Powered by Deep Web Technologies
Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

2

Natural Gas Hydrate Dissociation  

Science Journals Connector (OSTI)

Materials for hydrate synthesis mainly include methane gas of purity 99.9% (produced by Nanjing Special Gases Factory Co., Ltd.), natural sea sand of grain sizes 0.063?0.09,...

Qingguo Meng; Changling Liu; Qiang Chen; Yuguang Ye

2013-01-01T23:59:59.000Z

3

Gas Hydrate Storage of Natural Gas  

SciTech Connect

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

4

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

5

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

6

Project to evaluate natural gas hydrates  

Science Journals Connector (OSTI)

More than 170 scf of natural gas, mostly methane, may be contained in 1 cu ft of hydrate, according to Malcolm A. Goodman, president of Enertech & Research Co., Houston, which is involved in the new hydrate project. ...

1980-07-28T23:59:59.000Z

7

Natural gas hydrates on the continental slope off Pakistan: constraints from seismic techniques  

Science Journals Connector (OSTI)

......2000 research-article Articles Natural gas hydrates on the continental slope...J. Int. (2000) 140, 295310 Natural gas hydrates on the continental slope...adequate gas supplies for hydrate Natural gas hydrates (clathrates) are a crystalline......

Ingo Grevemeyer; Andreas Rosenberger; Heinrich Villinger

2000-02-01T23:59:59.000Z

8

Study on gas hydrates for the solid transportation of natural gas  

Science Journals Connector (OSTI)

Natural gas hydrate typically contains 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I...3 solid hydrate contains up to 200 m3 of natural gas depending on pressure and temperature...

Nam-Jin Kim; Chong-Bo Kim

2004-04-01T23:59:59.000Z

9

Natural Gas Hydrate Dissociation by Presence of Ethylene Glycol  

Science Journals Connector (OSTI)

Natural Gas Hydrate Dissociation by Presence of Ethylene Glycol ... solids that form from mixts. of water and light natural gases such as methane, carbon dioxide, ethane, propane and butane. ... Pulse Combustion Characteristics of Various Gaseous Fuels ...

Shuanshi Fan; Yuzhen Zhang; Genlin Tian; Deqing Liang; Dongliang Li

2005-11-08T23:59:59.000Z

10

Evidence for natural gas hydrate occurrences in Colombia Basin  

SciTech Connect

Multichannel and selected single-channel seismic lines of the continental margin sediments of the Colombia basin display compelling evidence for large accumulations of natural gas hydrate. Seismic bottom simulating reflectors (BSRs), interpreted to mark the base of the hydrate stability zone, are pronounced and very widespread along the entire Panama-Colombia lower continental slope. BSRs have also been identified at two locations on the abyssal plain. Water depths for these suspected hydrate occurrences range from 900 to 4000 m. Although no gas hydrate samples have been recovered from this area, biogenic methane is abundant in Pliocene turbidites underlying the abyssal plain. More deeply buried rocks beneath the abyssal plain are thermally mature. Thermogenic gas from these rocks may migrate upward along structural pathways into the hydrate stability zone and form hydrate. Impermeable hydrate layers may form caps over large accumulations of free gas, accounting for the very well-defined BSRs in the area. The abyssal plain and the deformed continental margin hold the highest potential for major economic accumulations of gas hydrate in the basin. The extensive continuity of BSRs, relatively shallow water depths, and promixity to onshore production facilities render the marginal deformed belt sediments the most favorable target for future economic development of the gas hydrate resource within the Colombia basin. The widespread evidence of gas hydrates in the Colombia basin suggests a high potential for conventional hydrocarbon deposits offshore of Panama and Colombia.

Finley, P.D.; Krason, J.; Dominic, K.

1987-05-01T23:59:59.000Z

11

E ects of the Driving Force on the Composition of Natural Gas Hydrates  

E-Print Network (OSTI)

E ects of the Driving Force on the Composition of Natural Gas Hydrates Odd I. Levik(1) , Jean for storage and transport of natural gas. Storage of natural gas in the form of hydrate at elevated pressure concept) (Gud- mundsson et al. 1998). Natural gas hydrate contains up to 182 Sm3 gas per m3 hydrate

Gudmundsson, Jon Steinar

12

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

NLE Websites -- All DOE Office Websites (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

13

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

14

Natural gas hydrates - issues for gas production and geomechanical stability  

E-Print Network (OSTI)

bearing sediments in offshore environments, I divided these data into different sections. The data included water depths, pore water salinity, gas compositions, geothermal gradients, and sedimentary properties such as sediment type, sediment mineralogy... .................................................................. 9 2.2 Hydrate patterns in sediments .................................................................... 24 3.1 Water depths and penetration for the Blake Ridge..................................... 31 3.2 Geothermal gradients measured...

Grover, Tarun

2008-10-10T23:59:59.000Z

15

Purification of Natural Gases with High CO2 Content Using Gas Hydrates  

Science Journals Connector (OSTI)

Purification of Natural Gases with High CO2 Content Using Gas Hydrates ... The feed was separated using a cascade of continuously stirred tank crystallizer vessels, which can also be regarded as an ideal crystallizer column resembling a gas-hydrate-based scrubbing process. ... Pressurized gas scrubbing, pressure swing adsorption, chemical absorption, and membrane and cryogenic processes are some examples of well-established technologies for the removal of CO2 from gaseous products. ...

Nena Dabrowski; Christoph Windmeier; Lothar R. Oellrich

2009-09-25T23:59:59.000Z

16

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

17

Design and Experimental Study of the Steam Mining System for Natural Gas Hydrates  

Science Journals Connector (OSTI)

Figure 3. Schematic diagram of the SMSGH: (1) water tank, (2) water pump, (3) water treatment system, (4) soft water tank, (5) small pump, (6) electricity steam generator, (7) steam control valve, (8) orifice device, (9) dual-wall drill pipe, (10) non-productive layer bushing, (11) floral tube in the mined bed, (12) submersible pump, (13) air pump, (14) water tank, (15) gas–liquid separator, (16) cartridge gas filter, (17) gas flow meter, (18) gas storage tank, and (19) ignition device. ... The working principle of the gas collection system is as follows: The obtained natural gas spills from the layer of earth through the floral tube in the mined bed (11) and will generate a high flow rate with the vapor and water mixture using the pump function of the air pump (13). ... Hydrates continuously generated natural gas. ...

You-hong Sun; Rui Jia; Wei Guo; Yong-qin Zhang; You-hai Zhu; Bing Li; Kuan Li

2012-11-06T23:59:59.000Z

18

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1994  

SciTech Connect

Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: define a rational approach for inhibitor design, using the most probable molecular mechanism; improve the performance of inhibitors; test inhibitors on Colorado School of Mines apparatuses and the Exxon flow loop; and promote sharing field and flow loop results. This report presents the results of the progress on these four goals.

NONE

1994-12-31T23:59:59.000Z

19

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

20

Fundamentals of Natural Gas and Species Flows from Hydrate Dissociation - Applications to Safety and Sea Floor Instability  

SciTech Connect

Semi-analytical computational models for natural gas flow in hydrate reservoirs were developed and the effects of variations in porosity and permeability on pressure and temperature profiles and the movement of a dissociation front were studied. Experimental data for variations of gas pressure and temperature during propane hydrate formation and dissociation for crushed ice and mixture of crushed ice and glass beads under laboratory environment were obtained. A thermodynamically consistent model for multiphase liquid-gas flows trough porous media was developed. Numerical models for hydrate dissociation process in one dimensional and axisymmetric reservoir were performed. The computational model solved the general governing equations without the need for linearization. A detail module for multidimensional analysis of hydrate dissociation which make use of the FLUENT code was developed. The new model accounts for gas and liquid water flow and uses the Kim-Boshnoi model for hydrate dissociation.

Goodarz Ahmadi

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1993  

SciTech Connect

Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: continue both screening and high pressure experiments to determine optimum inhibitors; investigate molecular mechanisms of hydrate formation/inhibition, through microscopic and macroscopic experiments; begin controlled tests on the Exxon pilot plant loop at their Houston facility; and continue to act as a forum for the sharing of field test results. Progress on these objectives are described in this report.

NONE

1993-12-31T23:59:59.000Z

22

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During April-September 2002, the JIP concentrated on: Reviewing the tasks and subtasks on the basis of the information generated during the three workshops held in March and May 2002; Writing Requests for Proposals (RFPs) and Cost, Time and Resource (CTRs) estimates to accomplish the tasks and subtasks; Reviewing proposals sent in by prospective contractors; Selecting four contractors; Selecting six sites for detailed review; and Talking to drill ship owners and operators about potential work with the JIP.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

23

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

24

Acoustic properties of natural gas hydrates and the geophysical assessment of the subsurface distribution of hydrates in the Gulf of Mexico and Atlantic.  

Science Journals Connector (OSTI)

Natural gas hydrates are a solid form of natural gas found in the deep water marine margins of continents and under permafrost in Arctic regions worldwide. They have been recognized as a very significant potential energy source in the future. They form under high pressure and low temperature. Hydrate saturated sediments are acoustically faster and slightly less dense than water saturated sediments but much faster and denser than gas saturated sediments. These properties allow for the identification of marine hydrate saturated sediments that are underlain by gas saturated sediments. The resulting geophysical reflector referred to as a bottom simulating reflector or BSR often mimics the seafloor in areas where geothermal gradient is laterally consistent. The Bureau of Ocean Energy Management Regulation and Enforcement has used three?dimensional seismic data in the Gulf of Mexico and two?dimensional seismic data in the Atlantic to (1) map the distribution of BSRs (2) drill six wells in the GOM with moderate to high hydrate saturations in sand reservoirs and (3) assess the resource potential of hydrates.

William Shedd; Matt Frye; Paul Godfriaux; Kody Kramer

2011-01-01T23:59:59.000Z

25

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

26

Marine Gas Hydrates  

Science Journals Connector (OSTI)

In several review articles, e.g., Boswell and Collett (2010), four gas hydrate reservoir types are evaluated in terms of their resource potential: sand-dominated reservoirs, clay-dominated fractured reservoirs, ....

Gerhard Bohrmann; Marta E. Torres

2014-09-01T23:59:59.000Z

27

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

28

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network (OSTI)

Gas hydrate formation in a variable volume bed of silica sandamount of sand, gas, and water. Although methane hydrate has

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

29

Potential effects of gas hydrate on human welfare  

Science Journals Connector (OSTI)

...distribution of gas hydrate (Fig. 4). According...sediment) of methane hydrate is 10-fold greater...unconventional sources of gas, such as coal beds, tight sands, black shales...conventional natural gas. Given these attractive...that natural gas hydrate could serve as...

Keith A. Kvenvolden

1999-01-01T23:59:59.000Z

30

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing operations. Annual report, January 1--December 31, 1992  

SciTech Connect

Natural gas hydrates are solid crystalline compounds which form when molecules smaller than n-butane contact molecules of water at elevated pressures and reduced temperatures, both above and below the ice point. Because these crystalline compounds plug flow channels, they are undesirable. In this project the authors proposed an alternate approach of controlling hydrate formation by preventing hydrate growth into a sizeable mass which could block a flow channel. The authors call this new technique kinetic inhibition, because while it allows the system to exist in the hydrate domain, it prevents the kinetic agglomeration of small hydrate crystals to the point of pluggage of a flow channel. In order to investigate the kinetic means of inhibiting hydrate formation, they held two consortium meetings, on June 1, 1990 and on August 31, 1990. At subsequent meetings, the authors determined the following four stages of the project, necessary to reach the goal of determining a new hydrate field inhibitor: (1) a rapid screening method was to be determined for testing the hydrate kinetic formation period of many surfactants and polymer candidates (both individually and combined), the present report presents the success of two screening apparatuses: a multi-reactor apparatus which is capable of rapid, high volume screening, and the backup screening method--a viscometer for testing with gas at high pressure; (2) the construction of two high, constant pressure cells were to experimentally confirm the success of the chemicals in the rapid screening apparatus; (3) in the third phase of the work, Exxon volunteered to evaluate the performance of the best chemicals from the previous two stages in their 4 inch I.D. Multiphase flow loop in Houston; (4) in the final phase of the work, the intention was to take the successful kinetic inhibition chemicals from the previous three stages and then test them in the field in gathering lines and wells from member companies.

NONE

1992-12-31T23:59:59.000Z

31

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

SciTech Connect

When maintained under hydrate-stable conditions, methane hydrate in laboratory samples is often considered a stable and immobile solid material. Currently, there do not appear to be any studies in which the long-term redistribution of hydrates in sediments has been investigated in the laboratory. These observations are important because if the location of hydrate in a sample were to change over time (e.g. by dissociating at one location and reforming at another), the properties of the sample that depend on hydrate saturation and pore space occupancy would also change. Observations of hydrate redistribution under stable conditions are also important in understanding natural hydrate deposits, as these may also change over time. The processes by which solid hydrate can move include dissociation, hydrate-former and water migration in the gas and liquid phases, and hydrate formation. Chemical potential gradients induced by temperature, pressure, and pore water or host sediment chemistry can drive these processes. A series of tests were performed on a formerly natural methane-hydrate-bearing core sample from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, in order to observe hydrate formation and morphology within this natural sediment, and changes over time using X-ray computed tomography (CT). Long-term observations (over several weeks) of methane hydrate in natural sediments were made to investigate spatial changes in hydrate saturation in the core. During the test sequence, mild buffered thermal and pressure oscillations occurred within the sample in response to laboratory temperature changes. These oscillations were small in magnitude, and conditions were maintained well within the hydrate stability zone.

Kneafsey, T.J.; Rees, E.V.L.

2010-03-01T23:59:59.000Z

32

Physical Properties of Gas Hydrates: A Review  

SciTech Connect

Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

33

Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska  

SciTech Connect

Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

Shirish Patil; Abhijit Dandekar

2008-12-31T23:59:59.000Z

34

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

35

Fundamentals of Natural Gas and Species Flows from Hydrate Dissociation-Applications to Safety and Sea Floor Instability  

SciTech Connect

Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing down-hole well was studied. The case that the well pressure was kept constant was treated and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self-similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied.

Goodarz Ahmadi

2005-09-01T23:59:59.000Z

36

The Great Gas Hydrate Escape  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Gas Great Gas Hydrate Escape The Great Gas Hydrate Escape Computer simulations revealing how methane and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies, Hopper, Materials Science PNNL Contact: Mary Beckman , +1 509 375-3688, mary.beckman@pnl.gov NERSC Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov The methane trapped in frozen water burns easily, creating ice on fire. For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen

37

Hydrate Control for Gas Storage Operations  

SciTech Connect

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

38

3 , LNG (Liquefied Natural Gas) -165oC  

E-Print Network (OSTI)

, , . . . , . , LNG (Liquefied Natural Gas) -165oC , . (Piped Natural Gas, PNG) , , . PNG, LNG ( 2-3 ), . (Natural Gas Hydrate, NGH) / . -20oC / . Natural Gas Hydrate (NGH) Liquefied Natural Gas (LNG) Modes of Transport and Storage

Hong, Deog Ki

39

Gas hydrates: past and future geohazard?  

Science Journals Connector (OSTI)

...David Pyle, John Smellie and David Tappin Gas hydrates: past and future geohazard? Mark...University of Bristol, , Bristol, UK Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates...

2010-01-01T23:59:59.000Z

40

Hydrates represent gas source, drilling hazard  

SciTech Connect

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Stable Conditions of Marine Gas Hydrate  

Science Journals Connector (OSTI)

Figure 9.7 shows the P-T...curve determined by the temperature-pressure method in a sediment-water-methane-hydrate system (natural sand of 20?40, 40?60, and 220?240 mesh). Methane gas is injected into the reactor...

Shicai Sun; Yuguang Ye; Changling Liu; Jian Zhang

2013-01-01T23:59:59.000Z

42

Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates  

Science Journals Connector (OSTI)

...deposited worldwide as a new energy source. For recovering...found that CO 2 hydrates reform at both the surface and...sites such as the Gulf of Mexico outside the Caspian Sea (17, 18...Ratcliffe C. I. ( 1988 ) Energy Fuels 12 : 197 – 200 . 15 Seo Y...Commerce, Industry, and Energy of Korea, also partially...

Youngjune Park; Do-Youn Kim; Jong-Won Lee; Dae-Gee Huh; Keun-Pil Park; Jaehyoung Lee; Huen Lee

2006-01-01T23:59:59.000Z

43

Gas hydrates: past and future geohazard?  

Science Journals Connector (OSTI)

...seafloor samples were recovered in the Black Sea...warm to support the solid gas hydrates, so...stored in other fossil fuel reservoirs. However...Kvenvolden (2007). Solid points are locations...hydrates have been recovered. Figure 4. This...trapped below the solid gas hydrate layer...

2010-01-01T23:59:59.000Z

44

A Quantum Chemistry Study of Natural Gas Hydrates Mert Atilhan,1  

E-Print Network (OSTI)

Aparicio3 1 Department of Chemical Engineering, Qatar University, PO Box 2713, Doha, Qatar 2 Department to flow obstruction problems and flow assurance issues in oil and gas transmission pipe networks, which

Pala, Nezih

45

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

46

Rapid Gas Hydrate Formation Process Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Formation Process Gas Hydrate Formation Process Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH 4 ) or carbon dioxide (CO 2 ). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction

47

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network (OSTI)

stability zone, hydrate will first form at the methane-water interface, either as a film on a methane gas bubble

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

48

Gas hydrate formation in fine sand  

Science Journals Connector (OSTI)

Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in ... Sea. The testing media consisted of silica sand particles with diameters of ...

XiaoYa Zang; DeQing Liang; NengYou Wu

2013-04-01T23:59:59.000Z

49

International Conference on Gas Hydrates May 19-23, 2002, Yokohama  

E-Print Network (OSTI)

of hydrates for transport and storage of natural gas and in cold flow technology. In a continuous stirred tank. The same conditions are relevant in cold flow technology where oil, gas and water are passed through4th International Conference on Gas Hydrates May 19-23, 2002, Yokohama Hydrate Formation Rate

Gudmundsson, Jon Steinar

50

Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir  

E-Print Network (OSTI)

). Natural gas from methane hydrate has the potential to play a major role in ensuring adequate future energy supplies in the US. The worldwide volume of gas in the hydrate state has been estimated to be approximately 1.5 x 10^16 m^3 (Makogon 1984). More than...

Omelchenko, Roman 1987-

2012-12-11T23:59:59.000Z

51

Gas hydrate-filled fracture reservoirs on continental margins.  

E-Print Network (OSTI)

?? Many scientists predicted that gas hydrate forms in fractures or lenses in fine-grained sediments, but only in the last decade were gas hydrates found… (more)

Cook, Ann Elizabeth

2010-01-01T23:59:59.000Z

52

Handbook of gas hydrate properties and occurrence  

SciTech Connect

This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

Kuustraa, V.A.; Hammershaimb, E.C.

1983-12-01T23:59:59.000Z

53

Gas hydrate detection and mapping on the US east coast  

SciTech Connect

Project objectives are to identify and map gas hydrate accumulations on the US eastern continental margin using remote sensing (seismic profiling) techniques and to relate these concentrations to the geological factors that-control them. In order to test the remote sensing methods, gas hydrate-cemented sediments will be tested in the laboratory and an effort will be made to perform similar physical tests on natural hydrate-cemented sediments from the study area. Gas hydrate potentially may represent a future major resource of energy. Furthermore, it may influence climate change because it forms a large reservoir for methane, which is a very effective greenhouse gas; its breakdown probably is a controlling factor for sea-floor landslides; and its presence has significant effect on the acoustic velocity of sea-floor sediments.

Ahlbrandt, T.S.; Dillon, W.P.

1993-12-31T23:59:59.000Z

54

Ultrasonic velocity measurements for synthetic gas?hydrate samples  

Science Journals Connector (OSTI)

Laboratory ultrasonic methods offer a way of studying acoustic velocity of a gas?hydrate bearing formation. By measuringultrasonic velocities of the gas?hydrate samples in various temperature and pressure conditions more effective inversion techniques can be developed to quantitatively evaluate gas?hydrate concentration and distributions. Low?temperature laboratory measurements of compressional velocities in compacted samples are conducted. These gas?hydrate samples are synthesized by using various densities at various pressures and temperatures. At ?10°C the compressional velocities of the compacted gas?hydrate samples are from 2440 to 3570 m/s with the density range from 475 to 898 kg/m3. Compressional velocity measurements are made where the temperature and pressure can be controlled. When the pore pressure increases from 10 to 40 MPa the compressional velocities of the sample increases from 2340 to 2600 m/s at 1.5°C. When the temperature decreases from 10° to ?13°C the compressional velocity will increase from 3600 to 3800 m/s at a pore pressure of 6 MPa. Our experimental results are qualitatively in agreement with those of weighted average model and the Biot?Gassmanns model when the gas?hydrate concentration in a sediment bearing sand is about 20%. [Work supported by National Natural Science Fundation of China No. 10534040.

2006-01-01T23:59:59.000Z

55

ConocoPhillips Gas Hydrate Production Test  

SciTech Connect

Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

2013-06-30T23:59:59.000Z

56

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field trial  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Ignik Sikumi gas hydrate field trial 2012 Ignik Sikumi gas hydrate field trial Photo of the Ignik Drilling Pad Download 2011/2012 Field Test Data Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-Ch4 Exchange Overview August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Final abandonment of Ignik Sikumi #1 wellsite has been completed. Tubing, casing-tubing annulus, and flatpack were filled with cement per the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. To minimize effects on the landscape and leave as little trace of the operations as possible, a small area around the wellhead was

57

Chemically reacting plumes, gas hydrate dissociation and dendrite solidification  

E-Print Network (OSTI)

the coated bubbles leave the hydrate stability zone thestability zone extends far enough above the sea ?oor, gas hydrates may nucleate on the bubble

Conroy, Devin Thomas

2008-01-01T23:59:59.000Z

58

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sources » Fossil » Natural Gas Sources » Fossil » Natural Gas Natural Gas July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and nearby states, sponsored by the U.S. Department of Energy, can now provide petroleum companies and related service providers with the geologic, geographic, and engineering data needed to tap into these resources.

59

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Sources » Fossil » Natural Gas Energy Sources » Fossil » Natural Gas Natural Gas November 20, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Projects Will Determine Whether methane Hydrates Are an Economically and Environmentally Viable Option for America's Energy Future November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. October 31, 2013 Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

60

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

SciTech Connect

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Controls on Gas Hydrate Formation and Dissociation  

SciTech Connect

The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both up-flow and down-flow of fluid at rates that range between 0.5 to 214 cm/yr and 2-162 cm/yr, respectively. The fluid flow system at the mound and background sites are coupled having opposite polarities that oscillate episodically between 14 days to {approx}4 months. Stability calculations suggest that despite bottom water temperature fluctuations, of up to {approx}3 C, the Bush Hill gas hydrate mound is presently stable, as also corroborated by the time-lapse video camera images that did not detect change in the gas hydrate mound. As long as methane (and other hydrocarbon) continues advecting at the observed rates the mound would remain stable. The {_}{sup 13}C-DIC data suggest that crude oil instead of methane serves as the primary electron-donor and metabolic substrate for anaerobic sulfate reduction. The oil-dominated environment at Bush Hill shields some of the methane bubbles from being oxidized both anaerobically in the sediment and aerobically in the water column. Consequently, the methane flux across the seafloor is higher at Bush hill than at non-oil rich seafloor gas hydrate regions, such as at Hydrate Ridge, Cascadia. The methane flux across the ocean/atmosphere interface is as well higher. Modeling the methane flux across this interface at three bubble plumes provides values that range from 180-2000 {_}mol/m{sup 2} day; extrapolating it over the Gulf of Mexico basin utilizing satellite data is in progress.

Miriam Kastner; Ian MacDonald

2006-03-03T23:59:59.000Z

62

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

conductivity of gas hydrate-bearing sand. J. Geophys. Res.seal overlying gas hydrate-bearing sand reservoirs togeologic data on gas-hydrate-bearing sand reservoirs in the

Moridis, G.J.

