Powered by Deep Web Technologies
Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An Engineering and Economic Evaluation of Post-Combustion CO2 Capture for Natural Gas-Fired Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

This report presents an Electric Power Research Institute (EPRI) assessment on the technical feasibility, performance, and associated costs of applying post-combustion carbon dioxide (CO2) capture technology to a natural gas–fired combined-cycle (NGCC) power station.

2012-03-23T23:59:59.000Z

2

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

3

Monthly coal- and natural gas-fired generation equal for first ...  

U.S. Energy Information Administration (EIA)

Recently published electric power data show that, for the first time since EIA began collecting the data, generation from natural gas-fired plants is ...

4

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network (OSTI)

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

5

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

W. Golove (2003). Accounting for Fuel Price Risk: UsingForward Natural Gas Prices Insteadof Gas Price Forecasts to Compare Renewable to Gas-Fired

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

6

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Fuel Price Risk: Using Forward Natural Gas Prices Insteadof Gas Price Forecasts to Compare Renewable to Gas-FiredWhich way the natural gas price: an attempt to predict the

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

7

Natural-gas-fired CC unit holds NO[sub x] emissions below 9. 0 ppm  

Science Conference Proceedings (OSTI)

This article describes the East Syracuse generating plant, one of first commercial stations to include LM6000 gas turbines, designed to solve noise and emissions problems. This natural-gas-fired, combined-cycle cogeneration facility provides 97 MW of power to Niagara Mohawk Power Corp and up to 80,000 lb/hr of process steam to a nearby Bristol-Myers Squibb Co plant. The plant's original design had contemplated a base-loaded facility. This stemmed from the original power sales agreement with Niagara Mohawk Power Corp. Flexibility of original design proved advantageous to the East Syracuse (NY) plant when, during the latter stages of construction, the original agreement was renegotiated into a schedulable'' contract. The new agreement now in force, providing for limited dispatch of one of the two gas turbines, is designed around other pre-existing project agreements. Design flexibility and the choice of two gas turbines made the plant capable of meeting dispatch requirements with only minor modifications of plant design and staffing.

Grunbeck, G.

1994-09-01T23:59:59.000Z

8

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

9

Adjusting to Overcapacity: Impacts of New Gas-Fired Units on Power Supply and Fuel Use: Report Series on Natural Gas and Power Relia bility  

Science Conference Proceedings (OSTI)

Capacity additions of gas-fired combined-cycle units reached a peak in 2003 and will drop sharply in 2004. While the extraordinary boom of merchant capacity is now largely over, it has resulted in overbuilding in many regions and will have impacts that are widespread. The overall efficiency of this new capacity has been strong, but trends toward greater capacity utilization have been arrested by the combination of overbuilding and high natural gas prices. Capacity premiums have been driven to low levels,...

2004-03-22T23:59:59.000Z

10

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

11

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

Science Conference Proceedings (OSTI)

Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-08-13T23:59:59.000Z

12

On use of CO{sub 2} chemiluminescence for combustion metrics in natural gas fired reciprocating engines.  

DOE Green Energy (OSTI)

Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.

Gupta, S. B.; Bihari, B.; Biruduganti, M.; Sekar, R.; Zigan, J. (Energy Systems); (Cummins Technical Center)

2011-01-01T23:59:59.000Z

13

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

DOE Green Energy (OSTI)

Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-08-13T23:59:59.000Z

14

Natural gas-fired combustion turbines are generally used to meet ...  

U.S. Energy Information Administration (EIA)

In 2012, there were 121 gigawatts of operating natural gas combustion turbines that contributed about 3% of overall electricity generation. The average capacity ...

15

Natural gas-fired combustion turbines are generally used to meet ...  

U.S. Energy Information Administration (EIA)

Combustion turbines in this article do not include combined-cycle units that operate at higher ... to operate than other types of power plants but can ...

16

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

DOE Green Energy (OSTI)

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

17

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

EIA), natural gas combined-cycle and combustion turbineof energy from a new combined cycle gas turbine, and moregas needed to fuel an 85 MW combined-cycle gas turbine (heat

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

18

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plantspower plants (Awerbuch 1993, 1994; Kahn & Stoft 1993). Specifically, in the context of natural gas-

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

19

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

20

Economic feasibility analysis of distributed electric power generation based upon the natural gas fired fuel cell. Draft and final progress report for the period May 1, 1993--July 31, 1993  

SciTech Connect

This report is an account of the work performed from May 1, 1993 to July 30,1993 on the economic feasibility generating electrical power by natural gas-fired fuel cells. The study is comprised of a survey of energy users, the development of numeric models of an energy distribution system and a central plant utilities system that includes a fuel cell. A model of the capital cost of the hardware elements is combined with a series of ownership scenarios and an operations model that provide the necessary input for a model of the cost of ownership of a fuel cell-based power generation system. The primary model development tasks are complete. The remaining study emphasis is to perform an economic analysis of varied ownership scenarios using the model. This report outlines the progress to date.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plants

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

22

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Profiles of Renewable and Natural Gas Electricity Contracts:Price Risk: Using Forward Natural Gas Prices Instead of Gas2001). “Which way the natural gas price: an attempt to

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

23

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Risk: Using Forward Natural Gas Prices Instead of Gas Price2001). “Which way the natural gas price: an attempt toThe Role of Forward Natural Gas Prices Mark Bolinger, Ryan

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

24

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

of Renewable and Natural Gas Electricity Contracts: Afor Fuel Price Risk: Using Forward Natural Gas PricesInstead of Gas Price Forecasts to Compare Renewable to Gas-

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

25

Natural gas consumption reflects shifting sectoral patterns ...  

U.S. Energy Information Administration (EIA)

For many years, while coal-fired generation was less expensive, those natural gas-fired combined-cycle units were used at relatively low rates.

26

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

natural gas is generally perceived to be much more volatile than the price of coal. Price regulation

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

27

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

history nevertheless does not lend ready support to the view that the EIA’s reference case natural gas

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

28

2.01 GAS-FIRED UNIT HEATERS  

E-Print Network (OSTI)

a. Requirement for gas fired equipment is limited to structures which are constructed outside the practical limits of the campus central steam distribution system and have access to natural gas from Public Service Company utility distribution system.

Section Basic Mechanical Requirements; A. Design Requirements; A. Manufacturers

2011-01-01T23:59:59.000Z

29

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

30

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Determining the Real Cost: Why Renewable Power is More Cost-Previously Believed. ” Renewable Energy World, 6(2), March-the Risk Profiles of Renewable and Natural Gas Electricity

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

31

A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant  

DOE Green Energy (OSTI)

This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

Not Available

1993-06-30T23:59:59.000Z

32

Opportunities in Liquefied Natural Gas - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural gas burns more cleanly than petroleum fuels or coal, and new gas-fired combined-cycle turbine power plants can turn heat into electricity more efficiently ...

33

Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report  

DOE Green Energy (OSTI)

The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

Not Available

1994-03-01T23:59:59.000Z

34

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

35

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

36

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

supply contracts and natural gas storage. As shown below insupply contracts and natural gas storage. As shown below in

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

37

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

CEC). 2002. Natural Gas Supply and Infrastructureincluded a long-term natural gas supply deal for years 2004fixed-price gas supply contracts and natural gas storage. As

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

38

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Associates, citing NYMEX natural gas bid-offer spreadAnalysis of the Market for Natural Gas Futures. ” The EnergyProfiles of Renewable and Natural Gas Electricity Contracts:

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

39

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

supply contracts and natural gas storage. As shown below insupply contracts and natural gas storage. As shown below inWe find that natural gas options and storage are not

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

40

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Hedge Against Natural Gas Price Movements. ” http://Downward Pressure on Natural Gas Prices: The Impact ofTheis. 2001. “Which way the natural gas price: an attempt to

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

solar, and hydro power are often sold on a fixed-pricesolar, and hydro power, which by their nature are immune to natural gas fuel price

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

42

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Which way the natural gas price: an attempt to predict theas a Hedge Against Gas Price Movement. ” Public UtilitiesHedge Against Natural Gas Price Movements. ” http://

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

43

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

and Policy Options of California’s Reliance on Natural Gas. ”policy is often formulated with ratepayers in mind. 2) Second, long-term fixed-price natural gas

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

44

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

biomass in particular – are subject to fuel price risks ofbiomass, solar, and hydro power are often sold on a fixed-pricebiomass, solar, and hydro power, which by their nature are immune to natural gas fuel price

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

45

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

history nevertheless does not lend ready support to the view that the EIA’s reference case natural gas

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

46

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

energy resources such as wind power carry no natural gas fuel priceenergy resources such as wind, geothermal, biomass, solar, and hydro power are often sold on a fixed-price

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

47

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

48

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

DOE Green Energy (OSTI)

For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation from 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in particular wind power, now largely competitive with gas-fired generation in the US (including the impact of the federal production tax credit and current high gas prices), a margin of 0.3-0.6 cents/kWh may in some cases be enough to sway resource decisions in favor of renewables.

Bolinger, Mark; Wiser, Ryan

2003-12-18T23:59:59.000Z

49

Computer Measurement and Automation System for Gas-fired Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Measurement and Automation System for Gas-fired Heating Furnace Title Computer Measurement and Automation System for Gas-fired Heating Furnace Publication Type Journal...

50

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network (OSTI)

vented natural-draft gas-fired storage water heater. Thevented natural?draft gas?fired storage water heater. Thevented natural?draft gas?fired storage water heater. The

Lutz, James D.

2009-01-01T23:59:59.000Z

51

The Modeling of a Laboratory Natural GasFired Furnace with a HigherOrder Projection Method for Unsteady Combustion \\Lambda  

E-Print Network (OSTI)

for Unsteady Combustion \\Lambda R.B. Pember, P. Colella, L.H. Howell, A.S. Almgren, J.B. Bell, W.Y. Crutchfield method for axisymmetric, unsteady, low­ Mach number combustion is used to model a natural gas flame from axisymmetric reacting flow code in order to evaluate the combustion model and the numerical method. The results

52

Natural gas fired electric generating technology: A key to the adequacy of electric generating capacity in North American Electric Reliability Councils. Topical report, May 1991  

SciTech Connect

Development and implementation of an enhanced modeling system for electricity market analysis is explained. The relevant geographic areas that must be used for accurate supply and demand modeling and analysis are defined. There is no national market for electricity in the United States. Surplus hydroelectric capacity from the Pacific Northwest cannot be made available in Florida. Any model of U.S. electricity consumer and producer interaction that does not differentiate by region would produce misleading results. The expected natural gas-dominated capacity expansion phase in electricity markets is described.

Makovick, L.

1991-05-01T23:59:59.000Z

53

Most generator retirements over the past decade were older natural ...  

U.S. Energy Information Administration (EIA)

Older, less efficient natural gas-fired generators accounted for 64% of the total generator retirements between 2000-2010. However, natural gas-fired generators also ...

54

Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications  

SciTech Connect

The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

1997-03-01T23:59:59.000Z

55

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

natural gas- fired generation and in favor of investments in wind powerpower, which has nearly achieved economic parity with natural gas-fired generation

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

56

Active Humidity Control Through Gas-Fired Desiccant Humidity Pump  

E-Print Network (OSTI)

High equipment first cost and high operating costs, if electricity is used to drive such a system, have prohibited the application of active humidity control equipment in comfort conditioning in the past. Instead, passive techniques have been applied. A comparison of passive capacity control methods to control humidity shows that only the combined face and bypass and variable air volume system shows improved performance with respect to space humidity control, dew point depression, and response to perturbations. A gas-fired desiccant humidity pump will provide economical humidity control in existing and new construction using VAV or constant volume air distribution systems. The humidity pump is designed as a packaged make-up air module. It is coupled to new or existing conventional air-conditioning system via a duct. It consists of a triple integrated heat-exchanger combining (liquid) desiccant dehumidification with indirect evaporative cooling, a brine interchanger, and a gas-fired brine heater to regenerate the desiccant. Field experiments of two humidity pumps on existing commercial buildings have been initiated. Each system dehumidifies 5000 scfm of make-up air to meet all the latent loads, which is then fed to conventional, electric-driven HVAC equipment which meet all the sensible loads.

Novosel, D.; Griffiths, W. C.

1988-01-01T23:59:59.000Z

57

Gas fired Advanced Turbine System  

SciTech Connect

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

58

Study of abnormal combustion oscillations in gas fired appliances.  

E-Print Network (OSTI)

??The thesis work discusses abnormal combustion noise in gas-fired appliances. An experimental model was made to provide insight into the causes of abnormal combustion noises.… (more)

Kumar, Dasari

2006-01-01T23:59:59.000Z

59

Natural Gas Supply in Denmark -A Model of Natural Gas Transmission and the  

E-Print Network (OSTI)

Natural Gas Supply in Denmark - A Model of Natural Gas Transmission and the Liberalized Gas Market of the markets of natural gas and electricity and the existence of an abundance of de-centralized combined heat and power generators of which most are natural gas fired, leads to the natural assumption that the future

60

A Gas-Fired Heat Pipe Zone Heater  

E-Print Network (OSTI)

A gas-fired vented zone heater has recently been developed by the Altar Corporation for Colorado State University (CSU) under a Gas Research Institute (GRI) contract. The unit war developed for auxiliary heating applications in passive solar buildings. An early prototype was tested at Altas and operated as expected. The final model was shipped to CSU in December 1983 for testing in the REPEAT Facility at CSU. A heat pipe extends through the wall to the outside of the building. It has a modest water charge which can freeze repeatedly with no damage, since the heat pips is only partially filled. Firing efficiency at 4,000 Btu/b (1.17 kW thermal) is approximately 80%. The unit features a 3 foot by 3 foot radiator mounted inside the room to be heated, and is thermostatically controlled. Ignition is accomplished with an electronic sparker (pilot). The radiator typically operates at 150-180°F (65-82°C), and has been operated at between 2,000 and 5,000 Btu/h (0.6-1.47 kW). Results of testing the vented heat pipe zone heater at CSU arm presented. Also, a method for determining the optimal combination of zone heater, passive solar heating and energy conservation measures has been developed. Nomographs have been developed that may be used by a building designer to determine the optimal combination of zone heater size, passive solar system size, and energy conservation measures for given types of passive solar heating systems in selected locations. A representative nomograph is presented along with a design example.

Winn, C. B.; Burns, P.; Guire, J.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

62

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

63

Valuing a gas-fired power plant: A comparison of ordinary linear models, regime-switching approaches, and models with stochastic volatility  

E-Print Network (OSTI)

and natural gas daily spot prices and suggests that with the aim of valuing a gas-fired power plant, there is limited information about modelling electricity and natural gas spot prices distinctly, i.e., taking-run evolution of energy prices, such as oil, coal, and natural gas, and suggests that although the long

64

Gas Fired Power Plants: Investment Timing, Operating Flexibility and Abandonment  

E-Print Network (OSTI)

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down and held idle. The owner has also an option to abandon the plant and realize the salvage value of the equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects of emission costs on the value of installing CO2 capture technology are analyzed.

Stein-erik Fleten; Erkka Näsäkkälä

2003-01-01T23:59:59.000Z

65

Today in Energy - Natural gas-fired combustion turbines are ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

66

Gas-Fired Distributed Energy Resource Technology Characterizations  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

67

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

from storage during the winter months, but prompted demand for natural-gas-fired power generation during the summer months. Overall, natural gas consumption in 2006 was...

68

Retrofit of CO2 Capture of Natural Gas Combined Cycle Power Plants  

Science Conference Proceedings (OSTI)

A significant target for control of CO2 emission would be stationary power plants as they are large sources and relatively easy to control. Most of the focus of studies has been on new plants Only a few have looked at retrofits of the existing plants and those have mainly concentrated on coal-fired systems. However, there are a large number of existing gas-fired combined cycle plant in existence and understanding whether retrofit of these plants is realistic is important. This study considers retrofit of...

2005-12-08T23:59:59.000Z

69

Development of an advanced gas-fired mineral wool melter. Final report, October 1987-December 1990  

SciTech Connect

A gas-fired mineral wool melter was successfully designed and tested. The test results clearly show that the gas-fired melter offers significant advantages over the current state-of-the-art system, the coke-fired cupola. The primary benefits offered are: lower energy costs, fewer airborne pollutant emissions, virtual elimination of solid waste generation and superior control and quality of the resultant melt stream. Specifically, the unit eliminates the emission of carbon monoxide, hydrogen sulfide and hydrocarbons. Emissions of SOx and particulate are substantially reduced as well. The generation of solid wastes is eliminated through the gas-fired melters ability to utilize untreated process wastes as a feedstock.

