Powered by Deep Web Technologies
Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

2

Natural gas-fired combustion turbines are generally used to meet ...  

U.S. Energy Information Administration (EIA)

In 2012, there were 121 gigawatts of operating natural gas combustion turbines that contributed about 3% of overall electricity generation. The average capacity ...

3

The Effect of Higher Hydrocarbons on the Ignition Delay of Natural Gas Fuels at Gas Turbine Conditions  

Science Conference Proceedings (OSTI)

This investigation focuses on studying autoignition of fuels primarily used for stationary gas turbine operation today and others that are garnering interest for future use. Most stationary gas turbine engines operate today on natural gas. Natural gas can either come from domestic or foreign sources. Natural gas from foreign sources is typically imported as a chilled liquid, so it is commonly referred to as liquefied natural gas (LNG). Variations in fuel characteristics at the source, coupled with fuel q...

2009-12-11T23:59:59.000Z

4

NETL: News Release - Advanced Natural Gas Turbine Hailed as Top Power  

NLE Websites -- All DOE Office Websites (Extended Search)

December 30, 2003 December 30, 2003 Advanced Natural Gas Turbine Hailed as Top Power Project of 2003 Power Engineering Cites Product of Energy Department's Advanced Turbine Systems Program WASHINGTON, DC - A power plant featuring a next-generation gas turbine developed as part of the U.S. Department of Energy's advanced turbine systems program has been selected by Power Engineering magazine as one of three "2003 Projects of the Year." Baglan Bay Power Station Baglan Bay Power Station, South Wales, U.K. Photo courtesy of GE Power Systems The Baglan Bay Power Station near Cardiff, Wales, UK reached a major milestone for the global power industry when GE Power System's H System gas turbine debuted there earlier this year. The most advanced combustion turbine in the world, the H System is the first gas turbine combined-cycle

5

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

6

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

7

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

8

Aircraft Gas Turbine Blade and Vane Repair  

Science Conference Proceedings (OSTI)

Gas turbine blades experience dimensional .... platinum applied in separate gas phase or electroplating ..... surfaces are natural consequences of fluoride.

9

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

10

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

11

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

12

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

13

Small turbines in distributed utility application: Natural gas pressure supply requirements  

SciTech Connect

Implementing distributed utility can strengthen the local distribution system and help avoid or delay the expense of upgrading transformers and feeders. The gas turbine-generator set is an attractive option based on its low front-end capital cost, reliable performance at unmanned stations, and environmental performance characteristics. This report assesses gas turbine utilization issues from a perspective of fuel supply pressure requirements and discusses both cost and operational factors. A primary operational consideration for siting gas turbines on the electric distribution system is whether the local gas distribution company can supply gas at the required pressure. Currently available gas turbine engines require gas supply pressures of at least 150 pounds per square inch gauge, more typically, 250 to 350 psig. Few LDCs maintain line pressure in excess of 125 psig. One option for meeting the gas pressure requirements is to upgrade or extend an existing pipeline and connect that pipeline to a high-pressure supply source, such as an interstate transmission line. However, constructing new pipeline is expensive, and the small volume of gas required by the turbine for the application offers little incentive for the LDC to provide this service. Another way to meet gas pressure requirements is to boost the compression of the fuel gas at the gas turbine site. Fuel gas booster compressors are readily available as stand-alone units and can satisfactorily increase the supply pressure to meet the turbine engine requirement. However, the life-cycle costs of this equipment are not inconsequential, and maintenance and reliability issues for boosters in this application are questionable and require further study. These factors may make the gas turbine option a less attractive solution in DU applications than first indicated by just the $/kW capital cost. On the other hand, for some applications other DU technologies, such as photovoltaics, may be the more attractive option.

Goldstein, H.L.

1996-05-01T23:59:59.000Z

14

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

15

Gas Turbine Optimum Operation.  

E-Print Network (OSTI)

??Many offshore installations are dependent on power generated by gas turbines and a critical issue is that these experience performance deterioration over time. Performance deterioration… (more)

Flesland, Synnřve Mangerud

2010-01-01T23:59:59.000Z

16

Compilation of emissions data for stationary reciprocating gas engines and gas turbines in use by the natural gas pipeline transmission industry  

SciTech Connect

This publication compiles the available exhaust emission data for stationary reciprocating engines and gas turbines used by the natural gas pipeline transmission industry into a single, easy-to-use source. Data in the original issue and the revisions were obtained from projects sponsored by the A.G.A. PRC and from inhouse projects within a number of the A.G.A. member companies. Additional data included in this reissue were obtained from additional emissions measurement projects sponsored by the A.G.A. PRC, and from A.G.A. member companies and natural gas engine manufacturers.

Urban, C.M.

1988-05-01T23:59:59.000Z

17

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

18

Gas turbine noise control  

Science Conference Proceedings (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

19

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

20

Gas turbine combustor transition  

DOE Patents (OSTI)

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Turbine bucket natural frequency tuning rib  

SciTech Connect

A tuning rib is added preferably in the aft cavity of a cored turbine bucket to alter the bucket's natural frequencies. The tuning rib may be a solid rib or a segmented rib and is particularly suited for altering high order frequency modes such as 2T, 4F and 1-3S. As such, detrimental crossings of natural bucket frequencies and gas turbine stimuli can be avoided to thereby improve the reliability of a gas turbine without impacting other features of the bucket that are important to the performance of the gas turbine.

Wang, John Zhiqiang (Greenville, SC); Norton, Paul Francis (Greenville, SC); Barb, Kevin Joseph (Halfmoon, NY); Jacala, Ariel Caesar-Prepena (Simpsonville, SC)

2002-01-01T23:59:59.000Z

22

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

23

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

24

Gas turbine sealing apparatus  

DOE Patents (OSTI)

A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

2013-02-19T23:59:59.000Z

25

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

26

Ceramic stationary gas turbine  

DOE Green Energy (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

27

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Ignition Delay for Gas Turbine Fuel Flexibility 15 m * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including...

28

Flashback and blowoff characteristics of gas turbine swirl combustor.  

E-Print Network (OSTI)

??Gas turbines are extensively used in combined cycle power systems. These form about 20% of global power generating capacity, normally being fired on natural gas,… (more)

Abdulsada, Mohammed

2011-01-01T23:59:59.000Z

29

Gas turbine sealing apparatus  

SciTech Connect

A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

Marra, John Joseph; Wessell, Brian J.; Liang, George

2013-03-05T23:59:59.000Z

30

Gas turbine premixing systems  

SciTech Connect

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

31

A Parametric Physics Based Creep Life Prediction Approach to Gas Turbine Blade Conceptual Design .  

E-Print Network (OSTI)

??The required useful service lives of gas turbine components and parts are naturally one of the major design constraints limiting the gas turbine design space.… (more)

Smith, Marcus Edward Brockbank

2008-01-01T23:59:59.000Z

32

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

33

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

DOE Green Energy (OSTI)

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

34

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

35

Combustion modeling in advanced gas turbine systems  

DOE Green Energy (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

36

Gas generator and turbine unit  

SciTech Connect

A gas turbine power unit is disclosed in which the arrangement and configuration of parts is such as to save space and weight in order to provide a compact and self-contained assembly. An air-intake casing supports the upstream end of a gas generator, the down-stream end of which is integral with a power turbine. The stator casing of the turbine is connected to a cone thermally insulated and completely inserted into any exhaust casing having a vertical outlet, wherein the turbine exhaust is conveyed into the exhaust casing by an annular diffusing cone. The turbine casing is supported on four legs. In addition, the turbine rotor and thus the turbine shaft are overhangingly supported by an independent structure, the weight of which bears on the machine base outside the exhaust casing and away of the power turbine space.

Vinciguerra, C.

1984-12-11T23:59:59.000Z

37

Natural gas-fired combustion turbines are generally used to meet ...  

U.S. Energy Information Administration (EIA)

Combustion turbines in this article do not include combined-cycle units that operate at higher ... to operate than other types of power plants but can ...

38

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network (OSTI)

of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,OVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone1970, p. 545. R. Krutenat, Gas Turbine Materials Conference

Boone, Donald H.

2013-01-01T23:59:59.000Z

39

Program to develop advanced gas turbine systems  

SciTech Connect

The need for an advanced turbine program for land-based engines has been broadly recognized in light of reductions in military funding for turbines, rapid growth in the sale of gas turbines for utility and industrial usage, and the fierce competition with off-shore manufacturers. Only with Government support can US manufacturers meet rapidly changing market conditions such as increased emissions requirements and lower capital cost requirements. In light of this, ATS planning was requested by Congress in the fiscal year (FY) 92 appropriations and is included in thee Energy Policy Act of 1992. The program budget has increased rapidly, with the FY 94 budget including. over $28 million for ATS program activities. The Natural Gas Strategic Plan and Multi-Year Program Crosscut Plan, 1993--1998, includes the ATS program as part of the overall DOE plan for natural gas-related research and development (R&D) activities. Private sector support for the program is sufficient. Three open meetings have been held during the last 2 years to provide an opportunity for industry suggestions and comments. As the result of a public review of the program plan held June 4, 1993, in Pittsburgh, 46 letters of support were received from industry, academia, and others. Gas turbines represent the fastest growing market segment in electrical and cogeneration markets, with over 60 percent of recent installations based on gas turbines. Gas turbine systems offer low installation and operating costs, low emissions (currently with add-on equipment for non-attainment areas), and quick installation (1--2 years). According to the Annual Energy Outlook 1993, electricity and natural gas demand should both grow substantially through 2010. Natural gas-fired gas turbine systems continue to be the prime candidates for much of both new and retrofit capacity in this period. Emissions requirements continue to ratchet downward with single-digit NO{sub x} ppM required in several non-attainment areas in the US

Webb, H.A. [USDOE Morgantown Energy Technology Center, WV (United States); Parks, W.P. [USDOE, Washington, DC (United States)

1994-07-01T23:59:59.000Z

40

Gas Turbine Procurement: 1988 Workshop  

Science Conference Proceedings (OSTI)

Specifying the levels of reliability and availability needed for new gas turbines or combined-cycle plants can help utilities meet plant operating requirements. Equipment specifiers can use information presented in this workshop to help them formulate more effective specifications for new gas turbine generating equipment.

1989-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

42

Fuel Interchangeability Considerations for Gas Turbine Combustion  

DOE Green Energy (OSTI)

In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

Ferguson, D.H.

2007-10-01T23:59:59.000Z

43

Gasification Evaluation of Gas Turbine Combustion  

DOE Green Energy (OSTI)

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30T23:59:59.000Z

44

Gas turbines face new challenges  

SciTech Connect

Gas turbines continue to increase the electric power generation market in both the peaking and the intermediate load categories. With the increase in unit size and operating efficiencies. capital costs per kilowatt are reduced. Clean fuels---gas, light oil, or alcohol-type fuel--are needed for the gas turbines. The most efficient method of power generation is now attained from gas turbines, but the shortage of clean fuels looms. Manufacturers are anticipating the availability of clean fuels and continue working on the development of high- pressure, high-temperature turbines. In the near-term, increased efficiency is sought by making use of the turbine exhaust heat. involving combined or regenerative cycles. (MCW)

Papamarcos, J.

1973-12-01T23:59:59.000Z

45

Gas turbines for the future  

SciTech Connect

Utility gas turbine technology has been advancing fairly rapidly, one reason being that it shares in the benefits of the research and development for aviation gas turbines. In general, turbine progress is characterized by large, incremental advances in performance. At intervals of approx. 15 yr, new-generation turbines are introduced, refined, and eventually installed in relatively large numbers. A new generation of turbines is being readied for the market that will have power ratings into the 130- to 150-MW range (simple cycle), significantly higher than the 70 to 100 MW now in service. When the new turbines are installed in combined-cycle plants, the efficiency levels are expected to rise from the present value of approx. 42% higher heating value to approx. 46%.

Cohn, A.

1987-01-01T23:59:59.000Z

46

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

47

Gas fired Advanced Turbine System  

SciTech Connect

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

48

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

49

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

50

Gas turbine engine braking and method  

SciTech Connect

A method is described of decelerating a ground vehicle driven by a gas turbine engine having a gas generator section and a free turbine output power section driven by a gas flow from the gas generator section, comprising the steps of: altering the incidence of gas flow from the gas generator section onto the free turbine section whereby said gas flow opposes rotation of the free turbine section; increasing gas generator section speed; and subsequent to said altering and increasing steps, selectively mechanically interconnecting said gas generator and free turbine sections whereby the rotational inertia of the gas generator section tends to decelerate the free turbine section.

Mattson, G.; Woodhouse, G.

1980-07-01T23:59:59.000Z

51

Stream-injected free-turbine-type gas turbine  

SciTech Connect

This patent describes an improvement in a free turbine type gas turbine. The turbine comprises: compressor means; a core turbine mechanically coupled with the compressor means to power it; a power turbine which is independent from the core turbine; and a combustion chamber for providing a heated working fluid; means for adding steam to the working fluid; means for providing a single flow path for the working fluid, first through the core turbine and then through the power turbine. The improvement comprises: means for preventing mismatch between the core turbine and the compressor due to the addition of steam comprising coupling a variable output load to the compressor.