2011-01-01T23:59:59.000Z

63

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

64

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

65

DOE Leads National Research Program in Gas Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leads National Research Program in Gas Hydrates Leads National Research Program in Gas Hydrates DOE Leads National Research Program in Gas Hydrates July 30, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. Read Dr. Boswell's testimony Dr. Ray Boswell, Senior Management and Technology Advisor at the Office of Fossil Energy's National Energy Technology Laboratory, testified before the House Natural Resources Subcommittee on Energy and Mineral Resources that the R&D program in gas hydrates is working to integrate and leverage

66

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 25, 2013 March 25, 2013 Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Data from Alaska Test Could Help Advance Methane Hydrate R&D Methane Hydrates present an enormous energy resource. The Energy Department is working to advance technologies and reap the possible benefits for a more secure energy future. March 22, 2013 ARPA-E Announces $40 Million for Research Projects to Develop Cleaner and Cheaper Transportation Choices for Consumers Two New ARPA-E Programs Will Engage Nation's Brightest Scientists, Engineers and Entrepreneurs in Research Competition to Improve Vehicle Manufacturing Techniques and Natural Gas Conversion January 10, 2013 Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA.

67

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

68

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

69

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

70

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

71

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

72

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

73

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

74

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

75

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

76

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

77

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

78

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

79

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

80

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

82

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

83

The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline com-  

E-Print Network (OSTI)

gas hydrates. Gas hydrates are crystalline com- pounds that are often encountered in oil and gas briefly present the hydrate crystalline structure and the role of hydrates in oil-and gas industry the industrial contexts where they appear, we shall cite : hydrate plugs obstructing oil- or gas

Boyer, Edmond

84

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

85

Status of DOE Research Efforts in Gas Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Status of DOE Research Efforts in Gas Hydrates Status of DOE Research Efforts in Gas Hydrates Status of DOE Research Efforts in Gas Hydrates July 30, 2009 - 1:38pm Addthis Statement of Dr. Ray Boswell, National Energy Technology Laboratory before the Committee on Natural Resources, Subcommittee on Energy and Mineral Resources, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Subcommittee. I appreciate this opportunity to provide testimony on the status of the United States Department of Energy's (DOE's) research efforts in naturally-occurring gas hydrates. INTRODUCTION Since 2000, DOE, through the Office of Fossil Energy's National Energy Technology Laboratory (NETL), has led the national research program in gas hydrates. The program is conducted through partnerships with private

86

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

SciTech Connect

To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

2010-07-01T23:59:59.000Z

87

Oil and Gas CDT Gas hydrate distribution on tectonically active continental  

E-Print Network (OSTI)

Oil and Gas CDT Gas hydrate distribution on tectonically active continental margins: Impact on gas. Gregory F. Moore, University of Hawaii (USA) http://www.soest.hawaii.edu/moore/ Key Words Gas Hydrates, Faults, Fluid Flow, gas prospectivity Overview Fig. 1. Research on gas hydrates is often undertaken

Henderson, Gideon

88

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

89

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

90

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

91

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

92

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

93

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

94

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

95

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

96

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

97

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

98

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

99

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

100

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

102

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

103

Development of an electrical resistivity cone for the detection of gas hydrates in marine sediments  

E-Print Network (OSTI)

onshore and offshore environments, as well as in permafrost and tropical regions. The presence of natural gas hydrates in marine sediments are of concern to geotechnical engineers for several reasons, including: (1) their effect on the load bearing...

McClelland, Martha Ann

2012-06-07T23:59:59.000Z

104

Gas hydrates in the Gulf of Mexico  

E-Print Network (OSTI)

filled by one or more gases. In marine sediments gas hydrates are found in regions where high pressure, low temperature and gas in excess of solubility are present. Low molecular weight hydrocarbons (LMWH), I. e. methane through butane, carbon dioxide... loop at a helium carrier flow of 12 ml/min with an elution order of methane, ethane, carbon dioxide and propane. Each fraction was trapped in a U- shaped Porpak-Q filled glass tube immersed in LN2. Butanes and heartier weight gases were trapped...

Cox, Henry Benjamin

1986-01-01T23:59:59.000Z

105

NATURAL GAS MARKET ASSESSMENT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

106

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

SciTech Connect

A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

2009-07-15T23:59:59.000Z

107

Rock-physics Models for Gas-hydrate Systems Associated  

E-Print Network (OSTI)

Rock-physics Models for Gas-hydrate Systems Associated with Unconsolidated Marine Sediments Diana associated with unconsolidated marine sediments. The goals are to predict gas-hydrate concentration from intercalated with unconsolidated sediments. We show that the geometrical details of how gas hy- drates

Texas at Austin, University of

108

Detection of gas hydrates by the measurement of instantaneous temperature  

E-Print Network (OSTI)

. Changes, either in temperature or pressure, can cause the hydrate to dissociate. In situ gas hydrates were discovered in the permafrost region of the Soviet Union and have been typically The Journal of Geotechnical En ineerin of the American Society... to detect hydrates. Both of these methods, illustrated in Fig. 6, may not detect hydrates in the form of nodules or thin layers. Hence it is necessary to develop a local method to detect Ocean Floor BASE QE GAS HYDRATE PIG. 5. Bottom Simulating...

Dinakaran, Srikanth

2012-06-07T23:59:59.000Z

109

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

110

Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation  

E-Print Network (OSTI)

future gas hydrate core handling and preservation in sand-gas-hydrate-bearing zones, in which the sediments (particularly the sands)sand deposits are primarily being investigated in the Mount Elbert well, much of the world’s natural gas hydrate

Collett, T.J. Kneafsey, T.J., H. Liu, W. Winters, R. Boswell, R. Hunter, and T.S.

2012-01-01T23:59:59.000Z

111

Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling  

E-Print Network (OSTI)

future gas hydrate core handling and preservation in sand-gas-hydrate-bearing zones, in which the sediments (particularly the sands)sand deposits are primarily being investigated in the Mount Elbert well, much of the world’s natural gas hydrate

Kneafsey, Timothy J.

2010-01-01T23:59:59.000Z

112

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

113

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

114

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

Moridis, G.J.

2011-01-01T23:59:59.000Z

115

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

116

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

E-Print Network (OSTI)

Documented Example of Gas Hydrate Saturated Sand in the Gulfthat observed for gas hydrate-bearing sand sediments in thethan those for the gas hydrate-bearing sand formations in

Boswell, R.D.

2010-01-01T23:59:59.000Z

117

Feasibility of monitoring gas hydrate production with time-lapse VSP  

E-Print Network (OSTI)

Documented Example of Gas Hydrate Saturated Sand in the Gulfmoduli for the sand/gas/water/hydrate mixture with theK eff for the sand/gas/aqueous/hydrate mixture is calculated

Kowalsky, M.B.

2010-01-01T23:59:59.000Z

118

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

119

Preliminary Assessment of Hydrocarbon Gas Sources from the Mt. Elbert No. 1 Gas Hydrate Test Well  

E-Print Network (OSTI)

in two primary horizons; an upper zone, (“D ” Unit) containing 14 meters of gas hydrate-bearing sands

Thomas D. Lorenson; Timothy S. Collett; Robert B. Hunter

120

Experimental determination of permeability of porous media in the presence of gas hydrates  

Science Journals Connector (OSTI)

Abstract Permeability variation, particularly in the presence of gas hydrates, greatly influences production of natural gas from hydrate reservoirs. A series of experiments were performed to investigate the variation of permeability in gas hydrates-bearing sediments. Carbon dioxide hydrate was formed in Ottawa 20/30 sand samples contained within a rigid cell using a partial water saturation formation methodology. Different initial water saturations were used to achieve hydrate saturations up to 45% and the corresponding water permeability was measured during steady-state flow. The experimental permeability results were compared with several theoretical models using both the quantitative and graphical analyses. A hybrid modeling approach based on the weighted combination of grain coating and the pore filling models was used to fit the measured experimental data. The experimental results were also compared to relevant experimental studies that used similar methods to form hydrates. Our analysis indicates a gradual reduction in permeability with increasing hydrate saturation, which is consistent with earlier studies. Further analysis using hybrid modeling suggests a progressive change in the hydrate formation morphology from cementing to that of the pore filling with increasing hydrate saturation.

Mohana L. Delli; Jocelyn L.H. Grozic

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural Gas  

Science Journals Connector (OSTI)

... CHOOSING an awkward moment, Phillips Petroleum Exploration have announced a new find of natural ...naturalgas ...

1967-02-11T23:59:59.000Z

122

Experiments on Hydrocarbon Gas Hydrates in Unconsolidated Sand  

Science Journals Connector (OSTI)

Experiments were carried out to observe the formation and decomposition of hydrocarbon gas hydrates in an unconsolidated sand pack 4.4 cm in diameter and ... 43 bars and 5 to 10°C; gas used was 90% methane and 10...

P. E. Baker

1974-01-01T23:59:59.000Z

123

Gas Hydrate: A Realistic Future Source of Gas Supply? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? August 24, 2009 - 1:00pm Addthis Washington, D.C - A Department of Energy scientist writes in this week's Science magazine that a search is underway for a potentially immense untapped energy resource that, given its global distribution, has the potential to alter existing energy production and supply paradigms. In the article, Is Gas Hydrate Energy Within Reach?, Dr. Ray Boswell, technology manager for the Office of Fossil Energy's National Energy Technology Laboratory methane hydrates program, discusses recent findings and new research approaches that are clarifying gas hydrates energy potential. Driving the current interest in gas hydrate resource appraisal is the focus

124

Gas Hydrate: A Realistic Future Source of Gas Supply? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? August 24, 2009 - 1:00pm Addthis Washington, D.C - A Department of Energy scientist writes in this week's Science magazine that a search is underway for a potentially immense untapped energy resource that, given its global distribution, has the potential to alter existing energy production and supply paradigms. In the article, Is Gas Hydrate Energy Within Reach?, Dr. Ray Boswell, technology manager for the Office of Fossil Energy's National Energy Technology Laboratory methane hydrates program, discusses recent findings and new research approaches that are clarifying gas hydrates energy potential. Driving the current interest in gas hydrate resource appraisal is the focus

125

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

126

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 31, 2012 August 31, 2012 Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012 August 23, 2012 Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy study. August 15, 2012 Alex-andra "Ale" Hakala is an award-winning geoscientist at DOE's National Energy Technology Laboratory. | Photo from the National Energy Technology Laboratory. Energy Department Lab Researcher Wins HENAAC Award for Outstanding

127

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Strategies for Marine Hydrate Reservoirs Production Strategies for Marine Hydrate Reservoirs Production Strategies for Marine Hydrate Reservoirs Authors: J. Phirani. & K. K. Mohanty Venue: 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008. http://www.ichg.org/showcontent.aspx?MenuID=287 [external site]. Abstract: Large quantities of natural gas hydrate are present in marine sediments. This research is aimed at assessing production of natural gas from these deposits. We had developed a multiphase, multicomponent, thermal, 3D simulator in the past, which can simulate production of hydrates both in equilibrium and kinetic modes. Four components (hydrate, methane, water and salt) and five phases (hydrate, gas, aqueous-phase, ice and salt precipitate) are considered in the simulator. The intrinsic kinetics of hydrate formation or dissociation is considered using the Kim–Bishnoi model. Water freezing and ice melting are tracked with primary variable switch method (PVSM) by assuming equilibrium phase transition. In this work, we simulate depressurization and warm water flooding for hydrate production in a hydrate reservoir underlain by a water layer. Water flooding has been studied as a function of well spacing, well orientation, and injection temperature. Results show that depressurization is limited by the supply of heat of hydrate formation. Warm water flooding can supply this heat of formation. Gas production rate is higher for the water flooding than depressurization. Optimum configuration for wells and water temperature are identified.

128

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

129

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

130

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

131

The growth rate of gas hydrate from refrigerant R12  

SciTech Connect

Experimental and theoretical investigations were presented dealing with three phase direct-contact heat transfer by evaporation of refrigerant drops in an immiscible liquid. Refrigerant R12 was used as the dispersed phase, while water and brine were the immiscible continuous phase. A numerical solution is presented to predict the formation rate of gas hydrates in test column. The solution provided an acceptable agreement when compared with experimental results. The gas hydrate growth rate increased with time. It increased with increasing dispersed phase flow rate. The presence of surface-active sodium chloride in water had a strong inhibiting effect on the gas hydrate formation rate. (author)

Kendoush, Abdullah Abbas; Jassim, Najim Abid [Centre of Engineering Physics, Ministry of Sciences and Technology, P.O. Box 765, Baghdad (Iraq); Joudi, Khalid A. [Al-Nahrain University, Baghdad (Iraq)

2006-07-15T23:59:59.000Z

132

An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments  

Science Journals Connector (OSTI)

......reconstituted natural samples showed a large increase in velocities for...in Proceedings of the Ocean Drilling Program, Scientific Results...R.J., Suess E., Ocean Drilling Program, College Station...application to laboratory and borehole measurements of gas hydrate-bearing......

Shyam Chand; Tim A. Minshull; Jeff A. Priest; Angus I. Best; Christopher R. I. Clayton; William F. Waite

2006-08-01T23:59:59.000Z

133

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network (OSTI)

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project > GTI focuses on energy & environmental issues ­ Specialize on natural gas & hydrogen > Our main Natural Gas Gas Hydrates Kent Perry Executive Director Exploration & Production Technology Distributed

134

CONTENTS BOEM Releases Assessment of In-Place Gas Hydrate Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

BOEM Releases Assessment of BOEM Releases Assessment of In-Place Gas Hydrate Resources of the Lower 48 United States Outer Continental Shelf ..............1 Re-examination of Seep Activity at the Blake Ridge Diapir ............6 Field Data from 2011/2012 ConocoPhillips-JOGMEC-DOE Iġnik Sikumi Gas Hydrate Field Trial Now Available .......................9 Announcements .......................11 * Norwegian Center of Excellence to Receive Ten Years of Arctic Research Funding * Release of Mallik 2007-2008 Results * Goldschmidt Conference * 2012 Methane Hydrate Research Fellowship Awarded to Jeffrey James Marlow Spotlight on Research........... 16 Bjørn Kvamme CONTACT Ray Boswell Technology Manager-Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 ray.boswell@netl.doe.gov

135

Detection and evaluation methods for in-situ gas hydrates  

SciTech Connect

With the increased interest in naturally occuring hydrates, the need for improved detection and evaluation methods has also increased. In this paper, logging of hydrates is discussed and selected logs from four arctic wells are examined. A new procedure based on temperature log analysis is described. The concept of a downhole heater for use with drill stem testing is also described for testing and evaluation of hydrate intervals. 12 refs.

Goodman, M.A.; Guissani, A.P.; Alger, R.P.

1982-01-01T23:59:59.000Z

136

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

137

Chapter six - Dehydration of natural gas  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes the dehydration process of natural gas. Dehydration is the process by which water is removed from natural gas. This is a common method used for preventing hydrate formation. If there is no water present, it is impossible for a hydrate to form. If there is only a small amount of water present, the formation of hydrate is less likely. There are other reasons for dehydrating natural gas. The removal of water vapor reduces the risk of corrosion in transmission lines. Furthermore, dehydration improves the efficiency of pipelines by reducing the amount of liquid accumulating in the lines—or even eliminates it completely. There are several methods of dehydrating natural gas. The most common are: glycol dehydration (liquid desiccant), molecular sieves (solid adsorbent), and refrigeration. In glycol dehydration process, the wet gas is contacted with a lean solvent (containing only a small amount of water). The water in the gas is absorbed by the lean solvent, producing a rich solvent stream (one containing more water) and a dry gas. In mole sieves, water in the gas adheres to the solid phase, the solid being the mole sieve, and thus is removed from the natural gas. The usual purpose of a refrigeration plant is to remove heavy hydrocarbons from a natural gas stream—to make hydrocarbon dew point specification. However, this process also removes water.

John J. Carroll

2009-01-01T23:59:59.000Z

138

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network (OSTI)

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

Amodu, Afolabi Ayoola

2009-05-15T23:59:59.000Z

139

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...  

Open Energy Info (EERE)

approach for exploration of gas hydrate reservoirs in marine areas. Authors C. Y. Sun, B. H. Niu, P. F. Wen, Y. Y. Huang, H. Y. Wang, X. W. Huang and J. Li Published Journal...

140

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments - New  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 DE-AI26-06NT42878 Goal The goal of the Interagency Agreement between the National Energy Technology Laboratory and the Naval Research Laboratory is to conduct research to enhance understanding of the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Performer Marine Biogeochemistry Section, Naval Research Laboratory, Washington, DC 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms controlling its contribution to the atmospheric carbon cycle. Active methane fluxes (from deep sediment hydrates and seeps) contribute to shallow sediment biogeochemical carbon cycles, which in turn

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Authors: Mark White and Pete McGrail Venue: The 9th International Conference on Greenhouse Gas Technologies will be held November 16-20, 2008 at The Omni Shoreham Hotel in Washington, DC. The Conference will be organized by MIT in collaboration with the IEA Greenhouse Gas R&D Programme (IEA GHG), with major sponsorship from the US Department of Energy. http://mit.edu/ghgt9/ . Abstract: Under high pressure and low temperature conditions small nonpolar molecules (typically gases) can combine with water to form crystalline structures known as clathrate hydrates. Methane (CH4) and carbon dioxide (CO2) form nearly identical clathrate structures (sI), with the CO2 hydrate being thermodynamically favored. Vast accumulations of methane hydrates have been found in suboceanic deposits and beneath the arctic permafrost. Because of the large volumetric storage densities, clathrate hydrates on the deep ocean floor have been suggested as a sequestration option for CO2. Alternatively, CO2 hydrates can be formed in the geologic settings of naturally occurring accumulations of methane hydrates. Global assessments of natural gas resources have shown that gas hydrate resources exceed those of conventional resources, which is indicative of the potential for clathrate hydrate sequestration of CO2. Recovery of natural gas from hydrate-bearing geologic deposits has the potential for being economically viable, but there remain significant technical challenges in converting these natural accumulations into a useable resource. Currently, conventional methods for producing methane hydrates from geologic settings include depressurization, thermal stimulation, and inhibitor injection. Although CO2 clathrates generally are not naturally as abundant as those of CH4, their occurrence forms the foundation of an unconventional approach for producing natural gas hydrates that involves the exchange of CO2 with CH4 in the hydrate structure. This unconventional concept has several distinct benefits over the conventional methods: 1) the heat of formation of CO2 hydrate is greater than the heat of dissociation of CH4 hydrate, providing a low-grade heat source to support additional methane hydrate dissociation, 2) exchanging CO2 with CH4 will maintain the mechanical stability of the geologic formation, and 3) the process is environmentally friendly, providing a sequestration mechanism for the injected CO2. The exchange production technology would not be feasible without the favorable thermodynamics of CO2 hydrates over CH4 hydrates. This situation yields challenges for the technology to avoid secondary hydrate formation and clogging of the geologic repository. Laboratory-scale experiments have demonstrated the feasibility of producing natural gas and sequestering CO2 using the direct exchange technology in geologic media. These experiments have duplicated numerically using the STOMP-HYD simulator, which solves the nonisothermal multifluid flow and transport equations for mixed hydrate systems in geologic media. This paper describes the design (via numerical simulation) of a pilot-scale demonstration test of the CO2 exchange production and sequestration technology for a geologic setting beneath the arctic permafrost, involving a gas-hydrate interval overlying a free-gas interval (i.e., Class 1 Hydrate Accumulation).

142

The sensitivity of seismic responses to gas hydrates  

SciTech Connect

The sensitivity of seismic reflection coefficients and amplitudes, and their variations with changing incidence angles and offsets, was determined with respect to changes in the parameters which characterize marine sediments containing gas hydrates. Using the results of studies of ice saturation effects in permafrost soils, we have introduced rheological effects of hydrate saturation. The replacement of pore fluids in highly porous and unconsolidated marine sediments with crystalline gas hydrates, increases the rigidity of the sediments, and alters the ratio of compressional/shear strength ratio. This causes Vp/Vs ratio variations which have an effect on the amplitudes of P-wave and S-wave reflections. Analysis of reflection coefficient functions has revealed that amplitudes are very sensitive to porosity estimates, and errors in the assumed model porosity can effect the estimates of hydrate saturation. Additionally, we see that the level of free gas saturation is difficult to determine. A review of the effects of free gas and hydrate saturation on shear wave arrivals indicates that far-offset P to S wave converted arrivals may provide a means of characterizing hydrate saturations. Complications in reflection coefficient and amplitude modelling can arise from gradients in hydrate saturation levels and from rough sea floor topography. An increase in hydrate saturation with depth in marine sediments causes rays to bend towards horizontal and increases the reflection incidence angles and subsequent amplitudes. This effect is strongly accentuated when the vertical separation between the source and the hydrate reflection horizon is reduced. The effect on amplitude variations with offset due to a rough sea floor was determined through finite difference wavefield modelling. Strong diffractions in the waveforms add noise to the amplitude versus offset functions.

Foley, J.E.; Burns, D.R.

1992-08-01T23:59:59.000Z

143

The sensitivity of seismic responses to gas hydrates. Final report  

SciTech Connect

The sensitivity of seismic reflection coefficients and amplitudes, and their variations with changing incidence angles and offsets, was determined with respect to changes in the parameters which characterize marine sediments containing gas hydrates. Using the results of studies of ice saturation effects in permafrost soils, we have introduced rheological effects of hydrate saturation. The replacement of pore fluids in highly porous and unconsolidated marine sediments with crystalline gas hydrates, increases the rigidity of the sediments, and alters the ratio of compressional/shear strength ratio. This causes Vp/Vs ratio variations which have an effect on the amplitudes of P-wave and S-wave reflections. Analysis of reflection coefficient functions has revealed that amplitudes are very sensitive to porosity estimates, and errors in the assumed model porosity can effect the estimates of hydrate saturation. Additionally, we see that the level of free gas saturation is difficult to determine. A review of the effects of free gas and hydrate saturation on shear wave arrivals indicates that far-offset P to S wave converted arrivals may provide a means of characterizing hydrate saturations. Complications in reflection coefficient and amplitude modelling can arise from gradients in hydrate saturation levels and from rough sea floor topography. An increase in hydrate saturation with depth in marine sediments causes rays to bend towards horizontal and increases the reflection incidence angles and subsequent amplitudes. This effect is strongly accentuated when the vertical separation between the source and the hydrate reflection horizon is reduced. The effect on amplitude variations with offset due to a rough sea floor was determined through finite difference wavefield modelling. Strong diffractions in the waveforms add noise to the amplitude versus offset functions.

Foley, J.E.; Burns, D.R.

1992-08-01T23:59:59.000Z

144

The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost  

SciTech Connect

The quantity of hydrocarbon gases trapped in natural hydrate accumulations is enormous, leading to significant interest in the evaluation of their potential as an energy source. Large volumes of gas can be readily produced at high rates for long times from methane hydrate accumulations in the permafrost by means of depressurization-induced dissociation combined with conventional technologies and horizontal or vertical well configurations. Initial studies on the possibility of natural gas production from permafrost hydrates assumed homogeneity in intrinsic reservoir properties and in the initial condition of the hydrate-bearing layers (either due to the coarseness of the model or due to simplifications in the definition of the system). These results showed great promise for gas recovery from Class 1, 2, and 3 systems in the permafrost. This work examines the consequences of inevitable heterogeneity in intrinsic properties, such as in the porosity of the hydrate-bearing formation, or heterogeneity in the initial state of hydrate saturation. Heterogeneous configurations are generated through multiple methods: (1) through defining heterogeneous layers via existing well-log data, (2) through randomized initialization of reservoir properties and initial conditions, and (3) through the use of geostatistical methods to create heterogeneous fields that extrapolate from the limited data available from cores and well-log data. These extrapolations use available information and established geophysical methods to capture a range of deposit properties and hydrate configurations. The results show that some forms of heterogeneity, such as horizontal stratification, can assist in production of hydrate-derived gas. However, more heterogeneous structures can lead to complex physical behavior within the deposit and near the wellbore that may obstruct the flow of fluids to the well, necessitating revised production strategies. The need for fine discretization is crucial in all cases to capture dynamic behavior during production.

