Powered by Deep Web Technologies
Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NETL: Oil & Natural Gas Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Oil and Natural Gas Supply > Events Oil and Natural Gas Supply Events The following is a listing of events of interest to the oil and natural gas community....

2

Oil and Natural Gas - Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search NETL Oil and Natural Gas Document Information Oil & Natural Gas Document Repository Results will be shown in two categories. "Document Database Results" provides...

3

NETL: Oil and Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Supply Technologies Oil and Natural Gas Supply Oil and natural gas are the lifeblood of our economy, accounting for more than 60 percent of the energy consumed in the United...

4

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Coalbed Natural Gas Produced-Water Treatment Using Gas Hydrate Formation at the Wellhead DE-FC26-05NT15551...

5

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Res., 104(B10), 22985-23003. Collett, T.S. (1992), Potential of gas hydrates outlined, Oil Gas J., 90(25), 84-87. 70 Cook, A.E., Goldberg, D., and R.L. Kleinberg (2008),...

6

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

industry in protecting our environment while exploring for and producing natural gas and oil. They are joined by Anadarko and other industry sponsors from GPRI to identify and...

7

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Transmission, Distribution, & Refining The Instrumented Pipeline Initiative DE-NT-0004654 Goal The goal of the Instrumented Pipeline Initiative (IPI)...

8

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

the private sector that focus on improving the production performance of domestic natural gas and oil stripper wells. Performer: The Pennsylvania State University (Energy...

9

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic...

10

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil through specific project efforts...

11

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

a computerized database inventory of compressor engines used in the oil and natural gas exploration and production (E&P) industry. This database will be used to evaluate...

12

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

8 FXe 0.1 1 10 100 1000 FNeFKr 0.001 0.01 0.1 1 10 Air-Like XeKr Enrichment from GasOil source Material Solubility Fractionation Hydrate Fractionation (Non-thermogenic source)...

13

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach Last Reviewed 2172012 DE-FC26-06NT42937 Goal The primary goal of...

14

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

... 6 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ... 7 Task 6: Numerical Models for...

15

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

MN 55441 Background Electronic data acquisition systems are necessary to make deep oil and gas drilling and production cost effective, yet the basic electronic components...

16

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

can be exported to other CBM areas in the US. Benefits The opportunity to resolve the oil and gas industrys growing problem with producing, handling, and treating produced...

17

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

will benefit a wide range of industries, as well as the primary stakeholders within the oil and gas industry. Significant gas resources in the U.S. are in deep, HTHP reservoirs. A...

18

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands...

19

"U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Summary Data Tables, 2011" "Contents" "Table 1: Changes to Proved Reserves, 2011" "Table 2: Principal Tight Oil Plays: Oil...

20

NETL: Oil and Natural Gas Supply  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Oil and Natural Gas Supply Water Treatment System Cleans Marcellus Shale Wastewater Additional Information Onsite operations and water quality testing of the...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Crude Oil and Natural Gas Drilling Activity  

U.S. Energy Information Administration (EIA)

Crude Oil and Natural Gas Drilling Activity Period: Download Series History: Definitions, Sources & Notes: Data Series: Jun-13 Jul-13 Aug-13 ...

22

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and technological support system for water resources planning and management related to oil and gas development on the North Slope of Alaska. Such a system will aid in developing...

23

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

With the arrival of snow, modes of travel, working, and living are transformed. Oil and gas exploration operations restricted to winter months use ice roads and ice pads in arctic...

24

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration DE-FC26-06NT42950 Goal The goal is to develop new packaging techniques for downhole electronics that will...

25

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems DE-FC26-06NT42930 Goal The project goal is the development...

26

Oil and Natural Gas Program Commericialized Technologies and...  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL AND NATURAL GAS PROGRAM National Energy Technology Laboratory 2 Natural Gas and Oil Exploration and Production Enhanced Oil Recovery NETL has advanced the science of enhanced...

27

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

System Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas...

28

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1998 ...  

U.S. Energy Information Administration (EIA)

eia/doe-021698, natural gas, crude oil, natural gas liquids reserves. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1998 Annual Report. Special Files.

29

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1999 ...  

U.S. Energy Information Administration (EIA)

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves data from the U.S. Energy Information Administration.

30

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves ...  

U.S. Energy Information Administration (EIA)

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves data from the U.S. Energy Information Administration.

31

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves  

U.S. Energy Information Administration (EIA)

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves data from the U.S. Energy Information Administration.

32

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2001 ...  

U.S. Energy Information Administration (EIA)

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves data from the U.S. Energy Information Administration.

33

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2003 ...  

U.S. Energy Information Administration (EIA)

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves data from the U.S. Energy Information Administration.

34

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2000 ...  

U.S. Energy Information Administration (EIA)

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves data from the U.S. Energy Information Administration.

35

Drilling often results in both oil and natural gas production ...  

U.S. Energy Information Administration (EIA)

In 2011 and 2012, more than 50% of new wells produced both oil and natural gas. Despite this phenomenon, many traditional methods for estimating oil and natural gas ...

36

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural...

37

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural...

38

Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Texas Natural Gas Withdrawals from Oil Wells (Million Cubic...

39

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential...

40

Hurricane effects on oil and natural gas production depend on ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Performance Profiles Table Browser: T-19. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

42

Performance Profiles Table Browser: T-20. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

43

Performance Profiles Table Browser: T-22. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

44

South Dakota Natural Gas Withdrawals from Oil Wells (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) South Dakota Natural Gas Withdrawals from Oil Wells...

45

Virginia Natural Gas Gross Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

312013 Next Release Date: 8302013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Virginia Natural Gas Gross Withdrawals and Production Natural Gas Gross...

46

Pennsylvania Natural Gas Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Pennsylvania Natural Gas Gross Withdrawals and Production Natural Gas Gross...

47

Virginia Natural Gas Gross Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Virginia Natural Gas Gross Withdrawals and Production Natural Gas Gross...

48

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 Next Release Date: 11292013 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Indiana Natural Gas Gross Withdrawals and Production Natural Gas Gross...

49

Volatility in natural gas and oil markets  

E-Print Network (OSTI)

Using daily futures price data, I examine the behavior of natural gas and crude oil price volatility since 1990. I test whether there has been a significant trend in volatility, whether there was a short-term increase in ...

Pindyck, Robert S.

2003-01-01T23:59:59.000Z

50

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 ... produce unconventional gas economically. Production.

51

The Relationship Between Crude Oil and Natural Gas Prices  

U.S. Energy Information Administration (EIA)

Energy Information Administration, Office of Oil and Gas, October 2006 2 Introduction Economic theory suggests that natural gas and crude oil prices should be related ...

52

FE Oil and Natural Gas News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

oil-natural-gas-news Office of Fossil Energy Forrestal oil-natural-gas-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas http://energy.gov/articles/energy-department-authorizes-additional-volume-proposed-freeport-lng-facility-export Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas

53

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Corbicula fluminea), and surveys of the resident invertebrate community (both at the oil production site of the submerged former brine pit site and a reference site. . Both the...

54

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

data integration for improved reservoir characterization. The overall goal is additional oil recovery by locating critical reservoir features such as flow channels, barriers, and...

55

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 662013 DE-08NT0005643 Goal The goal of this project is to determine the geomechanical properties...

56

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of shallow reservoirs. This makes Umiat and similar fields in northern Alaska attractive exploration and production targets. Little is known about how to produce conventional oil...

57

Table 5. International Oil and Natural Gas Reserves as of December ...  

U.S. Energy Information Administration (EIA)

Table 5. International Oil and Natural Gas Reserves as of December 31, 2001 Oil (million barrels) Natural Gas (billion cubic feet) Oil & Gas World Oil & Gas World

58

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska Last Reviewed 3272013 DE-FC26-08NT0005641...

59

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

272012 DE-NT0006556 Goal The objective of this project is to develop improved chemical oil recovery options for the Ugnu reservoir overlying the Milne Point unit in North Slope,...

60

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Subtask 1.2 Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 01.2 Goal The goal of this project is to...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

a component that can efficiently operate at temperatures of 275oC can greatly extend the exploration and operations of the oil industry to deeper reservoirs with higher...

62

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2003 Annual Report DOE/EIA-0216(2003) November 2004

63

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves ...  

U.S. Energy Information Administration (EIA)

DOE/EIA–0216(2007) Distribution Category UC–950 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2007 Annual Report February 2009

64

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1998 ...  

U.S. Energy Information Administration (EIA)

Preface The U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1998 Annual Report is the 22nd prepared by the Energy Information Administration

65

Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Federal Offshore--Texas Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Federal Offshore--Texas Natural Gas Withdrawals...

66

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and wells in less extreme environments that still require high stress resistance or where gas migration is a known problem. Summary The primary tasks associated with Phase III are...

67

NETL: Oil and Natural Gas: Natural Gas Reources  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Resources Research Project Summaries Reference Shelf O&G Document Archive The United States is endowed with an abundance of natural gas resources. Besides its use for...

68

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term....

69

The Weak Tie Between Natural Gas and Oil Prices  

E-Print Network (OSTI)

Several recent studies establish that crude oil and natural gas prices are cointegrated, so that changes in the price of oil appear to translate into changes in the price of natural gas. Yet at times in the past, and very ...

Ramberg, David J.

70

EA-0531: Proposed Natural Gas Protection Program for Naval Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale...

71

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

Science Conference Proceedings (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

72

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

& Natural Gas Projects & Natural Gas Projects Exploration and Production Technologies Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic Fracturing and Geologic Sequestration of CO2 Last Reviewed 12/24/2013 DE-FE0000880 Goal The goal of this project is to enhance the Risk Based Data Management System (RBDMS) by adding new components relevant to environmental topics associated with hydraulic fracturing (HF), and by management of myriad data regarding oil and natural gas well histories, brine disposal, production, enhanced recovery, reporting, stripper wells, and other operations to enhance the protection of ground water resources. The FracFocus website will be maintained to ensure transparent reporting of HF additives. A

73

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

74

Natural Gas Gross Withdrawals from Oil Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

75

NETL: Oil and Natural Gas: Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Deepwater Technology Research Project Summaries Reference Shelf O&G Document Archive Deepwater (and Ultra-Deepwater, 5000 feet of water depth and beyond) is recognized as one of the last remaining areas of the world were oil and natural gas resources remain to be discovered and produced. The architecture of the systems employed to cost-effectively develop these resources in an environmentally safe manner, reflect some of industryÂ’s most advanced engineering accomplishments. NETL is funding research to catalyze further advances that can help Gulf of Mexico discoveries progress to production quickly and safely, and that can help maximize oil and gas recovery from fields that are currently at the edge of industry capabilities. Many of these efforts are focused on subsea production

76

NETL: Oil & Natural Gas - Energy Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Natural Gas Supply Oil and Natural Gas Supply Energy Infrastructure NETL's Energy Infrastructure and Security Research Group (EISRG) has a key supporting role in emergency preparedness and response. The EISRG develops high-level analytical visualizations that are used to study critical U.S. energy infrastructures and their inter-relationships during natural and manmade emergencies. By deploying resources and providing vital information in a timely manner, EISRG improves the ability of government agencies and the energy sector to prevent, prepare for, and respond to hazards, emergencies, natural disasters, or any other threat to the nation's energy supply. NETL coordinated and provided information on an ongoing basis during every major landfall event of the 2005 hurricane season , including Hurricanes Katrina and Rita, as well as during Hurricanes Charley, Frances, and Ivan in 2004. NETL also has participated in exercises to prepare for events with varying degrees of impact, such as pipeline disruptions, local power outages, and transportation interruptions, such as the 2005 Powder River Basin rail service suspension, which resulted in curtailment of coal deliveries to major customers over a six-month period.

77

NETL: Oil & Natural Gas Projects - Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5152012 DE-NT0005671 Goal The goal of...

78

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

79

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2000 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2000, as well as production volumes for the United States and selected States and State subdivisions for the year 2000.

Rafi Zeinalpour

2001-12-01T23:59:59.000Z

80

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1998 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1998, as well as production volumes for the United States and selected States and State subdivisions for the year 1998.

Rafi Zeinalpour

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2002 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2002, as well as production volumes for the United States and selected States and State subdivisions for the year 2002.

Rafi Zeinalpour

2003-12-01T23:59:59.000Z

82

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2006 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2006

Information Center

2007-12-31T23:59:59.000Z

83

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1996 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the United States and selected States and State subdivisions for the year 1996.

Rafi Zeinalpour

1997-11-01T23:59:59.000Z

84

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2005 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2005

Rafi Zeinalpour

2006-12-05T23:59:59.000Z

85

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1997 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the United States and selected States and State subdivisions for the year 1997.

Rafi Zeinalpour

1998-12-01T23:59:59.000Z

86

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1995 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the United States and selected States and State subdivisions for the year 1995.

Rafi Zeinalpour

1996-11-01T23:59:59.000Z

87

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1993 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1993, as well as production volumes for the United States and selected States and State subdivisions for the year 1993.

Rafi Zeinalpour

1994-11-01T23:59:59.000Z

88

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2003 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2003, as well as production volumes for the United States and selected States and State subdivisions for the year 2003.

Rafi Zeinalpour

2004-11-01T23:59:59.000Z

89

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2007 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2007

Information Center

2009-02-10T23:59:59.000Z

90

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1999 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1999, as well as production volumes for the United States and selected States and State subdivisions for the year 1999.

Rafi Zeinalpour

2000-12-01T23:59:59.000Z

91

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2001 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2001, as well as production volumes for the United States and selected States and State subdivisions for the year 2001.

Rafi Zeinalpour

2002-11-01T23:59:59.000Z

92

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1994 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1994, as well as production volumes for the United States and selected States and State subdivisions for the year 1994.

Rafi Zeinalpour

1995-10-01T23:59:59.000Z

93

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2004 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2004.

Rafi Zeinalpour

2005-11-30T23:59:59.000Z

94

Oil & Natural Gas Technology DOE Award No.: FWP 49462  

E-Print Network (OSTI)

Used by Marcellus Shale Gas Producers Submitted by: John A. Veil Argonne National Laboratory Argonne, and gas shales. Figure 1 shows EIA projections of the source of natural gas supplies through 2030 productive oil and gas activities in the country today are shale gas plays. Figure 1 ­ U.S. Natural Gas

Boyer, Elizabeth W.

95

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

Science Conference Proceedings (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

96

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

Science Conference Proceedings (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

97

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Table 7. Total U.S. Proved Reserves of Crude Oil, Dry Natural Gas, and Lease Condensate, 2001-2009 Revisionsa Net of Salesb New Reservoir Provedd Change

98

NETL: Oil & Natural Gas Technologies Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Oil & Natural Gas Technologies Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf E&P Focus Newsletter Banner The oil and gas exploration and production R&D newsletter, E&P Focus, highlights the latest developments in R&D being carried out by NETL. E&P Focus promotes the widespread dissemination of research results among all types of oil and gas industry stakeholders: producers, researchers, educators, regulators, and policymakers. Each issue provides up-to-date information regarding extramural projects managed under the Strategic Center for Natural Gas and OilÂ’s traditional oil and gas program, the EPAct Section 999 Program administered by the Research Partnership to Secure Energy for America (RPSEA), and in-house oil and gas research carried out by NETLÂ’s Office of Research and Development.

99

NETL: Oil & Natural Gas Projects: Next Generation Surfactants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12152012 DE-FE0003537 Goal...

100

Caspian countries are developing new oil and natural gas export ...  

U.S. Energy Information Administration (EIA)

The Caspian Sea region has the potential to export oil and natural gas to European, South Asian, and East Asian markets. With rising energy prices and growing global ...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America's Foreign Oil Dependence April 25, 2012 Innovative DOE Technology Demonstrates Potential for...

102

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and environmentally sound regulation of the exploration and production of natural gas and crude oil. The items envisioned for the IOGCC to undertake are national in scope....

103

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE Award No.: DE-FE0010175 Quarterly Research Performance Progress Report (Period ending 06302013) PLANNING OF A MARINE...

104

Office of Fossil Energy Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Oil & Natural Gas Technology Detection and Production of Methane Hydrate End of Phase 2 Topical Report Reporting Period: June, 2007-June, 2008 Submitted by: Rice...

105

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

to create a computerized database inventory of compressor engines being used in the oil and natural gas exploration and production industry to evaluate emissions control...

106

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level DE-FC26-06NT15567 Goal The goal of the project is to assist State governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil through specific project efforts to address current issues. The issues addressed are national in scope. However, significant regional differences among States make “one-size-fits-all” programs unacceptable. One of the strengths of IOGCC is its ability to address these national issues while maintaining more local flexibility. There are two basic thrusts of these efforts: 1) research and 2) transfer of findings to appropriate constituencies. IOGCC is carrying out three projects consistent with the overarching strategies:

107

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 DE-NT0005683 Goal The goal of this project is to develop a general scientific, engineering, and technological support system for water resources planning and management related to oil and gas development on the North Slope of Alaska. Such a system will aid in developing solutions to economic, environmental, and cultural concerns. Performers University of Alaska Fairbanks Systems, Fairbanks, AK 99775-7880 Texas A&M University, College Station, TX 77843-3136 PBS&J, Inc., Marietta, GA 30067 Background AlaskaÂ’s North Slope hosts a phenomenal wealth of natural, cultural, and economic resources. It represents a complex system, not only in terms of its biophysical system and global importance, but also from the standpoint

108

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Stripper Well Consortium Stripper Well Consortium DE-FC26-00NT41025 Goal: The goal is to enhance the ability of the domestic production industry to keep stripper wells producing at economic production rates in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. Objective: The objective is to develop and manage an industry-driven consortium that provides a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector that focus on improving the production performance of domestic natural gas and oil stripper wells. Performer: The Pennsylvania State University (Energy Institute) - Project management Accomplishments: Established a consortium governing structure, constitution and bylaws, Established areas of research focus (reservoir remediation and characterization, well bore cleanup, and surface systems optimization) and rules for proposal submission and selection, and

109

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems DE-FC26-06NT42930 Goal The project goal is the development of modules for a web-based decision support tool that will be used by mid- and small-sized oil and gas exploration and production companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of oil and gas reserves in sensitive areas in the Fayetteville Shale Play in central Arkansas. This decision support tool will rely on creation of a database of existing exploration and production (E&P) technologies that are known to have low ecosystem impact. Performers University of Arkansas, Fayetteville, Arkansas

110

NETL: Oil & Natural Gas Projects - Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

(SENM) produces around 400 million barrels of produced water per year as a by-product of oil and gas production. Water production volumes have been increasing every year. Ninety...

111

Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Oil Wells (Million Cubic Feet) Illinois Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1 1 1 1 1 1 2 1 1 1 1...

112

Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Indiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

113

Pennsylvania Natural Gas Withdrawals from Oil Wells (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Pennsylvania Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

114

Crude oil, natural gas, and petroleum products prices all fell ...  

U.S. Energy Information Administration (EIA)

So oil prices averaged over the year decreased sharply while year-end price ... Imported Refiner Acquisition Cost of Crude Oil and Natural Gas Wellhead Prices, 1972-2009

115

Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

116

Texas--State Offshore Natural Gas Withdrawals from Oil Wells...  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

117

NETL: Oil & Natural Gas Projects - Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

118

June 2003VOLATILITY IN NATURAL GAS AND OIL MARKETS * by  

E-Print Network (OSTI)

Abstract: Using daily futures price data, I examine the behavior of natural gas and crude oil price volatility since 1990. I test whether there has been a significant trend in volatility, whether there was a short-term increase in volatility during the time of the Enron collapse, and whether natural gas and crude oil price volatilities are interrelated. I also measure the persistence of shocks to volatility and discuss its implications for gas- and oil-related contingent claims.

Robert S. Pindyck; Robert S. Pindyck

2003-01-01T23:59:59.000Z

119

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the purpose of predicting how natural gas hydrates affect the safety of deepwater oil and gas E&P operations. In addition, the project is providing data that can be used in...