Vereecke, F.J.; Gardner, K.M.; Thekdi, A.C.; Swift, M.D.

1990-12-01T23:59:59.000Z

70

Top 5 producing states' combined marketed natural gas output rose ...  

U.S. Energy Information Administration (EIA)

Combined marketed natural gas production from the top five natural gas producing states—Texas, Louisiana, Wyoming, Oklahoma, and Colorado—increased by about 7.5% ...

71

Combined cycle meets Thailand's growing power demands  

SciTech Connect

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

72

The fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.

1984-06-01T23:59:59.000Z

73

Fluidized bed combustor-heater equipped gas fired CCGT  

Science Conference Proceedings (OSTI)

The combustion of natural gas in an atmospheric fluidized bed combined with heat transfer from the bed to the working fluid is shown to be an attractive means for supplying heat to closed cycle gas turbines. It is demonstrated how this concept can yield high thermal efficiencies without the use of high temperature resistant materials and yield low levels of pollutant emissions. The features of the combustor-heater are established for a 9000 kW closed cycle gas turbine generator and comparisons are made with a conventional open cycle machine.

Fejer, A.A.

1984-01-01T23:59:59.000Z

74

Natural Gas Discovery and Development Impacts on Rio Vista and Its Community  

E-Print Network (OSTI)

fleet of natural gas-fired power plants in the world, and asthese plants. Natural gas is the company's main power source

Gbedema, Tometi Koku

2006-01-01T23:59:59.000Z

75

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Coal generation shares declined in some regions ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

76

Cheaper natural gas alters generation dispatch in Southeast ...  

U.S. Energy Information Administration (EIA)

While coal-fired power plants continue to generate more than half of electricity in the region, ... and production from natural gas-fired plants has increased.

77

Natural Gas - U.S. Energy Information Administration (EIA) -...  

Annual Energy Outlook 2012 (EIA)

2011 Tohoku earthquake, accompanying tsunami and subsequent nuclear plant outages, have led to higher use of thermal generation, including natural gas fired generation. According...

78

Electricity generation from coal and natural gas both ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

79

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

of gas-fired and renewable generation Mark Bolinger and Ryannatural gas prices, renewable energy resources – which bygas-fired generation, renewable generation, such as wind or

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

80

Medium-Term Risk Management for a Gas-Fired Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium-Term Risk Management for a Gas-Fired Power Plant Medium-Term Risk Management for a Gas-Fired Power Plant Speaker(s): Afzal Siddiqui Date: October 11, 2012 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Chris Marnay Electricity sectors in many countries have been deregulated with the aim of introducing competition. However, as a result, electricity prices have become highly volatile. Stochastic programming provides an appropriate method to characterise the uncertainty and to derive decisions while taking risk management into account. We consider the medium-term risk management problem of a UK gas-fired power plant that faces stochastic electricity and gas prices. In particular, the power plant makes daily decisions about electricity sales to and gas purchases from spot markets over a monthly

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Descriptions of Past Research in Program 79: Combustion Turbine and Combined-Cycle Operations and Maintenance  

Science Conference Proceedings (OSTI)

The asset value of natural-gas-fired combustion turbines, especially in combined cycle plants, is on the rise, driven by their inherent efficiency, emissions, operational characteristics, broader market fit with a forecast affordable fuel supply, and complementary role covering load swings such as those from intermittent renewables. Cycling and high-temperature operations adversely affect combustion turbine life, as well as plant reliability and availability. The risks associated with hot section durabil...

2011-06-30T23:59:59.000Z

82

Biomass Cofiring with Natural Gas in California: Phase 1  

Science Conference Proceedings (OSTI)

This report by EPRI for the California Energy Commission presents the major cost and performance parameters of systems that enable natural gas to be augmented by 10 percent biomass fuel. The basic natural gas fired power plant is taken to be a 400 MWe natural gas-turbine/combined-cycle (NGCC). The biomass component is to generate 40 MWe from biomass fuel. Two forms of the biomass section of the power plant are considered: (1) biomass gasification with the gas derived from the biomass combined with the na...

2000-12-20T23:59:59.000Z

83

Assessment of Natural Gas Combined Cycle (NGCC) Plants with  

E-Print Network (OSTI)

Assessment of Natural Gas Combined Cycle (NGCC) Plants with CO2 Capture and Storage Mike Gravely.5 Million Annual Budget FY 10/11 · $62.5 million electric · $24 million natural gas · Program Research Areas:45 Bevilacqua-Knight, Inc's Role and Reference Documents Rich Myhre ­ Bevilacqua-Knight, Inc 3:05 Pacific Gas

84

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

85

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network (OSTI)

generation fuel. Natural gas-fired power plants come in twopercent, and a natural gas-fired power plant efficiency ofof actual natural gas-fired combined cycle power plants is

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

86

A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study from Norway on Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume Quiviger and Howard Herzog (hjherzog@mit.edu; +1-617-253-0688) Massachusetts Institute of Technology (MIT) Room E40-471 1 Amherst Street Cambridge, MA 02139 INTRODUCTION On Thursday March 9, 2000, Norwegian Prime Minister Kjell Magne Bondevik's minority government resigned over a disagreement with the opposition about a controversial proposal to build two gas-fired power plants. The government had been rejecting the building of the proposed plants for months. Bondevik and his coalition government wanted to hold off construction until new technology, such as carbon sequestration, allowed building more environmentally friendly plants. They argued that their position was supported by European

87

AVESTAR® - Natural Gas Combined Cycle (NGCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Combined Cycle (NGCC) Dynamic Simulator Natural Gas Combined Cycle (NGCC) Dynamic Simulator A simulator that can provide future engineers with realistic, hands-on experience for operating advanced natural gas combined cycle (NGCC) power plants will soon be available at an innovative U.S. Department of Energy training center. Under a new cooperative research and development agreement signed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and Invensys Operations Management, the partners will develop, test, and deploy a dynamic simulator and operator training system (OTS) for a generic NGCC power plant equipped for use with post-combustion carbon capture. NETL will operate the new dynamic simulator/OTS at the AVESTAR (Advanced Virtual Energy Simulation Training and Research) Center in Morgantown, W.Va.

88

Combustor design tool for a gas fired thermophotovoltaic energy converter  

DOE Green Energy (OSTI)

Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The US Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1,756 K (2,700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

Lindler, K.W.; Harper, M.J. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering Dept.

1995-07-01T23:59:59.000Z

89

Interdependency of security-constrained electricity and natural gas infrastructures  

Science Conference Proceedings (OSTI)

The electric power generation relies increasingly on the natural gas supply system as additional natural gas-fired power plants are installed in restructured power systems. In this context, the economics and the reliability of electric power and natural ...

Cong Liu / Mohammad Shahidehpour

2010-01-01T23:59:59.000Z

90

Natural Gas and Electric Industry Coordination in New England  

Science Conference Proceedings (OSTI)

Introduction of gas-fired generation will place unfamiliar operating requirements on the pipeline system in some parts of the country. Facing rapid growth in natural gas-fired generation in New England, regional gas and electric companies formed a group to improve operational coordination and understanding. This report documents the group's progress and procedures.

1993-11-01T23:59:59.000Z

91

California Energy Commission Assessment of Natural Gas Combined Cycle  

E-Print Network (OSTI)

California Energy Commission 1 Assessment of Natural Gas Combined Cycle Plants for Carbon Dioxide Capture and Storage in a Gas-Dominated Electricity Market California Energy Commission Request for Proposals RFP # 500-10-502 Pre-Bid Conference Date: Wednesday, November 3, 2010 #12;California Energy

92

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network (OSTI)

pdf/E-20.pdf, May 2008. PG&E natural gas tariffs. http://pdf/G-NT.pdf, May 2008. PG&E natural gas tariffs. http://than less expensive natural gas fired reciprocating engine

Norwood, Zack

2010-01-01T23:59:59.000Z

93

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

94

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

95

Losses and Costs Associated with Coal vs. Natural Gas Firing at Hanes Dye and Finishing.  

E-Print Network (OSTI)

??Due to decreasing production and rising coal prices, the engineering and management staff at Hanes Dye and Finishing in Winston Salem, NC have been investigating… (more)

Gibides, Justin Tyler

2009-01-01T23:59:59.000Z

96

Distributed control applied to combined electricity and natural gas infrastructures  

E-Print Network (OSTI)

Abstract — The optimization of combined electricity and natural gas systems is addressed in this paper. The two networks are connected via energy hubs. Using the energy hub concept, the interactions between the different infrastructures can be analyzed. A system consisting of several interconnected hubs forms a distributed power generation structure where each hub is controlled by its respective control agent. Recently, a distributed control method has been applied to such a system. The overall optimization problem including the entire system is decomposed into subproblems according to the control agents. In this paper, a parallel and serial version of that method is discussed. Simulation results are obtained through experiments on a three-hub benchmark system. I.

Michèle Arnold; Rudy R. Negenborn; Göran Andersson; Bart De Schutter

2008-01-01T23:59:59.000Z

97

Development of an advanced gas-fired mineral-wool melter. Annual report, January-December 1988  

SciTech Connect

A gas-fired mineral-wool melter was designed to provide a melting technology option to the existing coke-fired cupola melters used by the mineral wool industry. Over the past few years, mineral-wool producers have been increasingly pressured to reduce their level of pollutant gaseous emissions. Including the fuel consumption for an afterburner required with a cupola melter, the direct production costs for fuel currently range from $32 to $44 per ton of melted product; dependent on the effectiveness of a heat-recovery system. The estimated direct fuel cost for a gas-fired mineral-wool melter could be as low as $16 per ton. The configuration of the prototype melter contributes to the energy savings because waste heat is reclaimed by preheating the feedstock in a counterflow shaft. Besides the beneficial decrease in energy costs, the proposed gas-fired melter will virtually eliminate carbon monoxide and unburned hydrocarbon emissions as well as substantially reduce emissions of hydrogen sulfide. Finally, with an improved capability to process the melted product at a controlled temperature and flow rate, the gas-fired melter should improve the overall quality of the mineral fiber product compared to the state-of-the-art coke-fired cupola melter.

Vereecke, F.J.; Thekdi, A.C.

1989-06-01T23:59:59.000Z

98

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

99

Outlook for Regional Generation Capacity Balances: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

The United States is in the midst of a power plant expansion boom, achieving record additions of natural gas-fired combustion turbines and combined-cycle units over the past two years, with 68,000 MW already added since 1998 and 17,000 MW more slated for completion by the end of 2001. This report provides a region-by-region accounting of how this new capacity -- plus hundreds of megawatts of possible additional natural gas and coal capacity -- may change reserve margins and result in many other impacts a...

2002-01-23T23:59:59.000Z

100

Can Deployment of Renewable Energy and Energy Efficiency Put Downward Pressure on Natural Gas Prices  

E-Print Network (OSTI)

with the price of natural gas (e.g. , coal or nuclear power,coal- to gas-fired generation. It is worthy of note that natural gas prices

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

102

Method for providing variable output gas-fired furnace with a constant temperature rise and efficiency  

Science Conference Proceedings (OSTI)

A method is described for providing a variable output gas-fired furnace means with a constant temperature rise and efficiency where the furnace means includes burners, a blower, a thermostat and a delay timer, the method comprising the steps of: sensing the temperature in an area to be conditioned; comparing the sensed temperature to a predetermined set point; if the sensed temperature deviates from the predetermined set point by more than a predetermined amount, gas is supplied to the burners and the blower is started; determining the reference revolution per minute of the blower; determining the reference cubic feet per minute delivered by the blower; determining the manifold pressure; determining whether the furnace is in a high heat or a low heat mode of operation; determining the desired cubic feet per minute delivered by the blower for the current mode of operation; reading the actual revolution per minute of the blower; adjusting the speed of the blower motor if the actual and desired revolution per minute of the blower are not the same; determining whether the thermostat is satisfied; if the thermostat is not satisfied, returning to the step of determining the manifold pressure; and if the thermostat is satisfied, shutting off the gas and starting the delay timer.

Ballard, G.W.; Thompson, K.D.

1987-08-25T23:59:59.000Z

103

Gas fired advanced turbine system. Phase 1, System scoping and feasibility studies  

DOE Green Energy (OSTI)

The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450{degrees}F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

LeCren, R.T.; White, D.J.

1993-11-01T23:59:59.000Z

104

Top 5 producing states' combined marketed natural gas output rose ...  

U.S. Energy Information Administration (EIA)

Glossary › All Reports ... Due primarily to drilling programs in the Marcellus shale ... Alaska is the country's second leading natural gas producer in terms of ...

105

The Regional Gas Infrastructure -- Is It Ready for the Power Boom?: How Changes in Gas and Electric Industries Affect Reliability an d Competitiveness of Gas-Fired Generation  

Science Conference Proceedings (OSTI)

The boom in gas-fired capacity additions, coupled with today's overheated gas market, make questions of gas supply a top priority for gas and electric industry planners. The relationships between the gas and electric industries are changing -- with the latter becoming a premium customer of the former. While the commodity market is national in scope, many of the impacts and planning challenges are best understood on a regional basis. This report examines five regions where gas-fired capacity additions are...

2001-01-17T23:59:59.000Z

106

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plants

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

107

Gas Market Transition: Buildup of Power Sector Demand: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

Just how fast is natural gas demand for power generation growing in response to the many new gas-fired units being built? This simple question has a far from simple answer, due to confusing streams of data, the interplay between new efficient gas combined cycle units and existing capacity, and the surprisingly low overall levels of capacity utilization observed among the new units. This report dissects each component of gas use in the power sector and provides a novel, integrated view of near term trends...

2003-03-17T23:59:59.000Z

108

Average utilization of the nation's natural gas combined-cycle ...  

U.S. Energy Information Administration (EIA)

... (purple line) and 2010 (red line) average capacity factors for natural gas plant operations between 10 p.m. and 6 a.m. rose from 26% to 32%.

109

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network (OSTI)

to the EIA’s natural gas price forecasts in AEO 2004 and AEOcost comparisons of fixed-price renewable generationwith variable price gas-fired generation that are based

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

110

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

7, 2013 | Release Date: February 28, 7, 2013 | Release Date: February 28, 2013 | Next Release: March 7, 2013 Previous Issues Week: 01/19/2014 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Natural Gas Generation Rises 21 Percent. According to the Energy Information Administration's (EIA) recently released Electric Power Monthly, natural gas net generation rose by 21 percent from 2011 to 2012 (the biggest increase since an 11 percent rise in 1994) as low natural gas prices encouraged more natural gas consumption in the electric power sector. Natural gas generation displaced some coal generation, which fell about 12 percent from 2011 to 2012. During 2012, an extremely hot summer combined with low natural gas prices relative to coal led to record high gas-fired power generation. BENTEK

111

Rise in gas-fired power generation tracks gains in turbine efficiency  

SciTech Connect

Natural gas-fueled gas turbines--in both simple and combined-cycle configurations--will account for most power generation capacity additions through 2000. It is widely agreed that gas turbines will remain the dominant form of technology for power generation for the next decade or two, making them the power generation technology of choice for today and the future. The pre-eminent stature of gas turbines can be attributed to their low capital costs, high efficiency, low emissions, short permitting and construction lead times, and proven reliability. The versatility of gas turbines also makes them unique among power generation technologies, as they can economically serve a wide spectrum of applications and sizes--from distributed generation to industrial cogeneration and central station generation. Three primary factors contribute to the growing interest in gas turbine-based power generation and the role gas turbines will play in the future power generation market: An optimistic outlook for the supply and price of natural gas; technology advances that have produced substantial improvements in efficiency and emissions; and emissions regulations that may favor the use of gas turbines over traditional fossil-fueled steam turbines. These three factors are discussed.

Bautista, P. [Gas Research Inst., Chicago, IL (United States)

1996-08-12T23:59:59.000Z

112

The development of solar-assisted gas-fired appliances: phase ii. Final report dec 80-nov 81  

SciTech Connect

An evaluation of applying solar assistance to commercial laundry drying and supermarket dehumidification was accomplished. The laundry drying project included experimental evaluation of the transient and steady-state characteristics of the hot air produced by an air-heating solar collector; experimental evaluation of the performance characteristics of a gas-fired laundry dryer as affected by varying the inlet air temperature and humidity; and an assessment of the characteristics of commercial laundries in relation to the potential commercialization of the solar-assisted dryer concept. The supermarket dehumidification project included an assessment of the relative latent and sensible cooling requirements as a function of geographic location; typical design studies of the performance and cost effectiveness of desiccant dehumidification systems in this application; and the incremental effectiveness of solar assistance to desiccant regeneration. In both projects, the solar-assist feature is, at best, marginally cost effective, including incentives, in the near term; however, the gas-fired only desiccant dehumidification concept is shown to be a potentially attractive alternative to vapor compression dehumidification with a potential for widespread application.

