the Shippingport facility. This equipment was manufactured in 1974, and was installed at Shippingport in 1975 as part of a major plant modification. Testing was performed on this equipment under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program to evaluate the type and extent of degradation due to aging, and to determine the effectiveness of condition monitoring techniques which could be used to detect aging effects. Steady state testing was conducted over the equipment's entire operating range. Step load changes were also initiated in order to monitor the electrical response. During this testing, component temperatures were monitored and circuit waveforms analyzed. Results indicated that aging had not substantially affected equipment operation. On the other hand, when compared with original acceptance test data, the monitoring techniques employed were sensitive to changes in measurable component and equipment parameters indicating the viability of detecting degradation prior to catastrophic failure. 7 refs., 34 figs., 12 tabs.

Gunther, W.E.

1988-09-01T23:59:59.000Z

197

System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings  

SciTech Connect (OSTI)

The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requires that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.

Joe Ferrall, Tim Rehg, Vesna Stanic

2000-09-30T23:59:59.000Z

198

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network [OSTI]

of Energy from U.S. Wind Power Projects. Berkeley, Calif. :J. and K. Porter. 2011. Wind Power and Electricity Markets.different purchasers of wind power in the U.S. , long- term

Bolinger, Mark

2014-01-01T23:59:59.000Z

199

Electric and Gas Fired Radiant Tubes 'ERT'  

E-Print Network [OSTI]

The paper covers a unique development by the Surface Division of Midland Ross of a radiant tube heating element which will heat an industrial furnace with either gas or electric without any down time or physical conversion required...

Nilsen, E. K.

1981-01-01T23:59:59.000Z

200

CO{sub 2} reduction potential in power production and its cost efficiency  

SciTech Connect (OSTI)

CO{sub 2} reduction potential and the economy of it in power production are handled in this presentation. The main focus is on combined heat and power production, CHP. The reference case has been the conventional coal fired condensing power plant and district heating with heavy fuel oil. Various CHP concepts are handled as substitutive technology for the reference case. Considered fuels are coal and biomass. CO{sub 2} produced in biomass firing processes is not regarded to increase the net CO{sub 2} emissions to the atmosphere. Reference case can be substituted by a more efficient coal-fired power plant, so called USC plant or by natural gas-fired combined cycle power plant. Both changes lead to very limited reduction in CO{sub 2} emissions. On the other hand the shifting is profitable. CO{sub 2} reduction potential differs in various CHP concepts according to the fuel used. With biomass the reduction is 100% and in the smallest considered coal-fired industrial power plant it is only 6%. Looking at CO{sub 2} reduction costs, ECU/t CO{sub 2}, the best alternative seems to be the changing to coal-fired CHP in industrial power plants. Due to different reduction potentials of different methods the reduction cost illustrates poorly the quality of the method. For example, in a case where the profitability is good but reduction potential is small the reduction cost is strongly negative and the case seems to be cost-effective. To avoid the previous effects the profitability of the changes has to be studied with and without CO{sub 2} emission fees. Biomass-CHP will be cost-effective compared to coal-CHP with the prices 2.5--5 ECU/t CO{sub 2} saved. The industrial CHP plant will be cost-effective despite of the fuel used and without CO{sub 2} emission fees. The district heating CHP plant will be cost-effective, if the plant size is large. The small district heating CHP plants are cost-effective, if the saved CO{sub 2} ton has a price.

Aijala, M.; Salokoski, P.; Alin, J.; Siikavirta, H.; Nykaenen, J.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect (OSTI)

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

202

A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations  

SciTech Connect (OSTI)

Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulators current capabilities through a particular startup and shutdown scenario.

Liese, Eric [U.S. DOE; Zitney, Stephen E. [U.S. DOE

2013-01-01T23:59:59.000Z

203

Correlations in thermal comfort and natural wind  

E-Print Network [OSTI]

the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

2013-01-01T23:59:59.000Z

204

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network [OSTI]

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

205

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals  

SciTech Connect (OSTI)

This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

206

Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint  

SciTech Connect (OSTI)

The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

2014-09-01T23:59:59.000Z

207

From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature  

E-Print Network [OSTI]

of Melbourne, Victoria 3010, Australia Received 5 August 2002; published 20 December 2002 We present a simple in nature William J. Reed Department of Mathematics and Statistics, University of Victoria, Victoria

Reed, W.J.

208

Pennsylvania's Natural Gas Future  

E-Print Network [OSTI]

1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

Lee, Dongwon

209

Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners  

SciTech Connect (OSTI)

The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

Clark Atlanta University

2002-12-02T23:59:59.000Z

210

Solar powered desalination system  

E-Print Network [OSTI]

As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

211

,"California Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural Gas Expected FutureTotal

212

,"Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved NaturalPrice (Dollars per

213

,"Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved NaturalPrice (Dollars+

214

,"Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved NaturalPriceLNG

215

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 7, July--September 1993  

SciTech Connect (OSTI)

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. Foster Wheeler Development Corporation (FWDC) is leading a team of companies involved in this effort. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown in Figure 1.

Not Available

1993-11-01T23:59:59.000Z

216

,"New Jersey Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice Sold to Electric Power Consumers (Dollars per Thousand

217

,"New York Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPrice Sold to Electric Power Consumers (Dollars

218

,"North Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion CubicPrice SoldPrice Sold to Electric PowerNetGas,PricePrice Sold

219

,"South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per Thousand CubicResidentialPrice Sold to Electric Power

220

,"South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPrice Sold to Electric Power Consumers

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketedCoalbed MethaneLiquidsPrice

222

,"Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketedCoalbedNetGas,Price Sold to

223

,"Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketedCoalbedNetGas,PricePrice Sold

224

,"Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry NaturalCoalbedPlant Liquids,CoalbedLiquidsPrice

225

,"Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved Natural Gas, WetDryPrice (Dollars

226

,"Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved NaturalPriceLNG Storage NetPrice Sold

227

,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPriceDry Natural GasCrude Oil +Price Sold to

228

,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in NonproducingU.S. Underground NaturalPrice

229

,"West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant Liquids, Expected Future

230

,"Wisconsin Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant Liquids,Shale Provedf.LNG

231

,"Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves inDry Natural GasPlant+ Lease CondensatePlant

232

Quasi-periodic pulsations in solar and stellar flares: re-evaluating their nature in the context of power-law flare Fourier spectra  

E-Print Network [OSTI]

The nature of quasi-periodic pulsations in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra, also referred to as 'red' noise processes, are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPP is needed. Here we adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power law properties of flare signals. Using data from the PROBA2/LYRA, Fermi/GBM, Nobeyama Radioheliograph and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required in order to explain the observations. Instead, the flare signals are adequately descri...

Inglis, A R; Dominique, M

2014-01-01T23:59:59.000Z

233

Study of the effects of ambient conditions upon the performance of fam powered, infrared, natural gas burners  

SciTech Connect (OSTI)

The objective of this investigation is to characterize the operation of a fan powered infrared burner (PIR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. This project consists of both experimental research and numerical analysis. To conduct the experiments, an experimental setup has been developed and installed in the Combustion Laboratory at Clerk Atlanta University (CAU). This setup consists of a commercial deep fat fryer that has been modified to allow in-situ radiation measurements on the surface of the infrared burner via a view port installed on the side wall of the oil vat. Proper instrumentation including fuel/air flow rate measurement, exhaust gas emission measurement, and radiation measurement has been developed. The project is progressing well. The scheduled tasks for this period of time were conducted smoothly. Specifically: 1. Baseline experimental study at CAU has been completed. The data are now under detailed analysis and will be reported in next quarterly report. 2. Theoretical formulation and analysis of the PIR burner performance model are continuing. Preliminary results have been obtained.