Cheng, D.Y.

1990-02-13T23:59:59.000Z

52

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

53

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

54

H gas turbine combined cycle  

SciTech Connect

A major step has been taken in the development of the Next Power Generation System--``H`` Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1,430 C (2,600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The ``H`` Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

Corman, J.

1995-12-31T23:59:59.000Z

55

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

56

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

57

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

58

GE Upgrades Top Selling Advanced Gas Turbine  

Science Conference Proceedings (OSTI)

Oct 30, 2009 ... According to GE, a typical power plant operating two new 7FA gas turbines with a single steam turbine in combined cycle configuration would ...

59

How many gas turbines. Part 1  

SciTech Connect

This paper reports that gas turbine technology can serve a range of application needs. The short lead time and low capital cost of simple-cycle gas turbines make these units ideally suitable for peaking applications. Should oil/natural gas fuel prices increase, existing simple-cycle plants can have a steam cycle added which leads to an efficient combines-cycle plant. Should the need arise, a coal gasifier can be added so that coal can be used as the fuel for the combined-cycle plant. Gas turbine technology has high reliability and availability. High gas turbine reliability leads to high system reliability and the ability to lower overall generation system serve margin requirements. Lower reserve margin requirements lead to decreased needs for future capacity which can yield large capital and economic savings. Based on EPRI TAG economic data DRI fuel cost projections, simple-cycle gas turbines and combined-cycle plants are and will remain the most economic capacity additions during the 1990s.

Kaupang, B.M.; Oplinger, J.L.; Stoll, H.G.; Taylor, T.M. (General Electric Corp. (US))

1991-07-01T23:59:59.000Z

60

AIAA 20033698 Aircraft Gas Turbine Engine  

E-Print Network (OSTI)

AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

Stanford University

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of advanced gas turbine systems  

SciTech Connect

The objective of the Advanced Turbine Systems study is to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% efficiency within a 8-year time frame. The potential system was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. Progress is described.

Bannister, R.L.; Little, D.A.; Wiant, B.C.

1993-11-01T23:59:59.000Z

62

Development of a low swirl injector concept for gas turbines  

E-Print Network (OSTI)

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

63

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

64

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-12-31T23:59:59.000Z

65

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-01-01T23:59:59.000Z

66

Satoshi Hada Department of Gas Turbine Engineering,  

E-Print Network (OSTI)

Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago must be prevented by developing envi- ronmentally friendly power plants. Industrial gas turbines play a major role in power generation with modern high temperature gas turbines being applied in the gas

Thole, Karen A.

67

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

68

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

69

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

70

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

71

Gas Turbine World performance specs 1984  

SciTech Connect

The following topics are discussed: working insights into the performance specifications; performance and design characteristics of electric power plants, mechanical drive gas turbines, and marine propulsion gas turbines; and performance calculations.

1984-03-01T23:59:59.000Z

72

The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory  

E-Print Network (OSTI)

1 The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory Prof. David Darmofal, Prof. Daniel and in-service conditions is a key factor in gas turbine product quality. While a given design may these improved engines. The M.I.T. Gas Turbine Laboratory (GTL) has a long history of developing advanced

Waitz, Ian A.

73

Environmental Coatings For Gas Turbine Engine Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Environmental Coatings For Gas Turbine Engine Applications. Author(s), Ming Fu, Roger Wustman, Jeffrey Williams, Douglas Konitzer.

74

Charts estimate gas-turbine site performance  

SciTech Connect

Nomographs have been developed to simplify site performance estimates for various types of gas turbine engines used for industrial applications. The nomographs can provide valuable data for engineers to use for an initial appraisal of projects where gas turbines are to be considered. General guidelines for the selection of gas turbines are also discussed. In particular, site conditions that influence the performance of gas turbines are described.

Dharmadhikari, S.

1988-05-09T23:59:59.000Z

75

The Virtual Gas Turbine System for Alloy Assesment  

Science Conference Proceedings (OSTI)

Key words: Virtual turbine, Alloy design program, Gas turbine design program, Nickel-base ... developed a virtual gas turbine (VT) system as a combination of.

76

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

77

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

78

Gas turbine intake air quality  

SciTech Connect

This report presents the results of preliminary research intended to evaluate the causes and effects of compressor fouling on pipeline gas turbines. A literature search and field-experience survey of pipeline operators provides the basis for the conclusions and recommendations.

Lawson, C.C.

1988-01-01T23:59:59.000Z

79

Gas Turbine Procurement: 1987 Workshop  

Science Conference Proceedings (OSTI)

By properly specifying a gas turbine unit, a utility buyer can avoid engine system configurations that could contribute to forced outages, long downtimes, and less than satisfactory starting reliability. A 1987 EPRI workshop identified factors that can assist utilities in specifying these systems to obtain high reliability, availability, and maintainability.

1988-03-23T23:59:59.000Z

80

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Enhancing gas-turbine performance  

SciTech Connect

According to one report, around 80% of the large frame-size industrial and utility gas turbines (GTs) in service throughout the world were installed between 1965 and 1975. Because of substantial technology advancements since their commissioning, these older units make ideal candidates for capacity enhancements through such options as steam or water injection, inlet-air cooling, steam-cycle addition, hot-gas-path component uprates, and in the case of combined-cycles, supplementary firing of the heat-recovery steam generator (HRSG). This article reports that many gas-turbine owners are searching for upgrades that will enhance capacity or thermal efficiency--or both. Uprating hot-gas-path components is perhaps the most popular option, but economic evaluations must account for shortened hot-section life and higher O and M costs.

Swanekamp, R.

1995-09-01T23:59:59.000Z

82

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

83

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

84

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

85

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

86

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

87

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

88

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

89

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

90

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

91

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

92

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

93

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

94

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

95

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

96

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

97

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

98

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

99

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

100

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

102

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

103

Advanced Coating Development for Gas Turbine Components  

Science Conference Proceedings (OSTI)

Sacrificial, oxidation-resistant coatings on turbine blades in high-firing temperature gas turbines are wearing out at an unacceptably rapid rate, resulting in excessive downtime and repair costs for turbine operators. This report summarizes the results of an exploratory development project that assessed the feasibility of decelerating the degradation rate of an MCrAlY coating on several turbine blade alloys.

2000-08-01T23:59:59.000Z

104

Electronic fuel control system for gas turbine  

SciTech Connect

A method is described for monitoring gas turbine operating temperatures and rotational velocity for producing one of a group of fuel control signals for controlling the fuel input rate to the gas turbine. The method consists of: monitoring turbine inlet temperatures through respective sensors for the gas turbine, averaging the turbine inlet temperatures to produce an average turbine inlet temperature signal, monitoring a gas generator inlet temperature sensor of the gas turbine for producing a gas generator inlet temperature signal, generating a speed signal proportional to the rotational velocity of the gas turbine, combining the gas generator inlet temperature signal with the speed signal to produce a first function signal, applying the first function signal to a stored data set to produce a second function signal, the stored data set related to performance characteristics of the gas turbine, and comparing the turbine inlet temperature signal to the second function signal to produce a difference signal therefrom, the difference signal serving as a fuel control signal for the gas turbine.

Nick, C.F.

1986-04-22T23:59:59.000Z

105

Performance optimization of gas turbine engine  

Science Conference Proceedings (OSTI)

Performance optimization of a gas turbine engine can be expressed in terms of minimizing fuel consumption while maintaining nominal thrust output, maximizing thrust for the same fuel consumption and minimizing turbine blade temperature. Additional control ... Keywords: Fuel control, Gas turbines, Genetic algorithms, Optimization, Temperature control

Valceres V. R. Silva; Wael Khatib; Peter J. Fleming

2005-08-01T23:59:59.000Z

106

Gas Turbine and Generator Procurement Guidelines: Best Practices and Specification  

Science Conference Proceedings (OSTI)

This report provides a specification in the style used by engineering, procurement, and construction (EPC) firms for procuring gas turbines and associated generators and accessories, as well as guidelines that describe best practices for defining the functional design requirements for such equipment. BackgroundGas turbines, fired by readily available natural gas, provide the majority of new power generation worldwide. Changes in the mix of generation ...

2012-10-29T23:59:59.000Z

107

Gas turbine power plant with supersonic gas compressor - Energy ...  

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on ...

108

Industrial gas turbines with subatmospheric expansion  

SciTech Connect

A modification is proposed to the basic Brayton cycle, by coupling the gas turbine with a jet pump. This allows subatmospheric pressure to exist at the exit of the turbine, a bigger turbine ratio and, hence, a higher efficiency. The jet pump operates with steam, produced from pressurized water heated by the exhaust gasses of the gas turbine. A simple configuration of the coupling is studied in detail.

Georgiou, D.P. (Patras Univ. (Greece))

1988-01-01T23:59:59.000Z

109

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

110

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

111

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

112

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

113

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

114

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

115

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

116

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

117

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

118

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

119

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

120

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

122

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

123

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

124

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plants

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

125

Closed-cycle gas turbine chemical processor  

SciTech Connect

A closed-cycle gas turbine chemical processor separates the functions of combustion air and dilution fluid in a gas turbine combustor. The output of the turbine stage of the gas turbine is cooled and recirculated to its compressor from where a proportion is fed to a dilution portion of its combustor and the remainder is fed to a chemical recovery system wherein at least carbon dioxide is recovered therefrom. Fuel and combustion air are fed to a combustion portion of the gas turbine combustor. In a preferred embodiment of the invention, the gas turbine is employed to drive an electric generator. A heat recovery steam generator and a steam turbine may be provided to recover additional energy from the gas turbine exhaust. The steam turbine may be employed to also drive the electric generator. additional heat may be added to the heat recovery steam generator for enhancing the electricity generated using heat recovery combustors in which the functions of combustion and dilution are separated. The chemical recovery system may employ process steam tapped from an intermediate stage of the steam turbine for stripping carbon dioxide from an absorbent liquid medium which is used to separate it from the gas stream fed to it. As the amount of carbon dioxide in the fuel fed to the chemical processor increases, the amount of process steam required to separate it from the absorbent fluid medium increases and the contribution to generated electricity by the steam turbine correspondingly decreases.

Stahl, C. R.

1985-07-16T23:59:59.000Z

126

Gas turbine topping combustor  

DOE Patents (OSTI)

A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

1997-01-01T23:59:59.000Z

127

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture  

E-Print Network (OSTI)

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade control, cogeneration, gas turbine, model based control, feed forward, cascade ABSTRACT Presented is a model based strategy for controlling the NOX concentration of natural gas turbine emissions

Cooper, Doug

128

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

129

Gas turbine vane platform element  

SciTech Connect

A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

Campbell, Christian X. (Oviedo, FL); Schiavo, Anthony L. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL

2012-08-28T23:59:59.000Z

130

Gas turbine topping combustor  

DOE Patents (OSTI)

A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

1997-06-10T23:59:59.000Z

131

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

132

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

133

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

134

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

135

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

136

Opportunities in Liquefied Natural Gas - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural gas burns more cleanly than petroleum fuels or coal, and new gas-fired combined-cycle turbine power plants can turn heat into electricity more efficiently ...

137

CFD Modelling of Generic Gas Turbine Combustor.  

E-Print Network (OSTI)

??New computational methods are continuously developed in order to solve problems in different engineering fields. One of these fields is gas turbines, where the challenge… (more)

KHODABANDEH, AMIR

2011-01-01T23:59:59.000Z

138

WEB RESOURCE: Chromalloy Gas Turbine Corporation - TMS  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... Chromalloy Gas Turbine Corporation is a pioneer in the high temperature coating of jet aircraft engine vanes and blades. Through ...

139

Gas Turbine Plant Modeling for Dynamic Simulation.  

E-Print Network (OSTI)

?? Gas turbines have become effective in industrial applications for electric and thermal energy production partly due to their quick response to load variations. A… (more)

Endale Turie, Samson

2012-01-01T23:59:59.000Z

140

Advanced Materials and Processes for Gas Turbines  

Science Conference Proceedings (OSTI)

Jul 1, 2003 ... Out of Print. Description These proceedings from the United Engineering Foundation's Advanced Materials and Processes for Gas Turbines ...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Industrial type gas turbines for offshore applications  

SciTech Connect

The paper discusses, with reference to the power generating gas turbines on the FRIGG TCP-2 platform, the specific and general requirements for offshore gas turbine, and how those sometimes conflicting requirements are met. Furthermore, interesting details of the particular installation on the FRIGG TCP-2 platform are described. The gas turbines on the FRIGG TCP-2 platform are the first ones to be installed in Norwegian water after the Norwegian regulations for ''Production and auxiliary systems on production installations, etc.'' were officially issued in April 1978. Some of these special regulations and their influence on the gas turbine design are discussed. Paper No. 79-GT-105.

Elmhed, G.; Ferm, S.; Svensson, S.O.