Reagan, M. T.; Kowalsky, M B.; Moridis, G. J.; Silpngarmlert, S.

2010-05-01T23:59:59.000Z

145

GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS  

SciTech Connect

The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

James Sorensen; Jaroslav Solc; Bethany Bolles

2000-07-01T23:59:59.000Z

146

Measurement of Gas Hydrate by Laser Raman Spectrometry  

Science Journals Connector (OSTI)

Four types of natural sand (respectively 250–350, 180–250, 125 ... ) are used as media to synthesize methane hydrate that is measured by laser Raman spectrometry. ... show that sediment grain sizes do not influen...

Changling Liu; Qingguo Meng; Yuguang Ye

2013-01-01T23:59:59.000Z

147

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

148

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

149

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

"N3050MS3","N3010MS3","N3020MS3","N3035MS3","NA1570SMS3","N3045MS3" "Date","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

150

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

151

Natural gas annual 1996  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

152

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3010CT3","N3020CT3","N3035CT3","N3045CT3" "Date","Natural Gas Citygate Price in Connecticut (Dollars per Thousand Cubic Feet)","Connecticut Price of Natural Gas Delivered to...

153

Natural Gas Weekly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Rotary Rig Count Rises to Highest Level since February 2009. The natural gas rotary rig count was 992 as of Friday, August 13, according to data released by Baker...

154

NETL: Methane Hydrates - Hydrate Modeling - TOUGH-Fx/HYDRATE  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Modeling - TOUGH+/HYDRATE & HydrateResSim Hydrate Modeling - TOUGH+/HYDRATE & HydrateResSim TOUGH+/HYDRATE v1.0 LBNL's new hydrate reservoir simulator (TOUGH+/HYDRATE v1.0) is now publicly available for licensing. TOUGH+/HYDRATE models non-isothermal gas release, phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural CH4-hydrate deposits in the subsurface (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. TOUGH+/HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. More information on TOUGH+/Hydrate Also available is HydrateResSim. HydrateResSim (HRS) is a freeware, open-source reservoir simulator code available for use “as-is” from the NETL. HRS’ code was derived from an earlier version of the TOUGH+/Hydrate code.

155

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

SciTech Connect

The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

2010-11-01T23:59:59.000Z

156

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

157

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

158

Natural gas annual 1995  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

159

Feasibility of monitoring gas hydrate production with time-lapse VSP  

SciTech Connect

In this work we begin to examine the feasibility of using time-lapse seismic methods-specifically the vertical seismic profiling (VSP) method-for monitoring changes in hydrate accumulations that are predicted to occur during production of natural gas.

Kowalsky, M.B.; Nakagawa, S.; Moridis, G.J.

2009-11-01T23:59:59.000Z

160

Natural Gas Reforming  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GAS PRODUCTION POTENTIAL OF DISPERSE LOW-SATURATION HYDRATE ACCUMULATIONS IN  

NLE Websites -- All DOE Office Websites (Extended Search)

61446 61446 GAS PRODUCTION POTENTIAL OF DISPERSE LOW-SATURATION HYDRATE ACCUMULATIONS IN OCEANIC SEDIMENTS George J. Moridis Earth Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 E. Dendy Sloan Center for Hydrate Research and Chemical Engineering Department Colorado School of Mines Golden, CO 80401 August 2006 This work was partly supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy, Contract No. DE-AC03-76SF00098. Gas Production Potential of Disperse Low-Saturation Hydrate Accumulations in Oceanic Sediments George J. Moridis 1 and E. Dendy Sloan 2 1 Earth Sciences Division, Lawrence Berkeley National Laboratory, MS 90-1166

162

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor...  

Gasoline and Diesel Fuel Update (EIA)

Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Pipeline...

163

Marine electromagnetic methods for gas hydrate characterization  

E-Print Network (OSTI)

15 m 3 ) Conventional gas reserves Year of estimate Figureworld conventional gas reserves (from Milkov and Sassen (

Weitemeyer, Karen Andrea

2008-01-01T23:59:59.000Z

164

Marine Electromagnetic Methods for Gas Hydrate Characterization  

E-Print Network (OSTI)

15 m 3 ) Conventional gas reserves Year of estimate Figureworld conventional gas reserves (from Milkov and Sassen (

Weitemeyer, Karen A

2008-01-01T23:59:59.000Z

165

Methane Hydrates R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

166

Methane Hydrate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

167

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

168

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

169

Natural Gas Program Archive (Disk1)  

NLE Websites -- All DOE Office Websites (Extended Search)

Eastern U.S. Gas Eastern U.S. Gas Shales Eastern U.S. Gas Eastern U.S. Gas Shales Shales Program Program This DVD contains information related to research and development (R&D) undertaken by the U.S. Department of Energy (DOE) during the 1976-1995 time period. This R&D focused on improving industry understanding of ways to locate and produce natural gas from the fractured organic gas shales of the Eastern U.S. A second DVD is also available that includes similar information related to the five other R&D programs targeting unconventional natural gas during roughly the same time frame: Western U.S. Gas Sands (1977-1992), Methane Recovery from Coalbeds (1978-1982), Methane Hydrates (1982-1992), Deep Source Gas Project (1982-1992), and Secondary Gas Recovery (1987-1995). The following items are found on this DVD.

170

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Documented Example of Gas Hydrate Saturated Sand in the Gulfthe behavior of gas hydrate bearing sand reservoirs can beof highly-saturated gas-hydrate bearing sand in the Gulf of

Moridis, George J.

2008-01-01T23:59:59.000Z

171

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

E-Print Network (OSTI)

voxel contained sand, gas, hydrate (under proper conditions)of Gas Hydrate Formation in a Bed of Silica Sand Particles.Gas Hydrate Formation in a Variable Volume Bed of Silica Sand

Rees, E.V.L.

2012-01-01T23:59:59.000Z

172

Natural gas dehydration by desiccant materials  

Science Journals Connector (OSTI)

Water vapor in a natural gas stream can result in line plugging due to hydrate formation, reduction of line capacity due to collection of free water in the line, and increased risk of damage to the pipeline due to the corrosive effects of water. Therefore, water vapor must be removed from natural gas to prevent hydrate formation and corrosion from condensed water. Gas dehydration is the process of removing water vapor from a gas stream to lower the temperature at which water will condense from the stream; this temperature is called the “dew point” of the gas. Molecular sieves are considered as one of the most important materials that are used as desiccant materials in industrial natural gas dehydration. This work shows a study of natural gas dehydration using 3A molecular sieve as a type of solid desiccant materials, the scope of this work was to build up a pilot scale unit for a natural gas dehydration as simulation of actual existing plant for Egyptian Western Desert Gas Company (WDGC). The effect of different operating conditions (water vapor concentration and gas flow rate) on dehydration of natural gas was studied. The experimental setup consists of cylinder filled with 3A molecular sieve to form a fixed bed, then pass through this bed natural gas with different water vapor concentration, The experimental setup is fitted with facilities to control bed pressure, flow rate, measure water vapor concentration and bed temperature, a gas heater was used to activate molecular sieve bed. Increasing water vapor concentration in inlet feed gas leads to a marked decrease in dehydration efficiency. As expected, a higher inlet flow rate of natural gas decrease dehydration efficiency. Increasing feed pressure leads to higher dehydration efficiency.

Hassan A.A. Farag; Mustafa Mohamed Ezzat; Hoda Amer; Adel William Nashed

2011-01-01T23:59:59.000Z

173

Electrical Resistivity Investigation of Gas Hydrate Distribution in  

NLE Websites -- All DOE Office Websites (Extended Search)

10 10 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354 Waco, TX 76798 Principal Author: John A. Dunbar Prepared for: United States Department of Energy National Energy Technology Laboratory January 15, 2011 Office of Fossil Energy 1 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Pr oject Quar ter 17 Repor t Report Type: Quarterly Starting October 1, 2010 Ending December 31, 2010 Author: John A. Dunbar Baylor University Department of Geology January 15, 2011 DOE Award Number: DE-FC26-06NT142959

174

DOE Gas Hydrate R&D: Shale Gas Déjŕ Vu?  

Energy.gov (U.S. Department of Energy (DOE))

More than 30 years ago, DOE looked into the future and saw the potentially large benefit of developing promising but difficult-to-extract unconventional natural gas resources, particularly those from shale formations. As a result, it began sponsoring research and development (R&D), partnering with industry and academia, and, among other things, invested about $137 million in the Eastern Gas Shale Program between 1978 and 1992.

175

Measurement of in situ hydrate thermodynamic properties  

SciTech Connect

Heat capacities and heats of fusion measured in simulated in situ natural gas hydrates using tetrahydrofuran hydrates in clean sand indicated that sediments significantly affect hydrate formation conditions. These data are required to devise and evaluate methods for producing natural gas from hydrates, a potentially significant energy resource.

Sloan, E.D.

1982-03-01T23:59:59.000Z

176

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect

Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

Collett, T.S. (USGS); Riedel, M. (McGill Univ., Montreal, Quebec, Canada); Cochran, J.R. (Columbia Univ., Palisades, NY); Boswell, R.M.; Kumar, Pushpendra (Oil and Natural Gas Corporation Ltd., Navi Mumbai, India); Sathe, A.V. (Oil and Natural Gas Corporation Ltd., Uttaranchal, INDIA)

2008-07-01T23:59:59.000Z

177

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

178

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

179

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

180

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

182

Chitosan as green kinetic inhibitors for gas hydrate formation  

Science Journals Connector (OSTI)

The kinetic inhibiting effect of a number of chitosans on hydrate formation was investigated using methane and methane/ethane gas mixtures. The results indicated that chitosan was a good kinetic inhibitor. The induction time of gas hydrate formation evidently increased with the degree of deacetylation (DD), however, when DD was higher than 80%, the effect of DD on the induction time was negligible. Moreover, it was found that the molecular weight (MW) of chitosan and the addition of polyethylene oxide (PEO) had little effect on the induction time. The optimal concentration of chitosan was found to be 0.6 wt%. Finally, the mechanisms of the kinetic inhibitor on the hydrate formation were discussed.

Yongjun Xu; Minlin Yang; Xiaoxi Yang

2010-01-01T23:59:59.000Z

183

nat_gas_current_proj | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Resources Natural Gas Resources Enhanced Oil Recovery Deepwater Tech Methane Hydrate Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related...

184

Recovery of gas from hydrate deposits using conventional production technology. [Salt-frac technique  

SciTech Connect

Methane hydrate gas could be a sizeable energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs is also described.

McGuire, P.L.

1982-01-01T23:59:59.000Z

185

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

of 1 Tcf from the 1994 estimate of 51 Tcf. Ultimate potential for natural gas is a science-based estimate of the total amount of conventional gas in the province and is an...

186

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

187

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

188

ORIGINAL RESEARCH PAPER Canyon-infilling and gas hydrate occurrences in the frontal fold  

E-Print Network (OSTI)

ORIGINAL RESEARCH PAPER Canyon-infilling and gas hydrate occurrences in the frontal fold to infer the canyon-infilling, fold uplift, and gas hydrate occurrences beneath the frontal fold at the toe simu- lating reflector (BSR) on seismic sections indicates the base of gas hydrate stability zone

Lin, Andrew Tien-Shun

189

Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Diagenesis  

E-Print Network (OSTI)

Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Rights Reserved #12;ABSTRACT Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates-A to Opal-CT, the formation of gas hydrates, fluid substitution in hydrocarbon reservoirs, and fluid

Guerin, Gilles

190

Massive dissociation of gas hydrate during a Jurassic  

E-Print Network (OSTI)

release of methane from gas hydrate contained in marine continental-margin sediments. The better-known positive carbon-isotope excursion of the Early Toarcian is well illustrated by European organic-poor marine-resolution ammonite biostratigraphy is simply determined. Fossil wood is also present, preserved as coal (some

Hesselbo, Stephen P.

191

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...

192

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 7","Consumption",11,"Annual",2013,...

193

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1999" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",10,"Annual",2013,...

194

,"Georgia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1999" ,"Data 3","Underground Storage",3,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

195

,"Massachusetts Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",3,"Annual",1975,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

196

,"Oregon Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1979" ,"Data 3","Underground Storage",4,"Annual",2013,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",10,"Annual",2013,...

197

,"Texas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",1,"Annual",2013,"6302012" ,"Data 7","Consumption",11,"Annual",2013,...

198

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",9,"Annual",2013,"...

199

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",11,"Annual",2013,...

200

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"Alaska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",6,"Annual",2013,"6301973" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301969" ,"Data 7","Consumption",11,"Annual",2013,...

202

,"Maine Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Imports and Exports",2,"Annual",2013,"6301982" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301981" ,"Data 4","Consumption",8,"Annual",2013,"...

203

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",4,"Annual",2013,"6301973" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",8,"Annual",2013,"...

204

,"Idaho Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 3","Underground Storage",2,"Annual",1975,"6301974" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301981" ,"Data 5","Consumption",9,"Annual",2013,"...

205

,"Wisconsin Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",8,"Annual",2013,"...

206

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1982" ,"Data 5","Underground Storage",4,"Annual",2013,"6301967" ,"Data 6","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 7","Consumption",11,"Annual",2013,...

207

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",9,"Annual",2013,"...

208

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",2,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

209

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301968" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",11,"Annual",2013,...

210

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

211

,"Nevada Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

301967" ,"Data 2","Production",11,"Annual",2013,"6301991" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301982" ,"Data 4","Consumption",10,"Annual",2013,...

212

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6301973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 4","Consumption",8,"Annual",2013,"...

213

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",10,"Annual",2013,...

214

,"Alabama Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 4","Underground Storage",4,"Annual",2013,"6301968" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 6","Consumption",11,"Annual",2013,...

215

,"Indiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 3","Underground Storage",4,"Annual",2013,"6301967" ,"Data 4","Liquefied Natural Gas Storage",3,"Annual",2013,"6301980" ,"Data 5","Consumption",10,"Annual",2013,...

216

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) Anthony Zammerilli General Engineer Strategic Center for Natural Gas and Oil Energy Sector Planning and Analysis (ESPA) Robert C. Murray, Thomas Davis, and James...

217

Natural gas annual 1997  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

218

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2013,"6301967" ,"Release Date:","10312014"...

219

EIA - Natural Gas Publications  

Gasoline and Diesel Fuel Update (EIA)

data collected on Form EIA-914 (Monthly Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, Other States...

220

NETL: Natural Gas Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Significant volumes of natural gas can also be produced from tight (low permeability) sandstone reservoirs and coal seams, both unconventional reservoir rocks. NETL...

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas Weekly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

imbalances. Northern Natural Gas Company declared a force majeure after an unplanned repair issue at the Spearman Compressor Station in Ochiltree County, Texas, on Friday,...

222

Chapter 6 - Dehydration of Natural Gas  

Science Journals Connector (OSTI)

Publisher Summary This chapter reviews several methods used for dehydrating natural gas. Dehydration is the process by which water is removed from natural gas. This is a common method used for preventing hydrate formation. There are other reasons for dehydrating natural gas. Removing water vapor reduces the risk of corrosion in transmission lines. Furthermore, dehydration improves the efficiency of pipelines by reducing the amount of liquid accumulating in the lines—or even eliminates it completely. There are several methods of dehydrating natural gas. The most common of these are: glycol dehydration (liquid desiccant), molecular sieves (solid adsorbent), and refrigeration. The most common method for dehydration in the natural gas industry is the use of a liquid desiccant contactor-regeneration process. In this process, the wet gas is contacted with a lean solvent. The lean solvent, producing a rich solvent stream and a dry gas, absorbs the water in the gas. Unlike glycol dehydration, which is an absorption process, dehydration with molecular sieves is an adsorption process. Water in the gas adheres to the solid phase (the solid being the mole sieve), and thus is removed from the natural gas. Molecular sieves are usually used when very dry gas is required. The usual purpose of a refrigeration plant is to remove heavy hydrocarbons from a natural gas stream—to make hydrocarbon dewpoint specification—but this process also removes water.

John J. Carroll

2003-01-01T23:59:59.000Z

223

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

The Boston forum is open to the public. Additional information is available at http:www.energy.govnews3197.htm. Natural Gas Rig Count: The number of rigs drilling for natural...

224

Marine gas hydrates in thin sand layers that soak up microbial methane  

Science Journals Connector (OSTI)

At Site U1325 (IODP Exp. 311, Cascadia margin), gas hydrates occupy 20–60% of pore space in thin sand layers (hydrate. This is a common occurrence in gas hydrate-bearing marine sequences, and it has been related to the inhibition of hydrate formation in the small pores of fine-grained sediments. This paper applies a mass balance model to gas hydrate formation in a stack of alternating fine- and coarse-grained sediment layers. The only source of methane considered is in situ microbial conversion of a small amount of organic carbon (gas hydrates in the fine-grained layers. Methane generated in these layers is transported by diffusion into the coarse-grained layers where it forms concentrated gas hydrate deposits. The vertical distribution and amount of gas hydrate observed at Site U1325 can be explained by in situ microbial methane generation, and a deep methane source is not necessary.

Alberto Malinverno

2010-01-01T23:59:59.000Z

225

Gas Production from Hydrate-Bearing Sediments - Emergent Phenomena -  

SciTech Connect

Even a small fraction of fine particles can have a significant effect on gas production from hydrate-bearing sediments and sediment stability. Experiments were conducted to investigate the role of fine particles on gas production using a soil chamber that allows for the application of an effective stress to the sediment. This chamber was instrumented to monitor shear-wave velocity, temperature, pressure, and volume change during CO{sub 2} hydrate formation and gas production. The instrumented chamber was placed inside the Oak Ridge National Laboratory Seafloor Process Simulator (SPS), which was used to control the fluid pressure and temperature. Experiments were conducted with different sediment types and pressure-temperature histories. Fines migrated within the sediment in the direction of fluid flow. A vuggy structure formed in the sand; these small cavities or vuggs were precursors to the development of gas-driven fractures during depressurization under a constant effective stress boundary condition. We define the critical fines fraction as the clay-to-sand mass ratio when clays fill the pore space in the sand. Fines migration, clogging, vugs, and gas-driven fracture formation developed even when the fines content was significantly lower than the critical fines fraction. These results show the importance of fines in gas production from hydrate-bearing sediments, even when the fines content is relatively low.

Jung, J.W. [Georgia Institute of Technology; Jang, J.W. [Georgia Institute of Technology; Tsouris, Costas [ORNL; Phelps, Tommy Joe [ORNL; Rawn, Claudia J [ORNL; Santamarina, Carlos [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

226

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

227

Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel  

Science Journals Connector (OSTI)

The performance of two gas/liquid contact modes was evaluated in relation to the rate of gas hydrate formation. Hydrate formation experiments were conducted for several gas mixtures relevant to natural gas hydrate formation in the earth (CH4, CH4/C3H8, CH4/C2H6 and CH4/C2H6/C3H8) and two CO2 capture and storage (CO2, CO2/H2/C3H8). One set of experiments was conducted in a bed of silica sand, saturated with water (fixed fed column) while the other experiment was conducted in a stirred vessel for each gas/gas mixture. Both sets of experiments were conducted at a constant temperature. The rate of hydrate formation is customarily correlated with the rate of gas consumption. The results show that the rate of hydrate formation in the fixed bed column is significantly greater and thereby resulted in a higher percent of water conversion to hydrate in lesser reaction time for all the systems studied.

Praveen Linga; Nagu Daraboina; John A. Ripmeester; Peter Englezos

2012-01-01T23:59:59.000Z

228

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview Net additions to storage during the fourth week of April were estimated to have been over 100 Bcf-a record high level for the first month of the refill season. Compared to last year when only 36 Bcf or 1.2 Bcf per day were added to stocks in April, this year the industry appears to be taking advantage of the reduction in demand that typically occurs in April, the first shoulder month of the year, and the recent price declines. After beginning the week down, spot prices at the Henry Hub trended down most days last week to end trading on Friday at $4.49 per MMBtu-the lowest price since early November. On the NYMEX futures market, the near-month (June) contract also moved down most days and ended last week at $4.490-down $0.377 from the previous Friday. Some-early summer high temperatures last week in the Northeast and winter-like weather in the Rockies (See Temperature Map) (See Deviation from Normal Temperatures Map) appear to have had little impact on the natural gas markets as prices declined most days at most major locations.

229

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

S3","N3050KS3","N3010KS3","N3020KS3","N3035KS3","NA1570SKS3","N3045KS3" "Date","Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Kansas Natural Gas Pipeline...

230

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050WY3","N3010WY3","N3020WY3","N3035WY3","NA1570SWY3","N3045WY3" "Date","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Wyoming Natural Gas...

231

,"Montana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050MT3","N3010MT3","N3020MT3","N3035MT3","NA1570SMT3","N3045MT3" "Date","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports...

232

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050OK3","N3010OK3","N3020OK3","N3035OK3","NA1570SOK3","N3045OK3" "Date","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Oklahoma Natural Gas...

233

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050MI3","N3010MI3","N3020MI3","N3035MI3","NA1570SMI3","N3045MI3" "Date","Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Michigan Natural Gas...

234

,"Vermont Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","NA1480SVT3","N3050VT3","N3010VT3","N3020VT3","N3035VT3","N3045VT3" "Date","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)","Vermont Natural Gas Pipeline...

235

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050FL3","N3010FL3","N3020FL3","N3035FL3","NA1570SFL3","N3045FL3" "Date","Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Florida Natural Gas...

236

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050KY3","N3010KY3","N3020KY3","N3035KY3","NA1570SKY3","N3045KY3" "Date","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Kentucky Natural Gas...

237

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

SOH3","N3050OH3","N3010OH3","N3020OH3","N3035OH3","NA1570SOH3","N3045OH3" "Date","Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Ohio Natural Gas Pipeline...

238

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

SUT3","N3050UT3","N3010UT3","N3020UT3","N3035UT3","NA1570SUT3","N3045UT3" "Date","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Utah Natural Gas Pipeline...

239

Natural Gas Infrastructure Modernization  

Energy.gov (U.S. Department of Energy (DOE))

In order to help modernize the nation’s natural gas transmission and distribution systems and reduce methane emissions through common-sense standards, smart investments, and innovative research to advance the state of the art in natural gas system performance, the Department of Energy has launched several new initiatives and enhanced existing programs.

240

VALUING FLARED NATURAL GAS  

Science Journals Connector (OSTI)

LAST YEAR , enough natural gas to supply 27% of U.S. needs was burned off as waste around the world, according to a new report by the World Bank. Flared natural gas is a by-product of petroleum production and is not generally considered worth capture and ...

2007-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Natural Gas Advantage  

Science Journals Connector (OSTI)

Environmental think-tank leaders and the new energy secretary are singing the praises of the ever-expanding U.S. natural gas bonanza, but at the same time, they worry about permanent dependence on this fossil fuel. ... This flood of shale-based natural gas finds has been great for U.S. chemical companies because it is a cheap feedstock and fuel source. ... Equally important, it is also revising the greenhouse gas-climate change equation because, when burned to generate electricity, natural gas produces the same electrical output as coal but emits half the amount of carbon dioxide. ...

JEFF JOHNSON

2013-06-24T23:59:59.000Z

242

Chapter 8 - Natural Gas  

Science Journals Connector (OSTI)

Although natural gas is a nonrenewable resource, it is included for discussion because its sudden growth from fracking will impact the development and use of renewable fuels. Firms who are engaged in the development of processes that employ synthesis gas as an intermediate have concluded that the synthesis gas is more economically obtainable by steam reforming of natural gas than by gasification of waste cellulose. In some instances, firms have largely abandoned the effort to produce a renewable fuel as such, and in others firms are developing hybrid processes that employ natural gas in combination with a fermentation system. Moreover, natural gas itself is an attractive fuel for internal combustion engines since it can be the least expensive option on a cost per joule basis. It is also aided by its high octane number of 130.