Bai, Tiejun

1996-10-01T23:59:59.000Z

234

The missing link: Merging neutron stars naturally produce jet-like structures and can power short Gamma-Ray Bursts  

E-Print Network [OSTI]

Short Gamma-Ray Bursts (SGRBs) are among the most luminous explosions in the universe, releasing in less than one second the energy emitted by our Galaxy over one year. Despite decades of observations, the nature of their "central-engine" remains unknown. Considering a binary of magnetized neutron stars and solving Einstein equations, we show that their merger results in a rapidly spinning black hole surrounded by a hot and highly magnetized torus. Lasting over 35 ms and much longer than previous simulations, our study reveals that magnetohydrodynamical instabilities amplify an initially turbulent magnetic field of ~ 10^{12} G to produce an ordered poloidal field of ~ 10^{15} G along the black-hole spin-axis, within a half-opening angle of ~ 30 deg, which may naturally launch a relativistic jet. The broad consistency of our ab-initio calculations with SGRB observations shows that the merger of magnetized neutron stars can provide the basic physical conditions for the central-engine of SGRBs.

Luciano Rezzolla; Bruno Giacomazzo; Luca Baiotti; Jonathan Granot; Chryssa Kouveliotou; Miguel A. Aloy

2011-03-30T23:59:59.000Z

235

Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering  

SciTech Connect (OSTI)

The plasma over the magnetrons erosion racetrack is not azimuthally uniform but concentrated in distinct dense plasma zones which move in the {vector E}{vector B} direction with about 10% of the electrons {vector E}{vector B}/B{sup 2} drift velocity. The plasma zones are investigated with a gated camera working in concert with a streak camera for Al, Nb, Cu, and W targets in Ar or Kr background gas. It is found that each plasma zone has a high density edge which is the origin of a plasma-generating electron jet leaving the target zone. Each region of strong azimuthal density gradient generates an azimuthal electric field which promotes the escape of magnetized electrons and the formation of electron jets and plasma flares. The phenomena are proposed to be caused by an ionization instability where each dense plasma zone exhibits a high stopping power for drifting high energy electrons, thereby enhancing itself.

Ni, Pavel; Rauch, Albert

2011-12-04T23:59:59.000Z

236

Report: Natural Gas Infrastructure Implications of Increased...  

Energy Savers [EERE]

interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use. To perform...

237

Natural Resources Specialist  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working ? Western Area Power Administration, Corporate Services Office, Office of the Chief Operating Officer, Natural...

238

Microsoft Word - NGNP_Special Study_20.7_01-31-07.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants, natural gas simple- cycle gas turbine generating sets and central-station solar photovoltaic plants. Natural gas-fired combin The tural gas-fired combined-cycle...

239

Schrepel, Eric From: Jenkins, Kris  

E-Print Network [OSTI]

to capture the true costs of energy when choosing to buy their first wind generation plant, noting that wind, the utility estimates wind energy to be 25% cheaper than natural gas fired power and 5% cheaper than coal-fired power." With these numbers, it only seems reasonable to develop the wind infrastructure and generation

240

EIS-0201: Coyote Springs Cogeneration Project Morrow Count, Oregon  

Broader source: Energy.gov [DOE]

This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

STAFF PAPER THERMAL EFFICIENCY OF GASFIRED  

E-Print Network [OSTI]

is the primary reason for the decline in California's systemwide heat rate. Keywords: Combined cycle 5: Heat Rates for California's Natural GasFired Power Plants (Btu/kWh) ...................... 8 in generation from newer combined cycle plants and a reduced dependence on generation from aging power plants

242

SCENARIOS FOR DEEP CARBON EMISSION REDUCTIONS FROM ELECTRICITY BY 2050 IN WESTERN NORTH AMERICA USING THE SWITCH ELECTRIC POWER SECTOR PLANNING MODEL California's Carbon Challenge Phase II Volume II  

SciTech Connect (OSTI)

This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.

Collaboration/ University of California, Berkeley; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

2014-01-01T23:59:59.000Z

243

Effect of Energy Efficiency Standards on Natural Gas Prices  

E-Print Network [OSTI]

of a recently proposed water heater standard. The resultspurchases a new gas-fired water heater, she will maximizeefficiency standard for water heaters. 1.2 Overview of the

Carnall, Michael

2012-01-01T23:59:59.000Z

244

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 |J.MonthlyU.S.O F4.34 4.23

245

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93 5.27 4.89

246

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93 5.27 4.89

247

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93 5.27

248

Phases I-C, I-D and I-E development of Kinematic Stirling/Rankine commercial gas-fired heat pump system. Final report, January 1986-September 1988  

SciTech Connect (OSTI)

The Kinematic Stirling/Rankine gas-heat-pump concept is based on the application of a Stirling engine under development for over a decade. The engine was converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1990. In these phases, an HVAC systems manufacturer (York International) has been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Data are presented for environmental laboratory testing of both prototype gas heat pumps as well as durability, reliability, performance, and emission testing of the V160 Stirling engine. A number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described.

Monahan, R.E.

1988-10-01T23:59:59.000Z

249

Dampers for Natural Draft Heaters: Technical Report  

SciTech Connect (OSTI)

Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

Lutz, James D.; Biermayer, Peter; King, Derek

2008-10-27T23:59:59.000Z

250

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

251

System Definition and Analysis: Power Plant Design and Layout  

SciTech Connect (OSTI)

This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

NONE

1996-05-01T23:59:59.000Z

252

STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

County consisting of four natural gas fired General Electric Frame 7EA combustion turbines and heat, delivering steam to the oil field and electric power to the grid. Rule 4703 limits the emissions of Oxides of Nitrogen (NOx) and Carbon Monoxide (CO) from stationary gas turbines. The Kern River turbines are currently in

253

Media Advisory Contact: Carri Ziegler August 8, 2012 916.341-0472 (office), 916.502-1131 (cell)  

E-Print Network [OSTI]

unveiling before touring the new facilities. Project Participants: The City of Azusa, Bay Area Rapid Transit.S. POWER PLANT OF ITS KIND TO BE DEDICATED IN LODI AUG. 10 Millions to Benefit from Lodi Energy Center-of-the-art Lodi Energy Center (LEC), a natural gas-fired combined-cycle plant that is one of the cleanest and most

254

Energy & Environmental Benefits from Steam & Electricity Cogeneration  

E-Print Network [OSTI]

steam from two on-site powerhouses (one coal-fired and one natural gas-fired) and from gas-fired and waste heat boilers in its four hydrocarbon cracking plants. The challenge was to find a way to reduce costs and improve reliability of procuring and... the electricity required by TEX and sells excess power to wholesale customers in the region. It provides a large portion of TEX steam requirements, with sufficient reliability such that TEX decommissioned its coal-fired powerhouse and reduced operations...

Ratheal, R.

2004-01-01T23:59:59.000Z

255

Active Humidity Control Through Gas-Fired Desiccant Humidity Pump  

E-Print Network [OSTI]

to regenerate the desiccant. Field experiments of two humidity pumps on existing commercial buildings have been initiated. Each system dehumidifies 5000 scfm of make-up air to meet all the latent loads, which is then fed to conventional, electric-driven HVAC...

Novosel, D.; Griffiths, W. C.

1988-01-01T23:59:59.000Z

256

Edmund G. Brown Jr. HIGH EFFICIENCY GAS-FIRED DRUM  

E-Print Network [OSTI]

Plaines, Illinois 60018 Commission Contract No. 500-05-019 Prepared For: Public Interest Energy Research PIERFINALPROJECTREPORT Prepared For: California Energy Commission Public Interest Energy Research (PIER) Program California Energy Commission Michael Lozano, P.E. Contract Manager Virginia Lew Office

257

Before The Subcommittee on Water and Power - House Committee...  

Energy Savers [EERE]

The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of...

258

Before The Subcommittee on Water and Power - House Committee...  

Energy Savers [EERE]

The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Elliot E....

259

Before The Subcommittee on Water and Power - House Committee...  

Energy Savers [EERE]

The Subcommittee on Water and Power - House Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Mark A....

260

Before The Subcommittee on Water and Power - House Energy and...  

Energy Savers [EERE]

The Subcommittee on Water and Power - House Energy and Natural Resources Committee Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee...

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Subcommittee on Water, Power, and Oceans House Committee...  

Energy Savers [EERE]

The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of...

262

Natural gas ferries in Norway.  

E-Print Network [OSTI]

??This paper studies the emergence of natural gas powered ferries in Norway and their diffusion as a means to reaching the goals of reducing NOx (more)

Myklebust, Benjamin

2006-01-01T23:59:59.000Z

263

ELECTRICITY AND NATURAL GAS DATA COLLECTION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

264

Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999  

SciTech Connect (OSTI)

In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., single family, residential, multi-dwelling, neighborhood).