1980-04-01T23:59:59.000Z

142

Investigation of flow characteristics of gas turbines  

SciTech Connect

Measurements carried out in the process of assimilation of gas turbine (GT) plants of 16 different types in starting and working conditions to estimate the operational conditions and characteristics of the main elements (in particular of the turbines) have created a basis for generaliztion of flow characteristics of different turbines and for extending them to a wider range of operational conditions. The studies showed that: flow characteristics of the investigated turbines, independently of the number of stages and the degree of reaction, are described by the elliptic flowrate equation; throughput of similar turbines, i.e., of turbines formed of stages with high reaction, which have low design degrees of expansion, can be determined with satisfactory accuracy by the unique function of the degree of expansion; and in operating the gas turbine plants considerable changes in throughput of the turbines are possible.

Ol' khovskii, G.G.; Ol' khovskaya, N.I.

1978-01-01T23:59:59.000Z

143

Blade for a gas turbine  

SciTech Connect

A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

Liang, George (Palm City, FL)

2010-10-26T23:59:59.000Z

144

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

145

Coatings for gas turbines; Specialized coatings boost, maintain turbine efficiency  

SciTech Connect

Airlines have been coating their jet engines for the past 30 years, thereby avoiding corrosion, erosion and wear. More recently, operators of mechanical-drive gas turbines have come to realize the value of coatings as a way to keep down costs. This paper describes specialized coatings technology which has evolved for gas turbines. Coatings have been designed for specific areas and even specific components within the turbine. Because operators must often request these coatings when buying new equipment or at overhaul, a basic understanding of the technology is presented.

1988-10-01T23:59:59.000Z

146

Gas Turbine Repair Guidelines: Alstom GT26  

Science Conference Proceedings (OSTI)

For more than a decade, the Electric Power Research Institute (EPRI) has been developing gas turbine hot section component repair and coating guidelines to assist utilities and power generators in the refurbishment of these critical and expensive parts. Utilities, generators, and repair vendors have used these guidelines to perform repairs on turbine blades, vanes, and combustion hardware. The guidelines in this volume address the specific features of the Alstom GT26 gas turbine.

2011-11-03T23:59:59.000Z

147

Method for detecting gas turbine engine flashback  

SciTech Connect

A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

2012-09-04T23:59:59.000Z

148

Proceedings: 1991 EPRI Gas Turbine Procurement Seminar  

Science Conference Proceedings (OSTI)

EPRI's 1991 workshop on gas turbine procurement will help equipment specifiers to develop more-effective procurement procedures for new gas turbine generating units.Properly drafted specifications and an informed purchase posture improve the quality of a procurement and can result in lower unit life-cycle cost.

1992-05-01T23:59:59.000Z

149

Gas Turbine Recuperators: Benefits and Status  

Science Conference Proceedings (OSTI)

Distributed resources (DR) are projected to be an expanding part of the power generation mix in the future -- with conventional industrial and aeroderivative gas turbines as well as emerging microturbine products playing an important role. This report assesses the role of recuperators in improving the power generation efficiency of simple-cycle gas turbines and microturbines.

2000-01-19T23:59:59.000Z

150

Making of Alloy 706 Ingot for Gas Turbine Parts  

Science Conference Proceedings (OSTI)

MAKING OF ALLOY 706 INGOT FOR GAS TURBINE PARTS ... In general, Alloy 706 ingots for gas turbine parts are made by the VIM-ESR-VAR triple melt ...

151

Advanced Materials and Processes for Gas Turbines TABLE OF ...  

Science Conference Proceedings (OSTI)

Materials Issues for the Design of Industrial Gas Turbines [pp. 3-13] ... French Developments of Superalloys for Gas Turbine Disks and Blades [pp. 17-28

152

Condition based management of gas turbine engine using neural networks.  

E-Print Network (OSTI)

??This research work is focused on the development of the hybrid neural network model to asses the gas turbine’s compressor health. Effects of various gas… (more)

Muthukumar, Krishnan.

2008-01-01T23:59:59.000Z

153

Performance and supply of fluids in a modern gas turbine.  

E-Print Network (OSTI)

??This thesis considers the role fluids play in improving the efficiency and reducing the environmental impact of modern gas turbines. This includes gas turbines used… (more)

Askins, John Stephen

2010-01-01T23:59:59.000Z

154

DOE Research Grant Leads to Gas Turbine Manufacturing Improvements...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Research Grant Leads to Gas Turbine Manufacturing Improvements DOE Research Grant Leads to Gas Turbine Manufacturing Improvements August 16, 2011 - 1:00pm Addthis Washington,...

155

Gas turbine performance versus time in service. Final report  

SciTech Connect

Gas turbine performance deterioration is accompanied by changes to the parameter relationships of the gas turbine components and mostly to those parameters that are significantly affected by changes to the gas turbine's components efficiencies, namely power output and heat rate. Deterioration, therefore, is characterized by a decrease in power and an increase in heat rate at constant turbine temperature, and an increase in fuel flow and heat rate at constant engine or compressor pressure ratio or at constant power output. The loss in component efficiency is normally caused by changes in the gas path configuration of the compressor(s) and/or turbine(s). These changes are normally characterized by erosion and/or corrosion of air foils, air or gas seals, or deposits on air foils which significantly affect the flow characteristics of these parts. In any case, we are talking about the introduction of fouling, corrosion, and erosion agents into the gas path through the air inlet system and the fuel system. Since the environment and fuels are the major sources of gas path contamination, such things as air filters, fuel quality, duty cycle, gas path configuration, geographic consideration, cleaning techniques and frequency should influence the rate at which deterioration takes place. Data from single shaft gas turbines operated at continuous base load power, and baseload peaking duty cycle, was used to quantify typical deterioration curves for these machines. Power deviation differences at 10,000 hours chargeable to natural gas vs distillate fuel is six percentage points in favor of natural gas. The effect of evaporative coolers, airwashers and high efficiency filters in terms of power deviation at 10,000 hours is approximately five percentage points in favor of the filtered or airwashed inlet.

Brazel, W.N.

1985-07-01T23:59:59.000Z

156

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

157

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

158

Airfoil for a gas turbine  

SciTech Connect

An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.

Liang, George (Palm City, FL)

2011-01-18T23:59:59.000Z

159

Regenerator for gas turbine engine  

DOE Patents (OSTI)

A rotary disc-type counterflow regenerator for a gas turbine engine includes a disc-shaped ceramic core surrounded by a metal rim which carries a coaxial annular ring gear. Bonding of the metal rim to the ceramic core is accomplished by constructing the metal rim in three integral portions: a driving portion disposed adjacent the ceramic core which carries the ring gear, a bonding portion disposed further away from the ceramic core and which is bonded thereto by elastomeric pads, and a connecting portion connecting the bonding portion to the driving portion. The elastomeric pads are bonded to radially flexible mounts formed as part of the metal rim by circumferential slots in the transition portion and lateral slots extending from one end of the circumferential slots across the bonding portion of the rim.

Lewakowski, John J. (Warren, MI)

1979-01-01T23:59:59.000Z

160

New gas turbine sales, refurbishment organization formed  

Science Conference Proceedings (OSTI)

UNC Metcalf, a gas turbine overhaul shop headquartered in Odessa, Texas, has been restructured Into UNC Industrial Power, thus tying the corporation`s various entities into a cohesive business base that now specializes in new and refurbished gas turbine engine packages for cogeneration, gas compression and industrial requirements worldwide. This article discusses the business strategy and goals as wells as markets serviced by the company. 3 figs.

Hopkins, E.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nature's Classroom Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Nature's Classroom Wind Turbine Nature's Classroom Wind Turbine Jump to: navigation, search Name Nature's Classroom Wind Turbine Facility Nature's Classroom Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Nature's Classroom Energy Purchaser Nature's Classroom Location Charlton MA Coordinates 42.113685°, -72.008475° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.113685,"lon":-72.008475,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Large Diameter 718 Ingots for Land-Based Gas Turbines  

Science Conference Proceedings (OSTI)

h'ew high efficiency land based gas turbines made by General Electric ... Materials used for turbine rotors in land-based gas turbines have typically been CrMoV ...

163

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

164

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

165

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

DOE Green Energy (OSTI)

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

166

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

EIA), natural gas combined-cycle and combustion turbineof energy from a new combined cycle gas turbine, and moregas needed to fuel an 85 MW combined-cycle gas turbine (heat

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

167

DOE-Sponsored Research Improves Gas Turbine Performance  

Energy.gov (U.S. Department of Energy (DOE))

Small Business Innovative Research Grants Achieve Commercialization Goals for Novel Gas Turbine Manufacturing Technology

168

Development requirements for an advanced gas turbine system  

Science Conference Proceedings (OSTI)

In cooperation with US Department of Energy`s Morgantown Energy Technology Center, a Westinghouse-led team is working on the second part of an 8-year, Advanced Turbine Systems Program to develop the technology required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. This paper reports on the Westinghouse program to develop an innovative natural gas-fired advanced turbine cycle, which, in combination with increased firing temperature, use of advanced materials, increased component efficiencies, and reduced cooling air usage, has the potential of achieving a lower heating value plant efficiency in excess of 60%.

Bannister, R.L.; Cheruvu, N.S.; Little, D.A.; McQuiggan, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

169

Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications  

SciTech Connect

The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

1997-03-01T23:59:59.000Z

170

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

171

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

172

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

173

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas prices, successful application of horizontal drilling, and hydraulic fracturing, as well as significant investments made by natural gas companies in production...

174

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

175

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

176

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

177

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

7, 2009 Next Release: May 14, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 6, 2009) Natural gas...

178

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

179

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

180

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Proceedings: 1989 EPRI Gas Turbine Procurement Seminar  

Science Conference Proceedings (OSTI)

Information presented in this workshop will enable equipment specifiers to formulate more-effective specifications for new gas turbine generating equipment. Properly drafted specifications improve the quality of a procurement and can result in lower unit life-cycle cost.

1990-03-22T23:59:59.000Z

182

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

183

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

184

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

185

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

186

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

187

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

188

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

189

South Dakota Natural Gas Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Removed from Natural Gas (Million Cubic Feet) South Dakota Natural Gas Removed from Natural Gas...

190

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

191

Gas Turbine Rotor Life: Material Testing  

Science Conference Proceedings (OSTI)

Gas turbine rotor materials are subject to degradation from prolonged hours and multiple start/stop cycles of operation. Periodically, plant operators disassemble the compressor and turbine sections of the rotor system and inspect the components for signs of creep, embrittlement, corrosion, thermal fatigue, and high- and low-cycle fatigue. Beyond limited rotor inspections performed during hot gas path inspections and major overhauls, a more thorough inspection is often required by the equipment ...

2012-12-14T23:59:59.000Z

192

Gas Turbine Rotor Life Assessment Guideline  

Science Conference Proceedings (OSTI)

Gas turbine rotor materials are subject to degradation from prolonged hours and multiple start/stop cycles of operation. Periodically, plant operators disassemble the compressor and turbine sections of the rotor system and inspect the components for signs of creep, embrittlement, corrosion, thermal fatigue, and high- and low-cycle fatigue. Beyond limited rotor inspections performed during hot gas path inspections and major overhauls, a more thorough inspection is often required by the equipment manufactu...

2011-12-14T23:59:59.000Z

193

Gas Turbine Component Repair Shop Capabilities  

Science Conference Proceedings (OSTI)

Aftermarket repair services for gas turbine OM has been undergoing continual transformation beginning with the emergence of independent shops in the 1980s. The original equipment manufacturers (OEMs) in the late 1990s began to aggressively pursue repair services. Gas turbine hot section component repair/replacement coupled with inspection/overhaul technical support has come to be offered as long-term service agreements (LTSAs). These agreements often extend from 6 to 18 years. The repair business continu...

2011-12-16T23:59:59.000Z

194

Gas turbine engines with particle traps  

DOE Patents (OSTI)

A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

1992-01-01T23:59:59.000Z

195

Method and apparatus for preventing overspeed in a gas turbine  

DOE Patents (OSTI)

A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

Walker, William E. (San Diego, CA)

1976-01-01T23:59:59.000Z

196

10 Solar powerplants. gas turbines packaged for offshore gas platform  

SciTech Connect

Weatherby Engineering Co. neared completion recently of 8 modules mounting a total of 9 gas turbine engines, all destined for an offshore gas injection platform. The platform capacity is 80 MMcfd. The inlet pressure on the platform is 45 psig and the discharge pressure is 3,410 psig. The system constitutes a complete gas dehydration and compressor station and the modules house the gas turbines which drive the centrifugal and reciprocating compressors for gas injection service, and 2 gas turbine-powered generating units to supply electric power for the platform complex. The gas turbines and compressors are installed in sound attenuated enclosures. These complete power packages are built up by Solar and supplied to Weatherby for the project. The complete module is described.

Alberte, T.

