Powered by Deep Web Technologies
Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL: Oil & Natural Gas Technologies Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf Solicitations Project Summaries Publications News Releases Software/Databases CDs/DVDs EOR Illustrations Welcome to the NETL Oil & Natural Gas Technologies Reference Shelf. Recently released and in-demand reference materials are available directly from this page using the links below. Online Database of Oil and Natural Gas Research Results Now Available The Knowledge Management Database (KMD) provides easy access to the results of nearly four decades of research supported by the Office of Fossil Energy’s Oil and Natural Gas Program. The database portal provides access to content from dozens of CDs and DVDs related to oil and natural gas research that FE's National Energy Technology Laboratory has published over the years. It

2

NETL: Oil & Natural Gas Technologies Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Oil & Natural Gas Technologies Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf E&P Focus Newsletter Banner The oil and gas exploration and production R&D newsletter, E&P Focus, highlights the latest developments in R&D being carried out by NETL. E&P Focus promotes the widespread dissemination of research results among all types of oil and gas industry stakeholders: producers, researchers, educators, regulators, and policymakers. Each issue provides up-to-date information regarding extramural projects managed under the Strategic Center for Natural Gas and Oil’s traditional oil and gas program, the EPAct Section 999 Program administered by the Research Partnership to Secure Energy for America (RPSEA), and in-house oil and gas research carried out by NETL’s Office of Research and Development.

3

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

System Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas...

4

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural...

5

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural...

6

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

studies have provided strong indications that it is possible to produce large volumes of gas from natural hydrate deposits at high rates for long times from gas hydrate...

7

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 (https:www.confmanager.commain.cfm?cid680&nid5792 external site). Abstract: Gas hydrate may contain significant natural gas resources in both onshore arctic and...

8

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

from natural gas hydrates, plugging pipelines, stability and safety of drilling of platforms, as well as how dissociation of gas hydrates and sequestration of CO2 within the...

9

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Temperature X-ray Diffraction Study of Natural Gas Hydrate Samples from the Gulf of Mexico Low Temperature X-ray Diffraction Study of Natural Gas Hydrate Samples from the Gulf...

10

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Authors: Mohamed Toema (speaker), Sarah Nuss-Warren, and Kirby S. Chapman, Kansas State University National Gas Machinery Laboratory; James McCarthy and Thomas McGrath, Innovative Environmental Solutions Inc. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: The researchers are conducting a project to characterize pollutant emissions performance of field gas-fired four-stroke cycle rich burn engines equipped with non-selective catalytic reduction (NSCR) technology. Engine emissions and operating parameters are being monitored on three engines over an extended period. In addition, a mapping study was conducted on one engine. The NSCR was operated at various controlled air-to-fuel (AF) ratios while emission measurements were conducted and engine operating parameters monitored. NOx, CO, and oxygen were measured using both EPA reference method technology and the portable analyzer used in the long-term study. In the mapping study, ammonia, formaldehyde, CO, NOx, and speciated hydrocarbon emissions were recorded in real-time using an extractive FTIR system. This paper focuses on the engine mapping phase. The mapping tests demonstrated a trade-off between NOx emissions and CO, ammonia, and hydrocarbon emissions. Richer engine operation (lower AF) decreases NOx emissions at the expense of higher CO, ammonia, and hydrocarbons. Leaner operation has the opposite effect. The results to date of the semi-continuous monitoring are presented in a separate paper.

11

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project This presentation is related to the NETL project DE-FC26-05NT15551, Coalbed Natural Gas Produced Water Treatment Using Gas Hydrate Formation at the Wellhead. The...

12

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the purpose of predicting how natural gas hydrates affect the safety of deepwater oil and gas E&P operations. In addition, the project is providing data that can be used in...

13

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and environmentally sound regulation of the exploration and production of natural gas and crude oil. The items envisioned for the IOGCC to undertake are national in scope....

14

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

to create a computerized database inventory of compressor engines being used in the oil and natural gas exploration and production industry to evaluate emissions control...

15

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

appear to be a good choice as a replacement for traditional fossil fuelscoal, oil, and natural gas. But the energy output-to-input ratio analysis for the crop-to-fuel...

16

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production...

17

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis of the composition of volatile hydrocarbons, including methane, ethane, and propane and fixed natural gases (i.e., O2, CO2, and N2+Ar) from headspace void gas and gases...

18

Liquefied natural gas. A literature survey issued quarterly. [225 references  

SciTech Connect

The literature survey covers approximately 225 references under 25 headings: thermodynamic properties of methane; other properties of methane; phase equilibria of methane; other properties of methane mixtures; liquefaction and separation; regasification;peak shaving and terminal storage plants; liquid storage; importation of LNG; ground transportation; sea transportation; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; miscellaneous; patents; energy; and SNG. (MCW)

1977-01-01T23:59:59.000Z

19

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Authors: Mark White and Pete McGrail Venue: The 9th International Conference on Greenhouse Gas Technologies will be held November 16-20, 2008 at The Omni Shoreham Hotel in Washington, DC. The Conference will be organized by MIT in collaboration with the IEA Greenhouse Gas R&D Programme (IEA GHG), with major sponsorship from the US Department of Energy. http://mit.edu/ghgt9/ . Abstract: Under high pressure and low temperature conditions small nonpolar molecules (typically gases) can combine with water to form crystalline structures known as clathrate hydrates. Methane (CH4) and carbon dioxide (CO2) form nearly identical clathrate structures (sI), with the CO2 hydrate being thermodynamically favored. Vast accumulations of methane hydrates have been found in suboceanic deposits and beneath the arctic permafrost. Because of the large volumetric storage densities, clathrate hydrates on the deep ocean floor have been suggested as a sequestration option for CO2. Alternatively, CO2 hydrates can be formed in the geologic settings of naturally occurring accumulations of methane hydrates. Global assessments of natural gas resources have shown that gas hydrate resources exceed those of conventional resources, which is indicative of the potential for clathrate hydrate sequestration of CO2. Recovery of natural gas from hydrate-bearing geologic deposits has the potential for being economically viable, but there remain significant technical challenges in converting these natural accumulations into a useable resource. Currently, conventional methods for producing methane hydrates from geologic settings include depressurization, thermal stimulation, and inhibitor injection. Although CO2 clathrates generally are not naturally as abundant as those of CH4, their occurrence forms the foundation of an unconventional approach for producing natural gas hydrates that involves the exchange of CO2 with CH4 in the hydrate structure. This unconventional concept has several distinct benefits over the conventional methods: 1) the heat of formation of CO2 hydrate is greater than the heat of dissociation of CH4 hydrate, providing a low-grade heat source to support additional methane hydrate dissociation, 2) exchanging CO2 with CH4 will maintain the mechanical stability of the geologic formation, and 3) the process is environmentally friendly, providing a sequestration mechanism for the injected CO2. The exchange production technology would not be feasible without the favorable thermodynamics of CO2 hydrates over CH4 hydrates. This situation yields challenges for the technology to avoid secondary hydrate formation and clogging of the geologic repository. Laboratory-scale experiments have demonstrated the feasibility of producing natural gas and sequestering CO2 using the direct exchange technology in geologic media. These experiments have duplicated numerically using the STOMP-HYD simulator, which solves the nonisothermal multifluid flow and transport equations for mixed hydrate systems in geologic media. This paper describes the design (via numerical simulation) of a pilot-scale demonstration test of the CO2 exchange production and sequestration technology for a geologic setting beneath the arctic permafrost, involving a gas-hydrate interval overlying a free-gas interval (i.e., Class 1 Hydrate Accumulation).

20

Liquefied natural gas. A literature survey issued quarterly. [235 references  

SciTech Connect

This literature survey is a compilation of approximately 235 citations on LNG in the following areas: thermodynamic, phase equilibria, and other properties of methane; other properties of methane mixtures; liquefaction and separation; regasification;peak shaving and terminal storage plants; liquid storage; importation of LNG; ground and sea transportation; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; miscellaneous; patents; energy; and SNG.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Carbon isotope evidence (13C and 14C) for fossil methane-derived dissolved organic carbon from gas hydrate-bearing cold seeps Authors: Pohlman, J.W. (speaker), Coffin, R.B., and Osburn, C.L., U.S. Naval Research Laboratory, Washington, D.C.; Bauer, J.E., College of William & Mary, Williamsburg, VA; Venue: Goldschmidt 2007 Atoms to Planets conference in Cologne, Germany, August 19-24, 2007 http://www.the-conference.com/conferences/2007/gold2007/ [external site]. Abstract: No abstract available yet. Related NETL Project: The proposed research of the related NETL project DE-AI26-05NT42496, “Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates,” is to conduct scientific studies of natural gas hydrates to support DOE efforts to evaluate and understand methane hydrates, their potential as an energy resource, and the hazard they may pose to ongoing drilling efforts. This project

22

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Strategies for Marine Hydrate Reservoirs Production Strategies for Marine Hydrate Reservoirs Production Strategies for Marine Hydrate Reservoirs Authors: J. Phirani. & K. K. Mohanty Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http://www.ichg.org/showcontent.aspx?MenuID=287 [external site]. Abstract: Large quantities of natural gas hydrate are present in marine sediments. This research is aimed at assessing production of natural gas from these deposits. We had developed a multiphase, multicomponent, thermal, 3D simulator in the past, which can simulate production of hydrates both in equilibrium and kinetic modes. Four components (hydrate, methane, water and salt) and five phases (hydrate, gas, aqueous-phase, ice and salt precipitate) are considered in the simulator. The intrinsic kinetics of hydrate formation or dissociation is considered using the Kim–Bishnoi model. Water freezing and ice melting are tracked with primary variable switch method (PVSM) by assuming equilibrium phase transition. In this work, we simulate depressurization and warm water flooding for hydrate production in a hydrate reservoir underlain by a water layer. Water flooding has been studied as a function of well spacing, well orientation, and injection temperature. Results show that depressurization is limited by the supply of heat of hydrate formation. Warm water flooding can supply this heat of formation. Gas production rate is higher for the water flooding than depressurization. Optimum configuration for wells and water temperature are identified.

23

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Authors: Kirby S. Chapman (speaker), Mohamed Toema, and Sarah Nuss-Warren, Kansas State University National Gas Machinery Laboratory. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: This paper describes work on a project to characterize pollutant emissions performance of non-selective catalytic reduction (NSCR) technology, including a catalyst and air-to-fuel ratio controller (AFRC), applied to four-stroke cycle rich-burn engines. Emissions and engine data were collected semi-continuously with a portable emissions analyzer on three engines in the Four Corners area. In addition, periodic emissions measurements that included ammonia were conducted several times. Data collected from October 2007 through August 2008 show significant variation in emissions levels over hours, days, and longer periods of time, as well as seasonal variation. As a result of these variations, simultaneous control of NOx to below a few hundred parts per million (ppm) and CO to below 1,000 ppm volumetric concentration was not consistently achieved. Instead, the NSCR/AFRC systems were able to simultaneously control both species to these levels for only a fraction of the time the engines were monitored. Both semi-continuous emissions data and periodically collected emissions data support a NOx-CO trade-off and a NOx-ammonia tradeoff in NSCR-equipped engines.

24

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics – Application to Methane Hydrates in Natural Systems Authors: Antone K. Jain and Ruben Juanes Venue: American Geophysical Union Fall Meeting, San Francisco, CA, December 15-19, 2008 – Special Session H06: Particle Tracking Simulation of Fluid Flow and Mass Transport. http://www.agu.org/meetings/fm08/ Abstract: A discrete element model is presented for the simulation, at the grain scale, of gas migration in brine-saturated deformable media. The model rigorously accounts for the presence of two fluids in the pore space by incorporating grain forces due to pore fluid pressures, and surface tension between fluids. The coupled model permits investigating an essential process that takes place at the base of the hydrate stability zone: the upward migration of methane in its own free gas phase. The ways in which gas migration may take place were elucidated: (1) by capillary invasion in a rigid-like medium; and (2) by initiation and propagation of a fracture. Results indicate that the main factor controlling the mode of gas transport in the sediment is the grain size, and that coarse-grain sediments favor capillary invasion, whereas fracturing dominates in fine-grain media. The results have important implications for understanding hydrates in natural systems. The results predict that, in fine sediments, hydrate will likely form in veins that follow a fracture-network pattern, and the hydrate concentration in this type of accumulations will likely be quite low. In coarse sediments, the buoyant methane gas is likely to invade the pore space more uniformly, in a process akin to invasion percolation, and the overall pore occupancy is likely to be much higher than for a fracture-dominated regime. These implications are consistent with field observations of methane hydrates in natural

25

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Authors: Winters, W.J., (U.S. Geological Survey, speaker), Gomes, M., Giosan, L., Johnson, J., Kastner, M., Torres, M.E., Long, P.E., Schaef, H.T., Rose, K., and the NGHP-01 Shipboard Scientific Party. Venue: India’s Directorate General of Hydrocarbons’ International Conference on Gas Hydrates in Nodia (New Delhi), India, February 6–8, 2008 (http://www.dghindia.org/site/pdfattachments/upcomingevents/Updated_Programme_gAS[1].pdf [PDF-external site]). Abstract: The scientific goals of the NGHP Expedition 01 physical properties program are to a) constrain baseline index properties of host sediment; b) ground-truth well-log, seismic, and other shipboard data sets; c) relate textural characteristics to gas hydrate occurrence and small-scale porous media effects; and d) relate index properties and textural analyses to gas hydrate occurrence and regional sedimentologic interpretations. During the shipboard phase of NGHP-01, baseline bulk physical properties, such as water content, grain density, bulk density, and porosity, were determined on more than 1,800 sediment samples from 14 sites located in four study areas. Overall, physical properties change more significantly near the seafloor, then at a much more gradual rate with depth. The transition depth varies between sites but can range from about 12 to as deep as 200 meters beneath the seafloor. In addition, shear strength, electrical resistivity, magnetic susceptibility, thermal conductivity, and acoustic velocity measurements were conducted to further characterize the sediment. These measurements, when combined with sedimentologic and geochemical studies, delineate the role of the host sediment in hydrate formation and occurrence and are used in modeling the response of hydrate-bearing sediment to natural change or drilling operations. Strong correlation typically exists between physical properties determined from shipboard analyses and well-log studies. More than 500 shore-based grain-size analyses have been conducted that indicate that most sediment is characterized as clayey silt to silty clay with a median grain size that is near or slightly greater than the silt-clay boundary. Grain-size analyses are being conducted on samples identified by infrared imaging as having high concentrations of gas hydrate in recovered core samples. These analyses will be used to study porous-media effects and geologic controls on the occurrence of gas hydrate in situ.

26

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments HyFlux - Part II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments Authors: Naehr, T.H., Asper, V., Garcia, O., Kastner, M., Leifer, I., MacDonald, I.R., Solomon, E., Yvon-Lewis, S., and Zimmer, B. Venue: AGU Fall Meeting, San Francisco, CA, December 15-19 2008 -- Session OS25: Methane Flux from Naturally Occurring Marine Gas Hydrates http://www.agu.org Abstract: The recently funded DOE/NETL study "HyFlux: Remote sensing and sea-truth measurements of methane flux to the atmosphere" (see MacDonald et al.: HyFlux - Part I) will combine sea surface, water column and shallow subsurface observations to improve our estimates of methane flux from submarine seeps and associated gas hydrate deposits to the water column and atmosphere along the Gulf of Mexico continental margin and other selected areas world-wide. As methane-rich fluids rise towards the sediment-water interface, they will interact with sulfate-rich pore fluids derived from overlying bottom water, which results in the formation of an important biogeochemical redox boundary, the so-called sulfate-methane interface, or SMI. Both methane and sulfate are consumed within the SMI and dissolved inorganic carbon, mostly bicarbonate (HCO3-) and hydrogen sulfide are produced, stimulating authigenic carbonate precipitation at and immediately below the SMI. Accordingly, the formation of authigenic carbonates in methane- and gas-hydrate-rich sediments will sequester a portion of the methane-derived carbon. To date, however, little is known about the quantitative aspects of these reactions. Rates of DIC production are not well constrained, but recent biogeochemical models indicate that CaCO3 precipitation rates may be as high as 120 µmol cm-2a-1. Therefore, AOM-driven carbonate precipitation must be considered when assessing the impact of gas-hydrate-derived methane on the global carbon cycle.