Kreutz, Thomas G.; Ogden, Joan M.

2000-07-01T23:59:59.000Z

265

natURE mEthOdS | VOL.8 NO.9 | SEPTEMBER2011 | 745 Optogenetic methods have emerged as powerful tools for  

E-Print Network [OSTI]

as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial for precisely controlling action-potential firing of GaBaergic, cholinergic, serotonergic and parvalbumin to defined neuronal subsets within complex brain circuits. A variety of approaches including in utero

Cai, Long

266

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network [OSTI]

Furnace (2) Heater (35) Water Heater (32) ~ Space u.. c:Emissionsfrom Gas-fired Water Heaters, Report No. 1507,gas furnaces and water heaters," JAPCA 31:1268 (1981). Table

Traynor, G.W.

2011-01-01T23:59:59.000Z

267

Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion  

SciTech Connect (OSTI)

The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETLs Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J. (Woodward)

2007-05-01T23:59:59.000Z

268

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

This quarterly technical progress report describes work performed under DOE Grant No. DE-FG22-94MT94011 during the period September 1, 1996 to December 31, 1996 which covers the nineth quarter of the project. The objective of this investigation is to characterize the operation of a fan powered infrared burner (IR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. As the environmental regulations become more stringent, infrared burners are receiving increasing interests.

Bai, T.

1997-01-01T23:59:59.000Z

269

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

270

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

271

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

272

Advanced Analytics | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oil field production. Power Generation - Combinations of hardware and software that boost wind turbine and gas-fired power plant output and efficiency. Rail - Cloud-based software...

273

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

divestitures, nonutilities own and operate a broad mix of nuclear, coal, natural- gas and renewable generation facilities that supply wholesale markets. Natural-gas-fired...

274

Balancing of Wind Power - Optimization of power systems which include wind power systems.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

275

Fundamental Drivers of Pacific Northwest Power Markets  

E-Print Network [OSTI]

, utilities, power marketers, investors, and others on wholesale electricity and natural gas markets. Experts Load Transmission Thermal Hydro Wind (2005) #12;Natural Gas Capacity 6 5,000 MW of Natural Gas;Natural Gas Power Plant Production is Significantly Down 2010 to 2012 13 #12;Mid C Peak Heat Rates 14

276

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995  

SciTech Connect (OSTI)

The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

Bai, T.; Yeboah, Y.D.; Sampath, R.

1995-10-01T23:59:59.000Z

277

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

The objective of this investigation is to characterize the operation of fan powered infrared (PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes that determine the performance of PIR burners. Based on the results of this study, a burner performance model for radiant output will be developed. The model will be applied to predict the performance of the selected burner and will also be modified and improved through comparison with experimental results. During this period, laboratory facilities that are necessary for conducting this research are completed. The student research assistants have started working in the laboratory. The selection of the test burner has completed. The preparation and instrumentation of this test burner is underway. The theoretical analysis and modeling of the fundamental combustion process of the PIR burner is progressing well. A study of the existing models are being conducted, which will yield specific direction and recommendations for the new model to be developed.

Bai, Tiejun

1995-04-01T23:59:59.000Z

278

Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, September 1--September 30, 1994  

SciTech Connect (OSTI)

The objective of this investigation is to characterize the operation of fan powered infrared(PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes which determine the performance of PIR burners. Based on the results of this study, a first order model of the performance of the burner, including radiant output will be developed. The model will be applied to predict the performance of the selected burner and modified through comparison with test results. Concurrently, an experimental setup will be devised and built. This experimental rig will be a modified appliance, capable of measuring the heat and combustion product output, as well as providing a means by which the radiant heat output can be measured. The burner will be selected from an existing commercial appliance, a commercial deep fat fryer, and will be of a scale that will be compatible with the laboratory facilities in the Combustion Laboratory at Clark Atlanta University. Theoretical analysis and formulation of the PIR burner performance model has been started and the development of the test facilities and experimental setup has also been initiated. These are described.

Bai, T.

1994-10-01T23:59:59.000Z

279

Maximum Entropy Method and Charge Flipping, a Powerful Combination to Visualize the True Nature of Structural Disorder from in situ X-ray Powder Diffraction Data  

SciTech Connect (OSTI)

In a systematic approach, the ability of the Maximum Entropy Method (MEM) to reconstruct the most probable electron density of highly disordered crystal structures from X-ray powder diffraction data was evaluated. As a case study, the ambient temperature crystal structures of disordered {alpha}-Rb{sub 2}[C{sub 2}O{sub 4}] and {alpha}-Rb{sub 2}[CO{sub 3}] and ordered {delta}-K{sub 2}[C{sub 2}O{sub 4}] were investigated in detail with the aim of revealing the 'true' nature of the apparent disorder. Different combinations of F (based on phased structure factors) and G constraints (based on structure-factor amplitudes) from different sources were applied in MEM calculations. In particular, a new combination of the MEM with the recently developed charge-flipping algorithm with histogram matching for powder diffraction data (pCF) was successfully introduced to avoid the inevitable bias of the phases of the structure-factor amplitudes by the Rietveld model. Completely ab initio electron-density distributions have been obtained with the MEM applied to a combination of structure-factor amplitudes from Le Bail fits with phases derived from pCF. All features of the crystal structures, in particular the disorder of the oxalate and carbonate anions, and the displacements of the cations, are clearly obtained. This approach bears the potential of a fast method of electron-density determination, even for highly disordered materials. All the MEM maps obtained in this work were compared with the MEM map derived from the best Rietveld refined model. In general, the phased observed structure factors obtained from Rietveld refinement (applying F and G constraints) were found to give the closest description of the experimental data and thus lead to the most accurate image of the actual disorder.

Samy, A.; Dinnebier, R; van Smaalen, S; Jansen, M

2010-01-01T23:59:59.000Z

280

Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices  

SciTech Connect (OSTI)

Advocates of energy efficiency and renewable energy have long argued that such technologies can mitigate fuel price risk within a resource portfolio. Such arguments--made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001--have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that these sources provide. In evaluating this benefit, it is important to recognize that alternative price hedging instruments are available--in particular, gas-based financial derivatives (futures and swaps) and physical, fixed-price gas contracts. Whether energy efficiency and renewable energy can provide price stability at lower cost than these alternative means is therefore a key question for resource acquisition planners. In this paper we evaluate the cost of hedging gas price risk through financial hedging instruments. To do this, we compare the price of a 10-year natural gas swap (i.e., what it costs to lock in prices over the next 10 years) to a 10-year natural gas price forecast (i.e., what the market is expecting spot natural gas prices to be over the next 10 years). We find that over the past two years natural gas users have had to pay a premium as high as $0.76/mmBtu (0.53/242/kWh at an aggressive 7,000 Btu/kWh heat rate) over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost to hedge gas price risk exposure is potentially large enough - particularly if incorporated by policymakers and regulators into decision-making practices - to tip the scales away from new investments in variable-price, natural gas-fired generation and in favor of fixed-price investments in energy efficiency and renewable energy.

Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

2002-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect (OSTI)

On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2006-12-06T23:59:59.000Z

282

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect (OSTI)

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

283

Northwest Energy Coalition Renewable Northwest Project Natural Resources Defense Council  

E-Print Network [OSTI]

Northwest Energy Coalition Renewable Northwest Project Natural Resources Defense Council December 9 Coalition [Nancy Hirsh] Renewable Northwest Project[Rachel Shimshak] Natural Resources Defense Council Power Administration in Power Supply The Northwest Energy Coalition, Renewable Northwest Project, Sierra

284

DIRECT USE OF NATURAL GAS: ANALYSIS AND POLICY OPTIONS  

E-Print Network [OSTI]

heating with various electric and gas systems. The gas requirements for the electric systems shows that forced-air electric heating systems require about twice as much gas as a gas-fired forced-air system. Zonal electric heating systems, where rooms are independently heated without central furnace

285

POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION  

E-Print Network [OSTI]

of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

Bak-Jensen, Birgitte

286

Favorable Supplies, Costs, Environmental Profile for Natural...  

Energy Savers [EERE]

(DOE) study. The report, Role of Alternative Energy Sources: Natural Gas Power Technology Assessment, was prepared by the Office of Fossil Energy's National Energy Technology...