1976-05-01T23:59:59.000Z

197

The evaporative gas turbine (EGT) cycle  

SciTech Connect

Humidification of the flow through a gas turbine has been proposed in a variety of forms. The STIG plant involves the generation of steam by the gas turbine exhaust in a heat recovery steam generator (HRSG), and its injection into or downstream of the combustion chamber. This increases the mass flow through the turbine and the power output from the plant, with a small increase in efficiency. In the evaporative gas turbine (or EGT) cycle, water is injected in the compressor discharge in a regenerative gas turbine cycle (a so-called CBTX plant--compressor [C], burner [B], turbine [T], heat exchanger [X]); the air is evaporatively cooled before it enters the heat exchanger. While the addition of water increases the turbine mass flow and power output, there is also apparent benefit in reducing the temperature drop in the exhaust stack. In one variation of the basic EGT cycle, water is also added downstream of the evaporative aftercooler, even continuously in the heat exchanger. There are several other variations on the basic cycle (e.g., the cascaded humidified advanced turbine [CHAT]). The present paper analyzes the performance of the EGT cycle. The basic thermodynamics are first discussed, and related to the cycle analysis of a dry regenerative gas turbine plant. Subsequently some detailed calculations of EGT cycles are presented. The main purpose of the work is to seek the optimum pressure ratio in the EGT cycle for given constraints (e.g., fixed maximum to minimum temperature). It is argued that this optimum has a relatively low value.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1998-04-01T23:59:59.000Z

198

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

199

Castability of 718Plus® Alloy for Structural Gas Turbine Engine ...  

Science Conference Proceedings (OSTI)

This technology will be implemented for the manufacture of gas turbine structural components ... Cast Alloys for Advanced Ultra Supercritical Steam Turbines.

200

Gas Turbine Engine Collaborative Research - NASA Glenn Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Engine Collaborative Gas Turbine Engine Collaborative Research-NASA Glenn Research Center Background Advancing the efficiency and performance levels of gas turbine technology requires high levels of fundamental understanding of the actual turbine component level technology systems. The National Aeronautics and Space Administration Glenn Research Center (NASA Glenn), with support from the Ohio State University, is planning research to compile

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Experimental Study of Main Gas Ingestion and Purge Gas Egress Flow in Model Gas Turbine Stages.  

E-Print Network (OSTI)

??Efficient performance of gas turbines depends, among several parameters, on the mainstream gas entry temperature. At the same time, transport of this high temperature gas… (more)

Balasubramanian, Jagdish Harihara

2010-01-01T23:59:59.000Z

202

Wavelet analysis for gas turbine fault diagnostics  

SciTech Connect

The application of wavelet analysis to diagnosing faults in gas turbines is examined in the present paper. Applying the wavelet transform to time signals obtained from sensors placed on an engine gives information in correspondence to their Fourier transform. Diagnostic techniques based on Fourier analysis of signals can therefore be transposed to the wavelet analysis. In the paper the basic properties of wavelets, in relation to the nature of turbomachinery signals, are discussed. The possibilities for extracting diagnostic information by means of wavelets are examined, by studying the applicability to existing data from vibration, unsteady pressure, and acoustic measurements. Advantages offered, with respect to existing methods based on harmonic analysis, are discussed as well as particular requirements related to practical application.

Aretakis, N.; Mathioudakis, K. [National Technical Univ. of Athens (Greece). Lab. of Thermal Turbomachines

1997-10-01T23:59:59.000Z

203

NETL: News Release - DOE-Fossil Energy: World's Most Advanced Gas Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

February 18, 2000 February 18, 2000 DOE-Fossil Energy: World's Most Advanced Gas Turbine Now Ready to Cross Commercial Threshold Secretary Richardson Cites Success of Government-Industry Partnership For natural gas turbines - the technology likely to dominate the growing market for new electric power generation - the future was unveiled today in Greenville, South Carolina. GE's MS7001H Advanced Gas Turbine The 4000-ton Model MS7001H advanced gas turbine is the size of a locomotive. Secretary of Energy Bill Richardson and U.S. Senator Ernest Hollings joined General Electric today in announcing that the company's newest H System™ gas turbine, the most advanced combustion turbine in the world, is ready to cross the commercial threshold. "Today, we are seeing the most advanced combustion turbine anywhere,

204

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network (OSTI)

Scheibel (1997) “Current Gas Turbine Developments and Futurefor Heavy-Duty Gas Turbines,” October 2000. Available onlineNext Evolution of the F Gas Turbine,” April 2001. Available

Ishii, Jun

2004-01-01T23:59:59.000Z

205

An acoustic energy framework for predicting combustion- driven acoustic instabilities in premixed gas-turbines  

E-Print Network (OSTI)

of Engineering for Gas Turbines and Power, 2000. Vol. 122:of Engineering for Gas Turbines and Power, 2000. Vol. 122:in Lean Premixed Gas Turbine Combustors," Journal of

Ibrahim, Zuhair M. A.

2007-01-01T23:59:59.000Z

206

Combination of Natural and Numerical Optimization Methods at the Example of an Internal Gas Turbine Cooling Channel  

Science Conference Proceedings (OSTI)

Iceformation phenomena can be observed in many natural and technical processes. A naturally grown ice layer aspires in steady state to a minimum of energy dissipation. Driven by this goal, this phenomena can be used to optimize complex geometric configurations ...

Helga Steinbrück; Sebastian Zehner; Bernhard Weigand; Sven Olaf Neumann

2008-09-01T23:59:59.000Z

207

Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas: Gas in place at the time that a reservoir was converted to use as an underground storage reservoir, as in contrast to injected gas volumes. Natural Gas: A gaseous mixture...

208

Adaptive simulation of gas turbine performance  

SciTech Connect

A method is presented allowing the simulation of gas turbine performance with the possibility of adapting to engine particularities. Measurements along the gas path are used, in order to adapt a given performance model by appropriate modification of the component maps. The proposed method can provide accurate simulation for engines of the same type, differing due to manufacturing or assembly tolerances. It doesn't require accurate component maps, as they are derived during the adaptation process. It also can be used for health monitoring purposes, introducing thus a novel approach for component condition assessment. The effectiveness of the proposed method is demonstrated by application to an industrial gas turbine.

Stamatis, A.; Mathioudakis, K.; Papailiou, K.D. (Ethnikon Metsovion Polytechneion, Athens (Greece))

1990-04-01T23:59:59.000Z

209

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

210

Gas Turbine Repair Guidelines: GE 7FA  

Science Conference Proceedings (OSTI)

For more than a decade, the Electric Power Research Institute (EPRI) has been developing gas turbine hot section component repair and coating guidelines to assist utilities in the refurbishment of these critical and expensive parts. Utilities, generators, and repair vendors have used these guidelines to perform repairs on blades, turbine vanes, and combustion hardware. Guidelines now exist for a variety of conventional and advanced General Electric, Siemens/Westinghouse, Alstom, and Mitsubishi heavy fram...

2011-12-27T23:59:59.000Z

211

Gas Turbine Repair Guidelines: GE 9FA  

Science Conference Proceedings (OSTI)

For more than a decade, the Electric Power Research Institute (EPRI) has been developing gas turbine hot section component repair and coating guidelines to assist utilities in the refurbishment of these critical and expensive parts. Utilities, generators, and repair vendors have used these guidelines to perform repairs on blades, turbine vanes, and combustion hardware. Guidelines now exist for a variety of conventional and advanced General Electric, Siemens/Westinghouse, Alstom, and Mitsubishi heavy ...

2012-12-12T23:59:59.000Z

212

Gas Turbine Hot Section Component Life Tracking  

Science Conference Proceedings (OSTI)

Damage tracking software—backed by comprehensive analysis techniques—provides a means for owners/operators to independently track and predict life consumption for critical gas turbine hot section components. Results can be compared with equipment supplier formulated intervals. This report updates the development status of damage tracking software for managing life-cycle costs by improving owner/operator understanding of component life and life consumption as a function of turbine ...

2012-12-03T23:59:59.000Z

213

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

214

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

215

Turbine-meter air calibration proves accurate for gas service  

SciTech Connect

This article presents theory, laboratory verificati*on tests, and field evaluation test data that show that a well-engineered gas-turbine meter (single rotor or tandem rotors) calibrated in air has the same accuracy when operating in natural gas at the same line pressure and flow rate (or the same Reynolds number). The only exception occurs at very low flow rates during which the rotor slip due to mechanical friction is no loner negligible.

Lee, W.F.Z.

1988-04-18T23:59:59.000Z

216

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

217

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

DOE Green Energy (OSTI)

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

218

Tempest gas turbine extends EGT product line  

SciTech Connect

With the introduction of the 7.8 MW (mechanical output) Tempest gas turbine, ECT has extended the company`s line of its small industrial turbines. The new Tempest machine, featuring a 7.5 MW electric output and a 33% thermal efficiency, ranks above the company`s single-shaft Typhoon gas turbine, rated 3.2 and 4.9 MW, and the 6.3 MW Tornado gas turbine. All three machines are well-suited for use in combined heat and power (CHP) plants, as demonstrated by the fact that close to 50% of the 150 Typhoon units sold are for CHP applications. This experience has induced EGT, of Lincoln, England, to announce the introduction of the new gas turbine prior to completion of the testing program. The present single-shaft machine is expected to be used mainly for industrial trial cogeneration. This market segment, covering the needs of paper mills, hospitals, chemical plants, ceramic industry, etc., is a typical local market. Cogeneration plants are engineered according to local needs and have to be assisted by local organizations. For this reason, to efficiently cover the world market, EGT has selected a number of associates that will receive from Lincoln completely engineered machine packages and will engineer the cogeneration system according to custom requirements. These partners will also assist the customer and dispose locally of the spares required for maintenance operations.

Chellini, R.

1995-07-01T23:59:59.000Z

219

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

220

International Energy Outlook 2001 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas picture of a printer Printer Friendly Version (PDF) Natural gas is the fastest growing primary energy source in the IEO2001 forecast. The use of natural gas is projected to nearly double between 1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is expected to be the fastest growing component of world energy consumption in the International Energy Outlook 2001 (IEO2001) reference case. Gas use is projected to almost double, to 162 trillion cubic feet in 2020 from 84 trillion cubic feet in 1999 (Figure 38). With an average annual growth rate of 3.2 percent, the share of natural gas in total primary energy consumption is projected to grow to 28 percent from 23 percent. The largest increments in gas use are expected in Central and

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Release: Thursday, August 26, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 18, 2010) Natural...

222

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

223

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

224

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas futures also reversed gains made in the previous week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased by 63 Bcf...

225

Natural gas annual 1996  

Science Conference Proceedings (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

226

Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned  

E-Print Network (OSTI)

oil, natural gas, and gas turbine power plants. As shown,Flue Flue Flue Fuel oil Natural gas Natural gas Gas turbineGas turbine Gas turbine Coal IGCC Flue Flue Flue Flue Fuel

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

227

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

with active programs. More information is available at: http:www.eia.doe.govcneafelectricitypagerestructuringrestructureelect.html. Information about natural gas...

228

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

229

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

230

Natural gas monthly  

Science Conference Proceedings (OSTI)

Monthly highlights of activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry are presented. Feature articles for this issue are: Natural Gas Overview for Winter 1983-1984 by Karen A. Kelley; and an Analysis of Natural Gas Sales by John H. Herbert. (PSB)

Not Available

1983-11-01T23:59:59.000Z

231

Deposition of Graded Thermal Barrier Coatings for Gas Turbine ...  

Wind Energy Industrial Technologies Advanced Materials Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades Sandia National ...

232

Microwave Brazing of Gas Turbine Components - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Microwave Brazing of Gas Turbine Components ... A Breakthrough Application of Electricity at High Temperature for Steel Production: Molten ...

233

Airfoil for a turbine of a gas turbine engine  

SciTech Connect

An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

Liang, George (Palm City, FL)

2010-12-21T23:59:59.000Z

234

FILM-COOLED GAS TURBINE VANE TEMPERATURE CALCULATIONS WITH AN ITERATIVE CONJUGATE HEAT TRANSFER APPROACH USING EMPIRICAL FILM CORRELATIONS.  

E-Print Network (OSTI)

??The design of gas turbine blades and vanes is a challenging task. The nature of the problem calls for high speed, high temperature, turbulent flows… (more)

Jennings, Timothy

2011-01-01T23:59:59.000Z

235

Small gas turbines exhibit single-digit emissions in service  

Science Conference Proceedings (OSTI)

A 10 MW-class, THM 1304-10D gas turbine from MAN-GHH, equipped with dry low-NO[sub x] combustion chambers, including hybrid burners, entered service last October. The unit was installed on the Stegal long-distance natural gas pipeline from the Olbernhau compression station on the Czech border. The pipeline transmits gas from Russia to the central part of Germany. A similar compression station, featuring three THM 1304-D driven compressor packages, started commercial operation last March in the Rehden station on the Midal pipeline. A test program carried out by MAN-GHH has demonstrated that the THM 1304 gas turbine has a wide operating range with NO[sub x] emission well under TA luft limits and, at the same time, negligible CO emissions. This is accomplished by combined effect of large volume combustion chambers, optimized wall cooling and premix dry low-NO[sub x] burners. 3 figs.

Chellini, R.