Hagen, K.G.; Levine, A.; Colarusso, J.M.; Zakak, A.I.

1981-12-01T23:59:59.000Z

113

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Ways to Switch America to Renewable Electricity. Cambridge,Dioxide, and Mercury and a Renewable Portfolio Standard.associated with the use of renewable and natural gas-fired

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

114

Gas-fired desiccant dehumidification system field evaluation in a quick-service restaurant. Final report, October 1989  

Science Conference Proceedings (OSTI)

This report describes the results of a field evaluation of state-of-art desiccant dehumidification equipment in Houston, TX. The evaluation demonstrated that comfort control in a quick-service restaurant could be improved dramatically. However, available gas-fired desiccant dehumidification equipment is too expensive, inefficient, and unreliable to be considered for wide application in the restaurant industry. Results of a technical and economic analysis of four HVAC options in four U.S. cities indicated that improved comfort control could be achieved with only a modest increase in operating costs with an advanced system. This, coupled with the economic benefits achieved through lower indoor humidity such as improved crew performance and reduced maintenance costs, could justify the introduction of an advanced, integrated, HVAC system using desiccant technology which has an installed cost similar to current equipment.

Koopman, R.N.; Marciniak, T.J.

1989-10-01T23:59:59.000Z

115

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different outdoor temperatures are obtained, and the heating load of the manufactured space is analyzed. The relationship between the envelope internal surface temperature and the workspace temperature is also analyzed in this paper. CFD simulation software is used to simulate the temperature field and the envelope's internal surface temperature of the manufacture space with hot-air heating system. Comparison and analysis of heating loads are done between the manufactured spaces with convection heating and radiant heating systems.

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

116

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

Glenn C. England; Stephanie Wien; Mingchih O. Chang

2002-08-01T23:59:59.000Z

117

Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems  

SciTech Connect

With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M. [GE Energy, Santa Ana, CA (United States)

2007-01-15T23:59:59.000Z

118

Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans  

E-Print Network (OSTI)

of a natural gas-fired combined cycle gas turbine (CCGT).integrated gasification combined cycle (IGCC) generationrate exceeding that of a combined-cycle natural gas unit.

Barbose, Galen

2008-01-01T23:59:59.000Z

119

Study of the processes resulting from the use of alkaline seed in natural gas-fired MHD facilities  

DOE Green Energy (OSTI)

Various ways of ionizing seed injection and recovery, applicable to open-cycle magnetohydrodynamic (MHD) power generation facilities, operating on sulfur-free gaseous fossil fuel, are discussed and experimentally verified. The physical and chemical changes of the seed and the heat and mass transfer processes resulting from seed application are investigated using the U-02 experimental MHD facility and laboratory test facilities. Engineering methods for calculating the processes of seed droplet vaporization, condensation and the precipitation of submicron particles of K/sub 2/CO/sub 3/ on the heat exchange surface are also included.

Styrikovich, M.A.; Mostinskii, I.L.

1977-01-01T23:59:59.000Z

120

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

more volatile than the price of coal. Price regulation incoal-fired generation could reduce wholesale electricity pricecoal is found to be more negative than the beta of gas, given that the price

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the importance of grid carbon intensity. Natural-gas-fired CHP is GHG preferable to grid power only when supply projection, in-state and imports Natural gas plants providing power to California are a mix ....................................................................................................................... 12 Table 7. 2020 forecasts of California electricity and natural gas prices

122

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network (OSTI)

using Integrated Gasification Combined Cycle (IGCC) plants.Natural gas-fired combined cycle plants can be converted toand more efficient combined-cycle plants. Combined cycle

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

123

Program on Technology Innovation: Nanoparticles at Coal and Gas Fired Power Plants  

Science Conference Proceedings (OSTI)

Nanoparticles—particles with diameters less than 100 nanometers—can occur from the combustion of fossil fuel, such as coal and natural gas. Recently, nanoparticles have gained the industry’s attention because they may be associated with adverse health effects. Despite potential health hazards, little published data exist concerning the types and concentrations of nanoparticles in work environments. This report is the first published study on concentration and composition of nanoparticles in power plant w...

2008-11-26T23:59:59.000Z

124

Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report  

DOE Green Energy (OSTI)

Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

NONE

1995-05-01T23:59:59.000Z

125

Operation Synopsis of Gas-Fired Double-Effect Absorption Chillers  

E-Print Network (OSTI)

Absorption refrigeration systems are one of the oldest systems available. The fundamentals of absorption refrigeration were formulated about 1777, and the first successful absorption machine was developed in 1850. The first U.S. patent for an absorption refrigeration system was issued in 1860. Absorption systems can use many different heat sources to produce the refrigeration effect: natural gas, steam, solar, and oil. While absorption systems were popular in the U.S. in the early part of the 20th century, their use declined in the mid twentieth century for several reasons: (1) increased reliability of vapor compression systems, (2) dropping electric prices (in real dollars), and (3) rapidly increasing gas prices. In recent years, there has been a resurgence of interest in absorption refrigeration and cooling. Natural gas prices have moderated while electric prices continue to rise. The reliability and performance of absorption systems have been substantially improved with new technology from Japan. This paper summarizes the results of the operation of three absorption systems located in the greater Dallas/Ft. Worth area.

Phillips, J.

1986-01-01T23:59:59.000Z

126

CO2 Offset Options: Comparative Assessment of Terrestial Sinks vs. Natural Gas Combined Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

W. South (south@energyresources.com; 202-785-8833) W. South (south@energyresources.com; 202-785-8833) Energy Resources International, Inc. 1015 18 th Street, N.W., Suite 650 Washington, DC 20036 CO 2 Offset Options: Comparative Assessment of Terrestial Sinks vs. Natural Gas Combined Cycle 1 Abstract This study compares the economic value of two CO 2 mitigation actions: terrestrial reforestation to sequester CO 2 emitted from coal-fired power generation versus natural gas combined cycle (NGCC) power generation to avoid (minimize) CO 2 release. The same quantity of carbon offset was assumed for both actions. Tree stock growth, carbon absorption/release cycles, and replanting were considered to maintain the quantity of carbon offset via reforestation. The study identified important parameters with both CO 2 mitigation options that should be considered when examining alternative strategies.

127

Impact of Natural Gas Market Conditions on Fuel Flexibility Needs for Existing and New Power Generation: Report Series on Natural Ga s and Power Reliability  

Science Conference Proceedings (OSTI)

The ongoing surge in new gas-fired capacity is changing the landscape of how natural gas will be used for power generation, leading to some surprising effects. While the new machines bring greater efficiency, the exit of dual-fuel units leads to a loss in fuel flexibility, greater natural gas price volatility, and less reliability of natural gas-fired generation. This report explores these effects systematically, bringing fresh insight on gas use in the electric sector, its market effects, and the ever-c...

2002-01-31T23:59:59.000Z

128

A combined cycle designed to achieve greater than 60 percent efficiency  

Science Conference Proceedings (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, Westinghouse is working on Phase 2 of an 8-year Advanced Turbine Systems Program to develop the technologies required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. In this paper, the technologies required to yield an energy conversion efficiency greater than the Advanced Turbine Systems Program target value of 60% are discussed. The goal of 60% efficiency is achievable through an improvement in operating process parameters for both the combustion turbine and steam turbine, raising the rotor inlet temperature to 2,600 F (1,427 C), incorporation of advanced cooling techniques in the combustion turbine expander, and utilization of other cycle enhancements obtainable through greater integration between the combustion turbine and steam turbine.

Briesch, M.S.; Bannister, R.L.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

129

Application of RBF-type ARX Modeling and Control to Gas Turbine Combined Cycle SCR Systems  

E-Print Network (OSTI)

Application of RBF-type ARX Modeling and Control to Gas Turbine Combined Cycle SCR Systems Y, nonlinear model-based predictive control, energy saving. 1. INTRODUCTION In Japan, GTCC(Gas Turbine Combined gas-firing GTCC power plant is most effective in terms of thermal efficiency and lower CO2 energy

Ozaki, Tohru

130

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

considering that natural gas prices (and gas pricein the market, allowing natural gas price volatility to flowincreasingly volatile natural gas prices, renewable energy

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

131

Gas Supply Outlook - Gauging Wellhead Deliverability Now and in the Future: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

While developers are postponing or cutting back plans for new natural gas-fired plants, the next few years will record additions of gas-fired capacity. Over the long term, this growth is expected to continue, causing a 30 percent increase in U.S. natural gas demand by 2015. Are there any limits to the U.S. "dash to gas"? Extraordinarily high gas prices during the winter of 2000-01 offered a warning. The current study investigates the availability of natural gas, asking what is reasonable to expect.

2002-02-12T23:59:59.000Z

132

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

8, 2013 | Release Date: September 19, 8, 2013 | Release Date: September 19, 2013 | Next Release: September 26, 2013 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Marcellus gas pipe capacity seen rising 0.5 Bcf/d by month's end; additional expansions expected this winter Initial service could begin by the end of September for two projects that would increase natural gas takeaway capacity from the Marcellus Shale formation by a combined 0.5 billion cubic feet per day (Bcf/d). These two projects are a 7.9 mile, 0.23 Bcf/d looping pipeline added to Kinder Morgan's Tennessee Gas Pipeline (TGP) (known as the MPP Project's "313 Loop") and a 2.5 mile, 0.22 Bcf/d pipeline connecting NiSource's Columbia Gas Transmission (TCO) pipeline to a 1,329-megawatt gas-fired

133

Recent mix of electric generating capacity additions more diverse ...  

U.S. Energy Information Administration (EIA)

Natural gas combined-cycle plants accounted for about 68% of the total natural gas-fired capacity added between 1999 and 2010.

134

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

135

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

in the market, allowing natural gas price volatility to flowClearly, the variability of gas prices poses a major risk toincreasingly volatile natural gas prices, renewable energy

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

136

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

gas supply contracts and natural gas storage. As is shown inor Storage Cost Gas Price Falls Gas Price Rises Natural Gas

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

137

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Energy Journal, 16 (1), 71-83. Xcel Energy. 2001. FairnessCompliance Report For Xcel Energy 1998 Resource Plan, DocketSystem Operations Planning: Xcel Energy – North Case Study,

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

138

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Energies’ system in Wisconsin found wind integration costsCost of Integrating Wind With Wind’s Hedge Value. 63 v Acknowledgements Work reported here was funded by the Assistant Secretary of Energywind integration costs (see Text Box 2); and including environmental externality costs in certain production cost simulation runs (Xcel Energy

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

139

Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

% of total from natural gas production & distribution % of total from ammonia production & distribution Natural gas (in ground) 169.2 97.6% 0.0% 99.9% 0.1% Coal (in ground) 1.8...

140

Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The  

Reports and Publications (EIA)

This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.

Information Center

2009-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New electric generators typically come online at the start of ...  

U.S. Energy Information Administration (EIA)

Taking natural gas-fired generators as an example ... the trend toward summer online dates is more pronounced for gas combustion turbines and combined-cycle units, ...

142

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

boilers, coal, oil, or natural gas-fired boiler steam generators require a permit. Gas turbines, as well as simple cycle combined with heat recovery steam turbine require...

143

Development of a Computer-based Benchmarking and Analytical Tool: Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)  

E-Print Network (OSTI)

coal and natural gas fired power plants for the locations ornatural gas) because there are a lot of plants that use combined heat and power (

Xu, Tengfang

2013-01-01T23:59:59.000Z

144

Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool: Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)  

E-Print Network (OSTI)

coal and natural gas fired power plants for the locations ornatural gas) because there are a lot of plants that use combined heat and power (

Xu, Tengfang

2013-01-01T23:59:59.000Z

145

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

fixed-price gas supply contracts and natural gas storage. Asnatural gas prices, rather than on prices that can be locked in through futures, swap, or fixed- price physical supplySupply, Renewable Energy Gas Options, Gas Storage Option Premium or Storage Cost Gas Price Falls Gas Price Rises Natural

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

146

NETL: News Release - First Commercial Application of Advanced Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

February 19, 2004 February 19, 2004 First Commercial Application of Advanced Natural Gas Turbine Announced Turbine Developed Through Department of Energy's Advanced Turbine Systems Program GE Energy has announced that the world's first application of their next-generation 7H gas turbine technology will be an 800-megawatt class, combined-cycle project with Hydro-Quebec Production. The new natural-gas-fired power plant, to be built at Beauharnois, Quebec, southwest of Montreal, will be based on two GE 107H combined-cycle systems. The plant is expected to enter commercial service in mid 2007. The 7H gas turbine is one of two H System gas turbines developed by GE Energy as part of the U.S. Department of Energy's advanced turbine systems program. The Hydro-Quebec plant will be the first commercial application of the 60-hertz 7H, the H System turbine suitable for use in the United States and Canada. The 50-hertz 9H, suitable for the overseas market, got its commercial start in 2003 at the Baglan Bay Power Station in Wales, UK. The Baglan Bay plant has received a number of prestigious industry awards for its use of the innovative H System turbine.

147

Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation  

E-Print Network (OSTI)

common practice of using gas price forecasts in long-rangeit is likely that gas prices in the US will continue to bethat natural gas prices (and gas price volatility) have a

Bolinger, Mark; Wiser, Ryan

2003-01-01T23:59:59.000Z

148

Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate  

Science Conference Proceedings (OSTI)

Ensemble simulations are run with a global coupled climate model employing five forcing agents that influence the time evolution of globally averaged surface air temperature during the twentieth century. Two are natural (volcanoes and solar) and ...

Gerald A. Meehl; Warren M. Washington; Caspar M. Ammann; Julie M. Arblaster; T. M. L. Wigley; Claudia Tebaldi

2004-10-01T23:59:59.000Z

149

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network (OSTI)

efficiency of natural gas fired power generation, which willefficiency of natural gas fired power generation, which will

Wenle, Susanne Alice

2010-01-01T23:59:59.000Z

150

Phased Construction of Natural Gas Combined-Cycle Plants with Coal Gasification and CO2 Recovery  

Science Conference Proceedings (OSTI)

This report is a brief review of technologies and key issues involved in a phased construction approach for a low-emission integrated-gasification-combined-cycle (IGCC) plant where carbon dioxide (CO2) removal for use or sequestration can be added at a later date.

2002-10-10T23:59:59.000Z

151

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

Science Conference Proceedings (OSTI)

The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

152

An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.  

DOE Green Energy (OSTI)

This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

153

Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices  

SciTech Connect

Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-07-17T23:59:59.000Z

154

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Prices headed up the middle of last week despite seasonal or cooler temperatures everywhere but California (See Temperature Map) (See Deviation from Normal Temperatures Map) and the July 4th holiday, regarded as one of the lowest natural gas consumption days. As expected, the resulting 10-cent-per-MMBtu gain at the Henry Hub on Thursday compared with the previous Friday was undone the following day. The futures price for August delivery was able to stay ahead of the previous week by 12.2 cents to settle at $3.218 on Friday. Spot natural gas prices for large packages in southern California increased as much as $2.71 per MMBtu as temperatures soared and gas-fired power plants endeavored to meet air conditioning demand. Prices started to recede as temperatures abated by the end of the week. Strong gas supplies across the country supported another hefty net addition to storage of 105 Bcf.

155

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

generation, such as a combined cycle gas turbine (CCGT),based on the cost of a combined-cycle natural gas firednew natural gas-fired combined cycle gas turbine (CCGT). The

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

156

Guide to natural gas cogeneration  

Science Conference Proceedings (OSTI)

This user-oriented guide contains expert commentary and details on both the engineering and economic aspects of gas-fired cogeneration systems. In this completely undated second edition, is a thorough examination of equipment considerations and applications strategies for gas engines, gas turbines, steam engines, and electrical switch-gear. Clear guidelines show how to select the prime mover which is best suited for a specific type of application. It describes which methods have proven most effective for utilizing recoverable heat, how to determine total installed capacity, and how to calculate the required standby capacity. The second edition provides an assessment of recent technological developments. A variety of case studies guide through all types of natural gas cogeneration applications, including both commercial and industrial, as well as packaged systems for restaurants and hospitals. Drawing upon the expertise of numerous authorities from the American Gas Association, this fully illustrated guide will serve as a valuable reference for planning or implementing a natural gas-fired cogeneration project.