27

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Saline Water Disposal in the Uinta Basin, Utah Saline Water Disposal in the Uinta Basin, Utah Saline Water Disposal in the Uinta Basin, Utah Authors: Michael D. Vanden Berg, Stephanie Carney, Michael D. Laine, Craig D. Morgan, Utah Geological Survey; and Paul B. Anderson, consulting geologist. Venue: Poster Session: Responsible Development, Sustainability, and Climate Science—Groundwater and Site Remediation, June 9, 2009, American Association of Petroleum Geologists annual meeting, Denver, CO, June 7 to 10, 2009. http://www.aapg.org/denver/ [external site] Abstract: Saline water disposal is the single most pressing issue with regard to increasing petroleum and natural gas production in the Uinta Basin of Utah. Conventional oil and gas fields in the basin provide 67% of Utah’s total crude oil production and 71% of Utah’s total natural gas, the latter of which has increased 175% in the last 10 years. As petroleum production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of fresh water sources. Many Uinta Basin operators claim that petroleum and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. Researchers have begun efforts to re-map the base of the moderately saline aquifer within the Uinta Basin using more robust data and more sophisticated GIS techniques than previous efforts. Below this base, they believe that saline water can be injected without damage to the overlying freshwater reservoirs. Water chemistry data are being collected from wells of operators and governmental agencies. These ground-truth data are supplemented with water chemistry information calculated from geophysical logs. In addition to the new GIS-based map, the researchers are constructing cross sections showing the stratigraphic position of the moderately saline to very saline transition and its relationship to potential seals and disposal zones in the Uinta Basin. A potentially suitable disposal zone for large volume saline water disposal is the fresh to slightly saline Bird’s-Nest aquifer. This aquifer is located in the oil shale zone of the Green River formation’s Parachute Creek member and is 200 to 300 ft above the kerogen-rich Mahogany zone. A significant concern is that saline water disposal into the Bird’s-Nest by conventional gas producers may hinder oil shale development by creating unforeseen economic and technical hurdles. With increased saline water disposal, the water quality in the Bird’s-Nest could degrade and create additional water disposal problems for oil shale development companies. Researchers have examined this aquifer in outcrop, core, and geophysical logs and have gained a better understanding of its areal extent, thickness, and zones of differing water chemistry

28

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone: Modeling Multiphase Flow and Sediment Mechanics at the Pore-Scale Authors: Antone K. Jain and Ruben Juanes Venue: American Geophysical Union Fall Meeting, San Francisco, CA, December 15-19, 2008 – Special Session H06: Particle Tracking Simulation of Fluid Flow and Mass Transport. http://www.agu.org/meetings/fm08/ Abstract: Two competing processes were simulated, capillary invasion and fracture opening, by which free methane gas penetrates the Hydrate Stability Zone (HSZ). In situ conditions were predicted in which the methane propagates fractures and flows all the way through the HSZ and into the ocean, bypassing hydrate formation. In the fully coupled model, the discrete element method was used to simulate the sediment mechanics, and pore fluid pressures and surface tension between the gas and brine were accounted for by incorporating additional sets of pressure forces and adhesion forces. Results indicate that given enough capillary pressure, the main factor controlling the mode of gas transport is the grain size, and show that coarse-grain sediments favor capillary invasion and widespread hydrate formation, whereas fracturing dominates in fine-grain sediments. The fracturing threshold was calculated as a function of grain size, capillary pressure, and seafloor depth, and place these results in the context of naturally-occurring hydrate

29

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

De-Watering of Hunton Reservoirs De-Watering of Hunton Reservoirs De-Watering of Hunton Reservoirs Author: Mohan Kelkar, University of Tulsa, Tulsa, OK. Venue: Tulsa Association of Petroleum Landmen meeting in Tulsa, OK, April 19, 2007 (http://www.landman.org [external site]). Abstract: The Hunton reservoir in Oklahoma represents one of the largest discoveries in Oklahoma in recent history. Since 1995, several Hunton reservoir fields have been exploited by various operators. The principle behind this exploitation remains the same: The wells produce large quantities of water, and along with it, significant quantities of natural gas and sometimes oil. Examination of various fields producing from the Hunton reservoir indicates that the economic success from these fields is not uniform. Some fields produce significant quantities of oil, whereas some fields only produce gas. In some fields, horizontal wells work best, whereas in some other fields, vertical wells do a good job. The water production from the fields ranges from as low as few hundred barrels per day to several thousand barrels per day. In this paper, we present the results from various fields to indicate the parameters needed in a Hunton field to make it economically successful. We restrict our evaluation to parameters that can be easily measured or are readily available. These include log data (gamma ray, resistivity, neutron, and density), initial potential data, production data (oil, gas, and water—if available) and well configuration (vertical or horizontal). By analyzing the recovery of oil and gas according to various reservoir parameters, we developed a methodology for predicting the future success of the field. For example, a clear relationship exists between porosity of the rock and initial hydrocarbon saturation: The higher the oil saturation, the better the recovery factor. Initial potential is critical in determining possible recovery. Horizontal wells cost 1.5 to 2 times more than vertical wells and may not provide the additional recovery to justify the costs. The Hunton formation is extensive in Oklahoma. If we want to extend the success of some of the fields to other areas, we need clear guidelines in terms of what is needed to exploit those fields. This paper provides some of those guidelines based on the examination of the currently producing fields.

30

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Production From Oceanic Class 2 Hydrate Accumulations Gas Production From Oceanic Class 2 Hydrate Accumulations Authors: George J. Moridis, Matt T. Reagan, Lawrence Berkeley...

31

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

to provide lean injection gas for reservoir energy, to provide fuel for potential viscous oil thermal recovery, or to supplement future export gas. The associated fresh water...

32

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Gas-hydrate concentration and uncertainty...

33

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of fiber optic temperature and strain sensing technology to gas hydrates Application of fiber optic temperature and strain sensing technology to gas hydrates Authors:...

34

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Production From Class 2 Hydrate Accumulations in the Permafrost Gas Production From Class 2 Hydrate Accumulations in the Permafrost Authors: Moridis, George (speaker) and...

35

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies for Gas Production From Oceanic Class 3 Hydrate Accumulations Strategies for Gas Production From Oceanic Class 3 Hydrate Accumulations Authors: George J. Moridis, Matt...

36

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Controls on the Occurrence of Gas Hydrates in the Indian Continental Margin Geologic Controls on the Occurrence of Gas Hydrates in the Indian Continental Margin: Results...

37

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and...

38

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Study of Hydrate Formation in Sediments from Methane Gas Grain Scale Study of Hydrate Formation in Sediments from Methane Gas: Role of Capillarity Authors: Javad Behseresht,...

39

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Similarity Solution for Gas Production From Dissociating Hydrates in Geologic Media Similarity Solution for Gas Production From Dissociating Hydrates in Geologic Media Authors:...

40

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Authors: John and Deidre Boysen Venue:...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Authors: Maa...

42

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Identifying gas hydrate prospects offshore India Identifying gas hydrate prospects offshore India Authors: Collett, Timothy S. (speaker: Winters, Bill, U.S. Geological Survey)....

43

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas hydrates: A multidisciplinary research opportunity Gas hydrates: A multidisciplinary research opportunity Author: William F. Waite, U.S. Geological Survey (USGS) Venue:...

44

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Yates Formation Gas-Reservoir and Seal Facies, Depositional and Diagenetic Model and Well-log Responses Yates Formation Gas-Reservoir and Seal Facies, Depositional and Diagenetic...

45

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceanic Gas Hydrate Instability and Dissociation in Response to Climate Change Oceanic Gas Hydrate Instability and Dissociation in Response to Climate Change Authors: Moridis,...

46

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Cretaceous and Early Paleogene. Such temperatures would impact the distribution of gas hydrate in marine sediment. Clearly, the vertical extent of the Gas Hydrate Stability...

47

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Use of Horizontal Wells in Gas Production from Hydrate Accumulations The Use of Horizontal Wells in Gas Production from Hydrate Accumulations Authors: George J. Moridis...

48

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Feasibility of Monitoring Gas Hydrate Production with Geophysical Methods Feasibility of Monitoring Gas Hydrate Production with Geophysical Methods Authors: M.B. Kowalsky...

49

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits (OTC 19554)...

50

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological complexities in shale gas systems Geological complexities in shale gas systems Authors: H. Rowe, R. G. Loucks, S. C. Ruppel, and S. Rimmer Venue: 2008 American...

51

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Authors: Joshua A. Simpson and Robert S. Bowman, New Mexico Technological University, Socorro, NM Venue: 44th Annual Meeting of the Clay Minerals Society in Santa Fe, NM, June 3–7, 2007 (http://www.clays.org/home/HomeAnnualMeeting.html [external site]). Abstract: Surfactant-modified zeolite (SMZ) has been shown to effectively remove benzene, toluene, ethylbenzene, and xylene (BTEX) from water generated during oil and natural gas production (produced water). The BTEX sorption isotherms are linear and noncompetitive, suggesting that the removal mechanism is partitioning into the surfactant’s hydrophobic bilayer formed on SMZ. Even though BTEX sorption in batch systems is rapid, chemical equilibrium models do not accurately describe BTEX transport through packed beds of SMZ. Comparison with transport of a nonreactive tracer (tritium) suggests that two-site, diffusive nonequilibrium sorption-desorption controls BTEX transport. We conducted batch experiments with SMZ to determine the nonequilibrium sorption kinetics of each BTEX constituent. The kinetic measurements were used to parameterize a nonequilibrium transport model to predict BTEX removal under varying flow conditions. The accuracy of predictions is being tested using laboratory column experiments with produced water from the San Juan Basin of New Mexico

52

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceanic gas hydrate dissociation in response to climate change and the fate of hydrate-derived methane Oceanic gas hydrate dissociation in response to climate change and the fate...

53

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of methane from hydrate and associated free-gas accumulations in areas of existing oil and gas infrastructure on the Alaska North Slope. The project will develop and test...

54

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling Authors: E. Jones, T....

55

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Grain-Scale Study of Hydrate Formation in Sediments from Methane Gas: A Coupled Fluid-Solid Interaction Model Grain-Scale Study of Hydrate Formation in Sediments from Methane Gas:...

56

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Authors: Robert S. Bowman, New Mexico Technological University, Socorro, NM; Enid J. Sullivan, Los Alamos National Laboratory, Los Alamos, NM; and Lynn E. Katz and Kerry A. Kinney, University of Texas, Austin, TX. Venue: 44th Annual Meeting of the Clay Minerals Society in Santa Fe, NM, June 3–7, 2007 (http://www.clays.org/home/HomeAnnualMeeting.html [external site]). Abstract: About 2.3 billion cubic meters (600 billion gallons) of wastewater (produced water) is generated each year as a byproduct of oil and gas operations in the continental United States. Disposal of this water represents about 10% of the cost of hydrocarbon production. Inexpensive treatment technologies can lower the cost of disposal and generate higher-quality water for other uses. Surfactant-modified zeolite (SMZ) has been shown to effectively sorb a variety of nonpolar organic compounds from water. SMZ was tested as a medium to remove benzene, toluene, ethylbenzene, and xylenes (BTEX) from produced water generated during extraction of coalbed natural gas. BTEX removal is necessary prior to surface discharge of produced waters or as a pretreatment for reverse osmosis. We demonstrated in laboratory column experiments that BTEX-saturated SMZ is readily regenerated by air sparging. There was no loss in BTEX sorption capacity, and a minor decrease in hydraulic conductivity, after 50 sorption/regeneration cycles. Based upon the laboratory results, a pilot-scale produced-water treatment system was designed and tested at a reinjection facility in the San Juan Basin of New Mexico. The SMZ-based system was designed to treat up to 110 liters (30 gallons) of produced water per hour on a continuous basis by running two SMZ columns in series. The system performed as predicted, based on laboratory results, over repeated feed and regeneration cycles during the month-long operation. The BTEX-laden sparge gases were treated with a vapor-phase bioreactor system, resulting in an emissions-free process

57

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Authors: Yongkoo Seol and Timothy J. Kneafsey Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http:...

58

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

with the bulk water phase, anticipating preferential growth of methane hydrate there. Gas invasion of sediments is one mechanism by which methane hydrates are believed to form....

59

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of oceanic Hydrate Bearing Sediments (HBS), during depressurization-induced gas production in general, and potential wellbore in-stability and casing deformation in...

60

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

before the installation of facilities for hydrate deposits can proceed, and if gas production from hydrate deposits is to become reality. HBS are often unconsolidated, and are...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

possibility. This view began to change in recent years with the realization that this unconventional resource could possibly be developed with existing conventional oil and gas...

62

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

strength and acoustic properties of repressurized samples from the 2006 National Gas Hydrate Program of India Expedition Triaxial strength and acoustic properties of...

63

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and quantification of the methane hydrate resource potential associated with the Barrow Gas Field Characterization and quantification of the methane hydrate resource potential...

64

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Geology, Mining, and Minerals. Venue: Society of Petroleum Engineers Asia Pacific Oil & Gas Conference in Jakarta, Indonesia, October 30November 1, 2007 (http:...

65

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanics Authors: Antone K. Jain and Ruben Juanes Venue: International Conference on Gas Hydrates, Vancouver, Canada, July 7-10, 2008. ( http:www.icgh.org external site )...

66

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

the dominant microbial communities in marine sediments containing high concentrations of gas hydrates Distribution of the dominant microbial communities in marine sediments...

67

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments HyFlux - Part II: Subsurface sequestration of methane-derived carbon in...

68

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoirs Authors: J. Phirani. & K. K. Mohanty Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http:...

69

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Fractures in the Barnett Shale in the Delaware Basin Natural Fractures in the Barnett Shale in the Delaware Basin, Pecos Co. West Texas: comparison with the Barnett Shale...

70

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Authors: Maša Prodanovic (speaker), Javad Behseresht, Yao Peng, Steven L. Bryant, Antone K. Jain and Ruben Juanes Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: A spectrum of behavior is encountered in methane hydrate provinces, especially ocean sediments, ranging from essentially static accumulations where the pore space is filled with hydrate and brine, to active seeps where hydrate and methane gas phase co-exist in the hydrate stability zone (HSZ). The grain-scale models of drainage and fracturing presented demonstrate key processes involved in pressure-driven gas phase invasion of a sediment. A novel extension of invasion percolation to infinite-acting, physically representative networks is used to evaluate the connectivity of water in a gas-drained sediment. A novel implementation of the level set method (LSM) is used to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. The discrete element method (DEM) is extended to model the coupling between the pore fluids and the solid, and thereby predict the onset of sediment fracturing by gas phase pressure under in situ loading conditions. The DEM grain mechanics model accounts for the different pressure of brine and methane gas in a “membrane” two-fluid model. The fluid-fluid configuration from LSM can be mapped directly to the pore space in DEM, thereby coupling the drainage and mechanics models. The type of behavior that can emerge from the coupled processes is illustrated with an extended LSM model. The extension computes grain displacement by the gas phase with a simple kinematic rule.

71

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

in shales Natural fractures in shales: Origins, characteristics and relevance for hydraulic fracture treatments Authors: J. F. Gale and J. Holder Venue: 2008 American...

72

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase Fluid Flow and Sediment Mechanics Application to Methane Hydrates in Natural Systems Authors: Antone K. Jain and Ruben Juanes Venue: American Geophysical Union...

73

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract: Surfactant-modified zeolite (SMZ) has been shown to effectively remove benzene, toluene, ethylbenzene, and xylene (BTEX) from water generated during oil and natural...

74

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

project DE-FC26-06NT42950, Harsh-Environment Electronics Packaging for Downhole Oil & Gas Exploration, is to develop new packaging techniques for downhole electronics that...

75

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

(speaker); Hunter, Robert B., Arctic Slope Regional Corp. Venue: 9th Annual Far North Oil & Gas Forum, Calgary, Alta., November 26-27, 2007 (http:www.insightinfo.com...

76

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Energy resource Studies in the United States Gas Hydrate Energy resource Studies in the United States Authors: T.Collett (USGS), R. Boswell (DOE), K. Rose (DOE), W. Agena...

77

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas The Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with...

78

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

C. Ruppel and R. G. Loucks (http:www.aapg.org) Abstract: The Woodford Formation, a key oil and gas source rock in the Permian Basin of Texas and New Mexico, is part of an...

79

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Authors: Javad Behseresht, Masa Prodanovic, and Steven Bryant, University of Texas at Austin. Venue: American Geophysical Union fall meeting, San Francisco, CA, December 10-14, 2007 (http://www.agu.org/meetings/fm07/ [external site]). Abstract: A spectrum of behavior is encountered in ocean sediments bearing methane hydrates, ranging from essentially static accumulations where hydrate and brine co-exist, to active cold seeps where hydrate and a methane gas phase co-exist in the hydrate stability zone (HSZ). In this and a companion paper (Jain and Juanes), the researchers describe methods to test the following hypothesis: The coupling between drainage and fracturing, both induced by pore pressure, determines whether methane gas entering the HSZ is converted completely to hydrate. The researchers will describe a novel implementation of the level set method to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. Predictions of fluid configurations in infinite-acting-model sediments indicate that the brine in drained sediment (after invasion by methane gas) is better connected than previously believed. This increases the availability of water and the rate of counter-diffusion of salinity ions, thus relaxing the limit on hydrate build-up within the gas-invaded grain matrix. Simulated drainage of a fracture in sediment shows that points of contact between fracture faces are crucial. They allow residual water saturation to remain within an otherwise gas-filled fracture. Simulations of imbibition—which can occur, for example, after drainage into surrounding sediment reduces gas phase pressure in the fracture—indicate that the gas/water interfaces at contact points significantly shift the threshold pressures for withdrawal of gas. During both drainage and imbibition, the contact points greatly increase water availability for hydrate formation within the fracture. The researchers will discuss coupling this capillarity-controlled displacement model with a discrete element model for grain-scale mechanics. The coupled model provides a basis for evaluating the macroscopic conditions (thickness of gas accumulation below the hydrate stability zone, average sediment grain size, principal earth stresses) favoring co-existence of methane gas and hydrate in the HSZ. Explaining the range of behavior is useful in assessing resource volumes and evaluating pore-to-core scale flow paths in production strategies

80

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Authors: Charles B. McComas, PE; J. Daniel Arthur, PE; Gerry Baker; G. Lee Moody; and David B. Cornue, PG, CHMM Venue: American Chemical Society (53rd Pentasectional Meeting) – Halliburton Energy Services Technology Center, Duncan, OK, March 8, 2008 (http://www.acs.org [external site]) Abstract: Research funded by the United States Department of Energy’s National Energy Technology Laboratory and conducted under the direction of the Interstate Oil and Gas Compact Commission has examined concerns related to air emissions resulting from domestic onshore oil and gas exploration and production operations. Current air issues such as ambient air quality standards and non-attainment areas, regulatory compliance and regional inconsistencies, as well as global climate change and carbon sequestration are a few of the subjects perceived to represent potential barriers to energy development. The topic of air quality and how it relates to onshore oil and gas exploration and production activities is examined from the position of environmental sustainability. These concerns can be addressed through reasonable and prudent practices that industry may implement in order to avoid, minimize, or mitigate air emissions. Additionally, air emissions parameters that are not currently regulated (e.g.: CH4 and CO2) may become the subject of increased concern in the future and, therefore, add to the list of issues facing oil and gas exploration and production. Suggestions for further research opportunities with the potential to benefit responsible energy resource development are also presented.

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Authors: Matthew T. Reagan and George J. Moridis Venue: 6th International Conference on Gas Hydrates 2008, Vancouver, British Columbia, July 9-12, 2008 (http://www.icgh.org [external site]) Abstract: Paleoceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating past global climate. The implication is that global oceanic deposits of methane gas hydrate is the main culprit for a sequence of rapid global warming affects that occurred during the late Quaternary period. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed coupled thermo-hydrological-chemical simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor, and assessed the potential for methane release into the ecosystem. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and the effects of benthic biogeochemical activity. The results show that while many deep hydrate deposits are indeed stable during periods of rapid ocean temperature changes, shallow deposits (such as those found in arctic regions or in the Gulf of Mexico) can undergo rapid dissociation and produce significant carbon fluxes over a period of decades. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane and the formation of carbonates) to sequester the released carbon. This model will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

82

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Authors: John and Deidre Boysen Venue: International Petroleum and Biofuels Environmental Conference, November 11-13, 2008, Albuquerque, NM cese@utulsa.edu Abstract: Economic and efficient produced water management is complex. Produced waters contain mixtures of organic and inorganic compounds, including heavy metals. Many of these constituents interfere with treatment processes that are selective for other constituents. Further, the concentrations of organic and inorganic constituents vary widely with location and producing formation. In addition, regulations related to discharge and beneficial uses vary from state to state, basin-to-basin and well location to well location.

83

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of the system behavior of hydrate-bearing geologic media involves solving fully coupled mass and heat balance equations. The models need to simulate equilibrium or kinetic processes of hydrate formation and dissociation. TOUGH+HYDRATE is a widely used code for gas hydrate simulations. The code can model non-isothermal gas release, phase changes and flow of fluids and heat. It accounts for up to four mass components and four possible phases. Because hydrate simulations require intensive computational effort, many studies that involve serial processors are limited by problems of complexity and scale. With the growing availability of multi-core CPUs, Linux clusters, and super-computers, the use of parallel processing methods is a distinct advantage. This study develops a domain decomposition approach for large-scale gas hydrate simulations using parallel computation. The approach partitions the simulation domain into small sub-domains. The full simulation domain is simulated integrally by using multiple processes. Each process will be in charge of one portion of the simulation domain for updating thermophysical properties, assembling mass and energy balance equations, solving linear equation systems, and performing other local computations. The linear equation systems are solved in parallel by multiple processes with a parallel linear solver. The multiple processes are run in parallel on shared- or distributed memory multiple-CPU computers. A hybrid approach, running multiple processes in each CPU and using multiple CPUs, may achieve additional speedup. During calculations, communication between processes is needed to update sub-domain boundary parameters. An efficient inter-process communication scheme has been developed. The new approach was implemented into the TOUGH+HYDRATE code and demonstrates excellent speedup and very good scalability. For many large-scale problems, this method can obtain linear or super-linear speedup. This paper will show applications of the new approach to simulate three dimensional field-scale models for gas production from gas-hydrate

84

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

The geomechanical response of Hydrate-Bearing Sediments (HBS) is a serious concern that needs to be addressed before the installation of facilities for hydrate deposits can proceed, and if gas production from hydrate deposits is to become reality. HBS are often unconsolidated, and are characterized by low shear strength. Heat from external sources, that cross the formation or depressurization-based production, can induce dissociation of hydrates (a strong cementing agent), and degradation of the structural stability of the HBS. Changes in pressure and temperature, phase changes, and the evolution of an expanding (and structurally weak) gas zone can significantly alter the distribution of loads in the sediments. The corresponding changes in the local stress and strain fields can result in substantial changes in the hydrologic, thermal and geomechanical properties of the system, displacement, and potentially failure.

85

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Fracturing and Sand Control Hydraulic Fracturing and Sand Control Hydraulic Fracturing and Sand Control Author: M. Sharma Venue: Industry Workshop, Austin, Texas, May 7, 2008 (http://www.cpge.utexas.edu) Abstract: The Hydraulic Fracturing and Sand Control project consists of a set of 9 projects (5 related to fracturing and 4 related to sand control) that are currently underway. The project began in 2006 and is planned to continue for at least 2 years (2008). Each member company contributes $50,000 per year as a grant to the University and in return receives all the research results from the projects underway. F1. Energized fractures in tight gas sands/ gas shales (Kyle Freihof, Mukul Sharma) F2. Refracturing and stress reorientation in sands / shales (Vasudev Singh, Nicolas Rousell, Mukul Sharma)

86

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Framework of the 2005 Keathley Canyon Geologic Framework of the 2005 Keathley Canyon Gas Hydrate Research Well, Northern Gulf of Mexico Authors: D.R. Hutchinson, P.E. Hart, T.S. Collett, K.M. Edwards, and D.C. Twichell, U.S. Geological Survey, and F. Snyder, WesternGeco-Schlumberger. Venue: American Geophysical Union’s 2007 Joint Assembly, Acapulco, Mexico, May 22-25, 2007 (http://www.agu.org/meetings/ja07/ [external site]). Abstract: The project was located in the Casey Basin in the northern Gulf of Mexico at 1,335 m water depth. A grid of 2-D high-resolution multichannel seismic lines around the drill sites, targeted for imaging depths down to at least 1,000 m subbottom, reveals multiple disconformities that bound seven mappable seismic stratigraphic units. A major disconformity in the middle of the units stands out for its angular baselapping geometry. From the seismic and drilling data, three episodes of sedimentary deposition and deformation are inferred. The oldest episode consists of fine-grained muds deposited during a period of relative stability in the basin (Units E, F, and G). A second episode (Units C and D) consists of large vertical displacements associated with infilling and ponding of sediment. This second interval corresponds with intercalated fine and coarse-grained material in the drill hole, which sampled the thin edges of much thicker units. The final episode (Units A and B) occurred during much-subdued vertical displacement. Hemipelagic drape (Unit A) characterizes the modern seafloor deposits. The basin is mostly filled. Its sill is part of a subsiding graben that is only 10-20 m shallower than the deepest point in the basin, indicating that gravity-driven transport would mostly bypass the basin. Contemporary faulting along the basin margins has selectively reactivated an older group of faults. The intercalated sand and mud deposits of Units C and D are tentatively correlated with late Pleistocene deposition derived from the western shelf-edge delta/depocenter of the Mississippi River, which was probably most active from 320 ka to 70 ka (Winker and Booth, 2000). Gas hydrate occurs within near-vertical fractures in Units E and F of the oldest episode. The presence of sand within the gas hydrate stability zone is not sufficient to concentrate gas hydrate, even though dispersed gas hydrate occurs deeper in the fractured mud/clay-rich sections of Units E and F.

87

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Fractures in the Barnett Shale in the Delaware Basin Natural Fractures in the Barnett Shale in the Delaware Basin Natural Fractures in the Barnett Shale in the Delaware Basin, Pecos Co. West Texas: comparison with the Barnett Shale in the Fort Worth Basin Authors: Julia F. W. Gale Venue: West Texas Geological Society Symposium, in Midland, Texas September 10-12, 2008. http://www.wtgs.org [external site] Abstract: This study describes the several sets of natural fractures in a Barnett Shale core from Pecos County, including partly open fractures, fractures associated with chert layers and early, deformed fractures. These are compared with fractures previously described in the Barnett Shale in the Fort Worth Basin. The basic fracture attributes are discussed in terms of their implications for hydraulic fracture treatments. The steep, narrow, calcite-sealed fractures that are present in many Barnett cores in the Fort Worth Basin are important because of their likely tendency to reactivate during hydraulic fracture treatments. Larger open fractures are possibly present, clustered on the order of several hundred feet apart. In the core studied from the Delaware Basin there is evidence that a greater number of narrower fractures may be open. Thus, their importance for completions may be rather different than those in the Fort Worth Basin

88

PHOENIX NATURAL GAS LIMITED PRICE DETERMINATION REFERENCE Disclosures of interest  

E-Print Network (OSTI)

Member disclosures Martin Cave (Group Chairman) is a joint academic director of a Brussels-based think tank on regulation called CERRE (www.cerre.eu). This has occupied about ten days per year, mostly attending seminars in Brussels with regulators and regulatees. Another joint academic director is Prof C Waddams. They have not collaborated on any research projects, but he has chaired a panel which she was on. He has co-written a general book, or textbook, on regulation, which includes chapters on price control. The index lists three brief references to energy regulation: Baldwin, Cave &

Richard Taylor

2012-01-01T23:59:59.000Z

89

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Capillarity-controlled displacements in sediments with moveable grains Capillarity-controlled displacements in sediments with moveable grains Capillarity-controlled displacements in sediments with moveable grains: Implications for growth of methane hydrates Authors: Maša Prodanovic (speaker), Steven L. Bryant Venue: SPE Annual Technical Conference and Exhibition, Denver, Colorado, 21-24 September, 2008. http://www.spe.org [external site]. Abstract: We consider immiscible displacements when fluid/fluid interfaces are controlled by capillary forces. The progressive quasistatic (PQS) algorithm based on the level set method readily determines the geometry of these interfaces at the pore level. Capillary pressure generally exerts a net force on grains supporting an interface. We extend PQS to implement a kinematic model of grain displacement in response to that force. We examine the changes in the drainage curve caused by this coupling. We compute the interfacial area associated with the bulk water phase, anticipating preferential growth of methane hydrate there. Gas invasion of sediments is one mechanism by which methane hydrates are believed to form. In unconsolidated ocean sediments the capillary pressure exerted by an accumulated gas phase below the hydrate stability zone can be large enough to move grains apart. This motion alters the pore throat sizes which control subsequent drainage of the sediment. A model for the dynamics of this process is useful for assessing the competition between drainage (controlled by capillary forces) and fracturing (controlled by pore pressure and earth stresses). This in turn provides insight into the possible growth habits within the hydrate stability zone. When grains can move in response to net force exerted by the gas phase, small variations in an otherwise uniform distribution of pore throat sizes quickly lead to self-reinforcing, focused channels of gas phase. In contrast to behavior in stationary grains, the drainage curve exhibits no clear percolation threshold. Displacements in materials with broad throat size distributions also exhibit self-reinforcing channels. Behind the leading edge of the displacement front, the net force exerted on the grains tends to push them together. This effectively seals off these regions from subsequent invasion. Thus hydrate growth tends to be localized along the channel of displaced grains. This is the first quantitative grain-scale study of the drainage behavior when grains can move in response to invasion events. The coupling leads to qualitatively different displacement patterns. The method presented for studying this behavior is applicable to any granular material and to other applications, such as sand production.

90

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments (OTC 19672) Authors: Jonny Rutqvist (speaker), George J. Moridis, and Tarun Grover Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: This study investigated coupled multiphase flow, themal, thermodynamic and geomechanical behavior of oceanic Hydrate Bearing Sediments (HBS), during depressurization-induced gas production in general, and potential wellbore in-stability and casing deformation in particular. The project investigated the geomechanical changes and wellbore stability for two alternative cases of production using a horizontal well in a Class 3 deposit and a vertical well in a Class 2 deposit. The research compared the geomechanical responses and the potential adverse geomechanical effects for the two different cases. Analysis shows that geomechanical responses during depressurization-induced gas production from oceanic hydrate deposits is driven by the reservoir-wide pressure decline (Delta P), which in turn is controlled by the induced pressure decline near the wellbore. Because any change quickly propagates within the entire reservoir, the reservoir wide geomechanical response can occur within a few days of production induced pressure decline.

91

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand: Observations Using X-Ray CT Scanning Authors: Yongkoo Seol and Timothy J. Kneafsey Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http://www.icgh.org/ [external site] Abstract: The effects of porous medium heterogeneity on methane hydrate formation, water flow through the heterogeneous hydrate-bearing sand, and hydrate dissociation were observed in an experiment using a heterogeneous sand column with prescribed heterogeneities. X-ray computed tomography (CT) was used to monitor saturation changes in water, gas, and hydrate during hydrate formation, water flow, and hydrate dissociation. The sand column was packed in several segments having vertical and horizontal layers with two distinct grain-size sands. The CT images showed that as hydrate formed, the water and hydrate saturations were dynamically redistributed by variations in capillary strength of the medium (the tendency for a material to imbibe water), which changed with the presence and saturation of hydrate. Water preferentially flowed through fine sand near higher hydrate-saturation regions where the capillary strength was elevated relative to the lower hydrate saturation regions. Hydrate dissociation initiated by depressurization varied with different grain sizes and hydrate saturations.

92

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Studies of Geomechanical Stability of Hydrate-Bearing Sediments Numerical Studies of Geomechanical Stability of Hydrate-Bearing Sediments Authors: George J. Moridis, Jonny Rutqvist, Lawrence Berkeley National Laboratory. Venue: 2007 Offshore Technology Conference, Houston, TX, April 30–May 1, 2007 (http://www.otcnet.org/ [external site]). Abstract: The thermal and mechanical loading of hydrate-bearing sediments (HBS) can result in hydrate dissociation and a significant pressure increase, with potentially adverse consequences on the integrity and stability of the wellbore assembly, the HBS, and the bounding formations. The perception of HBS instability, coupled with insufficient knowledge of their geomechanical behavior and the absence of predictive capabilities, has resulted in a strategy of avoidance of HBS when locating offshore production platforms. These factors can also impede the development of hydrate deposits as gas resources. For the analysis of the geomechanical stability of HBS, project researchers developed and used a numerical model that integrates a commercial geomechanical code into a simulator describing the coupled processes of fluid flow, heat transport, and thermodynamic behavior in geologic media. The geomechanical code includes elastoplastic models for quasi-static yield and failure analysis and viscoplastic models for time-dependent (creep) analysis. The hydrate simulator can model the non-isothermal hydration reactions (equilibrium or kinetic), phase behavior, and flow of fluids and heat in HBS, and can handle any combination of hydrate dissociation mechanisms. The simulations can account for the interdependence of changes in the hydraulic, thermodynamic, and geomechanical properties of the HBS, in addition to swelling/shrinkage, displacement (subsidence), and possible geomechanical failure. Researchers investigated in three cases the coupled hydraulic, thermodynamic, and geomechanical behavior of oceanic HBS systems. The first involves hydrate heating as warm fluids from deeper, conventional reservoirs ascend to the ocean floor through uninsulated pipes intersecting the HBS. The second case involves mechanical loading caused by the weight of structures placed on HBS at the ocean floor, and the third describes system response during gas production from a hydrate deposit. The results indicate that the stability of HBS in the vicinity of warm pipes may be significantly affected, especially near the ocean floor where the sediments are unconsolidated and more compressible. Conversely, the increased pressure caused by the weight of structures on the ocean floor increases the stability of hydrates, while gas production from oceanic deposits minimally affects the geomechanical stability of HBS under the conditions that are deemed desirable for production.

93

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

94

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Permeability of Laboratory-Formed Hydrate-Bearing Sand Permeability of Laboratory-Formed Hydrate-Bearing Sand Permeability of Laboratory-Formed Hydrate-Bearing Sand (OTC 19536) Authors: Timothy J. Kneafsey (speaker), Yongkoo Seol, Arvind Gupta, and Liviu Tomutsa Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 http://www.spe.org and http://www.smenet.org [external sites] Abstract: Methane hydrate was formed in moist sand under confining stress in a long, x-ray transparent pressure vessel. Three initial water saturations were used to form three different methane hydrate saturations. X-ray computed tomography (CT) was used to observe location-specific density changes, caused by hydrate formation and flowing water. Gas permeability was measured in each test for dry sand, moist sand, frozen sand, and hydrate-bearing sand. Results of these measurements are presented. Water was flowed through the hydrate-bearing sand, and the changes in water saturation were observed using CT scanning. Inverse modeling will be performed using these data to extend the relative permeability measurements

95

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated Results from Deep Trek High-Temperature Electronics Development Programs Updated Results from Deep Trek High-Temperature Electronics Development Programs Updated Results from Deep Trek High-Temperature Electronics Development Programs Author: Bruce W. Ohme, Honeywell Inc., Plymouth, MN. Venue: HITEN 2007 (High-Temperature Electronics Network conference), St. Catherine’s College, Oxford, U.K., September 17–19, 2007, (http://science24.com/event/hiten2007 [external site]). Abstract: Electronics are used in modern oil and gas exploration to collect, log, and/or process data such as heading and inclination, weight on the bit, vibration, seismic/acoustic response, temperature, pressure, radiation, and resistivity of the strata. High-temperature electronics are needed that can operate reliably in deep-well conditions (up to 250oC). Under its Deep Trek program, the U.S. Department of Energy has funded two projects led by Honeywell. The first project, launched in 2003 and being completed this year, established a production-level integrated circuit manufacturing process, components, and design tools specifically targeting high-temperature environments (up to 250oC). The second project, launched in 2006 and expected to be completed in 2008, will develop rugged packaging suitable for downhole shock and vibration levels that will be used to house and demonstrate components developed in the earlier project. This paper will describe updated results from both of these projects, including previously unreported results obtained from prototype testing of a high-resolution analog-to-digital converter (ADC); a high-temperature, single-poly, floating-gate EEPROM (electrically erasable programmable read-only memory); and a 12-bit, successive-approximation ADC. Also, a multi-chip module being developed as a complete downhole processing unit will be discussed

96

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Fracture Reorientation Due to Fluid Injection/Production Estimating Fracture Reorientation Due to Fluid Injection/Production Estimating Fracture Reorientation Due to Fluid Injection/Production Authors: Zongyu Zhai and Mukul M. Sharma, University of Texas at Austin. Venue: Society of Petroleum Engineers’ Production and Operations Symposium, Oklahoma City, OK, April 1–3, 2007 (http://www.spe.org/ [external site]). Abstract: The injection or production of large volumes of fluid into or from a reservoir can result in significant changes to the effective in-situ stress distributions. Field evidence of this has been provided in the past by mapping refracturing treatments in tight gas sands and microseismic monitoring of injection wells in waterflooded reservoirs. A poro-elastic model is presented to show how the extent of fracture reorientation can be estimated under different conditions of fluid injection and production. The extent of fracture reorientation is a function of the in-situ stresses, the mechanical properties of the rock, and the pore pressure gradients. In reservoirs where the pore pressure gradients are complicated due to multiple injection and production wells, fracture reorientation is sensitive to the net pore-pressure gradients. Fractures tend to reorient themselves towards the injection wells and away from production wells, if the pressure gradients are comparable to the in-situ stress contrast. While far-field principal stress orientations are impacted only by in-situ stresses and pore-pressure gradients, near-wellbore in-situ stress orientation is also impacted by the hoop stress and the wellbore pressure. These can have a significant effect on near-wellbore fracture reorientation. The results of our model are compared with field observations obtained from microseismic monitoring of water injection wells. The implications of the results to refracturing operations and candidate well selection are discussed.

97

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Authors: Rick Colwell, Oregon State University, and Dimitris Ntarlagiannis, Rutgers University. Venue: American Geophysical Union’s 2007 Joint Assembly, Acapulco Mexico, May 21-25, 2007 (http://www.agu.org/ [external site]). Abstract: The new subdiscipline of biogeophysics has focused mostly on the geophysical signatures of microbial processes in contaminated subsurface environments usually undergoing remediation. However, the use of biogeophysics to examine the biogeochemistry of marine sediments has not yet been well integrated into conceptual models that describe subseafloor processes. Current examples of geophysical measurements that have been used to detect geomicrobiological processes or infer their location in the seafloor include sound surveillance system (SOSUS)-derived data that detect seafloor eruptive events, deep and shallow cross-sectional seismic surveys that determine the presence of hydraulically conductive zones or gas-bearing sediments (e.g., bottom-simulating reflectors or bubble-rich strata), and thermal profiles. One possible area for innovative biogeophysical characterization of the seafloor involves determining the depth of the sulfate-methane interface (SMI) in locations where sulfate diffuses from the seawater and methane emanates from subsurface strata. The SMI demarcates a stratum where microbially driven anaerobic methane oxidation (AMO) is dependent upon methane as an electron donor and sulfate as an electron acceptor. AMO is carried out by a recently defined, unique consortium of microbes that metabolically temper the flux of methane into the overlying seawater. The depth of the SMI is, respectively, shallow or deep according to whether a high or low rate of methane flux occurs from the deep sediments. Presently, the SMI can only be determined by direct measurements of methane and sulfate concentrations in the interstitial waters or by molecular biological techniques that target the microbes responsible for creating the SMI. Both methods require collection and considerable analysis of sediment samples. Therefore, detection of the SMI by non-destructive methods would be advantageous. As a key biogeochemical threshold in marine sediments, the depth of the SMI defines methane charge in marine sediments, whether it is from dissolved methane or from methane hydrates. As such, a biogeophysical strategy for determining SMI depth would represent an important contribution to assessing methane charge with respect to climate change, sediment stability, or potential energy resources.

98

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine-Scale Control of Microbial Communities in Deep Marine Sediments Fine-Scale Control of Microbial Communities in Deep Marine Sediments Fine-Scale Control of Microbial Communities in Deep Marine Sediments that Contain Hydrates and High Concentrations of Methane Authors: Colwell, F. (speaker, Oregon State University), Hangsterfer, A., Brodie, E., Daly, R., Holland, M., Briggs, B., Carini, P., Torres, M., Kastner, M., Long, P., Schaef, H., Delwiche, M., Winters, W., and Riedel, M. Venue: American Geophysical Union’s fall meeting in San Francisco, CA, December 10–14, 2007 (http://www.agu.org/meetings/fm07/ [external site]). Abstract: Deep subseafloor sediments with high concentrations of organic carbon and microbially generated methane contain microbial communities that play an important role in the biogeochemical cycling of carbon. However, there remains a limited understanding of the fine (centimeter)-scale sediment properties (e.g., grain size, presence/absence of hydrates) that determine key microbial attributes in deep marine sediments. This project’s objective is to determine the quantity, diversity, and distribution of microbial communities in the context of abiotic properties in gas-rich marine sediments. DNA was extracted from deep marine sediments cored from various continental shelf locations, including offshore India and the Cascadia Margin. Abiotic characterization of the same sediments included grain size analysis, chloride concentrations in sediment pore waters, and presence of hydrates in the sediments as determined by thermal anomalies. As in past studies of such systems, most of the samples yielded low levels of DNA (0.3-1.5 ng/g of sediment). Bacterial DNA appeared to be more easily amplified than archaeal DNA. Initial attempts to amplify DNA using primers specific for the methanogen functional gene, methyl-CoM-reductase, were unsuccessful. Infrequently, cores from relatively shallow sediments (e.g., 0.5 mbsf Leg 204, 1251B-1H) from central (Hydrate Ridge) and northern (offshore Vancouver Island) Cascadia and from India’s eastern margin contained macroscopically visible, pigmented biofilms. One of these biofilms was composed of high concentrations of cell clusters when viewed microscopically. The predominant cells in the Hydrate Ridge biofilm were large (ca. 10 um) cocci, and preliminary characterization of the 16S rDNA amplified and sequenced from this biofilm suggests the prevalence of a microbe with 97% similarity to mycobacteria. These discrete biofilm communities appear to be distinctive relative to the normally sparse distribution of cells in the sediments. By determining how the abiotic properties of deep marine sediments control the numbers and distribution of microbial communities that process organic matter, project researchers hope to provide better parameters for computational models that describe carbon cycling in these systems.

99

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical strength and seismic property measurements of hydrate-bearing sediments Mechanical strength and seismic property measurements of hydrate-bearing sediments Mechanical strength and seismic property measurements of hydrate-bearing sediments (HBS) during hydrate formation and loading tests (OTC 19559) Authors: Seiji Nakagawa (speaker), Timothy J. Kneafsey, and George J. Moridis Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 http://www.spe.org and http://www.smenet.org [external sites] Abstract: An on-going effort on conducting laboratory triaxial compression tests on synthetic methane hydrate-bearing sediment cores is presented. Methane hydrate is formed within a sand pack inside a test cell under controlled temperature and confining stress, and triaxial compression tests are performed while monitoring seismic properties. A unique aspect of the experiment is that the formation and dissociation of hydrate in a sediment core, and the failure of the sample during loading tests, can be monitored in real time using both seismic waves and x-ray CT imaging. For this purpose, a specially designed triaxial (geomechanical) test cell was built. This cell allows for conducting seismic wave measurements on a sediment core using compressional and shear (torsion) waves. Concurrently, CT images can be obtained through an x-ray-transparent cell wall. These are used to determine the porosity distribution within a sample owing to both original sand packing and formation of hydrate in the pore space. For interpreting the results from both seismic measurements and geomechanical tests, characterization of sample heterogeneity can be critically important. In this paper, the basic functions of the test cell are presented, with the results of preliminary experiments using non-hydrate bearing sandpack and sandstone core. These measurements confirmed that (1) clear x-ray images of gas-fluid boundaries within a sediment/rock core can be obtained through a thick aluminum test cell wall, (2) the test cell functions correctly during loading tests, and (3) both compressional and shear waves can be measured during a loading test. Further experiments using methane-hydrate-bearing samples will be presented at the conference

100

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Author: Thomas C. Chidsey, Petroleum Section Chief, Utah Geological Survey, Salt Lake City, UT. Venue: International Oil Scouts Association’s 84th annual meeting, Stein Eriksen Lodge, Park City, UT, June 17–20, 2007, (http://www.oilscouts.com/index-main.html [external site]). Abstract: Utah’s natural gas and oil exploration history extends back more than 100 years, fluctuating greatly due to discoveries, price trends, and changing exploration targets. During the boom period of the early 1980s, activity peaked at over 500 wells per year. After slowing in the 1990s, drilling activity has again increased, reaching an all-time peak of 1,058 wells spudded and over 2,000 APDs (application for permit to drill) filed in 2006. This increase in activity has been spurred by high prices for both natural gas and oil and by the perception that Utah is highly prospective and underexplored. In recent years, the proportion of new wells exploring for gas has increased greatly. Total cumulative natural gas production from Utah fields now exceeds 8 Tcf. Recent successful drilling has been expanding reserves by about 10 percent per year, one of the highest rates of gas reserves increase in the country. Although gas production from some fields declined during the late 1990s, two factors caused overall gas production to increase. The development of coalbed natural gas (CBNG) accumulations in the Cretaceous Ferron Sandstone play, in particular Drunkards Wash field in central Utah, has increased the State’s annual gas production by 20–30 percent. Also, deeper exploratory and development drilling in the eastern and southern Uinta Basin during the past 5 years has led to discoveries of substantial gas accumulations in tight-sand reservoirs of the Tertiary Wasatch Formation, Cretaceous Mesaverde Group, and Jurassic Entrada and Wingate Sandstones. Significant potential exists for other coalfields (Book Cliffs, Sego, and Wasatch Plateau) around the Uinta Basin to yield CBNG, and the extent of deeper conventional and tight-gas plays remains to be explored. In addition, shale gas reservoirs in the Mississippian Manning Canyon Shale, Pennsylvanian Hermosa Group, and Cretaceous Mancos Shale of central, southeastern, and northeastern Utah, respectively, have tremendous untapped potential. Utah oilfields have produced a cumulative total of 1.3 billion barrels (bbl) of oil. Although annual production decreased from a peak of 41 million bbl in 1985 to 13 million bbl in 2003, the trend has since reversed, and 2005 production reached nearly 17 million bbl. A component (about one-third of the increase) of this turnaround has been the 2004 discovery of Covenant field in the central Utah thrust belt, or "Hingeline." This new field has already produced 3 million bbl of Mississippian-sourced oil from the Jurassic Navajo Sandstone in a thrusted anticline formed during the Sevier orogeny. This new oil play is the focus of extensive leasing and exploration activity—comparable to the late 1970s and early 1980s in the Utah-Wyoming salient of the thrust belt to the north.

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Authors: Robert Hunter (ASRC Energy), Scott Digert (BPXA), Tim Collett (USGS), Ray Boswell (USDOE) Venue: AAPG National Meeting Gas Hydrate session, Oral Presentation, San Antonio, TX, April 22, 2008 (http://www.AAPG.org [external site]) Abstract: This BP-DOE collaborative research project is helping determine whether or not gas hydrate can become a technically and economically recoverable gas resource. Reservoir characterization, development modeling, and associated studies indicate that 0-0.34 trillion cubic meters (TCM) gas may be technically recoverable from the estimated 0.92 TCM gas-in-place within the Eileen gas hydrate accumulation on the Alaska North Slope (ANS). Reservoir modeling indicates sufficient potential for technical recovery to justify proceeding into field operations to acquire basic reservoir and fluid data from the Mount Elbert gas hydrate prospect in the Milne Point Unit (MPU). Successful drilling and data acquisition in the Mount Elbert-01 stratigraphic test well was completed during February 3-19, 2007. Data was acquired from 131 meters of core (30.5 meters gas hydrate-bearing), extensive wireline logging, and wireline production testing operations using Modular Dynamics Testing (MDT). The stratigraphic test validated the 3D seismic interpretation of the MPU gas hydrate-bearing Mount Elbert prospect. Onsite core sub- sampling preserved samples for later analyses of interstitial water geochemistry, physical properties, thermal properties, organic geochemistry, petrophysics, and mechanical properties. MDT testing was accomplished within two gas hydrate-bearing intervals, and acquired during four long shut-in period tests. Four gas samples and one pre-gas hydrate dissociation formation water sample were collected. MDT analyses are helping to improve understanding of gas hydrate dissociation, gas production, formation cooling, and long-term production potential as well as help calibrate reservoir simulation models.

102

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Energy resource Studies in the United States Hydrate Energy resource Studies in the United States Gas Hydrate Energy resource Studies in the United States Authors: T.Collett (USGS), R. Boswell (DOE), K. Rose (DOE), W. Agena (USGS), and R. Baker (DOE) Venue: American Chemical Society Meeting, March 22-26, 2009, Salt Lake City, Utah http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_MEETINGS&node_id=86&use_sec=false&__uuid=614acbfd-ce1c-4a0b-98de-348a14738f4e [external site] Abstract: In 1982, scientists onboard the Research Vessel Glomar Challenger retrieved a meter-long sample of massive gas hydrate off the coast of Guatemala. This sample became the impetus for the first United States national research and development program dedicated to gas hydrates. By the mid 1990s, it was widely accepted that gas hydrates represented a vast storehouse of gas. Recognizing the importance of gas hydrate research and the need for coordinated efforts, Congress and the President of the United States enacted Public Law 106-193, the Methane Hydrate Research and Development Act of 2000. Authorization for this program was extended to 2010 as part of the Energy Policy Act of 2005. Many of the current gas hydrate projects in the United States are conducted within this program, which is administered by the U. S. Department of Energy in collaboration with six other U.S. federal agencies, and conducted in partnership with private industry, academic institutions, and DOE’s National Laboratories. In addition, other U.S. federal agencies conduct significant self-directed gas hydrate research; most notably the gas hydrate resource assessment activities conducted by U.S. Department of Interior agencies (the U.S. Geological Survey and the Minerals Management Service).

103

Autothermal reforming of natural gas to synthesis gas:reference: KBR paper #2031.  

DOE Green Energy (OSTI)

This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Sued-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO{sub 2} in the burner feed showed that the conditions in the burner allow for the direct participation of CO{sub 2} in the oxidation chemistry.

Mann, David (KBR, Houston, TX); Rice, Steven, D.

2007-04-01T23:59:59.000Z

104

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Low  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Temperature X-ray Diffraction Study of Natural Gas Hydrate Samples from the Gulf of Mexico Low Temperature X-ray Diffraction Study of Natural Gas Hydrate Samples from the Gulf of Mexico Low Temperature X-ray Diffraction Study of Natural Gas Hydrate Samples from the Gulf of Mexico Authors: C.J. Rawn, R. Sassen, S.M. Ulrich, E.A. Payzant, B.C. Chakoumakos, and T.J. Phelps Venue: 6th International Conference on Gas Hydrates, Fairmont Hotel, Vancouver, Canada July 6-10, 2008. http://www.icgh.org/ [external site]. Abstract: Clathrate hydrates of methane and other small alkanes occur widespread as terrestrial components in marine sediments of the continental margins and in permafrost sediments of the arctic. Quantitative study of natural clathrate hydrates is hampered by the difficulty in obtaining pristine samples, particularly from submarine environments. Bringing samples of clathrate hydrate from the seafloor at depths without compromising their integrity is not trivial. Most physical property measurements are based on studies of laboratory-synthesized samples. Here we report x-ray powder diffraction measurements of a natural gas hydrate sample from the Green Canyon, Gulf of Mexico (GOM). The first data were collected in 2002 and revealed ice and structure II gas hydrate. In the subsequent time the sample has been stored in liquid nitrogen. Recently new x-ray powder diffraction data have been collected as a function of temperature. Rietveld refinements on this new data show that there is approximately 50 wt % gas hydrate with structure type II and 50% ice at -140, -130, -115, -100, and -85oC. The Rietveld refinements on the data sets collected at -70 and -55oC show the amount of structure type II hydrate decreasing to approximately 40% and 37%, respectively. The Rietveld refinement of the data set collected at -40oC shows a sharp decrease in the amount of structure type II hydrate to approximately 9%. Rietveld refinements on the data sets collected at -25 and -10oC indicated that the structure type II hydrate is still present at 7 and 3%, respectively

105

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

106

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

107

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on the  

NLE Websites -- All DOE Office Websites (Extended Search)

the Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas the Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas The Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas (OTC 19435) Authors: George J. Moridis (speaker), Matthew T. Reagan, and Keni Zhang Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: Recent numerical studies have provided strong indications that it is possible to produce large volumes of gas from natural hydrate deposits at high rates (in excess of 10 MMSCFD) for long times by depressurization-induced dissociation of hydrates. Of the various factors that can adversely affect the production potential of hydrates, low temperatures have one of the strongest negative impacts. These can be caused by low initial temperatures, increasing stability of the hydrate (as defined by the deviation between the temperature of the deposit and the equilibrium temperature at the reservoir pressure), and by an advanced stage of dissociation (a strongly endothermic reaction) when substantial amounts of hydrates remain. The reasons for the production decline include a reduction in the rate of the hydrate dissociation at lower temperatures and the evolution of flow restrictions in the vicinity of the well caused by the formation of hydrate and/or ice in the vicinity of the wellbore. The latter is caused by continuous cooling, and is the reason why large amounts of gas that may have been released in the reservoir in the course of earlier dissociation cannot be easily recovered.

108

Ohio Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Date: 9302013 Next Release Date: 10312013 Referring Pages: Natural Gas Used for Repressuring Ohio Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring...

109

Illinois Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

7312013 Next Release Date: 8302013 Referring Pages: Natural Gas Used for Repressuring Illinois Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring...

110

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

111

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

112

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

113

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

114

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

115

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

116

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

117

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

118

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

119

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

120

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

122

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

123

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

124

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

125

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

126

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

127

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

128

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

129

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

130

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

131

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

132

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

133

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

134

NETL: Oil and Natural Gas: Natural Gas Reources  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Resources Research Project Summaries Reference Shelf O&G Document Archive The United States is endowed with an abundance of natural gas resources. Besides its use for...

135

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Pore  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore scale mechanistic study of the preferential mode of hydrate formation in sediments Pore scale mechanistic study of the preferential mode of hydrate formation in sediments Pore scale mechanistic study of the preferential mode of hydrate formation in sediments: Coupling of fluid flow and sediment mechanics Authors: Antone K. Jain and Ruben Juanes Venue: International Conference on Gas Hydrates, Vancouver, Canada, July 7-10, 2008. ( http://www.icgh.org [external site] ) Abstract: Methane hydrates in ocean sediments range from essentially static accumulations of hydrate and brine, to active cold seeps where hydrate and a methane gas phase co-exist in the hydrate stability zone (HSZ). In this and a companion paper (Behseresht, Prodanovic and Bryant) methods are described to test the following hypothesis: the coupling between drainage and fracturing (both induced by pore pressure) determines whether methane gas entering the HSZ is converted completely to hydrate. H A discrete element method (DEM) is presented to model the strong coupling that takes place between the pore fluids and the mechanical behavior of the sediment.

136

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on a  

NLE Websites -- All DOE Office Websites (Extended Search)

a Unified Imaging Procedure for 2-D Land Multichannel Seismic Data a Unified Imaging Procedure for 2-D Land Multichannel Seismic Data Towards a Unified Imaging Procedure for 2-D Land Multichannel Seismic Data Authors: Jaiswal, Priyank, Zelt, C.A., Rice University, and Dasgupta, R., Oil India Limited Venue: 70th EAGE Conference and Exhibition, Rome, Italy, June 11-14, 2008 (http://www.eage.org/events/index.php?eventid=57&Opendivs=s2 [external site). Abstract: This project demonstrates that imaging of 2-D multichannel seismic data can be effectively accomplished by a combination of travel-time inversion and pre-stack depth migration (PSDM); this combined method is referred to as unified imaging. Unified imaging begins with inversion of direct arrivals for estimating a velocity model that is used in static corrections and stacking velocity analysis. The interval velocity model (from stacking velocities) is used for PSDM. The stacked data and the PSDM image are interpreted for common horizons and the corresponding wide-aperture reflections are identified in the shot gathers. Using the interval velocity model the stack interpretations are inverted as zero-offset reflections for constraining the corresponding interfaces in depth; the interval velocity model is maintained stationary. A coefficient of congruence, j, is defined which measures the discrepancy between the horizons from the PSDM image and their counterparts from the zero-offset inversion. A value of unity for j implies that the interpreted and inverted horizons are consistent to within the interpretational uncertainties and the unified imaging is said to have converged at this point. For j greater than unity, the interval velocity model and the horizon depths are updated by jointly inverting the direct arrivals with the zero-offset and the wide-aperture reflections. The updated interval velocity model is used again for both PSDM and zero-offset inversion. Interpretations of the new PSDM image are the updated horizons depths. The unified imaging is applied to seismic data from the Naga Thrust and Fold Belt, India. Wide-aperture and zero-offset data from three geologically significant horizons are used. Three runs of joint inversion and PSDM are required in a cyclic manner for j to converge to unity. A joint interpretation of the final velocity model and the final depth image reveal the presence of a triangle zone that appears to be promising for exploration.

137

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Sequestration Potential of the North Michigan Silurian Reef CO2 Sequestration Potential of the North Michigan Silurian Reef CO2 Sequestration Potential of the North Michigan Silurian Reef Authors: Brian Toelle, Chaoqing Yang (speaker), and Tracee Imai, Schlumberger Ltd. Venue: Eastern Section of the American Association of Petroleum Geologists 2007 Annual Meeting, Lexington, KY, September 16–18, 2007 (http://www.uky.edu/KGS/esaapg07/ [external site]). Abstract: The Northern Silurian Reef trend of the Michigan Basin was developed within the stratigraphic unit historically referred to as the Niagaran Brown. Within the past few years this unit was renamed the Guelph Formation. Over 700 reefs make up this trend, with some of these being over 300 acres in size and having produced more than 5 million barrels of oil. Estimates of the total amount of hydrocarbons produced for the entire trend have been reported to be as much as nearly a half a billion barrels. The U.S. Department of Energy has funded a study of an ongoing enhanced oil recovery project being conducted on a reef within this trend and entailing CO2 injection. The Charlton 30/31 reef, located in Otsego County, MI, like many other reefs in the play, was discovered and developed during the 1970s and 1980s. This field has completed its primary production phase, during which six wells produced 2.6 million of the field’s estimated 7 million barrels of oil in place. This reservoir is characterized as a low-porosity, low-permeability limestone matrix with irregular dolomitized intervals providing a secondary network of higher porosity and permeability, which controls fluid flow throughout the reservoir. The estimated average porosity in this reef is just slightly over 6 percent. As part of this study, the reservoir attributes identified at the Charlton 30/31 reef were extended to the entire Northern Reef Trend in order to determine its CO2 sequestration capacity. Additionally, the potential oil recovery has been estimated.

138

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

139

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

140

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

142

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

143

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

144

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

145

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

146

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

147

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

148

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

149

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

150

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

151

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

152

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

153

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on The  

NLE Websites -- All DOE Office Websites (Extended Search)

Devonian Woodford Formation of the Permian Basin Devonian Woodford Formation of the Permian Basin The Devonian Woodford Formation of the Permian Basin: Complex Depositional and Temporal Variations Across an Anaerobic Marine Basin Authors: S. C. Ruppel and R. G. Loucks Venue: 2008 American Association of Petroleum Geologists (AAPG) Annual Convention and Exhibition, San Antonio, TX, April 19-24, 2008 “The Geology of Mudrocks”, session chaired by S. C. Ruppel and R. G. Loucks (http://www.aapg.org) Abstract: The Woodford Formation, a key oil and gas source rock in the Permian Basin of Texas and New Mexico, is part of an extensive, platform marginal, organic-rich, mudrock succession that formed along the southern and western margins of Laurussia during the Devonian and Mississippian. Studies of >35 Woodford cores reveal wide variability in facies, organic content, and mineralogy that can be related to age and paleogeographic setting. Woodford facies include silt-rich mudstones (detrital silica), siliceous mudstones (biogenic silica), calcareous mudstones, and claystones. Recent studies show that facies are partitioned between two temporally distinct successions: a Middle Devonian silt- and carbonate-rich section that is irregularly distributed across the basin, and an Upper Devonian siliceous claystone/mudstone section that is widespread and separated from underlying successions by a significant hiatus. All Woodford rocks contain mixtures of illite, kaolinite, chlorite, and mixed layer clays; total clay and chlorite abundance is lowest in distal Upper Devonian rocks. Although silica content is variable, Upper Devonian mudrocks typically contain more abundant biogenic silica, especially in distal parts of the basin, whereas Middle Devonian rocks are dominated by detrital silica. The two successions display consistent differences in depositional facies. The silt-rich Middle Devonian section is cross-laminated, locally graded, and commonly bioturbated. Upper Devonian mudrocks, by contrast, are dominated by fine-scale, parallel laminations and show no evidence of infaunal activity. These rocks also contain common conodonts, radiolarians, spore bodies, and deep-water brachiopods. The data suggest that the lower Woodford was deposited by deep water, turbid flow, whereas the upper Woodford accumulated under more distal, low energy, poorly oxygenated, hemipelagic conditions

154

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

155

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Texas Natural Gas Exports...

156

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

157

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Montana Natural Gas Exports...

158

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Price of Michigan Natural Gas Exports...

159

Alaska Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 9302013 Next Release Date: 10312013 Referring Pages: Underground Base Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Base...

160

Alaska Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

9302013 Next Release Date: 10312013 Referring Pages: Underground Working Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Working...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

162

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Natural Gas Vented and Flared Ohio Natural Gas Gross Withdrawals and Production Natural Gas Vented and Flared...

163

Virginia Natural Gas Gross Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

312013 Next Release Date: 8302013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Virginia Natural Gas Gross Withdrawals and Production Natural Gas Gross...

164

Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Industrial Price ; Texas Natural Gas Prices; Natural Gas Industrial Price

165

Pennsylvania Natural Gas Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Pennsylvania Natural Gas Gross Withdrawals and Production Natural Gas Gross...

166

Virginia Natural Gas Gross Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Virginia Natural Gas Gross Withdrawals and Production Natural Gas Gross...

167

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross Withdrawals and Production Natural Gas Gross...

168

Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 1312014 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Gulf of Mexico Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals...

169

Illinois Natural Gas Gross Withdrawals from Coalbed Wells (Million...  

Annual Energy Outlook 2012 (EIA)

Date: 8302013 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Illinois Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from...

170

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

171

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

172

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

173

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

174

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas prices, successful application of horizontal drilling, and hydraulic fracturing, as well as significant investments made by natural gas companies in production...

175

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service Evolving Estimate in Natural Gas Monthly.

176

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

7, 2009 Next Release: May 14, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 6, 2009) Natural gas...

177

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

178

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

179

Historical Natural Gas Annual  

Annual Energy Outlook 2012 (EIA)

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

180

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Cameron, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million...

182

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and...

183

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price...  

Gasoline and Diesel Fuel Update (EIA)

Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per Thousand Cubic Feet) Golden Pass, TX Natural Gas Liquefied Natural Gas Imports (price) (Dollars per...

184

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Savine Pass, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet)...

185

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million Cubic Feet) Highgate Springs, VT Natural Gas Liquefied Natural Gas Imports from Canada (Million...

186

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

187

South Dakota Natural Gas Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Removed from Natural Gas (Million Cubic Feet) South Dakota Natural Gas Removed from Natural Gas...

188

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

189

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

190

Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

Gas: Gas in place at the time that a reservoir was converted to use as an underground storage reservoir, as in contrast to injected gas volumes. Natural Gas: A gaseous mixture...

191

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

192

EIA - Natural Gas Pipeline Network - Natural Gas Transmission...  

Annual Energy Outlook 2012 (EIA)

Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Transmission Path Natural...

193

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

194

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Release: Thursday, August 26, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 18, 2010) Natural...

195

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

196

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

197

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas futures also reversed gains made in the previous week. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased by 63 Bcf...

198

Natural gas annual 1996  

Science Conference Proceedings (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

199

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

with active programs. More information is available at: http:www.eia.doe.govcneafelectricitypagerestructuringrestructureelect.html. Information about natural gas...

200

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

202

Natural gas monthly  

Science Conference Proceedings (OSTI)

Monthly highlights of activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry are presented. Feature articles for this issue are: Natural Gas Overview for Winter 1983-1984 by Karen A. Kelley; and an Analysis of Natural Gas Sales by John H. Herbert. (PSB)

Not Available

1983-11-01T23:59:59.000Z

203

EIA - Natural Gas Pipeline Network - Natural Gas Transportation...  

Gasoline and Diesel Fuel Update (EIA)

Corridors > Major U.S. Natural Gas Transportation Corridors Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates...

204

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

205

Natural gas sdtrategic plan  

SciTech Connect

The US Department of Energy`s natural gas program is aimed at meeting simultaneously our national energy needs, reducing oil imports, protecting our environment, and improving our economy The Natural Gas Strategic Plan for 1995 represents a Department-wide effort to articulate the key issues related to the expanded development and utilization of natural gas, and defines the roles of the federal government and US industry in partnering to accomplish the strategic goals defined. The four overarching goals of the Natural Gas Strategic Plan are to: foster the development of advanced natural gas technologies; encourage the adoption of advanced natural gas technologies in new and existing markets; support the removal of policy impediments to natural gas use in new and existing markets; and foster technologies and policies to maximize the environmental benefits of natural gas use. DOE`s proposed fiscal year (FY) 1996 budget represents a commitment to natural gas research, development, and demonstration (RD&D) from reservoir to end use. DOE has redirected and increased funding for its natural gas exploration, production, delivery and storage, processing, and utilization RD&D programs, shifting funds from other energy programs to programs that will enhance efficiency and advance the role of natural gas in our domestic energy resources portfolio.

1995-06-01T23:59:59.000Z

206

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

207

5. Natural Gas Liquids Statistics  

U.S. Energy Information Administration (EIA)

5. Natural Gas Liquids Statistics Natural Gas Liquids Proved Reserves U.S. natural gas liquids proved reserves decreased 7 percent to 7,459 million ...

208

,"North Dakota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","North Dakota Natural Gas Exports...

209

Ohio Natural Gas Price Sold to Electric Power Consumers (Dollars ...  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Electric Power Price ; Ohio Natural Gas Prices

210

Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Lower 48 States Natural Gas Liquids Proved...

211

Miscellaneous States Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Miscellaneous Natural Gas Liquids Proved...

212

Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Montana Natural Gas Liquids Proved Reserves...

213

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Florida Natural Gas Liquids Proved Reserves...

214

Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Colorado Natural Gas Liquids Proved Reserves...

215

North Dakota Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 North Dakota Natural Gas Liquids Proved Reserves...

216

West Virginia Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 West Virginia Natural Gas Liquids Proved...

217

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Kansas Natural Gas Liquids Proved Reserves...

218

New Mexico Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 New Mexico Natural Gas Liquids Proved Reserves...

219

New York Natural Gas Liquids Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 New York Natural Gas Liquids Proved Reserves...

220

Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Michigan Natural Gas Liquids Proved Reserves...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Kentucky Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Kentucky Natural Gas Liquids Proved Reserves...

222

Arkansas Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Arkansas Natural Gas Liquids Proved Reserves...

223

Colorado Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Electric Power Price ; Colorado Natural Gas Prices

224

Hess Retail Natural Gas and Elec. Acctg. (Connecticut) | Open...  

Open Energy Info (EERE)

Hess Retail Natural Gas and Elec. Acctg. (Connecticut) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place Connecticut Utility Id 22509 References EIA...

225

Pennsylvania Natural Gas Industrial Price (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

Release Date: 8/30/2013: Next Release Date: 9/30/2013: Referring Pages: Natural Gas Industrial Price ; Pennsylvania Natural Gas Prices

226

Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 10312013 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Michigan Natural Gas Gross Withdrawals and Production Nonhydrocarbon Gases Removed from...

227

Lower 48 States Total Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Total Natural Gas Underground Storage Capacity Lower 48 States Underground Natural Gas Storage Capacity...

228

Texas Natural Gas Price Sold to Electric Power Consumers (Dollars ...  

U.S. Energy Information Administration (EIA)

Release Date: 7/31/2013: Next Release Date: 8/30/2013: Referring Pages: Natural Gas Electric Power Price ; Texas Natural Gas Prices

229

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

230

Alternative Fuels Data Center: Natural Gas Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Tax to Natural Gas Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Tax Natural gas used to propel a motor vehicle is not subject to the state gasoline tax, but is subject to sales and use tax. (Reference Vermont Statutes Title 32, Chapter 233, Section 9741, and Title 23, Chapter 28,

231

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

What is shale gas and why is it important? Shale gas refers to natural gas that is trapped within shale formations.

232

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

233

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

234

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

235

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

236

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

237

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

238

December Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

DOEEIA-0130(9712) Distribution CategoryUC-950 Natural Gas Monthly December 1997 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC...

239

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

to withdraw natural gas from storage to meet current demand. Wellhead Prices Annual Energy Review More Price Data Storage Working gas in storage decreased to 2,406 Bcf as of...

240

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Working gas in storage was 3,121 Bcf as of Friday, Oct 24, 2003, according to the Energy Information Administration (EIA) Weekly Natural Gas Storage Report. This is 2.7...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,451,1,35,17,,,10,3,0,48...

242

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,13889,36,837,1016,,,1129,181,...

243

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,151,-1,1,6,,,0,0,0,36...

244

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,6305,-3,226,165,,,884,391,10,...

245

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,495,-3,48,11,,,113,0,31,60...

246

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,11457,-3,122,171,,,219,21,7,7...

247

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,877,0,37,79,,,93,32,2,62...

248

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIA’s Weekly Natural Gas Storage Report.

249

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIA’s Weekly Natural Gas Storage

250

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

each of the consumption sectors, excluding the industrial sector, according to BENTEK Energy Services, LLC. Moderating temperatures likely contributed to lower natural gas...

251

4. Natural Gas Statistics  

U.S. Energy Information Administration (EIA)

hydraulic fracturing, including shales and low permeability (tight) formations. Total U.S. dry natural gas reserves additions replaced 237 percent of 2007 dry

252

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Report," and the Historical Weekly Storage Estimates Database. Other Market Trends: FERC Investigates Natural Gas Wash-Trading: The Federal Energy Regulatory Commission (FERC)...

253

Natural Gas Monthly  

U.S. Energy Information Administration (EIA)

sector organizations associated with the natural gas industry. Volume and price data are presented each month for ... Tables 1 and 2 ...

254

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

255

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increased to 3,683 billion cubic feet (Bcf) as of Friday, October 15, according to the Energy Information Administrations (EIA) Weekly Natural Gas Storage Report. The West...

256

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

storage facilities. Other Market Trends: EIA Releases Report on Underground Natural Gas Storage Developments: The Energy Information Administration (EIA) released a special...

257

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013"...

258

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

259

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 6","Consumption",11,"Annual",2012,...

260

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

262

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

263

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

264

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

265

,"Illinois Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

266

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",11,"Annual",2012,"6...

267

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2012,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2012,"6301982" ,"Data 4","Consumption",10,"Annual",2012,"6...

268

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

269

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

270

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",11,"Annual",2012,"6...

271

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",10,"Annual",2012,"6...

272

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",8,"Monthly","72013","1151989" ,"Release Date:","9302013" ,"Next Release...

273

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",8,"Monthly","102013","1151989" ,"Release Date:","172014"...

274

Natural Gas Wellhead Prices  

U.S. Energy Information Administration (EIA)

Slide 19 of 27. Price: Wellhead. Natural gas wellhead prices are projected to move up 5 percent this winter, averaging about $2.28 per Mcf during this ...

275

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

of about 50 percent of natural gas production from the Gulf. (See "Other Market Trends" below for details.) Ivan's major impact on prices occurred on Monday, September 13,...

276

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

since July 27, 2004. Prices: Moderate temperatures and a favorable supply situation led to widespread declines in natural gas spot prices in the Lower 48 States since last...

277

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Release: Thursday, November 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 27, 2010) As the...

278

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Next Release: Thursday, May 13, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 5, 2010) Since...

279

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

that have helped reshape the natural gas market, with particular emphasis on policy directives during the past 26 years. The linked files provided on the web site provide...

280

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied (more)

Li, Yun

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

282

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",8,"Annual",2012,"...

283

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",9,"Annual",2012,"...

284

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

285

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301981" ,"Data 5","Consumption",9,"Annual",2012,"6...

286

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

287

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",2,"Annual",1975,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301969" ,"Data 7","Consumption",11,"Annual",2012,"6...

288

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

289

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 5","Underground Storage",4,"Annual",2012,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 7","Consumption",11,"Annual",2012,"6...

290

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",4,"Annual",2012,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",9,"Annual",2012,"6...

291

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 4","Underground Storage",4,"Annual",2012,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 6","Consumption",10,"Annual",2012,"6...

292

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2012,"6301980" ,"Data 5","Consumption",8,"Annual",2012,"6...

293

,"Wyoming Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

294

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

295

,"Nebraska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

296

,"Vermont Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Prices",10,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

297

,"Ohio Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

298

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

299

,"Wisconsin Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

300

,"Maryland Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Michigan Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

302

,"Illinois Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

303

,"Kansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

304

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

305

,"Texas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

306

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

307

,"Minnesota Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

308

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

309

,"Tennessee Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

310

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

311

,"Virginia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

312

,"Oklahoma Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

313

,"Washington Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

314

,"Maine Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

315

,"Louisiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

316

,"Utah Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

317

,"Oregon Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

318

,"Mississippi Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

319

,"Massachusetts Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

320

,"Nevada Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

322

,"Pennsylvania Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

323

,"Kentucky Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

324

,"Montana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

325

,"Idaho Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Prices",12,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

326

,"Missouri Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

327

,"Georgia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

328

,"Indiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

329

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

330

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

331

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

332

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Prices",8,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

333

Natural gas annual 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

334

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2009 Next Release: January 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 14, 2009) In the...

335

,"Iowa Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Iowa Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

336

,"Alabama Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alabama Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

337

,"Georgia Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Georgia Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

338

,"Connecticut Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Connecticut Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

339

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Colorado Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

340

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"California Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"Florida Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Florida Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

342

,"Arkansas Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Arkansas Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

343

,"Arizona Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Arizona Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

344

,"Alaska Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alaska Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

345

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Delaware Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

346

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Hawaii Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

347

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

ends up in Clarington was delivered upstream. El Paso Natural Gas Pipeline issued an Emergency Critical Operating Condition Declaration for February 2 until further notice....

348

International Natural Gas Workshop  

U.S. Energy Information Administration (EIA)

International Natural Gas Workshop U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 and a member of ...

349

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

350

United States Natural Gas Industrial Price (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Industrial Price ; U.S. Natural Gas Prices; Natural Gas Industrial Price

351

EIA - International Energy Outlook 2007 - Natural Gas Section  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2007 Chapter 4 - Natural Gas In the IEO2007 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast...

352

Natural gas monthly  

Science Conference Proceedings (OSTI)

This report presents current data on the consumption, disposition, production, prices, storage, import and export of natural gas in the United States. Also included are operating and financial data for major interstate natural gas pipeline companies plus data on fillings, ceiling prices, and transportation under the Natural Gas Policy Act of 1978. A feature article, entitled Main Line Natural Gas Sales to Industrial Users, 1981, is included. Highlights of this month's publication are: Marketed production of natural gas during 1982 continued its downward trend compared to 1981, with November production of 1511 Bcf compared to 1583 Bcf for November 1981; total natural gas consumption also declined when compared to 1981; as of November 1982, working gas in underground storage was running ahead of a similar period in 1981 by 109 Bcf (3.4 percent); the average wellhead price of natural gas continued to rise in 1982; and applications for determination of maximum lawful prices under the Natural Gas Policy Act (NGPA) showed a decrease from October to November, principally for Section 103 classification wells (new onshore production wells).

Not Available

1983-01-01T23:59:59.000Z

353

EIA - Natural Gas Pipeline Network - Natural Gas Import/Export ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural ... The EIA has determined that the informational map displays here do not raise security ...

354

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

355

Liquefied natural gas. [177 Citations  

SciTech Connect

The bibliography on liquefied natural gas contains 177 citations under the following headings: thermodynamic and other properties of methane; phase equilibria of methane; other properties of methane mixtures; liquefaction, separation, and regasification; peak shaving and terminal storage plants; liquid storage; importation of LNG; ground and sea transportation; liquid pipelines; heat and mass transport; safety; sorption; instrumentation; gas fields and cavern storage; transportation and other applications; general references; economic factors; patents; energy, and SNG.

1978-01-01T23:59:59.000Z

356

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

357

,"Arizona Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"N3050AZ3","N3010AZ3","N3020AZ3","N3035AZ3","NA1570SAZ3","N3045AZ3" "Date","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Price of Arizona Natural Gas...

358

,"Vermont Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

80SVT3","N3050VT3","N3010VT3","N3020VT3","N3035VT3","N3045VT3" "Date","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Vermont Natural Gas Pipeline and...

359

Natural gas industry directory  

SciTech Connect

This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

NONE

1999-11-01T23:59:59.000Z

360

Pennsylvania's Natural Gas Future  

E-Print Network (OSTI)

sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ Fossil backed by a growing portfolio of assets. #12;Shale Gas Geography 5 | MARCELLUS SHALE COALITION #12;Shale Permits Price #12;Pricing Trend of Oil and Gas in the US $- $5.00 $10.00 $15.00 $20.00 $25.00 USDper

Lee, Dongwon

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, June 30, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 22, 2011) Natural gas prices fell slightly at most market locations from Wednesday, June 15 to Wednesday, June 22. The Henry Hub price fell 10 cents from $4.52 per million Btu (MMBtu) last Wednesday to $4.42 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the July 2011 near-month futures contract fell by 26 cents, or about 6 percent, from $4.58 last Wednesday to $4.32 yesterday. Working natural gas in storage rose to 2,354 this week, according to EIA’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

362

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural gas prices rose at most market locations during the week, as consumption increased. The Henry Hub spot price increased 19 cents from $4.14 per million Btu (MMBtu) on Wednesday, April 13 to $4.33 per MMBtu on Wednesday, April 20. Futures prices behaved similar to spot prices; at the New York Mercantile Exchange, the price of the near-month natural gas contract (May 2011) rose from $4.141 per MMBtu to $4.310 per MMBtu. Working natural gas in storage rose to 1,654 billion cubic feet (Bcf) as of Friday, April 15, according to EIA’s Weekly Natural Gas

363

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: September 10, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 2, 2009) Natural gas prices posted significant decreases at both the spot and futures markets since last Wednesday. Spot prices fell at all market locations in the lower 48 States, with decreases ranging between 7 and 68 cents per million Btu (MMBtu). The price at the Henry Hub spot market fell to $2.25 per MMBtu, decreasing by 51 cents or 18 percent. As of yesterday, the price of natural gas at the Henry Hub was the lowest since February 15, 2002, when natural gas at this location traded at $2.18 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas futures

364

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

What Consumers Should Know What Consumers Should Know An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Major Legislative and Regulatory Actions (1935 - 2004) U.S. Natural Gas Imports and Exports: Issues and Trends 2003 U.S. LNG Markets and Uses: June 2004 Natural Gas Restructuring Previous Issues of Natural Gas Weekly Update Natural Gas Homepage EIA's Natural Gas Division Survey Form Comments Overview: Thursday, December 1, 2005 (next release 2:00 p.m. on December 8) Colder-than-normal temperatures contributed to widespread price increases in natural gas spot markets since Wednesday, November 23 as heating demand increased. For the week (Wednesday to Wednesday), the spot price at the Henry Hub gained 59 cents per MMBtu, or about 5 percent, to trade at $11.73 per MMBtu yesterday (November 30). Similarly, at the NYMEX, the price for the futures contract for January delivery at the Henry Hub gained 54 cents since last Wednesday to close yesterday at $12.587 per MMBtu. Natural gas in storage as of Friday, November 25, decreased to 3,225 Bcf, which is 6.3 percent above the 5 year average. The spot price for West Texas Intermediate (WTI) crude oil dropped $1.02 per barrel, or about 2 percent, since last Wednesday to trade yesterday at $57.33 per barrel or $9.88 per MMBtu.

365

Putting downward pressure on natural gas prices: The impact of renewable energy and energy efficiency  

E-Print Network (OSTI)

in delivered natural gas prices. References American CouncilEconomy (ACEEE). 2003. Natural Gas Price Effects of EnergyDownward Pressure on Natural Gas Prices: The Impact of

Wiser, Ryan; Bolinger, Mark; St. Clair, Matthew

2004-01-01T23:59:59.000Z

366

Putting downward pressure on natural gas prices: The impact of renewable energy and energy efficiency  

E-Print Network (OSTI)

in delivered natural gas prices. References American CouncilACEEE). 2003. Natural Gas Price Effects of Energy EfficiencyPressure on Natural Gas Prices: The Impact of Renewable

Wiser, Ryan; Bolinger, Mark; St. Clair, Matthew

2004-01-01T23:59:59.000Z

367

Analysis of Restricted Natural Gas Supply Cases  

Reports and Publications (EIA)

The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

James Kendell

2004-03-01T23:59:59.000Z

368

Easing the Natural Gas Crisis: Reducing Natural Gas Prices through  

E-Print Network (OSTI)

LBNL-56756 Easing the Natural Gas Crisis: Reducing Natural Gas Prices through Increased Deployment the Natural Gas Crisis: Reducing Natural Gas Prices through Increased Deployment of Renewable Energy-AC03-76SF00098. #12;#12;Easing the Natural Gas Crisis Acknowledgments The work described in this report

369

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas spot prices generally declined this report week (June 17-24), with the largest decreases generally occurring in the western half of the country. During the report week, the Henry Hub spot price decreased by $0.19 per million Btu (MMBtu) to $3.80. At the New York Mercantile Exchange (NYMEX), futures prices for natural gas decreased as prices for most energy products fell amid concerns over the economy. The natural gas futures contract for July delivery decreased by 49 cents per MMBtu on the week to $3.761. Working gas in underground storage as of last Friday, June 19, is

370

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

371

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

372

Renewable Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

373

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

374

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview: Monday, June 04, 2001 Stock builds slowed from their recent pace, even though spot prices continued their downward trend to end the week at the Henry Hub at $3.71 per MMBtu, which is a Friday-to-Friday decline of $0.14 per MMBtu. The NYMEX contract price for June delivery at the Henry Hub settled Tuesday at $3.738, the lowest close-out of a near month contract since the May 2000 contract. The July contract price was $3.930 per MMBtu on Friday, $0.103 lower than a week earlier. Mild weather in the Northeast and Midwest continued to suppress prices on the Eastern Seaboard, while a short burst of warm temperatures in southern California early in the week had the opposite effect on prices in that region. (See Temperature Map) (See Deviation from Normal Temperatures Map) Net injections to storage for the week ended Friday, May 25 were 99 Bcf, breaking a 4-week string of 100-plus net injections.

375

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

376

A3. Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Natural Gas Processed and Liquids Extracted at Natural Gas Processing Plants by State, 1996 Table Plant Location Volume of Natural Gas Delivered to Processing Plants a (million cubic feet) Total Liquids Extracted b (thousand barrels) Extraction Loss (million cubic feet) State Production Out of State Production Natural Gas Processed Alabama..................................... 111,656 1,212 112,868 4,009 5,361 Alaska ........................................ 2,987,364 0 2,987,364 33,346 38,453 Arkansas.................................... 214,868 4,609 219,477 383 479 California.................................... 240,566 0 240,566 9,798 12,169 Colorado .................................... 493,748 215 493,963 16,735 23,362 Florida........................................ 5,900 2,614 8,514 1,630 1,649 Illinois.........................................

377

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

378

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, March 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 9, 2011) Natural gas spot prices remained soft at nearly all domestic pricing points. The Henry Hub price rose an insignificant 2 cents per million Btu (MMBtu) (0.5 percent) for the week ending March 9, to $3.81 per MMBtu. Working natural gas in storage fell to 1,674 billion cubic feet (Bcf) as of Friday, March 4, according to the Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 71 Bcf, with storage volumes positioned 32 Bcf above year-ago levels. At the New York Mercantile Exchange (NYMEX), the April 2011 natural

379

EIA - 2010 International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2010 Natural Gas In the IEO2010 Reference case, natural gas consumption in non-OECD countries grows about three times as fast as in OECD countries. Non-OECD production increases account for 89 percent of the growth in world production from 2007 to 2035. Figure 36. World natural gas consumption 2007-2035. Click to enlarge » Figure source and data excel logo Figure 37. Change in World natural gas production by region, 2007-2035. Click to enlarge » Figure source and data excel logo Figure 38. Natural gas consumption in North America by country, 2007-2035 Click to enlarge » Figure source and data excel logo Figure 39. Natural gas consumption in OECD Europe by end-use sector 2007-2035. Click to enlarge » Figure source and data excel logo

380

International Energy Outlook 2006 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2006 Chapter 4: Natural Gas Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Figure 34. World Natural Gas Consumption by Region, 1990-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. World Natural Gas Consumption by End-Use Sector, 2003-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

382

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Annual Energy Outlook 2012 (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

383

Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from...  

Annual Energy Outlook 2012 (EIA)

Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Sabine Pass, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

384

Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

385

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, January 27, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 19, 2011) Natural gas prices fell at most market locations across the country, as bitterly cold weather subsided. At the Henry Hub, the natural gas price fell 7 cents from $4.55 per million Btu (MMBtu) on Wednesday, January 12, to $4.48 per MMBtu on Wednesday, January 19. At the New York Mercantile Exchange (NYMEX), the price of the near-month natural gas contract (February 2011) rose slightly, from $4.531 per MMBtu on January 12 to $4.561 yesterday. The spot price of the West Texas Intermediate crude oil fell by $1 over the week, from $91.85 per barrel on January 12 ($15.84 per MMBtu) to

386

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, September 9, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 1, 2010) Since Wednesday, August 25, natural gas spot prices fell at most market locations in the lower 48 States, although prices generally rose in the Northeast and Rocky Mountain areas. The Henry Hub spot price fell on the week from $3.99 per million Btu (MMBtu) to $3.73 per MMBtu, its lowest value since April 1, 2010. At the New York Mercantile Exchange, the October 2010 natural gas futures contract fell about 3 percent from $3.896 per MMBtu to $3.762 per MMBtu. During the report week, the September 2010 natural gas futures contract expired at $3.651, having lost about $1.176 per MMBtu during its

387

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, March 10, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 2, 2011) Natural gas prices showed continued relative weakness during the report week. The spot price at the Henry Hub fell from $3.83 per million Btu (MMBtu) on February 23 to $3.79 per MMBtu on March 2. At the New York Mercantile Exchange (NYMEX), the March 2011 futures contract expired at $3.793 per MMBtu, having declined about 12 percent during its tenure as the near-month contract. Working natural gas in storage fell to 1,745 Bcf as of Friday, February 25, according to EIA’s Weekly Natural Gas Storage Report. The spot price of the West Texas Intermediate (WTI) crude oil

388

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, April 15, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 7, 2010) Since Wednesday, March 31, natural gas spot prices climbed at most market locations across the lower 48 States, with increases of as much as 8 percent. The Henry Hub natural gas spot price rose $0.15, or about 4 percent, to $4.08 per million Btu (MMBtu), in a week of trading shortened by the Good Friday holiday on April 2. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday, April 7, at $4.02 per MMBtu, rising by $0.15 or about 4 percent since the previous Wednesday. Natural gas in storage was 1,669 billion cubic feet (Bcf) as of

389

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, September 29, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 21, 2011) Natural gas spot prices declined at most market locations across the United States, as moderate temperatures led to declines in demand. Prices at the Henry Hub fell from $4.01 per MMBtu last Wednesday, September 14, to $3.78 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month futures contract (October 2011) dropped from $4.039 per MMBtu last Wednesday to $3.73 per MMBtu yesterday. Working natural gas in storage rose to 3,201 billion cubic feet (Bcf) as of Friday, September 16, according to EIA’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

390

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

cents per MMBtu. Heading into the Memorial Day holiday weekend on Friday, May 25, natural gas spot prices declined at virtually all market locations in the Lower 48 States, as mild...

391

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

At the NYMEX futures market, the settlement price for November delivery of natural gas moved up most days before dropping by almost 0.19 per MMBtu on Friday to end the week...

392

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

States, natural gas spot prices have increased since Wednesday, February 25, at most market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the...

393

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, August 18, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, August 10, 2011) Natural gas prices fell across the board this week, likely in response to cooling temperatures as well as weak economic news. The Henry Hub spot price fell 17 cents from $4.26 per million Btu (MMBtu) last Wednesday, August 3, to $4.09 per MMBtu yesterday, August 10. At the New York Mercantile Exchange, the price of the near-month contract (September 2011) fell by $0.087 per MMBtu, from $4.090 last Wednesday to $4.003 yesterday. Working natural gas in storage was 2,783 Bcf as of Friday, August 5, according to EIA’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

394

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, February 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 26, 2011) Natural gas spot prices were soft at all domestic pricing points. The Henry Hub price fell 8 cents per million Btu (MMBtu) (about 1.7 percent) for the week ending January 26, to $4.40 per MMBtu. The West Texas Intermediate crude oil spot price settled at $86.15 per barrel ($14.85 per MMBtu), on Wednesday, January 26. This represents a decrease of $4.70 per barrel, or $0.81 per MMBtu, from the previous Wednesday. Working natural gas in storage fell to 2,542 billion cubic feet (Bcf) as of Friday, January 21, according to the Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The

395

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, June 16, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 8, 2011) Natural gas prices rose on the week across the board, with somewhat moderate increases in most areas and steep increases in the Northeast United States. The Henry Hub spot price rose 20 cents on the week from $4.63 per million Btu (MMBtu) last Wednesday, June 1, to $4.83 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month (July 2011) contract rose about 5 percent, from $4.692 last Wednesday to $4.847 yesterday. Working natural gas in storage rose to 2,187 billion cubic feet (Bcf) as of Friday, June 3, according to EIA’s Weekly Natural Gas Storage

396

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: Friday, November 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 4, 2009) Natural gas spot prices fell over the week at most market locations, declining on average 16 cents per million Btu (MMBtu). Decreases ranged between 2 cents and 77 cents per MMBtu. In the few trading locations where prices rose, increases were modest, ranging between 1 and 4 cents per MMBtu. The Henry Hub natural gas spot price fell 10 cents on the week, closing at $4.49 per MMBtu. At the New York Mercantile Exchange (NYMEX), the December 2009 natural gas contract fell 34 cents per MMBtu, or 7 percent. The November contract expired on Wednesday, October 28, at $4.289 per MMBtu.

397

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 at 2:00 P.M. 0, 2009 at 2:00 P.M. Next Release: September 17, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 9, 2009) Natural gas prices posted significant increases at all market locations since last Wednesday, September 2. The Henry Hub spot price increased 47 cents from the previous Wednesday's price of $2.25 per MMBtu. However, intraweek trading was volatile, with natural gas prices falling below $2 per million Btu (MMBtu) at the Henry Hub on Friday, September 4 and rising to $2.72 per MMBtu yesterday. At the New York Mercantile Exchange (NYMEX), the price of the near-month natural gas contract for delivery in October 2009 rose by 11.4 cents to $2.829 per MMBtu, an increase of about 4 percent from the previous

398

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, July 28, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 20, 2011) Responding to extremely hot weather this week, natural gas prices moved up at market locations across the lower 48 States. The spot price at the Henry Hub increased 21 cents from $4.43 per million Btu (MMBtu) last Wednesday, July 13, to $4.64 per MMBtu yesterday, July 20. At the New York Mercantile Exchange, the price of the near-month futures contract (August 2011) increased from $4.403 per MMBtu to $4.500 per MMBtu. Working natural gas in storage rose to 2,671 billion cubic feet (Bcf) as of Friday, July 15, according to EIA’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

399

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2010 at 2:00 P.M. 3, 2010 at 2:00 P.M. Next Release: Thursday, June 10, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 2, 2010) Since Wednesday, May 26, natural gas spot prices increased across the lower 48 States, with gains of up to $0.18 per million Btu (MMBtu), at most market locations. The Henry Hub natural gas spot price rose $0.13 per MMBtu, or about 3 percent, averaging $4.32 per MMBtu in trading yesterday, June 2. At the New York Mercantile Exchange (NYMEX), the futures contract for July delivery at the Henry Hub settled yesterday at $4.42 per MMBtu, climbing by $0.25 or about 6 percent since the previous Wednesday. Natural gas in storage was 2,357 billion cubic feet (Bcf) as of May

400

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2011 at 2:00 P.M. 8, 2011 at 2:00 P.M. Next Release: Thursday, May 5, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 27, 2011) Mild temperatures coupled with continued strong domestic production resulted in natural gas cash market prices dropping modestly at nearly all domestic pricing points over the week. The lone exception was the Henry Hub price which rose a token 2 cents per million Btu (MMBtu) (0.5 percent) to $4.35 per MMBtu on April 27. Working natural gas in storage rose to 1,685 billion cubic feet (Bcf) as of Friday, April 22, according to the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 31 Bcf, with storage volumes positioned

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2008 , 2008 Next Release: October 9, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 24 to Wednesday, October 1) Natural gas spot prices fell at most market locations in the Lower 48 States this report week, as seasonably moderate temperatures minimized natural gas demand in many areas of the country. The return of some Gulf of Mexico supplies during the week provided further downward pressure on spot prices. As of yesterday, October 1, the Minerals Management Service (MMS) reported that 3.5 billion cubic feet (Bcf) per day of natural gas production remains shut-in, 16 percent lower than the 4.2 Bcf per day reported 1 week earlier. The Henry Hub spot price fell in the first three trading sessions of

402

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 at 2:00 P.M. 1 at 2:00 P.M. Next Release: Thursday, November 17, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 9, 2011) Continuing its recent trend of languishing below the $4 per million Btu (MMBtu) mark, the Henry Hub natural gas spot price oscillated this week, and posted an overall net increase of 16 cents, from $3.39 per MMBtu last Wednesday, November 2, to $3.55 per MMBtu yesterday, November 9. At the New York Mercantile Exchange, the price of the near-month (December 2011) natural gas futures contract fell from $3.749 per MMBtu last Wednesday to $3.652 per MMBtu yesterday. Working natural gas in storage rose to 3,831 billion cubic feet (Bcf) as of Friday, November 4, according to EIA’s Weekly Natural Gas

403

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Crude Oil Spot Price, and Henry Hub Natural Gas Spot Price Graph More Summary Data Prices A major weather front entered the Midwest and the East this week, leading to...

404

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Henry Hub increased a moderate 0.023 per MMBtu for the week to 3.877. Natural gas in storage decreased to 3,097 Bcf, which exceeds the 5-year average by 2.4 percent. A general...

405

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

MMBtu lower than the final price of the November 2009 contract. Wellhead Prices Annual Energy Review More Price Data Storage As of Friday, September 24, working natural gas in...

406

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

were more moderate than the price increases for this summer. Wellhead Prices Annual Energy Review More Price Data Storage Working natural gas in storage increased to 2,456...

407

Florida Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Citygate Price: 4.79: 4.68: 4.54: 4.47: 4.26: 4.33: 1989-2013: ...

408

Michigan Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... History; Citygate Price: 4.74: 4.99: 4.52: 4.48: 4.13: NA: ...

409

Georgia Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices ... History; Imports Price: 6.79: 9.71: 3.73: 4.39: 4.20: 2.78: 1999-2012: Pipeline and Distribution Use Price : 1967-2005: ...

410

Maine Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Citygate Price: 6.72: 8.18: 11.03: NA: NA: 7.19: 1989-2013: ...

411

Michigan Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Wellhead Price: NA: 5.63: 3.92: 3.79 : 1967-2010: Imports Price: ...

412

Pennsylvania Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) ... History; Citygate Price: 6.14: 7.58: 8.34: 7.51: 7.39: 6.16: 1989-2013: ...

413

Alabama Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... History; Citygate Price: 4.81: 5.12: 5.31: 4.92: 4.64: NA: ...

414

Natural Gas Production,  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Production, Transmission, and Consumption by State, 1996 (Million Cubic Feet) Table Alabama ... 530,841 5,361 -35,808 -163,227 0 921 18 325,542...

415

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050MN3","N3010MN3","N3020MN3","N3035MN3","N3045MN3" "Date","Natural Gas Citygate Price in Minnesota (Dollars per Thousand Cubic Feet)","Minnesota...

416

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050CA3","N3010CA3","N3020CA3","N3035CA3","N3045CA3" "Date","Natural Gas Citygate Price in California (Dollars per Thousand Cubic Feet)","California Price...

417

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050TN3","N3010TN3","N3020TN3","N3035TN3","N3045TN3" "Date","Natural Gas Citygate Price in Tennessee (Dollars per Thousand Cubic Feet)","Tennessee Price...

418

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050PA3","N3010PA3","N3020PA3","N3035PA3","N3045PA3" "Date","Natural Gas Citygate Price in Pennsylvania (Dollars per Thousand Cubic Feet)","Pennsylvania...

419

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050LA3","N3010LA3","N3020LA3","N3035LA3","N3045LA3" "Date","Natural Gas Citygate Price in Louisiana (Dollars per Thousand Cubic Feet)","Louisiana Price...

420

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

(July 24) to settle at 3.042 per MMBtu, more than 20 cents greater than last Wednesday's price. Natural gas in storage increased to 2,486 Bcf, which exceeds the 5-year average by...

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increased to 2,260 Bcf for the week, which is 19.5 percent above the 5-year average inventory at this time of the year, according to EIA's Weekly Natural Gas Storage Report. The...

422

Natural Gas Annual 2005  

Annual Energy Outlook 2012 (EIA)

historical data back to 1997) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. Natural Gas Annual --- Full report in PDF (5 MB)...

423

Natural Gas Annual, 1996  

Annual Energy Outlook 2012 (EIA)

"Annual Report of Natural and Supplemental Gas Supply and Disposition". 2. The EIA-176 Query System. This system provides a method of extracting and using the EIA-176 data, and...

424

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

in waters up to 9000 feet deep. Southern Natural Gas Company has scheduled a shut-in test at the Muldon Storage Field in Mississippi for April 5 through April 11. Under the...

425

Natural Gas Imports Price  

U.S. Energy Information Administration (EIA) Indexed Site

Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser U.S. Natural Gas Imports & Exports by State (Dollars per Thousand Cubic Feet) Data Series: Import...

426

Natural Gas Imports (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser U.S. Natural Gas Imports & Exports by State (Million Cubic Feet) Data Series: Import Volume Import...

427

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10, natural gas spot prices increased more than 50 cents per MMBtu at virtually all market locations in the Lower 48 States, with increases exceeding 1 per MMBtu in the...

428

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

12, 2006) Since Wednesday, December 21, natural gas spot prices have decreased at all market locations in the Lower 48 States, with decreases exceeding 3 per MMBtu or about 27...

429

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

increases ranged from 5 to 16 cents at every market location tracked by Natural Gas Intelligence. And even though the storm was fast-moving and short-lived, cash prices for the...

430

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050WI3","N3010WI3","N3020WI3","N3035WI3","N3045WI3" "Date","Natural Gas Citygate Price in Wisconsin (Dollars per Thousand Cubic Feet)","Wisconsin...

431

,"Maine Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Data 2","Imports and Exports",2,"Annual",2012,"6301982" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2012,"6301981" ,"Data 4","Consumption",8,"Annual",2012,"6...

432

EIA - Natural Gas Pipeline Network - Transporting Natural Gas in ...  

U.S. Energy Information Administration (EIA)

8 LNG (liquefied natural gas) import facilities and 100 LNG peaking facilities (see map). Learn more about the natural gas pipeline network:

433

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > U.S ... The EIA has determined that the informational map displays here do not raise security ...

434

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

(Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade...

435

Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Yemen (Dollars per Thousand Cubic Feet) Neptune Deepwater Port Natural Gas Liquefied Natural Gas Imports (price) from Yemen (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

436

AMERICA'S NEW NATURAL GAS  

E-Print Network (OSTI)

, both the Bergius and Fisher-Tropsch synthetic fuel processes build up longer chain hydrocarbons from Fischer and Tropsch, low-temperature catalysts were used to promote hydrogen's reaction with coal gas-to-liquids" (GTL) technology based on the Fischer-Tropsch process converts natural gas to liquid fuels. Essentially

Boufadel, Michel

437

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

E-Print Network (OSTI)

Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Natural Gas Prices . . . . . . . . . . . . . . . . . . . . . . . . . .versus AEO and Henry Hub Natural Gas Prices . . . . . .

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-01-01T23:59:59.000Z

438

International Energy Outlook 2001 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas picture of a printer Printer Friendly Version (PDF) Natural gas is the fastest growing primary energy source in the IEO2001 forecast. The use of natural gas is projected to nearly double between 1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is expected to be the fastest growing component of world energy consumption in the International Energy Outlook 2001 (IEO2001) reference case. Gas use is projected to almost double, to 162 trillion cubic feet in 2020 from 84 trillion cubic feet in 1999 (Figure 38). With an average annual growth rate of 3.2 percent, the share of natural gas in total primary energy consumption is projected to grow to 28 percent from 23 percent. The largest increments in gas use are expected in Central and

439

Shale gas is natural gas trapped inside  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

440

NETL: Oil & Natural Gas Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Oil and Natural Gas Supply > Events Oil and Natural Gas Supply Events The following is a listing of events of interest to the oil and natural gas community....

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs). Dedicated NGVs are designed to run only on natural gas. Bi-fuel NGVs have two...

442

New Gas Standard Reference Materials  

Science Conference Proceedings (OSTI)

... inventories of required gas SRMs that consist of dilute mixtures of key pollutants such as carbon dioxide, carbon monoxide, hydrocarbons, and ...

2012-10-22T23:59:59.000Z

443

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050OH3","N3010OH3","N3020OH3","N3035OH3","N3045OH3" "Date","Natural Gas Citygate Price in Ohio (Dollars per Thousand Cubic Feet)","Ohio Price of Natural...

444

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050UT3","N3010UT3","N3020UT3","N3035UT3","N3045UT3" "Date","Natural Gas Citygate Price in Utah (Dollars per Thousand Cubic Feet)","Utah Price of Natural...

445

Natural Gas 1995: Preliminary Highlights  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1996 1. ... Widespread economic growth ... Growth in electric utility gas con-

446

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: July 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 15, 2009) Natural gas spot prices rose during the week in all trading locations. Price increases ranged between 6 cents and 48 cents per million Btu (MMBtu), with the biggest increases occurring in the Rocky Mountain region. During the report week, the spot price at the Henry Hub increased 15 cents or 5 percent to $3.37 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas near-month contract (August 2009) decreased 7 cents to $3.283 per MMBtu from $3.353 the previous week. During its tenure as the near-month contract, the August 2009 contract has lost 66 cents. As of Friday, July 10, 2009, working gas in storage rose to 2,886

447

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, March 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 24, 2010) Natural gas prices declined across the board, continuing a downward trend from the previous week. The Henry Hub natural gas spot price closed at $4.91 per million Btu (MMBtu) on Wednesday, February 24, a decline of about 10 percent from $5.47 per MMBtu on February 17. At the New York Mercantile Exchange (NYMEX), the futures contract for March 2010 delivery, which expired yesterday, fell 11 percent on the week, from $5.386 per MMBtu to $4.816 per MMBtu. With an implied net withdrawal of 172 billion cubic feet (Bcf), working gas in storage decreased to 1,853 Bcf as of Friday, February 19,

448

Hyrogen Production from Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2003 Hydrogen Coordination Meeting Arthur Hartstein Program Manager Natural Gas and Oil ProcessingHydrogen Introduction * Natural gas is currently the lowest cost...

449

Oil and Natural Gas - Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search NETL Oil and Natural Gas Document Information Oil & Natural Gas Document Repository Results will be shown in two categories. "Document Database Results" provides...

450

Historical Natural Gas Annual 1999  

Gasoline and Diesel Fuel Update (EIA)

1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

451

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14, 2007 (next release 2:00 p.m. on June 21, 2007) 14, 2007 (next release 2:00 p.m. on June 21, 2007) Natural gas spot and futures prices decreased this week (Wednesday-Wednesday, June 6-13) as weather-related demand was limited amid close-to-normal temperatures for this time of year. Easing prices also likely resulted in part from reduced supply uncertainty in response to the amount of natural gas in underground storage (mostly for use during the winter heating season but also available for periods of hot weather in the summer). Supplies from international sources have grown considerably this spring, as imports of liquefied natural gas (LNG) have increased markedly even as natural gas supplies from Canada (transported by pipeline) likely have decreased. On the week, the Henry Hub spot price decreased 23 cents per MMBtu, or 2.9 percent, to $7.60. At the New York Mercantile Exchange (NYMEX), the contract for July delivery decreased 47.2 cents per MMBtu on the week to a daily settlement of $7.608 yesterday (June 13). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,255 Bcf as of Friday, June 8, reflecting an implied net injection of 92 Bcf. This level of working gas in underground storage is 19.3 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.20 per barrel on the week to $66.17 per barrel, or $11.41 per MMBtu.

452

EIA - International Energy Outlook 2009-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2009 Chapter 3 - Natural Gas In the IEO2009 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 80 percent of the growth in world production from 2006 to 2030. Figure 33. World Natural Gas Consumption, 1980-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 34. Natural Gas Consumption in North America by Country and Sector, 2006-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. Natural Gas Consumption in OECD Asia by Country and Sector, 2006 and 2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

453

Prices for Natural Gas | Open Energy Information  

Open Energy Info (EERE)

Prices for Natural Gas Prices for Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Prices for Natural Gas Agency/Company /Organization: Google Sector: Energy Focus Area: Economic Development Resource Type: Software/modeling tools User Interface: Website Website: www.google.com/publicdata/explore?ds=m49d2j928087j_ Country: United States Web Application Link: www.google.com/publicdata/explore?ds=m49d2j928087j_ Cost: Free Northern America Prices for Natural Gas Screenshot References: Public Data Explorer[1] EIA[2] Logo: Prices for Natural Gas Prices for Natural Gas Dollars per Thousand Cubic Feet and Percent in U.S. Total Represented by the Price. Overview A graphing tool that displays prices for natural gas dollars per thousand cubic feet and percent in U.S. Total represented by the price, using data

454

EIA - International Energy Outlook 2008-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2008 Chapter 3 - Natural Gas In the IEO2008 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 90 percent of the growth in world production from 2005 to 2030. Figure 35. World Natural Gas Consumption, 1980-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Natural Gas Consumption in North America by Country, 2005-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 37. Natural Gas Consumption in OECD Europe, 2005-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

455

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

456

Coalbed Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

457

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Prices headed up the middle of last week despite seasonal or cooler temperatures everywhere but California (See Temperature Map) (See Deviation from Normal Temperatures Map) and the July 4th holiday, regarded as one of the lowest natural gas consumption days. As expected, the resulting 10-cent-per-MMBtu gain at the Henry Hub on Thursday compared with the previous Friday was undone the following day. The futures price for August delivery was able to stay ahead of the previous week by 12.2 cents to settle at $3.218 on Friday. Spot natural gas prices for large packages in southern California increased as much as $2.71 per MMBtu as temperatures soared and gas-fired power plants endeavored to meet air conditioning demand. Prices started to recede as temperatures abated by the end of the week. Strong gas supplies across the country supported another hefty net addition to storage of 105 Bcf.

458

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

459

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2010 at 2:00 P.M. , 2010 at 2:00 P.M. Next Release: Thursday, July 8, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 30, 2010) Since Wednesday, June 23, natural gas spot prices decreased across the lower 48 States, with declines of as much as $0.68 per million Btu (MMBtu). The Henry Hub natural gas spot price fell $0.37, or about 7 percent, averaging $4.53 per MMBtu in trading yesterday, June 30. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery at the Henry Hub settled yesterday at $4.616 per MMBtu, climbing by $0.24 or about 5 percent since the previous Wednesday. The futures contract for July delivery at the Henry Hub expired in trading on Monday, June 28, at $4.717 per MMBtu, climbing $0.39 per MMBtu during its

460

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2008 2, 2008 Next Release: May 29, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, May 14, natural gas spot prices decreased at most markets in the Lower 48 States. However, a price rally yesterday (May 21) contributed to price increases at some market locations since last Wednesday, May 14. Prices at the Henry Hub fell 11 cents per million Btu (MMBtu), or about 1 percent, to $11.40 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub settled yesterday at $11.64 per MMBtu, rising 4 cents or less than 1 percent since Wednesday, May 14. Natural gas in storage was 1,614 billion cubic feet (Bcf) as of May 16, which is slightly below the 5-year average (2003-2007), following an

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas Annual, 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Historical The Natural Gas Annual, 1997 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1997. Summary data are presented for each Census Division and State for 1993 to 1997. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1997 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1997, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

462

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2009 8, 2009 Next Release: January 15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 7, 2009) Since Wednesday, December 31, natural gas spot prices increased at most markets in the Lower 48 States except in the Northeast region. Prices at the Henry Hub rose 26 cents per million Btu (MMBtu) or about 5 percent, to $5.89 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for February delivery at the Henry Hub settled yesterday (January 7) at $5.872 per MMBtu, climbing 22 cents per MMBtu or about 4 percent since last Wednesday, December 31. Natural gas in storage was 2,830 billion cubic feet (Bcf) as of January 2, which is about 3 percent above the 5-year average (2004-2008),

463

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 9, 2009 Next Release: April 16, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 8, 2009) Since Wednesday, April 1, natural gas spot prices declined at most market locations in the Lower 48 States, with decreases ranging up to 40 cents per million Btu (MMBtu). Prices at the Henry Hub fell by 6 cents per MMBtu, or about 2 percent, to $3.50. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday, April 8, at $3.63 per MMBtu, declining by 7 cents or about 2 percent during the report week. Natural gas in storage was 1,674 billion cubic feet (Bcf) as of April 3, which is about 23 percent above the 5-year average (2004-2008),

464

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2010 at 2:00 P.M. 7, 2010 at 2:00 P.M. Next Release: Thursday, January 14, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 6, 2010) Since Wednesday, December 30, natural gas spot prices rose at nearly all market locations in the lower 48 States, with increases of more than 10 percent on the week. Prices at the Henry Hub climbed $0.68 per MMBtu, or about 12 percent, to $6.47 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for February delivery at the Henry Hub settled yesterday, January 6, at $6.01 per MMBtu. The price of the near-month contract increased by 30 cents or about 5 percent during the report week. Natural gas in storage was 3,123 billion cubic feet (Bcf) as of

465

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: Thursday, December 10, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 2, 2009) Natural gas spot prices soared this week, following significant, albeit smaller decreases in trading the prior week. Spot prices rose at nearly all market locations in the lower 48 States by more than a dollar per million Btu (MMBtu). The only exception occurred at the Leidy location in the Northeast, which rose by 84 cents per MMBtu. The Henry Hub spot price ended the report week at $4.67 per MMBtu, $1.35 per MMBtu higher than last Wednesday. Trading at the Henry Hub ended yesterday’s session 14 cents higher than the January 2010 contract. At the New York Mercantile Exchange (NYMEX), the natural gas futures

466

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2009 at 2:00 P.M. 8, 2009 at 2:00 P.M. Next Release: October 15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 7, 2009) Since last Wednesday, September 30, natural gas prices rose across the board, with increases ranging between 37 cents and $1.32 per million Btu (MMBtu). Natural gas prices oscillated by large amounts at most market locations across the United States. The Henry Hub began the report week at $3.24 per MMBtu, fell to $2.32 on October 2, and ended trading yesterday at $3.70 per MMBtu. At the New York Mercantile Exchange (NYMEX), the near-month contract for November ended the week at $4.904 per MMBtu, a slight increase from the previous week’s value of $4.841 per MMBtu.

467

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 3, 2009 Next Release: April 30, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 22, 2009) Since Wednesday, April 15, natural gas spot prices fell at most market locations in the Lower 48 States. Prices traded yesterday at or below $4 per million Btu (MMBtu) at all market locations. The Henry Hub spot market price fell by 12 cents, or 3 percent, over the week to $3.48 per MMBtu yesterday. The price for the May contract on the New York Mercantile Exchange (NYMEX) fell by 4 percent to $3.532 per MMBtu, from $3.693. Natural gas in storage was 1,741 Bcf as of Friday, April 17, following a 46 Bcf injection. Inventories are now 23 percent higher than the 5-year average and 36 percent higher than the level 1 year ago.

468

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2009 at 2:00 P.M. 2, 2009 at 2:00 P.M. Next Release: October 29, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 21, 2009) Since Wednesday, October 14, natural gas spot prices increased at all market locations in the lower 48 States, with price hikes generally ranging between $0.31 and $1.14 per million Btu (MMBtu). Prices at the Henry Hub climbed 98 cents per MMBtu, or about 26 percent, to $4.80 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday, October 21, at $5.10 per MMBtu, increasing by 66 cents or about 15 percent during the report week. Natural gas in storage was a record-setting 3,734 billion cubic feet

469

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 at 2:00 P.M. 9, 2009 at 2:00 P.M. Next Release: Thursday, December 3, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 18, 2009) Since Wednesday, November 11, natural gas spot prices rose at nearly all market locations in the lower 48 States, with increases of up to 55 cents per million Btu (MMBtu). Prices at the Henry Hub climbed $0.15 per MMBtu, or about 4 percent, to $3.74 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for December delivery at the Henry Hub settled yesterday, November 18, at $4.254 per MMBtu. The price of the near-month contract decreased by 25 cents or about 6 percent during the report week. Natural gas in storage was a record-setting 3,833 billion cubic feet

470

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, June 9, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 1, 2011) The past week was marked by two distinct trading markets — “before” and “after” the Memorial Day holiday. Cash markets were listless going into the holiday weekend but escalated Tuesday following an early heat wave that drifted into the East. The Henry Hub price advanced 27 cents per million Btu (MMBtu) for the week (6.2 percent) to close at $4.63 per MMBtu on June 1. Just prior to the heat wave, working natural gas in storage last week rose to 2,107 billion cubic feet (Bcf) as of Friday, May 27, according to the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas

471

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Thursday, October 21, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 13, 2010) Natural gas spot prices posted gains at most markets across the lower 48 States since Wednesday, October 6, accompanied by double-digit increases in trading since the holiday weekend. Price increases on the week ranged up to 25 cents per million Btu (MMBtu), with the Henry Hub natural gas spot price increasing $0.02 per MMBtu since last Wednesday, averaging $3.58 per MMBtu in trading yesterday, October 13. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday at $3.696 per MMBtu, falling by $0.169, or about 4 percent, since the previous Wednesday.

472

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0 at 2:00 P.M. 0 at 2:00 P.M. Next Release: Thursday, November 18, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Tuesday, November 9, 2010) Since Wednesday, November 3, natural gas spot prices rose across the lower 48 States, increasing between $0.25 and $1.12 per million Btu (MMBtu). Prices at the Henry Hub rose $0.41 per MMBtu since last Wednesday, averaging $3.76 per MMBtu in trading yesterday, November 9. At the New York Mercantile Exchange (NYMEX), the futures contract for December delivery at the Henry Hub settled yesterday at $4.21 per MMBtu, climbing by $0.37, or about 10 percent, since the previous Wednesday. Natural gas in storage totaled 3,840 billion cubic feet (Bcf) as of November 5, about 10 percent above the 5-year (2005-2009) average, and

473

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2010 at 2:00 P.M. 6, 2010 at 2:00 P.M. Next Release: Thursday, September 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 25, 2010) Since Wednesday, August 18, natural gas spot prices fell at most markets across the lower 48 States. Although a majority of markets posted declines of as much as $1.36 per million Btu (MMBtu), selected western market locations posted relatively narrow gains on the week. The Henry Hub natural gas spot price fell $0.36 per MMBtu, or about 8 percent, averaging $3.99 per MMBtu in trading yesterday, August 25, falling below $4 per MMBtu for the first time since May 7. At the New York Mercantile Exchange (NYMEX), the futures contract for September delivery at the Henry Hub settled yesterday at $3.871 per

474

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

20, 2011 at 2:00 P.M. 20, 2011 at 2:00 P.M. Next Release: Thursday, October 27, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 19, 2011) Natural gas prices posted modest net gains at most market locations across the lower 48 States. The Henry Hub spot price increased from $3.54 per million Btu (MMBtu) last Wednesday, October 12, to $3.58 per MMBtu yesterday, October 19. Intra-week trading showed strong rallies followed by quick retreats. At the New York Mercantile Exchange, the price of the near-month futures contract (November 2011) gained about 10 cents on the week from $3.489 per MMBtu last Wednesday to $3.586 per MMBtu yesterday. Working natural gas in storage rose to 3,624 billion cubic feet (Bcf) as of Friday, October 14, according to EIA’s Weekly Natural Gas

475

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16, 2009 16, 2009 Next Release: April 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 15, 2009) Since Wednesday, April 8, natural gas spot prices increased at most market locations in the Lower 48 States, with some exceptions including those in the Northeast, Midwest, and Midcontinent. Despite this week’s upticks at most locations, natural gas spot prices remain at relatively low levels and have continued to trade within a limited range for the past 4 weeks. The Henry Hub spot market prices gained about 10 cents or 2.9 percent per million Btu (MMBtu), ending trading yesterday at $3.60 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday (April 15) at $3.693

476

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2008 5, 2008 Next Release: October 2, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 17, to Wednesday, September 24) Since Wednesday, September 17, natural gas spot prices increased at nearly all markets in the Lower 48 States, with prices rising as much as $2.02 per MMBtu but climbing less than $1 per million Btu (MMBtu) at most locations. Prices at the Henry Hub rose 33 cents per MMBtu or about 4 percent, to $8.15 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for October delivery at the Henry Hub settled yesterday (September 24) at $7.679 per MMBtu, declining 23 cents per MMBtu or about 3 percent since last Wednesday, September 17. Natural gas in storage was 3,023 billion cubic feet (Bcf) as of

477

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2009 at 2:00 P.M. 4, 2009 at 2:00 P.M. Next Release: October 1, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 23, 2009) Natural gas prices posted across-the-board increases at both the spot and futures markets since last Wednesday. Spot prices rose at almost all market locations in the lower 48 States, with increases ranging between 2 and 23 cents per million Btu (MMBtu). The price at the Henry Hub spot market rose to $3.43 per MMBtu, increasing by 15 cents or about 5 percent. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for October delivery increased by 10 cents to $3.860 per MMBtu. The November contract also posted gains this week, albeit much smaller at 4

478

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2009 4, 2009 Next Release: May 21, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 13, 2009) Since Wednesday, May 6, natural gas spot prices rose at most market locations in the Lower 48 States, with increases ranging between 49 and 95 cents per million Btu (MMBtu). Prices at the Henry Hub climbed by 75 cents per MMBtu, or about 20 percent, to $4.42 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub settled yesterday, May 13, at $4.333 per MMBtu, increasing by 45 cents or about 11 percent during the report week. Natural gas in storage was 2,013 billion cubic feet (Bcf) as of May 8, which is about 23 percent above the 5-year average (2004-2008),

479

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Overview - May 21, 2001 Somewhat warmer temperatures early in the week, especially in the South, provided a lift to natural gas spot and futures prices. (See Temperature Map) (See Deviation from Normal Temperatures Map) However, a report of another large stock build and a revised forecast for normal to below-normal temperatures over a larger area of the country turned the week's gains into losses. On a week-to-week basis, the spot price of natural gas at the Henry Hub dropped $0.10 to end Friday, May 18 at $4.15 per MMBtu, while the NYMEX price of natural gas for June delivery at the Henry Hub declined $0.013 to $4.291 per MMBtu. At 119 Bcf, net injections to storage for the week ended May 11, 2001, were the highest value for the 8-year period of weekly AGA data.

480

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2008 4, 2008 Next Release: August 21, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, August 6, to Wednesday, August 13) Since Wednesday, August 6, natural gas spot prices decreased at all markets in the Lower 48 States, with prices falling between $0.20 and 0.77 per million Btu (MMBtu) at most locations. Prices at the Henry Hub fell $0.59 per MMBtu or about 7 percent, to $8.11 per MMBtu—its lowest level since February 8, 2008. At the New York Mercantile Exchange (NYMEX), the futures contract for September delivery at the Henry Hub settled yesterday (August 12) at $8.456 per MMBtu, declining $0.31 or about 4 percent since Wednesday, August 6. Natural gas in storage was 2,567 billion cubic feet (Bcf) as of

Note: This page contains sample records for the topic "natural gas reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2010 at 2:00 P.M. 3, 2010 at 2:00 P.M. Next Release: Thursday, May 20, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 12, 2010) Natural gas spot prices increased at nearly all market locations in the lower 48 States, with price hikes ranging between 6 and 30 cents per million Btu (MMBtu). The Henry Hub spot price ended the report week yesterday, May 12, at $4.18 per MMBtu, 18 cents higher than the preceding week. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub ended trading yesterday at $4.284 per MMBtu, increasing by 29 cents or about 7 percent during the report week. Natural gas in storage increased to 2,089 billion cubic feet (Bcf)

482

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2010 at 2:00 P.M. , 2010 at 2:00 P.M. Next Release: Thursday, April 8, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 31, 2010) Natural gas spot prices fell almost across the board, as mild weather moved into most areas in the lower 48 States. The Henry Hub price fell by 9 cents, from $4.02 per million Btu (MMBtu) on Wednesday, March 24, to $3.93 per MMBtu yesterday (March 31). At the New York Mercantile Exchange (NYMEX), the April 2010 contract expired on Monday, March 29, at $3.842 per MMBtu. The May 2010 contract ended trading yesterday at $3.869 per MMBtu, a decline of about 29 cents from its closing price of $4.154 per MMBtu on March 24. Inventories of working natural gas in storage rose to 1,638 billion

483

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, July 7, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 29, 2011) Nearly all pricing points were down slightly for the week on light weather load despite an end-week rally anticipating warmer weather for the approaching July 4th holiday weekend. The Henry Hub price decreased 2 cents per million Btu (MMBtu) over the week (0.5 percent) to close at $4.40 per MMBtu on June 29. Working natural gas in storage rose last week to 2,432 billion cubic feet (Bcf) as of Friday, June 24, according to the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 78 Bcf, leaving storage volumes

484

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, September 22, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 14, 2011) A touch of autumn in the air combined with hopes for the eventual return of winter was likely the catalyst enabling natural gas prices to recapture the $4 mark this week despite an environment of negative consumption fundamentals and continued strong production. At the New York Mercantile Exchange (NYMEX), the October 2011 natural gas contract advanced 9.9 cents per million Btu (MMBtu) to close at $4.039 per MMBtu over the week. The Henry Hub price oscillated in a similar but narrow range before closing up 5 cents for the week at $4.01 per MMBtu on September 14. Working natural gas in storage rose last week to 3,112 billion cubic

485

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2009 1, 2009 Next Release: May 28, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 20, 2009) Natural gas prices at most trading locations fell on the week because of mild weather as well as continued weakness in the economy. Declines ranged between 37 cents at the Dracut trading area in the Northeast to 90 cents at the El Paso non-Bondad area in the Rocky Mountains. The Henry Hub spot price fell by 67 cents during the week to $3.75 per million Btu (MMBtu). Moving in the opposite direction of natural gas prices, the price of the West Texas Intermediate (WTI) crude oil contract rose on the week to $61.45 per barrel, or $10.59 per MMBtu. Oil prices are now at their highest level since November 10, 2008, having more than doubled since falling to a

486

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2010 at 2:00 P.M. 1, 2010 at 2:00 P.M. Next Release: Thursday, March 18, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 10, 2010) Since Wednesday, March 3, natural gas spot prices fell at most market locations across the lower 48 States, with decreases of as much as 11 percent. Prices at the Henry Hub declined $0.32, or about 7 percent, to $4.44 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery at the Henry Hub settled yesterday, March 10, at $4.56 per MMBtu, falling by $0.20 or about 4 percent since the previous Wednesday. Natural gas in storage was 1,626 billion cubic feet (Bcf) as of March 5, about 1 percent above the 5-year average (2005-2009). The implied

487

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2010 at 2:00 P.M. 9, 2010 at 2:00 P.M. Next Release: Thursday, December 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 8, 2010) In response to cold weather across much of the United States, natural gas spot prices increased across the board this report week (December 1 – December 8). Though most increases were less than 50 cents per million Btu (MMBtu), prices at a number of trading points (notably in the Northeast and Florida) increased by several dollars. The Henry Hub spot price rose 25 cents, from $4.21 per MMBtu to $4.46 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price of the natural gas near-month contract (January 2011) also increased, rising from $4.269 per MMBtu on December 1 to $4.606 per MMBtu on December 8.

488

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: October 23, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For week ending Wednesday, October 15) Since Wednesday, October 8, natural gas spot prices increased at most markets in the Lower 48 States outside the California, West Texas, and Arizona/Nevada regions, with prices rising as much as 76 cents per million Btu (MMBtu). Prices at the Henry Hub rose 6 cents per MMBtu or about 1 percent, to $6.64 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday (October 15) at $6.592 per MMBtu, declining 15 cents per MMBtu or about 2 percent since last Wednesday, October 8. Natural gas in storage was 3,277 billion cubic feet (Bcf) as of

489

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, May 26, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 18, 2011) The threat of shut-in production arising from lower Mississippi River flooding likely sent prices up temporarily at nearly all domestic pricing points over the week but the gains failed to stick. The Henry Hub price lost a modest 7 cents per million Btu (MMBtu) (1.9 percent) to close at $4.15 per MMBtu on May 18. Working natural gas in storage rose to 1,919 billion cubic feet (Bcf) as of Friday, May 13, according to the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 92 Bcf, leaving storage volumes

490

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 9, 2009 Next Release: February 26, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 18, 2009) Since Wednesday, February 11, natural gas spot prices declined at virtually all market locations in the Lower 48 States, with decreases ranging between 3 and 78 cents per MMBtu. Prices at the Henry Hub fell 33 cents per million Btu (MMBtu), or about 7 percent, to $4.35 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for March delivery at the Henry Hub settled yesterday (February 18) at $4.214 per MMBtu, declining 32 cents per MMBtu or about 7 percent during the report week. Natural gas in storage was 1,996 billion cubic feet (Bcf) as of February 13, which is about 8.4 percent above the 5-year average

491

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: November 14, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, November 5) Since Wednesday, October 29, natural gas spot prices increased at most markets in the Lower 48 States outside the Midwest, Northeast, and Alabama/Mississippi regions, with gains of up to $1.26 per million Btu (MMBtu) in a week of highly variable prices. Prices at the Henry Hub rose 36 cents per MMBtu or about 5 percent, to $6.94 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for December delivery at the Henry Hub settled yesterday (November 5) at $7.249 per MMBtu, climbing 47 cents per MMBtu or about 7 percent since last Wednesday, October 29. Natural gas in storage was 3,405 billion cubic feet (Bcf) as of

492

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 0, 2009 Next Release: August 6, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 29, 2009) Since Wednesday, July 22, natural gas spot prices fell at most market locations, with decreases of as much as 19 cents per million Btu (MMBtu). Prices at the Henry Hub declined by 8 cents per MMBtu, or about 2 percent, to $3.41 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery at the Henry Hub expired yesterday, July 29, at $3.379 per MMBtu, decreasing by 41 cents or about 11 percent during the report week. Natural gas in storage was 3,023 billion cubic feet (Bcf) as of July 24, which is about 19 percent above the 5-year average (2004-2008),

493

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2008 4, 2008 Next Release: December 11, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, December 3, 2008) Since Wednesday, November 26, natural gas spot prices decreased at most markets in the Lower 48 States, although selected markets posted relatively modest gains on the week. Prices at the Henry Hub rose 5 cents per million Btu (MMBtu) or less than 0.5 percent, to $6.48 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for January delivery at the Henry Hub settled yesterday (December 3) at $6.347 per MMBtu, falling 53 cents per MMBtu or about 8 percent since last Wednesday, November 26. Natural gas in storage was 3,358 billion cubic feet (Bcf) as of

494

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, June 23, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 15, 2011) The past week was characterized by passing of the earlier week’s heat wave. The Henry Hub price decreased 31 cents per million Btu (MMBtu) for the week (6.4 percent) to close at $4.52 per MMBtu on June 15. During the midst of the heat wave, working natural gas in storage last week rose to 2,256 billion cubic feet (Bcf) as of Friday, June 10, according to the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 69 Bcf, leaving storage volumes positioned 275 Bcf below year-ago levels.

495

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2008 4, 2008 Next Release: July 31, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, July 16, natural gas spot prices decreased at all markets in the Lower 48 States, with prices falling more than $1 per MMBtu at most locations during the period. Prices at the Henry Hub fell $1.26 per million Btu (MMBtu), or about 11 percent, to $9.89 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery at the Henry Hub settled yesterday at $9.788 per MMBtu, declining $1.61 or about 14 percent since Wednesday, July 16. Natural gas in storage was 2,396 billion cubic feet (Bcf) as of July 18, which is about 1 percent below the 5-year average (2003-2007), following an implied net injection of 84 Bcf.

496

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, December 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 17, 2010) Natural gas spot prices fell modestly at nearly all domestic pricing points, likely because expectations for colder weather were slow in materializing and storage levels rose again. The Henry Hub price fell 23 cents (about 6 percent) for the week ending November 17, to $3.77 per million Btu (MMBtu). The West Texas Intermediate crude oil spot price settled at $80.43 per barrel ($13.87 per MMBtu), on Wednesday, November 17. This represents a decrease of $7.34 per barrel, or $1.27 per MMBtu, from the previous Wednesday. Working natural gas in storage set another new all-time record

497

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2010 at 2:00 P.M. 3, 2010 at 2:00 P.M. Next Release: Thursday, September 30, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 22, 2010) Since Wednesday, September 15, natural gas spot prices fell at most markets across the lower 48 States, with declines of less than 10 cents per million Btu (MMBtu). However, selected markets in the Rocky Mountains and at the Florida citygate posted considerably larger declines, falling by as much as $0.51 per MMBtu. The Henry Hub natural gas spot price fell $0.04 per MMBtu since last Wednesday, averaging $4.02 per MMBtu in trading yesterday, September 22. At the New York Mercantile Exchange (NYMEX), the futures contract for October delivery at the Henry Hub settled yesterday at $3.966 per

498

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2008 5, 2008 Next Release: May 22, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot prices increased in a majority of regions of the Lower 48 States this report week (Wednesday–Wednesday, May 7-14).The Henry Hub spot price increased $0.43 per million Btu (MMBtu) to $11.51, the highest average price recorded at the Henry Hub in more than 2 years. At the New York Mercantile Exchange (NYMEX), prices also continued on an upward trend that has resulted in weekly price increases in 6 of the last 7 report weeks. The futures contract for June delivery increased 27.1 cents per MMBtu on the week to approximately $11.60. During the week ending Friday, May 9, estimated net injections of natural gas into underground storage totaled the largest volume to date

499

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 at 2:00 P.M. 9, 2009 at 2:00 P.M. Next Release: November 5, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 28, 2009) Natural gas prices posted decreases at both the spot and futures markets since last Wednesday. Spot prices fell at virtually all market locations in the lower 48 States, with decreases ranging between 6 and 46 cents per million Btu (MMBtu). However, a couple trading locations did post gains this week. The price at the Henry Hub spot market fell 21 cents or about 4 percent, ending trading yesterday at $4.59 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for November delivery expired yesterday at $4.289 per MMBtu, falling 81 cents or about 16 percent since last Wednesday. The December

500

Natural Gas Annual, 1998  

Gasoline and Diesel Fuel Update (EIA)

8 8 Historical The Natural Gas Annual, 1998 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1998. Summary data are presented for each Census Division and State for 1994 to 1998. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1998 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1998, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.