1994-06-01T23:59:59.000Z

236

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

237

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY  

E-Print Network (OSTI)

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

238

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor DO NOT 16 0 REMOVE 16 Small recuperated gas turbine engine, design rated at 13 hp and 27% efficiency of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

239

Multiscale Modelling of Single Crystal Superalloys for Gas Turbine Blades  

E-Print Network (OSTI)

Multiscale Modelling of Single Crystal Superalloys for Gas Turbine Blades PROEFSCHRIFT ter Multiscale Modelling of Single Crystal Superalloys for Gas Turbine Blades / by Tiedo Tinga. ­ Eindhoven accumulation 120 5.5 Application 121 5.6 Summary and conclusions 128 6. Application to gas turbine parts 131 6

240

Statistical estimation of multiple faults in aircraft gas turbine engines  

E-Print Network (OSTI)

415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

Ray, Asok

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Symbolic identification for fault detection in aircraft gas turbine engines  

E-Print Network (OSTI)

Symbolic identification for fault detection in aircraft gas turbine engines S Chakraborty, S Sarkar and computationally inexpensive technique of component-level fault detection in aircraft gas-turbine engines identification, gas turbine engines, language-theoretic analysis 1 INTRODUCTION The propulsion system of modern

Ray, Asok

242

GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE  

E-Print Network (OSTI)

1 GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE NOX INDICES OF FAME, GASOIL ("tallow"). A key factor for the use of biofuels in gas turbines is their Emissions Indices (NOx, CO, VOC to gas turbines is very scarce. Two recent, independent field tests carried out in Europe (RME

Paris-Sud XI, Université de

243

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed water, condensate and cooling water facilities. The benefits of the high efficiency of combined cycle gas turbines can only be realized if the energy in the hot exhaust can be utilized. Data for several plants, in various stages of engineering, in which clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial processes, namely in the production of ammonia, LNG, and olefins. These options are briefly discussed.

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

244

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

1986-09-01T23:59:59.000Z

245

Gas Turbine Fault Diagnosis using Random Forests  

Science Conference Proceedings (OSTI)

In the present paper, Random Forests are used in a critical and at the same time non trivial problem concerning the diagnosis of Gas Turbine blading faults, portraying promising results. Random forests-based fault diagnosis is treated as a Pattern Recognition ...

Manolis Maragoudakis; Euripides Loukis; Panayotis-Prodromos Pantelides

2008-06-01T23:59:59.000Z

246

Proceedings: 1992 EPRI Gas Turbine Procurement Seminar  

Science Conference Proceedings (OSTI)

This seminar presents information that enables utilities to implement more-cost-effective procurements for gas turbine and combined-cycle power generation equipment. A systematic approach to specification, permitting, procurement, and construction procedures can lower unit life-cycle cost.

1993-06-01T23:59:59.000Z

247

Gas Turbine Upgrades for Enhancing Operational Flexibility  

Science Conference Proceedings (OSTI)

Over the last several years, gas turbines owners have had to adapt their operating profiles to adjust to an ever changing environment that has included a dramatic run-up in gas prices, the halt (or collapse) of deregulation efforts in regions of the United States, the bankruptcy or near bankruptcy of industry giants, and an overall squeeze in profitability. In recent years, these externalities have been further exacerbated by the push for renewable portfolio standards (RPS), which mandate how much energy...

2009-01-09T23:59:59.000Z

248

Rise in gas-fired power generation tracks gains in turbine efficiency  

SciTech Connect

Natural gas-fueled gas turbines--in both simple and combined-cycle configurations--will account for most power generation capacity additions through 2000. It is widely agreed that gas turbines will remain the dominant form of technology for power generation for the next decade or two, making them the power generation technology of choice for today and the future. The pre-eminent stature of gas turbines can be attributed to their low capital costs, high efficiency, low emissions, short permitting and construction lead times, and proven reliability. The versatility of gas turbines also makes them unique among power generation technologies, as they can economically serve a wide spectrum of applications and sizes--from distributed generation to industrial cogeneration and central station generation. Three primary factors contribute to the growing interest in gas turbine-based power generation and the role gas turbines will play in the future power generation market: An optimistic outlook for the supply and price of natural gas; technology advances that have produced substantial improvements in efficiency and emissions; and emissions regulations that may favor the use of gas turbines over traditional fossil-fueled steam turbines. These three factors are discussed.

Bautista, P. [Gas Research Inst., Chicago, IL (United States)

1996-08-12T23:59:59.000Z

249

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

250

Natural gas sdtrategic plan  

SciTech Connect

The US Department of Energy`s natural gas program is aimed at meeting simultaneously our national energy needs, reducing oil imports, protecting our environment, and improving our economy The Natural Gas Strategic Plan for 1995 represents a Department-wide effort to articulate the key issues related to the expanded development and utilization of natural gas, and defines the roles of the federal government and US industry in partnering to accomplish the strategic goals defined. The four overarching goals of the Natural Gas Strategic Plan are to: foster the development of advanced natural gas technologies; encourage the adoption of advanced natural gas technologies in new and existing markets; support the removal of policy impediments to natural gas use in new and existing markets; and foster technologies and policies to maximize the environmental benefits of natural gas use. DOE`s proposed fiscal year (FY) 1996 budget represents a commitment to natural gas research, development, and demonstration (RD&D) from reservoir to end use. DOE has redirected and increased funding for its natural gas exploration, production, delivery and storage, processing, and utilization RD&D programs, shifting funds from other energy programs to programs that will enhance efficiency and advance the role of natural gas in our domestic energy resources portfolio.

1995-06-01T23:59:59.000Z

251

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

252

5. Natural Gas Liquids Statistics  

U.S. Energy Information Administration (EIA)

5. Natural Gas Liquids Statistics Natural Gas Liquids Proved Reserves U.S. natural gas liquids proved reserves decreased 7 percent to 7,459 million ...

253

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Exports...

254

High Temperature Corrosion Failures in Gas Turbine Components  

Science Conference Proceedings (OSTI)

Two case histories of gas turbine hot-gas-path components made of cobalt and nickel superalloys are presented to discuss the mechanism of different types of ...

255

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

256

Micro-combustor for gas turbine engine  

SciTech Connect

An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

Martin, Scott M. (Oviedo, FL)

2010-11-30T23:59:59.000Z

257

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

natural gas combined-cycle and combustion turbine power plantsnatural gas has become the fuel of choice for new power plantspower plants (Awerbuch 1993, 1994; Kahn & Stoft 1993). Specifically, in the context of natural gas-

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

258

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

259

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

260

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

262

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

263

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

264

The closed cycle gas turbine, the most efficient turbine burning any fuel  

Science Conference Proceedings (OSTI)

There are two types of gas turbines. The open cycle is very well known as, for example, the JET. The closed cycle in the U.S.A. is just starting to be well known. In Europe, the closed cycle gas turbine has been used in power plants, especially in Germany, and have been very efficient in burning coal. Concentrated in this paper is the Closed Cycle Gas Turbine (CCGT) as it is the most efficient type of turbine. There are the following sections in this paper: closed cycle gas turbine in more detail; various advantages of the CCGT; Nuclear power; and three comments.

Sawyer, R.T.

1983-12-01T23:59:59.000Z

265

International Energy Outlook 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. World natural gas consumption continues to grow, increasing its market share of total primary energy consumption. In the International Energy Outlook 2000 (IEO2000), natural gas remains the fastest growing component of world energy consumption. Over the IEO2000 forecast period from 1997 to 2020, gas use is projected to more than double in the reference case, reaching 167 trillion cubic feet in 2020 from the 1997 level of 82 trillion cubic feet (Figure 46). Over the 1997-2020 period, the role of natural gas in energy use is projected to increase in all regions except the Middle

266

Assessment of Gas Turbine Compressor Health Monitoring Technologies: Interim Report  

Science Conference Proceedings (OSTI)

A major risk item in gas turbine machinery is compressor rotor/stator blade failure, which can lead to the downstream propagation of components through the compressor. Several events of this nature have occurred over the last few years, in some cases causing catastrophic damage to the entire compressor. In response to these issues, a number of compressor monitoring approaches have been proposed, with different degrees of commercial penetration and technological readiness. The simplest approach is to ...

2013-12-18T23:59:59.000Z

267

December Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

DOEEIA-0130(9712) Distribution CategoryUC-950 Natural Gas Monthly December 1997 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC...

268

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

269

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

270

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,451,1,35,17,,,10,3,0,48...

271

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,13889,36,837,1016,,,1129,181,...

272

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,151,-1,1,6,,,0,0,0,36...

273

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,6305,-3,226,165,,,884,391,10,...

274

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,495,-3,48,11,,,113,0,31,60...

275

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,11457,-3,122,171,,,219,21,7,7...

276

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,877,0,37,79,,,93,32,2,62...

277

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

278

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

279

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

280

Advanced Combustion Systems for Next Generation Gas Turbines  

SciTech Connect

Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Combined plant having steam turbine and gas turbine connected by single shaft  

SciTech Connect

A combined plant including a gas turbine, a steam turbine and a waste heat recovery boiler using exhaust gases of the gas turbine as a heat source for producing steam serving as a drive source of the steam turbine further includes an ancillary steam source separate from and independent of the waste heat recovery boiler. At the time of startup of the plant, steam from the ancillary steam source is introduced into the steam turbine until the conditions for feeding air to the waste heat recovery boiler are set, to thereby avoid overheating of the steam turbine due to a windage loss.

Okabe, A.; Kashiwahara, K.; Urushidani, H.

1985-05-28T23:59:59.000Z

282

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

each of the consumption sectors, excluding the industrial sector, according to BENTEK Energy Services, LLC. Moderating temperatures likely contributed to lower natural gas...

283

4. Natural Gas Statistics  

U.S. Energy Information Administration (EIA)

hydraulic fracturing, including shales and low permeability (tight) formations. Total U.S. dry natural gas reserves additions replaced 237 percent of 2007 dry

284

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013"...

285

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

286

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increased to 3,683 billion cubic feet (Bcf) as of Friday, October 15, according to the Energy Information Administrations (EIA) Weekly Natural Gas Storage Report. The West...

287

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

storage facilities. Other Market Trends: EIA Releases Report on Underground Natural Gas Storage Developments: The Energy Information Administration (EIA) released a special...

288

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

that have helped reshape the natural gas market, with particular emphasis on policy directives during the past 26 years. The linked files provided on the web site provide...

289

Natural Gas Wellhead Prices  

U.S. Energy Information Administration (EIA)

Slide 19 of 27. Price: Wellhead. Natural gas wellhead prices are projected to move up 5 percent this winter, averaging about $2.28 per Mcf during this ...

290

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

of about 50 percent of natural gas production from the Gulf. (See "Other Market Trends" below for details.) Ivan's major impact on prices occurred on Monday, September 13,...

291

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Report," and the Historical Weekly Storage Estimates Database. Other Market Trends: FERC Investigates Natural Gas Wash-Trading: The Federal Energy Regulatory Commission (FERC)...

292

Natural Gas Monthly  

U.S. Energy Information Administration (EIA)

sector organizations associated with the natural gas industry. Volume and price data are presented each month for ... Tables 1 and 2 ...

293

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

294

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied… (more)

Li, Yun

2007-01-01T23:59:59.000Z

295

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

since July 27, 2004. Prices: Moderate temperatures and a favorable supply situation led to widespread declines in natural gas spot prices in the Lower 48 States since last...

296

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Release: Thursday, November 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 27, 2010) As the...

297

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Next Release: Thursday, May 13, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 5, 2010) Since...

298

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

299

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

300

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",9,"Annual",2012,"...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

302

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301981" ,"Data 5","Consumption",9,"Annual",2012,"6...

303

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

304

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",2,"Annual",1975,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301969" ,"Data 7","Consumption",11,"Annual",2012,"6...

305

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

306

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

307

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",9,"Annual",2012,"6...

308

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

309

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

310

,"Wyoming Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

311

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

312

,"Nebraska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

313

,"Vermont Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Prices",10,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

314

,"Ohio Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

315

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

316

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

317

,"Maryland Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

318

,"Michigan Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

319

,"Illinois Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

320

,"Kansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

322

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

323

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

324

,"Minnesota Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

325

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

326

,"Tennessee Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

327

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

328

,"Virginia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

329

,"Oklahoma Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

330

,"Washington Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

331

,"Maine Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

332

,"Louisiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

333

,"Utah Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

334

,"Oregon Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

335

,"Mississippi Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

336

,"Massachusetts Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

337

,"Nevada Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

338

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

339

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

340

,"Kentucky Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"Montana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

342

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

343

,"Missouri Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

344

,"Georgia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

345

,"Indiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

346

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

347

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

348

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

349

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Prices",8,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

350

Natural gas annual 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

351

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 6","Consumption",11,"Annual",2012,...

352

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

353

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

354

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

355

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

356

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

357

,"Illinois Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

358

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

359

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2012,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2012,"6301982" ,"Data 4","Consumption",10,"Annual",2012,"6...

360

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

362

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

363

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

364

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013" ,"Next Release...

365

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",8,"Monthly","102013","1151989" ,"Release Date:","172014"...

366

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2009 Next Release: January 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 14, 2009) In the...

367

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Iowa Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

368

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alabama Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

369

,"Georgia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Georgia Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

370

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Connecticut Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

371

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Colorado Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

372

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"California Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

373

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Florida Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

374

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Arkansas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

375

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Arizona Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

376

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alaska Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

377

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Delaware Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

378

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Hawaii Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

379

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

ends up in Clarington was delivered upstream. El Paso Natural Gas Pipeline issued an Emergency Critical Operating Condition Declaration for February 2 until further notice....