Arthur M. Brownstein

2015-01-01T23:59:59.000Z

243

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural gas prices rose at most market locations during the week, as consumption increased. The Henry Hub spot price increased 19 cents from $4.14 per million Btu (MMBtu) on Wednesday, April 13 to $4.33 per MMBtu on Wednesday, April 20. Futures prices behaved similar to spot prices; at the New York Mercantile Exchange, the price of the near-month natural gas contract (May 2011) rose from $4.141 per MMBtu to $4.310 per MMBtu. Working natural gas in storage rose to 1,654 billion cubic feet (Bcf) as of Friday, April 15, according to EIAÂ’s Weekly Natural Gas

244

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: September 10, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 2, 2009) Natural gas prices posted significant decreases at both the spot and futures markets since last Wednesday. Spot prices fell at all market locations in the lower 48 States, with decreases ranging between 7 and 68 cents per million Btu (MMBtu). The price at the Henry Hub spot market fell to $2.25 per MMBtu, decreasing by 51 cents or 18 percent. As of yesterday, the price of natural gas at the Henry Hub was the lowest since February 15, 2002, when natural gas at this location traded at $2.18 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas futures

245

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, June 30, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 22, 2011) Natural gas prices fell slightly at most market locations from Wednesday, June 15 to Wednesday, June 22. The Henry Hub price fell 10 cents from $4.52 per million Btu (MMBtu) last Wednesday to $4.42 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the July 2011 near-month futures contract fell by 26 cents, or about 6 percent, from $4.58 last Wednesday to $4.32 yesterday. Working natural gas in storage rose to 2,354 this week, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

246

Sedimentological control on saturation distribution in Arctic gas-hydrate-bearing sands  

Science Journals Connector (OSTI)

A mechanistic model is proposed to predict/explain hydrate saturation distribution in “converted free gashydrate reservoirs in sub-permafrost formations in the Arctic. This 1-D model assumes that a gas column accumulates and subsequently is converted to hydrate. The processes considered are the volume change during hydrate formation and consequent fluid phase transport within the column, the descent of the base of gas hydrate stability zone through the column, and sedimentological variations with depth. Crucially, the latter enable disconnection of the gas column during hydrate formation, which leads to substantial variation in hydrate saturation distribution. One form of variation observed in Arctic hydrate reservoirs is that zones of very low hydrate saturations are interspersed abruptly between zones of large hydrate saturations. The model was applied to data from Mount Elbert well, a gas hydrate stratigraphic test well drilled in the Milne Point area of the Alaska North Slope. The model is consistent with observations from the well log and interpretations of seismic anomalies in the area. The model also predicts that a considerable amount of fluid (of order one pore volume of gaseous and/or aqueous phases) must migrate within or into the gas column during hydrate formation. This paper offers the first explanatory model of its kind that addresses “converted free gas reservoirs” from a new angle: the effect of volume change during hydrate formation combined with capillary entry pressure variation versus depth.

Javad Behseresht; Steven L. Bryant

2012-01-01T23:59:59.000Z

247

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

What Consumers Should Know What Consumers Should Know An Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices at the Henry Hub Overview of U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Changes in U.S. Natural Gas Transportation Infrastructure in 2004 Major Legislative and Regulatory Actions (1935 - 2004) U.S. Natural Gas Imports and Exports: Issues and Trends 2003 U.S. LNG Markets and Uses: June 2004 Natural Gas Restructuring Previous Issues of Natural Gas Weekly Update Natural Gas Homepage EIA's Natural Gas Division Survey Form Comments Overview: Thursday, December 1, 2005 (next release 2:00 p.m. on December 8) Colder-than-normal temperatures contributed to widespread price increases in natural gas spot markets since Wednesday, November 23 as heating demand increased. For the week (Wednesday to Wednesday), the spot price at the Henry Hub gained 59 cents per MMBtu, or about 5 percent, to trade at $11.73 per MMBtu yesterday (November 30). Similarly, at the NYMEX, the price for the futures contract for January delivery at the Henry Hub gained 54 cents since last Wednesday to close yesterday at $12.587 per MMBtu. Natural gas in storage as of Friday, November 25, decreased to 3,225 Bcf, which is 6.3 percent above the 5 year average. The spot price for West Texas Intermediate (WTI) crude oil dropped $1.02 per barrel, or about 2 percent, since last Wednesday to trade yesterday at $57.33 per barrel or $9.88 per MMBtu.

248

47 Natural Gas Market Trends NATURAL GAS MARKET TRENDS  

E-Print Network (OSTI)

47 Natural Gas Market Trends Chapter 5 NATURAL GAS MARKET TRENDS INTRODUCTION Natural gas discusses current natural gas market conditions in California and the rest of North America, followed on the outlook for demand, supply, and price of natural gas for the forecasted 20-year horizon. It also addresses

249

Processes for Methane Production from Gas Hydrates  

Science Journals Connector (OSTI)

The main cost here is only that of the pipeline used to transport the gas to the production platform. For subsea systems that do not ... group of wells. Transporting methane from the production site to the shore ...

2010-01-01T23:59:59.000Z

250

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico Carbon isotope evidence (13C and 14C) for fossil methane-derived dissolved organic carbon from gas hydrate-bearing cold seeps Authors: Pohlman, J.W. (speaker), Coffin, R.B., and Osburn, C.L., U.S. Naval Research Laboratory, Washington, D.C.; Bauer, J.E., College of William & Mary, Williamsburg, VA; Venue: Goldschmidt 2007 Atoms to Planets conference in Cologne, Germany, August 19-24, 2007 http://www.the-conference.com/conferences/2007/gold2007/ [external site]. Abstract: No abstract available yet. Related NETL Project: The proposed research of the related NETL project DE-AI26-05NT42496, “Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates,” is to conduct scientific studies of natural gas hydrates to support DOE efforts to evaluate and understand methane hydrates, their potential as an energy resource, and the hazard they may pose to ongoing drilling efforts. This project

251

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas spot prices generally declined this report week (June 17-24), with the largest decreases generally occurring in the western half of the country. During the report week, the Henry Hub spot price decreased by $0.19 per million Btu (MMBtu) to $3.80. At the New York Mercantile Exchange (NYMEX), futures prices for natural gas decreased as prices for most energy products fell amid concerns over the economy. The natural gas futures contract for July delivery decreased by 49 cents per MMBtu on the week to $3.761. Working gas in underground storage as of last Friday, June 19, is

252

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

253

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

254

Renewable Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

255

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

256

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

257

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview: Monday, June 04, 2001 Stock builds slowed from their recent pace, even though spot prices continued their downward trend to end the week at the Henry Hub at $3.71 per MMBtu, which is a Friday-to-Friday decline of $0.14 per MMBtu. The NYMEX contract price for June delivery at the Henry Hub settled Tuesday at $3.738, the lowest close-out of a near month contract since the May 2000 contract. The July contract price was $3.930 per MMBtu on Friday, $0.103 lower than a week earlier. Mild weather in the Northeast and Midwest continued to suppress prices on the Eastern Seaboard, while a short burst of warm temperatures in southern California early in the week had the opposite effect on prices in that region. (See Temperature Map) (See Deviation from Normal Temperatures Map) Net injections to storage for the week ended Friday, May 25 were 99 Bcf, breaking a 4-week string of 100-plus net injections.

258

Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea  

Science Journals Connector (OSTI)

Abstract The Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) recovered various forms of gas-hydrate bearing sediments from 10 drill sites in the lower slope and basin floor of the Ulleung Basin. To characterize the gas-hydrate occurrences and the properties of the host sediments, whole-round core samples were taken from portions of recovered cores determined to be hydrate-bearing based on infrared (IR) scanning. These samples were further characterized by a variety of shipboard experiments such as imaging of the sediments with hand-held IR and visual cameras, measurements of pore water chlorinity within and around IR inferred cold regions in the core and grain-size analysis of pore-water squeeze cakes. Sediment compositions of selected samples were further characterized by X-ray diffraction and scanning electron microscopes during post-cruise analysis. The shipboard and post-cruise analysis results collectively indicate that the recovered gas hydrates mainly occur as 1) “pore-filling” type bounded by discrete silty sand to sandy silt layers, 2) “fracture-filling” veins and nodules, or 3) “disseminated” type in silt. In addition, minor but significant variation in gas hydrate concentrations were observed in diatomaceous silt where gas hydrates occur as “pore-filling” material in layers dominated by intact diatom frustules. Gas hydrate accumulations of “fracture-filling” type occur predominantly in regions where acoustic blanking features in the seismic record suggest gas migration from below the gas hydrate stability zone. Results from the UBGH2 core studies along with the analysis of similar samples from other expeditions, including those executed by the Ocean Drilling Program, the Integrated Ocean Drilling Program, and the First Ulleung Basin Gas Hydrate Drilling Expedition, greatly improved our understanding of lithologic controls on marine gas hydrate occurrences.

J.-J. Bahk; D.-H. Kim; J.-H. Chun; B.-K. Son; J.-H. Kim; B.-J. Ryu; M.E. Torres; M. Riedel; P. Schultheiss

2013-01-01T23:59:59.000Z

259

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, March 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 9, 2011) Natural gas spot prices remained soft at nearly all domestic pricing points. The Henry Hub price rose an insignificant 2 cents per million Btu (MMBtu) (0.5 percent) for the week ending March 9, to $3.81 per MMBtu. Working natural gas in storage fell to 1,674 billion cubic feet (Bcf) as of Friday, March 4, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 71 Bcf, with storage volumes positioned 32 Bcf above year-ago levels. At the New York Mercantile Exchange (NYMEX), the April 2011 natural

260

A3. Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Natural Gas Processed and Liquids Extracted at Natural Gas Processing Plants by State, 1996 Table Plant Location Volume of Natural Gas Delivered to Processing Plants a (million cubic feet) Total Liquids Extracted b (thousand barrels) Extraction Loss (million cubic feet) State Production Out of State Production Natural Gas Processed Alabama..................................... 111,656 1,212 112,868 4,009 5,361 Alaska ........................................ 2,987,364 0 2,987,364 33,346 38,453 Arkansas.................................... 214,868 4,609 219,477 383 479 California.................................... 240,566 0 240,566 9,798 12,169 Colorado .................................... 493,748 215 493,963 16,735 23,362 Florida........................................ 5,900 2,614 8,514 1,630 1,649 Illinois.........................................

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

262

Ground movements associated with gas hydrate production. Final report  

SciTech Connect

This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The present study is expected to provide a ``lower bound`` solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir.

Siriwardane, H.J.; Kutuk, B.

1992-03-01T23:59:59.000Z

263

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Carbon dioxide injection -- an important part of carbon capture and storage technology -- is underway as part of a pilot study of CO2 enhanced oil recovery in the Citronelle Field of Mobile County, Alabama. October 29, 2009 DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research expedition off the coast of northeastern Alaska involving the Office of Fossil Energy's National Energy Technology Laboratory (NETL). October 2, 2009 DOE to Unveil New Online Database of Oil and Natural Gas Research Results

264

GEOTECHNICAL INVESTIGATION CHEVRON GULF OF MEXICO GAS HYDRATES JIP  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTECHNICAL INVESTIGATION GEOTECHNICAL INVESTIGATION CHEVRON GULF OF MEXICO GAS HYDRATES JIP BLOCKS 13 AND 14, ATWATER VALLEY AREA BLOCK 151, KEATHLEY CANYON AREA GULF OF MEXICO RESULTS OF CORE SAMPLE ANALYSIS, STANDARD AND ADVANCED LABORATORY TESTING Report No. 0201-5081 CHEVRON TEXACO ENERGY TECHNOLOGY COMPANY Houston, Texas FUGRO-McCLELLAND MARINE GEOSCIENCES, INC. P. O. Box 740010, Houston, Texas 77274, Phone: 713-369-5600, Fax: 713-369-5570 GEOTECHNICAL INVESTIGATION CHEVRON GULF OF MEXICO GAS HYDRATES JIP BLOCKS 13 AND 14, ATWATER VALLEY AREA BLOCK 151, KEATHLEY CANYON AREA GULF OF MEXICO RESULTS OF CORE SAMPLE ANALYSIS, STANDARD AND ADVANCED LABORATORY TESTING REPORT NO. 0201-5081 Client: ChevronTexaco Energy Technology Company 1500 Louisiana St. Houston, Tx 77002

265

Electrical Resistivity Investigation of Gas Hydrate Distribution in  

NLE Websites -- All DOE Office Websites (Extended Search)

July 1 - September 30, 2011 July 1 - September 30, 2011 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354 Waco, TX 76798 Principal Author: John A. Dunbar Prepared for: United States Department of Energy National Energy Technology Laboratory October 14, 2011 Office of Fossil Energy 1 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Pr oject Quar ter 20 Repor t Report Type: Quarterly Starting July 1, 2011 Ending September 30, 2011 Author: John A. Dunbar Baylor University Department of Geology October 14, 2011 DOE Award Number: DE-FC26-06NT142959

266

Electrical Resistivity Investigation of Gas Hydrate Distribution in  

NLE Websites -- All DOE Office Websites (Extended Search)

January 1 - March 31, 2012 January 1 - March 31, 2012 Electrical Resistivity Investigation of Gas Hydrate Distribution in the Mississippi Canyon Block 118, Gulf of Mexico Submitted by: Baylor University One Bear Place, Box 97354 Waco, TX 76798 Principal Author: John A. Dunbar Prepared for: United States Department of Energy National Energy Technology Laboratory April 18, 2012 Office of Fossil Energy 1 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Pr oject Quar ter 22 Repor t Report Type: Quarterly Starting January 1, 2012 Ending March 31, 2012 Author: John A. Dunbar Baylor University Department of Geology April 18, 2012 DOE Award Number: DE-FC26-06NT142959

267

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

268

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

269

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

270

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, August 18, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, August 10, 2011) Natural gas prices fell across the board this week, likely in response to cooling temperatures as well as weak economic news. The Henry Hub spot price fell 17 cents from $4.26 per million Btu (MMBtu) last Wednesday, August 3, to $4.09 per MMBtu yesterday, August 10. At the New York Mercantile Exchange, the price of the near-month contract (September 2011) fell by $0.087 per MMBtu, from $4.090 last Wednesday to $4.003 yesterday. Working natural gas in storage was 2,783 Bcf as of Friday, August 5, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

271

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, February 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 26, 2011) Natural gas spot prices were soft at all domestic pricing points. The Henry Hub price fell 8 cents per million Btu (MMBtu) (about 1.7 percent) for the week ending January 26, to $4.40 per MMBtu. The West Texas Intermediate crude oil spot price settled at $86.15 per barrel ($14.85 per MMBtu), on Wednesday, January 26. This represents a decrease of $4.70 per barrel, or $0.81 per MMBtu, from the previous Wednesday. Working natural gas in storage fell to 2,542 billion cubic feet (Bcf) as of Friday, January 21, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The

272

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, June 16, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 8, 2011) Natural gas prices rose on the week across the board, with somewhat moderate increases in most areas and steep increases in the Northeast United States. The Henry Hub spot price rose 20 cents on the week from $4.63 per million Btu (MMBtu) last Wednesday, June 1, to $4.83 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month (July 2011) contract rose about 5 percent, from $4.692 last Wednesday to $4.847 yesterday. Working natural gas in storage rose to 2,187 billion cubic feet (Bcf) as of Friday, June 3, according to EIAÂ’s Weekly Natural Gas Storage

273

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: Friday, November 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 4, 2009) Natural gas spot prices fell over the week at most market locations, declining on average 16 cents per million Btu (MMBtu). Decreases ranged between 2 cents and 77 cents per MMBtu. In the few trading locations where prices rose, increases were modest, ranging between 1 and 4 cents per MMBtu. The Henry Hub natural gas spot price fell 10 cents on the week, closing at $4.49 per MMBtu. At the New York Mercantile Exchange (NYMEX), the December 2009 natural gas contract fell 34 cents per MMBtu, or 7 percent. The November contract expired on Wednesday, October 28, at $4.289 per MMBtu.

274

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 at 2:00 P.M. 0, 2009 at 2:00 P.M. Next Release: September 17, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 9, 2009) Natural gas prices posted significant increases at all market locations since last Wednesday, September 2. The Henry Hub spot price increased 47 cents from the previous Wednesday's price of $2.25 per MMBtu. However, intraweek trading was volatile, with natural gas prices falling below $2 per million Btu (MMBtu) at the Henry Hub on Friday, September 4 and rising to $2.72 per MMBtu yesterday. At the New York Mercantile Exchange (NYMEX), the price of the near-month natural gas contract for delivery in October 2009 rose by 11.4 cents to $2.829 per MMBtu, an increase of about 4 percent from the previous

275

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, July 28, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 20, 2011) Responding to extremely hot weather this week, natural gas prices moved up at market locations across the lower 48 States. The spot price at the Henry Hub increased 21 cents from $4.43 per million Btu (MMBtu) last Wednesday, July 13, to $4.64 per MMBtu yesterday, July 20. At the New York Mercantile Exchange, the price of the near-month futures contract (August 2011) increased from $4.403 per MMBtu to $4.500 per MMBtu. Working natural gas in storage rose to 2,671 billion cubic feet (Bcf) as of Friday, July 15, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

276

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2010 at 2:00 P.M. 3, 2010 at 2:00 P.M. Next Release: Thursday, June 10, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 2, 2010) Since Wednesday, May 26, natural gas spot prices increased across the lower 48 States, with gains of up to $0.18 per million Btu (MMBtu), at most market locations. The Henry Hub natural gas spot price rose $0.13 per MMBtu, or about 3 percent, averaging $4.32 per MMBtu in trading yesterday, June 2. At the New York Mercantile Exchange (NYMEX), the futures contract for July delivery at the Henry Hub settled yesterday at $4.42 per MMBtu, climbing by $0.25 or about 6 percent since the previous Wednesday. Natural gas in storage was 2,357 billion cubic feet (Bcf) as of May

277

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2011 at 2:00 P.M. 8, 2011 at 2:00 P.M. Next Release: Thursday, May 5, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 27, 2011) Mild temperatures coupled with continued strong domestic production resulted in natural gas cash market prices dropping modestly at nearly all domestic pricing points over the week. The lone exception was the Henry Hub price which rose a token 2 cents per million Btu (MMBtu) (0.5 percent) to $4.35 per MMBtu on April 27. Working natural gas in storage rose to 1,685 billion cubic feet (Bcf) as of Friday, April 22, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 31 Bcf, with storage volumes positioned

278

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2008 , 2008 Next Release: October 9, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 24 to Wednesday, October 1) Natural gas spot prices fell at most market locations in the Lower 48 States this report week, as seasonably moderate temperatures minimized natural gas demand in many areas of the country. The return of some Gulf of Mexico supplies during the week provided further downward pressure on spot prices. As of yesterday, October 1, the Minerals Management Service (MMS) reported that 3.5 billion cubic feet (Bcf) per day of natural gas production remains shut-in, 16 percent lower than the 4.2 Bcf per day reported 1 week earlier. The Henry Hub spot price fell in the first three trading sessions of

279

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 at 2:00 P.M. 1 at 2:00 P.M. Next Release: Thursday, November 17, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 9, 2011) Continuing its recent trend of languishing below the $4 per million Btu (MMBtu) mark, the Henry Hub natural gas spot price oscillated this week, and posted an overall net increase of 16 cents, from $3.39 per MMBtu last Wednesday, November 2, to $3.55 per MMBtu yesterday, November 9. At the New York Mercantile Exchange, the price of the near-month (December 2011) natural gas futures contract fell from $3.749 per MMBtu last Wednesday to $3.652 per MMBtu yesterday. Working natural gas in storage rose to 3,831 billion cubic feet (Bcf) as of Friday, November 4, according to EIAÂ’s Weekly Natural Gas

280

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, January 27, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 19, 2011) Natural gas prices fell at most market locations across the country, as bitterly cold weather subsided. At the Henry Hub, the natural gas price fell 7 cents from $4.55 per million Btu (MMBtu) on Wednesday, January 12, to $4.48 per MMBtu on Wednesday, January 19. At the New York Mercantile Exchange (NYMEX), the price of the near-month natural gas contract (February 2011) rose slightly, from $4.531 per MMBtu on January 12 to $4.561 yesterday. The spot price of the West Texas Intermediate crude oil fell by $1 over the week, from $91.85 per barrel on January 12 ($15.84 per MMBtu) to

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, September 9, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 1, 2010) Since Wednesday, August 25, natural gas spot prices fell at most market locations in the lower 48 States, although prices generally rose in the Northeast and Rocky Mountain areas. The Henry Hub spot price fell on the week from $3.99 per million Btu (MMBtu) to $3.73 per MMBtu, its lowest value since April 1, 2010. At the New York Mercantile Exchange, the October 2010 natural gas futures contract fell about 3 percent from $3.896 per MMBtu to $3.762 per MMBtu. During the report week, the September 2010 natural gas futures contract expired at $3.651, having lost about $1.176 per MMBtu during its

282

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, March 10, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 2, 2011) Natural gas prices showed continued relative weakness during the report week. The spot price at the Henry Hub fell from $3.83 per million Btu (MMBtu) on February 23 to $3.79 per MMBtu on March 2. At the New York Mercantile Exchange (NYMEX), the March 2011 futures contract expired at $3.793 per MMBtu, having declined about 12 percent during its tenure as the near-month contract. Working natural gas in storage fell to 1,745 Bcf as of Friday, February 25, according to EIAÂ’s Weekly Natural Gas Storage Report. The spot price of the West Texas Intermediate (WTI) crude oil

283

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, April 15, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 7, 2010) Since Wednesday, March 31, natural gas spot prices climbed at most market locations across the lower 48 States, with increases of as much as 8 percent. The Henry Hub natural gas spot price rose $0.15, or about 4 percent, to $4.08 per million Btu (MMBtu), in a week of trading shortened by the Good Friday holiday on April 2. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday, April 7, at $4.02 per MMBtu, rising by $0.15 or about 4 percent since the previous Wednesday. Natural gas in storage was 1,669 billion cubic feet (Bcf) as of

284

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, September 29, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 21, 2011) Natural gas spot prices declined at most market locations across the United States, as moderate temperatures led to declines in demand. Prices at the Henry Hub fell from $4.01 per MMBtu last Wednesday, September 14, to $3.78 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month futures contract (October 2011) dropped from $4.039 per MMBtu last Wednesday to $3.73 per MMBtu yesterday. Working natural gas in storage rose to 3,201 billion cubic feet (Bcf) as of Friday, September 16, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

285

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050KY3","N3010KY3","N3020KY3","N3035KY3","N3045KY3" "Date","Natural Gas Citygate Price in Kentucky (Dollars per Thousand Cubic Feet)","Kentucky Price...

286

,"Colorado Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050CO3","N3010CO3","N3020CO3","N3035CO3","N3045CO3" "Date","Natural Gas Citygate Price in Colorado (Dollars per Thousand Cubic Feet)","Colorado Price...

287

,"Illinois Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050IL3","N3010IL3","N3020IL3","N3035IL3","N3045IL3" "Date","Natural Gas Citygate Price in Illinois (Dollars per Thousand Cubic Feet)","Illinois Price...

288

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050CA3","N3010CA3","N3020CA3","N3035CA3","N3045CA3" "Date","Natural Gas Citygate Price in California (Dollars per Thousand Cubic Feet)","California...

289

,"Maryland Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050MD3","N3010MD3","N3020MD3","N3035MD3","N3045MD3" "Date","Natural Gas Citygate Price in Maryland (Dollars per Thousand Cubic Feet)","Maryland Price...

290

,"Arkansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050AR3","N3010AR3","N3020AR3","N3035AR3","N3045AR3" "Date","Natural Gas Citygate Price in Arkansas (Dollars per Thousand Cubic Feet)","Arkansas Price...

291

,"Virginia Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050VA3","N3010VA3","N3020VA3","N3035VA3","N3045VA3" "Date","Natural Gas Citygate Price in Virginia (Dollars per Thousand Cubic Feet)","Virginia Price...

292

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050OK3","N3010OK3","N3020OK3","N3035OK3","N3045OK3" "Date","Natural Gas Citygate Price in Oklahoma (Dollars per Thousand Cubic Feet)","Oklahoma Price...