120

NETL: Oil & Natural Gas Technologies Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf Solicitations Project Summaries Publications News Releases Software/Databases CDs/DVDs EOR Illustrations Welcome to the NETL Oil & Natural Gas Technologies Reference Shelf. Recently released and in-demand reference materials are available directly from this page using the links below. Online Database of Oil and Natural Gas Research Results Now Available The Knowledge Management Database (KMD) provides easy access to the results of nearly four decades of research supported by the Office of Fossil EnergyÂ’s Oil and Natural Gas Program. The database portal provides access to content from dozens of CDs and DVDs related to oil and natural gas research that FE's National Energy Technology Laboratory has published over the years. It

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NETL: News Release - NETL's Oil and Natural Gas Program Provides  

NLE Websites -- All DOE Office Websites (Extended Search)

24, 2007 24, 2007 Oil and Natural Gas Program Uses Stranded Gas to Revive Oil Production Project Generates Energy from Waste Gas to Restore Marginal Fields WASHINGTON, DC - A U.S. Department of Energy (DOE) project is turning "stranded" natural gas at marginal, or low-production, oil fields into fuel for distributed electric power. The breakthrough is bringing previously idle oil fields back into production and could boost domestic oil production by some 28 million barrels per year within the next 10 years, helping to reduce the Nation's dependence on foreign oil sources. Stranded gas is natural gas that is uneconomic to produce for one or more reasons: the energy, or Btu content, may be too low; the gas may be too impure to use; or, the volume may be too small to warrant a pipeline connection to the gas infrastructure. Non-commercial gas is sometimes produced along with oil, becoming an environmental liability. This unwanted byproduct of oil production has become a major problem in California oil fields where producers have been forced to abandon sites early, leaving valuable reserves of domestic oil untapped.

122

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma DE-FC26-00NT15125 Project Goal The Hunton formation in Oklahoma has some unique production characteristics, including large water production, initially decreasing gas-oil ratios, and excellent dynamic continuity—but poor geological continuity. The overall goal of the project is to understand the mechanism of gas and oil production from the Hunton Formation in Oklahoma so that similar reservoirs in other areas can be efficiently exploited. An additional goal is to develop methodologies to improve oil recovery using secondary recovery techniques. Performers University of Tulsa, Tulsa, OK Marjo Operating Company, Tulsa, OK University of Houston, Houston, TX Orca Exploration, Tulsa, OK

123

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

124

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Crude Oil and Natural Gas Proved Reserves U.S. Crude Oil and Natural Gas Proved Reserves With Data for 2011 | Release Date: August 1, 2013 | Next Release Date: Early 2014 | full report Previous Issues: Year: 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 Go Summary In 2011, oil and gas exploration and production companies operating in the United States added almost 3.8 billion barrels of crude oil and lease condensate proved reserves, an increase of 15 percent, and the greatest volume increase since the U.S. Energy Information Administration (EIA) began publishing proved reserves estimates in 1977 (Table 1). Proved reserves of crude oil and lease condensate increased by 2.9 billion barrels in 2010, the previous record. Proved reserves of U.S. wet natural gas1 rose

125

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Natural Gas Crude Oil and Natural Gas Proved Reserves, 2011 August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. August 2013 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2011 ii

126

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Table 4. Total U.S. Proved Reserves of Wet Natural Gas, and Crude Oil plus Lease Condensate, 2001-2009 Revisionsa Net of Salesb New Reservoir Provedd Change

127

Propane Prices Influenced by Crude Oil and Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Propane prices have been high this year for several reasons. Propane usually follows crude oil prices more closely than natural gas prices. As crude oil prices rose beginning in 1999, propane has followed. In addition, some early cold weather this year put extra pressure on prices. However, more recently, the highly unusual surge in natural gas prices affected propane supply and drove propane prices up. Propane comes from two sources of supply: refineries and natural gas processing plants. The very high natural gas prices made it more economic for refineries to use the propane they normally produce and sell than to buy natural gas. The gas processing plants found it more economic to leave propane in the natural gas streams than to extract it for sale separately.

128

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 6172013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management...

129

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery DE-FC26-03NT15413 Project Goal The overall objective of this project is to understand the role of mineralogy of reservoir rocks in determining interactions of reservoir minerals and their dissolved species with externally added reagants (surfactants/polymers) and their effects on solid-liquid and liquid-liquid interfacial properties, such as adsorption, wettability, and interfacial tension. A further goal is to devise schemes to control these interactions in systems relevant to reservoir conditions. Particular emphasis will be placed on the type and nature of different minerals in oil reservoirs. Performer Columbia University, New York, NY Background

130

Price ratio of crude oil to natural gas continues to increase ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

131

Oil and natural gas production is growing in Caspian Sea region ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

132

EIA Report 9/13/08 - Hurricane Impacts on U.S. Oil & Natural Gas ...  

U.S. Energy Information Administration (EIA)

U.S. Oil and Natural Gas Market Impacts. Prices. NYMEX Futures Prices ... Gulf of Mexico Oil & Natural Gas Facts Energy Information Administration: Gulf of ...

133

Price ratio of crude oil to natural gas increasing - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

134

U.S. oil rig count overtakes natural gas rig count - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

135

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

136

Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

137

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Natural Gas News Oil and Natural Gas News FE Oil and Natural Gas News RSS November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. August 23, 2013 DOE and the Bureau of Safety and Environmental Enforcement Sign Memorandum of Collaboration for Safe Offshore Energy Development The Department of Energy's (DOE) Office of Fossil Energy and The Bureau of Safety and Environmental Enforcement (BSEE) signed a Memorandum of

138

The Relationship Between Crude Oil and Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Administration, Office of Oil and Gas, October 2006 Administration, Office of Oil and Gas, October 2006 1 The Relationship Between Crude Oil and Natural Gas Prices by Jose A. Villar Natural Gas Division Energy Information Administration and Frederick L. Joutz Department of Economics The George Washington University Abstract: This paper examines the time series econometric relationship between the Henry Hub natural gas price and the West Texas Intermediate (WTI) crude oil price. Typically, this relationship has been approached using simple correlations and deterministic trends. When data have unit roots as in this case, such analysis is faulty and subject to spurious results. We find a cointegrating relationship relating Henry Hub prices to the WTI and trend capturing the relative demand and supply effects over the 1989-through-2005 period. The dynamics of the relationship

139

,"North Dakota Natural Gas Gross Withdrawals from Oil Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas...

140

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

appear to be a good choice as a replacement for traditional fossil fuelscoal, oil, and natural gas. But the energy output-to-input ratio analysis for the crop-to-fuel...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oil and Natural Gas in Sub-Saharan Africa  

U.S. Energy Information Administration (EIA)

Oil and Natural Gas in Sub-Saharan Africa August 1, 2013 ... The Middle East has 13 times that amount and Central and South America has 5 times that amount.

142

Montana Oil and Natural Gas Production Tax Act (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

143

,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:28:51 PM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012NM2"...

144

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

145

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration DE-FC26-06NT42950 Goal The goal is to develop new packaging techniques for downhole electronics that will be capable of withstanding at least 200oC (~400oF) while maintaining a small form factor and high vibration tolerance necessary for use in a downhole environment. These packaging techniques will also be capable of integrating a sensor and other electronics to form an integrated electronics/sensor module. Performers General Electric Global Research Center, Niskayuna, NY 12309 Binghamton University (SUNY), Binghamton, NY 13902 Background Sensors and electronics systems are key components in measurement-while-drilling (MWD) equipment. Examples of sensors and electronics that can directly impact the efficiency of drilling guidance systems can include gamma ray and neutron sensors, orientation modules, pressure sensors and the all of the associated signal conditioning and computational electronics. As drilling depths increase, more rigorous temperature demands are made on the electronic components in the drillstring. Current sensor systems for MWD applications are limited by the temperature rating of their electronics, with a typical upper end temperature rating of 175oC (~350oF). The lifetime of an electronics system at such temperatures is extremely short (600-1500 hrs). These limitations are driven by the temperature performance and reliability of the materials in the electronic components (active and passive devices) and their associated packages and interconnect methods.

146

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 DE-NT0005684 Goal The goal of this project is to implement a snow control practice to enhance snow drift formation as a local water source to recharge a depleted lake despite possible unfavorable climate and hydrology preconditions (i.e., surface storage deficit and/or low precipitation). Performer University of Alaska Fairbanks, Fairbanks, AK Background Snow is central to activities in polar latitudes of Alaska over a very significant part of each year. With the arrival of snow, modes of travel, working, and living are transformed. Oil and gas exploration operations restricted to winter months use ice roads and ice pads in arctic and subarctic regions. The general reasoning behind ice road construction is

147

The Oil and Natural Gas Knowledge Management Database from NETL  

DOE Data Explorer (OSTI)

The Knowledge Management Database (KMD) Portal provides four options for searching the documents and data that NETL-managed oil and gas research has produced over the years for DOE’s Office of Fossil Energy. Information includes R&D carried out under both historical and ongoing DOE oil and gas research and development (R&D). The Document Repository, the CD/DVD Library, the Project Summaries from 1990 to the present, and the Oil and Natural Gas Program Reference Shelf provide a wide range of flexibility and coverage.

148

Investing in Oil and Natural Gas A Few Key Issues  

U.S. Energy Information Administration (EIA) Indexed Site

Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Investing in Oil and Natural Gas: A Few Key Issues Prepared for EIA Conference Susan Farrell, Senior Director PFC Energy April 8, 2009 Investing in Oil and Gas| PFC Energy| Page 2 The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Investing in Oil and Gas| PFC Energy| Page 3 Oil Prices Rose, But So Did Costs + 52% $0 $20 $40 $60 $80 $100 $120 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 WTI $/barrel Annual averages Large Gulf of Mexico Facility Costs by Segment Avg $28.31 Avg $59.13 Source: PFC Energy Investing in Oil and Gas| PFC Energy| Page 4 Near term Spending Cuts will be Significant

149

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)...

150

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines DE-FC26-04NT42264 Goal The goal of this project is to enhance the reliability and integrity of the Nation’s natural gas infrastructure through the development, construction, integration and testing of a long-range non-destructive evaluation (NDE) inspection capability in a modular robotic locomotion platform (Explorer II). The Explorer II will have an integrated inspection sensor (developed under a separate project) to provide enhanced in-situ, live, and real-time assessments of the status of a gas pipeline infrastructure. The Explorer II system will be capable of operating in 6-inch- and 8-inch-diameter, high-pressure (piggable and non-piggable) distribution and transmission mains. The system will also be enhanced to form an “extended” platform with additional drive and battery modules allowing the system the potential to carry alternative sensors that are heavier or more drag intensive than the current technology.

151

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Deep Trek Re-configurable Processor for Data Acquisition Deep Trek Re-configurable Processor for Data Acquisition DE-FC26-06NT42947 Goal The goal of this project is to develop and qualify a Re-configurable Processor for Data Acquisition (RPDA) by packaging previously developed components in an advanced high-temperature Multi-Chip Module (MCM), and by developing configuration software that may be embedded within the RPDA to link data-acquisition system Analog Front-Ends to digital system busses. Performer Honeywell International Inc., Plymouth, MN 55441 Background Electronic data acquisition systems are necessary to make deep oil and gas drilling and production cost effective, yet the basic electronic components from which such systems are built will not operate reliably at the high temperatures encountered in deep wells. As well depths increase beyond 15,000 feet, temperatures above 200°C are relatively common. In some cases the target reservoir temperature may be as high as 300°C.

152

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2009 July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. July 30, 2009 DOE Showcases Websites for Tight Gas Resource Development Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and

153

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

154

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Oil Plays in Utah and Vicinity/PUMP 2 Major Oil Plays in Utah and Vicinity/PUMP 2 DE-FC26-02NT15133 Goal The primary goal of this study is to increase recovery of oil reserves from existing reservoirs and from new discoveries by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. The overall objectives of this study are to: 1) increase recoverable oil from existing reservoirs, 2) add new discoveries, 3) prevent premature abandonment of numerous small fields, 4) increase deliverability through identifying the latest drilling, completion, and secondary/tertiary recovery techniques, and 5) reduce development costs and risk. Performer Utah Geological Survey (UGS), Salt Lake City, UT

155

Oil and Natural Gas in Sub-Saharan Africa  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Natural Gas in Sub-Saharan Africa Oil and Natural Gas in Sub-Saharan Africa August 1, 2013 2 Sub-Saharan Africa Source: U.S. Department of State Liquid Fuels Reserves and Production in Sub-Saharan Africa 3 4 Sub-Saharan Africa (SSA) produced nearly 6 million bbl/d of liquid fuels in 2012, which was about 7% of total world oil production. Overview Sub-Saharan Africa contains 62.6 billion barrels of proved crude oil reserves. The Middle East has 13 times that amount and Central and South America has 5 times that amount. Middle East 30% North America 20% Eurasia 15% Sub-Saharan Africa 7% North Africa 5% Asia & Oceania 10% Central & South America 9% Europe 4% Global Liquid Fuels Production, 2012 Source: EIA, International Energy Statistics 0 200 400 600 800 1,000 Middle East Central & South America

156

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications DE-FC26-02NT41656 Goal: To develop a wireless, electromagnetic (EM) based telemetry system to facilitate efficient deep natural gas drilling at depths beyond 20,000 feet and up to 392ËšF (200ËšC) Background: The wireless, EM telemetry system will be designed to facilitate measurement-while-drilling (MWD) operations within a high temperature, deep drilling environment. The key components that will be developed and tested include a new high efficiency power amplifier (PA) and advanced signal processing algorithms. The novel PA architecture will provide greater and more efficient power delivery from the subterranean transmitter through the transmission media. Maximum energy transfer is especially critical downhole, where the transmitterÂ’s principal power source is typically a battery. Increased energy at the receiver antenna equates to increased recoverable signal amplitude; thus, the overall receiver signal-to-noise ratio is improved resulting in deeper operational depth capability.

157

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 DE-NT0006556 Goal The objective of this project is to develop improved chemical oil recovery options for the Ugnu reservoir overlying the Milne Point unit in North Slope, Alaska. Performers University of Texas, Austin, TX 78712-1160 Background The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in the Ugnu, West Sak, and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir overlying Milne Point varies from 200 cP to 10,000 cP and the depth is about 3500 ft. The same reservoir extends to the west overlying the Kuparuk River Unit and on to the Beaufort Sea. The depth of the reservoir decreases and the viscosity

158

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 DE-08NT0005643 Goal The goal of this project is to determine the geomechanical properties of the Bakken Formation in North Dakota, and use these results to increase the success rate of horizontal drilling and hydraulic fracturing in order to improve the ultimate recovery of this vast oil resource. Performer University of North Dakota, Grand Forks, ND 58202-7134 Background Compared to the success of producing crude oil from the Bakken Formation in eastern Montana, the horizontal drilling and hydraulic fracture stimulation technology applied in western North Dakota has been less successful, thus requiring the development of new completion and fracturing technologies.

159

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs DE-FC26-04NT15508 Project Goal The project goal is to provide a methodology that will allow operators of oil reservoirs in carbonate reefs to better image the interior structure of those reservoirs and to identify those areas that contain the most oil remaining after initial production. Performers Michigan Technological University, Houghton, MI Z-Seis Inc., Houston, TX Results This study provides a significant step forward in reservoir characterization by demonstrating that crosswell seismic imaging can be used over considerable distances to better define features within a reservoir and by showing that pre-stack characteristics of reflection events can be used to reduce ambiguity in determination of lithology and fluid content. Crosswell seismic imaging of the two reefs has provided data that is well beyond any that a reservoir engineer or development geologist has previously had for improved characterization and production.

160

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Footage Drilled for Crude Oil and Natural Gas Wells Footage Drilled for Crude Oil and Natural Gas Wells (Thousand Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 176,867 203,997 240,969 285,398 308,210 331,740 1949-2008 Crude Oil 38,495 42,032 51,511 63,649 66,527 88,382 1949-2008 Natural Gas 115,833 138,503 164,353 193,595 212,753 212,079 1949-2008 Dry Holes 22,539 23,462 25,104 28,154 28,931 31,280 1949-2008 Exploratory Wells 17,785 22,382 25,955 29,630 36,534 35,585 1949-2008 Crude Oil 2,453 3,141 4,262 4,998 6,271 7,389 1949-2008 Natural Gas 6,569 9,998 12,347 14,945 19,982 17,066 1949-2008 Dry Holes

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Crude Oil and Natural Gas Exploratory and Development Wells  

Gasoline and Diesel Fuel Update (EIA)

Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA...

162

Average Depth of Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Depth of Crude Oil and Natural Gas Wells Depth of Crude Oil and Natural Gas Wells (Feet per Well) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 5,426 5,547 5,508 5,613 6,064 5,964 1949-2008 Crude Oil 4,783 4,829 4,836 4,846 5,111 5,094 1949-2008 Natural Gas 5,616 5,757 5,777 5,961 6,522 6,500 1949-2008 Dry Holes 5,744 5,848 5,405 5,382 5,578 5,540 1949-2008 Exploratory Wells 6,744 6,579 6,272 6,187 6,247 6,322 1949-2008 Crude Oil 6,950 8,136 8,011 7,448 7,537 7,778 1949-2008 Natural Gas 6,589 5,948 5,732 5,770 5,901 5,899 1949-2008 Dry Holes 6,809 6,924 6,437 6,340 6,307 6,232 1949-2008

163

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 4, 2012 January 4, 2012 DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers. December 21, 2011 DOE RFP Seeks Projects for Improving Environmental Performance of Unconventional Natural Gas Technologies Research projects to study ways for improving the environmental performance of unconventional gas development are being sought by the National Energy Technology Laboratory, a facility of the U.S. Department of Energy's Office of Fossil Energy. November 22, 2011 DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater The U.S. Department of Energy's Office of Fossil Energy has selected six

164

Table 4.1 Technically Recoverable Crude Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Sources: Proved Reserves: U.S. Energy Information Administration (EIA), U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2010 (August 2012).

165

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations DE-FC26-04NT15425 Project Goal This project is being conducted in two phases. The objective of the first phase is to characterize the reservoir using advanced evaluation methods in order to assess the potential of a CO2 flood of the target reservoir. This reservoir characterization includes advanced petrophysical, geophysical, geological, reservoir engineering, and reservoir simulation technologies. The objective of the second project phase is to demonstrate the benefits of using advanced seismic methods for the monitoring of the CO2 flood fronts. Performers Schlumberger Data & Consulting Services - Pittsburgh, PA New Horizon Energy - Traverse City, MI

166

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

167

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

168

Natural Gas Gross Withdrawals from Oil Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

169

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

U.S. Energy Information Administration (EIA)

Summary. In 2011, oil and gas exploration and production companies operating in the United States added almost 3.8 billion barrels of crude oil and lease condensate ...

170

NETL: Oil & Natural Gas Projects: Shale Oil Upgrading Utilizing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Companies providing oil samples of at least five (5) gallons include Chevron, Oil Shale Exploration Company (OSEC), and Red Leaf Resources, Inc. Background Work performed...

171

NETL: Oil and Natural Gas: Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

that have unconventional characteristics (e.g., oil in fractured shales, kerogen in oil shale, bitumen in tar sands) constitute an enormous potential domestic supply of energy....

172

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

The Instrumented Pipeline Initiative The Instrumented Pipeline Initiative DE-NT-0004654 Goal The goal of the Instrumented Pipeline Initiative (IPI) is to address sensor system needs for low-cost monitoring and inspection as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap. This project intends to develop a new sensing and continuous monitoring system with alternative use as an inspection method. Performers Concurrent Technologies Corporation (CTC), Johnstown, PA 15213 Carnegie Melon University (CMU), Pittsburgh, PA 15904 Background Pie Chart showing Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines Figure 1. Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines

173

Externality Regulation in Oil and Gas Encyclopedia of Energy, Natural Resource, and  

E-Print Network (OSTI)

Externality Regulation in Oil and Gas Chapter 56 Encyclopedia of Energy, Natural Resource regulating well spacing, preventing of flaring or venting of natural gas, regulating production from wells oil/gas and oil/water ratios, and no-flaring and venting rules for natural gas. 1 Introduction

Garousi, Vahid

174

Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006  

E-Print Network (OSTI)

Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006 Jeffrey L. Beck Independent Avenue Grand Junction, CO 81505 Please cite as: Beck, J. L. 2006. Summary of oil and natural gas and Natural Gas Development Impacts on Prairie Grouse 2 disturbances such as oil and gas development

Beck, Jeffrey L.

175

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents DE-FC26-03NT15424 Project Goal The overall goals of this study are to 1) develop and demonstrate techniques and exploration methods never tried on the Leadville Limestone; 2) target areas for exploration; 3) increase deliverability from new and old Leadville fields through detailed reservoir characterization; 4) reduce exploration costs and risk, especially in environmentally sensitive areas; and 5) add new oil discoveries and reserves. The project is being conducted in two phases, each with specific objectives. The objective of Phase 1 (Budget Period I) is to conduct a case study of the Leadville reservoir at Lisbon field (the largest Leadville producer) in San Juan County, UT, in order understand the reservoir characteristics and facies that can be applied regionally.

176

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Mud System for Microhole Coiled Tubing Drilling Mud System for Microhole Coiled Tubing Drilling DE-FC26-03NT15476 Project Goal The goal of the project is to develop an innovative mud system for coiled tubing drilling (CTD) and small-diameter holes (microholes) for vertical, horizontal and multilateral drilling and completion applications. The system will be able to mix the required fluids (water, oil, chemicals, muds, slurries), circulate that mixture downhole (modified 350 gpm @1,000 psi and 15 gpm@ 5,000 psi), clean and store (200 bbls) the base fluids, and be able to perform these functions in an underbalanced condition with zero discharge and low environmental impact. Another primary and most important goal of this project is to develop key components for a new abrasive slurry drilling system.

177

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling DE-FC26-04NT15533 Project Goal The goal of this project is to use molecular modeling and experimental results to design inexpensive, environmentally benign, CO2-soluble compounds that can decrease the mobility of CO2 at typical enhanced oil recovery (EOR) reservoir conditions. Performers University of Pittsburgh, Pittsburgh, PA Yale University, New Haven, CT Background The research group previously formulated the only known CO2 thickener, a (fluoroacrylate-styrene) random copolymer, but this proof-of-concept compound was expensive and environmentally unacceptable because it was fluorous. They then identified the most CO2-soluble, high-molecular-weight, conventional polymer composed solely of carbon, hydrogen, and oxygen: poly(vinyl acetate), or PVAc. PVAc could not dissolve at pressures below the minimum miscibility pressure (MMP), however. The current research effort, therefore, was directed at using molecular modeling and experimental tools to design polymers that are far more CO2-soluble than PVAc. The subsequent goal was to incorporate this polymer into a thickening agent that will dissolve in CO2 below the MMP and generate a two- to ten-fold decrease in CO2 mobility at concentrations of 0.01–1.0 percent by weight. Although most of the thickeners envisioned are copolymers, researchers will also evaluated several small hydrogen-bonding agents and surfactants with oligomeric (very short polymer) tails that form viscosity-enhancing structures in solution , and novel CO2 soluble surfactants that may be able to generate foams in situ as they mix with reservoir brine (without the need for the injection of alternating slugs of water).

178

Figure 41. U.S. Brent crude oil and Henry Hub natural gas spot ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 41. U.S. Brent crude oil and Henry Hub natural gas spot market prices in three cases, 2005-2040 Natural Gas Crude Oil Reference

179

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much does it cost to produce crude oil and natural gas? A measure of the total cost to produce crude oil and natural gas is the upstream costs.

180

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could ...  

U.S. Energy Information Administration (EIA)

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are ...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

182

U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Annual Energy Outlook 2012 (EIA)

Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

183

U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...  

Annual Energy Outlook 2012 (EIA)

Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

184

U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry...  

Annual Energy Outlook 2012 (EIA)

Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1...

185

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry ...  

U.S. Energy Information Administration (EIA)

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells (Thousand Feet)

186

Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand  

Reports and Publications (EIA)

Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

Elizabeth E. Campbell

2001-02-01T23:59:59.000Z

187

U.S. Crude Oil, Natural Gas, and Dry Exploratory and Developmental ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells Drilled (Number of Elements)

188

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

to provide lean injection gas for reservoir energy, to provide fuel for potential viscous oil thermal recovery, or to supplement future export gas. The associated fresh water...

189

Natural Gas Gross Withdrawals from Oil Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

190

Crude Oil and Natural Gas Exploratory and Development Wells  

Gasoline and Diesel Fuel Update (EIA)

Exploratory and Development Wells Exploratory and Development Wells Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 View History Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA NA NA NA 1973-2012 Exploratory NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA NA NA NA 1973-2012 Development Wells Drilled NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012

191

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

Costs of Crude Oil and Natural Gas Wells Drilled Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003 2004 2005 2006 2007 View History Thousand Dollars per Well All (Real*) 1,011.9 1,127.4 1,528.5 1,522.3 1,801.3 3,481.8 1960-2007 All (Nominal) 1,054.2 1,199.5 1,673.1 1,720.7 2,101.7 4,171.7 1960-2007 Crude Oil (Nominal) 882.8 1,037.3 1,441.8 1,920.4 2,238.6 4,000.4 1960-2007 Natural Gas (Nominal) 991.9 1,106.0 1,716.4 1,497.6 1,936.2 3,906.9 1960-2007 Dry Holes (Nominal) 1,673.4 2,065.1 1,977.3 2,392.9 2,664.6 6,131.2 1960-2007 Dollars per Foot All (Real*) 187.46 203.25 267.28 271.16 324.00 574.46 1960-2007 All (Nominal) 195.31 216.27 292.57 306.50 378.03 688.30 1960-2007

192

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationÂ’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers Colorado School of Mines, Golden, CO 80401 University of Houston, Houston, TX 77204 Earthworks, Newtown, CT 06470 BP, Anchorage, AK 99519 Background Although the reserves of heavy oil on the North Slope of Alaska are enormous (estimates are up to 10 billion barrels in place), difficult

193

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

NLE Websites -- All DOE Office Websites (Extended Search)

Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formations...

194

Low natural gas prices in 2012 reduced returns for some oil and ...  

U.S. Energy Information Administration (EIA)

Producers with lower proportions of liquids in their total oil and gas production generally had ... wholesale natural gas prices in the United States and Canada fell ...

195

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

196

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network (OSTI)

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

197

Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore California Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 20,182 27,443 33,331 31,799 31,380 31,236 38,545 1990's 34,332 35,391 41,284 41,532 42,497 46,916 61,276 69,084 71,019 75,034 2000's 68,752 67,034 64,735 56,363 53,805 53,404 38,313 43,379 43,300 40,023 2010's 39,444 35,020 12,703 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

198

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation...

199

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Geology, Mining, and Minerals. Venue: Society of Petroleum Engineers Asia Pacific Oil & Gas Conference in Jakarta, Indonesia, October 30November 1, 2007 (http:...

200

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

possibility. This view began to change in recent years with the realization that this unconventional resource could possibly be developed with existing conventional oil and gas...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Strategic Center for Natural Gas and Oil - Past Program Archives...  

NLE Websites -- All DOE Office Websites (Extended Search)

These programs focused on improving industry understanding of ways to locate and produce natural gas from unconventional natural gas resources: Western U.S. Gas Sands (1977-1992),...

202

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND  

E-Print Network (OSTI)

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND OTHER PRODUCTION, COAL MINING, AND OTHER SOURCES An Appendix to the Report "A Lifecycle Emissions Model (LEM of natural gas, which is mostly CH4, occurs through natural gas production, oil production, and coal mining

Delucchi, Mark

203

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of methane from hydrate and associated free-gas accumulations in areas of existing oil and gas infrastructure on the Alaska North Slope. The project will develop and test...

204

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background Oil and gas development on the North Slope is critical for maintaining U.S. energy supplies and is facing a period of new growth to meet the increasing energy needs of the nation. A majority of all exploration and development activities, pipeline maintenance, and other field support projects take

205

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves ...  

U.S. Energy Information Administration (EIA)

1. Introduction Background The principal focus of this report is to provide accurate annual estimates of U.S. proved reserves of crude oil, natural ga ...

206

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

207

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

208

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

209

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

De-Watering of Hunton Reservoirs De-Watering of Hunton Reservoirs De-Watering of Hunton Reservoirs Author: Mohan Kelkar, University of Tulsa, Tulsa, OK. Venue: Tulsa Association of Petroleum Landmen meeting in Tulsa, OK, April 19, 2007 (http://www.landman.org [external site]). Abstract: The Hunton reservoir in Oklahoma represents one of the largest discoveries in Oklahoma in recent history. Since 1995, several Hunton reservoir fields have been exploited by various operators. The principle behind this exploitation remains the same: The wells produce large quantities of water, and along with it, significant quantities of natural gas and sometimes oil. Examination of various fields producing from the Hunton reservoir indicates that the economic success from these fields is not uniform. Some fields produce significant quantities of oil, whereas some fields only produce gas. In some fields, horizontal wells work best, whereas in some other fields, vertical wells do a good job. The water production from the fields ranges from as low as few hundred barrels per day to several thousand barrels per day. In this paper, we present the results from various fields to indicate the parameters needed in a Hunton field to make it economically successful. We restrict our evaluation to parameters that can be easily measured or are readily available. These include log data (gamma ray, resistivity, neutron, and density), initial potential data, production data (oil, gas, and water—if available) and well configuration (vertical or horizontal). By analyzing the recovery of oil and gas according to various reservoir parameters, we developed a methodology for predicting the future success of the field. For example, a clear relationship exists between porosity of the rock and initial hydrocarbon saturation: The higher the oil saturation, the better the recovery factor. Initial potential is critical in determining possible recovery. Horizontal wells cost 1.5 to 2 times more than vertical wells and may not provide the additional recovery to justify the costs. The Hunton formation is extensive in Oklahoma. If we want to extend the success of some of the fields to other areas, we need clear guidelines in terms of what is needed to exploit those fields. This paper provides some of those guidelines based on the examination of the currently producing fields.

210

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract: Surfactant-modified zeolite (SMZ) has been shown to effectively remove benzene, toluene, ethylbenzene, and xylene (BTEX) from water generated during oil and natural...

211

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... This category excludes natural gas plant liquids, ...

212

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

studies have provided strong indications that it is possible to produce large volumes of gas from natural hydrate deposits at high rates for long times from gas hydrate...

213

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 (https:www.confmanager.commain.cfm?cid680&nid5792 external site). Abstract: Gas hydrate may contain significant natural gas resources in both onshore arctic and...

214

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

from natural gas hydrates, plugging pipelines, stability and safety of drilling of platforms, as well as how dissociation of gas hydrates and sequestration of CO2 within the...

215

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

216

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Temperature X-ray Diffraction Study of Natural Gas Hydrate Samples from the Gulf of Mexico Low Temperature X-ray Diffraction Study of Natural Gas Hydrate Samples from the Gulf...

217

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Saline Water Disposal in the Uinta Basin, Utah Saline Water Disposal in the Uinta Basin, Utah Saline Water Disposal in the Uinta Basin, Utah Authors: Michael D. Vanden Berg, Stephanie Carney, Michael D. Laine, Craig D. Morgan, Utah Geological Survey; and Paul B. Anderson, consulting geologist. Venue: Poster Session: Responsible Development, Sustainability, and Climate Science—Groundwater and Site Remediation, June 9, 2009, American Association of Petroleum Geologists annual meeting, Denver, CO, June 7 to 10, 2009. http://www.aapg.org/denver/ [external site] Abstract: Saline water disposal is the single most pressing issue with regard to increasing petroleum and natural gas production in the Uinta Basin of Utah. Conventional oil and gas fields in the basin provide 67% of Utah’s total crude oil production and 71% of Utah’s total natural gas, the latter of which has increased 175% in the last 10 years. As petroleum production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of fresh water sources. Many Uinta Basin operators claim that petroleum and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. Researchers have begun efforts to re-map the base of the moderately saline aquifer within the Uinta Basin using more robust data and more sophisticated GIS techniques than previous efforts. Below this base, they believe that saline water can be injected without damage to the overlying freshwater reservoirs. Water chemistry data are being collected from wells of operators and governmental agencies. These ground-truth data are supplemented with water chemistry information calculated from geophysical logs. In addition to the new GIS-based map, the researchers are constructing cross sections showing the stratigraphic position of the moderately saline to very saline transition and its relationship to potential seals and disposal zones in the Uinta Basin. A potentially suitable disposal zone for large volume saline water disposal is the fresh to slightly saline Bird’s-Nest aquifer. This aquifer is located in the oil shale zone of the Green River formation’s Parachute Creek member and is 200 to 300 ft above the kerogen-rich Mahogany zone. A significant concern is that saline water disposal into the Bird’s-Nest by conventional gas producers may hinder oil shale development by creating unforeseen economic and technical hurdles. With increased saline water disposal, the water quality in the Bird’s-Nest could degrade and create additional water disposal problems for oil shale development companies. Researchers have examined this aquifer in outcrop, core, and geophysical logs and have gained a better understanding of its areal extent, thickness, and zones of differing water chemistry

218

IMPACTS OF OIL AND NATURAL GAS ON PRAIRIE GROUSE: CURRENT KNOWLEDGE AND RESEARCH NEEDS1  

E-Print Network (OSTI)

IMPACTS OF OIL AND NATURAL GAS ON PRAIRIE GROUSE: CURRENT KNOWLEDGE AND RESEARCH NEEDS1 Jeffrey L and natural gas development on grouse populations and habitats. The purpose of this review is to summarize current knowledge on the effects of oil and gas development and production on prairie grouse based

Beck, Jeffrey L.

219

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

220

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Drilling efficiency is a key driver of oil and natural gas ...  

U.S. Energy Information Administration (EIA)

Increases in drilling efficiency have contributed to the breakdown of traditional methods that seek to estimate oil and natural gas production based principally on ...

222

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. ... How much does it cost to produce crude oil and natural gas?

223

Table 4.1 Technically Recoverable Crude Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

1 See "Proved Reserves, Crude Oil," "Proved Reserves, Lease Condensate," and "Proved Reserves, Natural Gas" in Glossary. 7 Includes Federal offshore and State ...

224

Impact of Tropical Cyclones on Gulf of Mexico Crude Oil and Natural Gas Production, The  

Reports and Publications (EIA)

This is a special analysis report on hurricanes and their effects on oil and natural gas production in the Gulf of Mexico region.

Information Center

2006-06-07T23:59:59.000Z

225

EIA Report 9/26/08 - Hurricane Impacts on U.S. Oil & Natural Gas ...  

U.S. Energy Information Administration (EIA)

U.S. Oil and Natural Gas Market Impacts. Prices. NYMEX Futures Prices (for October delivery) 9/26/2008: Pre-Gustav 8/29/2008: change ...

226

The relationship between crude oil and natural gas spot prices and its stability over time.  

E-Print Network (OSTI)

??The historical basis for a link between crude oil and natural gas prices was examined to determine whether one has existed in the past and… (more)

Ramberg, David J. (David John)

2010-01-01T23:59:59.000Z

227

Essays on the U.S. oil and natural gas industry.  

E-Print Network (OSTI)

??This dissertation investigates various aspects of the U.S. offshore crude oil and natural gas production market. In the first essay, I investigate whether energy firms… (more)

Littlefield, Thomas Lucas

2009-01-01T23:59:59.000Z

228

U.S. Oil and Natural Gas Production Outlook: the Gulf of Mexico ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov U.S. Oil and Natural Gas Production Outlook: the Gulf of Mexico and Other

229

The relationship between crude oil and natural gas prices and its effect on demand.  

E-Print Network (OSTI)

??The overall theme of the three chapters is the relationship between the prices of natural gas and crude oil, and the factors that cause short… (more)

Rosthal, Jennifer Elizabeth

2010-01-01T23:59:59.000Z

230

Table 4.4 Crude Oil and Natural Gas Rotary Rigs in ...  

U.S. Energy Information Administration (EIA)

Table 4.4 Crude Oil and Natural Gas Rotary Rigs in Operation, 1949-2011 (Number of Rigs) Year: By Site : By Type: Total 1: Onshore

231

DOE to Unveil New Online Database of Oil and Natural Gas Research Results |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Unveil New Online Database of Oil and Natural Gas Research DOE to Unveil New Online Database of Oil and Natural Gas Research Results DOE to Unveil New Online Database of Oil and Natural Gas Research Results October 2, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy plans to introduce a new, user-friendly online repository of oil and natural gas research results at the Society of Petroleum Engineers' Annual Technical Conference and Exhibition, to be held in New Orleans, La., October 4-7, 2009. By providing easy access to the results of nearly four decades of research supported by the Office of Fossil Energy's Oil and Natural Gas Program, the knowledge management database could ultimately help boost recovery of the nation's oil and gas resources. The database largely evolved from a recommendation made by the Federal

232

Chris Smith Deputy Assistant Secretary for Oil and Natural Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chris Smith Chris Smith Deputy Assistant Secretary for Oil and Natural Gas Office of Fossil Energy U.S. Department of Energy Before the Subcommittee on Energy and Power Committee on Energy and Commerce U.S. House of Representatives March 28, 2012 Chairman Whitfield, Ranking Member Rush, and Members of the subcommittee, thank you for the opportunity to discuss the Department of Energy's (DOE) perspective on two legislative proposals - the discussion drafts of the "Strategic Energy Production Act of 2012" and the "Gasoline Regulations Act of 2012." We share the concern of the Members regarding the burden that the rising price of gasoline places on U.S. families and businesses. For decades, volatile energy prices have threatened economic security for millions of American households. That volatility has hit consumers hard

233

Office of Fossil Energy Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Fossil Energy Oil & Natural Gas Technology Detection and Production of Methane Hydrate End of Phase 2 Topical Report Reporting Period: June, 2007-June, 2008 Submitted by: Rice University and University of Houston George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Houston June, 2008 DOE Award No.: DE-FC26-06NT42960 Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu University of Houston Department of Chemical Engineering 4800 Calhoun Street Houston, TX 77204-4004 Prepared for: United States Department of Energy National Energy Technology Laboratory

234

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

project DE-FC26-06NT42950, Harsh-Environment Electronics Packaging for Downhole Oil & Gas Exploration, is to develop new packaging techniques for downhole electronics that...

235

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

(speaker); Hunter, Robert B., Arctic Slope Regional Corp. Venue: 9th Annual Far North Oil & Gas Forum, Calgary, Alta., November 26-27, 2007 (http:www.insightinfo.com...

236

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

C. Ruppel and R. G. Loucks (http:www.aapg.org) Abstract: The Woodford Formation, a key oil and gas source rock in the Permian Basin of Texas and New Mexico, is part of an...

237

NETL: News Release - CO2Electronic Oil & Natural Gas Permitting...  

NLE Websites -- All DOE Office Websites (Extended Search)

the eForm system. Through the system, interested members of the public are able to query, view and comment on oil and gas applications that are under active review. The online...

238

Common Products Made from Oil and Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

Educational poster developed by the Office of Fossil Energy that graphically displays items that are made from oil and gas. Appropriate for teachers and students in K-8th grade.

239

EIA Report 11/10/05 - Hurricane Impacts on U.S. Oil & Natural Gas ...  

U.S. Energy Information Administration (EIA)

Hurricane Impacts on the U.S. Oil and Natural Gas Markets. As of Thursday, November 10, 3:00 pm. Shut-in Status. Date: Shut-in Oil (bbl/d) % of Total

240

US--State Offshore Natural Gas Withdrawals from Oil Wells (Million...  

Annual Energy Outlook 2012 (EIA)

Oil Wells (Million Cubic Feet) US--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Authors: Charles B. McComas, PE; J. Daniel Arthur, PE; Gerry Baker; G. Lee Moody; and David B. Cornue, PG, CHMM Venue: American Chemical Society (53rd Pentasectional Meeting) – Halliburton Energy Services Technology Center, Duncan, OK, March 8, 2008 (http://www.acs.org [external site]) Abstract: Research funded by the United States Department of Energy’s National Energy Technology Laboratory and conducted under the direction of the Interstate Oil and Gas Compact Commission has examined concerns related to air emissions resulting from domestic onshore oil and gas exploration and production operations. Current air issues such as ambient air quality standards and non-attainment areas, regulatory compliance and regional inconsistencies, as well as global climate change and carbon sequestration are a few of the subjects perceived to represent potential barriers to energy development. The topic of air quality and how it relates to onshore oil and gas exploration and production activities is examined from the position of environmental sustainability. These concerns can be addressed through reasonable and prudent practices that industry may implement in order to avoid, minimize, or mitigate air emissions. Additionally, air emissions parameters that are not currently regulated (e.g.: CH4 and CO2) may become the subject of increased concern in the future and, therefore, add to the list of issues facing oil and gas exploration and production. Suggestions for further research opportunities with the potential to benefit responsible energy resource development are also presented.

242

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 23, 2010 June 23, 2010 Successful Oil and Gas Technology Transfer Program Extended to 2015 The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy. March 30, 2010 Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Gas hydrate, a potentially immense energy resource, occurs at high saturations within reservoir-quality sands in the Gulf of Mexico, according to reports released by the Office of Fossil Energy's National Energy Technology Laboratory. March 1, 2010 Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage

243

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project This presentation is related to the NETL project DE-FC26-05NT15551, Coalbed Natural Gas Produced Water Treatment Using Gas Hydrate Formation at the Wellhead. The...

244

Prospects for U.S. Oil & Natural Gas  

U.S. Energy Information Administration (EIA)

• Proposed light-duty vehicle CAFE standards; advanced battery technology; heavy-duty truck natural gas potential : Independence does not eliminate interdependence ...

245

EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31: Proposed Natural Gas Protection Program for Naval Oil 31: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado SUMMARY This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that would encompass a total of 200 wells in Garfield County, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 1991 EA-0531: Final Environmental Assessment Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 August 9, 1991 EA-0531: Finding of No Significant Impact

246

Arctic Oil and Natural Gas Potential Philip Budzik U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Arctic Oil and Natural Gas Potential Arctic Oil and Natural Gas Potential Philip Budzik U.S. Energy Information Administration Office of Integrated Analysis and Forecasting Oil and Gas Division October, 2009 Introduction The Arctic is defined as the Northern hemisphere region located north of the Arctic Circle, the circle of latitude where sunlight is uniquely present or absent for 24 continuous hours on the summer and winter solstices, respectively. The Arctic Circle spans the globe at 66.56° (66°34') north latitude (Figure 1). 1 The Arctic could hold about 22 percent of the world's undiscovered conventional oil and natural gas resources. The prospects for Arctic oil and natural gas production are discussed taking into consideration the nature of the resources, the cost of developing them, and the

247

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Gas and Oil in Utah: Potential, New Discoveries, and Hot Plays Author: Thomas C. Chidsey, Petroleum Section Chief, Utah Geological Survey, Salt Lake City, UT. Venue: International Oil Scouts Association’s 84th annual meeting, Stein Eriksen Lodge, Park City, UT, June 17–20, 2007, (http://www.oilscouts.com/index-main.html [external site]). Abstract: Utah’s natural gas and oil exploration history extends back more than 100 years, fluctuating greatly due to discoveries, price trends, and changing exploration targets. During the boom period of the early 1980s, activity peaked at over 500 wells per year. After slowing in the 1990s, drilling activity has again increased, reaching an all-time peak of 1,058 wells spudded and over 2,000 APDs (application for permit to drill) filed in 2006. This increase in activity has been spurred by high prices for both natural gas and oil and by the perception that Utah is highly prospective and underexplored. In recent years, the proportion of new wells exploring for gas has increased greatly. Total cumulative natural gas production from Utah fields now exceeds 8 Tcf. Recent successful drilling has been expanding reserves by about 10 percent per year, one of the highest rates of gas reserves increase in the country. Although gas production from some fields declined during the late 1990s, two factors caused overall gas production to increase. The development of coalbed natural gas (CBNG) accumulations in the Cretaceous Ferron Sandstone play, in particular Drunkards Wash field in central Utah, has increased the State’s annual gas production by 20–30 percent. Also, deeper exploratory and development drilling in the eastern and southern Uinta Basin during the past 5 years has led to discoveries of substantial gas accumulations in tight-sand reservoirs of the Tertiary Wasatch Formation, Cretaceous Mesaverde Group, and Jurassic Entrada and Wingate Sandstones. Significant potential exists for other coalfields (Book Cliffs, Sego, and Wasatch Plateau) around the Uinta Basin to yield CBNG, and the extent of deeper conventional and tight-gas plays remains to be explored. In addition, shale gas reservoirs in the Mississippian Manning Canyon Shale, Pennsylvanian Hermosa Group, and Cretaceous Mancos Shale of central, southeastern, and northeastern Utah, respectively, have tremendous untapped potential. Utah oilfields have produced a cumulative total of 1.3 billion barrels (bbl) of oil. Although annual production decreased from a peak of 41 million bbl in 1985 to 13 million bbl in 2003, the trend has since reversed, and 2005 production reached nearly 17 million bbl. A component (about one-third of the increase) of this turnaround has been the 2004 discovery of Covenant field in the central Utah thrust belt, or "Hingeline." This new field has already produced 3 million bbl of Mississippian-sourced oil from the Jurassic Navajo Sandstone in a thrusted anticline formed during the Sevier orogeny. This new oil play is the focus of extensive leasing and exploration activity—comparable to the late 1970s and early 1980s in the Utah-Wyoming salient of the thrust belt to the north.

248

Access to DOE Database of Oil and Natural Gas Research Results Expanded |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access to DOE Database of Oil and Natural Gas Research Results Access to DOE Database of Oil and Natural Gas Research Results Expanded Access to DOE Database of Oil and Natural Gas Research Results Expanded January 12, 2011 - 12:00pm Addthis Washington, DC - The results of nearly four decades of research supported by the U.S. Department of Energy (DOE) are now available through the OnePetro online document repository. TheOnePetro website now contains NETL's Oil & Gas Knowledge Management Database. DOE's Knowledge Management Database (KMD) provides access to content from dozens of CDs and DVDs related to oil and natural gas research that the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) has published over the years. It also provides links to reports, data sets, and project summaries from ongoing research supported

249

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Authors: Joshua A. Simpson and Robert S. Bowman, New Mexico Technological University, Socorro, NM Venue: 44th Annual Meeting of the Clay Minerals Society in Santa Fe, NM, June 3–7, 2007 (http://www.clays.org/home/HomeAnnualMeeting.html [external site]). Abstract: Surfactant-modified zeolite (SMZ) has been shown to effectively remove benzene, toluene, ethylbenzene, and xylene (BTEX) from water generated during oil and natural gas production (produced water). The BTEX sorption isotherms are linear and noncompetitive, suggesting that the removal mechanism is partitioning into the surfactant’s hydrophobic bilayer formed on SMZ. Even though BTEX sorption in batch systems is rapid, chemical equilibrium models do not accurately describe BTEX transport through packed beds of SMZ. Comparison with transport of a nonreactive tracer (tritium) suggests that two-site, diffusive nonequilibrium sorption-desorption controls BTEX transport. We conducted batch experiments with SMZ to determine the nonequilibrium sorption kinetics of each BTEX constituent. The kinetic measurements were used to parameterize a nonequilibrium transport model to predict BTEX removal under varying flow conditions. The accuracy of predictions is being tested using laboratory column experiments with produced water from the San Juan Basin of New Mexico

250

Gulf Coast oil and natural gas production recover after ...  

U.S. Energy Information Administration (EIA)

Solar › Energy in Brief ... Tropical Storm Don was active at the end of July, taking over 500,000 barrels of crude and 1.1 billion cubic feet of natural gas offline.

251

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production...

252

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis of the composition of volatile hydrocarbons, including methane, ethane, and propane and fixed natural gases (i.e., O2, CO2, and N2+Ar) from headspace void gas and gases...

253

DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Publication Boosts Search for Oil, Natural Gas by DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators May 18, 2009 - 1:00pm Addthis Washington, DC - A comprehensive publication detailing the oil-rich fields of Utah and nearby states, sponsored by the U.S. Department of Energy (DOE), can now provide petroleum companies and related service providers with the geologic, geographic, and engineering data needed to tap into these resources. The Utah Geologic Survey (UGS), with funding support from the Office of Fossil Energy's National Energy Technology Laboratory, recently updated and released a portfolio of oil plays in Utah, as well as neighboring Colorado and Wyoming. Oil plays in this tri-state area are defined as those

254

DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publication Boosts Search for Oil, Natural Gas by Publication Boosts Search for Oil, Natural Gas by Petroleum Operators DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators May 18, 2009 - 1:00pm Addthis Washington, DC - A comprehensive publication detailing the oil-rich fields of Utah and nearby states, sponsored by the U.S. Department of Energy (DOE), can now provide petroleum companies and related service providers with the geologic, geographic, and engineering data needed to tap into these resources. The Utah Geologic Survey (UGS), with funding support from the Office of Fossil Energy's National Energy Technology Laboratory, recently updated and released a portfolio of oil plays in Utah, as well as neighboring Colorado and Wyoming. Oil plays in this tri-state area are defined as those

255

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Authors: Robert S. Bowman, New Mexico Technological University, Socorro, NM; Enid J. Sullivan, Los Alamos National Laboratory, Los Alamos, NM; and Lynn E. Katz and Kerry A. Kinney, University of Texas, Austin, TX. Venue: 44th Annual Meeting of the Clay Minerals Society in Santa Fe, NM, June 3–7, 2007 (http://www.clays.org/home/HomeAnnualMeeting.html [external site]). Abstract: About 2.3 billion cubic meters (600 billion gallons) of wastewater (produced water) is generated each year as a byproduct of oil and gas operations in the continental United States. Disposal of this water represents about 10% of the cost of hydrocarbon production. Inexpensive treatment technologies can lower the cost of disposal and generate higher-quality water for other uses. Surfactant-modified zeolite (SMZ) has been shown to effectively sorb a variety of nonpolar organic compounds from water. SMZ was tested as a medium to remove benzene, toluene, ethylbenzene, and xylenes (BTEX) from produced water generated during extraction of coalbed natural gas. BTEX removal is necessary prior to surface discharge of produced waters or as a pretreatment for reverse osmosis. We demonstrated in laboratory column experiments that BTEX-saturated SMZ is readily regenerated by air sparging. There was no loss in BTEX sorption capacity, and a minor decrease in hydraulic conductivity, after 50 sorption/regeneration cycles. Based upon the laboratory results, a pilot-scale produced-water treatment system was designed and tested at a reinjection facility in the San Juan Basin of New Mexico. The SMZ-based system was designed to treat up to 110 liters (30 gallons) of produced water per hour on a continuous basis by running two SMZ columns in series. The system performed as predicted, based on laboratory results, over repeated feed and regeneration cycles during the month-long operation. The BTEX-laden sparge gases were treated with a vapor-phase bioreactor system, resulting in an emissions-free process

256

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves  

U.S. Energy Information Administration (EIA)

... between the production of oil from the layers of shale within the Bakken Formation and the extraction of oil from oil shale plays. See ...

257

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory...  

Gasoline and Diesel Fuel Update (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

258

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

259

U.S. Natural Gas Gross Withdrawals from Oil Wells (Million ...  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

260

EIA Report 9/5/08 - Hurricane Impacts on U.S. Oil & Natural Gas ...  

U.S. Energy Information Administration (EIA)

Market expectations that shut-in crude oil production and refinery outages are going to be temporary continues to keep prices down, ... Natural Gas As of 12:30 pm EDT ...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA Report 9/8/08 - Hurricane Impacts on U.S. Oil & Natural Gas ...  

U.S. Energy Information Administration (EIA)

Market expectations that shut-in crude oil production and refinery outages are going to be temporary continues to keep prices down, ... Natural Gas As of 12:30 pm EDT ...

262

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation ...  

U.S. Energy Information Administration (EIA)

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1973: 99: 89: 90: 79: 72 ...

263

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation ...  

U.S. Energy Information Administration (EIA)

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

264

The relationship between crude oil and natural gas spot prices and its stability over time  

E-Print Network (OSTI)

The historical basis for a link between crude oil and natural gas prices was examined to determine whether one has existed in the past and exists in the present. Physical bases for a price relationship are examined. An ...

Ramberg, David J. (David John)

2010-01-01T23:59:59.000Z

265

Oil and natural gas reserve prices, 1982-2002 : implications for depletion and investment cost  

E-Print Network (OSTI)

A time series is estimated of in-ground prices - as distinct from wellhead prices ? of US oil and natural gas reserves for the period 1982-2002, using market purchase and sale transaction information. The prices are a ...

Adelman, Morris Albert

2003-01-01T23:59:59.000Z

266

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...  

Annual Energy Outlook 2012 (EIA)

Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

267

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...  

Gasoline and Diesel Fuel Update (EIA)

and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0...

268

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

269

U.S. Crude Oil and Natural Gas Active Well Service Rigs in ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9;

270

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1973: 1,219: 1,126: 1,049: 993 ...

271

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Authors: Mark White and Pete McGrail Venue: The 9th International Conference on Greenhouse Gas Technologies will be held November 16-20, 2008 at The Omni Shoreham Hotel in Washington, DC. The Conference will be organized by MIT in collaboration with the IEA Greenhouse Gas R&D Programme (IEA GHG), with major sponsorship from the US Department of Energy. http://mit.edu/ghgt9/ . Abstract: Under high pressure and low temperature conditions small nonpolar molecules (typically gases) can combine with water to form crystalline structures known as clathrate hydrates. Methane (CH4) and carbon dioxide (CO2) form nearly identical clathrate structures (sI), with the CO2 hydrate being thermodynamically favored. Vast accumulations of methane hydrates have been found in suboceanic deposits and beneath the arctic permafrost. Because of the large volumetric storage densities, clathrate hydrates on the deep ocean floor have been suggested as a sequestration option for CO2. Alternatively, CO2 hydrates can be formed in the geologic settings of naturally occurring accumulations of methane hydrates. Global assessments of natural gas resources have shown that gas hydrate resources exceed those of conventional resources, which is indicative of the potential for clathrate hydrate sequestration of CO2. Recovery of natural gas from hydrate-bearing geologic deposits has the potential for being economically viable, but there remain significant technical challenges in converting these natural accumulations into a useable resource. Currently, conventional methods for producing methane hydrates from geologic settings include depressurization, thermal stimulation, and inhibitor injection. Although CO2 clathrates generally are not naturally as abundant as those of CH4, their occurrence forms the foundation of an unconventional approach for producing natural gas hydrates that involves the exchange of CO2 with CH4 in the hydrate structure. This unconventional concept has several distinct benefits over the conventional methods: 1) the heat of formation of CO2 hydrate is greater than the heat of dissociation of CH4 hydrate, providing a low-grade heat source to support additional methane hydrate dissociation, 2) exchanging CO2 with CH4 will maintain the mechanical stability of the geologic formation, and 3) the process is environmentally friendly, providing a sequestration mechanism for the injected CO2. The exchange production technology would not be feasible without the favorable thermodynamics of CO2 hydrates over CH4 hydrates. This situation yields challenges for the technology to avoid secondary hydrate formation and clogging of the geologic repository. Laboratory-scale experiments have demonstrated the feasibility of producing natural gas and sequestering CO2 using the direct exchange technology in geologic media. These experiments have duplicated numerically using the STOMP-HYD simulator, which solves the nonisothermal multifluid flow and transport equations for mixed hydrate systems in geologic media. This paper describes the design (via numerical simulation) of a pilot-scale demonstration test of the CO2 exchange production and sequestration technology for a geologic setting beneath the arctic permafrost, involving a gas-hydrate interval overlying a free-gas interval (i.e., Class 1 Hydrate Accumulation).

272

Factors Affecting the Relationship between Crude Oil and Natural Gas Prices (released in AEO2010)  

Reports and Publications (EIA)

Over the 1995-2005 period, crude oil prices and U.S. natural gas prices tended to move together, which supported the conclusion that the markets for the two commodities were connected. Figure 26 illustrates the fairly stable ratio over that period between the price of low-sulfur light crude oil at Cushing, Oklahoma, and the price of natural gas at the Henry Hub on an energy-equivalent basis.

Information Center

2010-05-11T23:59:59.000Z

273

Deepwater Oil & Gas Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

274

NETL: News Release - Access to DOE Database of Oil and Natural Gas Research  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2011 2, 2011 Access to DOE Database of Oil and Natural Gas Research Results Expanded Washington, DC -The results of nearly four decades of research supported by the U.S. Department of Energy (DOE) are now available through the OnePetro online document repository. Click to link to the OnePetro website The OnePetro website now contains NETL's Oil & Gas Knowledge Management Database DOE's Knowledge Management Database (KMD) provides access to content from dozens of CDs and DVDs related to oil and natural gas research that the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) has published over the years. It also provides links to reports, data sets, and project summaries from ongoing research supported by FE's Oil and Natural Gas Program.

275

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Strategies for Marine Hydrate Reservoirs Production Strategies for Marine Hydrate Reservoirs Production Strategies for Marine Hydrate Reservoirs Authors: J. Phirani. & K. K. Mohanty Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http://www.ichg.org/showcontent.aspx?MenuID=287 [external site]. Abstract: Large quantities of natural gas hydrate are present in marine sediments. This research is aimed at assessing production of natural gas from these deposits. We had developed a multiphase, multicomponent, thermal, 3D simulator in the past, which can simulate production of hydrates both in equilibrium and kinetic modes. Four components (hydrate, methane, water and salt) and five phases (hydrate, gas, aqueous-phase, ice and salt precipitate) are considered in the simulator. The intrinsic kinetics of hydrate formation or dissociation is considered using the Kim–Bishnoi model. Water freezing and ice melting are tracked with primary variable switch method (PVSM) by assuming equilibrium phase transition. In this work, we simulate depressurization and warm water flooding for hydrate production in a hydrate reservoir underlain by a water layer. Water flooding has been studied as a function of well spacing, well orientation, and injection temperature. Results show that depressurization is limited by the supply of heat of hydrate formation. Warm water flooding can supply this heat of formation. Gas production rate is higher for the water flooding than depressurization. Optimum configuration for wells and water temperature are identified.

276

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Carbon isotope evidence (13C and 14C) for fossil methane-derived dissolved organic carbon from gas hydrate-bearing cold seeps Authors: Pohlman, J.W. (speaker), Coffin, R.B., and Osburn, C.L., U.S. Naval Research Laboratory, Washington, D.C.; Bauer, J.E., College of William & Mary, Williamsburg, VA; Venue: Goldschmidt 2007 Atoms to Planets conference in Cologne, Germany, August 19-24, 2007 http://www.the-conference.com/conferences/2007/gold2007/ [external site]. Abstract: No abstract available yet. Related NETL Project: The proposed research of the related NETL project DE-AI26-05NT42496, “Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates,” is to conduct scientific studies of natural gas hydrates to support DOE efforts to evaluate and understand methane hydrates, their potential as an energy resource, and the hazard they may pose to ongoing drilling efforts. This project

277

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Authors: Mohamed Toema (speaker), Sarah Nuss-Warren, and Kirby S. Chapman, Kansas State University National Gas Machinery Laboratory; James McCarthy and Thomas McGrath, Innovative Environmental Solutions Inc. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: The researchers are conducting a project to characterize pollutant emissions performance of field gas-fired four-stroke cycle rich burn engines equipped with non-selective catalytic reduction (NSCR) technology. Engine emissions and operating parameters are being monitored on three engines over an extended period. In addition, a mapping study was conducted on one engine. The NSCR was operated at various controlled air-to-fuel (AF) ratios while emission measurements were conducted and engine operating parameters monitored. NOx, CO, and oxygen were measured using both EPA reference method technology and the portable analyzer used in the long-term study. In the mapping study, ammonia, formaldehyde, CO, NOx, and speciated hydrocarbon emissions were recorded in real-time using an extractive FTIR system. This paper focuses on the engine mapping phase. The mapping tests demonstrated a trade-off between NOx emissions and CO, ammonia, and hydrocarbon emissions. Richer engine operation (lower AF) decreases NOx emissions at the expense of higher CO, ammonia, and hydrocarbons. Leaner operation has the opposite effect. The results to date of the semi-continuous monitoring are presented in a separate paper.

278

Oil & Natural Gas Technology DOE Award No.: DE-FC26-04NT15510  

E-Print Network (OSTI)

i Oil & Natural Gas Technology DOE Award No.: DE-FC26-04NT15510 Final Report A Systems Approach has compiled and presented a broad base of information and knowledge needed by independent oil and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due

279

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

280

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

in Kansas Author: Stan McCool, University of Kansas Center for Research Venue: Tertiary Oil Recovery Projects 18th Improved Oil Recovery Conference, Wichita, KS, April 12,...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Authors: Kirby S. Chapman (speaker), Mohamed Toema, and Sarah Nuss-Warren, Kansas State University National Gas Machinery Laboratory. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: This paper describes work on a project to characterize pollutant emissions performance of non-selective catalytic reduction (NSCR) technology, including a catalyst and air-to-fuel ratio controller (AFRC), applied to four-stroke cycle rich-burn engines. Emissions and engine data were collected semi-continuously with a portable emissions analyzer on three engines in the Four Corners area. In addition, periodic emissions measurements that included ammonia were conducted several times. Data collected from October 2007 through August 2008 show significant variation in emissions levels over hours, days, and longer periods of time, as well as seasonal variation. As a result of these variations, simultaneous control of NOx to below a few hundred parts per million (ppm) and CO to below 1,000 ppm volumetric concentration was not consistently achieved. Instead, the NSCR/AFRC systems were able to simultaneously control both species to these levels for only a fraction of the time the engines were monitored. Both semi-continuous emissions data and periodically collected emissions data support a NOx-CO trade-off and a NOx-ammonia tradeoff in NSCR-equipped engines.

282

International Natural Gas Production - 2003  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natura ...

283

Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas ...  

U.S. Energy Information Administration (EIA)

recovery projects, improving technology, and operator corrections to prior year reports. Changing ... field development and enhanced oil recovery projects

284

Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research  

DOE Data Explorer (OSTI)

NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

285

Natural Gas Annual 2005  

U.S. Energy Information Administration (EIA)

Oil and Gas Field Code Master List ... Hawaii, 2001-2005 ... Energy Information Administration/Natural Gas Annual 2005 vii 54.

286

Natural Gas and Crude Oil Prices in AEO (released in AEO2009)  

Reports and Publications (EIA)

If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the AEO2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

Information Center

2009-03-31T23:59:59.000Z

287

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics – Application to Methane Hydrates in Natural Systems Authors: Antone K. Jain and Ruben Juanes Venue: American Geophysical Union Fall Meeting, San Francisco, CA, December 15-19, 2008 – Special Session H06: Particle Tracking Simulation of Fluid Flow and Mass Transport. http://www.agu.org/meetings/fm08/ Abstract: A discrete element model is presented for the simulation, at the grain scale, of gas migration in brine-saturated deformable media. The model rigorously accounts for the presence of two fluids in the pore space by incorporating grain forces due to pore fluid pressures, and surface tension between fluids. The coupled model permits investigating an essential process that takes place at the base of the hydrate stability zone: the upward migration of methane in its own free gas phase. The ways in which gas migration may take place were elucidated: (1) by capillary invasion in a rigid-like medium; and (2) by initiation and propagation of a fracture. Results indicate that the main factor controlling the mode of gas transport in the sediment is the grain size, and that coarse-grain sediments favor capillary invasion, whereas fracturing dominates in fine-grain media. The results have important implications for understanding hydrates in natural systems. The results predict that, in fine sediments, hydrate will likely form in veins that follow a fracture-network pattern, and the hydrate concentration in this type of accumulations will likely be quite low. In coarse sediments, the buoyant methane gas is likely to invade the pore space more uniformly, in a process akin to invasion percolation, and the overall pore occupancy is likely to be much higher than for a fracture-dominated regime. These implications are consistent with field observations of methane hydrates in natural

288

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Physical properties of sediment from the 2006 National Gas Hydrate Program expedition offshore India Authors: Winters, W.J., (U.S. Geological Survey, speaker), Gomes, M., Giosan, L., Johnson, J., Kastner, M., Torres, M.E., Long, P.E., Schaef, H.T., Rose, K., and the NGHP-01 Shipboard Scientific Party. Venue: India’s Directorate General of Hydrocarbons’ International Conference on Gas Hydrates in Nodia (New Delhi), India, February 6–8, 2008 (http://www.dghindia.org/site/pdfattachments/upcomingevents/Updated_Programme_gAS[1].pdf [PDF-external site]). Abstract: The scientific goals of the NGHP Expedition 01 physical properties program are to a) constrain baseline index properties of host sediment; b) ground-truth well-log, seismic, and other shipboard data sets; c) relate textural characteristics to gas hydrate occurrence and small-scale porous media effects; and d) relate index properties and textural analyses to gas hydrate occurrence and regional sedimentologic interpretations. During the shipboard phase of NGHP-01, baseline bulk physical properties, such as water content, grain density, bulk density, and porosity, were determined on more than 1,800 sediment samples from 14 sites located in four study areas. Overall, physical properties change more significantly near the seafloor, then at a much more gradual rate with depth. The transition depth varies between sites but can range from about 12 to as deep as 200 meters beneath the seafloor. In addition, shear strength, electrical resistivity, magnetic susceptibility, thermal conductivity, and acoustic velocity measurements were conducted to further characterize the sediment. These measurements, when combined with sedimentologic and geochemical studies, delineate the role of the host sediment in hydrate formation and occurrence and are used in modeling the response of hydrate-bearing sediment to natural change or drilling operations. Strong correlation typically exists between physical properties determined from shipboard analyses and well-log studies. More than 500 shore-based grain-size analyses have been conducted that indicate that most sediment is characterized as clayey silt to silty clay with a median grain size that is near or slightly greater than the silt-clay boundary. Grain-size analyses are being conducted on samples identified by infrared imaging as having high concentrations of gas hydrate in recovered core samples. These analyses will be used to study porous-media effects and geologic controls on the occurrence of gas hydrate in situ.

289

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments HyFlux - Part II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments Authors: Naehr, T.H., Asper, V., Garcia, O., Kastner, M., Leifer, I., MacDonald, I.R., Solomon, E., Yvon-Lewis, S., and Zimmer, B. Venue: AGU Fall Meeting, San Francisco, CA, December 15-19 2008 -- Session OS25: Methane Flux from Naturally Occurring Marine Gas Hydrates http://www.agu.org Abstract: The recently funded DOE/NETL study "HyFlux: Remote sensing and sea-truth measurements of methane flux to the atmosphere" (see MacDonald et al.: HyFlux - Part I) will combine sea surface, water column and shallow subsurface observations to improve our estimates of methane flux from submarine seeps and associated gas hydrate deposits to the water column and atmosphere along the Gulf of Mexico continental margin and other selected areas world-wide. As methane-rich fluids rise towards the sediment-water interface, they will interact with sulfate-rich pore fluids derived from overlying bottom water, which results in the formation of an important biogeochemical redox boundary, the so-called sulfate-methane interface, or SMI. Both methane and sulfate are consumed within the SMI and dissolved inorganic carbon, mostly bicarbonate (HCO3-) and hydrogen sulfide are produced, stimulating authigenic carbonate precipitation at and immediately below the SMI. Accordingly, the formation of authigenic carbonates in methane- and gas-hydrate-rich sediments will sequester a portion of the methane-derived carbon. To date, however, little is known about the quantitative aspects of these reactions. Rates of DIC production are not well constrained, but recent biogeochemical models indicate that CaCO3 precipitation rates may be as high as 120 µmol cm-2a-1. Therefore, AOM-driven carbonate precipitation must be considered when assessing the impact of gas-hydrate-derived methane on the global carbon cycle.

290

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

site Abstract: About 1.5 billion standard cubic feet of CO2 is injected into US oil fields each day, resulting in the recovery of about 200,000 barrels per day of oil, but...

291

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves ...  

U.S. Energy Information Administration (EIA)

2. Overview National Summary The United States had the following proved reserves as of December 31, 1999: Crude Oil — 21,765 million barrels Dry ...

292

Active hurricane season expected to shut-in higher amount of oil and natural gas production  

U.S. Energy Information Administration (EIA) Indexed Site

Active hurricane season expected to shut-in higher amount of Active hurricane season expected to shut-in higher amount of oil and natural gas production An above-normal 2013 hurricane season is expected to cause a median production loss of about 19 million barrels of U.S. crude oil and 46 billion cubic feet of natural gas production in the Gulf of Mexico, according to the new forecast from the U.S. Energy Information Administration. That's about one-third more than the amount of oil and gas production knocked offline during last year's hurricane season. Government weather forecasts predict 13 to 20 named storms will form between June and the end of November, with 7 to 11 of those turning into hurricanes. Production outages in previous hurricane seasons were as high as 107 million barrels of crude oil

293

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

294

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

295

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone Conditions under Which Gaseous Methane Will Fracture Ocean Sediments and Penetrate Through the Hydrate Stability Zone: Modeling Multiphase Flow and Sediment Mechanics at the Pore-Scale Authors: Antone K. Jain and Ruben Juanes Venue: American Geophysical Union Fall Meeting, San Francisco, CA, December 15-19, 2008 – Special Session H06: Particle Tracking Simulation of Fluid Flow and Mass Transport. http://www.agu.org/meetings/fm08/ Abstract: Two competing processes were simulated, capillary invasion and fracture opening, by which free methane gas penetrates the Hydrate Stability Zone (HSZ). In situ conditions were predicted in which the methane propagates fractures and flows all the way through the HSZ and into the ocean, bypassing hydrate formation. In the fully coupled model, the discrete element method was used to simulate the sediment mechanics, and pore fluid pressures and surface tension between the gas and brine were accounted for by incorporating additional sets of pressure forces and adhesion forces. Results indicate that given enough capillary pressure, the main factor controlling the mode of gas transport is the grain size, and show that coarse-grain sediments favor capillary invasion and widespread hydrate formation, whereas fracturing dominates in fine-grain sediments. The fracturing threshold was calculated as a function of grain size, capillary pressure, and seafloor depth, and place these results in the context of naturally-occurring hydrate

296

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults...

297

NETL: Oil & Natural Gas Projects: Next Generation Surfactants...  

NLE Websites -- All DOE Office Websites (Extended Search)

on reservoirs in Pennsylvanian age (Penn) sands. Performer Oklahoma University Enhanced Oil Recovery Design Center, Norman, OK Background Primary and secondary methods have...

298

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Epifluorescence Techniques The Use of Epifluorescence Techniques to Determine Potential Oil-Prone Areas in the Mississippian Leadville Limestone, Northern Paradox Basin, Utah...

299

Eastern Mediterranean Region Overview of oil and natural gas ...  

U.S. Energy Information Administration (EIA)

demand. In Cyprus, Lebanon, and the Palestinian Territories oil exploration and development is still in its infancy, however each hopes to capitalize on successful ...

300

Investing in Oil and Natural Gas A Few Key Issues  

U.S. Energy Information Administration (EIA)

The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Oil Prices Rose, ...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the...

302

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated Results from Deep Trek High-Temperature Electronics Development Programs Updated Results from Deep Trek High-Temperature Electronics Development Programs Updated Results from Deep Trek High-Temperature Electronics Development Programs Author: Bruce W. Ohme, Honeywell Inc., Plymouth, MN. Venue: HITEN 2007 (High-Temperature Electronics Network conference), St. Catherine’s College, Oxford, U.K., September 17–19, 2007, (http://science24.com/event/hiten2007 [external site]). Abstract: Electronics are used in modern oil and gas exploration to collect, log, and/or process data such as heading and inclination, weight on the bit, vibration, seismic/acoustic response, temperature, pressure, radiation, and resistivity of the strata. High-temperature electronics are needed that can operate reliably in deep-well conditions (up to 250oC). Under its Deep Trek program, the U.S. Department of Energy has funded two projects led by Honeywell. The first project, launched in 2003 and being completed this year, established a production-level integrated circuit manufacturing process, components, and design tools specifically targeting high-temperature environments (up to 250oC). The second project, launched in 2006 and expected to be completed in 2008, will develop rugged packaging suitable for downhole shock and vibration levels that will be used to house and demonstrate components developed in the earlier project. This paper will describe updated results from both of these projects, including previously unreported results obtained from prototype testing of a high-resolution analog-to-digital converter (ADC); a high-temperature, single-poly, floating-gate EEPROM (electrically erasable programmable read-only memory); and a 12-bit, successive-approximation ADC. Also, a multi-chip module being developed as a complete downhole processing unit will be discussed

303

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Production From Oceanic Class 2 Hydrate Accumulations Gas Production From Oceanic Class 2 Hydrate Accumulations Authors: George J. Moridis, Matt T. Reagan, Lawrence Berkeley...

304

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Gas-hydrate concentration and uncertainty...

305

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of fiber optic temperature and strain sensing technology to gas hydrates Application of fiber optic temperature and strain sensing technology to gas hydrates Authors:...

306

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Production From Class 2 Hydrate Accumulations in the Permafrost Gas Production From Class 2 Hydrate Accumulations in the Permafrost Authors: Moridis, George (speaker) and...

307

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies for Gas Production From Oceanic Class 3 Hydrate Accumulations Strategies for Gas Production From Oceanic Class 3 Hydrate Accumulations Authors: George J. Moridis, Matt...

308

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Controls on the Occurrence of Gas Hydrates in the Indian Continental Margin Geologic Controls on the Occurrence of Gas Hydrates in the Indian Continental Margin: Results...

309

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and...

310

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Study of Hydrate Formation in Sediments from Methane Gas Grain Scale Study of Hydrate Formation in Sediments from Methane Gas: Role of Capillarity Authors: Javad Behseresht,...

311

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Similarity Solution for Gas Production From Dissociating Hydrates in Geologic Media Similarity Solution for Gas Production From Dissociating Hydrates in Geologic Media Authors:...

312

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Authors: John and Deidre Boysen Venue:...

313

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Authors: Maa...

314

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Identifying gas hydrate prospects offshore India Identifying gas hydrate prospects offshore India Authors: Collett, Timothy S. (speaker: Winters, Bill, U.S. Geological Survey)....

315

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas hydrates: A multidisciplinary research opportunity Gas hydrates: A multidisciplinary research opportunity Author: William F. Waite, U.S. Geological Survey (USGS) Venue:...

316

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Yates Formation Gas-Reservoir and Seal Facies, Depositional and Diagenetic Model and Well-log Responses Yates Formation Gas-Reservoir and Seal Facies, Depositional and Diagenetic...

317

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceanic Gas Hydrate Instability and Dissociation in Response to Climate Change Oceanic Gas Hydrate Instability and Dissociation in Response to Climate Change Authors: Moridis,...

318

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Cretaceous and Early Paleogene. Such temperatures would impact the distribution of gas hydrate in marine sediment. Clearly, the vertical extent of the Gas Hydrate Stability...

319

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Use of Horizontal Wells in Gas Production from Hydrate Accumulations The Use of Horizontal Wells in Gas Production from Hydrate Accumulations Authors: George J. Moridis...

320

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Feasibility of Monitoring Gas Hydrate Production with Geophysical Methods Feasibility of Monitoring Gas Hydrate Production with Geophysical Methods Authors: M.B. Kowalsky...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits (OTC 19554)...

322

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological complexities in shale gas systems Geological complexities in shale gas systems Authors: H. Rowe, R. G. Loucks, S. C. Ruppel, and S. Rimmer Venue: 2008 American...

323

Economic impact analysis of the oil and natural gas production NESHAP and the natural gas transmission and storage NESHAP. Final report  

SciTech Connect

This report evaluates the impact of the final rule for controls of hazardous air pollutants (HAPs) in the Oil and Natural Gas Production industry and the Natural Gas Transmission and Storage industry. Total social costs are estimated by evaluating costs of compliance with the rule and associated market impacts, including: price changes in the natural gas market, adjustments in quantity produced, small entity impacts, and employment impacts.

Conner, L.

1999-05-01T23:59:59.000Z

324

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network (OSTI)

The prospect of natural gas decontrol as well as uncertainties of gas and other fuel supplies have aroused interest in electric processes among industrial officials. Where there is ample electric power supply at reasonable cost, an opportunity exists for selected industry groups to make cost-effective conversions to electric processes. Technological advances in high-efficiency electric process equipment increase the potential for energy substitution. This, in turn, is changing the market outlook for electric utilities. By and large, energy substitution decisions will be based on their economic and technical feasibility. In view of projections of the long-term price escalations of oil and natural gas, the economic of choosing electricity are looking good at present. This paper will describe certain industrial applications where the substitution of electricity for oil and natural gas appears economically advantageous.

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

325

NETL: natural gas and oil archive of announcements from home...  

NLE Websites -- All DOE Office Websites (Extended Search)

subscription information DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources A technology as simple as an advanced heater cable may hold the secret for...

326

NETL: Oil & Natural Gas Projects 00516 North Dakota Refining...  

NLE Websites -- All DOE Office Websites (Extended Search)

the North Dakota Refining Capacity study is to assess the feasibility of increasing the oil refinery capacity in North Dakota, and, if possible, determine the scale of such an...

327

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

is the fresh to slightly saline Birds-Nest aquifer. This aquifer is located in the oil shale zone of the Green River formations Parachute Creek member and is 200 to 300 ft...

328

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 1% to a higher level. The success of...

329

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceanic gas hydrate dissociation in response to climate change and the fate of hydrate-derived methane Oceanic gas hydrate dissociation in response to climate change and the fate...

330

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling Authors: E. Jones, T....

331

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Grain-Scale Study of Hydrate Formation in Sediments from Methane Gas: A Coupled Fluid-Solid Interaction Model Grain-Scale Study of Hydrate Formation in Sediments from Methane Gas:...

332

Oil and natural gas import reliance of major economies ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ...

333

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Authors: Danielle Lehle and Michael D. Vanden Berg, Utah Geological Survey. Venue: Economic Geology of the Rocky Mountain Region session, May 11, 2009, Geological Society of America-Rocky Mountain Section annual meeting, Orem, Utah, May 11-13, 2009. http://www.geosociety.org/sectdiv/rockymtn/09mtg/index.htm [external site] Abstract: The upper Green River formationÂ’s oil shale deposits located within the Uinta Basin of Utah and the Piceance Creek Basin of Colorado contain remarkably similar stratigraphic sequences despite being separated by the Douglas Creek arch. Individual horizons, as well as individual beds, can be traced for hundreds of miles within and between the two basins. However, changes in the topography-controlled runoff patterns between the basins, as well as changes in localized climate conditions throughout upper Green River time, created significant differences between basin-specific deposits. These variations affected the richness and thickness of each oil shale zone, resulting in basin-specific preferred extraction techniques (i.e., in-situ in Colorado and mining/retort in Utah). ColoradoÂ’s oil-shale resource was mapped and quantified by the USGS in the late 1970s, whereas this study is the first attempt at quantifying UtahÂ’s overall resource by specific oil shale horizon. This presentation focuses on the Mahogany zone (MZ) and the stratigraphically lower R-6 zone; subsequent work will define other important horizons.

334

Natural Gas Gross Withdrawals from Oil Wells (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January 2011 ...

335

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Authors: Yongkoo Seol and Timothy J. Kneafsey Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http:...

336

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

with the bulk water phase, anticipating preferential growth of methane hydrate there. Gas invasion of sediments is one mechanism by which methane hydrates are believed to form....

337

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

strength and acoustic properties of repressurized samples from the 2006 National Gas Hydrate Program of India Expedition Triaxial strength and acoustic properties of...

338

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and quantification of the methane hydrate resource potential associated with the Barrow Gas Field Characterization and quantification of the methane hydrate resource potential...

339

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanics Authors: Antone K. Jain and Ruben Juanes Venue: International Conference on Gas Hydrates, Vancouver, Canada, July 7-10, 2008. ( http:www.icgh.org external site )...

340

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

the dominant microbial communities in marine sediments containing high concentrations of gas hydrates Distribution of the dominant microbial communities in marine sediments...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Subsurface sequestration of methane-derived carbon in gas-hydrate-bearing marine sediments HyFlux - Part II: Subsurface sequestration of methane-derived carbon in...

342

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoirs Authors: J. Phirani. & K. K. Mohanty Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http:...

343

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of oceanic Hydrate Bearing Sediments (HBS), during depressurization-induced gas production in general, and potential wellbore in-stability and casing deformation in...

344

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

before the installation of facilities for hydrate deposits can proceed, and if gas production from hydrate deposits is to become reality. HBS are often unconsolidated, and are...

345

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Fractures in the Barnett Shale in the Delaware Basin Natural Fractures in the Barnett Shale in the Delaware Basin, Pecos Co. West Texas: comparison with the Barnett Shale...

346

Office of Oil and Natural Gas Prepared by  

E-Print Network (OSTI)

The domestic oil resource recovery potential outlined in this report is based on six basin-oriented assessments released by the Department of Energy (DOE) in April 2005. These estimates do not include the additional oil resource potential outlined in the ten basin-oriented assessments or recoverable resources from residual oil zones, as discussed in related reports issued by DOE in February 2006. Accounting for these, the future recovery potential from domestic undeveloped oil resources by applying EOR technology is 240 billion barrels, boosting potentially recoverable resources to 430 billion barrels. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility of the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Department of Energy.

Prepared For; Vello A. Kuuskraa; George J. Koperna

2006-01-01T23:59:59.000Z

347

Office of Oil and Natural Gas Prepared by  

E-Print Network (OSTI)

Much of the analysis in this report was performed in late 2005. The domestic oil resource recovery potential outlined in the report is based on six basin-oriented assessments released by the United States Department of Energy in April 2005. These estimates do not include the additional oil resource potential outlined in the ten basin-oriented assessments or recoverable resources from residual oil zones, as discussed in related reports issued by Department of Energy in February 2006. Accounting for these, the future recovery potential from domestic undeveloped oil resources by applying EOR technology is 240 billion barrels, boosting potentially recoverable resources to 430 billion barrels. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility of the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The findings and conclusions in this report are those of the authors and do not necessarily

L. Stephen Melzer; Prepared For; L. Stephen Melzer; Melzer Consulting

2006-01-01T23:59:59.000Z

348

The domestic natural gas and oil initiative. Energy leadership in the world economy  

SciTech Connect

Two key overarching goals of this Initiative are enhancing the efficiency and competitiveness of U.S. industry and reducing the trends toward higher imports. These goals take into account new Federal policies that reflect economic needs, including economic growth, deficit reduction, job creation and security, and global competitiveness, as well as the need to preserve the environment, improve energy efficiency, and provide for national security. The success of this Initiative clearly requires coordinated strategies that range far beyond policies primarily directed at natural gas and oil supplies. Therefore, this Initiative proposes three major strategic activities: Strategic Activity 1 -- increase domestic natural gas and oil production and environmental protection by advancing and disseminating new exploration, production, and refining technologies; Strategic Activity 2 -- stimulate markets for natural gas and natural-gas-derived products, including their use as substitutes for imported oil where feasible; and Strategic Activity 3 -- ensure cost-effective environmental protection by streamlining and improving government communication, decision making, and regulation. Finally, the Initiative will reexamine the costs and benefits of increase oil imports through a broad new Department of Energy study. This study will form the basis for additional actions found to be warranted under the study.

1993-12-01T23:59:59.000Z

349

The domestic natural gas and oil initiatve. First annual progress report  

Science Conference Proceedings (OSTI)

This document is the first of a series of annual progress reports designed to inform the industry and the public of the accomplishments of the Domestic Natural Gas and Oil Initiative (the Initiative) and the benefits realized. Undertaking of the Initiative was first announced by Hazel O`Leary, Secretary of the Department of Energy (Department or DOE), in April 1993.

NONE

1995-02-01T23:59:59.000Z

350

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Authors: Maša Prodanovic (speaker), Javad Behseresht, Yao Peng, Steven L. Bryant, Antone K. Jain and Ruben Juanes Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: A spectrum of behavior is encountered in methane hydrate provinces, especially ocean sediments, ranging from essentially static accumulations where the pore space is filled with hydrate and brine, to active seeps where hydrate and methane gas phase co-exist in the hydrate stability zone (HSZ). The grain-scale models of drainage and fracturing presented demonstrate key processes involved in pressure-driven gas phase invasion of a sediment. A novel extension of invasion percolation to infinite-acting, physically representative networks is used to evaluate the connectivity of water in a gas-drained sediment. A novel implementation of the level set method (LSM) is used to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. The discrete element method (DEM) is extended to model the coupling between the pore fluids and the solid, and thereby predict the onset of sediment fracturing by gas phase pressure under in situ loading conditions. The DEM grain mechanics model accounts for the different pressure of brine and methane gas in a “membrane” two-fluid model. The fluid-fluid configuration from LSM can be mapped directly to the pore space in DEM, thereby coupling the drainage and mechanics models. The type of behavior that can emerge from the coupled processes is illustrated with an extended LSM model. The extension computes grain displacement by the gas phase with a simple kinematic rule.

351

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

352

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

353

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

354

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

355

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

356

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

357

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

358

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

359

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

360

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

362

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

363

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

364

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

365

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

366

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

367

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 9, 2012 November 9, 2012 Energy Department Provides Additional Emergency Fuel Loan to Department of Defense as Part of Hurricane Sandy and Nor'easter Recovery As part of the government-wide response and recovery effort for Hurricane Sandy and the Nor'easter, the Energy Department is providing the Department of Defense with additional ultra-low sulfur diesel fuel from the Northeast Home Heating Oil Reserve in response to a request from the State of Connecticut. November 2, 2012 Energy Department to Loan Emergency Fuel to Department of Defense as Part of Hurricane Sandy Response Release from Northeast Home Heating Oil Reserve to Provide Additional Source of Diesel for Emergency Response in New York/New Jersey Area August 31, 2012 Energy Department Advances Research on Methane Hydrates - the World's

368

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Energy resource Studies in the United States Gas Hydrate Energy resource Studies in the United States Authors: T.Collett (USGS), R. Boswell (DOE), K. Rose (DOE), W. Agena...

369

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas The Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with...

370

Office of Fossil Energy Oil & Natural Gas Technology DOE Award...  

NLE Websites -- All DOE Office Websites (Extended Search)

with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation,...

371

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Pore-Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects Authors: Javad Behseresht, Masa Prodanovic, and Steven Bryant, University of Texas at Austin. Venue: American Geophysical Union fall meeting, San Francisco, CA, December 10-14, 2007 (http://www.agu.org/meetings/fm07/ [external site]). Abstract: A spectrum of behavior is encountered in ocean sediments bearing methane hydrates, ranging from essentially static accumulations where hydrate and brine co-exist, to active cold seeps where hydrate and a methane gas phase co-exist in the hydrate stability zone (HSZ). In this and a companion paper (Jain and Juanes), the researchers describe methods to test the following hypothesis: The coupling between drainage and fracturing, both induced by pore pressure, determines whether methane gas entering the HSZ is converted completely to hydrate. The researchers will describe a novel implementation of the level set method to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. Predictions of fluid configurations in infinite-acting-model sediments indicate that the brine in drained sediment (after invasion by methane gas) is better connected than previously believed. This increases the availability of water and the rate of counter-diffusion of salinity ions, thus relaxing the limit on hydrate build-up within the gas-invaded grain matrix. Simulated drainage of a fracture in sediment shows that points of contact between fracture faces are crucial. They allow residual water saturation to remain within an otherwise gas-filled fracture. Simulations of imbibition—which can occur, for example, after drainage into surrounding sediment reduces gas phase pressure in the fracture—indicate that the gas/water interfaces at contact points significantly shift the threshold pressures for withdrawal of gas. During both drainage and imbibition, the contact points greatly increase water availability for hydrate formation within the fracture. The researchers will discuss coupling this capillarity-controlled displacement model with a discrete element model for grain-scale mechanics. The coupled model provides a basis for evaluating the macroscopic conditions (thickness of gas accumulation below the hydrate stability zone, average sediment grain size, principal earth stresses) favoring co-existence of methane gas and hydrate in the HSZ. Explaining the range of behavior is useful in assessing resource volumes and evaluating pore-to-core scale flow paths in production strategies

372

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

in shales Natural fractures in shales: Origins, characteristics and relevance for hydraulic fracture treatments Authors: J. F. Gale and J. Holder Venue: 2008 American...

373

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase Fluid Flow and Sediment Mechanics Application to Methane Hydrates in Natural Systems Authors: Antone K. Jain and Ruben Juanes Venue: American Geophysical Union...

374

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

375

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Reactive transport modeling of oceanic gas hydrate instability and dissociation in response to climate change Authors: Matthew T. Reagan and George J. Moridis Venue: 6th International Conference on Gas Hydrates 2008, Vancouver, British Columbia, July 9-12, 2008 (http://www.icgh.org [external site]) Abstract: Paleoceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating past global climate. The implication is that global oceanic deposits of methane gas hydrate is the main culprit for a sequence of rapid global warming affects that occurred during the late Quaternary period. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed coupled thermo-hydrological-chemical simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor, and assessed the potential for methane release into the ecosystem. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and the effects of benthic biogeochemical activity. The results show that while many deep hydrate deposits are indeed stable during periods of rapid ocean temperature changes, shallow deposits (such as those found in arctic regions or in the Gulf of Mexico) can undergo rapid dissociation and produce significant carbon fluxes over a period of decades. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane and the formation of carbonates) to sequester the released carbon. This model will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

376

Oil & Natural Gas Technology DOE Award No.: DE-FE0000408 Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FE0000408 Final Report October 2009 - September 2012 Post Retort, Pre Hydro-treat Upgrading of Shale Oil Submitted by: Ceramatec Inc 2425 S. 900 W. Salt Lake City, UT 84119 Prepared by: John H. Gordon, PI Prepared for: United States Department of Energy National Energy Technology Laboratory January 25, 2013 Office of Fossil Energy Final Report: October 2009 - September 2012 Ceramatec Inc, 1 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their em- ployees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

377

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Authors: John and Deidre Boysen Venue: International Petroleum and Biofuels Environmental Conference, November 11-13, 2008, Albuquerque, NM cese@utulsa.edu Abstract: Economic and efficient produced water management is complex. Produced waters contain mixtures of organic and inorganic compounds, including heavy metals. Many of these constituents interfere with treatment processes that are selective for other constituents. Further, the concentrations of organic and inorganic constituents vary widely with location and producing formation. In addition, regulations related to discharge and beneficial uses vary from state to state, basin-to-basin and well location to well location.

378

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum

379

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of the system behavior of hydrate-bearing geologic media involves solving fully coupled mass and heat balance equations. The models need to simulate equilibrium or kinetic processes of hydrate formation and dissociation. TOUGH+HYDRATE is a widely used code for gas hydrate simulations. The code can model non-isothermal gas release, phase changes and flow of fluids and heat. It accounts for up to four mass components and four possible phases. Because hydrate simulations require intensive computational effort, many studies that involve serial processors are limited by problems of complexity and scale. With the growing availability of multi-core CPUs, Linux clusters, and super-computers, the use of parallel processing methods is a distinct advantage. This study develops a domain decomposition approach for large-scale gas hydrate simulations using parallel computation. The approach partitions the simulation domain into small sub-domains. The full simulation domain is simulated integrally by using multiple processes. Each process will be in charge of one portion of the simulation domain for updating thermophysical properties, assembling mass and energy balance equations, solving linear equation systems, and performing other local computations. The linear equation systems are solved in parallel by multiple processes with a parallel linear solver. The multiple processes are run in parallel on shared- or distributed memory multiple-CPU computers. A hybrid approach, running multiple processes in each CPU and using multiple CPUs, may achieve additional speedup. During calculations, communication between processes is needed to update sub-domain boundary parameters. An efficient inter-process communication scheme has been developed. The new approach was implemented into the TOUGH+HYDRATE code and demonstrates excellent speedup and very good scalability. For many large-scale problems, this method can obtain linear or super-linear speedup. This paper will show applications of the new approach to simulate three dimensional field-scale models for gas production from gas-hydrate

380

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Authors: Sean P. Trisch, Wayne D. Pennington, and Roger Turpening, Michigan Technological University, Houghton, MI. Venue: Seismological Society of America’s annual meeting in Waikaloa, Kona, HI., April 11–13, 2007 Abstract: Imaging of the Earth’s crust is increasingly being accomplished through the use of borehole-based sensors. Experience gained in recent crosswell seismic surveys may assist endeavors to image the near-borehole environment near plate boundaries or other places of scientific interest. A high-resolution crosswell seismic data set was collected over a Silurian (Niagaran) reef in Michigan’s Lower Peninsula. The survey was optimized for both reflection imaging purposes and the gathering of a wide range of incidence angles. The reflection image was intended to aid in interpretation of the reef structure at a level of detail never before possible with seismic methods. The survey was also conducted to maximize data available for study of the dependence of amplitudes with angle-of-incidence. Prestack angle data were processed to half-degree intervals and utilized for enhanced interpretation of the seismic image through partial stacks and through amplitude variation with angle (AVA) analyses. Frequencies as high as 3,000 Hz (the limit of the source sweep) were recorded, with a predominant signal at about 2,000 Hz; the well separation was 600 m, and the target reef is at 1,400–1,525 m depth. Many of the interfaces present within the area have small reflection amplitudes at narrow angles that increase substantially near the critical angle. Analyses were performed on various interfaces in the seismic section to compare with Zoeppritz-equation solutions, using rock data acquired through an extensive library of seismic and well logging data available for the area. These models were then compared with the actual AVA character acquired at the interface and matched as closely as possible. Through this analysis and match process, various rock property estimates were inferred or refined.

382

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing the Viscosity of CO2 to Improve EOR Performance Increasing the Viscosity of CO2 to Improve EOR Performance Increasing the Viscosity of CO2 to Improve EOR Performance Authors: D. Xing, NETL; R. Erick, NETL and University of Pittsburgh Department of Chemical and Petroleum Engineering; K. Trickett, J. Eastoe, M. Hollamby, and K.Mutch, Bristol University School of Chemistry; S. Rogers and R. Heenan, ISIS STFC, Rutherford Appleton Laboratory, Chilton, UK; and D. Steytler, University of East Anglia School of Chemical Sciences, Norwich, UK. Venue: May 20, 2009, ISASF-ENSIC 9th International Symposium on Supercritical Fluids, Bordeaux, France, May 18-20, 2009. http://www.issf2009.cnrs.fr/ [external site] Abstract: About 1.5 billion standard cubic feet of CO2 is injected into US oil fields each day, resulting in the recovery of about 200,000 barrels per day of oil, but the low viscosity of CO2 results in viscous fingering and poor volumetric sweep efficiency. If the viscosity of dense CO2 could be increased by a factor of 2-20, much less CO2 would be required to recover the oil. Further, there would be no need for the injection of alternating slugs of water into the reservoir to reduce the relative permeability of the CO2. Researchers have identified two polymeric thickeners for CO2: a fluoroacrylate-styrene copolymer and a vinyl acetate-styrene copolymer. They have also hypothesized that it is possible to increase the viscosity (thicken) dense, high-pressure CO2 via the self-assembly of CO2-soluble surfactants into rod-like micelles. Three semi-fluorinated surfactants have been synthesized in order to test this concept; one with a monovalent cation and a single twin-tail, Na+1((COOCH2C4F8H)2CH2CHSO3)-1, and two with a divalent cation and two twin-tails, Ni+2(((COOCH2C4F8H)2CH2CHSO3)-1)2 and Co+2(((COOCH2C4F8H)2CH2CHSO3)-1)2. Phase behavior results indicate that all three surfactants are soluble to at least 5 wt% in CO2 at 295K and pressures less than 20 MPa. SANS results indicate that only the surfactants with divalent metal ions and two twin tails form cylindrical micelles in CO2. No viscosity enhancement was detected for the surfactant with the monovalent cation. Falling cylinder viscometry results will illustrate the degree of “CO2 thickening” that was achieved by the formation of rod-like micelles at relatively high shear rates. The mobility of the surfactant solution flowing through Berea sandstone was also provided to determine the effectiveness of the thickener at extremely low shear rates characteristic of enhanced oil recovery projects. The performance of the copolymeric and surfactant thickeners will be compared. The strategy for the development of CO2-soluble non-fluorous surfactants capable of forming rod-like micelles will also be presented.

383

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

The geomechanical response of Hydrate-Bearing Sediments (HBS) is a serious concern that needs to be addressed before the installation of facilities for hydrate deposits can proceed, and if gas production from hydrate deposits is to become reality. HBS are often unconsolidated, and are characterized by low shear strength. Heat from external sources, that cross the formation or depressurization-based production, can induce dissociation of hydrates (a strong cementing agent), and degradation of the structural stability of the HBS. Changes in pressure and temperature, phase changes, and the evolution of an expanding (and structurally weak) gas zone can significantly alter the distribution of loads in the sediments. The corresponding changes in the local stress and strain fields can result in substantial changes in the hydrologic, thermal and geomechanical properties of the system, displacement, and potentially failure.

384

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Fracturing and Sand Control Hydraulic Fracturing and Sand Control Hydraulic Fracturing and Sand Control Author: M. Sharma Venue: Industry Workshop, Austin, Texas, May 7, 2008 (http://www.cpge.utexas.edu) Abstract: The Hydraulic Fracturing and Sand Control project consists of a set of 9 projects (5 related to fracturing and 4 related to sand control) that are currently underway. The project began in 2006 and is planned to continue for at least 2 years (2008). Each member company contributes $50,000 per year as a grant to the University and in return receives all the research results from the projects underway. F1. Energized fractures in tight gas sands/ gas shales (Kyle Freihof, Mukul Sharma) F2. Refracturing and stress reorientation in sands / shales (Vasudev Singh, Nicolas Rousell, Mukul Sharma)

385

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Framework of the 2005 Keathley Canyon Geologic Framework of the 2005 Keathley Canyon Gas Hydrate Research Well, Northern Gulf of Mexico Authors: D.R. Hutchinson, P.E. Hart, T.S. Collett, K.M. Edwards, and D.C. Twichell, U.S. Geological Survey, and F. Snyder, WesternGeco-Schlumberger. Venue: American Geophysical UnionÂ’s 2007 Joint Assembly, Acapulco, Mexico, May 22-25, 2007 (http://www.agu.org/meetings/ja07/ [external site]). Abstract: The project was located in the Casey Basin in the northern Gulf of Mexico at 1,335 m water depth. A grid of 2-D high-resolution multichannel seismic lines around the drill sites, targeted for imaging depths down to at least 1,000 m subbottom, reveals multiple disconformities that bound seven mappable seismic stratigraphic units. A major disconformity in the middle of the units stands out for its angular baselapping geometry. From the seismic and drilling data, three episodes of sedimentary deposition and deformation are inferred. The oldest episode consists of fine-grained muds deposited during a period of relative stability in the basin (Units E, F, and G). A second episode (Units C and D) consists of large vertical displacements associated with infilling and ponding of sediment. This second interval corresponds with intercalated fine and coarse-grained material in the drill hole, which sampled the thin edges of much thicker units. The final episode (Units A and B) occurred during much-subdued vertical displacement. Hemipelagic drape (Unit A) characterizes the modern seafloor deposits. The basin is mostly filled. Its sill is part of a subsiding graben that is only 10-20 m shallower than the deepest point in the basin, indicating that gravity-driven transport would mostly bypass the basin. Contemporary faulting along the basin margins has selectively reactivated an older group of faults. The intercalated sand and mud deposits of Units C and D are tentatively correlated with late Pleistocene deposition derived from the western shelf-edge delta/depocenter of the Mississippi River, which was probably most active from 320 ka to 70 ka (Winker and Booth, 2000). Gas hydrate occurs within near-vertical fractures in Units E and F of the oldest episode. The presence of sand within the gas hydrate stability zone is not sufficient to concentrate gas hydrate, even though dispersed gas hydrate occurs deeper in the fractured mud/clay-rich sections of Units E and F.

386

Hyrogen Production from Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2003 Hydrogen Coordination Meeting Arthur Hartstein Program Manager Natural Gas and Oil ProcessingHydrogen Introduction * Natural gas is currently the lowest cost...

387

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Fractures in the Barnett Shale in the Delaware Basin Natural Fractures in the Barnett Shale in the Delaware Basin Natural Fractures in the Barnett Shale in the Delaware Basin, Pecos Co. West Texas: comparison with the Barnett Shale in the Fort Worth Basin Authors: Julia F. W. Gale Venue: West Texas Geological Society Symposium, in Midland, Texas September 10-12, 2008. http://www.wtgs.org [external site] Abstract: This study describes the several sets of natural fractures in a Barnett Shale core from Pecos County, including partly open fractures, fractures associated with chert layers and early, deformed fractures. These are compared with fractures previously described in the Barnett Shale in the Fort Worth Basin. The basic fracture attributes are discussed in terms of their implications for hydraulic fracture treatments. The steep, narrow, calcite-sealed fractures that are present in many Barnett cores in the Fort Worth Basin are important because of their likely tendency to reactivate during hydraulic fracture treatments. Larger open fractures are possibly present, clustered on the order of several hundred feet apart. In the core studied from the Delaware Basin there is evidence that a greater number of narrower fractures may be open. Thus, their importance for completions may be rather different than those in the Fort Worth Basin

388

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Capillarity-controlled displacements in sediments with moveable grains Capillarity-controlled displacements in sediments with moveable grains Capillarity-controlled displacements in sediments with moveable grains: Implications for growth of methane hydrates Authors: Maša Prodanovic (speaker), Steven L. Bryant Venue: SPE Annual Technical Conference and Exhibition, Denver, Colorado, 21-24 September, 2008. http://www.spe.org [external site]. Abstract: We consider immiscible displacements when fluid/fluid interfaces are controlled by capillary forces. The progressive quasistatic (PQS) algorithm based on the level set method readily determines the geometry of these interfaces at the pore level. Capillary pressure generally exerts a net force on grains supporting an interface. We extend PQS to implement a kinematic model of grain displacement in response to that force. We examine the changes in the drainage curve caused by this coupling. We compute the interfacial area associated with the bulk water phase, anticipating preferential growth of methane hydrate there. Gas invasion of sediments is one mechanism by which methane hydrates are believed to form. In unconsolidated ocean sediments the capillary pressure exerted by an accumulated gas phase below the hydrate stability zone can be large enough to move grains apart. This motion alters the pore throat sizes which control subsequent drainage of the sediment. A model for the dynamics of this process is useful for assessing the competition between drainage (controlled by capillary forces) and fracturing (controlled by pore pressure and earth stresses). This in turn provides insight into the possible growth habits within the hydrate stability zone. When grains can move in response to net force exerted by the gas phase, small variations in an otherwise uniform distribution of pore throat sizes quickly lead to self-reinforcing, focused channels of gas phase. In contrast to behavior in stationary grains, the drainage curve exhibits no clear percolation threshold. Displacements in materials with broad throat size distributions also exhibit self-reinforcing channels. Behind the leading edge of the displacement front, the net force exerted on the grains tends to push them together. This effectively seals off these regions from subsequent invasion. Thus hydrate growth tends to be localized along the channel of displaced grains. This is the first quantitative grain-scale study of the drainage behavior when grains can move in response to invasion events. The coupling leads to qualitatively different displacement patterns. The method presented for studying this behavior is applicable to any granular material and to other applications, such as sand production.

389

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Alternative Tri-axial Testing System for CO2-Rock Interaction Experiments An Alternative Tri-axial Testing System for CO2-Rock Interaction Experiments An Alternative Tri-axial Testing System for CO2-Rock Interaction Experiments Authors: Zhengwen Zeng (speaker), Xuejun Zhou, and Hong Liu, University of North Dakota. Venue: 43rd U.S. Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, Asheville, NC, June 28-July 1, 2009. http://www.armasymposium.org/ [external site] Abstract: Carbon dioxide (CO2)-rock interaction has become an important topic in recent years due to the potential energy and environmental benefits offered by injecting CO2 into deep geological formations for enhanced oil recovery (EOR) and carbon sequestration. In both cases, CO2 reacts with formation rocks under deep geological formation conditions. The reaction will change the petrophysical, geomechanical, and geochemical properties of the rock. Consequently, rock integrity and fluid flow characteristics will be changed. How to quantitatively describe this CO2-rock interaction process is critical to the success of both EOR and sequestration projects. Experimental investigation under reservoir conditions is a direct way to develop the quantitative models to describe this process. This type of experiment involves real-time measurements for petrophysical, geomechanical, and geochemical parameters. Existing tri-axial testing systems can meet part of the requirements. An alternative triaxial testing system has been developed for this purpose. This paper introduces the principles, measurements, data processing, and the calibration and verification of the system

390

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments (OTC 19672) Authors: Jonny Rutqvist (speaker), George J. Moridis, and Tarun Grover Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: This study investigated coupled multiphase flow, themal, thermodynamic and geomechanical behavior of oceanic Hydrate Bearing Sediments (HBS), during depressurization-induced gas production in general, and potential wellbore in-stability and casing deformation in particular. The project investigated the geomechanical changes and wellbore stability for two alternative cases of production using a horizontal well in a Class 3 deposit and a vertical well in a Class 2 deposit. The research compared the geomechanical responses and the potential adverse geomechanical effects for the two different cases. Analysis shows that geomechanical responses during depressurization-induced gas production from oceanic hydrate deposits is driven by the reservoir-wide pressure decline (Delta P), which in turn is controlled by the induced pressure decline near the wellbore. Because any change quickly propagates within the entire reservoir, the reservoir wide geomechanical response can occur within a few days of production induced pressure decline.

391

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand Fluid Flow through Heterogeneous Methane-Hydrate Bearing Sand: Observations Using X-Ray CT Scanning Authors: Yongkoo Seol and Timothy J. Kneafsey Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http://www.icgh.org/ [external site] Abstract: The effects of porous medium heterogeneity on methane hydrate formation, water flow through the heterogeneous hydrate-bearing sand, and hydrate dissociation were observed in an experiment using a heterogeneous sand column with prescribed heterogeneities. X-ray computed tomography (CT) was used to monitor saturation changes in water, gas, and hydrate during hydrate formation, water flow, and hydrate dissociation. The sand column was packed in several segments having vertical and horizontal layers with two distinct grain-size sands. The CT images showed that as hydrate formed, the water and hydrate saturations were dynamically redistributed by variations in capillary strength of the medium (the tendency for a material to imbibe water), which changed with the presence and saturation of hydrate. Water preferentially flowed through fine sand near higher hydrate-saturation regions where the capillary strength was elevated relative to the lower hydrate saturation regions. Hydrate dissociation initiated by depressurization varied with different grain sizes and hydrate saturations.

392

California--State Offshore Natural Gas Withdrawals from Oil Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) California--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,226 12,829 1980's 11,634 11,759 12,222 12,117 12,525 13,378 12,935 10,962 9,728 8,243 1990's 7,743 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,654 6,977 6,764 5,470 2010's 5,483 4,904 4,411 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals from Oil

393

Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 30,264 26,439 1980's 22,965 22,153 23,654 26,510 30,099 29,904 33,453 28,698 23,950 22,673 1990's 20,948 19,538 21,631 23,750 21,690 14,528 19,414 16,002 22,744 17,510 2000's 17,089 13,513 11,711 9,517 11,299 8,294 8,822 9,512 4,137 4,108 2010's 6,614 6,778 5,443 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals from Oil

394

Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 410,179 375,593 360,533 1980's 360,906 348,113 357,671 408,632 461,821 502,000 529,453 470,493 426,945 403,144 1990's 408,654 455,052 436,493 467,340 518,305 522,437 523,155 566,210 643,886 722,750 2000's 752,296 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals from Oil

395

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Studies of Geomechanical Stability of Hydrate-Bearing Sediments Numerical Studies of Geomechanical Stability of Hydrate-Bearing Sediments Authors: George J. Moridis, Jonny Rutqvist, Lawrence Berkeley National Laboratory. Venue: 2007 Offshore Technology Conference, Houston, TX, April 30–May 1, 2007 (http://www.otcnet.org/ [external site]). Abstract: The thermal and mechanical loading of hydrate-bearing sediments (HBS) can result in hydrate dissociation and a significant pressure increase, with potentially adverse consequences on the integrity and stability of the wellbore assembly, the HBS, and the bounding formations. The perception of HBS instability, coupled with insufficient knowledge of their geomechanical behavior and the absence of predictive capabilities, has resulted in a strategy of avoidance of HBS when locating offshore production platforms. These factors can also impede the development of hydrate deposits as gas resources. For the analysis of the geomechanical stability of HBS, project researchers developed and used a numerical model that integrates a commercial geomechanical code into a simulator describing the coupled processes of fluid flow, heat transport, and thermodynamic behavior in geologic media. The geomechanical code includes elastoplastic models for quasi-static yield and failure analysis and viscoplastic models for time-dependent (creep) analysis. The hydrate simulator can model the non-isothermal hydration reactions (equilibrium or kinetic), phase behavior, and flow of fluids and heat in HBS, and can handle any combination of hydrate dissociation mechanisms. The simulations can account for the interdependence of changes in the hydraulic, thermodynamic, and geomechanical properties of the HBS, in addition to swelling/shrinkage, displacement (subsidence), and possible geomechanical failure. Researchers investigated in three cases the coupled hydraulic, thermodynamic, and geomechanical behavior of oceanic HBS systems. The first involves hydrate heating as warm fluids from deeper, conventional reservoirs ascend to the ocean floor through uninsulated pipes intersecting the HBS. The second case involves mechanical loading caused by the weight of structures placed on HBS at the ocean floor, and the third describes system response during gas production from a hydrate deposit. The results indicate that the stability of HBS in the vicinity of warm pipes may be significantly affected, especially near the ocean floor where the sediments are unconsolidated and more compressible. Conversely, the increased pressure caused by the weight of structures on the ocean floor increases the stability of hydrates, while gas production from oceanic deposits minimally affects the geomechanical stability of HBS under the conditions that are deemed desirable for production.

396

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Synergy among Surfactants in Solution Synergy among Surfactants in Solution Synergy among Surfactants in Solution and on Particles in Suspensions Authors: Shaohua Lu and Ponisseril Somasundaran, Columbia University, New York, NY. Venue: 81st ACS (American Chemical Society) Colloid & Surface Science Symposium, University of Delaware, Newark, DE, June 24–27, 2007 (http://www.engr.udel.edu/Colloids2007/) [external site]). Abstract: Surfactant mixtures are widely used in detergent, personal care, enhanced oil recovery, and flotation applications. Adsorption of nonionic/cationic/anionic (ex: n-dodecyl-â-D-maltoside(DM), and sodium dodecyl sulfonate) on solids such as alumina was studied in this work at different solution conditions of pH, mixing ratio and salt contents along with the wettability and zeta potential. Solution interactions were studied by analytical ultracentrifuge, surface tension, small-angle neutron scattering, and cryoTEM. It was found that surfactant adsorption is dramatically affected under certain pH conditions. The effects of pH, however, are reduced by synergistic interactions in the case of nonionic/anionic mixtures. Surface tension results reveal a negative interaction parameter, suggesting that there are synergistic interactions between them. Importantly, only one peak indicative of one type of micelle was identified using analytical ultracentrifugation in the case of the above anionic/nonionic mixtures, while two types of aggregates were observed in the case of nonionic/nonionic mixtures. The above information on surfactant aggregation helps to reveal the mechanisms of interactions between surfactants, as well as their efficient application in various industrial processes.

397

PRUDENT DEVELOPMENT Realizing the Potential of North America’s Abundant Natural Gas and Oil Resources National Petroleum Council • 2011PRUDENT DEVELOPMENT Realizing the Potential of North America’s Abundant Natural Gas and Oil Resources  

E-Print Network (OSTI)

The National Petroleum Council is a federal advisory committee to the Secretary of Energy. The sole purpose of the National Petroleum Council is to advise, inform, and make recommendations to the Secretary of Energy on any matter requested by the Secretary relating to oil and natural gas or to the oil and gas industries.

A National; Petroleum Council; Steven Chu Secretary

2011-01-01T23:59:59.000Z

398

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

399

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Permeability of Laboratory-Formed Hydrate-Bearing Sand Permeability of Laboratory-Formed Hydrate-Bearing Sand Permeability of Laboratory-Formed Hydrate-Bearing Sand (OTC 19536) Authors: Timothy J. Kneafsey (speaker), Yongkoo Seol, Arvind Gupta, and Liviu Tomutsa Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 http://www.spe.org and http://www.smenet.org [external sites] Abstract: Methane hydrate was formed in moist sand under confining stress in a long, x-ray transparent pressure vessel. Three initial water saturations were used to form three different methane hydrate saturations. X-ray computed tomography (CT) was used to observe location-specific density changes, caused by hydrate formation and flowing water. Gas permeability was measured in each test for dry sand, moist sand, frozen sand, and hydrate-bearing sand. Results of these measurements are presented. Water was flowed through the hydrate-bearing sand, and the changes in water saturation were observed using CT scanning. Inverse modeling will be performed using these data to extend the relative permeability measurements

400

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Fracture Reorientation Due to Fluid Injection/Production Estimating Fracture Reorientation Due to Fluid Injection/Production Estimating Fracture Reorientation Due to Fluid Injection/Production Authors: Zongyu Zhai and Mukul M. Sharma, University of Texas at Austin. Venue: Society of Petroleum Engineers’ Production and Operations Symposium, Oklahoma City, OK, April 1–3, 2007 (http://www.spe.org/ [external site]). Abstract: The injection or production of large volumes of fluid into or from a reservoir can result in significant changes to the effective in-situ stress distributions. Field evidence of this has been provided in the past by mapping refracturing treatments in tight gas sands and microseismic monitoring of injection wells in waterflooded reservoirs. A poro-elastic model is presented to show how the extent of fracture reorientation can be estimated under different conditions of fluid injection and production. The extent of fracture reorientation is a function of the in-situ stresses, the mechanical properties of the rock, and the pore pressure gradients. In reservoirs where the pore pressure gradients are complicated due to multiple injection and production wells, fracture reorientation is sensitive to the net pore-pressure gradients. Fractures tend to reorient themselves towards the injection wells and away from production wells, if the pressure gradients are comparable to the in-situ stress contrast. While far-field principal stress orientations are impacted only by in-situ stresses and pore-pressure gradients, near-wellbore in-situ stress orientation is also impacted by the hoop stress and the wellbore pressure. These can have a significant effect on near-wellbore fracture reorientation. The results of our model are compared with field observations obtained from microseismic monitoring of water injection wells. The implications of the results to refracturing operations and candidate well selection are discussed.

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine-Scale Control of Microbial Communities in Deep Marine Sediments Fine-Scale Control of Microbial Communities in Deep Marine Sediments Fine-Scale Control of Microbial Communities in Deep Marine Sediments that Contain Hydrates and High Concentrations of Methane Authors: Colwell, F. (speaker, Oregon State University), Hangsterfer, A., Brodie, E., Daly, R., Holland, M., Briggs, B., Carini, P., Torres, M., Kastner, M., Long, P., Schaef, H., Delwiche, M., Winters, W., and Riedel, M. Venue: American Geophysical Union’s fall meeting in San Francisco, CA, December 10–14, 2007 (http://www.agu.org/meetings/fm07/ [external site]). Abstract: Deep subseafloor sediments with high concentrations of organic carbon and microbially generated methane contain microbial communities that play an important role in the biogeochemical cycling of carbon. However, there remains a limited understanding of the fine (centimeter)-scale sediment properties (e.g., grain size, presence/absence of hydrates) that determine key microbial attributes in deep marine sediments. This project’s objective is to determine the quantity, diversity, and distribution of microbial communities in the context of abiotic properties in gas-rich marine sediments. DNA was extracted from deep marine sediments cored from various continental shelf locations, including offshore India and the Cascadia Margin. Abiotic characterization of the same sediments included grain size analysis, chloride concentrations in sediment pore waters, and presence of hydrates in the sediments as determined by thermal anomalies. As in past studies of such systems, most of the samples yielded low levels of DNA (0.3-1.5 ng/g of sediment). Bacterial DNA appeared to be more easily amplified than archaeal DNA. Initial attempts to amplify DNA using primers specific for the methanogen functional gene, methyl-CoM-reductase, were unsuccessful. Infrequently, cores from relatively shallow sediments (e.g., 0.5 mbsf Leg 204, 1251B-1H) from central (Hydrate Ridge) and northern (offshore Vancouver Island) Cascadia and from India’s eastern margin contained macroscopically visible, pigmented biofilms. One of these biofilms was composed of high concentrations of cell clusters when viewed microscopically. The predominant cells in the Hydrate Ridge biofilm were large (ca. 10 um) cocci, and preliminary characterization of the 16S rDNA amplified and sequenced from this biofilm suggests the prevalence of a microbe with 97% similarity to mycobacteria. These discrete biofilm communities appear to be distinctive relative to the normally sparse distribution of cells in the sediments. By determining how the abiotic properties of deep marine sediments control the numbers and distribution of microbial communities that process organic matter, project researchers hope to provide better parameters for computational models that describe carbon cycling in these systems.

402

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Novel Applications for Biogeophysics: Prospects for Detecting Key Subseafloor Geomicrobiological Processes or Habitats Authors: Rick Colwell, Oregon State University, and Dimitris Ntarlagiannis, Rutgers University. Venue: American Geophysical UnionÂ’s 2007 Joint Assembly, Acapulco Mexico, May 21-25, 2007 (http://www.agu.org/ [external site]). Abstract: The new subdiscipline of biogeophysics has focused mostly on the geophysical signatures of microbial processes in contaminated subsurface environments usually undergoing remediation. However, the use of biogeophysics to examine the biogeochemistry of marine sediments has not yet been well integrated into conceptual models that describe subseafloor processes. Current examples of geophysical measurements that have been used to detect geomicrobiological processes or infer their location in the seafloor include sound surveillance system (SOSUS)-derived data that detect seafloor eruptive events, deep and shallow cross-sectional seismic surveys that determine the presence of hydraulically conductive zones or gas-bearing sediments (e.g., bottom-simulating reflectors or bubble-rich strata), and thermal profiles. One possible area for innovative biogeophysical characterization of the seafloor involves determining the depth of the sulfate-methane interface (SMI) in locations where sulfate diffuses from the seawater and methane emanates from subsurface strata. The SMI demarcates a stratum where microbially driven anaerobic methane oxidation (AMO) is dependent upon methane as an electron donor and sulfate as an electron acceptor. AMO is carried out by a recently defined, unique consortium of microbes that metabolically temper the flux of methane into the overlying seawater. The depth of the SMI is, respectively, shallow or deep according to whether a high or low rate of methane flux occurs from the deep sediments. Presently, the SMI can only be determined by direct measurements of methane and sulfate concentrations in the interstitial waters or by molecular biological techniques that target the microbes responsible for creating the SMI. Both methods require collection and considerable analysis of sediment samples. Therefore, detection of the SMI by non-destructive methods would be advantageous. As a key biogeochemical threshold in marine sediments, the depth of the SMI defines methane charge in marine sediments, whether it is from dissolved methane or from methane hydrates. As such, a biogeophysical strategy for determining SMI depth would represent an important contribution to assessing methane charge with respect to climate change, sediment stability, or potential energy resources.

403

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical strength and seismic property measurements of hydrate-bearing sediments Mechanical strength and seismic property measurements of hydrate-bearing sediments Mechanical strength and seismic property measurements of hydrate-bearing sediments (HBS) during hydrate formation and loading tests (OTC 19559) Authors: Seiji Nakagawa (speaker), Timothy J. Kneafsey, and George J. Moridis Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 http://www.spe.org and http://www.smenet.org [external sites] Abstract: An on-going effort on conducting laboratory triaxial compression tests on synthetic methane hydrate-bearing sediment cores is presented. Methane hydrate is formed within a sand pack inside a test cell under controlled temperature and confining stress, and triaxial compression tests are performed while monitoring seismic properties. A unique aspect of the experiment is that the formation and dissociation of hydrate in a sediment core, and the failure of the sample during loading tests, can be monitored in real time using both seismic waves and x-ray CT imaging. For this purpose, a specially designed triaxial (geomechanical) test cell was built. This cell allows for conducting seismic wave measurements on a sediment core using compressional and shear (torsion) waves. Concurrently, CT images can be obtained through an x-ray-transparent cell wall. These are used to determine the porosity distribution within a sample owing to both original sand packing and formation of hydrate in the pore space. For interpreting the results from both seismic measurements and geomechanical tests, characterization of sample heterogeneity can be critically important. In this paper, the basic functions of the test cell are presented, with the results of preliminary experiments using non-hydrate bearing sandpack and sandstone core. These measurements confirmed that (1) clear x-ray images of gas-fluid boundaries within a sediment/rock core can be obtained through a thick aluminum test cell wall, (2) the test cell functions correctly during loading tests, and (3) both compressional and shear waves can be measured during a loading test. Further experiments using methane-hydrate-bearing samples will be presented at the conference

404

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

405

Oil & Natural Gas Technology DOE Award No.: DE-NT0005227 Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-NT0005227 Final Report Membrane Technology for Produced Water in Lea County Submitted by: Lea County Government 100 N. Main Lovington, NM 88260 And New Mexico Institute of Mining and Technology 801 Leroy Place Socorro, NM 87801 Report Authors: Cecilia E. Nelson, Principal Investigator Lea County Government and Ashok Kumar Ghosh, Ph.D., P.E. Principal Researcher, New Mexico Institute of Mining and Technology Prepared for: United States Department of Energy National Energy Technology Laboratory Office of Fossil Energy Report Date: September 20, 2011 Reporting Period: October 1, 2008 - June 30, 2011 2 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

406

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

407

November 2010The Weak Tie Between Natural Gas and Oil Prices  

E-Print Network (OSTI)

Abstract: Several recent studies establish that crude oil and natural gas prices are cointegrated. Yet at times in the past, and very powerfully in the last two years, many voices have noted that the two price series appear to have “decoupled”. We explore the apparent contradiction between these two views. We find that recognition of the statistical fact of cointegration needs to be tempered with two additional points. First, there is an enormous amount of unexplained volatility in natural gas prices at short horizons. Hence, any simple formulaic relationship between the prices will leave a large portion of the natural gas price unexplained. Second, the cointegrating relationship does not appear to be stable through time. The prices may be tied, but the relationship can shift dramatically over time. Therefore, although the two price series may be cointegrated, the confidence intervals for both short and long time horizons are large.

David J. Ramberg; John E. Parsons; David J. Ramberg; John E. Parsons

2010-01-01T23:59:59.000Z

408

,"Crude Oil and Lease Condensate","Wet Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves, 2011" Changes to proved reserves, 2011" ,"Crude Oil and Lease Condensate","Wet Natural Gas" ,"(billion barrels)","(trillion cubic feet)" "U.S. proved reserves at December 31, 2011",25.18,317.647 " Total discoveries",3.68,49.9 " Net revisions",1.41,-0.1 " Net Adjustments, Sales, Acquisitions",0.74,6 " Production",-2.06,-24.6 "Net additions to U.S. proved reserves",3.77,31.2 "Reserves at December 31, 2011",28.95,348.8 "Percentage change in proved reserves",0.15,0.098 "Notes: Wet natural gas includes natural gas plant liquids. Columns may not add to total due to independent rounding." "Percent change calculated from unrounded numbers."

409

Oil & Natural Gas Technology DOE Award No.: DE-FC26-01NT41330  

NLE Websites -- All DOE Office Websites (Extended Search)

occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project...

410

December Natural Gas Monthly  

Annual Energy Outlook 2012 (EIA)

DOEEIA-0130(9712) Distribution CategoryUC-950 Natural Gas Monthly December 1997 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC...

411

Pennsylvania's Natural Gas Future  

E-Print Network (OSTI)

sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ Fossil backed by a growing portfolio of assets. #12;Shale Gas Geography 5 | MARCELLUS SHALE COALITION #12;Shale Permits Price #12;Pricing Trend of Oil and Gas in the US $- $5.00 $10.00 $15.00 $20.00 $25.00 USDper

Lee, Dongwon

412

Natural Gas Annual Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

413

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

414

,"Federal Offshore California Natural Gas Withdrawals from Oil Wells (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (MMcf)" Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Withdrawals from Oil Wells (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1030_r5f_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1030_r5f_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:15 AM"

415

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

E-Print Network (OSTI)

coal supply. The natural gas supply covers six categories:renewables, oil supply, natural gas supply, natural gasnation-wide natural gas market, equalizing supply with

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-01-01T23:59:59.000Z

416

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

417

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

418

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

419

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

420

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

422

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

423

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

424

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

425

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

426

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

427

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

428

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

429

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

430

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

431

Oil and natural gas reserve prices : addendum to CEEPR WP 03-016 ; including results for 2003 revisions to 2001  

E-Print Network (OSTI)

Introduction. A working paper entitled "Oil and Natural Gas Reserve Prices 1982-2002: Implications for Depletion and Investment Cost" was published in October 2003 (cited hereafter as Adelman & Watkins [2003]). Since then ...

Adelman, Morris Albert

2005-01-01T23:59:59.000Z

432

Markets indicate possible natural gas pipeline constraints ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

433

Alaska--State Offshore Natural Gas Withdrawals from Oil Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,689 15,053 1980's 13,959 13,526 12,554 12,405 11,263 9,412 9,547 16,422 43,562 50,165 1990's 49,422 70,932 106,311 105,363 124,501 7,684 7,055 7,919 7,880 6,938 2000's 149,077 149,067 190,608 236,404 260,667 305,641 292,660 325,328 345,109 316,537 2010's 328,114 328,500 274,431 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

434

US--Federal Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) US--Federal Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 417,053 383,647 369,968 1980's 385,573 377,245 400,129 461,796 523,200 570,733 599,978 537,101 497,072 485,150 1990's 484,516 535,250 513,058 550,850 622,235 653,870 687,424 729,162 804,290 905,293 2000's 951,088 989,969 893,193 939,828 840,852 730,830 681,869 654,334 524,965 606,403 2010's 598,679 512,003 526,664 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

435

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

1993-02-01T23:59:59.000Z

436

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

1993-02-01T23:59:59.000Z

437

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

438

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

Unknown

2001-05-01T23:59:59.000Z

439

Join Shell and Purdue for a series of discussions that will explore preventative measures to minimize risk of oil spills, the future of natural gas infrastructure, and  

E-Print Network (OSTI)

to minimize risk of oil spills, the future of natural gas infrastructure, and the challenges we face in our-deepwater Exploration" 10:30am ­ 11:30am Panel Discussion: "Natural Gas and the Logistics of Changing Infrastructures ENERGY DAY A Symposium on the New Frontiers in Oil and Natural Gas Exploration #12;

440

Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

X-ray analysis can improve recovery of oil and natural gas |...  

NLE Websites -- All DOE Office Websites (Extended Search)

and gas industries are undergoing a revolution that has opened up previously inaccessible resources trapped in shale and tight play formations. Oil and GasFact SheetJanuary 2013...

442

Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?  

Gasoline and Diesel Fuel Update (EIA)

Technology-Based Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken? Through the use of technology, U.S. oil and natural gas operators are converting previously uneconomic oil and natural gas resources into proved reserves and production. The Bakken Formation of the Williston Basin is a success story of horizontal drilling, fracturing, and completion technologies. The recent, highly productive oil field discoveries within the Bakken Formation did not come from venturing out into deep uncharted waters heretofore untapped by man, nor from blazing a trail into pristine environs never open to drilling before. Instead, success came from analysis of geologic data on a decades-old producing area, identification of uptapped resources, and application of the new drilling and completion technology necessary to exploit them. In short, it came from using technology

443

Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well ...  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, ... Total (Gross Withdrawals ... natural gas wells divided by the number of producing wells, ...

444

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

Unknown

2002-05-31T23:59:59.000Z

445

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

Crude Oil Spot Price, and Henry Hub Natural Gas Spot Price Graph More Summary Data Prices A major weather front entered the Midwest and the East this week, leading to...

446

Natural gas liquids play a greater role in oil and gas ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and ... topping 2 million barrels per day ... 2012. December; ...

447

Low natural gas prices in 2012 reduced returns for some oil ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration based on Evaluate Energy database and company financial statements. Note: Results based on data from 60 oil and natural ...

448

Deepwater Oil & Gas Resources  

Energy.gov (U.S. Department of Energy (DOE))

The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy’s Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection.

449

Technology drives natural gas production growth from shale ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Rapid increases in natural gas production from shale gas formations resulted from widespread application ...

450

Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221 1 Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221 November 2007 This paper responds to an October 31, 2007, request from Representatives Barton, McCrery, and Young. Their letter, a copy of which is provided as Appendix A, asks the Energy Information Administration (EIA) to assess selected provisions of H.R. 3221, the energy bill adopted by the House of Representatives in early August 2007. EIA was asked to focus on Title VII, dealing with energy on Federal lands; Section 9611, which would establish a Federal renewable portfolio standard (RPS) for certain electricity sellers; and Section 13001, which would eliminate the

451

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.

Unknown

2002-11-01T23:59:59.000Z

452

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

453

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

454

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

455

State Oil and Gas Board State Oil and Gas Board Address Place Zip Website  

Open Energy Info (EERE)

State Oil and Gas Board Address Place Zip Website State Oil and Gas Board Address Place Zip Website Alabama Oil and Gas Board Alabama Oil and Gas Board Hackberry Lane Tuscaloosa Alabama http www gsa state al us ogb ogb html Alaska Division of Oil and Gas Alaska Division of Oil and Gas W th Ave Suite Anchorage Alaska http dog dnr alaska gov Alaska Oil and Gas Conservation Commission Alaska Oil and Gas Conservation Commission W th Ave Ste Anchorage Alaska http doa alaska gov ogc Arizona Oil and Gas Commission Arizona Oil and Gas Commission W Congress Street Suite Tucson Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Little Rock Arkansas http www aogc state ar us JDesignerPro JDPArkansas AR Welcome html California Division of Oil Gas and Geothermal Resources California

456

Natural gas sdtrategic plan  

SciTech Connect

The US Department of Energy`s natural gas program is aimed at meeting simultaneously our national energy needs, reducing oil imports, protecting our environment, and improving our economy The Natural Gas Strategic Plan for 1995 represents a Department-wide effort to articulate the key issues related to the expanded development and utilization of natural gas, and defines the roles of the federal government and US industry in partnering to accomplish the strategic goals defined. The four overarching goals of the Natural Gas Strategic Plan are to: foster the development of advanced natural gas technologies; encourage the adoption of advanced natural gas technologies in new and existing markets; support the removal of policy impediments to natural gas use in new and existing markets; and foster technologies and policies to maximize the environmental benefits of natural gas use. DOE`s proposed fiscal year (FY) 1996 budget represents a commitment to natural gas research, development, and demonstration (RD&D) from reservoir to end use. DOE has redirected and increased funding for its natural gas exploration, production, delivery and storage, processing, and utilization RD&D programs, shifting funds from other energy programs to programs that will enhance efficiency and advance the role of natural gas in our domestic energy resources portfolio.

1995-06-01T23:59:59.000Z

457

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Authors: Robert Hunter (ASRC Energy), Scott Digert (BPXA), Tim Collett (USGS), Ray Boswell (USDOE) Venue: AAPG National Meeting Gas Hydrate session, Oral Presentation, San Antonio, TX, April 22, 2008 (http://www.AAPG.org [external site]) Abstract: This BP-DOE collaborative research project is helping determine whether or not gas hydrate can become a technically and economically recoverable gas resource. Reservoir characterization, development modeling, and associated studies indicate that 0-0.34 trillion cubic meters (TCM) gas may be technically recoverable from the estimated 0.92 TCM gas-in-place within the Eileen gas hydrate accumulation on the Alaska North Slope (ANS). Reservoir modeling indicates sufficient potential for technical recovery to justify proceeding into field operations to acquire basic reservoir and fluid data from the Mount Elbert gas hydrate prospect in the Milne Point Unit (MPU). Successful drilling and data acquisition in the Mount Elbert-01 stratigraphic test well was completed during February 3-19, 2007. Data was acquired from 131 meters of core (30.5 meters gas hydrate-bearing), extensive wireline logging, and wireline production testing operations using Modular Dynamics Testing (MDT). The stratigraphic test validated the 3D seismic interpretation of the MPU gas hydrate-bearing Mount Elbert prospect. Onsite core sub- sampling preserved samples for later analyses of interstitial water geochemistry, physical properties, thermal properties, organic geochemistry, petrophysics, and mechanical properties. MDT testing was accomplished within two gas hydrate-bearing intervals, and acquired during four long shut-in period tests. Four gas samples and one pre-gas hydrate dissociation formation water sample were collected. MDT analyses are helping to improve understanding of gas hydrate dissociation, gas production, formation cooling, and long-term production potential as well as help calibrate reservoir simulation models.

458

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

459

Shale oil and shale gas resources are globally abundant  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

460

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

Science Conference Proceedings (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback confirms that producers are taking action with the information they receive. RLO Directors captured examples demonstrating how PTTC activities influenced industry activity. Additional follow-up in all regions explored industry's awareness of PTTC and the services it provides. PTTC publishes monthly case studies in the ''Petroleum Technology Digest in World Oil'' and monthly Tech Connections columns in the ''American Oil and Gas Reporter''. Email Tech Alerts are utilized to notify the O&G community of DOE solicitations and demonstration results, PTTC key technical information and meetings, as well as industry highlights. Workshop summaries are posted online at www.pttc.org. PTTC maintains an active exhibit schedule at national industry events. The national communications effort continues to expand the audience PTTC reaches. The network of national and regional websites has proven effective for conveying technology-related information and facilitating user's access to basic oil and gas data, which supplement regional and national newsletters. The regions frequently work with professional societies and producer associations in co-sponsored events and there is a conscious effort to incorporate findings from DOE-supported research, development and demonstration (RD&D) projects within events. The level of software training varies by region, with the Rocky Mountain Region taking the lead. Where appropriate, regions develop information products that provide a service to industry and, in some cases, generate moderate revenues. Data access is an on-going industry priority, so all regions work to facilitate access to public source databases. Various outreach programs also emanate from the resource centers, including targeted visits to producers.

Donald F. Duttlinger; E. Lance Cole

2003-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 3,336 1,781 1,806 1,881 1,841 1,820 1,781 1,699 1,247 1,228 1992 4,284 3,872 4,141 4,027 4,047 3,883 3,964 3,957 3,892 4,169 4,146 4,334 1993 4,123 3,693 4,049 3,865 3,942 3,786 3,915 3,924 3,861 4,146 4,114 4,200 1994 3,639 3,242 3,557 3,409 3,488 3,384 3,552 3,643 3,597 3,796 3,818 3,991 1995 3,937 3,524 3,842 3,679 3,731 3,591 3,683 3,710 3,597 3,747 3,778 3,937 1996 3,960 4,174 4,704 4,202 3,860 4,239 4,285 4,447 4,978 4,585 4,564 4,512 1997 4,656 4,105 4,501 4,102 4,135 4,047 4,273 4,190 3,962 4,213 3,959 3,830

462

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Energy resource Studies in the United States Hydrate Energy resource Studies in the United States Gas Hydrate Energy resource Studies in the United States Authors: T.Collett (USGS), R. Boswell (DOE), K. Rose (DOE), W. Agena (USGS), and R. Baker (DOE) Venue: American Chemical Society Meeting, March 22-26, 2009, Salt Lake City, Utah http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_MEETINGS&node_id=86&use_sec=false&__uuid=614acbfd-ce1c-4a0b-98de-348a14738f4e [external site] Abstract: In 1982, scientists onboard the Research Vessel Glomar Challenger retrieved a meter-long sample of massive gas hydrate off the coast of Guatemala. This sample became the impetus for the first United States national research and development program dedicated to gas hydrates. By the mid 1990s, it was widely accepted that gas hydrates represented a vast storehouse of gas. Recognizing the importance of gas hydrate research and the need for coordinated efforts, Congress and the President of the United States enacted Public Law 106-193, the Methane Hydrate Research and Development Act of 2000. Authorization for this program was extended to 2010 as part of the Energy Policy Act of 2005. Many of the current gas hydrate projects in the United States are conducted within this program, which is administered by the U. S. Department of Energy in collaboration with six other U.S. federal agencies, and conducted in partnership with private industry, academic institutions, and DOEÂ’s National Laboratories. In addition, other U.S. federal agencies conduct significant self-directed gas hydrate research; most notably the gas hydrate resource assessment activities conducted by U.S. Department of Interior agencies (the U.S. Geological Survey and the Minerals Management Service).

463

Arctic oil and natural gas resources - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Natural gas hydrates can pose operational problems for drilling wells in both onshore and offshore ... Finland, Iceland, Norway, Russia, Sweden, and the United ...

464

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

465

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

466

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

467

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

468

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

469

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

470

Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Energy Outlook Supplement: Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the production level at the end of August was far lower. At the end of August, an armed group blocked pipelines that connect the El Sharara and El Feel (Elephant) fields to the Zawiya and Mellitah export terminals, respectively, forcing the shutdown of those fields. El Sharara had been

471

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

472

Coalbed Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

473

Winter Distillate and Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Winter Distillate and Natural Gas Outlook. Distillate Prices Increasing With Crude Oil. Distillate Outlook. When Will Crude Oil Prices Fall?

474

Energy Information Administration – International Natural Gas Price  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas ... imports and exports, production, prices, sales ... Europe ...

475

Consumer Natural Gas Heating Costs  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: Mild weather has minimized residential gas consumption over most of the past 3 winters. Unlike heating oil, average increases in natural gas prices last winter were small....

476

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

What Consumers Should Know What Consumers Should Know An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Major Legislative and Regulatory Actions (1935 - 2004) U.S. Natural Gas Imports and Exports: Issues and Trends 2003 U.S. LNG Markets and Uses: June 2004 Natural Gas Restructuring Previous Issues of Natural Gas Weekly Update Natural Gas Homepage EIA's Natural Gas Division Survey Form Comments Overview: Thursday, December 1, 2005 (next release 2:00 p.m. on December 8) Colder-than-normal temperatures contributed to widespread price increases in natural gas spot markets since Wednesday, November 23 as heating demand increased. For the week (Wednesday to Wednesday), the spot price at the Henry Hub gained 59 cents per MMBtu, or about 5 percent, to trade at $11.73 per MMBtu yesterday (November 30). Similarly, at the NYMEX, the price for the futures contract for January delivery at the Henry Hub gained 54 cents since last Wednesday to close yesterday at $12.587 per MMBtu. Natural gas in storage as of Friday, November 25, decreased to 3,225 Bcf, which is 6.3 percent above the 5 year average. The spot price for West Texas Intermediate (WTI) crude oil dropped $1.02 per barrel, or about 2 percent, since last Wednesday to trade yesterday at $57.33 per barrel or $9.88 per MMBtu.

477

Natural Gas Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

478

International Natural Gas Information - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

479

Online service improves public access to petroleum and natural gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

480

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "natural gas oil" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas - U.S. Energy Information Administration (EIA) - U ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

482

Heating fuel choice shows electricity and natural gas roughly ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

483

Natural gas generation lower than last year because of differences ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

484

Norway's natural gas exports to continental Europe fell in spring ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

485

Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach  

Science Conference Proceedings (OSTI)

Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

Amy Childers

2011-03-30T23:59:59.000Z

486

Natural Gas Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Study Guide - Middle School Natural Gas Study Guide - Middle School More Documents & Publications Shale Gas Glossary Oil Study Guide - Middle School What is shale gas?...

487