287

Harnessing Hydropower: The Earth's Natural Resource  

SciTech Connect (OSTI)

This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Natures Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

none,

2011-04-01T23:59:59.000Z

288

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

SciTech Connect (OSTI)

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

289

Power marketing and renewable energy  

SciTech Connect (OSTI)

Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

Fang, J.M.

1997-09-01T23:59:59.000Z

290

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

that support more load following and peaking generation withfor natural gas- fired load following and peaking generationneeded less load- following and peaking generation. Growth

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

291

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

2010-2012 Pritchard, Alabama Energy Retrofits for State Correctional Facilities - Mobile WCWR Facility Boiler Replace the existing natural gas fired boiler with a new, more...

292

Effect of Energy Efficiency Standards on Natural Gas Prices  

SciTech Connect (OSTI)

A primary justification for the establishment of energy efficiency standards for home appliances is the existence of information deficiencies and externalities in the market for appliances. For example, when a long-term homeowner purchases a new gas-fired water heater, she will maximize the value of her purchase by comparing the life-cycle cost of ownership of available units, including both total installed cost - purchase price plus installation costs - and operating cost in the calculus. Choice of the appliance with the lowest life-cycle costs leads to the most economically efficient balance between capital cost and fuel cost. However, if the purchaser's expected period of ownership is shorter than the useful life of the appliance, or the purchaser does not pay for the fuel used by the appliance, as is often the case with rental property, fuel cost will be external to her costs, biasing her decision toward spending less on fuel efficiency and resulting in the purchase of an appliance with greater than optimal fuel usage. By imposing an efficiency standard on appliances, less efficient appliances are made unavailable, precluding less efficient purchases and reducing fuel usage. The reduction in fuel demanded by residential users affects the total demand for such fuels as natural gas, for example. Reduced demand implies that residential customers are willing to purchase less gas at each price level. That is, the demand curve, labeled D{sub 0} in Figure 1, shifts to the left to D{sub 1}. If there is no change in the supply function, the supply curve will intersect the demand curve at a lower price. Residential demand is only one component of the total demand for natural gas. It is possible that total demand will decline very little if demand in other sectors increases substantially in response to a decline in the price. If demand does decrease, modeling studies generally confirm the intuition that reductions in demand for natural gas will result in reductions in its price as seen at the wellhead (Wiser 2007). The magnitude of the effect on price relative to the demand reduction, and the mechanism through which it occurs, is less well established. This report attempts to quantify the potential effects of reduced demand for natural gas in the residential sector, in response to the implementation of an energy efficiency standard for water heaters.

Carnall, Michael; Dale, Larry; Lekov, Alex

2011-07-26T23:59:59.000Z

293

Natural Gas Delivered to Electric Power Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 |J.MonthlyU.S.O F F eYear

294

Electric Power Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA.

295

Natural Gas Delivered to Electric Power Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr(Million(MillionFuel) (MillionVehicle

296

Repowering of the Midland Nuclear Station  

E-Print Network [OSTI]

REPOWERING OF THE MIDLAND NUCLEAR STATION C.E. Gatlin Jr. Gerald C. Velleroer Janes A. Mooney Manager of Projects Fluor Daniel, IrK::. Vice President Fluor Daniel, IrK::. Vice President Midlarrl eogneneration Venture Chicago, Illinois... Chicago, Illinois Midland, Michigan The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The eXisting nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create...

Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

297

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

298

Gas Powered Air Conditioning Absorption vs. Engine-Drive  

E-Print Network [OSTI]

It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although...

Phillips, J. N.

1996-01-01T23:59:59.000Z

299

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

SciTech Connect (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

300

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

SciTech Connect (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER CALCULATION  

E-Print Network [OSTI]

Power Mix Fuel Type Net System Power Coal 15% Large Hydroelectric 23% Natural Gas 42% Nuclear 11CALIFORNIA ENERGY COMMISSION APRIL 2003 300-03-002 2002CALIFORNIAPOWERMIX 2002 NET SYSTEM POWER and report net system power, annually (Senate Bill 1305, Sher, Chapter 796, statue of 1997)1 . Net system

302

Generalizing power transitions as a cause of war  

E-Print Network [OSTI]

In this thesis, I ask three questions about the nature of power transition theory. First, I ask whether power transition theory can be generalized beyond identification of great powers or regional hierarchies. Lemke and ...

Fogg, Erik (Erik D.)

2009-01-01T23:59:59.000Z

303

Advanced Turbine Systems scoping and feasibility studies  

SciTech Connect (OSTI)

The objective of the Advanced Turbine Systems (ATS) study was to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% (LHV) efficiency within a 10-year time frame. The potential ATS was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all US energy resources> Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems. The objective of this 10-year program is to develop natural gas fired base load power plants that will have cycle efficiencies greater than 60% (LHV), be environmentally superior to current technology, and also be cost competitive.

Bannister, R.L.; Little, D.A.; Wiant, B.C. (Westinghouse Electric Corp., Orlando, FL (United States)); Archer, D.H. (Carnegie-Mellon Univ., Pittsburgh, PA (United States))

1993-01-01T23:59:59.000Z

304

Resource Contingency Program : Draft Environmental Impact Statement.  

SciTech Connect (OSTI)

In 1990, the Bonneville Power Administration (BPA) embarked upon the Resource Contingency Program (RCP) to fulfill its statutory responsibilities to supply electrical power to its utility, industrial and other customers in the Pacific Northwest. Instead of buying or building generating plants now, BPA has purchased options to acquire power later if needed. Three option development agreements were signed in September 1993 with three proposed natural gas-fired, combined cycle combustion turbine CT projects near Chehalis and Satsop Washington and near Hermiston, Oregon. This environmental impact statement addresses the environmental consequences of purchasing power from these options. This environmental impact statement addresses the environmental consequences of purchasing power from these options.

United States. Bonneville Power Administration.

1995-02-01T23:59:59.000Z

305

Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power  

E-Print Network [OSTI]

Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Aidan a stochastic element due to the uncertainty of wind power forecasts. By explicitly taking into account the stochastic nature of wind power, it is expected that better schedules should be produced, thereby reducing

306

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network [OSTI]

from the heat recovery steam generator powers an additional steam turbine, providing extra electricBiennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk

307

Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks  

E-Print Network [OSTI]

, natural gas, uranium, and oil), or approximately 40 quadrillion BTU (see Edison Electric Institute (2000Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain at the electric power industry with taxes applied according to the type of fuel used by the power generators

Nagurney, Anna

308

E-Print Network 3.0 - advanced natural-gas reciprocating Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

natural-gas reciprocating Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced natural-gas reciprocating Page: << < 1 2 3 4 5 > >> 1...

309

E-Print Network 3.0 - affecting natural gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

natural gas Search Powered by Explorit Topic List Advanced Search Sample search results for: affecting natural gas Page: << < 1 2 3 4 5 > >> 1 International Conference on Gas...

310

"Ecological Values amid Local Interests: Natural Resource Conservation, Social Differentiation, and Human Survival in Honduras"  

E-Print Network [OSTI]

power to declare natural areas protected and to enforce thenatural resource degrada- tion in inhabited protected areasprotected areas often have a different understanding about their natural

Gareau, Brian J.

2007-01-01T23:59:59.000Z

311

Power supply  

DOE Patents [OSTI]

A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

2007-12-04T23:59:59.000Z

312

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect (OSTI)

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

313

Natural gas repowering experience  

SciTech Connect (OSTI)

Gas Research Institute has led a variety of projects in the past two years with respect to repowering with natural gas. These activities, including workshops, technology evaluations, and market assessments, have indicated that a significant opportunity for repowering exists. It is obvious that the electric power industry`s restructuring and the actual implementation of environmental regulations from the Clean Air Act Amendments will have significant impact on repowering with respect to timing and ultimate size of the market. This paper summarizes the results and implications of these activities in repowering with natural gas. It first addresses the size of the potential market and discusses some of the significant issues with respect to this market potential. It then provides a perspective on technical options for repowering which are likely to be competitive in the current environment. Finally, it addresses possible actions by the gas industry and GRI to facilitate development of the repowering market.