293

,"Nebraska Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050NE3","N3010NE3","N3020NE3","N3035NE3","N3045NE3" "Date","Natural Gas Citygate Price in Nebraska (Dollars per Thousand Cubic Feet)","Nebraska Price...

294

,"Washington Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050WA3","N3010WA3","N3020WA3","N3035WA3","N3045WA3" "Date","Natural Gas Citygate Price in Washington (Dollars per Thousand Cubic Feet)","Washington...

295

,"Tennessee Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050TN3","N3010TN3","N3020TN3","N3035TN3","N3045TN3" "Date","Natural Gas Citygate Price in Tennessee (Dollars per Thousand Cubic Feet)","Tennessee...

296

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050LA3","N3010LA3","N3020LA3","N3035LA3","N3045LA3" "Date","Natural Gas Citygate Price in Louisiana (Dollars per Thousand Cubic Feet)","Louisiana...

297

,"Minnesota Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050MN3","N3010MN3","N3020MN3","N3035MN3","N3045MN3" "Date","Natural Gas Citygate Price in Minnesota (Dollars per Thousand Cubic Feet)","Minnesota...

298

,"Michigan Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050MI3","N3010MI3","N3020MI3","N3035MI3","N3045MI3" "Date","Natural Gas Citygate Price in Michigan (Dollars per Thousand Cubic Feet)","Michigan Price...

299

,"Pennsylvania Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050PA3","N3010PA3","N3020PA3","N3035PA3","N3045PA3" "Date","Natural Gas Citygate Price in Pennsylvania (Dollars per Thousand Cubic...

300

Natural Gas Monthly Update  

Annual Energy Outlook 2012 (EIA)

issues Go CorrectionUpdate February 22, 2013 Two Year-To-Date values, for 2010 NGL Composite Spot Price and Natural Gas Spot Price, were incorrectly displayed in Table 3. These...

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

for natural gas in the electric power sector soared during the week in order to meet heating needs from the current cold spell. The operator for the electric power grid in Texas...

302

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

in waters up to 9000 feet deep. Southern Natural Gas Company has scheduled a shut-in test at the Muldon Storage Field in Mississippi for April 5 through April 11. Under the...

303

Natural Gas for Britain  

Science Journals Connector (OSTI)

... AT a time when the Government is exhorting the gas and other major industries concerned with ... and other major industries concerned with natural fuel resources to give a forward boost to coal mining by contracting an annual intake ...

1965-05-29T23:59:59.000Z

304

Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report  

SciTech Connect

The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

Kvenvolden, K.A.; Claypool, G.E.

1988-01-01T23:59:59.000Z

305

Integrated Geologic and Geophysical Assessment of the Eileen Gas Hydrate Accumulation, North Slope, Alaska  

SciTech Connect

Using detailed analysis and interpretation of 2-D and 3-D seismic data, along with modeling and correlation of specially processed log data, a viable methodology has been developed for identifying sub-permafrost gas hydrate prospects within the Gas Hydrate Stability Zone (HSZ) and associated ''sub-hydrate'' free gas prospects in the Milne Point area of northern Alaska (Figure 1). The seismic data, in conjunction with modeling results from a related study, was used to characterize the conditions under which gas hydrate prospects can be delineated using conventional seismic data, and to analyze reservoir fluid properties. Monte Carlo style gas hydrate volumetric estimates using Crystal Ball{trademark} software to estimate expected in-place reserves shows that the identified prospects have considerable potential as gas resources. Future exploratory drilling in the Milne Point area should provide answers about the producibility of these shallow gas hydrates.

Timothy S. Collett; David J. Taylor; Warren F. Agena; Myung W. Lee; John J. Miller; Margarita Zyrianova

2005-04-30T23:59:59.000Z

306

,"Arizona Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050AZ3","N3010AZ3","N3020AZ3","N3035AZ3","NA1570SAZ3","N3045AZ3" "Date","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Price of Arizona Natural...

307

Historical Natural Gas Annual 1999  

U.S. Energy Information Administration (EIA) Indexed Site

1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

308

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: July 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 15, 2009) Natural gas spot prices rose during the week in all trading locations. Price increases ranged between 6 cents and 48 cents per million Btu (MMBtu), with the biggest increases occurring in the Rocky Mountain region. During the report week, the spot price at the Henry Hub increased 15 cents or 5 percent to $3.37 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas near-month contract (August 2009) decreased 7 cents to $3.283 per MMBtu from $3.353 the previous week. During its tenure as the near-month contract, the August 2009 contract has lost 66 cents. As of Friday, July 10, 2009, working gas in storage rose to 2,886

309

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, March 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 24, 2010) Natural gas prices declined across the board, continuing a downward trend from the previous week. The Henry Hub natural gas spot price closed at $4.91 per million Btu (MMBtu) on Wednesday, February 24, a decline of about 10 percent from $5.47 per MMBtu on February 17. At the New York Mercantile Exchange (NYMEX), the futures contract for March 2010 delivery, which expired yesterday, fell 11 percent on the week, from $5.386 per MMBtu to $4.816 per MMBtu. With an implied net withdrawal of 172 billion cubic feet (Bcf), working gas in storage decreased to 1,853 Bcf as of Friday, February 19,

310

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

311

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14, 2007 (next release 2:00 p.m. on June 21, 2007) 14, 2007 (next release 2:00 p.m. on June 21, 2007) Natural gas spot and futures prices decreased this week (Wednesday-Wednesday, June 6-13) as weather-related demand was limited amid close-to-normal temperatures for this time of year. Easing prices also likely resulted in part from reduced supply uncertainty in response to the amount of natural gas in underground storage (mostly for use during the winter heating season but also available for periods of hot weather in the summer). Supplies from international sources have grown considerably this spring, as imports of liquefied natural gas (LNG) have increased markedly even as natural gas supplies from Canada (transported by pipeline) likely have decreased. On the week, the Henry Hub spot price decreased 23 cents per MMBtu, or 2.9 percent, to $7.60. At the New York Mercantile Exchange (NYMEX), the contract for July delivery decreased 47.2 cents per MMBtu on the week to a daily settlement of $7.608 yesterday (June 13). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,255 Bcf as of Friday, June 8, reflecting an implied net injection of 92 Bcf. This level of working gas in underground storage is 19.3 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.20 per barrel on the week to $66.17 per barrel, or $11.41 per MMBtu.

312

Clathrate hydrate equilibrium data for the gas mixture of carbon dioxide and nitrogen in the  

E-Print Network (OSTI)

1 Clathrate hydrate equilibrium data for the gas mixture of carbon dioxide and nitrogen the mole fraction of CO2 in the carbon dioxide + nitrogen + cyclopentane mixed hydrate phase, both defined;2 {water +carbon dioxide + nitrogen}, the equilibrium pressure of the mixed hydrate is reduced by 0.95 up

Paris-Sud XI, Université de

313

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Prices headed up the middle of last week despite seasonal or cooler temperatures everywhere but California (See Temperature Map) (See Deviation from Normal Temperatures Map) and the July 4th holiday, regarded as one of the lowest natural gas consumption days. As expected, the resulting 10-cent-per-MMBtu gain at the Henry Hub on Thursday compared with the previous Friday was undone the following day. The futures price for August delivery was able to stay ahead of the previous week by 12.2 cents to settle at $3.218 on Friday. Spot natural gas prices for large packages in southern California increased as much as $2.71 per MMBtu as temperatures soared and gas-fired power plants endeavored to meet air conditioning demand. Prices started to recede as temperatures abated by the end of the week. Strong gas supplies across the country supported another hefty net addition to storage of 105 Bcf.

314

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

315

Coalbed Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

316

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2009 at 2:00 P.M. 4, 2009 at 2:00 P.M. Next Release: October 1, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 23, 2009) Natural gas prices posted across-the-board increases at both the spot and futures markets since last Wednesday. Spot prices rose at almost all market locations in the lower 48 States, with increases ranging between 2 and 23 cents per million Btu (MMBtu). The price at the Henry Hub spot market rose to $3.43 per MMBtu, increasing by 15 cents or about 5 percent. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for October delivery increased by 10 cents to $3.860 per MMBtu. The November contract also posted gains this week, albeit much smaller at 4

317

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2009 4, 2009 Next Release: May 21, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 13, 2009) Since Wednesday, May 6, natural gas spot prices rose at most market locations in the Lower 48 States, with increases ranging between 49 and 95 cents per million Btu (MMBtu). Prices at the Henry Hub climbed by 75 cents per MMBtu, or about 20 percent, to $4.42 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub settled yesterday, May 13, at $4.333 per MMBtu, increasing by 45 cents or about 11 percent during the report week. Natural gas in storage was 2,013 billion cubic feet (Bcf) as of May 8, which is about 23 percent above the 5-year average (2004-2008),

318

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Overview - May 21, 2001 Somewhat warmer temperatures early in the week, especially in the South, provided a lift to natural gas spot and futures prices. (See Temperature Map) (See Deviation from Normal Temperatures Map) However, a report of another large stock build and a revised forecast for normal to below-normal temperatures over a larger area of the country turned the week's gains into losses. On a week-to-week basis, the spot price of natural gas at the Henry Hub dropped $0.10 to end Friday, May 18 at $4.15 per MMBtu, while the NYMEX price of natural gas for June delivery at the Henry Hub declined $0.013 to $4.291 per MMBtu. At 119 Bcf, net injections to storage for the week ended May 11, 2001, were the highest value for the 8-year period of weekly AGA data.

319

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2008 4, 2008 Next Release: August 21, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, August 6, to Wednesday, August 13) Since Wednesday, August 6, natural gas spot prices decreased at all markets in the Lower 48 States, with prices falling between $0.20 and 0.77 per million Btu (MMBtu) at most locations. Prices at the Henry Hub fell $0.59 per MMBtu or about 7 percent, to $8.11 per MMBtu—its lowest level since February 8, 2008. At the New York Mercantile Exchange (NYMEX), the futures contract for September delivery at the Henry Hub settled yesterday (August 12) at $8.456 per MMBtu, declining $0.31 or about 4 percent since Wednesday, August 6. Natural gas in storage was 2,567 billion cubic feet (Bcf) as of

320

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2010 at 2:00 P.M. 3, 2010 at 2:00 P.M. Next Release: Thursday, May 20, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 12, 2010) Natural gas spot prices increased at nearly all market locations in the lower 48 States, with price hikes ranging between 6 and 30 cents per million Btu (MMBtu). The Henry Hub spot price ended the report week yesterday, May 12, at $4.18 per MMBtu, 18 cents higher than the preceding week. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub ended trading yesterday at $4.284 per MMBtu, increasing by 29 cents or about 7 percent during the report week. Natural gas in storage increased to 2,089 billion cubic feet (Bcf)

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2010 at 2:00 P.M. , 2010 at 2:00 P.M. Next Release: Thursday, April 8, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 31, 2010) Natural gas spot prices fell almost across the board, as mild weather moved into most areas in the lower 48 States. The Henry Hub price fell by 9 cents, from $4.02 per million Btu (MMBtu) on Wednesday, March 24, to $3.93 per MMBtu yesterday (March 31). At the New York Mercantile Exchange (NYMEX), the April 2010 contract expired on Monday, March 29, at $3.842 per MMBtu. The May 2010 contract ended trading yesterday at $3.869 per MMBtu, a decline of about 29 cents from its closing price of $4.154 per MMBtu on March 24. Inventories of working natural gas in storage rose to 1,638 billion

322

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, July 7, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 29, 2011) Nearly all pricing points were down slightly for the week on light weather load despite an end-week rally anticipating warmer weather for the approaching July 4th holiday weekend. The Henry Hub price decreased 2 cents per million Btu (MMBtu) over the week (0.5 percent) to close at $4.40 per MMBtu on June 29. Working natural gas in storage rose last week to 2,432 billion cubic feet (Bcf) as of Friday, June 24, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 78 Bcf, leaving storage volumes

323

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, September 22, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 14, 2011) A touch of autumn in the air combined with hopes for the eventual return of winter was likely the catalyst enabling natural gas prices to recapture the $4 mark this week despite an environment of negative consumption fundamentals and continued strong production. At the New York Mercantile Exchange (NYMEX), the October 2011 natural gas contract advanced 9.9 cents per million Btu (MMBtu) to close at $4.039 per MMBtu over the week. The Henry Hub price oscillated in a similar but narrow range before closing up 5 cents for the week at $4.01 per MMBtu on September 14. Working natural gas in storage rose last week to 3,112 billion cubic

324

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2009 1, 2009 Next Release: May 28, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 20, 2009) Natural gas prices at most trading locations fell on the week because of mild weather as well as continued weakness in the economy. Declines ranged between 37 cents at the Dracut trading area in the Northeast to 90 cents at the El Paso non-Bondad area in the Rocky Mountains. The Henry Hub spot price fell by 67 cents during the week to $3.75 per million Btu (MMBtu). Moving in the opposite direction of natural gas prices, the price of the West Texas Intermediate (WTI) crude oil contract rose on the week to $61.45 per barrel, or $10.59 per MMBtu. Oil prices are now at their highest level since November 10, 2008, having more than doubled since falling to a

325

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2010 at 2:00 P.M. 1, 2010 at 2:00 P.M. Next Release: Thursday, March 18, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 10, 2010) Since Wednesday, March 3, natural gas spot prices fell at most market locations across the lower 48 States, with decreases of as much as 11 percent. Prices at the Henry Hub declined $0.32, or about 7 percent, to $4.44 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery at the Henry Hub settled yesterday, March 10, at $4.56 per MMBtu, falling by $0.20 or about 4 percent since the previous Wednesday. Natural gas in storage was 1,626 billion cubic feet (Bcf) as of March 5, about 1 percent above the 5-year average (2005-2009). The implied

326

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2010 at 2:00 P.M. 9, 2010 at 2:00 P.M. Next Release: Thursday, December 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 8, 2010) In response to cold weather across much of the United States, natural gas spot prices increased across the board this report week (December 1 – December 8). Though most increases were less than 50 cents per million Btu (MMBtu), prices at a number of trading points (notably in the Northeast and Florida) increased by several dollars. The Henry Hub spot price rose 25 cents, from $4.21 per MMBtu to $4.46 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price of the natural gas near-month contract (January 2011) also increased, rising from $4.269 per MMBtu on December 1 to $4.606 per MMBtu on December 8.

327

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: October 23, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For week ending Wednesday, October 15) Since Wednesday, October 8, natural gas spot prices increased at most markets in the Lower 48 States outside the California, West Texas, and Arizona/Nevada regions, with prices rising as much as 76 cents per million Btu (MMBtu). Prices at the Henry Hub rose 6 cents per MMBtu or about 1 percent, to $6.64 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday (October 15) at $6.592 per MMBtu, declining 15 cents per MMBtu or about 2 percent since last Wednesday, October 8. Natural gas in storage was 3,277 billion cubic feet (Bcf) as of

328

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, May 26, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 18, 2011) The threat of shut-in production arising from lower Mississippi River flooding likely sent prices up temporarily at nearly all domestic pricing points over the week but the gains failed to stick. The Henry Hub price lost a modest 7 cents per million Btu (MMBtu) (1.9 percent) to close at $4.15 per MMBtu on May 18. Working natural gas in storage rose to 1,919 billion cubic feet (Bcf) as of Friday, May 13, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 92 Bcf, leaving storage volumes

329

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 9, 2009 Next Release: February 26, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 18, 2009) Since Wednesday, February 11, natural gas spot prices declined at virtually all market locations in the Lower 48 States, with decreases ranging between 3 and 78 cents per MMBtu. Prices at the Henry Hub fell 33 cents per million Btu (MMBtu), or about 7 percent, to $4.35 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for March delivery at the Henry Hub settled yesterday (February 18) at $4.214 per MMBtu, declining 32 cents per MMBtu or about 7 percent during the report week. Natural gas in storage was 1,996 billion cubic feet (Bcf) as of February 13, which is about 8.4 percent above the 5-year average

330

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: November 14, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, November 5) Since Wednesday, October 29, natural gas spot prices increased at most markets in the Lower 48 States outside the Midwest, Northeast, and Alabama/Mississippi regions, with gains of up to $1.26 per million Btu (MMBtu) in a week of highly variable prices. Prices at the Henry Hub rose 36 cents per MMBtu or about 5 percent, to $6.94 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for December delivery at the Henry Hub settled yesterday (November 5) at $7.249 per MMBtu, climbing 47 cents per MMBtu or about 7 percent since last Wednesday, October 29. Natural gas in storage was 3,405 billion cubic feet (Bcf) as of

331

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 0, 2009 Next Release: August 6, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 29, 2009) Since Wednesday, July 22, natural gas spot prices fell at most market locations, with decreases of as much as 19 cents per million Btu (MMBtu). Prices at the Henry Hub declined by 8 cents per MMBtu, or about 2 percent, to $3.41 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery at the Henry Hub expired yesterday, July 29, at $3.379 per MMBtu, decreasing by 41 cents or about 11 percent during the report week. Natural gas in storage was 3,023 billion cubic feet (Bcf) as of July 24, which is about 19 percent above the 5-year average (2004-2008),

332

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2008 4, 2008 Next Release: December 11, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, December 3, 2008) Since Wednesday, November 26, natural gas spot prices decreased at most markets in the Lower 48 States, although selected markets posted relatively modest gains on the week. Prices at the Henry Hub rose 5 cents per million Btu (MMBtu) or less than 0.5 percent, to $6.48 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for January delivery at the Henry Hub settled yesterday (December 3) at $6.347 per MMBtu, falling 53 cents per MMBtu or about 8 percent since last Wednesday, November 26. Natural gas in storage was 3,358 billion cubic feet (Bcf) as of

333

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, June 23, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 15, 2011) The past week was characterized by passing of the earlier weekÂ’s heat wave. The Henry Hub price decreased 31 cents per million Btu (MMBtu) for the week (6.4 percent) to close at $4.52 per MMBtu on June 15. During the midst of the heat wave, working natural gas in storage last week rose to 2,256 billion cubic feet (Bcf) as of Friday, June 10, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 69 Bcf, leaving storage volumes positioned 275 Bcf below year-ago levels.

334

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2008 4, 2008 Next Release: July 31, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, July 16, natural gas spot prices decreased at all markets in the Lower 48 States, with prices falling more than $1 per MMBtu at most locations during the period. Prices at the Henry Hub fell $1.26 per million Btu (MMBtu), or about 11 percent, to $9.89 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery at the Henry Hub settled yesterday at $9.788 per MMBtu, declining $1.61 or about 14 percent since Wednesday, July 16. Natural gas in storage was 2,396 billion cubic feet (Bcf) as of July 18, which is about 1 percent below the 5-year average (2003-2007), following an implied net injection of 84 Bcf.

335

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, December 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 17, 2010) Natural gas spot prices fell modestly at nearly all domestic pricing points, likely because expectations for colder weather were slow in materializing and storage levels rose again. The Henry Hub price fell 23 cents (about 6 percent) for the week ending November 17, to $3.77 per million Btu (MMBtu). The West Texas Intermediate crude oil spot price settled at $80.43 per barrel ($13.87 per MMBtu), on Wednesday, November 17. This represents a decrease of $7.34 per barrel, or $1.27 per MMBtu, from the previous Wednesday. Working natural gas in storage set another new all-time record

336

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2010 at 2:00 P.M. 3, 2010 at 2:00 P.M. Next Release: Thursday, September 30, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 22, 2010) Since Wednesday, September 15, natural gas spot prices fell at most markets across the lower 48 States, with declines of less than 10 cents per million Btu (MMBtu). However, selected markets in the Rocky Mountains and at the Florida citygate posted considerably larger declines, falling by as much as $0.51 per MMBtu. The Henry Hub natural gas spot price fell $0.04 per MMBtu since last Wednesday, averaging $4.02 per MMBtu in trading yesterday, September 22. At the New York Mercantile Exchange (NYMEX), the futures contract for October delivery at the Henry Hub settled yesterday at $3.966 per

337

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2008 5, 2008 Next Release: May 22, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot prices increased in a majority of regions of the Lower 48 States this report week (Wednesday–Wednesday, May 7-14).The Henry Hub spot price increased $0.43 per million Btu (MMBtu) to $11.51, the highest average price recorded at the Henry Hub in more than 2 years. At the New York Mercantile Exchange (NYMEX), prices also continued on an upward trend that has resulted in weekly price increases in 6 of the last 7 report weeks. The futures contract for June delivery increased 27.1 cents per MMBtu on the week to approximately $11.60. During the week ending Friday, May 9, estimated net injections of natural gas into underground storage totaled the largest volume to date

338

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 at 2:00 P.M. 9, 2009 at 2:00 P.M. Next Release: November 5, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 28, 2009) Natural gas prices posted decreases at both the spot and futures markets since last Wednesday. Spot prices fell at virtually all market locations in the lower 48 States, with decreases ranging between 6 and 46 cents per million Btu (MMBtu). However, a couple trading locations did post gains this week. The price at the Henry Hub spot market fell 21 cents or about 4 percent, ending trading yesterday at $4.59 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for November delivery expired yesterday at $4.289 per MMBtu, falling 81 cents or about 16 percent since last Wednesday. The December

339

Natural Gas Annual, 1998  

Gasoline and Diesel Fuel Update (EIA)

8 8 Historical The Natural Gas Annual, 1998 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1998. Summary data are presented for each Census Division and State for 1994 to 1998. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1998 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1998, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

340

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2008 , 2008 Next Release: July 10, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 25, natural gas spot prices increased at most markets in the Lower 48 States, with prices rising up to 5 percent during the period. Prices at the Henry Hub increased 55 cents per million Btu (MMBtu), or about 4 percent, to $13.31 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery at the Henry Hub settled yesterdayat $13.389 per MMBtu, rising 52 cents or about 4 percent since Wednesday, June 25. Natural gas in storage was 2,118 billion cubic feet (Bcf) as of June 27, which is about 3 percent below the 5-year average (2003-2007), following an implied net injection of 85 Bcf.

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, February 25, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 17, 2010) Natural gas prices continued their decline across much of the country for the week ended February 17. Even prices in the Northeast, which registered large increases during the previous week, fell as of yesterday. On the week, natural gas spot prices registered net decreases at almost all locations in the lower 48 States. The significant price increases for the week ended February 10 in the Northeast occurred in response to the two major snow storms that slammed the Mid-Atlantic and parts of the Northeast. However, with average temperatures this report week resembling historical normals, prices in the

342

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, October 13, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 5, 2011) Like autumn leaves floating down to earth, natural gas prices dropped decidedly from their $4 support branch this past week. In a whirlwind of generally unsupportive market fundamentals, the Henry Hub price closed down 25 cents for the week to $3.63 per million British thermal units (MMBtu) on October 5. At the New York Mercantile Exchange (NYMEX), the November 2011 natural gas contract dropped nearly 23 cents per MMBtu to close at $3.570 per MMBtu over the week. Working natural gas in storage rose last week to 3,409 billion cubic feet (Bcf) as of Friday, September 30, according to the U.S. Energy

343

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 at 2:00 P.M. 0, 2009 at 2:00 P.M. Next Release: Thursday, December 17, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 9, 2009) Natural gas spot prices increased at all trading locations in the lower 48 States since last Wednesday, December 2. The Henry Hub price rose by 60 cents, or almost 13 percent, to $5.27 per million Btu (MMBtu) on the week. At the New York Mercantile Exchange (NYMEX), the price of the January 2010 natural gas contract rose about 37 cents to $4.898 per MMBtu. The Henry Hub spot price was higher than price of the near-month contract during 3 days of the report week. The West Texas Intermediate crude oil contract fell by $5.95, or 8 percent, to $70.67 per barrel or $12.18 per MMBtu.