380

International Natural Gas Workshop  

U.S. Energy Information Administration (EIA)

International Natural Gas Workshop U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 and a member of ...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

382

Collaborative Advanced Gas Turbine Program: Phase 1. Final report  

SciTech Connect

The Collaborative Advanced Gas Turbine (CAGT) Program is an advanced gas turbine research and development program whose goal is to accelerate the commercial availability, to within the turn of the century, of high efficiency aeroderivative gas turbines for electric power generating applications. In the first project phase, research was conducted to prove or disprove the research hypothesis that advanced aeroderivative gas turbine systems can provide a promising technology alternative, offering high efficiency and good environmental performance characteristics in modular sizes, for utility applications. This $5 million, Phase 1 research effort reflects the collaborative efforts of a broad and international coalition of industries and organizations, both public and private, that have pooled their resources to assist in this research. Included in this coalition are: electric and gas utilities, the Electric Power Research Institute, the Gas Research Institute and the principal aircraft engine manufacturers. Additionally, the US Department of Energy (DOE) and the California Energy Commission have interacted with the CAGT on both technical and executive levels as observers and sources of funding. The three aircraft engine manufacturer-led research teams participating in this research include: Rolls-Royce, Inc., and Bechtel; the Turbo Power and Marine Division of United Technologies and Fluor Daniel; and General Electric Power Generation, Stewart and Stevenson, and Bechtel. Each team has investigated advanced electric power generating systems based on their high-thrust (60,000 to 100,000 pounds) aircraft engines. The ultimate goal of the CAGT program is that the community of stakeholders in the growing market for natural-gas-fueled, electric power generation can collectively provide the right combination of market-pull and technology-push to substantially accelerate the commercialization of advanced, high efficiency aeroderivative technologies.

Hollenbacher, R.; Kesser, K.; Beishon, D.

1994-12-01T23:59:59.000Z

383

Gas turbines fired by solid fuels  

SciTech Connect

Steadily increasing energy requirements have spurred a search for new methods of generating energy from low-cost, abundant fuels. The development of a gas-turbine system equipped for the direct combustion of such fuels is now underway in the U.S. A one-megawatt pilot plant has been operating for over a year, using a fluidized bed to burn coal. The plant has also operated on wood waste and municipal solid waste as fuels. Methods have been developed for the suppression of noxious gases included among the combustion products, but there remain some problems with the removal of particulate matter from the exhaust gas prior to its entry into the turbine. A new high-temperature filter is being installed to alleviate these. A description of the one-megawatt pilot plant is provided, along with a discussion of operational results and mechanical problems and their solutions. A preliminary design for a full-scale plant is included.

Wade, G.L.

1976-01-01T23:59:59.000Z

384

Forecasting and strategic inventory placement for gas turbine aftermarket spares  

E-Print Network (OSTI)

This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

Simmons, Joshua T. (Joshua Thomas)

2007-01-01T23:59:59.000Z

385

Natural gas monthly  

Science Conference Proceedings (OSTI)

This report presents current data on the consumption, disposition, production, prices, storage, import and export of natural gas in the United States. Also included are operating and financial data for major interstate natural gas pipeline companies plus data on fillings, ceiling prices, and transportation under the Natural Gas Policy Act of 1978. A feature article, entitled Main Line Natural Gas Sales to Industrial Users, 1981, is included. Highlights of this month's publication are: Marketed production of natural gas during 1982 continued its downward trend compared to 1981, with November production of 1511 Bcf compared to 1583 Bcf for November 1981; total natural gas consumption also declined when compared to 1981; as of November 1982, working gas in underground storage was running ahead of a similar period in 1981 by 109 Bcf (3.4 percent); the average wellhead price of natural gas continued to rise in 1982; and applications for determination of maximum lawful prices under the Natural Gas Policy Act (NGPA) showed a decrease from October to November, principally for Section 103 classification wells (new onshore production wells).

Not Available

1983-01-01T23:59:59.000Z

386

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2000-10-01T23:59:59.000Z

387

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2004-04-01T23:59:59.000Z

388

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2001-07-01T23:59:59.000Z

389

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2002-07-01T23:59:59.000Z

390

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in the quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2000-05-01T23:59:59.000Z

391

Impingement starting and power boosting of small gas turbines  

SciTech Connect

The technology of high-pressure air or hot-gas impingement from stationary shroud supplementary nozzles onto radial outflow compressors and radial inflow turbines to permit rapid gas turbine starting or power boosting is discussed. Data are presented on the equivalent turbine component performance for convergent/divergent shroud impingement nozzles, which reveal the sensitivity of nozzle velocity coefficient with Mach number and turbine efficiency with impingement nozzle admission arc. Compressor and turbine matching is addressed in the transient turbine start mode with the possibility of operating these components in braking or reverse flow regimes when impingement flow rates exceed design.

Rodgers, C.

1985-10-01T23:59:59.000Z

392

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural ... The EIA has determined that the informational map displays here do not raise security ...

393

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This paper describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine. It comprises: a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section; a gas turbine including a turbine section, a combustor, a fuel valve supplying the combustor, and an air compressor with a discharge end leading to the combustor; a load riven by the reheat steam turbine and the gas turbine; the reheat steam turbine, the gas turbine and the load all having rotating members; a heat recovery steam generator heated by the gas turbine, including a high pressure steam generating section supplying steam to the high pressure steam turbine section through the control valve, and a steam reheater section receiving steam exhausted from the high pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, and solid couplings serving to solidify couple the rotating members together as a single rotor, the rotor having a single thrust bearing.

Moore, J.H.

1991-12-03T23:59:59.000Z

394

Guide to natural gas cogeneration  

Science Conference Proceedings (OSTI)

This user-oriented guide contains expert commentary and details on both the engineering and economic aspects of gas-fired cogeneration systems. In this completely undated second edition, is a thorough examination of equipment considerations and applications strategies for gas engines, gas turbines, steam engines, and electrical switch-gear. Clear guidelines show how to select the prime mover which is best suited for a specific type of application. It describes which methods have proven most effective for utilizing recoverable heat, how to determine total installed capacity, and how to calculate the required standby capacity. The second edition provides an assessment of recent technological developments. A variety of case studies guide through all types of natural gas cogeneration applications, including both commercial and industrial, as well as packaged systems for restaurants and hospitals. Drawing upon the expertise of numerous authorities from the American Gas Association, this fully illustrated guide will serve as a valuable reference for planning or implementing a natural gas-fired cogeneration project.

Hay, N.E. (ed.)

1992-01-01T23:59:59.000Z

395

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

396

,"Arizona Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"N3050AZ3","N3010AZ3","N3020AZ3","N3035AZ3","NA1570SAZ3","N3045AZ3" "Date","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Price of Arizona Natural Gas...

397

,"Vermont Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

80SVT3","N3050VT3","N3010VT3","N3020VT3","N3035VT3","N3045VT3" "Date","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Vermont Natural Gas Pipeline and...

398

Natural gas industry directory  

SciTech Connect

This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

NONE

1999-11-01T23:59:59.000Z

399

Pennsylvania's Natural Gas Future  

E-Print Network (OSTI)

sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ Fossil backed by a growing portfolio of assets. #12;Shale Gas Geography 5 | MARCELLUS SHALE COALITION #12;Shale Permits Price #12;Pricing Trend of Oil and Gas in the US $- $5.00 $10.00 $15.00 $20.00 $25.00 USDper

Lee, Dongwon

400

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural gas prices rose at most market locations during the week, as consumption increased. The Henry Hub spot price increased 19 cents from $4.14 per million Btu (MMBtu) on Wednesday, April 13 to $4.33 per MMBtu on Wednesday, April 20. Futures prices behaved similar to spot prices; at the New York Mercantile Exchange, the price of the near-month natural gas contract (May 2011) rose from $4.141 per MMBtu to $4.310 per MMBtu. Working natural gas in storage rose to 1,654 billion cubic feet (Bcf) as of Friday, April 15, according to EIAÂ’s Weekly Natural Gas

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: September 10, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 2, 2009) Natural gas prices posted significant decreases at both the spot and futures markets since last Wednesday. Spot prices fell at all market locations in the lower 48 States, with decreases ranging between 7 and 68 cents per million Btu (MMBtu). The price at the Henry Hub spot market fell to $2.25 per MMBtu, decreasing by 51 cents or 18 percent. As of yesterday, the price of natural gas at the Henry Hub was the lowest since February 15, 2002, when natural gas at this location traded at $2.18 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas futures

402

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, June 30, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 22, 2011) Natural gas prices fell slightly at most market locations from Wednesday, June 15 to Wednesday, June 22. The Henry Hub price fell 10 cents from $4.52 per million Btu (MMBtu) last Wednesday to $4.42 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the July 2011 near-month futures contract fell by 26 cents, or about 6 percent, from $4.58 last Wednesday to $4.32 yesterday. Working natural gas in storage rose to 2,354 this week, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

403

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

What Consumers Should Know What Consumers Should Know An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Major Legislative and Regulatory Actions (1935 - 2004) U.S. Natural Gas Imports and Exports: Issues and Trends 2003 U.S. LNG Markets and Uses: June 2004 Natural Gas Restructuring Previous Issues of Natural Gas Weekly Update Natural Gas Homepage EIA's Natural Gas Division Survey Form Comments Overview: Thursday, December 1, 2005 (next release 2:00 p.m. on December 8) Colder-than-normal temperatures contributed to widespread price increases in natural gas spot markets since Wednesday, November 23 as heating demand increased. For the week (Wednesday to Wednesday), the spot price at the Henry Hub gained 59 cents per MMBtu, or about 5 percent, to trade at $11.73 per MMBtu yesterday (November 30). Similarly, at the NYMEX, the price for the futures contract for January delivery at the Henry Hub gained 54 cents since last Wednesday to close yesterday at $12.587 per MMBtu. Natural gas in storage as of Friday, November 25, decreased to 3,225 Bcf, which is 6.3 percent above the 5 year average. The spot price for West Texas Intermediate (WTI) crude oil dropped $1.02 per barrel, or about 2 percent, since last Wednesday to trade yesterday at $57.33 per barrel or $9.88 per MMBtu.

404

A Wood-Fired Gas Turbine Plant  

E-Print Network (OSTI)

This paper covers the research and development of a wood-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 501-k). A Westinghouse 3,000-kW generator is used on the prototype facility with a Philadelphia gear system reducing the 14,000-rpm turbine output speed to the 3,600-rpm generator operating speed. Fuel is fed into the combustor by a rotary valve system. The swirling effect of the cyclone combustor ensures that residence time is adequate to completely burn all solid particles in the combustor ahead of the cyclone filter. Burning of particles on the metal walls of the cyclone filter could cause overheating and deterioration of the walls. This wood-fired gas turbine unit could provide a low cost source of power for areas where conventional methods are now prohibitive and provide a means for recovering energy from a source that now poses disposal problems.

Powell, S. H.; Hamrick, J. T.

1986-06-01T23:59:59.000Z

405

Published in `AI Communications 9 journal', pp1-17. Published by IOS Press (1996) TIGERTM: Knowledge Based Gas Turbine Condition Monitoring  

E-Print Network (OSTI)

: Knowledge Based Gas Turbine Condition Monitoring Dr. Robert Milne and Dr. Charlie Nicol Intelligent, 11 Colon, Barcelona, 08222 Terrassa. Spain 1. INTRODUCTION Given the critical nature of gas turbines and increasing the availability of the gas turbine. Routine preventative maintenance techniques have been used

Travé-Massuyès, Louise

406

An Evaluation of Gas Turbines for APFBC Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

407

Easing the Natural Gas Crisis: Reducing Natural Gas Prices through  

E-Print Network (OSTI)

LBNL-56756 Easing the Natural Gas Crisis: Reducing Natural Gas Prices through Increased Deployment the Natural Gas Crisis: Reducing Natural Gas Prices through Increased Deployment of Renewable Energy-AC03-76SF00098. #12;#12;Easing the Natural Gas Crisis Acknowledgments The work described in this report

408

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network (OSTI)

Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine's compactness, low maintenance, and high levels of availability, it is the major option for future power generation. One inherent disadvantage of gas turbines is the degradation of output as the ambient air temperature increases. This reduction in output during times of peak load create a reliability concern as more gas turbines are added to the electric system. A 10% reduction in gas turbine output, when it comprises only 10% of the electric system, does not cause reliability concerns. A 10% reduction in gas turbine output, when it comprises 50% of the electric system, could create reliability and operational problems. This paper explores the potential for maintaining constant, reliable outputs from gas turbines by cooling ambient air temperatures before the air is used in the compressor section of the gas turbine.

Neeley, J. E.; Patton, S.; Holder, F.

1992-04-01T23:59:59.000Z

409

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas spot prices generally declined this report week (June 17-24), with the largest decreases generally occurring in the western half of the country. During the report week, the Henry Hub spot price decreased by $0.19 per million Btu (MMBtu) to $3.80. At the New York Mercantile Exchange (NYMEX), futures prices for natural gas decreased as prices for most energy products fell amid concerns over the economy. The natural gas futures contract for July delivery decreased by 49 cents per MMBtu on the week to $3.761. Working gas in underground storage as of last Friday, June 19, is

410

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

411

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

412

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

413

Renewable Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

414

Ten years with turbine metering  

SciTech Connect

The operation and performance experience in using 110 turbine meters to monitor the gas flow in turbines used on natural gas pipelines are discussed. Information is included on turbine meter selection, installation, calibration, performance testing, failures, and maintenance. (LCL)

Judd, H.C.