Bautista, P.J.; Fay, J.M. [Gas Research Institute, Chicago, IL (United States); Gerber, F.B. [BENTEK Energy Research, DeSoto, TX (United States)

1995-12-31T23:59:59.000Z

314

Economics of natural gas upgrading  

SciTech Connect (OSTI)

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

315

Blackout 2003: Energy Secretary Bodman and Minister of Natural...  

Broader source: Energy.gov (indexed) [DOE]

Energy Secretary Bodman and Minister of Natural Resources for Canada Lunn Release the 2003 Power Outage Final Report. In accordance with the mandate of the U.S.-Canada Power Outage...

316

2007 NET SYSTEM POWER REPORT STAFFREPORT  

E-Print Network [OSTI]

-2007.......................................................................5 Figure 3: Natural Gas and Coal Shares of Net System Power Mix Become Larger 1999-2007.....7 ListCALIFORNIA ENERGY COMMISSION 2007 NET SYSTEM POWER REPORT STAFFREPORT April 2008 CEC-200 .................................................................................................................. 1 Net System Power Findings

317

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

Program 2014 Large Storage Water Heaters Test Laboratory Application Note: Completed Sample Test Report-mail (Address) Company Website (URL) Appliance Type(s): Gas-fired Large Storage Water Heaters Oil-fired Large Storage Water Heater Electric Large Storage Water Heater Test method(s): ANSI Z21.10.3­2011, Exhibits G1

318

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

Program 2013 Large Storage Water Heaters Test Laboratory Application Note: Completed Sample Test Report-mail (Address) Company Website (URL) Appliance Type(s): Gas-fired Large Storage Water Heaters Oil-fired Large Storage Water Heater Electric Large Storage Water Heater Test method(s): ANSI Z21.10.3­1998, §2.9 and 2

319

Wind Power Outlook 2004  

SciTech Connect (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

320

Power LCAT  

ScienceCinema (OSTI)

POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

Drennen, Thomas

2014-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Power LCAT  

SciTech Connect (OSTI)

POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

Drennen, Thomas

2012-08-15T23:59:59.000Z

322

Philosophy and the Mirror of Nature  

E-Print Network [OSTI]

Philosophy and the Mirror of Nature Richard Rorty Philosophy and the Mir- ror of Nature hit has since gone on to be- come one of its all-time best-sellers in philosophy. Rorty argued that, repairing, and polishing the mirror-- belongs to philosophy. Rorty's book was a powerful critique

Landweber, Laura

323

Sport tourism and natural resource impacts  

E-Print Network [OSTI]

Sport tourism and natural resource impacts Mark Orams Moves 10pilI boalies in poo Sweeping powers of sport tourism on the natural environment has received so little attention in the literature. However, sport tourism is a relatively recent area of specialization in the tourism management field and so

324

Electric power monthly, September 1990. [Glossary included  

SciTech Connect (OSTI)

The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

Not Available

1990-12-17T23:59:59.000Z

325

Clean Power Plan: Reducing Carbon Pollution From Existing Power Plants  

E-Print Network [OSTI]

Efficiency Improvements Efficiency improvements Co-firing or switching to natural gas Coal retirements Retrofit CCS (e.g.,WA Parish in Texas) 2. Use lower-emitting power sources more Dispatch changes to existing natural gas combined cycle (CC) Dispatch... that are high emitting. Energy conservation programs. Retrofitting units with partial CCS. Use of certain biomass. Efficiency improvements at higher- emitting plants.* Market-based trading programs. Building new renewables. Dispatch changes. Co...

Bremer,K.

2014-01-01T23:59:59.000Z

326

PSNC Energy (Gas)- Energy-Efficient Appliance Rebate Program  

Broader source: Energy.gov [DOE]

PSNC offers rebates to customers who purchase energy-efficient natural gas water heaters or natural gas furnaces. The rebate is available only when existing natural gas-fired water heating or...

327

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

328

Viability of an expanded United States nuclear power program and its effects on energy markets  

E-Print Network [OSTI]

The four biggest energy sources in the United States are coal, crude oil, natural gas, and nuclear power. While coal and nuclear power are produced domestically, more than 70% of crude oil and 20% of natural gas is imported. ...

Khan, Tanzeer S

2006-01-01T23:59:59.000Z

329

Power Recovery  

E-Print Network [OSTI]

.POWER RECOVERY Fletcher Mlirray Monsanto Chemical Company AB5'-:::0 p.p., will ??vi.w 'h. '.ohnnln,y nf 'h.::v,n. T:X:~~T ~ methods for estimating the power recovery potential from fluid streams. The ideal gas law formula for expanding gases.... Gas Law Estimation Power recovery estimates from a vapor stream can be made using the formula: which is derived from the Ideal Gas Law. At first glance the. formula seems imposing and perhaps difficult to occasionally use. If however; the formula...

Murray, F.

330

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

331

Dealing with natural gas uncertainties  

SciTech Connect (OSTI)

The fuel of choice for generating new power is and will continue over the next two decades to be natural gas. It is the fuel of choice because it is plentiful, environmentally acceptable, and relatively inexpensive. This paper reports that gas reserves on the North American continent continue to be discovered in amounts that may keep the gas bubble inflated far longer than currently estimated. New gas transportation capacity is actively being developed to overcome the capacity bottlenecks and deliverability shortfalls. Natural gas prices will probably remain stable (with expected CPI-related increases) for the short run (2-4 years), and probably will be higher than CPI increases thereafter.

Clements, J.; Graeber, D. (J.R. Clements and Associates (US))

1991-04-01T23:59:59.000Z

332

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

trends for four types of electric power plants equipped with CO 2 capture systems: pulverized coal (PC) and natural gas

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

333

Power combiner  

DOE Patents [OSTI]

A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

Arnold, Mobius; Ives, Robert Lawrence

2006-09-05T23:59:59.000Z

334

Simulation of the Visual Effects of Power Plant Plumes1  

E-Print Network [OSTI]

Simulation of the Visual Effects of Power Plant Plumes1 2 Evelyn F. Treiman, / 3 David B. Champion-fired power plant with six 500 MW coal-fired power plants located at hypothetical sites in southeastern Utah coal-fired power plants are greater than those from oil or natural gas. If we must use more coal, how

Standiford, Richard B.

335

Energy/Water Sustainability and the Electric Power  

E-Print Network [OSTI]

Systems #12;8© 2009 Electric Power Research Institute, Inc. All rights reserved. Thermoelectric Power April 10, 2009 #12;2© 2009 Electric Power Research Institute, Inc. All rights reserved. Topics · Nature Electric Power Research Institute, Inc. All rights reserved. Big Picture · Water is a shared community

Keller, Arturo A.

336

Before House Subcommittee on Energy and Power - Committee on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

House Subcommittee on Energy and Power - Committee on Energy and Commerce By: Chris Smith, Deputy Assistant Secretary for Oil and Natural Gas Subject: Strategic Energy...

337

Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem  

E-Print Network [OSTI]

This paper examines the merits of coupling a desiccant dehumidification subsystem to a gas-engine- driven vapor compression air conditioner. A system is identified that uses a rotary, silica gel, parallel-plate dehumidifier. Dehumidifier data...

Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

1990-01-01T23:59:59.000Z

338

Operation Synopsis of Gas-Fired Double-Effect Absorption Chillers  

E-Print Network [OSTI]

Absorption refrigeration systems are one of the oldest systems available. The fundamentals of absorption refrigeration were formulated about 1777, and the first successful absorption machine was developed in 1850. The first U.S. patent...

Phillips, J.

1986-01-01T23:59:59.000Z

339

An experimental study of gas-fired infrared drying of paper  

E-Print Network [OSTI]

as the exposure time increased. The final investigation focused on the effects of varying emitter parameters. Flame temperature, sample mass, and internal temperature measurements were made for various air/fuel ratios and overall fuel consumption rates. Peak flame...

Wirtz, Jefferson

1999-01-01T23:59:59.000Z

340

Performance of Gas-fired Water Heaters in a 10-home Field Study  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "Are high-efficiency hot water heating systems worth the cost?"