Hay, N.E. (ed.)

1992-01-01T23:59:59.000Z

157

Evaluation of Thermal Zero Liquid Discharge Treatment Technologies for Combined Cycle Gas Turbine Power Plants  

Science Conference Proceedings (OSTI)

A study was conducted to identify and update key details of zero liquid discharge (ZLD) water management systems currently operating at U.S. gas-fired combined cycle generating stations (CC). The study focused on not only the technologies applied, but also on the advantages and shortcomings of the various processes and summarized the lessons learned from the operating systems. Most ZLD's were found to employ one of four different types of water pretreatment process assemblies consisting of the following:...

2011-12-19T23:59:59.000Z

158

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Draft Environmental Impact Statement  

DOE Green Energy (OSTI)

The Kentucky Pioneer IGCC Demonstration Project DEIS assesses the potential environmental impacts that would result from a proposed DOE action to provide cost-shared financial support for construction and operation of an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky. Under the Proposed Action, DOE would provide financial assistance, through a Cooperative Agreement with Kentucky Pioneer Energy, LLC, for design, construction, and operation of a 540 megawatt demonstration power station comprised of two synthesis gas-fired combined cycle units in Clark County, Kentucky. The station would also be comprised of a British Gas Lurgi (BGL) gasifier to produce synthesis gas from a co-feed of coal and refuse-derived fuel pellets and a high temperature molten carbonate fuel cell. The facility would be powered by the synthesis gas feed. The proposed project would consist of the following major components: (1) refuse-derived fuel pellets and coal receipt and storage facilities; (2) a gasification plant; (3) sulfur removal and recovery facilities; (4) an air separation plant; (5) a high-temperature molten carbonate fuel cell; and (6) two combined cycle generation units. The IGCC facility would be built to provide needed power capacity to central and eastern Kentucky. At a minimum, 50 percent of the high sulfur coal used would be from the Kentucky region. Two No Action Alternatives are analyzed in the DEIS. Under the No Action Alternative 1, DOE would not provide cost-shared funding for construction and operation of the proposed facility and no new facility would be built. Under the No Action Alternative 2, DOE would not provide any funding and, instead of the proposed demonstration project, Kentucky Pioneer Energy, LLC, a subsidiary of Global Energy, Inc., would construct and operate, a 540 megawatt natural gas-fired power station. Evaluation of impacts on land use, socioeconomics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, and environmental justice were included in the assessment.

N /A

2001-11-16T23:59:59.000Z

159

Cost and Performance Baseline for Fossil Energy Plants; Volume 3c: Natural Gas Combined Cycle at Elevation  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline for Fossil Energy Plants Volume 3c: Natural Gas Combined Cycle at Elevation March 2011 DOE/NETL-2010/1396 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

160

Guide to natural gas cogeneration. [Glossary included  

SciTech Connect

Guide to natural gas cogeneration is the most extensive reference ever written on the engineering and economic aspects of gas fired cogeneration systems. Forty-one chapters cover equipment considerations and applications for gas engines, gas turbines, stem engines, electrical switchgear, and packaged systems. The text is thoroughly illustrated with case studies for both commercial and industrial applications of all sizes, as well as for packaged systems for restaurants and hospitals. A special chapter illustrates market opportunities and keys to successful development. Separate abstracts of most chapters and several appendices have been prepared.

Hay, N.E. (ed.)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Outlook for Capacity Retirements Following U.S. Boom in New Supplies: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

While entrepreneurial exuberance for power plant development has evaporated in the face of market saturation, depressed power prices, and tightening credit, the legacy of the power plant building boom is record additions of gas-fired turbines and combined cycle units between 1998 and 2007. These are contributing to a wave of fossil plant retirements, projected for the first time in this report. The combination of recent cancellations and impending retirements reduces the outlook for overbuilding, yet res...

2003-02-04T23:59:59.000Z

162

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

Natural gas- fired power plants comprise over 60% of capacity and almost 50% of generation.Natural gas combined cycle and combined heat and power (NGCC+CHP) plants make up 37% of the lost generation,

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

163

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect

On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark; Wiser, Ryan

2009-01-28T23:59:59.000Z

164

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

Science Conference Proceedings (OSTI)

On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

2008-01-07T23:59:59.000Z

165

Preliminary assessment of potential CDM early start projects in Brazil  

E-Print Network (OSTI)

pollution from natural gas-fired power plants. Some of the50% from natural gas combined cycle power plants and 50%power plant. In Brazil, the most likely plant type that would be displaced is natural gas

Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.

2000-01-01T23:59:59.000Z

166

Combination of Natural and Numerical Optimization Methods at the Example of an Internal Gas Turbine Cooling Channel  

Science Conference Proceedings (OSTI)

Iceformation phenomena can be observed in many natural and technical processes. A naturally grown ice layer aspires in steady state to a minimum of energy dissipation. Driven by this goal, this phenomena can be used to optimize complex geometric configurations ...

Helga Steinbrück; Sebastian Zehner; Bernhard Weigand; Sven Olaf Neumann

2008-09-01T23:59:59.000Z

167

Combined Systems with Tankless Water Heaters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Systems with Tankless Water Heaters Combined Systems with Tankless Water Heaters Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas More builder's wanting to use gas-fired tankless water heaters, and with solar pre-heat  Endless hot water  Helps HERS Index  Space saving 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Problem with elevated TWH inlet temperature 60 70 80 90 100 110 120 130 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Maximum Inlet Temperature (F) DHW flow rate (gpm) Maximum TWH inlet temperature to stay below 125 F delivered temperature, with 15 kBtu/h minimum firing rate Typical shower temperature 4 Residential Energy Efficiency Stakeholder Meeting

168

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

169

Microsoft Word - Final Risk CA Energy.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

as a combined-cycle natural gas-fired power plant. Power plants identified as "cogeneration units" were coded as combined-cycle units for the purposes of this analysis. All...

170

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

11 (next release 2:00 p.m. on August 18) 11 (next release 2:00 p.m. on August 18) Natural gas spot prices exhibited increases in most locations this week (Wednesday - Wednesday, August 3 - 10) as demand responded to above average temperatures, high crude oil prices, and reduced coal deliveries, which added to demand for natural gas-fired power generation. The Henry Hub spot price increased 6 cents this week, or less than 1 percent, to $8.81 per MMBtu. The price of the NYMEX futures contract for September delivery increased 72 cents since last Wednesday (August 3) to settle yesterday at $9.071 per MMBtu. Natural gas in storage as of Friday, August 5, was 2,463 Bcf, which is 6.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil hit a record high yesterday of $64.80 per barrel ($11.17 per MMBtu) after increasing $4.04 per barrel (70 cents per MMBtu), or about 7 percent, on the week.

171

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network (OSTI)

effic. Natural Gas-Fired Power Plants (NGCC turbine) K2Orecovery effic. Natural Gas-Fired Power Plants (Simple CycleNG recovery effic. Natural Gas-Fired Power Plants (Utility

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

172

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

intensive as natural gas-fired power plants (16), and open-demand, whereas natural gas-fired power plants are easy tonuclear, and natural gas-fired power plants are the types of

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

173

ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE  

E-Print Network (OSTI)

the state’s natural gas-fired power generation facilities,the state’s natural gas-fired power generation facilities,

Sathaye, Jayant

2011-01-01T23:59:59.000Z

174

An Experimental Based Investigation of Oxycombustion in an SI Engine  

E-Print Network (OSTI)

Key parameters of natural gas-fired power plants with CO 2Key parameters of natural gas-fired power plants with CO 2

Van Blarigan, Andrew Charles

2012-01-01T23:59:59.000Z

175

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The number of natural gas-fired power stations is increasing in Japan, and roughly 26 percent of electricity was natural gas-fired in 2010.

176

EIS-0343: Final Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Company (PERC), proposes to construct a 1,160-megawatt (MW) natural gas-fired, combined-cycle electric generating plant in Klamath County, Oregon near the city of...

177

EIS-0343: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporation (PERC), proposes to construct a 1,160-megawatt (MW) natural gas-fired, combined-cycle electric generating plant in Klamath County, Oregon, near the city of...

178

EIS-0343: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COB Energy Facility, Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined- Cycle Electric Generating Plant, Right- of-Way Permit across Federal Land under...

179

EIS-0343: EPA Notice of Availability of the Final Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Klamath County, Oregon Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined-Cycle Electric Generating Plant, Right-of-Way Permit cross Federal Land under the...

180

Inland Energy Inc | Open Energy Information  

Open Energy Info (EERE)

the 500MW natural gas-fired combined cycle, plus 50MW solar thermal, Victorville 2 power plant. References Inland Energy Inc1 LinkedIn Connections CrunchBase Profile No...

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Microsoft Word - TR_Parametric_R1-V2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPACT OF OPERATING PARAMETERS ON FINE PARTICULATE EMISSIONS FROM NATURAL GAS-FIRED COMBINED CYCLE AND COGENERATION POWER PLANTS February 2005 CEC-500-2005-036 Revision 1.2,...

182

Integrated Desalination and Primary Aluminium Production  

Science Conference Proceedings (OSTI)

Desalination plants can be installed in combination with gas-fired power plants, and it is shown that part of the natural gas consumed for production of water in ...

183

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2001 8, 2001 Prices ended the week up slightly from where they started as a brief heat wave in the eastern half of the country caused a rise in prices (See Temperature Map) (See Deviation from Normal Temperatures Map) that was somewhat undone by the return of moderate temperatures and the report of another hefty stock build. On a Friday-to-Friday basis, the spot price at the Henry Hub increased by $0.25 to $3.88 per MMBtu compared with an increase of $0.23 to $0.33 at other major supply points in the eastern half of the country. In the same time period, the near-month (July delivery) futures contract was up less than 6 cents to $3.979 per MMBtu as of Friday, June 15, 2001. Prices in California rose substantially last Monday after coming off high inventory flow orders (OFOs) but ended the week close to or lower than the previous week due to another round of OFOs. For the past 7 weeks, weekly storage injections neared or exceeded 100 Bcf, bringing stocks to within less than a 1 percent difference from average levels. The string of record-breaking stock builds appears attributable to moderate spring temperatures and reduced cooling demand by natural-gas-fired electricity generation.

184

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

1 (next release 2:00 p.m. on August 18) 1 (next release 2:00 p.m. on August 18) Natural gas spot prices exhibited increases in most locations this week (Wednesday - Wednesday, August 3 - 10) as demand responded to above average temperatures, high crude oil prices, and reduced coal deliveries, which added to demand for natural gas-fired power generation. The Henry Hub spot price increased 6 cents this week, or less than 1 percent, to $8.81 per MMBtu. The price of the NYMEX futures contract for September delivery increased 72 cents since last Wednesday (August 3) to settle yesterday at $9.071 per MMBtu. Natural gas in storage as of Friday, August 5, was 2,463 Bcf, which is 6.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil hit a record high yesterday of

185

Advanced natural gas fuel technologies for military installations. Final report  

SciTech Connect

Energy conservation efforts reduced Department of Defense (DoD) fossil fuel consumption considerably between FYX5 and FY9 I, yet electricity consumption increased. Electricity consumption accounts for only one-third of DoD energy use, but over half of DoD energy costs. In addition, the production of electricity at coal or nuclear plants often creates environmental concerns, while the use of clean-burning natural gas does not; its use can help DoD bases comply with increasingly stringent environmental regulations. Recent developments in natural gas-fired technologies also demonstrate improved efficiency and productivity at lower costs. This report identifies state-of-the-art and emerging natural gas utilization technologies with potential application on DoD installations. This report describes various technologies that have potential residential, commercial, or industrial applications on DoD installations. Applications include heating, cooling, power generation, food preparation, and several industrial processes.

Savoie, M.J.; Freeman, P.M.; Blazek, C.F.; Potts, N.L.

1994-09-01T23:59:59.000Z

186

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Retrofits for State Correctional Facilities - Staton Corrections Facility Boiler Replace the existing natural gas fired boiler with a new, more efficient, gas fired...

187

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Energy Retrofits for State Correctional Facilities - Mobile WCWR Facility Boiler Replace the existing natural gas fired boiler with a new, more efficient, gas fired...

188

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Energy Retrofits for State Correctional Facilities - Draper Correctional Boiler Replace an existing natural gas fired boiler with a new, more efficient gas fired...

189

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

Keinan, Alon

190

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

DOE Green Energy (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

191

Gas-fired cooling status and trends  

SciTech Connect

The current US heating, ventilating, and air-conditioning (HVAC) market shows that the predictions of a health expansion in this market are attainable in this decade. The HVAC industry`s positive trade balance is widening; their successful hedge against various economic problems (the lack of financial and personnel resources) and their initiative to overcome the technical obstacles (caused by environmental issues) will have a positive, long-term impact. This along with energy availability and a favorable price structure has created a unique opportunity for the gas industry to regain and surpass previous respectable market shares attained with gas cooling technologies. New first generation gas cooling equipment is now entering the US marketplace with bold market predictions for commercial chillers and roof-top units, as well as for residential equipment. The marketing campaign covers a broad base of technical and supporting elements. It is the continued research, education, and training of engineers, architects, dealers, and utility sales personnel that can break the existing and serious barriers to the successful marketing of these cooling equipment products. Research in lowering equipment costs, personnel training, more units in the field, and more utility support in commercialization and deployment activities will guarantee an expansion of the market for the gas industry.

Wurm, J. [Inst. of Gas Technology, Chicago, IL (United States). Space Conditioning Research

1993-12-31T23:59:59.000Z

192

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural gas-fired combustion turbines are generally used to meet peak electricity load. January 23, ...

193

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

natural gas-fired generation plants; and the prospect of future greenhouse gas (GHG) emission regulations.

Hopper, Nichole

2008-01-01T23:59:59.000Z

194

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

July 9, 2001 July 9, 2001 Prices headed up the middle of last week despite seasonal or cooler temperatures everywhere but California (See Temperature Map) (See Deviation from Normal Temperatures Map) and the July 4th holiday, regarded as one of the lowest natural gas consumption days. As expected, the resulting 10-cent-per-MMBtu gain at the Henry Hub on Thursday compared with the previous Friday was undone the following day. The futures price for August delivery was able to stay ahead of the previous week by 12.2 cents to settle at $3.218 on Friday. Spot natural gas prices for large packages in southern California increased as much as $2.71 per MMBtu as temperatures soared and gas-fired power plants endeavored to meet air conditioning demand. Prices started to recede as temperatures abated by the end of the

195

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

which could lead to more gas-fired electric generation. Other Market Trends: FERC Approves New Gas Infrastructure in Gulf Coast Region: The Federal Energy Regulatory...

196

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

197

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

Science Conference Proceedings (OSTI)

This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities. Through a series of three case studies, key trade-offs are analyzed with regard to the provision of black-out ridethrough capability with the CHP systems and the resutling ability to avoid the need for at least some diesel backup generator capacity located at the case study sites. Each of the selected sites currently have a CHP or combined heating, cooling, and power (CCHP) system in addition to diesel backup generators. In all cases the CHP/CCHP system have a small fraction of the electrical capacity of the diesel generators. Although none of the selected sites currently have the ability to run the CHP systems as emergency backup power, all could be retrofitted to provide this blackout ride-through capability, and new CHP systems can be installed with this capability. The following three sites/systems were used for this analysis: (1) Sierra Nevada Brewery - Using 1MW of installed Molten Carbonate Fuel Cells operating on a combination of digestor gas (from the beer brewing process) and natural gas, this facility can produce electricty and heat for the brewery and attached bottling plant. The major thermal load on-site is to keep the brewing tanks at appropriate temperatures. (2) NetApp Data Center - Using 1.125 MW of Hess Microgen natural gas fired reciprocating engine-generators, with exhaust gas and jacket water heat recovery attached to over 300 tons of of adsorption chillers, this combined cooling and power system provides electricity and cooling to a data center with a 1,200 kW peak electrical load. (3) Kaiser Permanente Hayward Hospital - With 180kW of Tecogen natural gas fired reciprocating engine-generators this CHP system generates steam for space heating, and hot water for a city hospital. For all sites, similar assumptions are made about the economic and technological constraints of the power generation system. Using the Distributed Energy Resource Customer Adoption Model (DER-CAM) developed at the Lawrence Berkeley National Laboratory, we model three representative scenarios and find the optimal operation scheduling, yearly energy cost, and energy technology investments for each scenario below: Scenario 1 - Diesel generators and CHP/CCHP equipment as installed in the current facility. Scenario 1 represents a baseline forced investment in currently installed energy equipment. Scenario 2 - Existing CHP equipment installed with blackout ride-through capability to replace approximately the same capacity of diesel generators. In Scenario 2 the cost of the replaced diesel units is saved, however additional capital cost for the controls and switchgear for blackout ride-through capability is necessary. Scenario 3 - Fully optimized site analysis, allowing DER-CAM to specify the number of diesel and CHP/CCHP units (with blackout ride-through capability) that should be installed ignoring any constraints on backup generation. Scenario 3 allows DER-CAM to optimize scheduling and number of generation units from the currently available technologies at a particular site. The results of this analysis, using real data to model the optimal schedulding of hypothetical and actual CHP systems for a brewery, data center, and hospital, lead to some interesting conclusions. First, facilities with high heating loads will typically prove to be the most appropriate for CHP installation from a purely economic standpoint. Second, absorption/adsorption cooling systems may only be economically feasible if the technology for these chillers can increase above current best system efficiency. At a coefficient of performance (COP) of 0.8, for instance, an adsorption chiller paired with a natural gas generator with waste heat recovery at a facility with large cooling loads, like a data center, will cost no less on a yearly basis than purchasing electricity and natural gas directly from a utility. Third, at marginal additional cost, if the reliability of CHP systems proves to be at

Norwood, Zack; Lipman, Tim; Marnay, Chris; Kammen, Dan

2008-09-30T23:59:59.000Z

198

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network (OSTI)

J.L. Edwards, (2003), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,”on the economics of distributed energy resources (DER) in

Stadler, Michael

2010-01-01T23:59:59.000Z

199

Environmental Assessment for the Warren Station externally fired combined cycle demonstration project  

SciTech Connect

The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

NONE

1995-04-01T23:59:59.000Z

200

Search Combinators  

E-Print Network (OSTI)

The ability to model search in a constraint solver can be an essential asset for solving combinatorial problems. However, existing infrastructure for defining search heuristics is often inadequate. Either modeling capabilities are extremely limited or users are faced with a general-purpose programming language whose features are not tailored towards writing search heuristics. As a result, major improvements in performance may remain unexplored. This article introduces search combinators, a lightweight and solver-independent method that bridges the gap between a conceptually simple modeling language for search (high-level, functional and naturally compositional) and an efficient implementation (low-level, imperative and highly non-modular). By allowing the user to define application-tailored search strategies from a small set of primitives, search combinators effectively provide a rich domain-specific language (DSL) for modeling search to the user. Remarkably, this DSL comes at a low implementation cost to the...

Schrijvers, Tom; Wuille, Pieter; Samulowitz, Horst; Stuckey, Peter J

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gas Storage for Power Generation -- Critical New Bridge Between Power Demand and Gas Supply: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

Natural gas storage is a "sleeper" issue for the power industry that will demand a great deal of attention very soon as the building boom of gas-fired capacity draws to a close and these plants begin to operate. While an entire industry has emerged in recent years to develop high-deliverability gas storage, the new facilities are likely the tip of an iceberg. Pipelines will be taxed to meet fluctuating requirements of new units, and companies will turn to gas storage for reliability at an affordable cost...

2002-11-11T23:59:59.000Z

202

Variability in natural gas fuel composition and its effects on the performance of catalytic combustion systems. Final report for period September 18, 1998 - September 17, 2000  

SciTech Connect

Natural gas is composed primarily of methane with small amounts of higher hydrocarbons and diluents, which vary by region and over time. Compositions of natural gas from domestic and worldwide sources were surveyed with respect to content of higher hydrocarbons and diluents. The survey showed slight compositional variability between most of the gases, with a small fraction of them containing significantly larger contents of higher hydrocarbons than the mean. As gas-fired turbines will be used for power generation all over the world, they will need to tolerate operation with fuels with a wide variety of compositions, particularly with respect to the concentration of higher hydrocarbons and diluents. Subscale catalytic combustion modules typical of those used in gas turbine power generation with ultra low emissions of pollutants were tested in a subscale test system with natural gas alone and with added known levels of hydrocarbon compounds and diluents. The range of compositions tested contained the range observed in the survey. Test results were used to calculate the effect of composition on catalyst performance. The compositional variability is of little consequence to the catalyst for most of the gases in the survey, including nearly all of the gases delivered in the U.S. To accommodate the remaining gases, the catalyst inlet temperature must be lowered to maintain combustor durability. These results support commercial acceptance of catalytic combustion systems for use in natural gas fired turbines in distributed power generation with ultra low NO{sub x} emissions.

Ginter, David; Simchick, Chuck; Schlatter, Jim

2002-03-01T23:59:59.000Z

203

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

January 8, 2014 | Release Date: January 9, January 8, 2014 | Release Date: January 9, 2014 | Next Release: January 16, 2014 Previous Issues Week: 01/19/2014 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Power sector response to high natural gas prices varies by region Day-ahead spot prices for natural gas and electric generation rose this week in both the Midwest and eastern United States, as the polar vortex brought cold temperatures to those parts of the country. While cold temperatures affected all of these regions, both gas and power prices increased more in New England, New York and the Mid-Atlantic than they did in the Midwest. Gas-fired power plants in the East had to compete for an increasingly limited amount of available pipeline capacity from a system that was

204

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.costs, a microgrid’s distributed energy resources (DER)

Marnay, Chris

2010-01-01T23:59:59.000Z

205

Energy Efficiency in the Future The Sixth Northwest Power Plan, 2010  

E-Print Network (OSTI)

and flexibility of the power system. 4. Build new natural gas-fired power plants to meet local needs for on-demand emissions of greenhouse gases from power plants. Demand Response Simple-Cycle Gas Combined-Cycle GasMegawats) Efficiency improvements Renewables to meet state RPS Natural gas combined-cycle for energy, firm capacity

206

Focused natural deduction  

Science Conference Proceedings (OSTI)

Natural deduction for intuitionistic linear logic is known to be full of non-deterministic choices. In order to control these choices, we combine ideas from intercalation and focusing to arrive at the calculus of focused natural deduction. The calculus ...

Taus Brock-Nannestad; Carsten Schürmann

2010-10-01T23:59:59.000Z

207

The Price of Electricity from Private Power Producers  

E-Print Network (OSTI)

prices shown in Figure ES-1 assume that coal prices stay constant in real terms and that natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 3-2. Gas-fired Projects with Prices Not Directly Tied to Natural Gas . . . . . . . . . 27 20-year levelized price of $0.092/kWh, whereas natural gas combined cycle and/or cogeneration

208

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

natural gas-fired power plant heat rates and generation,natural gas-fired power plant heat rates and generation,natural gas power plants and underestimates generation from

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

209

Sixth Northwest Conservation and Electric Power Plan Chapter 10: Resource Strategy  

E-Print Network (OSTI)

................................................................................................................ 7 Natural Gas-Fired Generation generation, and natural gas-fired generation. In addition, the region needs to better utilize, expand of resource needs will vary for every utility. The important message of the resource strategy is the nature

210

Restoring Equilibrium to Natural Gas Markets: Can Renewable Energy Help?  

Science Conference Proceedings (OSTI)

Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy technologies identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) can hedge natural gas price risk in more than one way, but a recent report by Berkeley Lab evaluates one such benefit in detail: by displacing gas-fired electricity generation, RE reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE. The Berkeley Lab report summarizes recent modeling studies that have evaluated the impact of RE deployment on gas prices, reviews the reasonableness of the results of these studies in light of economic theory and other research, and develops a simple tool that can be used to evaluate the impact of RE on gas prices without relying on a complex national energy model.

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

211

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

SciTech Connect

Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-12-21T23:59:59.000Z

212

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

213

GM and Amtrak opt for combined-cycle cogeneration: GM figures 2-year payback; electricity sell-back is gravy  

Science Conference Proceedings (OSTI)

General Motors anticipates a $2 million reduction in annual energy costs with a 10 MW gas-fired combined-cycle cogeneration system that will have a two-year payback. The system will provide about two-thirds of the plant's total power and one-third of its steam requirements. The revenues from selling power generated during weekends and off-shifts to Detroit Edison are not part of the calculations. This system includes two model 501-KB5 gas turbines and a 10 MW, air-cooled generator, with exhaust gases captured and sent to a waste heat recovery boiler that can produce up to 40,000 pph of high-pressure steam, which is fed to a steam turbine to boost capacity to 12 MW when steam loads are low. Low pressure steam contributes to the space heating system. The system will serve as a model for other GM facilities.

Barber, J.

1985-06-10T23:59:59.000Z

214

Development requirements for an advanced gas turbine system  

Science Conference Proceedings (OSTI)

In cooperation with US Department of Energy`s Morgantown Energy Technology Center, a Westinghouse-led team is working on the second part of an 8-year, Advanced Turbine Systems Program to develop the technology required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. This paper reports on the Westinghouse program to develop an innovative natural gas-fired advanced turbine cycle, which, in combination with increased firing temperature, use of advanced materials, increased component efficiencies, and reduced cooling air usage, has the potential of achieving a lower heating value plant efficiency in excess of 60%.

Bannister, R.L.; Cheruvu, N.S.; Little, D.A.; McQuiggan, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

215

Forecast Combinations  

E-Print Network (OSTI)

Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this chapter we analyze theoretically the factors that determine the advantages from combining forecasts (for example, the degree of correlation between forecast errors and the relative size of the individual models’ forecast error variances). Although the reasons for the success of simple combination schemes are poorly understood, we discuss several possibilities related to model misspecification, instability (non-stationarities) and estimation error in situations where thenumbersofmodelsislargerelativetothe available sample size. We discuss the role of combinations under asymmetric loss and consider combinations of point, interval and probability forecasts. Key words: Forecast combinations; pooling and trimming; shrinkage methods; model misspecification, diversification gains

Allan Timmermann; Jel Codes C

2006-01-01T23:59:59.000Z

216

Dampers for Natural Draft Heaters: Technical Report  

Science Conference Proceedings (OSTI)

Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

Lutz, James D.; Biermayer, Peter; King, Derek

2008-10-27T23:59:59.000Z

217

Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans  

E-Print Network (OSTI)

other than natural gas- fired generation, demand for naturalpresumption that demand for natural gas would be high as anatural gas-fired generation is the largest component of all incremental supply- and demand-

Barbose, Galen

2008-01-01T23:59:59.000Z

218

Mitigation of Energy and Natural Gas Market Risks  

Science Conference Proceedings (OSTI)

This report examines the landscape of market risk management for owners of gas-fired capacity. Gas generation is experiencing a second boom, though not as great as the boom that began a decade ago. Whereas overbuilding of capacity was foreseeable then, the underpinnings of gas' new prominence appear more durable, though not without risk. This report reviews factors driving new gas-fired plants and describes the many facets of energy risk management. The report addresses the regulatory setting affecting u...

2010-12-31T23:59:59.000Z

219

Making it Happen The Action Plan The Council believes it is critical that the region act now to help secure an adequate, efficient,  

E-Print Network (OSTI)

when demand is low. Conversely, compared to generating power plants, conservation always produces lead to the conclusion that natural gas combined-cycle plants may become the thermal resource of choice Westward, a gas- fired combined-cycle power plant incorporating advanced gas turbine technology. During

220

Repowering of the Midland Nuclear Station  

E-Print Network (OSTI)

The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The existing nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create the largest cogeneration facility in the United States. The paper describes the project and the converted facility.

Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

natural gas-fired generation plants; and the prospect of future greenhouse gas (GHG) emission regulations. Electricity market structures

Hopper, Nichole

2008-01-01T23:59:59.000Z

222

EIA - Electricity Data  

U.S. Energy Information Administration (EIA)

Natural Gas Fired Combustion Turbine Steam Turbine Internal Combustion Engine Steam Turbine Petroleum Liquids Fired Combustion Turbine Internal Combus ...

223

A Methodology to Assess the Reliability of Hydrogen-based Transportation Energy Systems  

E-Print Network (OSTI)

in the construction of natural-gas-fired power plants andnatural gas demands because some coal-fired power plants

McCarthy, Ryan

2004-01-01T23:59:59.000Z

224

Natural Gas Combined Cycle 3 Study Matrix  

E-Print Network (OSTI)

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Workshop On Gasification; Power Plants; Subcritical Pulverized Coal; Supercritical Pulverized Coal; F Cop

2007-01-01T23:59:59.000Z

225

Competitive position of natural gas: Industrial baking  

SciTech Connect

Industrial baking is one of the largest natural gas consumers in the food industry. In 1985, bread, rolls, cookies, and crackers accounted for over 82 percent of all baked goods production. Bread accounting for 46 percent of all production. The baking industry consumed approximately 16 trillion Btu in 1985. About 93 percent was natural gas, while distillate fuel oil accounted for seven percent, and electricity accounted for much less than one percent. The three main types of baking ovens are the single lap, tunnel, and Lanham ovens. In the single lap oven, trays carry the product back and forth through the baking chamber once. The single lap oven is the most common type of oven and is popular due to its long horizontal runs, extensive steam zone, and simple construction. The tunnel oven is slightly more efficient and more expensive that the single lap oven. IN the tunnel oven, the hearth is a motorized conveyor which passes in a straight line through a series of heating zones, with loading and unloading occurring at opposite ends of the oven. The advantages of the tunnel oven include flexibility with respect to pan size and simple, accurate top and bottom heat control. The tunnel oven is used exclusively in the cookie and cracker baking, with the product being deposited directly on the oven band. The most recently developed type of oven is the Lanham oven. The Lanham oven is the most efficient type of oven, with a per pound energy consumption approaching the practical minimum for baking bread. Between one--half and two--thirds of all new industrial baking ovens are Lanham ovens. In the Lanham oven, the product enters the oven near the top of the chamber, spirals down through a series of heating zones, and exits near the bottom of the oven. The oven is gas--fired directly by ribbon burners. 31 refs.

Minsker, B.S.; Salama, S.Y.

1988-01-01T23:59:59.000Z

226

Don`t overlook natural gas cooling equipment  

Science Conference Proceedings (OSTI)

If one thought the confusion surrounding chiller specification and operation ended with the availability of CFC-free refrigerant alternatives, think again. Plant engineers involved in the selection and installation of cooling equipment are facing yet another complicated task, this time thanks to deregulation of the electric utility industry. Still in its early stages, deregulation is a process that could take up to a decade. However, deregulation is also bringing about changing pricing structures. Electric power costs may not always be low for everyone. For plants paying $0.02/kwh for electricity, an electric-powered chiller is a must. But those paying $0.35 or $0.40/kwh, even for a few hours, cannot afford NOT to consider something besides an electric-motor-driven chiller. Among the most viable, yet often overlooked, options available is natural gas cooling. Gas cooling equipment gives industrial users the flexibility to choose either gas or electricity to drive their cooling systems. Natural gas cooling is defined here as the use of absorption cooling systems and engine-driven chillers, as alternatives to electric-driven equipment, to deliver chilled water in a conventional manner. Desiccant systems can also be gas fired and are used primarily for providing dry air for process control. Because of their specialized applications, desiccant cooling is not covered in this article.

Katzel, J.

1997-03-01T23:59:59.000Z

227

Long-Run Equilibrium Modeling of Alternative Emissions Allowance Allocation Systems in Electric Power Markets  

E-Print Network (OSTI)

periods: T = 20 periods per year, each Ht = 438 hours in length • Demands: dt(pt) = at ? btpt, with at = 500t and bt = t/2 • Nonpower emission: eNP (pe) = 0 • Generator types: i = 1 (coal steam), 2 (natural gas-fired combined cycle), and 3 (natural gas... -fired combustion turbine) • Minimal generation: CAP1 = 0 MW, CAP2 = 0 MW, and CAP3 = 0 MW • Marginal costs: MC1 = 20 $/MWh, MC2 = 40 $/MWh, and MC3 = 80 $/MWh • Investment costs: F1 = 120, 000 $/MW/yr, F2 = 75, 000 $/MW/yr, and F3 = 50, 000 $/MW/yr • Firms...