1980-01-01T23:59:59.000Z

415

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

416

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview: Monday, June 04, 2001 Stock builds slowed from their recent pace, even though spot prices continued their downward trend to end the week at the Henry Hub at $3.71 per MMBtu, which is a Friday-to-Friday decline of $0.14 per MMBtu. The NYMEX contract price for June delivery at the Henry Hub settled Tuesday at $3.738, the lowest close-out of a near month contract since the May 2000 contract. The July contract price was $3.930 per MMBtu on Friday, $0.103 lower than a week earlier. Mild weather in the Northeast and Midwest continued to suppress prices on the Eastern Seaboard, while a short burst of warm temperatures in southern California early in the week had the opposite effect on prices in that region. (See Temperature Map) (See Deviation from Normal Temperatures Map) Net injections to storage for the week ended Friday, May 25 were 99 Bcf, breaking a 4-week string of 100-plus net injections.

417

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, March 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 9, 2011) Natural gas spot prices remained soft at nearly all domestic pricing points. The Henry Hub price rose an insignificant 2 cents per million Btu (MMBtu) (0.5 percent) for the week ending March 9, to $3.81 per MMBtu. Working natural gas in storage fell to 1,674 billion cubic feet (Bcf) as of Friday, March 4, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 71 Bcf, with storage volumes positioned 32 Bcf above year-ago levels. At the New York Mercantile Exchange (NYMEX), the April 2011 natural

418

A3. Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Natural Gas Processed and Liquids Extracted at Natural Gas Processing Plants by State, 1996 Table Plant Location Volume of Natural Gas Delivered to Processing Plants a (million cubic feet) Total Liquids Extracted b (thousand barrels) Extraction Loss (million cubic feet) State Production Out of State Production Natural Gas Processed Alabama..................................... 111,656 1,212 112,868 4,009 5,361 Alaska ........................................ 2,987,364 0 2,987,364 33,346 38,453 Arkansas.................................... 214,868 4,609 219,477 383 479 California.................................... 240,566 0 240,566 9,798 12,169 Colorado .................................... 493,748 215 493,963 16,735 23,362 Florida........................................ 5,900 2,614 8,514 1,630 1,649 Illinois.........................................

419

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

420

Multivariable model predictive control for a gas turbine power plant  

Science Conference Proceedings (OSTI)

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet ... Keywords: ARX, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

COMPRESSIVE STRESS SYSTEM FOR A GAS TURBINE ENGINE - Energy ...  

The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket ...

422

Powder Metallurgy Products for Advanced Gas Turbine Applications  

Science Conference Proceedings (OSTI)

ties for gas turbine a.pplications. At Avco Lycoming, powder metallurgy activity has focused upon a series of high strength nickel base superalloys. These alloys  ...

423

The Development of ODS Superalloys for Industrial Gas Turbines  

Science Conference Proceedings (OSTI)

of advanced gas turbine engines, these alloys display long-term strength beyond the capabilities of conventional superalloys. The increasing use of ODS alloys,.

424

WEB RESOURCE: Platinum Plating of Gas Turbine Components  

Science Conference Proceedings (OSTI)

Feb 25, 2008 ... This web resource describes the process by which gas turbine components are coated at SIFCO's Carrigtwohill plant and the effects of platinum ...

425

Pre-Sintered Preforms - Applications for Gas Turbine Components  

Science Conference Proceedings (OSTI)

Presentation Title, Pre-Sintered Preforms - Applications for Gas Turbine Components. Author(s), Jeremy M Boyle. On-Site Speaker (Planned), Jeremy M Boyle.

426

Integrated Computational Materials Engineering from a Gas Turbine ...  

Science Conference Proceedings (OSTI)

Presentation Title, Integrated Computational Materials Engineering from a Gas Turbine Engine Perspective. Author(s), John F Matlik, Ann Bolcavage. On-Site ...

427

ARTICLE: Abradable Coatings Increase Gas Turbine Engine Efficiency  

Science Conference Proceedings (OSTI)

Oct 11, 2007 ... Topic Title: ARTICLE: Abradable Coatings Increase Gas Turbine Engine Efficiency Topic Summary: F. Ghasripoor et. al. article from Materials ...

428

Development of Gatorized MERL 76 for Gas Turbine Disk Applications  

Science Conference Proceedings (OSTI)

FOR GAS TURBINE DISK APPLICATIONS. R. H. Caless and D. F. Paulonis. Materials. Engineering. Pratt & Whitney. 400 Main Street. East Hartford,. CT 06108.

429

Faradayic EPD of YSZ TBCs for Gas Turbine Engines  

Science Conference Proceedings (OSTI)

Presentation Title, Faradayic EPD of YSZ TBCs for Gas Turbine Engines. Author( s), Heather McCrabb, Joseph Kell. On-Site Speaker (Planned), Joseph Kell.

430

Mechanical support of a ceramic gas turbine vane ring - Energy ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Mechanical support of a ceramic gas turbine vane ring United States ...

431

Hardware Simulation of Fuel Cell / Gas Turbine Hybrids .  

E-Print Network (OSTI)

??Hybrid solid oxide fuel cell / gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses… (more)

Smith, Thomas Paul

2007-01-01T23:59:59.000Z

432

Gas turbine combustion modeling for a Parametric Emissions Monitoring System.  

E-Print Network (OSTI)

??Oxides of nitrogen (NOx), carbon monoxide (CO) and other combustion by-products of gas turbines have long been identified as harmful atmospheric pollutants to the environment… (more)

Honegger, Ueli

2007-01-01T23:59:59.000Z

433

Probabilistic Assessment of Failure Risk in Gas Turbine Discs.  

E-Print Network (OSTI)

?? Gas turbine discs are heavily loaded due to centrifugal and thermal loads and are therefore designed for a service lifetime specified in hours and… (more)

Forsberg, Fredrik

2008-01-01T23:59:59.000Z

434

Gas turbine engine control using electrically driven fuel metering pumps.  

E-Print Network (OSTI)

??The aim of this thesis, developed in ROLLS ROYCE PLC, has been to investigate the use of an innovative fuel system on aero gas turbine… (more)

BERTOLUCCI, ALESSIO

2008-01-01T23:59:59.000Z

435

DISSERTATION: Mechanical Behavior of Gas Turbine Coatings - TMS  

Science Conference Proceedings (OSTI)

Oct 11, 2007 ... ABSTRACT: Coatings are frequently applied on gas turbine components in order to restrict surface degradation such as corrosion and ...

436

Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings  

E-Print Network (OSTI)

Faster payout will result if gas turbine exhaust is used as combustion air for fired heaters. Here are economic examples and system design considerations.

Iaquaniello, G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

437

Gas Turbines of the Future: Hydrogen and Oxy-Combustion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Materials issues related to higher efficiency power plants, like hydrogen or oxy-fuel fired gas turbines, require materials with higher temperature  ...

438

Gas Turbines for Advanced Pressurized Fluidized Bed Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

APFBC uses a circulating pressurized fluidized bed combustor (PFBC) with a fluid bed heat exchanger to develop hot vitiated air for the gas turbine' s topping combustor and...

439

Flexible Mid-Sized Gas Turbine: Preliminary Market Analysis  

Science Conference Proceedings (OSTI)

This study estimates the sales potential of Flexible Mid-Sized Gas Turbine (FMGT) plants for the U.S. market over the period 2000-2015.

1998-06-08T23:59:59.000Z

440

Gas turbine noise mitigation for a residential development  

Science Conference Proceedings (OSTI)

A residential development was proposed adjacent to a gas turbine electrical power production peaking facility. To determine compliance with local standards

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data  

E-Print Network (OSTI)

SumTime-Turbine: A Knowledge-Based System to Communicate Gas Turbine Time-Series Data Jin Yu produces textual summaries of archived time- series data from gas turbines. These summaries should help evaluated. 1 Introduction In order to get the most out of gas turbines, TIGER [2] has been developed

Reiter, Ehud

442

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

443

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Annual Energy Outlook 2012 (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

444

Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

445

Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

446

Overspeed protection method for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes a method for achieving overspeed protection in a combined cycle gas and steam turbine power plant. It comprises solidly coupling together to rotate at all times as a single rotor unit, including during sudden loss of load occurrences, the rotating members of a gas turbine with its associated combustor and air compressor, a high pressure steam turbine at least one lower pressure stream turbine and an electrical generator; transferring heat from the gas turbine exhaust to steam exhausted from the high pressure steam turbine in a steam reheater before it is input to the at least one lower pressure steam turbine; connecting an output of the steam reheater with an input of the lower pressure steam turbine via a valveless steam conduit; and using a single overspeed control to detect a sudden loss of load occurrence and, in response, simultaneously reducing steam input to the high pressure steam turbine and reducing fuel input to the gas turbine combustor while permitting residual reheater output to continue to expand freely through the at least one lower pressure steam turbine.

Moore, J.H.

1991-08-27T23:59:59.000Z

447

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, August 18, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, August 10, 2011) Natural gas prices fell across the board this week, likely in response to cooling temperatures as well as weak economic news. The Henry Hub spot price fell 17 cents from $4.26 per million Btu (MMBtu) last Wednesday, August 3, to $4.09 per MMBtu yesterday, August 10. At the New York Mercantile Exchange, the price of the near-month contract (September 2011) fell by $0.087 per MMBtu, from $4.090 last Wednesday to $4.003 yesterday. Working natural gas in storage was 2,783 Bcf as of Friday, August 5, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

448

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, February 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 26, 2011) Natural gas spot prices were soft at all domestic pricing points. The Henry Hub price fell 8 cents per million Btu (MMBtu) (about 1.7 percent) for the week ending January 26, to $4.40 per MMBtu. The West Texas Intermediate crude oil spot price settled at $86.15 per barrel ($14.85 per MMBtu), on Wednesday, January 26. This represents a decrease of $4.70 per barrel, or $0.81 per MMBtu, from the previous Wednesday. Working natural gas in storage fell to 2,542 billion cubic feet (Bcf) as of Friday, January 21, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The

449

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, June 16, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 8, 2011) Natural gas prices rose on the week across the board, with somewhat moderate increases in most areas and steep increases in the Northeast United States. The Henry Hub spot price rose 20 cents on the week from $4.63 per million Btu (MMBtu) last Wednesday, June 1, to $4.83 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month (July 2011) contract rose about 5 percent, from $4.692 last Wednesday to $4.847 yesterday. Working natural gas in storage rose to 2,187 billion cubic feet (Bcf) as of Friday, June 3, according to EIAÂ’s Weekly Natural Gas Storage

450

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: Friday, November 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 4, 2009) Natural gas spot prices fell over the week at most market locations, declining on average 16 cents per million Btu (MMBtu). Decreases ranged between 2 cents and 77 cents per MMBtu. In the few trading locations where prices rose, increases were modest, ranging between 1 and 4 cents per MMBtu. The Henry Hub natural gas spot price fell 10 cents on the week, closing at $4.49 per MMBtu. At the New York Mercantile Exchange (NYMEX), the December 2009 natural gas contract fell 34 cents per MMBtu, or 7 percent. The November contract expired on Wednesday, October 28, at $4.289 per MMBtu.