344

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2010 at 2:00 P.M. 0, 2010 at 2:00 P.M. Next Release: Thursday, May 27, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 19, 2010) Since last Wednesday, May 12, natural gas spot prices generally rose at market locations across the lower 48 States, with only a few exceptions. The Henry Hub natural gas spot price increased about 2 percent since last Wednesday, from $4.18 per million Btu (MMBtu) to $4.28 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price of the June 2010 futures contract fell about 3 percent, from $4.284 per MMBtu to $4.158 per MMBtu. The West Texas Intermediate (WTI) crude oil spot price dropped about 8 percent, from $75.65 per barrel ($13.05 per MMBtu) to $69.91 per barrel

345

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2009 1, 2009 Next Release: June 18, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 10, 2009) Since Wednesday, June 3, natural gas spot prices fell at most market locations in the Lower 48 States, with the Henry Hub spot price falling to $3.56 per million Btu (MMBtu), about a 7 percent decline from the previous WednesdayÂ’s level of $3.81 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price for the July contract fell from $3.766 to $3.708 over the week, about a 2 percent decline. Prices for contracts beyond the near month and August 2009, however, increased. Natural gas in storage was 2,443 billion cubic feet (Bcf) as of June 5, which is 21.8 percent above the 5-year (2004-2008) average, after an

346

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2009 7, 2009 Next Release: September 3, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 26, 2009) Since Wednesday, August 19, natural gas spot prices fell at all market locations, with decreases ranging between 10 and 39 cents per million Btu (MMBtu). Prices at the Henry Hub declined by 26 cents per MMBtu, or about 9 percent, to $2.76 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for September delivery at the Henry Hub settled yesterday, August 26, at $2.91 per MMBtu, decreasing by 21 cents or about 7 percent during the report week. Natural gas in storage was 3,258 billion cubic feet (Bcf) as of August 21, which is about 18 percent above the 5-year average (2004-2008),

347

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2008 4, 2008 Next Release: September 11, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, August 27, to Wednesday, September 3) Since Wednesday, August 27, natural gas spot prices decreased at all markets in the Lower 48 States, with prices falling more than $1 per million Btu (MMBtu) at most locations. Prices at the Henry Hub fell $1.29 per MMBtu or about 15 percent, to $7.26 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for October delivery at the Henry Hub settled yesterday (September 3) at $7.264 per MMBtu, declining $1.344 or about 16 percent in its first week as the near-month contract. Natural gas in storage was 2,847 billion cubic feet (Bcf) as of August 29, which is about 4 percent above the 5-year average (2003-2007),

348

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2009 2, 2009 Next Release: March 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 11, 2009) Since Wednesday, March 4, natural gas spot prices declined at most market locations in the Lower 48 States, with decreases ranging up to 59 cents per million Btu (MMBtu). Prices at the Henry Hub fell 31 cents per MMBtu, or about 7 percent, to $3.92 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery at the Henry Hub settled yesterday, March 11, at $3.80 per MMBtu, declining 54 cents per MMBtu or about 12 percent during the report week. Natural gas in storage was 1,681 billion cubic feet (Bcf) as of March 6, which is about 13 percent above the 5-year average (2004-2008),

349

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: August 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 5, 2009) Natural gas prices posted increases at both the spot and futures markets since last Wednesday, with price increases at the spot market ranging between 12 and 43 cents per million Btu (MMBtu). During the report week, the price at the Henry Hub spot market rose to $3.61 per MMBtu, increasing by 20 cents or 5.9 percent. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for September delivery increased by 49 cents to $4.042 per MMBtu. The September futures contract closed above $4.00 per MMBtu for the first time since June 19 on Monday, reaching $4.031 per MMBtu. The near-month

350

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2010 at 2:00 P.M. 7, 2010 at 2:00 P.M. Next Release: Thursday, October 14, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 6, 2010) Natural gas spot prices fell at most pricing point locations across the board in the lower 48 States as demand fell. The price at the Henry Hub fell 25 cents, or about 7 percent, since last Wednesday, September 29, from $3.81 per million Btu (MMBtu) to $3.56 per MMBtu. The West Texas Intermediate crude oil spot price settled at $83.21 per barrel, or $14.35 per MMBtu, on Wednesday, October 6. This represents an increase of $5.36 per barrel, or $0.92 per MMBtu, from the previous Wednesday. Working natural gas in storage increased to 3,499 billion cubic feet

351

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2010 at 2:00 P.M. , 2010 at 2:00 P.M. Next Release: Thursday, July 8, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 30, 2010) Since Wednesday, June 23, natural gas spot prices decreased across the lower 48 States, with declines of as much as $0.68 per million Btu (MMBtu). The Henry Hub natural gas spot price fell $0.37, or about 7 percent, averaging $4.53 per MMBtu in trading yesterday, June 30. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery at the Henry Hub settled yesterday at $4.616 per MMBtu, climbing by $0.24 or about 5 percent since the previous Wednesday. The futures contract for July delivery at the Henry Hub expired in trading on Monday, June 28, at $4.717 per MMBtu, climbing $0.39 per MMBtu during its

352

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2008 2, 2008 Next Release: May 29, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, May 14, natural gas spot prices decreased at most markets in the Lower 48 States. However, a price rally yesterday (May 21) contributed to price increases at some market locations since last Wednesday, May 14. Prices at the Henry Hub fell 11 cents per million Btu (MMBtu), or about 1 percent, to $11.40 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub settled yesterday at $11.64 per MMBtu, rising 4 cents or less than 1 percent since Wednesday, May 14. Natural gas in storage was 1,614 billion cubic feet (Bcf) as of May 16, which is slightly below the 5-year average (2003-2007), following an

353

Natural Gas Annual, 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Historical The Natural Gas Annual, 1997 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1997. Summary data are presented for each Census Division and State for 1993 to 1997. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1997 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1997, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

354

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2009 8, 2009 Next Release: January 15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 7, 2009) Since Wednesday, December 31, natural gas spot prices increased at most markets in the Lower 48 States except in the Northeast region. Prices at the Henry Hub rose 26 cents per million Btu (MMBtu) or about 5 percent, to $5.89 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for February delivery at the Henry Hub settled yesterday (January 7) at $5.872 per MMBtu, climbing 22 cents per MMBtu or about 4 percent since last Wednesday, December 31. Natural gas in storage was 2,830 billion cubic feet (Bcf) as of January 2, which is about 3 percent above the 5-year average (2004-2008),

355

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 9, 2009 Next Release: April 16, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 8, 2009) Since Wednesday, April 1, natural gas spot prices declined at most market locations in the Lower 48 States, with decreases ranging up to 40 cents per million Btu (MMBtu). Prices at the Henry Hub fell by 6 cents per MMBtu, or about 2 percent, to $3.50. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday, April 8, at $3.63 per MMBtu, declining by 7 cents or about 2 percent during the report week. Natural gas in storage was 1,674 billion cubic feet (Bcf) as of April 3, which is about 23 percent above the 5-year average (2004-2008),

356

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2010 at 2:00 P.M. 7, 2010 at 2:00 P.M. Next Release: Thursday, January 14, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 6, 2010) Since Wednesday, December 30, natural gas spot prices rose at nearly all market locations in the lower 48 States, with increases of more than 10 percent on the week. Prices at the Henry Hub climbed $0.68 per MMBtu, or about 12 percent, to $6.47 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for February delivery at the Henry Hub settled yesterday, January 6, at $6.01 per MMBtu. The price of the near-month contract increased by 30 cents or about 5 percent during the report week. Natural gas in storage was 3,123 billion cubic feet (Bcf) as of

357

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: Thursday, December 10, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 2, 2009) Natural gas spot prices soared this week, following significant, albeit smaller decreases in trading the prior week. Spot prices rose at nearly all market locations in the lower 48 States by more than a dollar per million Btu (MMBtu). The only exception occurred at the Leidy location in the Northeast, which rose by 84 cents per MMBtu. The Henry Hub spot price ended the report week at $4.67 per MMBtu, $1.35 per MMBtu higher than last Wednesday. Trading at the Henry Hub ended yesterdayÂ’s session 14 cents higher than the January 2010 contract. At the New York Mercantile Exchange (NYMEX), the natural gas futures

358

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2009 at 2:00 P.M. 8, 2009 at 2:00 P.M. Next Release: October 15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 7, 2009) Since last Wednesday, September 30, natural gas prices rose across the board, with increases ranging between 37 cents and $1.32 per million Btu (MMBtu). Natural gas prices oscillated by large amounts at most market locations across the United States. The Henry Hub began the report week at $3.24 per MMBtu, fell to $2.32 on October 2, and ended trading yesterday at $3.70 per MMBtu. At the New York Mercantile Exchange (NYMEX), the near-month contract for November ended the week at $4.904 per MMBtu, a slight increase from the previous weekÂ’s value of $4.841 per MMBtu.

359

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 3, 2009 Next Release: April 30, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 22, 2009) Since Wednesday, April 15, natural gas spot prices fell at most market locations in the Lower 48 States. Prices traded yesterday at or below $4 per million Btu (MMBtu) at all market locations. The Henry Hub spot market price fell by 12 cents, or 3 percent, over the week to $3.48 per MMBtu yesterday. The price for the May contract on the New York Mercantile Exchange (NYMEX) fell by 4 percent to $3.532 per MMBtu, from $3.693. Natural gas in storage was 1,741 Bcf as of Friday, April 17, following a 46 Bcf injection. Inventories are now 23 percent higher than the 5-year average and 36 percent higher than the level 1 year ago.

360

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2009 at 2:00 P.M. 2, 2009 at 2:00 P.M. Next Release: October 29, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 21, 2009) Since Wednesday, October 14, natural gas spot prices increased at all market locations in the lower 48 States, with price hikes generally ranging between $0.31 and $1.14 per million Btu (MMBtu). Prices at the Henry Hub climbed 98 cents per MMBtu, or about 26 percent, to $4.80 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday, October 21, at $5.10 per MMBtu, increasing by 66 cents or about 15 percent during the report week. Natural gas in storage was a record-setting 3,734 billion cubic feet

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 at 2:00 P.M. 9, 2009 at 2:00 P.M. Next Release: Thursday, December 3, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 18, 2009) Since Wednesday, November 11, natural gas spot prices rose at nearly all market locations in the lower 48 States, with increases of up to 55 cents per million Btu (MMBtu). Prices at the Henry Hub climbed $0.15 per MMBtu, or about 4 percent, to $3.74 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for December delivery at the Henry Hub settled yesterday, November 18, at $4.254 per MMBtu. The price of the near-month contract decreased by 25 cents or about 6 percent during the report week. Natural gas in storage was a record-setting 3,833 billion cubic feet

362

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, June 9, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 1, 2011) The past week was marked by two distinct trading markets — “before” and “after” the Memorial Day holiday. Cash markets were listless going into the holiday weekend but escalated Tuesday following an early heat wave that drifted into the East. The Henry Hub price advanced 27 cents per million Btu (MMBtu) for the week (6.2 percent) to close at $4.63 per MMBtu on June 1. Just prior to the heat wave, working natural gas in storage last week rose to 2,107 billion cubic feet (Bcf) as of Friday, May 27, according to the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas

363

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Thursday, October 21, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 13, 2010) Natural gas spot prices posted gains at most markets across the lower 48 States since Wednesday, October 6, accompanied by double-digit increases in trading since the holiday weekend. Price increases on the week ranged up to 25 cents per million Btu (MMBtu), with the Henry Hub natural gas spot price increasing $0.02 per MMBtu since last Wednesday, averaging $3.58 per MMBtu in trading yesterday, October 13. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday at $3.696 per MMBtu, falling by $0.169, or about 4 percent, since the previous Wednesday.

364

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0 at 2:00 P.M. 0 at 2:00 P.M. Next Release: Thursday, November 18, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Tuesday, November 9, 2010) Since Wednesday, November 3, natural gas spot prices rose across the lower 48 States, increasing between $0.25 and $1.12 per million Btu (MMBtu). Prices at the Henry Hub rose $0.41 per MMBtu since last Wednesday, averaging $3.76 per MMBtu in trading yesterday, November 9. At the New York Mercantile Exchange (NYMEX), the futures contract for December delivery at the Henry Hub settled yesterday at $4.21 per MMBtu, climbing by $0.37, or about 10 percent, since the previous Wednesday. Natural gas in storage totaled 3,840 billion cubic feet (Bcf) as of November 5, about 10 percent above the 5-year (2005-2009) average, and

365

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2010 at 2:00 P.M. 6, 2010 at 2:00 P.M. Next Release: Thursday, September 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 25, 2010) Since Wednesday, August 18, natural gas spot prices fell at most markets across the lower 48 States. Although a majority of markets posted declines of as much as $1.36 per million Btu (MMBtu), selected western market locations posted relatively narrow gains on the week. The Henry Hub natural gas spot price fell $0.36 per MMBtu, or about 8 percent, averaging $3.99 per MMBtu in trading yesterday, August 25, falling below $4 per MMBtu for the first time since May 7. At the New York Mercantile Exchange (NYMEX), the futures contract for September delivery at the Henry Hub settled yesterday at $3.871 per

366

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

20, 2011 at 2:00 P.M. 20, 2011 at 2:00 P.M. Next Release: Thursday, October 27, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 19, 2011) Natural gas prices posted modest net gains at most market locations across the lower 48 States. The Henry Hub spot price increased from $3.54 per million Btu (MMBtu) last Wednesday, October 12, to $3.58 per MMBtu yesterday, October 19. Intra-week trading showed strong rallies followed by quick retreats. At the New York Mercantile Exchange, the price of the near-month futures contract (November 2011) gained about 10 cents on the week from $3.489 per MMBtu last Wednesday to $3.586 per MMBtu yesterday. Working natural gas in storage rose to 3,624 billion cubic feet (Bcf) as of Friday, October 14, according to EIAÂ’s Weekly Natural Gas

367

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16, 2009 16, 2009 Next Release: April 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 15, 2009) Since Wednesday, April 8, natural gas spot prices increased at most market locations in the Lower 48 States, with some exceptions including those in the Northeast, Midwest, and Midcontinent. Despite this weekÂ’s upticks at most locations, natural gas spot prices remain at relatively low levels and have continued to trade within a limited range for the past 4 weeks. The Henry Hub spot market prices gained about 10 cents or 2.9 percent per million Btu (MMBtu), ending trading yesterday at $3.60 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday (April 15) at $3.693

368

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2008 5, 2008 Next Release: October 2, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 17, to Wednesday, September 24) Since Wednesday, September 17, natural gas spot prices increased at nearly all markets in the Lower 48 States, with prices rising as much as $2.02 per MMBtu but climbing less than $1 per million Btu (MMBtu) at most locations. Prices at the Henry Hub rose 33 cents per MMBtu or about 4 percent, to $8.15 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for October delivery at the Henry Hub settled yesterday (September 24) at $7.679 per MMBtu, declining 23 cents per MMBtu or about 3 percent since last Wednesday, September 17. Natural gas in storage was 3,023 billion cubic feet (Bcf) as of

369

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, March 24, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 16, 2011) With imports (particularly from outside North America) becoming less significant to U.S. natural gas markets, spot natural gas prices this report week appeared largely unaffected by international events that have had large impacts on other energy commodities. As weather turned spring-like in many parts of the country and storage withdrawals continued to slow dramatically, the Henry Hub spot price increased just $0.04 to $3.85 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices increased slightly for delivery in the near-term. The futures contract for

370

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2009 9, 2009 Next Release: July 16, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 8, 2009) Natural gas prices posted across-the-board decreases at both the spot and futures markets since last Wednesday. Price decreases at the spot market ranged between 1 and 44 cents per million Btu (MMBtu), although a few points in the lower 48 States posted small increases. During the report week, the price at the Henry Hub spot market fell to $3.22 per MMBtu, decreasing by 11 percent since last Wednesday. At the New York Mercantile Exchange (NYMEX), the natural gas futures contract for August delivery lost 44.2 cents and ended the report week at $3.353 per MMBtu. The price for the August 2009 contract has posted a

371

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2007 (next release 2:00 p.m. on October 25, 2007) 8, 2007 (next release 2:00 p.m. on October 25, 2007) Natural gas spot prices increased since Wednesday, October 10, at nearly all market locations. For the week (Wednesday to Wednesday), the price at the Henry Hub increased $0.32 per MMBtu, or about 5 percent, to $7.11 per MMBtu. The NYMEX futures contract for November delivery at the Henry Hub rose 45 cents since last Wednesday to close yesterday at $7.458 per MMBtu. Natural gas in storage as of Friday, October 12, was 3,375 Bcf, which is 6.7 percent above the 5-year average. Despite the seemingly favorable supply conditions and little weather-related natural gas demand, natural gas prices continued their upward movement of the past 6 weeks. The Henry Hub spot price exceeded the $7-per MMBtu mark in this week's trading for the first time in 2 months. One factor in the recent run-up in prices may be the relatively low imports of liquefied natural gas (LNG) to the Lower 48 States. LNG imports have averaged less than 1 Bcf per day during the first half of October, based on the sendout data published on companies' websites. LNG cargoes instead are heading to Europe and Asia, where buyers continue to purchase LNG at much higher prices than have prevailed in U.S. markets. A likely influence on natural gas prices is the spot price for West Texas Intermediate (WTI) crude oil, which reached yet another record high on Tuesday, but decreased slightly during yesterday's trading to $87.19 per barrel or $15.03 per MMBtu. On the week, however, the WTI increased $5.89 per barrel or about 7 percent.

372

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on July 19, 2007) 2, 2007 (next release 2:00 p.m. on July 19, 2007) Natural gas spot prices increased during this holiday-shortened report week (Thursday-Wednesday, July 5-11) as weather-related demand emerged in response to the hottest temperatures to date this year in the Northeast and Midwest. On the week, the Henry Hub spot price increased 36 cents per MMBtu, or 5.7 percent, to $6.65. At the New York Mercantile Exchange (NYMEX), the story was slightly different with the contract price for August delivery decreasing to $6.600 per MMBtu, which was 1.8 cents lower than last Thursday's (July 5) closing price. EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,627 Bcf as of Friday, July 7. This level of working gas in underground storage is 16.6 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.77 per barrel on the week to $72.58 per barrel. On a Btu basis, the crude oil price is now nearly double the price of natural gas at $12.51 per MMBtu. The relative difference in pricing can have a large effect on demand (mostly in the industrial sector and power plants).

373

Appendix C Selected Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Recurring Recurring Natural Gas Reports * Natural Gas Monthly, DOE/EIA-0130. Published monthly. Other Reports Covering Natural Gas, Natural Gas Liquids, and Other Energy Sources * Monthly Energy Review, DOE/EIA-0035. Published monthly. Provides national aggregate data for natural gas, natural gas liquids, and other energy sources. * Short-Term Energy Outlook, DOE/EIA-0202. Published quarterly. Provides forecasts for next six quarters for natural gas and other energy sources. * Natural Gas 1996: Issues and Trends, DOE/EIA- 0560(96), December 1996. * U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves -1996 Annual Report, DOE/EIA-0216(96)/Ad- vance Summary, September 1997. * Annual Energy Review 1996, DOE/ EIA-0384(96), July 1997. Published annually. * State Energy Data Report, Consumption Estimates, 1960- 1994, DOE/EIA-0214(94), October 1996. * Annual

374

Gas Natural - CNG y GNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Natural Dispensador de Gas Natural Gas Natural Dispensador de Gas Natural El gas natural, un combustible fósil compuesto básicamente de metano, es uno de los combustibles alternativos menos contaminantes. Puede ser usado como gas natural comprimido (GNC) o como gas natural licuado (GNL) para autos y camiones. Existen vehículos diseñados para funcionar exclusivamente con gas natural. Por otra parte hay vehículos de doble combustible o bi-combustibles que también puede funcionar con gasolina o diesel. Los vehículos de doble combustible permiten que el usuario aproveche la gran disponibilidad de gasolina o diesel, pero use la alternativa menos contaminante y más económica cuando el gas natural esté disponible. Ya que el gas natural es almacenado en depósitos de combustible de alta

375

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

376

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

377

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

378

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

379

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

380

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

382

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

383

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

384

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

385

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

386

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

387

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

388

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

389

Natural Gas | Department of Energy  

Energy Savers (EERE)

Natural Gas Natural Gas Many heavy-duty fleets depend on diesel fuel. But an increasing number of trucking companies are transitioning their vehicles to run on liquefied natural...

390

Natural Gas Applications  

Gasoline and Diesel Fuel Update (EIA)

Welcome to EIA's Natural Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Welcome to EIA's Natural Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications What's New Publications Applications Survey Forms Sign Up for Email Updates Contact Experts Applications EIA-176 Query System The EIA-176 Query system is a Windows-based system which runs under Windows operating systems 95, 98, 2000, NT - 4.0 Service Pack 3 or later. It provides a method of extracting and using the company level data filed on the Form EIA-176, and saving the query results in various media and formats. There are pre-selected data queries, which allow the user to select and run the most often-used queries, as well as the ability to create a customized query. Self-extracting executable files with run-time versions of Access are required to set up the system. You may also download the data tables if you already have Microsoft Access on your computer.

391

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, April 14, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 6, 2011) Continuing last weekÂ’s net decline, the Henry Hub price this week fell 8 cents from $4.25 per million Btu (MMBtu) on Wednesday, March 30, to $4.17 per MMBtu on Wednesday, April 6. At the New York Mercantile Exchange, the price of the near-month (May 2011) contract fell from $4.355 per MMBtu to $4.146 per MMBtu. Working natural gas in storage fell to 1,579 billion cubic feet (Bcf) as of Friday, April 1, according to EIAÂ’s Weekly Natural Gas Storage Report.The natural gas rotary rig count, as reported by Baker Hughes Incorporated, rose by 11 to 891. A new study released by EIA estimated technically recoverable shale

392

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050UT3","N3010UT3","N3020UT3","N3035UT3","N3045UT3" "Date","Natural Gas Citygate Price in Utah (Dollars per Thousand Cubic Feet)","Utah Price of...

393

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050OH3","N3010OH3","N3020OH3","N3035OH3","N3045OH3" "Date","Natural Gas Citygate Price in Ohio (Dollars per Thousand Cubic Feet)","Ohio Price of...

394

,"Iowa Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050IA3","N3010IA3","N3020IA3","N3035IA3","N3045IA3" "Date","Natural Gas Citygate Price in Iowa (Dollars per Thousand Cubic Feet)","Iowa Price of...

395

Natural Gas Purchasing Options  

E-Print Network (OSTI)

As a result of economic and regulatory changes, the natural gas marketplace now offers multiple options for purchasers. The purpose of this panel is to discuss short-term purchasing options and how to take advantage of these options both to lower...

Watkins, G.