Schulkin, Jinye Z; Hobbs, Benjamin F; Pang, Jong-Shi

228

STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

in energy efficiency, and creating fleets of modern, cost-effective renewable and thermal power plants and environmentally damaging power plant when a lower cost, environmentally superior project alternative is available MW natural gas-fired combined cycle power plants that meet our state's stringent air quality

229

Imported LNG (liquid natural gas) as an alternative fuel  

SciTech Connect

Imports of liquefied natural gas (LNG) first arrived in the United States in 1972 at the rate of one billion cubic feet (Bcf) per year. By 1979, they had reached 252 Bcf/year. However, as US as demand declined and domestic deliverability grew, inflexible LNG prices led to the complete collapse of trade during the 1980s. In 1987, all four US import terminals were idle and no LNG was imported. The situation bean to change with renegotiation of Distrigas' contract to import LNG from Algeria's Sonatrach. In 1988, the company imported 19 Bcf of gas to its Everett, Massachusetts terminal, with greater volumes in 1989. Panhandle Eastern has also renegotiated its Algerian supply contract and reactivated the company's Trunkline LNG terminal at Lake Charles, Louisiana. It received its first cargo in December 1989. Moves are also being made to bring the other two US import terminals, at Cove Point, Maryland and Elba Island, Georgia, back into service. On the supply side too, there are major new developments. Not only is Algeria seeking to expand its existing exports, but new LNG projects in Nigeria, Norway and Venezuela in particular are aimed at the US market. The purpose of this report is to describe the current status and potential development of LNG imports to the US with a view to identifying those circumstances in which an electric utility might consider LNG as an alternate back-up fuel to distillate or residual oil, in gas-fired generating facilities. 9 figs., 10 tabs.

Kelly, M. (Jensen Associates, Inc., Boston, MA (USA))

1990-11-01T23:59:59.000Z

230

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Natural Gas.. 22 Power Generation .subsector. Power generation use of natural gas is subject toof natural gas-fired and non-fossil fuel power generation in

2004-01-01T23:59:59.000Z

231

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

emissions rate from natural gas supply that occurs upstreamassociated with natural gas supply to the power plant weresuggest natural gas-fired power plants will supply “

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

232

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

average peaking natural gas power plant (NGCT) supplies the13 categories. Natural gas- fired power plants comprise overcoal-fired power plant capacity, where natural gas plants

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

233

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Authors: Mohamed Toema (speaker), Sarah Nuss-Warren, and Kirby S. Chapman, Kansas State University National Gas Machinery Laboratory; James McCarthy and Thomas McGrath, Innovative Environmental Solutions Inc. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: The researchers are conducting a project to characterize pollutant emissions performance of field gas-fired four-stroke cycle rich burn engines equipped with non-selective catalytic reduction (NSCR) technology. Engine emissions and operating parameters are being monitored on three engines over an extended period. In addition, a mapping study was conducted on one engine. The NSCR was operated at various controlled air-to-fuel (AF) ratios while emission measurements were conducted and engine operating parameters monitored. NOx, CO, and oxygen were measured using both EPA reference method technology and the portable analyzer used in the long-term study. In the mapping study, ammonia, formaldehyde, CO, NOx, and speciated hydrocarbon emissions were recorded in real-time using an extractive FTIR system. This paper focuses on the engine mapping phase. The mapping tests demonstrated a trade-off between NOx emissions and CO, ammonia, and hydrocarbon emissions. Richer engine operation (lower AF) decreases NOx emissions at the expense of higher CO, ammonia, and hydrocarbons. Leaner operation has the opposite effect. The results to date of the semi-continuous monitoring are presented in a separate paper.

234

Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion  

DOE Green Energy (OSTI)

The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J. (Woodward)

2007-05-01T23:59:59.000Z

235

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network (OSTI)

Outline of 145 MW Combined Cycle Power Plant for KawasakiGas Firing Gas Turbine Combined Cycle Plant,” Journal ofgasifier/gas turbine combined cycle technology and its

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

236

Searching, naturally  

Science Conference Proceedings (OSTI)

Keywords: artificial intelligence, computational linguistics, information retrieval, knowledge representation, natural language processing, text processing

Eileen E. Allen

1998-06-01T23:59:59.000Z

237

Technical Status, Operating Experience, Risk and Market Assessment of Clean Coal Technologies  

Science Conference Proceedings (OSTI)

Natural gas fired combustion turbines and combined cycle plants have dominated the recent power generation markets in the United States and in much of Europe. However, concerns over natural gas price spikes have led many power companies to initiate studies and projects on clean coal technologies as a strategic hedge against over-reliance on natural gas alone to provide future power needs. Regulatory policy, site and project related issues, coal type, and risk assessment by the financiers and owners will ...

2003-12-19T23:59:59.000Z

238

Addressing an Uncertain Future Using Scenario Analysis  

E-Print Network (OSTI)

estimate of how the history of natural gas fired generatingU.S. Natural Gas Generation Fuel Price The history shown in

Siddiqui, Afzal S.; Marnay, Chris

2008-01-01T23:59:59.000Z

239

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

as dispatchable natural gas power plants. But active loads,However, if natural gas-fired power plants (~400–600 gCO 2 /

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

240

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

polluting than large natural gas power plants with modernIn 2001, natural gas fired power plants in New York State

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modeling natural gas prices as a random walk: The advantages for generation planning  

SciTech Connect

Random walk modeling allows decision makers to evaluate risk mitigation strategies. Easily constructed, the random walk provides probability information that long-term fuel forecasts do not. This is vital to meeting the ratepayers` need for low-cost power, the shareholders` financial objectives, and the regulators` desire for straightforward information. Power generation planning depends heavily on long-term fuel price forecasts. This is particularly true for natural gas-fired plants, because fuel expenses are a significant portion of busbar costs and are subject to considerable uncertainty. Accurate forecasts, then, are critical - especially if electric utilities are to take advantage of the current low cost of natural gas technologies and their relatively clean burning characteristics, without becoming overdependent on a fuel that might significantly increase in price. Moreover, the transition to a more competitive generation market requires a more market-driven planning process. Current planning techniques use several long-term fuel forecasts - one serving as an expected case and others for sensitivity analysis - as inputs for modeling production costs. These forecasts are deterministic: For every time interval there is one, and only one projected fuel price - a serious limitation. Further, past natural gas price predictions have been erroneous and may be susceptible to bias. Today, deregulation of the natural gas production industry allows for a new approach in long-term fuel forecasting. Using NYMEX information, a random walk model of natural gas prices can be constructed. A random walk assumes that prices move randomly, and in modeling prices in this context one would be sure to include this all-important price volatility.

Felder, F.A.

1995-11-01T23:59:59.000Z

242

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

243

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

DOE Green Energy (OSTI)

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

244

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices  

Science Conference Proceedings (OSTI)

On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2006-12-06T23:59:59.000Z

245

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

246

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

SciTech Connect

Electricity markets in the United States have witnessed unprecedented instability over the last few years, with substantial volatility in wholesale market prices, significant financial distress among major industry organizations, and unprecedented legal, regulatory and legislative activity. These events demonstrate the considerable risks that exist in the electricity industry. Recent industry instability also illustrates the need for thoughtful resource planning to balance the cost, reliability, and risk of the electricity supplied to end-use customers. In balancing different supply options, utilities, regulators, and other resource planners must consider the unique risk profiles of each generating source. This paper evaluates the relative risk profiles of renewable and natural gas generating plants. The risks that exist in the electricity industry depend in part on the technologies that are used to generate electricity. Natural gas has become the fuel of choice for new power plant additions in the United States. To some, this emphasis on a single fuel source signals the potential for increased risk. Renewable generation sources, on the other hand, are frequently cited as a potent source of socially beneficial risk reduction relative to natural gas-fired generation. Renewable generation is not risk free, however, and also imposes certain costs on the electricity sector. This paper specifically compares the allocation and mitigation of risks in long-term natural gas-fired electricity contracts with the allocation and mitigation of these same risks in long-term renewable energy contracts. This comparison highlights some of the key differences between renewable and natural gas generation that decision makers should consider when making electricity investment and contracting decisions. Our assessment is relevant in both regulated and restructured markets. In still-regulated markets, the audience for this report clearly includes regulators and the utilities they regulate. In restructured markets, the role of regulatory oversight of resource planning is more limited. Nonetheless, even in restructured markets, it is increasingly recognized that regulators have a critical role to play in directing the resource planning of providers of last resort--electric suppliers that provide service to those customers who choose not to switch to a competitive supplier. Our review of electricity contracts may also have educational value for those unfamiliar with the typical contents of these agreements. Details of our findings are provided in the body of the paper, but this summary is written to provide a concise alternative to reading the full report.

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-03-12T23:59:59.000Z

247

Horizontal drilling boosts Pennsylvania’s natural gas production ...  

U.S. Energy Information Administration (EIA)

Between 2009 and 2011, Pennsylvania's natural gas production more than quadrupled due to expanded horizontal drilling combined with hydraulic fracturing.

248

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

SciTech Connect

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

249

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

DOE Green Energy (OSTI)

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

250

Combining optical spectroscopy and interferometry  

E-Print Network (OSTI)

Modern optical spectrographs and optical interferometers push the limits in the spectral and spatial regime, providing important new tools for the exploration of the universe. In this contribution I outline the complementary nature of spectroscopic & interferometric observations and discuss different strategies for combining such data. Most remarkable, the latest generation of "spectro-interferometric" instruments combine the milliarcsecond angular resolution achievable with interferometry with spectral capabilities, enabling direct constraints on the distribution, density, kinematics, and ionization structure of the gas component in protoplanetary disks. I will present some selected studies from the field of star- & planet formation and hot star research in order to illustrate these fundamentally new observational opportunities.

Kraus, Stefan

2013-01-01T23:59:59.000Z

251

NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY  

SciTech Connect

DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

R.E. Rogers

1999-09-27T23:59:59.000Z

252

February 2003.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 *Sequestration News *Events and Announcements *Recent Publications *Legislative Activity Sequestration News Three methods to capture CO 2 from natural gas-fired combined gas/steam turbine power plants are evaluated and compared: (A) CO 2 separation by amine absorption, (B) Gas turbine combined cycle (CC) using a semi-closed gas turbine with near to stoichiometric combustion using oxygen , and, (C) Decarbonization via an autothermal reforming reactor with catalytic partial oxidation of gas natural gas. Total fuel-to-electricity conversion efficiencies, including CO 2 compression, were reported at: (A) 49.6%; (B) 47.2%; and (C) 45.3%, as compared to a 58% efficiency with no CO 2 capture. "A novel methodology for comparing CO 2 capture options for natural gas-fired

253

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

254

Effect of Energy Efficiency Standards on Natural Gas Prices  

Science Conference Proceedings (OSTI)

A primary justification for the establishment of energy efficiency standards for home appliances is the existence of information deficiencies and externalities in the market for appliances. For example, when a long-term homeowner purchases a new gas-fired water heater, she will maximize the value of her purchase by comparing the life-cycle cost of ownership of available units, including both total installed cost - purchase price plus installation costs - and operating cost in the calculus. Choice of the appliance with the lowest life-cycle costs leads to the most economically efficient balance between capital cost and fuel cost. However, if the purchaser's expected period of ownership is shorter than the useful life of the appliance, or the purchaser does not pay for the fuel used by the appliance, as is often the case with rental property, fuel cost will be external to her costs, biasing her decision toward spending less on fuel efficiency and resulting in the purchase of an appliance with greater than optimal fuel usage. By imposing an efficiency standard on appliances, less efficient appliances are made unavailable, precluding less efficient purchases and reducing fuel usage. The reduction in fuel demanded by residential users affects the total demand for such fuels as natural gas, for example. Reduced demand implies that residential customers are willing to purchase less gas at each price level. That is, the demand curve, labeled D{sub 0} in Figure 1, shifts to the left to D{sub 1}. If there is no change in the supply function, the supply curve will intersect the demand curve at a lower price. Residential demand is only one component of the total demand for natural gas. It is possible that total demand will decline very little if demand in other sectors increases substantially in response to a decline in the price. If demand does decrease, modeling studies generally confirm the intuition that reductions in demand for natural gas will result in reductions in its price as seen at the wellhead (Wiser 2007). The magnitude of the effect on price relative to the demand reduction, and the mechanism through which it occurs, is less well established. This report attempts to quantify the potential effects of reduced demand for natural gas in the residential sector, in response to the implementation of an energy efficiency standard for water heaters.

Carnall, Michael; Dale, Larry; Lekov, Alex

2011-07-26T23:59:59.000Z

255

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

256

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

257

Natural Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

originate? I need to give the intitial natural source of this energy. Replies: The energy source for most known organisms is the sun. Some organisms, such as deep-sea vent fauna...

258

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, September 22, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 14, 2011) A touch of autumn in the air combined with hopes for the eventual return of winter was likely the catalyst enabling natural gas prices to recapture the $4 mark this week despite an environment of negative consumption fundamentals and continued strong production. At the New York Mercantile Exchange (NYMEX), the October 2011 natural gas contract advanced 9.9 cents per million Btu (MMBtu) to close at $4.039 per MMBtu over the week. The Henry Hub price oscillated in a similar but narrow range before closing up 5 cents for the week at $4.01 per MMBtu on September 14. Working natural gas in storage rose last week to 3,112 billion cubic

259

Competition among fuels for power generation driven by changes ...  

U.S. Energy Information Administration (EIA)

Most recently, a number of factors have led to a continuing electric power industry trend of substituting coal-fired generation with natural gas-fired generation: ...

260

Air Pollution Control Permit to Construct and Permit to Operate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

may be required prior to commencing construction of the facility. Fuel-burning boilers, coal, oil, or natural gas-fired boiler steam generators require a permit. Gas...

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Capital costs have major impact on projected power sector ...  

U.S. Energy Information Administration (EIA)

Natural gas-fired power plants dominate the 2011 Annual ... AEO2011 also includes several alternative cases with lower assumed capital costs of nuclear, fossil fuel ...

262

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... High natural gas-fired generation in 2012 occurred as a result of the lowest spot ...

263

An introduction to spark spreads - Today in Energy - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The spark spread is a common metric for estimating the profitability of natural gas-fired electric generators. The spark spread is the difference between the price ...

264

Spark Spread - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The spark spread is a common metric for estimating the profitability of natural gas-fired electric generators. The spark spread is the difference between the price ...

265

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Natural gas-fired combustion turbines are generally used to meet peak electricity load. August 10, 2012 Wholesale electricity prices are lower during ...

266

Project No  

NLE Websites -- All DOE Office Websites (Extended Search)

its existing natural gas fired Kimberlina Demonstration facility to operate on simulated coal syngas and hydrogen-depleted syngas. A blending station was installed to deliver gas...

267

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

flat block of power, generation from natural gas fired CCGTsnatural gas plants. Even at high penetration adding power from a flat block does not displace any generation

Mills, Andrew

2013-01-01T23:59:59.000Z

268

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

... wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors ... Natural gas-fired combustion turbines are generally used to meet peak ...

269

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network (OSTI)

currently existing natural gas- fired power plants in southnatural gas-based distributed generation of electricity in California, which resulted in more air pollution than central power plants (

Wang, Guihua

2008-01-01T23:59:59.000Z

270

Water and Energy Interactions  

E-Print Network (OSTI)

lower for natural gas–fired power plants than for coal ornatural gas, oil, nuclear, biomass, and central solar power plants (

McMahon, James E.

2013-01-01T23:59:59.000Z

271

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PMC-IPOD 2009 Jose Benitez 2010-2012 Mount Meigs, Alabama Kilby Correctional Facility Boiler Replacement Remove existing natural gas fired 200 HP steam boiler at Kilby...

272

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

natural gas firing in the steam generator of a CSP plant norCycle Steam Nuclear Hydro None Table 14: Incumbent generator

Mills, Andrew

2013-01-01T23:59:59.000Z

273

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network (OSTI)

competes with coal as a baseload power generation fuel withplants because both are baseload generation. The efficiencybuild natural gas-fired baseload electric power plants. The

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

274

EA-1836: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to facilitiate installation and operations of a high-efficiency natural-gas-fired cogeneration facility - would result in no significant adverse impacts. Finding of No...

275

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Texas electricity market faces summer challenges. July 6, 2012 Monthly coal- and natural gas-fired generation equal for first time in April 2012. June 29, 2012

276

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network (OSTI)

cooling offset storage natural gas combustion solar thermalnatural gas-fired genset, solar thermal collectors, an absorption chiller and both electrical and heat storage.

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

277

Duct leakage impacts on VAV system performance in California large commercial buildings  

E-Print Network (OSTI)

chiller and cooling tower electricity consumption, boilerchiller and cooling tower electricity consumption, boilerheat outdoors using a cooling tower. A natural-gas-fired

Wray, Craig P.; Matson, Nance E.