451

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2010 at 2:00 P.M. 3, 2010 at 2:00 P.M. Next Release: Thursday, June 10, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 2, 2010) Since Wednesday, May 26, natural gas spot prices increased across the lower 48 States, with gains of up to $0.18 per million Btu (MMBtu), at most market locations. The Henry Hub natural gas spot price rose $0.13 per MMBtu, or about 3 percent, averaging $4.32 per MMBtu in trading yesterday, June 2. At the New York Mercantile Exchange (NYMEX), the futures contract for July delivery at the Henry Hub settled yesterday at $4.42 per MMBtu, climbing by $0.25 or about 6 percent since the previous Wednesday. Natural gas in storage was 2,357 billion cubic feet (Bcf) as of May

452

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2011 at 2:00 P.M. 8, 2011 at 2:00 P.M. Next Release: Thursday, May 5, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 27, 2011) Mild temperatures coupled with continued strong domestic production resulted in natural gas cash market prices dropping modestly at nearly all domestic pricing points over the week. The lone exception was the Henry Hub price which rose a token 2 cents per million Btu (MMBtu) (0.5 percent) to $4.35 per MMBtu on April 27. Working natural gas in storage rose to 1,685 billion cubic feet (Bcf) as of Friday, April 22, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 31 Bcf, with storage volumes positioned

453

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2008 , 2008 Next Release: October 9, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 24 to Wednesday, October 1) Natural gas spot prices fell at most market locations in the Lower 48 States this report week, as seasonably moderate temperatures minimized natural gas demand in many areas of the country. The return of some Gulf of Mexico supplies during the week provided further downward pressure on spot prices. As of yesterday, October 1, the Minerals Management Service (MMS) reported that 3.5 billion cubic feet (Bcf) per day of natural gas production remains shut-in, 16 percent lower than the 4.2 Bcf per day reported 1 week earlier. The Henry Hub spot price fell in the first three trading sessions of

454

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 at 2:00 P.M. 1 at 2:00 P.M. Next Release: Thursday, November 17, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 9, 2011) Continuing its recent trend of languishing below the $4 per million Btu (MMBtu) mark, the Henry Hub natural gas spot price oscillated this week, and posted an overall net increase of 16 cents, from $3.39 per MMBtu last Wednesday, November 2, to $3.55 per MMBtu yesterday, November 9. At the New York Mercantile Exchange, the price of the near-month (December 2011) natural gas futures contract fell from $3.749 per MMBtu last Wednesday to $3.652 per MMBtu yesterday. Working natural gas in storage rose to 3,831 billion cubic feet (Bcf) as of Friday, November 4, according to EIAÂ’s Weekly Natural Gas

455

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, January 27, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 19, 2011) Natural gas prices fell at most market locations across the country, as bitterly cold weather subsided. At the Henry Hub, the natural gas price fell 7 cents from $4.55 per million Btu (MMBtu) on Wednesday, January 12, to $4.48 per MMBtu on Wednesday, January 19. At the New York Mercantile Exchange (NYMEX), the price of the near-month natural gas contract (February 2011) rose slightly, from $4.531 per MMBtu on January 12 to $4.561 yesterday. The spot price of the West Texas Intermediate crude oil fell by $1 over the week, from $91.85 per barrel on January 12 ($15.84 per MMBtu) to

456

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, September 9, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 1, 2010) Since Wednesday, August 25, natural gas spot prices fell at most market locations in the lower 48 States, although prices generally rose in the Northeast and Rocky Mountain areas. The Henry Hub spot price fell on the week from $3.99 per million Btu (MMBtu) to $3.73 per MMBtu, its lowest value since April 1, 2010. At the New York Mercantile Exchange, the October 2010 natural gas futures contract fell about 3 percent from $3.896 per MMBtu to $3.762 per MMBtu. During the report week, the September 2010 natural gas futures contract expired at $3.651, having lost about $1.176 per MMBtu during its

457

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, March 10, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 2, 2011) Natural gas prices showed continued relative weakness during the report week. The spot price at the Henry Hub fell from $3.83 per million Btu (MMBtu) on February 23 to $3.79 per MMBtu on March 2. At the New York Mercantile Exchange (NYMEX), the March 2011 futures contract expired at $3.793 per MMBtu, having declined about 12 percent during its tenure as the near-month contract. Working natural gas in storage fell to 1,745 Bcf as of Friday, February 25, according to EIAÂ’s Weekly Natural Gas Storage Report. The spot price of the West Texas Intermediate (WTI) crude oil

458

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, April 15, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 7, 2010) Since Wednesday, March 31, natural gas spot prices climbed at most market locations across the lower 48 States, with increases of as much as 8 percent. The Henry Hub natural gas spot price rose $0.15, or about 4 percent, to $4.08 per million Btu (MMBtu), in a week of trading shortened by the Good Friday holiday on April 2. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday, April 7, at $4.02 per MMBtu, rising by $0.15 or about 4 percent since the previous Wednesday. Natural gas in storage was 1,669 billion cubic feet (Bcf) as of

459

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, September 29, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 21, 2011) Natural gas spot prices declined at most market locations across the United States, as moderate temperatures led to declines in demand. Prices at the Henry Hub fell from $4.01 per MMBtu last Wednesday, September 14, to $3.78 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month futures contract (October 2011) dropped from $4.039 per MMBtu last Wednesday to $3.73 per MMBtu yesterday. Working natural gas in storage rose to 3,201 billion cubic feet (Bcf) as of Friday, September 16, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

460

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

cents per MMBtu. Heading into the Memorial Day holiday weekend on Friday, May 25, natural gas spot prices declined at virtually all market locations in the Lower 48 States, as mild...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

At the NYMEX futures market, the settlement price for November delivery of natural gas moved up most days before dropping by almost 0.19 per MMBtu on Friday to end the week...

462

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

States, natural gas spot prices have increased since Wednesday, February 25, at most market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the...

463

Florida Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Citygate Price: 4.79: 4.68: 4.54: 4.47: 4.26: 4.33: 1989-2013: ...

464

Michigan Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... History; Citygate Price: 4.74: 4.99: 4.52: 4.48: 4.13: NA: ...

465

Georgia Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices ... History; Imports Price: 6.79: 9.71: 3.73: 4.39: 4.20: 2.78: 1999-2012: Pipeline and Distribution Use Price : 1967-2005: ...

466

Maine Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Citygate Price: 6.72: 8.18: 11.03: NA: NA: 7.19: 1989-2013: ...

467

Michigan Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Wellhead Price: NA: 5.63: 3.92: 3.79 : 1967-2010: Imports Price: ...

468

Pennsylvania Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Citygate Price: 6.14: 7.58: 8.34: 7.51: 7.39: 6.16: 1989-2013: ...

469

Alabama Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... History; Citygate Price: 4.81: 5.12: 5.31: 4.92: 4.64: NA: ...

470

Natural Gas Production,  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Production, Transmission, and Consumption by State, 1996 (Million Cubic Feet) Table Alabama ... 530,841 5,361 -35,808 -163,227 0 921 18 325,542...

471

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Crude Oil Spot Price, and Henry Hub Natural Gas Spot Price Graph More Summary Data Prices A major weather front entered the Midwest and the East this week, leading to...

472

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Henry Hub increased a moderate 0.023 per MMBtu for the week to 3.877. Natural gas in storage decreased to 3,097 Bcf, which exceeds the 5-year average by 2.4 percent. A general...

473

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

MMBtu lower than the final price of the November 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage As of Friday, September 24, working natural gas in...

474

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

were more moderate than the price increases for this summer. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,456...

475

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

(July 24) to settle at 3.042 per MMBtu, more than 20 cents greater than last Wednesday's price. Natural gas in storage increased to 2,486 Bcf, which exceeds the 5-year average by...

476

Natural Gas Annual 2005  

Annual Energy Outlook 2012 (EIA)

historical data back to 1997) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. Natural Gas Annual --- Full report in PDF (5 MB)...

477

Natural Gas Annual, 1996  

Annual Energy Outlook 2012 (EIA)

"Annual Report of Natural and Supplemental Gas Supply and Disposition". 2. The EIA-176 Query System. This system provides a method of extracting and using the EIA-176 data, and...

478

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

in waters up to 9000 feet deep. Southern Natural Gas Company has scheduled a shut-in test at the Muldon Storage Field in Mississippi for April 5 through April 11. Under the...

479

Natural Gas Imports Price  

U.S. Energy Information Administration (EIA) Indexed Site

Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser U.S. Natural Gas Imports & Exports by State (Dollars per Thousand Cubic Feet) Data Series: Import...

480

Natural Gas Imports (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser U.S. Natural Gas Imports & Exports by State (Million Cubic Feet) Data Series: Import Volume Import...

Note: This page contains sample records for the topic "natural gas turbines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10, natural gas spot prices increased more than 50 cents per MMBtu at virtually all market locations in the Lower 48 States, with increases exceeding 1 per MMBtu in the...

482

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

12, 2006) Since Wednesday, December 21, natural gas spot prices have decreased at all market locations in the Lower 48 States, with decreases exceeding 3 per MMBtu or about 27...

483

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increased to 2,260 Bcf for the week, which is 19.5 percent above the 5-year average inventory at this time of the year, according to EIA's Weekly Natural Gas Storage Report. The...

484

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increases ranged from 5 to 16 cents at every market location tracked by Natural Gas Intelligence. And even though the storm was fast-moving and short-lived, cash prices for the...

485

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050WI3","N3010WI3","N3020WI3","N3035WI3","N3045WI3" "Date","Natural Gas Citygate Price in Wisconsin (Dollars per Thousand Cubic Feet)","Wisconsin...

486

,"Maine Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 2","Imports and Exports",2,"Annual",2012,"6301982" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2012,"6301981" ,"Data 4","Consumption",8,"Annual",2012,"6...

487

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050MN3","N3010MN3","N3020MN3","N3035MN3","N3045MN3" "Date","Natural Gas Citygate Price in Minnesota (Dollars per Thousand Cubic Feet)","Minnesota...

488

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050CA3","N3010CA3","N3020CA3","N3035CA3","N3045CA3" "Date","Natural Gas Citygate Price in California (Dollars per Thousand Cubic Feet)","California Price...

489

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050TN3","N3010TN3","N3020TN3","N3035TN3","N3045TN3" "Date","Natural Gas Citygate Price in Tennessee (Dollars per Thousand Cubic Feet)","Tennessee Price...

490

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050PA3","N3010PA3","N3020PA3","N3035PA3","N3045PA3" "Date","Natural Gas Citygate Price in Pennsylvania (Dollars per Thousand Cubic Feet)","Pennsylvania...

491

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050LA3","N3010LA3","N3020LA3","N3035LA3","N3045LA3" "Date","Natural Gas Citygate Price in Louisiana (Dollars per Thousand Cubic Feet)","Louisiana Price...

492

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 at 2:00 P.M. 0, 2009 at 2:00 P.M. Next Release: September 17, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 9, 2009) Natural gas prices posted significant increases at all market locations since last Wednesday, September 2. The Henry Hub spot price increased 47 cents from the previous Wednesday's price of $2.25 per MMBtu. However, intraweek trading was volatile, with natural gas prices falling below $2 per million Btu (MMBtu) at the Henry Hub on Friday, September 4 and rising to $2.72 per MMBtu yesterday. At the New York Mercantile Exchange (NYMEX), the price of the near-month natural gas contract for delivery in October 2009 rose by 11.4 cents to $2.829 per MMBtu, an increase of about 4 percent from the previous

493

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, July 28, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 20, 2011) Responding to extremely hot weather this week, natural gas prices moved up at market locations across the lower 48 States. The spot price at the Henry Hub increased 21 cents from $4.43 per million Btu (MMBtu) last Wednesday, July 13, to $4.64 per MMBtu yesterday, July 20. At the New York Mercantile Exchange, the price of the near-month futures contract (August 2011) increased from $4.403 per MMBtu to $4.500 per MMBtu. Working natural gas in storage rose to 2,671 billion cubic feet (Bcf) as of Friday, July 15, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

494

GAS TURBINE REHEAT USING IN SITU COMBUSTION  

Science Conference Proceedings (OSTI)

In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

2004-05-17T23:59:59.000Z

495

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

496

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network (OSTI)

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore, if the thermal energy of this gas is utilized effectively, the gas turbine could be superior to effectively, the gas turbine could be superior to other thermal engines in view of total energy effectiveness. As a typical example of the above use of the gas turbine, its application in the ammonia plant has now been realized. In addition to the use of the gas turbine as the driver for the process air compressor which was driven by the steam turbine, its exhaust gas is introduced to the ammonia reformer. It leads to the saving of the reformer fuel, and subsequently the energy saving of the reformer section in the plant of about 20% has been achieved. This paper describes the outline of the project, energy saving effectiveness and investigation for the application of the gas turbine in the ammonia plant.

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

497

NETL: News Release - First Commercial Application of Advanced Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

February 19, 2004 February 19, 2004 First Commercial Application of Advanced Natural Gas Turbine Announced Turbine Developed Through Department of Energy's Advanced Turbine Systems Program GE Energy has announced that the world's first application of their next-generation 7H gas turbine technology will be an 800-megawatt class, combined-cycle project with Hydro-Quebec Production. The new natural-gas-fired power plant, to be built at Beauharnois, Quebec, southwest of Montreal, will be based on two GE 107H combined-cycle systems. The plant is expected to enter commercial service in mid 2007. The 7H gas turbine is one of two H System gas turbines developed by GE Energy as part of the U.S. Department of Energy's advanced turbine systems program. The Hydro-Quebec plant will be the first commercial application of the 60-hertz 7H, the H System turbine suitable for use in the United States and Canada. The 50-hertz 9H, suitable for the overseas market, got its commercial start in 2003 at the Baglan Bay Power Station in Wales, UK. The Baglan Bay plant has received a number of prestigious industry awards for its use of the innovative H System turbine.

498

NETL: News Release - Innovations in Gas Turbines to be Pursued in Two New  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2000 4, 2000 Innovations in Gas Turbines to be Pursued In Two New Energy Department Projects GE to Develop Cleaner Combustors, "Smart" Sensors NISKAYUNA, NY - With the natural gas turbine fast becoming the workhorse for new power generating plants in the United States, the U.S. Department of Energy is preparing to award two new research contracts that could help improve the environmental performance and efficiencies of tomorrow's high-efficiency turbines. As part of a wide-ranging competition, the Department's National Energy Technology Laboratory has selected General Electric Co., Niskayuna, NY, for projects to develop a new gas turbine combustion system and a "Smart Power Turbine" sensor-and control system. A Cleaner Burning Combustor

499

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > U.S ... The EIA has determined that the informational map displays here do not raise security ...

500

EIA - Natural Gas Pipeline Network - Transporting Natural Gas in ...  

U.S. Energy Information Administration (EIA)

8 LNG (liquefied natural gas) import facilities and 100 LNG peaking facilities (see map). Learn more about the natural gas pipeline network: