National Library of Energy BETA

Sample records for nattional energy modeling

  1. Sandia Energy » Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ?p34831 http:energy.sandia.govwave-energy-device-modeling-developing-a-117-scaled-modelfeed 0 New Small Business Voucher Pilot Opens http:energy.sandia.gov...

  2. CAMPUS ENERGY MODEL

    Energy Science and Technology Software Center (OSTI)

    003655IBMPC00 Campus Energy Model for Control and Performance Validation  https://github.com/NREL/CampusEnergyModeling/releases/tag/v0.2.1 

  3. Campus Energy Modeling Platform

    Energy Science and Technology Software Center (OSTI)

    2014-09-19

    NREL's Campus Energy Modeling project provides a suite of simulation tools for integrated, data driven energy modeling of commercial buildings and campuses using Simulink. The tools enable development of fully interconnected models for commercial campus energy infrastructure, including electrical distribution systems, district heating and cooling, onsite generation (both conventional and renewable), building loads, energy storage, and control systems.

  4. Building Energy Simulation & Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation & Modeling Building Energy Simulation & Modeling Lead Performer: Lawrence ... Development (CBERD) conducts energy efficiency research and development with a focus ...

  5. Building Energy Modeling Library

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute ... Project Overview Building Energy Modeling (BEM) Library * Define and develop a ...

  6. Building Energy Modeling Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Building Energy Modeling » Building Energy Modeling Projects Building Energy Modeling Projects View the Building Technologies Office's current portfolio of Building Energy Modeling projects. Core Projects AIA 2030 Commitment Portal Energy Modeling Community Resources EnergyPlus Modelica Buildings Library OpenStudio Radiance Test Procedures For Building Energy Simulation Tools Competitively Awarded Projects BENEFIT: A New Hybrid Approach to Energy Modeling BUILD:

  7. Energy Transition Model | Open Energy Information

    Open Energy Info (EERE)

    Transition Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Transition Model AgencyCompany Organization: Quintel Intelligence Sector: Energy Topics:...

  8. HOMER® Energy Modeling Software

    Energy Science and Technology Software Center (OSTI)

    2000-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  9. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  10. Building Energy Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Building Energy Modeling Building Energy Modeling About the portfolio Building energy modeling (BEM)-physics-based calculation of building energy consumption-is a multi-use tool for building energy efficiency. Established use cases include design of new buildings and deep retrofits, development of whole-building energy efficiency codes and standards (e.g., ASHRAE 90.1) and performance-path compliance with those codes (e.g., ASHRAE 90.1 "Appendix G" Performance

  11. Sandia Energy - Reference Model Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Home Stationary Power Energy Conversion Efficiency Water Power Reference Model Project (RMP) Reference Model Documents Reference Model DocumentsTara Camacho-Lopez2015-05-...

  12. Sandia Energy - PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Modeling & Analysis Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis PV Modeling & AnalysisTara Camacho-Lopez2015-05-11T20:03...

  13. Challenges for Long-Term Energy Models: Modeling Energy Use and Energy Efficiency

    U.S. Energy Information Administration (EIA) Indexed Site

    Long-Term Energy Models: Modeling Energy Use and Energy Efficiency James Sweeney Stanford University Director, Precourt Institute for Energy Efficiency Professor, Management Science and Engineering Presentation to EIA 2008 Energy Conference 34 ! Years of Energy Information and Analysis Some Modeling History * Original Federal Energy Administration Demand Models in PIES and IEES (1974) - Residential, Industrial, Commercial Sectors * Econometric models * Dynamic specification * Allowed matrix of

  14. Building Energy Modeling (BEM) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling (BEM) Overview 2014 Building Technologies Office Peer Review Amir Roth, Ph.D. amir.roth@ee.doe.gov BEM is a Fundamental Energy-Efficiency Technology BEM calculates ...

  15. Organizational Models Tribal Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organizational Models Tribal Energy Development Douglas C. MacCourt, Senior Policy Advisor United States Department of Energy, Office of Indian Energy National Tribal Webinar Series: Tribal Business Structures for Financing Projects Historical Paradigm * Energy facilities in Indian Country owned by non-tribal entities * Typical business model - Lease/royalty arrangement - Some exceptions, but very few * Tribal employment common, but management less common * Federal control over development of

  16. Energy Modeling Software

    Broader source: Energy.gov [DOE]

    Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration...

  17. Inventory of state energy models

    SciTech Connect (OSTI)

    Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

    1980-03-31

    These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

  18. Energy Policy and Systems Analysis Presentation: Energy Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Systems Analysis Presentation: Energy Modeling 101 Energy Policy and Systems Analysis Presentation: Energy Modeling 101 This presentation covers the basics of power ...

  19. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Building Performance Standards (EEBPS) are statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include...

  20. Sandia Energy » Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Funding for Two DOE-EERE Computer-Aided Battery-Safety R&D Projects http:energy.sandia.govsandia-wins-funding-for-two-doe-eere-computer-aided-battery-safety-rd-proje...