396

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

397

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: Thursday, November 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 11, 2009) With little impact on production in the Gulf of Mexico from Hurricane Ida and moderate temperatures in many parts of the country, natural gas spot prices decreased sharply this report week (November 4-11). The Henry Hub spot price decreased by $0.90 to $3.59 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices also moved lower as the threat of an interruption in supplies from the hurricane passed. The futures contract for December delivery decreased by $0.22 on the report week to $4.503 per MMBtu. Working gas in underground storage as of last Friday (November 6) is

398

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2008 5, 2008 Next Release: June 12, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Spot gas at most market locations (outside the Rocky Mountain Region) traded above $10 per million Btu (MMBtu) this report week (Wednesday-Wednesday), with many points registering prices in excess of $12 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for July delivery at the Henry Hub moved higher by 38 cents per MMBtu compared with its settlement price a week ago, ending yesterday (June 4) at $12.379 MMBtu. Natural gas in storage was 1,806 billion cubic feet (Bcf) as of May 30, which is 0.1 percent below the 5-year average (2003-2007). The spot price for West Texas Intermediate (WTI) crude oil decreased

399

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 3, 2009 Next Release: July 30, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 22, 2009) Natural gas spot prices rose this report week, as prices for energy products generally increased and the economic outlook improved. During the report week, the Henry Hub spot price increased by $0.12 per million Btu (MMBtu) to $3.49. At the New York Mercantile Exchange (NYMEX), futures prices increased significantly. The price of the futures contract for August delivery closed yesterday, July 22, at $3.793 per MMBtu, more than 50 cents higher than the closing price the previous Wednesday. Working gas in underground storage as of Friday, July 17, is estimated to have been 2,952 billion cubic feet (Bcf), which is 18.4

400

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 0, 2009 Next Release: August 27, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 19, 2009) Natural gas spot prices declined this report week (August 12-19), with the largest decreases generally occurring in the western half of the country. The Henry Hub spot price decreased by $0.34 to $3.02 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased as supplies continued to be viewed as more than adequate to address near-term demand, including heating-related demand increases this winter. The futures contract for September delivery decreased by $0.36 on the week to $3.12 per MMBtu. Working gas in underground storage as of last Friday is estimated to

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: October 22, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 14, 2009) Natural gas spot prices increased this report week (October 7-14) as a cold-air mass moved over major consuming areas of the country, including the populous Northeast. The Henry Hub spot price increased by $0.12 to $3.82 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased significantly after increasing for 5 consecutive weeks. The futures contract for November delivery decreased by $0.47 per MMBtu on the week to $4.436. Working gas in underground storage as of last Friday (October 9) is estimated to have been 3,716 billion cubic feet (Bcf), a record high

402

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, July 22, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 14, 2010) Natural gas prices moved significantly lower at market locations across the lower 48 States during the report week. The Henry Hub spot price averaged $4.39 per million Btu (MMBtu) in trading yesterday, July 14, decreasing $0.37 compared with the previous Wednesday. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for August delivery at the Henry Hub decreased in 4 out the 5 trading sessions during the report week. The near-month contract settled yesterday at $4.31 per MMBtu, about $0.26 lower than the previous Wednesday. As of Friday, July 9, working gas in underground storage was 2,840

403

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

404

The Resource Potential of Natural Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Complementary Program Research Complementary Program Research Office of Research and Development National Energy Technology Laboratory EPAct Complementary Program- Extreme Offshore 2 The NETL Complementary Program - Targeting top offshore/UDW spill risks Schematic representation of offshore spill risk profile % of recorded spills & drilling phase in the GOM & North Sea -Source: SINTEF Database * Cementing Failures * Equipment & Casing Failures * Higher risk targets, "exploratory" systems -Izon et al. 2007 IAM Tools for GOM Barriers & Controls - Cements Barriers & Controls - Metals Multiphase flow HPHT Fluids/EOS Risk & Impacts 3 Initial risk assessment requires a firm basis of materials behavior in extreme environments.

405

The Resource Potential of Natural Gas Hydrates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Complementary Program Research Complementary Program Research Office of Research and Development National Energy Technology Laboratory September 26 th , 2012 EPAct Complementary Program- Extreme Offshore 2 The NETL Complementary Program - Targeting top offshore/UDW spill risks Schematic representation of offshore spill risk profile % of recorded spills & drilling phase in the GOM & North Sea -Source: SINTEF Database * Cementing Failures * Equipment & Casing Failures * Higher risk targets, "exploratory" systems -Izon et al. 2007 IAM Tools for GOM Barriers & Controls - Cements Barriers & Controls - Metals Multiphase flow HPHT Fluids/EOS Risk & Impacts 3 Initial risk assessment requires a firm basis of materials behavior in extreme environments.

406

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview Lower prices and a report of another considerable net injection to stocks were featured in last week's gas markets. As of Friday, May 11, 2001, the spot price of natural gas at the Henry Hub dropped $0.24 from the previous Friday to $4.25 per MMBtu. The NYMEX price of natural gas for June delivery at the Henry Hub declined $0.212 for the week to $4.278 per MMBtu. A record-setting 108 Bcf was added to natural gas stocks for the week ended May 4, 2001. The demand for cooling is still somewhat limited as mild temperatures prevailed around most of the country. (See Temperature Map) (See Deviation from Normal Temperatures Map) Prices Mid-week prices were at the lowest level since early August. Even with an end-of-the-week influence from the futures market that caused a slight upturn, spot prices at the major supply hubs were $0.25 to $0.65 cents per MMBtu lower on a week-to-week basis with Katy, Texas ending at $4.23; the Henry Hub, Louisiana at $4.25; Midcon, Oklahoma at $4.11; and Opal, Wyoming at $3.30. Prices at the Chicago and New York citygates were lower as well, registering $4.35 and $4.65 at week's end, off a respective $0.27 and $0.20 per MMBtu for the week. SoCal provided the only exception to the generally lower trend as demand increased because of warmer temperatures. Natural gas prices receded before temperatures did, though. The effect of unscheduled maintenance on the PG&E Gas Transmission system was imperceptible to PG&E's large-volume purchasers. By Friday, the PG&E customers were paying $3.51 less at $4.18 while SoCal's citygate price was only $0.47 lower at $11.92.

407

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, July 14, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 6, 2011) Nearly all pricing points were down overall for the week, some by more than 10 cents per million Btu (MMBtu). The Henry Hub price decreased 6 cents per MMBtu over the week (1.4 percent) to close at $4.34 per MMBtu on July 6. Working natural gas in storage rose last week to 2,527 billion cubic feet (Bcf) as of Friday, July 1, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 95 Bcf, leaving storage volumes positioned 224 Bcf under year-ago levels. At the New York Mercantile Exchange (NYMEX), the August 2011 natural

408

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

409

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

410

Mechanisms Leading to Co-existence of Gas and Hydrate in Ocean Sediments  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading to Co-existence of Gas Leading to Co-existence of Gas and Hydrate in Ocean Sediments Steven Bryant Dept. of Petroleum and Geosystems Engineering The University of Texas at Austin and Ruben Juanes Dept. of Civil Engineering MIT Observations and Ruminations * Some proposed explanations for co-existence - kinetics of hydrate formation; - regional geotherms; - hypersaline brines as a result of hydrate formation;

411

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on March 29, 2007) 2, 2007 (next release 2:00 p.m. on March 29, 2007) As the bitter cold has evolved to more moderate temperatures, natural gas spot prices have eased through most of the country. During the report week (Wednesday-Wednesday, March 14-21), the Henry Hub spot price declined 4 cents per MMBtu to $6.82. At the New York Mercantile Exchange (NYMEX), prices for futures contracts were slightly higher, as increases Tuesday and yesterday (March 20 and 21) more than offset decreases that occurred in the 3 previous trading days. The futures contract for April delivery, which is the first contract following the current heating season, increased 7.7 cents per MMBtu on the week to $7.160. Relatively high levels of natural gas in working storage and decreasing prices for competing fuels likely contributed to falling natural gas spot prices this week. Working gas in storage as of Friday, March 16, was 1,533 Bcf, which is 18.5 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.17 per barrel on the week to $56.98, or $9.82 per MMBtu.

412

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16 (next release 2:00 p.m. on February 23, 2006) 16 (next release 2:00 p.m. on February 23, 2006) Winter-like conditions in much of the East this past weekend transitioned to above-normal temperatures, contributing to a further decline in natural gas spot prices this week (Wednesday, February 8 - Wednesday, February 15). On the week the Henry Hub spot price declined 57 cents per MMBtu to $7.31. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant declines. The futures contract for March delivery, which is the last contract for the current heating season, declined 66.9 cents per MMBtu on the week to $7.066. Relatively high levels of natural gas in working storage and falling prices for competing fuels likely contributed to falling natural gas prices this week. Working gas in storage as of Friday, February 10, was 2,266 Bcf, which is 43.9 percent above the 5-year (2001-2005) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $4.90 per barrel on the week to $57.61, or $9.93 per MMBtu.

413

NATURAL GAS: Diversity for Profit  

Science Journals Connector (OSTI)

NATURAL GAS: Diversity for Profit ... "The current and future natural gas shortage may be a blessing in disguise. ... Getting involved will mean increased profitability by becoming an integrated total energy company and not just a marketer of natural gas, was the repeated message of the Institute of Gas Technology. ...

1969-12-01T23:59:59.000Z

414

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2007 (next release 2:00 p.m. on May 24, 2007) 7, 2007 (next release 2:00 p.m. on May 24, 2007) Natural gas spot and futures prices increased slightly this week (Wednesday-Wednesday, May 9-16), despite the usual lull in demand during this shoulder period between the winter heating and summer cooling seasons. The upward price trend likely resulted from a variety of factors, including rising prices for competing petroleum products (as evidenced by an increase in the underlying crude oil price). Additionally, concerns over current and future supplies do not appear to have eased. The official start of the hurricane season is imminent, and the first named tropical storm appeared this week. However, imports of liquefied natural gas (LNG) have increased markedly in the past few months. On the week, the Henry Hub spot price increased 16 cents per MMBtu, or 2 percent, to $7.62. At the New York Mercantile Exchange (NYMEX), the contract for June delivery increased 17.0 cents per MMBtu on the week to a daily settlement of $7.890 yesterday (May 16). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 1,842 Bcf as of Friday, May 11, reflecting an implied net injection of 95 Bcf. This level of working gas in underground storage is 20.6 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $1.03 per barrel on the week to $62.57 per barrel, or $10.79 per MMBtu.

415

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on August 9, 2007) 2, 2007 (next release 2:00 p.m. on August 9, 2007) Natural gas spot prices increased this week (Wednesday-Wednesday, July 25-August 1) as tropical storm activity increased and weather-related demand returned along with normal summertime heat in large market areas in the East. On the week, the Henry Hub spot price increased 62 cents per MMBtu, or 11.1 percent, to $6.19. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery expired last Friday (July 27) at $6.11 per MMBtu. Although the price of the expiring contract in the last couple days of trading rose slightly, the expiration price was still the second lowest of the year (the January 2007 contract expired at $5.838). Taking over as the near-month contract, the September 2007 contract increased in price by $0.29 per MMBtu on the week to $6.352. EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,840 Bcf as of Friday, July 27. This level of working gas in underground storage exceeds the maximum level of the previous 5 years. The spot price for West Texas Intermediate (WTI) crude oil increased $0.75 per barrel on the week to $76.49 per barrel. On a Btu basis, the crude oil price is now more than double the price of natural gas at $13.19 per MMBtu.

416

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2003 (next release 2:00 p.m. on June 19) 2, 2003 (next release 2:00 p.m. on June 19) Moderate temperatures across the country except in the Southwest contributed to natural gas spot prices easing 25 to 50 cents per MMBtu since Wednesday, June 4. On the week (Wednesday, June 4-Wednesday, June 11), the Henry Hub spot price dropped 35 cents per MMBtu to $6.06. The NYMEX futures contract for July delivery at the Henry Hub fell about 16 cents per MMBtu to $6.213. Natural gas in storage as of Friday, June 6, increased to 1,324 Bcf, which is 25.2 percent below the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil rose $2.36 per barrel on the week to yesterday's (June 11) closing price of $32.17 per barrel, or $5.55 per MMBtu. Prices: Natural gas spot prices at many market locations in the Lower 48 States have declined for three consecutive trading days from Friday peaks as key market areas in the Midwest and the Eastern seaboard have experienced unseasonably cool weather. Although prices remain elevated, the slackened demand for natural gas for electric generation has contributed to prices generally softening across the board. For the week, the spot price at the Henry Hub dropped about 6 percent to $6.06 per MMBtu, while other pricing points on the Gulf Coast showed slightly greater declines and fell below the $6-mark. The overall easing of prices may reflect also the slightly improving storage picture as injections in 7 of the past 8 weeks have exceeded the 5-year average with a record net addition reported last Thursday. Although the storage refill season started slowly, injections have increased considerably, with at least one major interstate pipeline serving the Northeast, Tennessee Gas Pipeline, announcing restrictions to shippers due to injection nominations exceeding capacity. The spot price at Tennessee Gas Pipeline's Zone 6, which serves major citygates in New York and other Northeastern states, this week fell 47 cents per MMBtu to $6.30. In contrast to the East, prices in the West moved higher early in the week, as maintenance on El Paso Natural Gas in the San Juan Basin restricted deliveries from the region and a heat wave sparked buying at pricing locations in California and New Mexico. The spot price at the Southern California border surged 61 cents per MMBtu on Monday to $5.78, but has since dropped to $5.51, which is a net decline of 51 cents since Wednesday, June 4.

417

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network (OSTI)

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate simulating reflectors (BSRs) imply the potential existence of gas hydrates offshore southwestern Taiwan that the fluxes are very high in offshore southwestern Taiwan. The depths of the SMI are different at sites GH6

Lin, Andrew Tien-Shun

418

FE Oil and Natural Gas News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2009 July 30, 2009 DOE Leads National Research Program in Gas Hydrates The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. July 30, 2009 DOE Showcases Websites for Tight Gas Resource Development Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. May 18, 2009 DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators A comprehensive publication detailing the oil-rich fields of Utah and

419

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

420

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,780...

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt...  

Annual Energy Outlook 2012 (EIA)

Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 -...

422

EIA - Natural Gas Pipeline Network - Underground Natural Gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG Peak Shaving and Import Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. LNG Peaking...

423

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2010 at 2:00 P.M. 7, 2010 at 2:00 P.M. Next Release: Thursday, June 3, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 26, 2010) Current production during this report week remained relatively high, adding to a perception of a strong supply outlook. Natural gas prices drifted lower at markets across the lower 48 States during the report week. The Henry Hub spot price ended trading yesterday, May 26, at $4.19 per million Btu (MMBtu), a decrease of $0.09 compared with the previous Wednesday. At the New York Mercantile Exchange (NYMEX), the futures contract for June delivery at the Henry Hub closed at $4.16 per MMBtu yesterday, which was its last day of trading as the near-month contract. This price

424

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, April 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 21, 2010) Natural gas spot prices fell during the week at locations across the country, with declines ranging from 12 to 62 cents per million Btu (MMBtu). The Henry Hub spot price fell 19 cents, or about 5 percent, averaging $3.96 per MMBtu yesterday, April 21. At the New York Mercantile Exchange (NYMEX), the value of the futures contract for May 2010 delivery at the Henry Hub fell about 6 percent, from $4.199 per MMBtu on April 14 to $3.955 per MMBtu on April 21. The West Texas Intermediate crude oil spot price fell 3 percent since last Wednesday to $82.98 per barrel, or $14.31 per MMBtu.

425

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, April 21, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 13, 2011) As the story of abundant natural gas supply continued to provide headlines for the market this report week (Wednesday to Wednesday, April 6-13), spot prices at most market locations in the lower 48 States decreased. Moderate temperatures also likely contributed to the price declines by limiting end-use demand and allowing for replenishment of storage supplies. During the report week, the Henry Hub spot price decreased by 3 cents per million Btu (MMBtu), or less than 1 percent, to $4.14 per MMBtu. Other market prices also decreased by up to 10 cents per MMBtu, with a few exceptions in the U.S. Northeast.

426

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

12 to Wednesday, December 19) 12 to Wednesday, December 19) Released: December 20 Next release: January 4, 2008 · Since Wednesday, December 12, natural gas spot prices decreased at virtually all markets in the Lower 48 States. Prices at the Henry Hub fell 4 cents per million Btu (MMBtu), or less than 1 percent to $7.18 per MMBtu. · At the New York Mercantile Exchange (NYMEX), the futures contract for January delivery at the Henry Hub settled yesterday (December 19) at $7.179 per MMBtu, falling 23 cents or 3 percent since Wednesday, December 12. · Natural gas in storage was 3,173 billion cubic feet (Bcf) as of December 14, which is 9 percent above the 5-year average (2002-2006). · The spot price for West Texas Intermediate (WTI) crude oil decreased $3.30 per barrel on the week (Wednesday-Wednesday) to $91.11 per barrel or $15.71 per MMBtu.

427

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, August 19, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 11, 2010) Summer heat and increased demand this week were insufficient to sustain the natural gas price level, as prices at trading locations across the lower 48 States posted decreases. Overall, spot price at most locations in the lower 48 States fell between 30 and 45 cents per million Btu (MMBtu), although a number of locations posted price decreases of as much as 52 cents per MMBtu. The Henry Hub spot price ended the report week yesterday, August 11, 39 cents lower than the preceding week, at $4.38 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract

428

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2008 1, 2008 Next Release: December 18, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, December 3, to Wednesday, December 10, 2008) Natural gas spot prices decreased at most market locations in the Lower 48 States this report week, with all trading regions registering losses with the exception of the Rocky Mountains. On the week, the spot prices at each market location outside the Rockies fell between 2 and 93 cents per MMBtu, with the Henry Hub registering a decrease of 80 cents per million Btu (MMBtu) to $5.68. At the New York Mercantile Exchange (NYMEX), futures prices for the near-month contract declined each day for the first 3 days of the report and increased on Tuesday and Wednesday (December 9-10), resulting in a

429

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

13, 2011 at 2:00 P.M. 13, 2011 at 2:00 P.M. Next Release: Thursday, October 20, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 12, 2011) Natural gas prices posted net losses at most market locations across the lower 48 States. The Henry Hub spot price fell from $3.63 per million Btu (MMBtu) last Wednesday, October 5, to $3.54 per MMBtu yesterday, October 12. Despite overall decreases, intraweek trading showed some rallies, particularly near the end of the report week. At the New York Mercantile Exchange, the price of the near-month futures contract (November 2011) fell about 8 cents on the week from $3.570 per MMBtu last Wednesday to $3.489 per MMBtu yesterday. Working natural gas in storage rose to 3,521 billion cubic feet

430

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Thursday, January 21, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 13, 2010) Significant price increases occurred through Friday, January 8, apparently as a result of extreme temperatures and continued wellhead freeze-offs in some parts of the country during the first half of the report week. However, with temperatures across much of the lower 48 States returning to normal, spot prices receded significantly between Monday, January 11, and Wednesday, January 13. On the week, natural gas spot prices registered significant net decreases at all locations in the lower 48 States since January 6. The largest weekly price drops occurred in Florida and the

431

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, April 22, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 14, 2010) While natural gas spot prices inched lower at a number of market locations, prices at the majority of points in the lower 48 States increased since last Wednesday, April 7. Overall, spot prices in the lower 48 States varied between a 3-percent increase and a 3-percent decrease on the week. The Henry Hub spot price ended the report week yesterday, April 14, 7 cents higher than the preceding week, at $4.15 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub ended trading yesterday at $4.199 per

432

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: July 3, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot price movements were mixed this report week (Wednesday–Wednesday, June 18-25), with price decreases generally occurring in producing areas in the Gulf of Mexico region and price increases at trading locations in the Rockies, the Midcontinent, and the Northeast. During the report week, the Henry Hub spot price decreased $0.17 per million Btu (MMBtu) to $12.76. At the New York Mercantile Exchange (NYMEX), a trend of rising prices for futures contracts was at least temporarily interrupted. After trading at $13.20 per MMBtu on Monday, the futures contract for July delivery decreased by 45 cents in value over the next 2 days and ended the

433

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2010 at 2:00 P.M. 6, 2010 at 2:00 P.M. Next Release: Thursday, September 23, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 15, 2010) Natural gas spot prices increased this report week (Wednesday to Wednesday, September 8–15), likely supported by demand in the electric power sector from late-season heat and associated air-conditioning demand in much of the country. During the report week, the Henry Hub spot price increased by $0.25 per million Btu (MMBtu) to $4.06 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price of the October futures contract increased in 4 out of 5 trading days for a total gain during the report week of about $0.18 per MMBtu. The price of the

434

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

30, 2008 30, 2008 Next Release: November 6, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 29) Natural gas spot prices in the Lower 48 States decreased from Wednesday to Wednesday, October 22-29, with relatively large declines of more than 10 percent occurring in markets west of the Mississippi River and more modest price movements in the eastern half of the country. During the report week, the Henry Hub spot price decreased by $0.36 per million Btu (MMBtu) to $6.58. At the New York Mercantile Exchange (NYMEX), futures prices decreased for the report week. The futures contract for November delivery, for which the final day of trading was yesterday (October 29), decreased by

435

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: February 12, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 4, 2009) Natural gas spot prices decreased in half of the trading regions in the Lower 48 States this report week. Generally, areas east of the Rockies and particularly those that experienced frigid temperatures posted weekly price increases. However, there were some exceptions, including the Midcontinent and East Texas. At the New York Mercantile Exchange (NYMEX), futures trading for the near-month contract was fairly volatile, with daily price changes ranging between a 16-cent loss and a 16-cent increase. The March 2009 contract ended trading yesterday 18 cents higher than on the previous Wednesday.

436

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

January 6 (next release 2:00 p.m. on January 13) January 6 (next release 2:00 p.m. on January 13) Since Wednesday, December 29, natural gas spot prices have decreased at most market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub declined 34 cents, or about 6 percent, to $5.84 per MMBtu. Yesterday (January 5), the price of the NYMEX futures contract for February delivery at the Henry Hub settled at $5.833 per MMBtu, decreasing roughly 57 cents since last Wednesday (December 29). Natural gas in storage was 2,698 Bcf as of December 31, which is about 12 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased $0.28 per barrel, or less than 1 percent, on the week to $43.41 per barrel or $7.484 per MMBtu.

437

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16, 2007 to Thursday, January 23, 2008) 16, 2007 to Thursday, January 23, 2008) Released: January 24, 2008 Next release: January 31, 2008 · Since Wednesday, January 16, natural gas spot prices decreased at most markets in the Lower 48 States, with the exception of the Northeast and Florida, and a few scattered points in Louisiana, Alabama/Mississippi, and the Rocky Mountains. · Prices at the Henry Hub declined 39 cents per million Btu (MMBtu), or about 5 percent, to $7.84 per MMBtu. · The New York Mercantile Exchange (NYMEX) futures contract for February delivery at the Henry Hub settled yesterday (January 23) at $7.621 per MMBtu, falling 51 cents or 6.3 percent since Wednesday, January 16. · Natural gas in storage was 2,536 billion cubic feet (Bcf) as of January 18, which is 7.4 percent above the 5-year average (2003-2007).