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cleco Power- Power Miser New Home Program  

Broader source: Energy.gov [DOE]

Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

342

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

343

FOURFOUR--QUADRANT POWER SUPPLIESQUADRANT POWER SUPPLIES FOR STEERING ELECTROMAGNETSFOR STEERING ELECTROMAGNETS  

E-Print Network [OSTI]

FOURFOUR--QUADRANT POWER SUPPLIESQUADRANT POWER SUPPLIES FOR STEERING ELECTROMAGNETSFOR STEERING-3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DIPOLE CORRECTORS MULTI-POLE CORRECTORS W500P kW2P Cooling: Air Natural IUP = V100U,A6I V100U,A25I.V.Belikov@inp.nsk.su Bulk Power Supply R S C I FOUR- QUADRANT POWER SUPPLIES RECUPERATION VCC H-BI #12;O. Belikov, Ru

Kozak, Victor R.

344

Power inverters  

DOE Patents [OSTI]

Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

2011-11-15T23:59:59.000Z

345

Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > FinancialPower

346

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network [OSTI]

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

347

Are natural microcosms useful model systems for ecology?  

E-Print Network [OSTI]

, but as complex and biologically realistic as other natural systems. Research to date combined with inherent of the power of model systems, and that natural MICROCOSMS (see Glossary) are worth considering as such modelsAre natural microcosms useful model systems for ecology? Diane S. Srivastava1 , Jurek Kolasa2 , Jan

Srivastava, Diane

348

Power Factor Compensation (PFC) Power Factor Compensation  

E-Print Network [OSTI]

Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

Knobloch,Jürgen

349

Star Power  

SciTech Connect (OSTI)

The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

None

2014-10-17T23:59:59.000Z

350

Star Power  

ScienceCinema (OSTI)

The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

None

2014-11-18T23:59:59.000Z

351

A Tariff for Reactive Power  

SciTech Connect (OSTI)

Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

2008-07-01T23:59:59.000Z

352

October 17, 2002 Bonneville Power Administration  

E-Print Network [OSTI]

October 17, 2002 Bonneville Power Administration PO Box 12999 Portland, OR 97208 comment for the post 2006 utility contracts. As a federal entity created to serve the people of its region, Bonneville for the region and stimulate economic growth. Geothermal: Newberry volcano, OR Geothermal power is the natural

353

Power superconducting power transmission cable  

DOE Patents [OSTI]

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

Ashworth, Stephen P. (Cambridge, GB)

2003-01-01T23:59:59.000Z

354

Power Right. Power Smart. Efficient Computer Power Supplies and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and...

355

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

356

Design and development of Stirling Engines for stationary power generation applications in the 500 to 3000 hp range. Subtask 1A report: state-of-the-art conceptual design  

SciTech Connect (OSTI)

The first portion of the Conceptual Design Study of Stirling Engines for Stationary Power Application in the 500 to 3000 hp range which was aimed at state-of-the-art stationary Stirling engines for a 1985 hardware demonstration is summarized. The main goals of this effort were to obtain reliable cost data for a stationary Stirling engine capable of meeting future needs for total energy/cogeneration sysems and to establish a pragmatic and conservative base design for a first generation hardware. Starting with an extensive screening effort, 4 engine types, i.e., V-type crank engine, radial engine, swashplate engine, and rhombic drive engine, and 3 heat transport systems, i.e., heat pipe, pressurized gas heat transport loop, and direct gas fired system, were selected. After a preliminary layout cycle, the rhombic drive engine was eliminated due to intolerable maintenance difficulties on the push rod seals. V, radial and swashplate engines were taken through a detailed design/layout cycle, to establish all important design features and reliable engine weights. After comparing engine layouts and analyzing qualitative and quantitative evaluation criteria, the V-crank engine was chosen as the candidate for a 1985 hardware demonstration.

None

1980-03-01T23:59:59.000Z

357

STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

, liquefied natural gas, liquefied propane gas, E-85, and hydrogen. Alternative fueled vehicles: Battery-electric, hybrid-electric, other hybrid power storage and/or hybrid drive systems, liquefied propane gas, compressed natural gas, liquefied natural gas, E-85, or hydrogen powered vehicles. Application

358

Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska)  

Broader source: Energy.gov [DOE]

Irrigation districts, created in section 46-1xx, are encouraged to appropriate water in order to generate electric light and power. The Department of Natural Resources has the authority to approve...

359

Regulation of natural monopolies  

E-Print Network [OSTI]

This chapter provides a comprehensive overview of the theoretical and empirical literature on the regulation of natural monopolies. It covers alternative definitions of natural monopoly, regulatory goals, alternative ...

Joskow, Paul L.

2005-01-01T23:59:59.000Z

360

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

362

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

363

Natural Gas Rules (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

364

Natural Resources Districts (Nebraska)  

Broader source: Energy.gov [DOE]

This statute establishes Natural Resources District, encompassing all of the area of the state, to conserve, protect, develop, and manage Nebraska's natural resources. These districts replace and...

365

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

366

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

367

Power Systems Integration Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

Not Available

2011-10-01T23:59:59.000Z

368

Biogeography-Based Optimization and the Solution of the Power Flow Problem  

E-Print Network [OSTI]

for power utilities is the optimal power flow (OPF) problem which was introduced in 1962 by the French engineer Jules Carpentier [7]. A power utility may own power generating plants fueled by coal, natural gas absorbed by the loads plus the power losses that occur in the transmission system. Second, both the active

Simon, Dan

369

FUTURE POWER GRID INITIATIVE Future Power Grid  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Future Power Grid Control Paradigm OBJECTIVE This project integration & exploit the potential of distributed smart grid assets Significantly reduce the risk of advanced mathematical models, next- generation simulation and analytics capabilities for the power grid

370

Research Highlights Nature Nanotechnology  

E-Print Network [OSTI]

© 2009 APS Research Highlights Nature Nanotechnology Published online: 17 July 2009 | doi:10 perfect fluid. Phys. Rev. Lett. 103, 025301 (2009). | Article |1. Nature Nanotechnology ISSN 1748 : Nature Nanotechnology http://www.nature.com/nnano/reshigh/2009/0709/full/nnano.2009.222.html 1 of 1 18

Müller, Markus

371

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Courses Instructors NERC Continuing Education Power Operations Training Center You'll find the "Power" of learning at Southwestern's Power Operations Training Center (POTC). POTC's...

372

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

and Battery-Electric Powered Special Purpose Vehicles, SAELead-Acid Powered Electric Vehicles, Fifth Internationalmeantime, battery-powered electric vehicles can be expected

Cairns, Elton J.

2012-01-01T23:59:59.000Z

373

Solar powered desalination system  

E-Print Network [OSTI]

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

374

Power management system  

DOE Patents [OSTI]

A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

2007-10-02T23:59:59.000Z

375

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS  

E-Print Network [OSTI]

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS AND CO2 METHANATION NOVEMBER 19th 2013 IRES. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis Gas-to-heat Gas-to-mobility Gas-to-power Excess Production = Consumption Distribution and storing

Paris-Sud XI, Université de

376

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, moreMineLand Rehabilitation · PowerGeneration · System/PlantOperation andMaintenance · AuxiliaryNaturalGas Combustion · Coal-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

377

Sizing Storage and Wind Generation Capacities in Remote Power Systems  

E-Print Network [OSTI]

Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B capital investment costs of renewable energy technologies. Specifically, wind power represents the most and small power systems. However, the variability due to the stochastic nature of the wind resource

Victoria, University of

378

Natural gas monthly  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

NONE

1998-01-01T23:59:59.000Z

379

6 Natural Resources Contested in Autonomous Councils  

E-Print Network [OSTI]

191 6 Natural Resources Contested in Autonomous Councils: Assessing the Causes of Ethnic Conflict by allocating certain areas of the territory to the Autonomous Council, which then re-allocates these areas efforts at decentralisa- tion of powers to Autonomous Councils, violence between different ethnic groups

Richner, Heinz

380

Power oscillator  

DOE Patents [OSTI]

An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

Gitsevich, Aleksandr (Montgomery Village, MD)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Phase I --system scoping and feasibility studies  

SciTech Connect (OSTI)

The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all the U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The objective of this 10-year program is to develop natural gas-fired base load power plants that will have cycle efficiencies greater than 60% (LHV), be environmentally superior to current technology, and also be cost competitive.

Not Available

1993-03-01T23:59:59.000Z

382

Natural Gas Infrastructure Implications of Increased Demand from...  

Energy Savers [EERE]

intended to be an upper-bound test case on natural gas consumption in the electric power sector. 1 To perform this analysis, the U.S. Department of Energy commissioned Deloitte...

383

Experimental Characterization and Molecular Study of Natural Gas Mixtures  

E-Print Network [OSTI]

) 5, advanced gas turbine 5 and coal-based zero emissions power plant 6 are some of the technological advances recently reported. It is important to note that these technologies are adaptable to natural gas feedstock. However, until clean coal...

Cristancho Blanco, Diego Edison

2011-08-08T23:59:59.000Z

384

Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida)  

Broader source: Energy.gov [DOE]

The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission...

385

E-Print Network 3.0 - american natural gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

natural gas Search Powered by Explorit Topic List Advanced Search Sample search results for: american natural gas Page: << < 1 2 3 4 5 > >> 1 SPE 91413SPE 91413 Anangela Garcia...

386

Solar powered desalination system  

E-Print Network [OSTI]

1.18: Largest PV Power Plants32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

387

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

388

E-Print Network 3.0 - alport syndrome natural Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: alport syndrome natural Page: << < 1 2 3 4 5 > >> 1 Update in podocyte biology Karlhans Endlich,...

389

Impact of Natural Gas Appliances on Pollutant Levels in California Homes  

E-Print Network [OSTI]

used to power your water heater? a. Natural Gas b. Propaneranges, furnaces and water heaters. The most common gasof gas heaters or water heaters within the home (indicating

Mullen, Nasim A.

2014-01-01T23:59:59.000Z

390

Biennial Assessment of the Fifth Power Plan Interim Report on Fuel Price Assumptions  

E-Print Network [OSTI]

. In addition, the delivered price of coal to power plants located in the region will be affected by diesel fuelBiennial Assessment of the Fifth Power Plan Interim Report on Fuel Price Assumptions Summary The Fifth Power Plan includes price forecasts for natural gas, oil, and coal. Natural gas prices have by far

391

24/02/2012 12:49SPE Projects, Facilities & Construction -CO2/Brine Surface Dissolution and Injection: CO2 Storage Enhancement Page 1 of 1http://www.spe.org/ejournals/jsp/journalapp.jsp?pageType=Preview&jid=EFC&pdfChronicleId=090147628022501b&mid=SPE-12471  

E-Print Network [OSTI]

of reducing atmospheric emissions of greenhouse gases from coal or gas-fired power plants. The upward buoyancy or supercritical phase, as water-alternating-gas cycles, or as carbonated brine. These result in different

Haszeldine, Stuart

392

ITP Mining: Energy and Environmental Profile of the U.S. Mining...  

Broader source: Energy.gov (indexed) [DOE]

oil is consumed by bulldozers, portable mining equipment, and dryers. Dryers are usually gas-fired, but use oil as a standby fuel. Power consumption is a function of material...

393

EIS-0354: Ivanpah Energy Center, NV  

Broader source: Energy.gov [DOE]

Ivanpah Energy Center, L.P., a Diamond Generating Corporation Company, a subsidiary of Mitsubishi Corporation proposes to construct and operate a 500 Megawatt (MW) gas-fired electric power generating station in southern Clark County, Nevada.

394

EIS-0349: Cherry Point Co-generation Project  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to support BP West Coast Products, LLC proposal to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery.

395

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network [OSTI]

temporally-dependent renewable energy production profiles,renewable energy offsets natural gas-fired electricity production.renewable energy to be more labor-intensive than conventional forms of electricity production (

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

396

CX-011121: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

ThermoLift - The Natural Gas Fired Air Conditioner & Heat Pump CX(s) Applied: A9, B3.6 Date: 08/28/2013 Location(s): New York Offices(s): Golden Field Office

397

BFC Emergency Plan  

National Nuclear Security Administration (NNSA)

at the BFC with only two of its four boilers. The West Powerhouse boilers are primarily natural gas- fired, with No. 2 fuel oil used under emergency, training, and testing...

398

NNSA NSC KCP Emergency Plan  

National Nuclear Security Administration (NNSA)

water, compressed air, and reverse osmosis water to the entire campus. The boilers are natural gas fired with the capability of burning No. 2 diesel fuel as a backup in the...

399

U.S. DEPARTl\\IENT OF ENERGY EERE PROJECT MANAG EMENT CENTER  

Broader source: Energy.gov (indexed) [DOE]

to County-owned facilities. Among these retrofits is the installation of a high-efficiency natural gas fired condensing boiler to replace the electric boiler at the McCoart...

400

EIS-0343: EPA Notice of Availability of the Draft Environmental Impact Statement  

Broader source: Energy.gov [DOE]

COB Energy Facility, Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined- Cycle Electric Generating Plant, Right- of-Way Permit across Federal Land under the Jurisdiction of BLM, Klamath Basin, Klamath County, OR

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessment of Literature Related to Combustion Appliance Venting Systems  

E-Print Network [OSTI]

roll-out study for gas fired water heaters, NBSIR 88-3724.Fired Furnaces And Water Heaters, Technical Report 96/0266.an Orphaned Natural Draft Water Heater Converted to a Stand-

Rapp, Vi H.

2014-01-01T23:59:59.000Z

402

Microsoft Word - Sieminski HEC(EP) Testimony 3 6 14 _final_accepted...  

Gasoline and Diesel Fuel Update (EIA)

by pipeline directly to customers; by truck to several dozen regional satellite storage tanks; and to an adjacent natural gas-fired electric generating plant, Exelon Corp.'s Mystic...

403

Nature/Culture/Seawater  

E-Print Network [OSTI]

This essay considers seawater as a substance and symbol in anthropological and social theory. Seawater has occupied an ambiguous place with respect to anthropological categories of nature and culture. Seawater as nature ...

Helmreich, Stefan

404

Natural gas annual 1996  

SciTech Connect (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

405

Natural Resources Research Institute  

E-Print Network [OSTI]

/Loll ThermoWood Hybrid Poplars Peat A boost for the peat industry Value in Minnesota peat deposits Natural che

Netoff, Theoden

406

Natural gas annual 1994  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

407

Natural gas annual 1995  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

408

The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory  

SciTech Connect (OSTI)

For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the Energy Information Administration (EIA), natural gas-fired units account for nearly 90% of the total generating capacity added in the U.S. between 1999 and 2005 (EIA 2006b), bringing the nationwide market share of gas-fired generation to 19%. Looking ahead over the next decade, the EIA expects this trend to continue, increasing the market share of gas-fired generation to 22% by 2015 (EIA 2007a). Though these numbers are specific to the US, natural gas-fired generation is making similar advances in many other countries as well. A large percentage of the total cost of gas-fired generation is attributable to fuel costs--i.e., natural gas prices. For example, at current spot prices of around $7/MMBtu, fuel costs account for more than 75% of the levelized cost of energy from a new combined cycle gas turbine, and more than 90% of its operating costs (EIA 2007a). Furthermore, given that gas-fired plants are often the marginal supply units that set the market-clearing price for all generators in a competitive wholesale market, there is a direct link between natural gas prices and wholesale electricity prices. In this light, the dramatic increase in natural gas prices since the 1990s should be a cause for ratepayer concern. Figure 1 shows the daily price history of the 'first-nearby' (i.e., closest to expiration) NYMEX natural gas futures contract (black line) at Henry Hub, along with the futures strip (i.e., the full series of futures contracts) from August 22, 2007 (red line). First, nearby prices, which closely track spot prices, have recently been trading within a $7-9/MMBtu range in the United States and, as shown by the futures strip, are expected to remain there through 2012. These price levels are $6/MMBtu higher than the $1-3/MMBtu range seen throughout most of the 1990s, demonstrating significant price escalation for natural gas in the United States over a relatively brief period. Perhaps of most concern is that this dramatic price increase was largely unforeseen. Figure 2 compares the EIA's natural gas wellhead price forecast from each year's Annual Energy Outlook (AEO) going back to 1985 against the average US wellhead price that actually transpired. As shown, our forecasting abilities have proven rather dismal over time, as over-forecasts made in the late 1980's eventually yielded to under-forecasts that have persisted to this day. This historical experience demonstrates that little weight should be placed on any one forecast of future natural gas prices, and that a broad range of future price conditions ought to be considered in planning and investment decisions. Against this backdrop of high, volatile, and unpredictable natural gas prices, increasing the market penetration of renewable generation such as wind, solar, and geothermal power may provide economic benefits to ratepayers by displacing gas-fired generation. These benefits may manifest themselves in several ways. First, the displacement of natural gas-fired generation by increased renewable generation reduces ratepayer exposure to natural gas price risk--i.e., the risk that future gas prices (and by extension future electricity prices) may end up markedly different than expected. Second, this displacement reduces demand for natural gas among gas-fired generators, which, all else equal, will put downward pressure on natural gas prices. Lower natural gas prices in turn benefit both electric ratepayers and other end-users of natural gas. Using analytic approaches that build upon, yet differ from, the past work of others, including Awerbuch (1993, 1994, 2003), Kahn and Stoft (1993), and Humphreys and McClain (1998), this chapter explores each of these two potential 'hedging' benefits of renewable electricity. Though we do not seek to judge whether these two specific benefits outweigh any incremental cost of renewable energy (relative to conventional fuels), we do seek to quantify the magnitude of these two individual benefit

Bolinger, Mark A; Wiser, Ryan

2008-09-15T23:59:59.000Z

409

ENVIRONMENTALISM: FROM THE CONTROL OF NATURE TO PARTNERSHIP  

E-Print Network [OSTI]

for wind and water power, and erecting machines for lifting and boring provided humanity with a new sense the Renaissance and the Enlightenment during the expansion of pre-industrial capitalism. All over Europe a flurry of power over nature. The development of the coal and iron industries, the enclosure of the commons

Kammen, Daniel M.

410

NATURAL CONVECTION OF SUBCOOLED LIQUID NITROGEN IN A VERTICAL CAVITY  

E-Print Network [OSTI]

temperature superconductor) power devices, such as HTS transformers, fault current limiters, and terminals power transformer cooled by natural convection of subcooled liquid nitrogen. A liquid nitrogen bath of subcooled liquid nitrogen system for an HTS transformer, operating at around 65 K. This system consists

Chang, Ho-Myung

411

Following Nature's Current HYDROELECTRIC POWER IN THE NORTHWEST  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Environmental Protection, Mitigation and Enhancement at Hydroelectric Projects ----10 Fish Passage Tour ---...

412

New Hampshire Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYear Jan Feb Mar

413

New Jersey Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYearDecadeYear Jan Feb Mar

414

New Mexico Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear JanDecadeExtensions41

415

North Carolina Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18 2.415 - -

416

North Dakota Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18Feet) New123DecadeNA

417

Ohio Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0YearSales (BillionFeet) Decade

418

Oklahoma Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44Year

419

Oregon Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)DecadeFeet) Decade Year-0

420

Pennsylvania Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0Sales (Billion CubicDecade Year-03,660Cubic

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pennsylvania Natural Gas Price Sold to Electric Power Consumers (Dollars  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0SalesElements) IndustrialFuelLiquidsper

422

Utah Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan MonthlyProduction% of TotalFeet)

423

Vermont Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellhead PriceDay)

424

Virginia Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellheadProved

425

Washington Natural Gas Deliveries to Electric Power Consumers (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb% of TotalCubic

426

West Virginia Natural Gas Deliveries to Electric Power Consumers (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year JanProvedDecade

427

Wisconsin Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWestern StatesCubic% ofFeet)

428

Alabama Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases4

429

Alaska Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14ExtensionsCommercial

430

Arizona Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecade Year-00 0 0 2 2

431

Arkansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan(MillionSales (BillionYearFeet)

432

South Carolina Natural Gas Deliveries to Electric Power Consumers (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,85520 40 6015,008Cubic

433

South Dakota Natural Gas Deliveries to Electric Power Consumers (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18 5.69per4,175 4,992Cubic

434

Tennessee Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S.Year Jan FebYearFeet)

435

Texas Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 Oct-14 Nov-14Feet) Decade

436

Before House Subcommittee on Water and Power - Committee on Natural  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21FAQs BEDES|ofEnergyHouseandEnergy

437

Before Subcommittee on Water and Power - House Committee on Natural  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21FAQsEnergy SenateServices |

438

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,Department of Energy Statement

439

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,Department of Energy

440

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,Department of EnergyDepartment

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,Department of

442

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,Department ofDepartment of

443

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,Department ofDepartment

444

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,Department ofDepartmentDepartment

445

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,Department

446

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,DepartmentDepartment of Energy

447

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,DepartmentDepartment of

448

Before the House Natural Resources Subcommittee on Water and Power |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment of Energy Pete Lyons,DepartmentDepartment ofDepartment

449

Before the Subcommittee on Water and Power - House Natural Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouse OversightonCommittee |||Committee

450

Before the Subcommittee on Water and Power - House Natural Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouse OversightonCommittee

451

Before the Subcommittee on Water and Power - House Natural Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouse OversightonCommitteeCommittee |

452

South Carolina Natural Gas Deliveries to Electric Power Consumers (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7, September 11,Cubic% ofCubic

453

South Dakota Natural Gas Deliveries to Electric Power Consumers (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7,Cubic Foot) Decade%

454

Tennessee Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand CubicinResidualU.S.contains

455

Texas Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation, Proved ReservesReserves (BillionFoot)%

456

Alabama Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3ProvedYear

457

Alaska Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProved

458

Arizona Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan

459

Arkansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVented andDecadeFeet) Year Jan

460

California Natural Gas Deliveries to Electric Power Consumers (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesmDecade

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Florida Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5 FigureReserves inFoot)

462

Georgia Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead99.6 92.993.5Feet)

463

Hawaii Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansionReservesFoot) Year Jan Feb

464

Idaho Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ith pricesBureau of

465

Illinois Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ith pricesBureauFeet) Year Jan Feb

466

Indiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ithWellhead PriceFoot) Year

467

Iowa Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ithWellheadFeet)Foot) Year

468

Kansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review WYear Jan Feb Mar AprFoot) Year

469

Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review WYear JanFeet) Year Jan Feb Mar Apr

470

Louisiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213Separation, ProvedFeet) Year Jan

471

Maine Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial Working GroupFoot) Year

472

Maryland Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYearFeet) Year Jan

473

Massachusetts Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-IndustrialFeet) Year JanCubic Feet)

474

Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-IndustrialFeet) Yearper Thousand Cubic

475

Michigan Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-IndustrialFeet)+ LeaseExpectedFeet)

476

Minnesota Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic

477

Mississippi Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand CubicYearFutureCubic Foot)

478

Missouri Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per ThousandWellhead Price

479

Montana Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per ThousandWellhead+ LeaseFeet) Year Jan Feb

480

Nebraska Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 WeekCrude Oil ReservesFeet)

Note: This page contains sample records for the topic "natural gas-fired power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nevada Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2-302 5,797 -4,282 6,424Feet)

482

New Hampshire Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2-302 5,797ThousandCubic

483

New Jersey Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2-302Year Jan Feb Mar

484

New Mexico Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 WeekExpected Future

485

North Carolina Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReserves (Billion Cubic1.878 2.358NACubic

486

North Dakota Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReserves (BillionYear

487

Ohio Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb0 ' u o !Feet)

488

Oklahoma Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear JanFeet) Year Jan Feb

489

Oregon Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan FebperShaleFeet)

490

Pennsylvania Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-MonthCoalbed Methane Proved

491

Pennsylvania Natural Gas Price Sold to Electric Power Consumers (Dollars  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-MonthCoalbed Methane ProvedDecadeper Thousand Cubic

492

Rhode Island Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2. ForJanuary403,972

493

Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program  

Broader source: Energy.gov [DOE]

Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

494

Rhode Island Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWest Virginia" "Emission Type",.7Decade,735Cubic

495

California Natural Gas Deliveries to Electric Power Consumers (Million  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;5,,"I",86,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0000,7,00000,"WAT","HY"5YearIncreases1 -5 2 7Cubic

496

Utah Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 601 631New2009Feet)

497

Vermont Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40 2352009470 609

498

Virginia Natural Gas Deliveries to Electric Power Consumers (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion Cubic Feet) Virginia58Feet)

499

Washington Natural Gas Deliveries to Electric Power Consumers (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227Thousand-657 532

500

Following Nature's Current HYDROELECTRIC POWER IN THE NORTHWEST  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |beamthe Light Just like watchingthose