2003-01-01T23:59:59.000Z

278

Micro-Characterization, Corrosion, and Environmental Affects  

Science Conference Proceedings (OSTI)

Oct 13, 2010... such as a combustion environment in a natural gas-fired turbine, chromia ... Oil -Grade Alloy 718 in Oil Field Drilling Applications: Jing Xu1; ...

279

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

280

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural System Natural System Evaluation and Tool Development - FY11 Progress Report Prepared for U.S. Department of Energy Used Fuel Disposition Program Yifeng Wang (SNL) Michael Simpson (INL) Scott Painter (LANL) Hui-Hai Liu (LBNL) Annie B. Kersting (LLNL) July 15, 2011 FCRD-USED-2011-000223 UFD Natural System Evaluation - FY11 Year-End Report July 15, 2011 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

282

EIS-0343: EPA Notice of Availability of the Draft Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Draft Environmental Impact Statement EIS-0343: EPA Notice of Availability of the Draft Environmental Impact Statement COB Energy Facility, Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined- Cycle Electric Generating Plant, Right- of-Way Permit across Federal Land under the Jurisdiction of BLM, Klamath Basin, Klamath County, OR DOE/EIS-0343, EPA Notice of Availability, COB Energy Facility, Proposes to Construct a 1,160-megawatt (MW) Natural Gas-Fired and Combined-Cycle Electric Generating Plant, Right-of-Way Permit cross Federal Land under the Jurisdiction of BLM, Klamath Basin, Klamath County, Oregon, 68 FR 66825 (November 2003) More Documents & Publications EIS-0359: EPA Notice of Availability of the Draft Environmental Impact

283

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

284

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

285

Natural games  

E-Print Network (OSTI)

Behavior in the context of game theory is described as a natural process that follows the 2nd law of thermodynamics. The rate of entropy increase as the payoff function is derived from statistical physics of open systems. The thermodynamic formalism relates everything in terms of energy and describes various ways to consume free energy. This allows us to associate game theoretical models of behavior to physical reality. Ultimately behavior is viewed as a physical process where flows of energy naturally select ways to consume free energy as soon as possible. This natural process is, according to the profound thermodynamic principle, equivalent to entropy increase in the least time. However, the physical portrayal of behavior does not imply determinism. On the contrary, evolutionary equation for open systems reveals that when there are three or more degrees of freedom for behavior, the course of a game is inherently unpredictable in detail because each move affects motives of moves in the future. Eventually, when no moves are found to consume more free energy, the extensive-form game has arrived at a solution concept that satisfies the minimax theorem. The equilibrium is Lyapunov-stable against variation in behavior within strategies but will be perturbed by a new strategy that will draw even more surrounding resources to the game. Entropy as the payoff function also clarifies motives of collaboration and subjective nature of decision making.

Jani Anttila; Arto Annila

2011-03-05T23:59:59.000Z

286

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

287

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

288

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

289

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report  

SciTech Connect

The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-12-01T23:59:59.000Z

290

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer  

Science Conference Proceedings (OSTI)

The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-01-01T23:59:59.000Z

291

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-01-01T23:59:59.000Z

292

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-12-31T23:59:59.000Z

293

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

294

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

295

Assessment of Natural Gas Combined Cycle (NGCC) Plants with  

E-Print Network (OSTI)

Did Assembled design, capacity factor, and emissions data from public sources: EPA, eGRID, EIA-923 list in spreadsheet form. EPA eGRID and DOE EIA databases provide unit-by-unit data on rated capacity, fuel consumption, CO2 production, etc. http://www.epa.gov/cleanenergy/ener gy-resources/egrid

296

7. Mergers and Other Corporate Combinations in the Natural Gas ...  

U.S. Energy Information Administration (EIA)

restructuring and increased levels of competition in the regulated sectors of the energy industry. ... Department of Justice, ... single project or ...

297

Recent Corporate Combinations in the Natural Gas Industry  

U.S. Energy Information Administration (EIA)

Gas Inc plants and Energy Cogeneration, BUG sought to cogeneration maximize shareholder value and pursue other investment opportunities.

298

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network (OSTI)

on the following topics: 1. Regional Economic Conditions 2. Electricity Demand 3. Natural Gas Markets and Prices 4 supplies or increasing demand. Increasingly, natural gas-fired generation is displacing coal Efficiency Achievements and Issues 23 IV. Renewable Resources 30 V. Natural Gas-Fired Generating Resources 34

299

Novel heat pipe combination  

SciTech Connect

The basic heat pipe principle is employed in a heat pipe combination wherein two heat pipes are combined in opposing relationship to form an integral unit; such that the temperature, heat flow, thermal characteristics, and temperature-related parameters of a monitored environment or object exposed to one end of the heat pipe combination can be measured and controlled by controlling the heat flow of the opposite end of the heat pipe combination.

Arcella, F.G.

1978-01-10T23:59:59.000Z

300

Natural networks  

E-Print Network (OSTI)

Scale-free and non-computable characteristics of natural networks are found to result from the least-time dispersal of energy. To consider a network as a thermodynamic system is motivated since ultimately everything that exists can be expressed in terms of energy. According to the variational principle, the network will grow and restructure when flows of energy diminish energy differences between nodes as well as relative to nodes in surrounding systems. The natural process will yield scale-free characteristics because the nodes that contribute to the least-time consumption of free energy preferably attach to each other. Network evolution is a path-dependent and non-deterministic process when there are two or more paths to consume a common source of energy. Although evolutionary courses of these non-Hamiltonian systems cannot be predicted, many mathematical functions, models and measures that characterize networks can be recognized as appropriate approximations of the thermodynamic equation of motion that has been derived from statistical physics of open systems.

Tuomo Hartonen; Arto Annila

2011-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

302

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

303

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

304

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

305

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

306

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

307

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

308

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

309

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

310

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

311

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

312

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

313

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

314

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

315

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

316

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

317

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

318

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network (OSTI)

--Combined-cycle unit, electricity market, natural gas infrastructure, pipeline contingency, pumped-storage hydro, renew gas utilities typically rely on the natural gas storage to augment supplies flowing through) in the natural gas system, deliver natural gas from city gate stations, underground storage facilities, and other

Fu, Yong

319

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

320

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

322

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

323

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

324

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

325

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

326

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

327

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

328

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

329

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

330

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

331

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

332

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

333

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

334

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Historically, the average fuel cost of operating a combined-cycle natural gas generator exceeded that for a coal-fired generator. Until 2010, ...

335

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America's Foreign Oil Dependence April 25, 2012 Innovative DOE Technology Demonstrates Potential for...

336

Coal regains some electric generation market share from natural ...  

U.S. Energy Information Administration (EIA)

... a combination of higher prices for natural gas and increased demand for electricity during the summer months led electric systems across much of the country to ...

337

Available online at www.sciencedirect.com Energy Procedia 00 (2013) 000000  

E-Print Network (OSTI)

.elsevier.com/locate/procedia GHGT-11 Cycling coal and natural gas-fired power plants with CCS Peter Versteega* , David Luke Oatesa storage are modeled for new coal and natural gas-fired power plants with amine and ammonia-based post electricity price signals, including solvent storage and flue gas bypass. Power plants with these options may

338

Selective leak-detector for natural gas  

SciTech Connect

An improved detector for combustible gases and which is able to discriminate between natural gas (methane and ethane) and other sources of methane (e.g. swamp gas, petrochemical and automotive) or other combustible gases by measuring the characteristic methane/ethane ratio of natural gas, based on infrared absorption of methane and ethane, in combination with another non-specific combustible gas detector.

Bonne, U.

1985-03-26T23:59:59.000Z

339

Analysis of Restricted Natural Gas Supply Cases  

Reports and Publications (EIA)

The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

James Kendell

2004-03-01T23:59:59.000Z

340

Natural Language Specification of Performance Trees  

Science Conference Proceedings (OSTI)

The accessible specification of performance queries is a key challenge in performance analysis. To this end, we seek to combine the intuitive aspects of natural language query specification with the expressive power and flexibility of the Performance ... Keywords: Natural language, Performance Trees, Performance analysis, Performance requirements specification

Lei Wang; Nicholas J. Dingle; William J. Knottenbelt

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SRNL - Natural Attenuation Monitor  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Attenuation Monitor covers Natural Attenuation Monitor Published by the US DOE Monitored Natural Attenuation and Enhanced Attenuation for Chlorinated Solvents Technology...

342

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

343

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

344

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

345

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

346

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

347

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

348

Natural gas and electricity optimal power flow  

E-Print Network (OSTI)

Abstract — In this paper, the combined natural gas and electric optimal power flow (GEOPF) is presented. It shows fundamental modeling of the natural gas network to be used for the GEOPF, and describes the equality constraints which describe the energy transformation between gas and electric networks at combined nodes (i.e., generators). We also present the formulation of the natural gas loadflow problem, which includes the amount of gas consumed in compressor stations. Case studies are presented to show the sensitivity of the real power generation to wellhead gas prices. Results from the simulation demonstrate that the GEOPF can provide social welfare maximizing solutions considering both gas and electric networks. I.

Seungwon An

2003-01-01T23:59:59.000Z

349

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 (next release 2:00 p.m. on October 28) 1 (next release 2:00 p.m. on October 28) Increased natural gas demand owing to falling temperatures this week (Wednesday-Wednesday, October 13-20) combined with higher petroleum prices to lift spot and futures gas prices dramatically. The result at the Henry Hub was a net gain on the week of $1.86 per MMBtu, or 35 percent, to $7.25. After gaining value in the past three trading days, the NYMEX futures contract for November delivery at the Henry Hub ended the week at $7.623 per MMBtu, a net increase of 77.2 cents. Natural gas in storage continues to build at a rate that could result in the highest inventories in years by the start of the traditional heating season (November 1). As of Friday, October 15, inventories were 3,223 Bcf, which is 7.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil rose $1.07 per barrel on the week to yesterday's (October 20) closing price of $54.93 per barrel, or $9.47 per MMBtu.

350

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

active natural gas generators and imports will decline, inadditional system imports and natural gas-fired generation66%) Natural gas (22%) Renewable (1.4%) DSW imports 3 Coal (

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

351

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

from coal- or natural gas-fired power plants occur "up-of natural gas is lost before reaching the power plant." 30power plant. Yet, when it comes to upstream emissions, the lifecycle for natural gas

Hagan, Colin R.

2012-01-01T23:59:59.000Z

352

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network (OSTI)

Liquefied natural gas Electric power plants New technologiescycle, and natural gas-fired power plants also occupy aPower Plant and Industrial Fuel Use Act of 1978 in order to burn natural gas.

Authors, Various

2010-01-01T23:59:59.000Z

353

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

... natural gas prices relative to coal prices. High natural gas-fired generation in 2012 occurred as a result of the lowest spot natural gas prices in a decade ...

354

Klystron-linac combination  

DOE Patents (OSTI)

A combination klystron-linear accelerator which utilizes anti-bunch electrons generated in the klystron section as a source of electrons to be accelerated in the accelerator section. Electron beam current is controlled by second harmonic bunching, constrictor aperture size and magnetic focusing. Rf coupling is achieved by internal and external coupling.

Stein, W.E.

1980-04-24T23:59:59.000Z

355

Impact of HRSG Design and Operating Choices on Attemperator Performance: Avoiding Overspray and Above-Design Steam Temperatures  

Science Conference Proceedings (OSTI)

The nature of today's power generation market dictates that only the most efficient combined-cycle power plants located in high-demand areas should operate at base load, leaving less efficient and older combustion turbine/combined-cycle (CT/CC) plants to operate in cycling or two-shift modes. Even many efficient gas-fired, combined-cycle plants might be relegated to cycling duty when competing against nuclear plants or coal-fired plants with less costly fuel. Numerous start and stop cycles associated wit...

2009-03-31T23:59:59.000Z

356

Ambio Nov 08 preprint, dr 18, 27 May 2008, DRAFT subject to further peer review/editing The Nuclear Illusion  

E-Print Network (OSTI)

combined-cycle gas- fired units, nine coal, four gas-fired turbines, and four wind farms. Another estimate that it had chosen Bechtel to complete the plant for $2.5 billion). 6 We refer here just to conventional types wind farms), let alone the even cheaper competitors described below--cogeneration, some further

Laughlin, Robert B.

357

Testing Strategic Models of Firm Behavior in Restructured Electricity Markets: A Case Study of ERCOT  

E-Print Network (OSTI)

generator owning several combined cycle gas-fired plants. Iwho often own cheap combined-cycle generators) are notis most problematic for combined-cycle gas turbines at lower

Hortacsu, Ali; Puller, Steven L.

2004-01-01T23:59:59.000Z

358

Modeling Interregional Transmission Congestion in the National Energy Modeling System  

E-Print Network (OSTI)

Rocky Mtn Ariz NM (12) Combined Cycle built in SERC (9) Theincludes all out of region combined cycle generation that iscombined with the traditional grid. • Remove the bias towards gas fired combine cycle

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-01-01T23:59:59.000Z

359

Regulation of natural monopolies  

E-Print Network (OSTI)

This chapter provides a comprehensive overview of the theoretical and empirical literature on the regulation of natural monopolies. It covers alternative definitions of natural monopoly, regulatory goals, alternative ...

Joskow, Paul L.

2005-01-01T23:59:59.000Z

360

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

362

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

363

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

364

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas prices, successful application of horizontal drilling, and hydraulic fracturing, as well as significant investments made by natural gas companies in production...

365

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

366

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Release: Thursday, August 26, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 18, 2010) Natural...

367

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

7, 2009 Next Release: May 14, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 6, 2009) Natural gas...

368

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

369

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

370

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

371

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

372

Tube Failure in Coal and Gas Fired Power Plant - Programmaster.org  

Science Conference Proceedings (OSTI)

On-Site Speaker (Planned), Lindsay S. W. Malloy. Abstract Scope, Tube failures in power plants are one of the main causes of forced outages, potentially costing  ...

373

Gas-fired chiller-heaters as a central plant alternative for small office buildings  

SciTech Connect

Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

Thies, R.M. [JDB Engineering, Inc., York, PA (United States); Bahnfleth, W. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Architectural Engineering

1998-01-01T23:59:59.000Z

374

Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem  

E-Print Network (OSTI)

This paper examines the merits of coupling a desiccant dehumidification subsystem to a gas-engine- driven vapor compression air conditioner. A system is identified that uses a rotary, silica gel, parallel-plate dehumidifier. Dehumidifier data and analysis are based on recent tests. The dehumidification subsystem processes the fresh air portion and handles the latent portion of the load. Adding the desiccant subsystem increases the gas-based coefficient of performance 40% and increases the cooling capacity 50%. Increased initial manufacturing costs are estimated at around $500/ton ($142/kW) for volume production. This cost Level is expected to reduce the total initial cost per ton compared to a system without the desiccant subsystem.

Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

1990-01-01T23:59:59.000Z

375

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

376

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

377

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

378

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

379

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

380

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

382

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

383

South Dakota Natural Gas Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Removed from Natural Gas (Million Cubic Feet) South Dakota Natural Gas Removed from Natural Gas...

384

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Thursday June 20, 2002 (next release 2:00 p.m. on June 27) Thursday June 20, 2002 (next release 2:00 p.m. on June 27) Natural gas spot prices registered gains of a dime or less at most major trading locations this week (Wednesday-Wednesday) as weather-driven demand combined with increasing oil prices to reverse a declining trend in prices. The upward price movement followed 6 weeks of declining prices until a low last Thursday, June 12, when prices at some trading locations along the Gulf Coast dipped just below $3.00 per MMBtu. Futures prices rose late last week after reaching similar lows. The NYMEX futures contract for July delivery settled Wednesday, June 19, at $3.314 per MMBtu, an increase of 26 cents for the week. EIA's estimate of total working gas inventories for the week ended June 14 was 2,096 Bcf with implied net injections of 81 Bcf. The spot price for West Texas Intermediate (WTI) crude oil recovered this week to trade at close to $26 per barrel on Monday, June 17. On Wednesday, the WTI crude oil price closed at $25.57 per barrel, or $4.41 per MMBtu.

385

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2002 9, 2002 Since Wednesday May 1, spot prices were down at most locations with some exceptions, despite large increases across the board on Wednesday, May 8, owing primarily to rising crude oil prices. For the week, prices at the Henry Hub declined a little over 1 percent, falling 5 cents to $3.74 per MMBtu. (See Temperature Map) (See Deviation Map)Temperatures helped to drive demand for natural gas as overnight lows in the 20's in some parts of the country contributed to heating demand, and mid-day highs in the 90's in other parts of the country increased cooling demand. Prices in Florida surged past $7, owing to a combination of high temperatures and gas transportation difficulties, which constrained supply. The spot price for West Texas Intermediate (WTI) crude oil climbed $1.18 per barrel or over 4 percent since last Wednesday, trading at $27.76 per barrel or $4.79 per MMBtu.

386

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

387

Structural load combinations  

SciTech Connect

This paper presents the latest results of the program entitled, ''Probability Based Load Combinations For Design of Category I Structures''. In FY 85, a probability-based reliability analysis method has been developed to evaluate safety of shear wall structures. The shear walls are analyzed using stick models with beam elements and may be subjected to dead load, live load and in-plane eqrthquake. Both shear and flexure limit states are defined analytically. The limit state probabilities can be evaluated on the basis of these limit states. Utilizing the reliability analysis method mentioned above, load combinations for the design of shear wall structures have been established. The proposed design criteria are in the load and resistance factor design (LRFD) format. In this study, the resistance factors for shear and flexure and load factors for dead and live loads are preassigned, while the load factor for SSE is determined for a specified target limit state probability of 1.0 x 10/sup -6/ or 1.0 x 10/sup -5/ during a lifetime of 40 years. 23 refs., 9 tabs.

Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

1985-01-01T23:59:59.000Z

388

Natural Gas Price Uncertainty: Establishing Price Floors  

Science Conference Proceedings (OSTI)

This report presents the results of comprehensive calculations of ceiling and floor prices for natural gas. Ceiling prices are set by the price levels at which it is more economic to switch from natural gas to residual fuel oil in steam units and to distillate in combined cycle units. Switching to distillate is very rare, whereas switching to fuel oil is quite common, varying between winter and summer and increasing when natural gas prices are high or oil prices low. Monthly fuel use was examined for 89 ...

2007-01-11T23:59:59.000Z

389

Cascade Natural Gas - Conservation Incentives for New Homes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount High Efficiency Natural Gas Furnace: $150 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Condensing Tankless Water Heater: $200 Combined Domestic Water/Hydronic Space Heating System (usingTankless Water Heater): $800 Energy Star Certified Home: $350 Energy Star Certified Plus Home: $750

390

EIS-0349: Draft Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement EIS-0349: Draft Environmental Impact Statement BP Cherry Point Cogeneration Project BP West Coast Products, LLC proposes to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery. Approximately 195 acres of undeveloped land would be converted for the cogeneration facility; gas, water, wastewater, and steam pipelines; construction laydown areas; access roads; and wetland mitigation areas.This Draft EIS assesses the existing natural and built environment, evaluates the potential environmental impacts and economic benefits of the proposed action, and identifies mitigation measures to compensate for the unavoidable impacts. Alternative

391

BigHorn Home Improvement Center Energy Performance: Preprint  

SciTech Connect

This is one of the nation's first commercial building projects to integrate extensive high-performance design into a retail space. The extensive use of natural light, combined with energy-efficient electrical lighting design, provides good illumination and excellent energy savings. The reduced lighting loads, management of solar gains, and cool climate allow natural ventilation to meet the cooling loads. A hydronic radiant floor system, gas-fired radiant heaters, and a transpired solar collector deliver heat. An 8.9-kW roof-integrated photovoltaic (PV) system offsets a portion of the electricity.

Deru, M.; Pless, S.; Torcellini, P.

2006-04-01T23:59:59.000Z

392

BigHorn Home Improvement Center Energy Performance: Preprint  

DOE Green Energy (OSTI)

This is one of the nation's first commercial building projects to integrate extensive high-performance design into a retail space. The extensive use of natural light, combined with energy-efficient electrical lighting design, provides good illumination and excellent energy savings. The reduced lighting loads, management of solar gains, and cool climate allow natural ventilation to meet the cooling loads. A hydronic radiant floor system, gas-fired radiant heaters, and a transpired solar collector deliver heat. An 8.9-kW roof-integrated photovoltaic (PV) system offsets a portion of the electricity.

Deru, M.; Pless, S.; Torcellini, P.

2006-04-01T23:59:59.000Z

393

AGENDA  

E-Print Network (OSTI)

1:00 – 5:00 p.m. California Energy Commission Staff Workshop to provide an overview and seek input on a proposed Request for Proposals (RFP) to assess the suitability of California utility-scale (nominally 250- 600+ Megawatt) natural gas combined cycle (NGCC) power plants for carbon capture and sequestration (CCS) retrofit and/or new NGCC + CCS applications and develop plans for a future pilot-scale demonstration. A secondary area of research may be CCS retrofit to oilfield natural gas-fired cogeneration/steamflood units, if oilfield operators are interested in using captured CO2 for enhanced oil recovery tests

Mike Gravely; Energy Commission

2010-01-01T23:59:59.000Z

394

Evaluation of Alternative IGCC Plant Designs for High Availability and Near Zero Emissions  

Science Conference Proceedings (OSTI)

This report examines the historical reliability and availability data of solids-fed integrated gasification combined cycle (IGCC) power plants and describes how these data can be used to analyze design options meant to improve the availability of new IGCCs. It also looks at the technical and economic impacts of adding a Selective Catalytical Reduction (SCR) system to an IGCC. Adding an SCR will result in a coal-based power plant with an emissions profile that is very close to a natural gas fired combined...

2005-12-20T23:59:59.000Z

395

Conceptual Design Review for Biomass Repowering at Plant Barry  

Science Conference Proceedings (OSTI)

Southern Company and its subsidiary, Alabama Power, have identified Alabama Power's Plant Barry as a potential target for biomass firing. Plant Barry is located in Bucks, Alabama. Five coal-fired units were built between 1954 and 1971 for a total of 1620 MW capacity. Three natural gas–fired combined-cycle combustion turbines (173 MWe each of winter capacity) and two combined-cycle steam turbines (193 MWe each of winter capacity) were installed in 2000. Unit 1 is the boiler being considered initially for ...

2010-12-20T23:59:59.000Z

396

Superconducting combined function magnets  

SciTech Connect

Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

Hahn, H.; Fernow, R.C.

1983-01-01T23:59:59.000Z

397

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Total natural gas use for power generation in the United States was down 14% during the ... High natural gas-fired generation in 2012 occurred as a result of the ...

398

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

In 2012, there were 121 ... High natural gas-fired generation in 2012 occurred as a result of the lowest spot natural gas prices in a decade—in fact, ...

399

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

What is shale gas and why is it important? ... High natural gas-fired generation in 2012 occurred as a result of the lowest spot natural gas prices in a decade—in ...

400

New Hampshire Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Compressed Natural Gas 3 stations 0.3% 2013 Ethanol 0 ... Natural gas-fired generation now accounts for about one-quarter of the State’s power production.

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Combined Diagram: A Graphical Representation of Combination Evaporation Rates  

Science Conference Proceedings (OSTI)

Combination methods estimate the partition of sensible and latent heat fluxes at the surface by combining the surface energy balance equation with the transfer equations for temperature and water vapor in the atmospheric surface layer. This paper ...

Ricardo C. Muñoz

2012-08-01T23:59:59.000Z

402

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

403

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

404

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas futures also reversed gains made in the previous week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased by 63 Bcf...

405

Perceptions of the natural  

E-Print Network (OSTI)

This thesis takes on the difficulty of defining a clear line that connects and separates natural and artificial in a contemporary landscape. It is a proposal for a park that addresses the image and understanding of nature. ...

Filipovic, Renata, 1973-

2005-01-01T23:59:59.000Z

406

Natural gas annual 1996  

Science Conference Proceedings (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

407

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

with active programs. More information is available at: http:www.eia.doe.govcneafelectricitypagerestructuringrestructureelect.html. Information about natural gas...

408

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

409

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

410

Avestar® - Syngas-Fired Combined Cycle Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas-Fired Combined Cycle Dynamic Simulator Syngas-Fired Combined Cycle Dynamic Simulator The AVESTAR® center offers courses using the Combined Cycle Simulator, focusing on the power generation process after gasification. This simulator is well-suited for concentrated training on operation and control of the gas and steam turbines; condensate, feed water, and circulating water systems; heat recovery steam generator; and selective catalytic reduction (SCR) unit. Combined cycle simulator startup operations include bringing up the gas turbine to rated speed on natural gas and then switching over to the firing of synthesis gas. Key capabilities of the Combined Cycle Simulator include: Combined Cycle Simulator Operator training station HMI display for overview of Gas Turbine - Train A Normal base load operation

411

Natural gas monthly  

Science Conference Proceedings (OSTI)

Monthly highlights of activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry are presented. Feature articles for this issue are: Natural Gas Overview for Winter 1983-1984 by Karen A. Kelley; and an Analysis of Natural Gas Sales by John H. Herbert. (PSB)

Not Available

1983-11-01T23:59:59.000Z

412

Biomass Gasification Combined Cycle  

DOE Green Energy (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

413

Solid oxide fuel cell combined cycles  

DOE Green Energy (OSTI)

The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

Bevc, F.P. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Lundberg, W.L.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

1996-12-31T23:59:59.000Z

414

Future power market shares of coal, natural gas generators depend ...  

U.S. Energy Information Administration (EIA)

Natural gas combined-cycle capacity represented only 7% of total capacity in the region in 2011, but is projected to rise to 11% in 2040 in the Reference Case.

415

Global natural gas production doubled between 1980 and 2010 ...  

U.S. Energy Information Administration (EIA)

Global dry natural gas production increased 110% between 1980 and 2010, from 53 trillion cubic feet (Tcf) in 1980 to 112 Tcf in 2010. The combined share of North ...

416

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

417

Natural gas sdtrategic plan  

SciTech Connect

The US Department of Energy`s natural gas program is aimed at meeting simultaneously our national energy needs, reducing oil imports, protecting our environment, and improving our economy The Natural Gas Strategic Plan for 1995 represents a Department-wide effort to articulate the key issues related to the expanded development and utilization of natural gas, and defines the roles of the federal government and US industry in partnering to accomplish the strategic goals defined. The four overarching goals of the Natural Gas Strategic Plan are to: foster the development of advanced natural gas technologies; encourage the adoption of advanced natural gas technologies in new and existing markets; support the removal of policy impediments to natural gas use in new and existing markets; and foster technologies and policies to maximize the environmental benefits of natural gas use. DOE`s proposed fiscal year (FY) 1996 budget represents a commitment to natural gas research, development, and demonstration (RD&D) from reservoir to end use. DOE has redirected and increased funding for its natural gas exploration, production, delivery and storage, processing, and utilization RD&D programs, shifting funds from other energy programs to programs that will enhance efficiency and advance the role of natural gas in our domestic energy resources portfolio.

1995-06-01T23:59:59.000Z

418

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

419

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural ... The EIA has determined that the informational map displays here do not raise security ...

420

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

422

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

423

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

424

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

425

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

426

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

427

NREL Melds Nature with Nanotech for Solar-Powered Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Melds Nature with Nanotech for Solar-Powered Hydrogen Production NREL researchers are finding ways to mimic photosynthesis by combining enzymes with nanoparticles-particles on the...

428

Natural gas use in the electric power sector is growing - Today in ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, ... the Nation's fleet of natural gas combined-cycle power plants is contributing significantly more to baseload electricity needs.

429

Natural gas annual 1992: Supplement: Company profiles  

SciTech Connect

The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

Not Available

1994-01-01T23:59:59.000Z

430

Troubleshooting natural gas processing: Wellhead to transmission  

Science Conference Proceedings (OSTI)

This book describes practical, day-to-day problems of natural gas handling. This book combines field experience with technical principles on natural gas production treating and transmission. This volume is dominated by illustrative case histories and rules of thumb. The book also provides a checklist of distillation problems which is a summary of causes and cures of the problems encountered in the fractionation of propane, butane and natural gasoline. A glossary of terms used in natural gas transmission is another good part of this book. The author has avoided complex mechanical details in favor of simple line drawings. Among the topics discussed are; wellhead pressure and gas flow, vapor-liquid separation at the wellhead, wellhead compression, corrosion in gathering systems, gas sweetening using amines, sulfur recovery, dehydration, centrifugal gas compression, reciprocal gas compression, hydrates, gas cooling and condensate recovery.

Lieberman, N.

1987-01-01T23:59:59.000Z

431

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIA’s Weekly Natural Gas Storage Report.

432

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIA’s Weekly Natural Gas Storage

433

Nitrogen removal from natural gas  

SciTech Connect

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

1997-04-01T23:59:59.000Z

434

5. Natural Gas Liquids Statistics  

U.S. Energy Information Administration (EIA)

5. Natural Gas Liquids Statistics Natural Gas Liquids Proved Reserves U.S. natural gas liquids proved reserves decreased 7 percent to 7,459 million ...

435

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Exports...

436

Natural Disasters: Some Empirical  

Science Conference Proceedings (OSTI)

Page 1. j N8SIR 74-473 Natural Disasters: Some Empirical and Economic Considerations G. Thomas Sav Buildine Economies ...

2008-03-06T23:59:59.000Z

437

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

each of the consumption sectors, excluding the industrial sector, according to BENTEK Energy Services, LLC. Moderating temperatures likely contributed to lower natural gas...

438

4. Natural Gas Statistics  

U.S. Energy Information Administration (EIA)

hydraulic fracturing, including shales and low permeability (tight) formations. Total U.S. dry natural gas reserves additions replaced 237 percent of 2007 dry

439

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Report," and the Historical Weekly Storage Estimates Database. Other Market Trends: FERC Investigates Natural Gas Wash-Trading: The Federal Energy Regulatory Commission (FERC)...

440

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Monthly  

U.S. Energy Information Administration (EIA)

sector organizations associated with the natural gas industry. Volume and price data are presented each month for ... Tables 1 and 2 ...

442

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

443

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increased to 3,683 billion cubic feet (Bcf) as of Friday, October 15, according to the Energy Information Administrations (EIA) Weekly Natural Gas Storage Report. The West...

444

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

storage facilities. Other Market Trends: EIA Releases Report on Underground Natural Gas Storage Developments: The Energy Information Administration (EIA) released a special...

445

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013"...

446

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

447

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 6","Consumption",11,"Annual",2012,...

448

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

449

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

450

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

451

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

452

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

453

,"Illinois Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

454

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

455

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2012,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2012,"6301982" ,"Data 4","Consumption",10,"Annual",2012,"6...

456

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

457

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

458

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

459

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

460

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013" ,"Next Release...

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",8,"Monthly","102013","1151989" ,"Release Date:","172014"...

462

Natural Gas Wellhead Prices  

U.S. Energy Information Administration (EIA)

Slide 19 of 27. Price: Wellhead. Natural gas wellhead prices are projected to move up 5 percent this winter, averaging about $2.28 per Mcf during this ...

463

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

of about 50 percent of natural gas production from the Gulf. (See "Other Market Trends" below for details.) Ivan's major impact on prices occurred on Monday, September 13,...

464

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

since July 27, 2004. Prices: Moderate temperatures and a favorable supply situation led to widespread declines in natural gas spot prices in the Lower 48 States since last...

465

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Release: Thursday, November 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 27, 2010) As the...

466

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Next Release: Thursday, May 13, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 5, 2010) Since...

467

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

that have helped reshape the natural gas market, with particular emphasis on policy directives during the past 26 years. The linked files provided on the web site provide...

468

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

469

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied… (more)

Li, Yun

2007-01-01T23:59:59.000Z

470

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

471

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

472

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",9,"Annual",2012,"...

473

Biomimetics: Lessons from Nature  

Science Conference Proceedings (OSTI)

... structural coloration, thermal insulation, self-healing, and sensory aid mechanisms are some of the examples found in nature which are of commercial interest.

474

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

475

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301981" ,"Data 5","Consumption",9,"Annual",2012,"6...

476

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

477

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",2,"Annual",1975,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301969" ,"Data 7","Consumption",11,"Annual",2012,"6...

478

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

479

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

480

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",9,"Annual",2012,"6...

Note: This page contains sample records for the topic "natural gas-fired combined" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

482

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

483

,"Wyoming Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

484

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

485

,"Nebraska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

486

,"Vermont Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Prices",10,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

487

,"Ohio Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

488

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

489

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

490

,"Maryland Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

491

,"Michigan Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

492

,"Illinois Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

493

,"Kansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

494

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

495

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

496

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

497

,"Minnesota Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

498

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

499

,"Tennessee Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

500

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...