438

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Thursday, July 1, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 23, 2010) Natural gas spot and futures prices fell at all market locations in the lower 48 States since last Wednesday, June 16, completely reversing the previous weekÂ’s gains. However, spot prices remain significantly higher than they were 3 weeks ago. Prices at most market locations fell between 10 and 25 cents per million Btu (MMBtu) this week, with most locations ending the week below $5 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for July delivery at the Henry Hub ended trading yesterday at $4.804 per MMBtu, decreasing by 17 cents or about 4 percent during the report week. In

439

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, May 12, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 4, 2011) Wholesale natural gas prices at market locations in the lower 48 States moved higher this week as cold weather persisted in some consuming regions. Prices also increased at the beginning of the report week as the U.S. Energy Information Administration (EIA) released data (on April 28) showing the refill of storage inventories following last winter has proceeded slower than in recent years. During the report week (April 27-May 4), the Henry Hub spot price increased $0.24 to $4.59 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices

440

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2009 at 2:00 P.M. 7, 2009 at 2:00 P.M. Next Release: Thursday, January 7, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 16, 2009) Changes in natural gas spot prices this report week (December 9-16) reflected extremely cold weather conditions moving across the country. In response to varying levels of demand for space heating, spot prices increased east of the Mississippi River but declined in the West. During the report week, the Henry Hub spot price increased $0.30 to $5.57 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), prices for futures contracts also rose with expectations of higher demand in response to this monthÂ’s trend of colder-than-normal temperatures. The futures contract for

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, 2009 26, 2009 Next Release: March 5, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 25, 2009) Natural gas spot prices continued to decrease this week. The return of frigid temperatures for much of the report week in the Northeast, Southeast, and part of the Midwest did little to support any upward price movements in these regions. In fact, spot prices at all trading locations covered by this report either decreased or remained unchanged. Spot prices in the Northeast dipped below $5 per million Btu (MMBtu) for the first time in more than 2 years. At the New York Mercantile Exchange (NYMEX) the near-month futures contract barely remained above $4 per MMBtu this week. The futures contract

442

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2008 7, 2008 Next Release: August 14, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, July 30, to Wednesday, August 6) Natural gas spot prices decreased this report week (Wednesday–Wednesday, July 30-August 6), marking a fifth consecutive week of declines at many trading locations after the unprecedented run-up in prices earlier this year. During the report week, the Henry Hub spot price decreased $0.31 per million Btu (MMBtu) to $8.70. At the New York Mercantile Exchange (NYMEX), prices for futures contracts were also lower relative to last week. After reaching a daily settlement high price for the week of $9.389 per MMBtu on Friday, August 1, the price of the near-month contract (September 2008) on Monday decreased

443

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2009 8, 2009 Next Release: June 4, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 27, 2009) Natural gas spot prices declined this report week (May 20-27), with the largest decreases generally occurring in the western half of the country. During the report week, the Henry Hub spot price decreased by $0.26 per million Btu (MMBtu) to $3.49. At the New York Mercantile Exchange (NYMEX), futures prices decreased as moderate temperatures in most of the country limited demand. The futures contract for June delivery expired yesterday, May 27, at a price of $3.538 per MMBtu, which is the second-lowest monthly closing price for a NYMEX near-month contract in more than 6 years. Meanwhile, the price

444

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2009 2, 2009 Next Release: February 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 11, 2009) Natural gas prices decreased this week as space-heating demand slackened with a break from the bitter cold of prior weeks. During the report week, the Henry Hub spot price decreased by $0.33 per million Btu (MMBtu) to $4.68. At the New York Mercantile Exchange (NYMEX), futures prices decreased for the report week as the economic downturn is expected to be accompanied with a large-scale reduction in demand for all energy products, thus affecting prices for energy in forward markets. The futures contract for February 2009 delivery decreased by 6.5 cents per MMBtu on the week to

445

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2008 8, 2008 Next Release: September 4, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, August 20, to Wednesday, August 27) Natural gas spot prices increased at most market locations in the Lower 48 States this report week (Wednesday–Wednesday, August 20-27), as tropical storm Gustav appeared to be heading into the Gulf of Mexico and industry initiated precautionary safety measures likely to result in the evacuation of offshore Gulf of Mexico platforms. During the report week, the Henry Hub spot price increased $0.53 per million Btu (MMBtu) to $8.55. At the New York Mercantile Exchange (NYMEX), a trend of declining prices for futures contracts was at least temporarily interrupted. Early in the report week, the price of the near-term contract (September 2008) had

446

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2008 9, 2008 Next Release: June 5, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot price movements were mixed this report week (Wednesday–Wednesday, May 21-28), with price decreases generally occurring in markets west of the Mississippi River and price increases dominant in trading locations in the eastern parts of the country. During the report week, the Henry Hub spot price increased $0.20 per million Btu (MMBtu) to $11.60. At the New York Mercantile Exchange (NYMEX), futures prices increased for the report week, continuing a trend of rising prices that has occurred in futures markets for many commodities this spring, including futures prices for crude oil. The futures contract for June delivery, for

447

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2010 at 2:00 P.M. 9, 2010 at 2:00 P.M. Next Release: Thursday, May 6, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 28, 2010) Natural gas spot prices increased this report week (Wednesday, April 21 – Wednesday, April, 28), as a late-season chill temporarily increased demand. During the report week, the Henry Hub spot price increased by $0.23 to $4.19 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), the price of the near-month futures contract bounced above $4 per MMBtu in the final days of trading before its monthly expiration. The May contract expired yesterday at $4.271 per MMBtu, which is $0.429 more than the April contract’s expiration price of $3.842 per MMBtu. As a result, the May contract is the

448

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2010 at 2:00 P.M. 9, 2010 at 2:00 P.M. Next Release: Thursday, September 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 8, 2010) Price changes during the week were mixed, but in most areas, these changes were moderate. The Henry Hub price rose slightly from $3.73 per million Btu (MMBtu) on Wednesday, September 1, to $3.81 per MMBtu yesterday. The report week was shortened due to the Labor Day holiday. At the New York Mercantile Exchange, the price of the October 2010 futures contract rose about 5 cents, from $3.762 per MMBtu on September 1 to $3.814 per MMBtu on September 8. Working natural gas in storage as of Friday, September 3, was 3,164 Bcf, following an implied net injection of 58 Bcf, according to EIAÂ’s

449

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2008 8, 2008 Next Release: September 25, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 10, to Wednesday, September 17) Natural gas spot prices decreased at most market locations in the Lower 48 States this report week (Wednesday–Wednesday, September 10-17), even as disruptions in offshore Gulf of Mexico production continue in the aftermath of Hurricane Ike. However, price movements were not uniform, and prices increased at some trading locations directly supplied by offshore Gulf of Mexico production, which was almost entirely shut-in for most of the week. During the report week, the Henry Hub spot price increased $0.17 per million Btu (MMBtu) to $7.82. At the New York Mercantile Exchange (NYMEX), the price of the

450

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, January 20, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 12, 2011) Wholesale natural gas prices at most market locations east of the Mississippi River moved higher this week as a bitter cold moved into the eastern half of the country. West of the Mississippi River, a gradual warming trend resulted in lower prices. During the report week (January 5-12), the Henry Hub spot price increased $0.03 to $4.55 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices increased during the report week, likely in part due to forecasts of continuing cold weather and improving economic conditions. The futures

451

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, August 11, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, August 3, 2011) Nearly all pricing points were down modestly for the week following passage of the heat wave that had earlier gripped most of the country. The Henry Hub price decreased 20 cents per million Btu (MMBtu) over the week (down 4.5 percent) to close at $4.26 per MMBtu on August 3. At the New York Mercantile Exchange (NYMEX), the downward price response was somewhat more pronounced (down 5.3 percent) with the September 2011 natural gas contract losing ground over the week, closing at $4.090 per MMBtu on Wednesday. Working natural gas in storage rose last week to 2,758 billion cubic feet (Bcf) as of Friday, July 29, according to the U.S. Energy Information

452

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, July 21, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 13, 2011) Nearly all pricing points were up somewhat for the week on a heat wave that affected nearly half the countryÂ’s population according to national news reports. Despite the record heat, the Henry Hub price increased a modest 9 cents per million Btu (MMBtu) over the week (2.0 percent) to close at $4.43 per MMBtu on July 13. At the New York Mercantile Exchange (NYMEX), the price response was more robust (up 4.4 percent) with the August 2011 natural gas contract price gaining ground over the week, closing at $4.403 per MMBtu on Wednesday. Working natural gas in storage rose last week to 2,611 billion cubic

453

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, October 6, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 28, 2011) Natural gas spot prices at most market locations across the country this past week initially declined and then began to creep upwards as natural gas use for power generation increased. The upward trend was halted yesterday, as prices at nearly all points retreated, possibly due to forecasts for considerably colder weather. After declining from $3.78 per million British thermal units (MMBtu) last Wednesday to $3.72 per MMbtu on Thursday, the Henry Hub spot price increased to $3.92 per MMBtu on Tuesday and closed at $3.88 per MMBtu yesterday. At the New York Mercantile Exchange (NYMEX), the October 2011

454

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, April 1, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 24, 2010) The natural gas market is transitioning to spring, a “shoulder” season of lower demand between the relatively high-demand periods of winter and summer. As space-heating demand ebbed during the report week, prices declined across the lower 48 States. The Henry Hub spot price ended trading yesterday, March 24, at $4.02 per million Btu (MMBtu), a decrease of $0.25 compared with the previous Wednesday, March 17. At the New York Mercantile Exchange (NYMEX), futures prices continued to decline as storage inventories appeared more than adequate and domestic production remained strong. The futures contract for April

455

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2008 4, 2008 Next Release: November 20, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, November 5, to Thursday, November 13) Natural gas spot prices decreased at most market locations in the Lower 48 States since last Wednesday (November 5), failing to respond to the increase in heating load that occurred across much of the country, particularly in the Midwest and the Rocky Mountains. Since last Wednesday, the Henry Hub spot price decreased by $0.63 per million Btu (MMBtu) to $6.31 after the intraweek run-up to more than $7 per MMBtu. At the New York Mercantile Exchange (NYMEX), futures prices for the near-month contract decreased in five of the six trading sessions covered by this report, resulting in a weekly net decrease of $0.931 per MMBtu. The

456

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, November 10, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 2, 2011) The previous report week's increasing prices gave way to relatively consistent declines across a large part of the country over this report week. The Henry Hub spot price showed a slight increase over the weekend, but closed down 26 cents for the week to $3.39 per million British thermal units (MMBtu) on November 2. At the New York Mercantile Exchange (NYMEX), the higher valued December 2011 natural gas contract moved into position as the near-month contract and declined by 2.6 cents per MMBtu to close the week at $3.749 per MMBtu. Working natural gas in storage rose last week to 3794 billion cubic

457

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2008 1, 2008 Next Release: September 18, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 3, to Wednesday, September 10) Natural gas spot prices increased at most market locations in the Lower 48 States this report week (Wednesday–Wednesday, September 3-10), as the fifth hurricane of the season moving through the Gulf of Mexico has prompted mandatory evacuation orders in some areas as well as evacuation of personnel from offshore platforms. Mandatory evacuation orders in Louisiana have led to the shutdown of at least two processing plants, with a total of 700 million cubic feet (MMcf) per day of processing capacity. During the report week, the Henry Hub spot price increased $0.39 per million Btu (MMBtu) to $7.65.

458

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2008 0, 2008 Next Release: July 17, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot prices declined sharply this report week (Wednesday–Wednesday, July 2-9), with the largest decreases generally occurring in consuming regions in the Northeast and Midwest. During the report week, the Henry Hub spot price decreased $1.22 per million Btu (MMBtu) to $12.09. At the New York Mercantile Exchange (NYMEX), a trend of rising prices for futures contracts was at least temporarily interrupted. After the August 2008 contract reached a daily settlement price of $13.578 per MMBtu (a record high for this contract) on July 3, the price decreased by $1.57 per MMBtu over the next three trading sessions and ended the week

459

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2008 9, 2008 Next Release: October 16, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, October 1 to Wednesday, October 8) Natural gas spot prices in the Lower 48 States this report week declined to their lowest levels this year even as disruptions in offshore Gulf of Mexico production continue in the aftermath of Hurricanes Ike and Gustav. During the report week, the Henry Hub spot price decreased $0.83 per million Btu (MMBtu) to $6.58. At the New York Mercantile Exchange (NYMEX), the price of the near-term contract (November 2008) decreased to its lowest price since September 2007, closing at $6.742 per MMBtu yesterday (October 8). The net change during a week in which the price decreased each trading day was

460

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Wednesday, November 10, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 3, 2010) Price changes were mixed this week, with much regional variation across the country. At the Henry Hub in Erath, Louisiana, prices posted a net decline on the week of 2 cents, falling from $3.37 per million Btu (MMBtu) on Wednesday, October 27, to $3.35 per MMBtu on Wednesday, November 3. At the New York Mercantile Exchange (NYMEX), the December 2010 futures contract (which became the near-month contract on October 28) rose $0.073 from $3.763 per MMBtu last Wednesday to $3.836 yesterday. Working natural gas in storage increased to 3,821 billion cubic feet

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2009 at 2:00 P.M. , 2009 at 2:00 P.M. Next Release: October 8, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 30, 2009) Since Wednesday, September 23, natural gas spot prices fell at most market locations, with decreases generally ranging between 10 and 30 cents per million Btu (MMBtu). Prices at the Henry Hub declined by 19 cents per MMBtu, or about 5 percent, to $3.24 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday, September 30, at $4.84 per MMBtu, increasing by 9 cents or about 2 percent during the report week. The contract for October delivery expired on September 28 at $3.73 per MMBtu, increasing nearly 70 cents per MMBtu or 21 percent during its

462

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2008 1, 2008 Next Release: August 28, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, August 13, to Wednesday, August 20) During the report week (Wednesday-Wednesday, August 13-20), natural gas prices continued their overall declines in the Lower 48 States, with decreases ranging between 1 and 58 cents per million British thermal units (MMBtu). However, there were a few exceptions in the Rocky Mountains, where the only average regional price increase on the week was recorded. At the New York Mercantile Exchange (NYMEX), prices for the September delivery contract decreased 38 cents per MMBtu, settling yesterday at $8.077. On Monday and Tuesday, the September contract price dipped below $8 per MMBtu, reaching this level for the first time since

463

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, November 3, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 26, 2011) The weathermanÂ’s promise for chillier temperatures later this week and mention of the word "snow" in some forecasts was the likely catalyst propelling prices upwards this week. In an environment of generally supportive market fundamentals, the Henry Hub price closed up 7 cents for the week to $3.65 per million British thermal units (MMBtu) on October 26. At the New York Mercantile Exchange (NYMEX), the November 2011 natural gas contract rose just under half a cent per MMBtu for the week to close at $3.590 per MMBtu. Working natural gas in storage rose last week to 3,716 billion cubic

464

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, to Wednesday, February 13) 6, to Wednesday, February 13) Released: February 14, 2008 Next release: February 21, 2008 · Since Wednesday, February 6, natural gas spot prices increased at virtually all markets in the Lower 48 States. Prices at the Henry Hub rose 41 cents per million Btu (MMBtu), or about 5 percent, to $8.35 per MMBtu. · At the New York Mercantile Exchange (NYMEX), the futures contract for March delivery at the Henry Hub settled yesterday (February 13) at $8.388 per MMBtu, climbing 39 cents or about 5 percent since Wednesday, February 6. · Natural gas in storage was 1,942 billion cubic feet (Bcf) as of February 8, which is 5.9 percent above the 5-year average (2003-2007). · The spot price for West Texas Intermediate (WTI) crude oil climbed $6.12 per barrel on the week to $93.28 per barrel or $16.08 per MMBtu.

465

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 4 (next release 2:00 p.m. on November 10) November 4 (next release 2:00 p.m. on November 10) Since Wednesday, October 27, natural gas spot prices have decreased at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub declined 86 cents, or about 11 percent, to $7.26 per MMBtu. Yesterday (November 3), the price of the NYMEX futures contract for December delivery at the Henry Hub settled at $8.752 per MMBtu, decreasing roughly 2 cents since last Wednesday (October 27). Natural gas in storage was 3,293 Bcf as of October 29, which is 7.8 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased $0.62 per barrel, or about 3 percent, on the week to $50.90 per barrel or $8.776 per MMBtu.

466

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, July 15, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 7, 2010) Natural gas spot prices increased this report week (Wednesday, June 30–Wednesday, July 7), as much of the East Coast experienced the hottest regional temperatures of the year. During the report week, the Henry Hub spot price increased by $0.23 to $4.76 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), the price of the futures contract for August delivery at the Henry Hub closed yesterday, July 7, at $4.565 per MMBtu, which is $0.05 lower than the previous Wednesday. Although the near-month contract increased $0.24 per MMBtu at the beginning of the report week, on Thursday, July 1, likely in response

467

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2008 9, 2008 Next Release: June 26, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 11, natural gas spot prices increased at all markets in the Lower 48 States except one, despite the lack of weather-related demand in much of the country. The restoration of production at the Independence Hub to the level prevailing prior to the April 8 shut-in had limited effect on prices. For the week, the Henry Hub spot price increased 44 cents to $12.93 per million British thermal units (MMBtu). At the New York Mercantile Exchange (NYMEX), prices also increased on the week, with the weekly increase of the near-month contract exceeding those observed at spot market locations in the eastern half of the country.

468

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, 2009 26, 2009 Next Release: April 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 25, 2009) Spot prices increased at all trading locations this week, with the biggest increases occurring in the Northeast. Many market locations ended the week with spot prices above $4 per million British thermal units (MMBtu). During the report week, the Henry Hub spot price increased by $0.38 to $4.13 per MMBtu. At the New York Mercantile Exchange (NYMEX), futures prices also increased, climbing by $0.65 to $4.329 for the April 2009 contract. Prices for the April 2009 contract reached their highest levels since February 13, 2009, on March 24. Natural gas in storage was 1,654 billion cubic feet (Bcf) as of

469

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect

In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

2008-07-01T23:59:59.000Z

470

Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems  

Science Journals Connector (OSTI)

The P-T stability conditions of gas hydrate in different systems (i.e., solution, silica sand, and marine sediment) were studied using...P-T stability conditions of gas hydrate were investigated. The results show...

ChangLing Liu; YuGuang Ye; ShiCai Sun; Qiang Chen…

2013-04-01T23:59:59.000Z

471

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5 to Wednesday, December 12) 5 to Wednesday, December 12) Released: December 13 Next release: December 20, 2007 · Natural gas spot and futures prices increased this report week (Wednesday to Wednesday, December 5-12), as cooler temperatures in much of the country increased demand for space heating. On the week the Henry Hub spot price increased $0.18 per million Btu (MMBtu) to $7.22. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for January delivery rose about 22 cents per MMBtu on the week to $7.408. · Working gas in storage is well above the 5-year average for this time year, indicating a healthy supply picture as the winter heating season progress. As of Friday, December 7, working gas in storage was 3,294 Bcf, which is 8.5 percent above the 5-year (2002-2006) average.

472

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2 2006 (next release 2:00 p.m. on January 19, 2006) 2 2006 (next release 2:00 p.m. on January 19, 2006) Warmer-than-normal temperatures throughout the country led to lower natural gas spot prices at many trading locations in the Lower 48 States, while some markets exhibited modest increases since last Wednesday. For the week (Wednesday-Wednesday, January 4-11), the price for next-day delivery at the Henry Hub decreased 70 cents per MMBtu, or 7.6 percent to $8.55 per MMBtu. The NYMEX futures contract for February delivery at the Henry Hub settled yesterday (January 11) at $9.238 per MMBtu, which was 96 cents less than last Wednesday's price. Natural gas in storage decreased to 2,621 Bcf as of January 6, leaving the inventories at 11.8 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil moved up $0.50 per barrel or about 1 percent since last Wednesday to $63.91 per barrel or $11.02 per MMBtu. As natural gas prices have declined while crude oil prices remain above $60 per barrel, the relative position of these prices has returned to a more typical pattern, where the price of natural gas is below that of crude oil on a Btu basis. The Henry Hub spot price was 24 percent below the WTI crude oil price from the beginning of 2005 up to the point that Hurricane Katrina made landfall in late August. For the remainder of 2005, the Henry Hub spot price exceeded the WTI price by 15 percent. However, that unusual pattern of relative prices was changing by the end of 2005, and the Henry Hub spot price has been 17 percent below the WTI price on average so far in January.

473

Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization  

Science Journals Connector (OSTI)

Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed, which can overcome ... gas production by the combination of warm water flooding and depressurizati...

YuHu Bai; QingPing Li

2010-09-01T23:59:59.000Z

474

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs In  

Open Energy Info (EERE)

Study Method For Exploration Of Gas Hydrate Reservoirs In Study Method For Exploration Of Gas Hydrate Reservoirs In Marine Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs In Marine Areas Details Activities (0) Areas (0) Regions (0) Abstract: We propose an integrated study method for exploration of gas hydrate reservoirs in marine areas. This method combines analyses of geology, seismology, and geochemistry. First, geological analysis is made using data of material sources, structures, sediments, and geothermal regimes to determine the hydrocarbon-formation conditions of gas hydrate in marine areas. Then analyses of seismic attributes,such as BSR, AVO, and BZ as well as forward modeling are conducted to predict the potential

475

Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico May 14, 2013 - 10:00am Addthis USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas hydrates in the deepwater Gulf of Mexico from April to May 2013 | Photo courtesy of USGS USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas hydrates in the deepwater Gulf of Mexico from April to May 2013 | Photo courtesy of USGS Washington, DC - A joint-federal-agency 15-day research expedition in the northern Gulf of Mexico yielded innovative high-resolution seismic data and imagery that will help refine characterizations of large methane

476

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) Natural gas spot and futures prices fell for a third consecutive week (Wednesday to Wednesday, November 10-17), as temperatures for most of the nation continued to be moderate to seasonal. At the Henry Hub, the spot price declined 6 cents on the week, for the smallest week-on-week decrease in the nation. Spot gas traded there yesterday (Wednesday, November 17) at $6.06 per MMBtu. Price declines at the majority of market locations ranged from around a dime to nearly 60 cents per MMBtu. On the NYMEX, the price for the near-month natural gas futures contract (for December delivery) fell by almost 40 cents on the week, settling yesterday at $7.283 per MMBtu. EIA reported that working gas inventories in underground storage were 3,321 Bcf as of Friday, November 12, which is 9 percent greater than the previous 5-year average. The spot price for West Texas Intermediate (WTI) crude oil declined for a fourth consecutive week, dropping $1.85 per barrel ($0.32 per MMBtu), or nearly 4 percent, from last Wednesday's level, to trade yesterday at $46.85 per barrel ($8.08 per MMBtu).

477

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

11 (next release 2:00 p.m. on August 18) 11 (next release 2:00 p.m. on August 18) Natural gas spot prices exhibited increases in most locations this week (Wednesday - Wednesday, August 3 - 10) as demand responded to above average temperatures, high crude oil prices, and reduced coal deliveries, which added to demand for natural gas-fired power generation. The Henry Hub spot price increased 6 cents this week, or less than 1 percent, to $8.81 per MMBtu. The price of the NYMEX futures contract for September delivery increased 72 cents since last Wednesday (August 3) to settle yesterday at $9.071 per MMBtu. Natural gas in storage as of Friday, August 5, was 2,463 Bcf, which is 6.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil hit a record high yesterday of $64.80 per barrel ($11.17 per MMBtu) after increasing $4.04 per barrel (70 cents per MMBtu), or about 7 percent, on the week.

478

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 (next release 2:00 p.m. on May 18, 2006) 1 (next release 2:00 p.m. on May 18, 2006) Springtime temperatures in most regions of the country this week and slightly lower prices for crude oil led to an easing of natural gas spot prices in the Lower 48 States since Wednesday, May 3. On the week (Wednesday-Wednesday, May 3-10), the Henry Hub spot price dropped 6 cents per MMBtu, or less than 1.0 percent, to $6.50. In contrast to spot market activity, trading of futures contracts at the New York Mercantile Exchange (NYMEX) this week resulted in gains. The NYMEX contract for June delivery increased 29.4 cents per MMBtu on the week to a daily settlement of $6.900 yesterday (May 10). Net injections reported in today's release of EIA's Weekly Natural Gas Storage Report brought natural gas storage supplies to 1,989 Bcf as of Friday, May 5, which is 56.0 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $0.11 per barrel on the week to $72.15 per barrel, or $12.44 per MMBtu.

479

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

12 (next release 2:00 p.m. on May 19) 12 (next release 2:00 p.m. on May 19) Spot and futures natural gas prices this week (Wednesday-Wednesday, May 4-11) partly recovered from the prior week's sharp decline, owing to warmer temperatures moving into parts of the South and cool temperatures in the Rockies. The Henry Hub spot price increased 14 cents per MMBtu to $6.63. The New York Mercantile Exchange (NYMEX) futures contract for June delivery at the Henry Hub was higher on the week by about 5 cents per MMBtu, closing yesterday (May 11) at $6.683. Natural gas in storage as of Friday, May 6, increased to 1,509 Bcf, which is 22.3 percent above the 5-year average. Before declining sharply yesterday, crude oil spot prices appeared to be supporting higher natural gas prices, with the West Texas Intermediate (WTI) price increasing more than $1.50 per barrel since Wednesday (May 4) to over $52. The net change in the WTI price on the week was 17 cents per MMBtu, or less than 1 percent, as the price dropped $1.37 per barrel yesterday to $50.39 per barrel, or $8.69 per MMBtu.

480

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2003 (next release 2:00 p.m. on September 11) 4, 2003 (next release 2:00 p.m. on September 11) Since Wednesday, August 27, natural gas spot prices have declined at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub fell 44 cents or 9 percent to $4.68 per MMBtu. Lighter cooling demand for natural gas owing to the Labor Day holiday weekend and milder temperatures east of the Rockies likely contributed to the declines. Yesterday (Wednesday, September 3), the price of the NYMEX futures contract for October delivery at the Henry Hub was almost 19 cents less than last Wednesday's price. Natural gas in storage increased to 2,389 Bcf as of August 29, which is 7 percent below the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil moved down $1.75 per barrel or about 6 percent since last Wednesday to $29.43 per barrel or $5.07 per MMBtu.

Note: This page contains sample records for the topic "natural gas hydrate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

31 (next release 2:00 p.m. on September 7, 2006) 31 (next release 2:00 p.m. on September 7, 2006) Natural gas spot prices decreased significantly in the Lower 48 States this week as Tropical Storm Ernesto moved north along the east coast, easing the threat to Gulf of Mexico natural gas supplies. The spot pri