  1. Sandia Energy » Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Funding for Two DOE-EERE Computer-Aided Battery-Safety R&D Projects http:energy.sandia.govsandia-wins-funding-for-two-doe-eere-computer-aided-battery-safety-rd-proje...

  2. Autotune Building Energy Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BTO Goals: supports the BTO overarching goal of reducing building energy use 50% by 2030 BTO strategic programs: Autotune is listed as a "key service" within the BTO Strategic BEM ...

  3. Sandia Energy - Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems. The engine combustion modeling is focused on developing Large Eddy Simulation (LES). LES is being used with closely coupled key target experiments to reveal new...

  4. Regions in Energy Market Models

    SciTech Connect (OSTI)

    2009-01-18

    This report explores the different options for spatial resolution of an energy market model and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  5. Regions in Energy Market Models

    SciTech Connect (OSTI)

    Short, W.

    2007-02-01

    This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  6. National Energy Modeling System (NEMS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  7. Sandia Energy - Tutorial on PV System Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial on PV System Modeling Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis Tutorial on PV System Modeling Tutorial on PV...

  8. Energy Efficient Equipment Product Model Listings | Open Energy...

    Open Energy Info (EERE)

    energy efficiency of different equipment and appliance models. Products are identified as ENERGY STAR qualified andor regulated in Canada under the Energy Efficiency Regulations....

  9. HOMER® Energy Modeling Software 2003

    Energy Science and Technology Software Center (OSTI)

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  10. NREL: Energy Analysis - Energy Forecasting and Modeling Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... renewable energy systems Nexus of natural gas and renewable energy Modeling of electric sector regulation and policy in capacity expansion and dispatch models, e.g. the ...

  11. Energy Policy and Systems Analysis Presentation: Energy Modeling 101 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Policy and Systems Analysis Presentation: Energy Modeling 101 Energy Policy and Systems Analysis Presentation: Energy Modeling 101 This presentation covers the basics of power sector capacity expansion modeling, and briefly touches on other types of modeling and analytical tools available to provide data on the electric power system, including energy efficiency. Energy Modeling 101 (963.35 KB) More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO

  12. Building Energy Modeling (BEM) Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amir Roth, Ph.D. amir.roth@ee.doe.gov Building Energy Modeling (BEM) Program Overview http:energy.goveerebuildingsbuilding-energy-modeling 2 BEM: An Energy-Efficiency ...

  13. 100% DD Energy Model Update

    SciTech Connect (OSTI)

    None, None

    2011-06-30

    The Miami Science Museum energy model has been used during DD to test the building's potential for energy savings as measured by ASHRAE 90.1-2007 Appendix G. This standard compares the designed building's yearly energy cost with that of a code-compliant building. The building is currently on track show 20% or better improvement over the ASHRAE 90.1-2007 Appendix G baseline; this performance would ensure minimum compliance with both LEED 2.2 and current Florida Energy Code, which both reference a less strict version of ASHRAE 90.1. In addition to being an exercise in energy code compliance, the energy model has been used as a design tool to show the relative performance benefit of individual energy conservation measures (ECMs). These ECMs are areas where the design team has improved upon code-minimum design paths to improve the energy performance of the building. By adding ECMs one a time to a code-compliant baseline building, the current analysis identifies which ECMs are most effective in helping the building meet its energy performance goals.

  14. The Shockingly Short Payback of Energy Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Shockingly Short Payback of Energy Modeling The Shockingly Short Payback of Energy Modeling May 23, 2016 - 11:31am Addthis Architecture firm HOK calculated the payback of energy modeling—cost of modeling divided by modeled energy cost savings—for a number of their projects. The results? Modeling usually pays for itself in a month or two. Credit: HOK. Architecture firm HOK calculated the payback of energy modeling-cost of modeling divided by modeled energy cost savings-for a number

  15. Colorado: Energy Modeling Products Support Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use. Xcel's new tool, the Energy Design...

  16. Modeling Solar Energy Technology Evolution breakout session ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Solar Energy Technology Evolution breakout session Modeling Solar Energy Technology Evolution breakout session This presentation summarizes the information given on the ...

  17. Renewable Energy Technologies Financial Model (RET Finance) ...

    Open Energy Info (EERE)

    Financial Model (RET Finance) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies Financial Model (RET Finance) Focus Area: Renewable Energy...

  18. Decision Models for Integrating Energy/Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decision Models for Integrating Energy/Water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  19. About Building Energy Modeling | Department of Energy

    Office of Environmental Management (EM)

    design of low-energy building control algorithms, continuous commissioning of building mechanical systems, and dynamic building control for energy optimization or demand response. ...

  20. National Energy Modeling System (NEMS) | Open Energy Information

    Open Energy Info (EERE)

    Modeling System (NEMS) AgencyCompany Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies...

  1. Webcast of the Renewable Energy Competency Model

    Broader source: Energy.gov [DOE]

    The Department of Energy held a webcast titled ""Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce"" on Monday, October 22, 2012. The Renewable Energy...

  2. Energy Modeling Community Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Performers: -- National Renewable Energy Lab - Golden, CO -- International Building ... Opportunity: Commercial Buildings Integration core funding Project Website: http:...

  3. State Energy Program: Kentucky Implementation Model Resources

    Broader source: Energy.gov [DOE]

    Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

  4. Threshold 21 Model | Open Energy Information

    Open Energy Info (EERE)

    Moderate Website: www.millennium-institute.orgintegratedplanningtoolsT21 Cost: Free Threshold 21 Model Screenshot References: Threshold 21 Model1 Related Tools Energy...

  5. NEMS - National Energy Modeling System: An Overview

    Reports and Publications (EIA)

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  6. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect (OSTI)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  7. Building Energy Modeling (BEM) Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amir Roth, Ph.D. amir.roth@ee.doe.gov Building Energy Modeling (BEM) Program Overview http://energy.gov/eere/buildings/building-energy-modeling/ 2 BEM: An Energy-Efficiency Technology BEM is physics calculation of energy use from description of assets & operations * Multiple uses in the energy-efficiency space "Integrative" design: minimize energy consumption under constraints, e.g., first cost * AIA 2030 Commitment-2013 (1,100 projects) performance over CBECS - Non-modeled: +29%,

  8. Retrofit Energy Savings Estimation Model | Open Energy Information

    Open Energy Info (EERE)

    Desktop Application Website: btech.lbl.govtoolsresemresem.htm Cost: Free Language: English References: Retrofit Energy Savings Estimation Model1 Logo: Retrofit...

  9. National Energy Modeling System (United States) | Open Energy...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentnational-energy-modeling-system-unite Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  10. NREL: Energy Analysis - Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Models and Tools Use models and tools developed or supported by NREL to assess, analyze, and optimize renewable energy and energy efficiency technologies for your project. Many of these tools can be applied on a global, regional, local, or project basis. NREL models and tools include several designed for the consumer or energy professional. Technology and Performance Analysis Biomass Scenario Model (BSM) Determine which supply chain changes would have the greatest potential to

  11. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of

  12. Process modeling and industrial energy use

    SciTech Connect (OSTI)

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  13. CBERD: Building Energy Simulation and Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Simulation and Modeling CBERD: Building Energy Simulation and Modeling Figure 1: Screenshot of the alpha version of CBERD eDOT (early design optimization tool), an online tool that enables multi-parameter optimization. Source: LBNL. Figure 1: Screenshot of the alpha version of CBERD eDOT (early design optimization tool), an online tool that enables multi-parameter optimization. Source: LBNL. Figure 2: CBERD Model Predictive Control: Model identification and closed loop predictive control

  14. Advanced Financing Models Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11:00AM to 12:30PM MDT Get exposure to available financing models that can be used to make energy efficiency and renewable energy projects economically feasible using utility...

  15. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  16. Energy Systems Modeling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Modeling Argonne develops models and software packages that can assist fleet managers and technology developers in assessing the potential impacts of implementing new technologies. Proposed transformations to the nation's energy system will introduce astonishing new technologies into the market, cause widespread changes in our energy consumption patterns, and even physical changes to the power grid. The result? Our energy system will be altered in complex and interdependent ways

  17. Directory of Energy Information Administration models 1996

    SciTech Connect (OSTI)

    1996-07-01

    This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

  18. System Advisor Model Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Advisor Model Training System Advisor Model Training The Office of Indian Energy hosted a two-day training for Indian tribes on how to use the System Advisor Model (SAM) June 7-8, 2016, at Northern Arizona University in Flagstaff, Arizona. Developed by DOE's National Renewable Energy Laboratory, SAM is a free software tool that Indian tribes can use to analyze the feasibility of renewable energy projects. This training walked participants through the various technologies that can be

  19. Directory of Energy Information Administration Models 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

  20. EPA NONROAD Model | Open Energy Information

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: EPA NONROAD Model AgencyCompany Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation, Agriculture...

  1. Property:Buildings/Models | Open Energy Information

    Open Energy Info (EERE)

    It links to pages that use the form Buildings Publication. Pages using the property "BuildingsModels" Showing 2 pages using this property. G General Merchandise 50% Energy...

  2. CTG Sustainable Communities Model | Open Energy Information

    Open Energy Info (EERE)

    Communities Model AgencyCompany Organization: CTG Energetics Inc. Sector: Energy Focus Area: Buildings, Transportation Phase: Determine Baseline, Develop Goals Topics:...

  3. Category:Building Models | Open Energy Information

    Open Energy Info (EERE)

    category "Building Models" The following 12 pages are in this category, out of 12 total. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings General...

  4. COMMUTER Model | Open Energy Information

    Open Energy Info (EERE)

    computer model that estimates the travel and emissions impacts of transportation air quality programs focused on commuting. The model is particularly useful for programs...

  5. JEDI Models | Open Energy Information

    Open Energy Info (EERE)

    development. U.S. Department of Energy. (January 2014). Potential Economic Impacts from Offshore Wind in the Great Lakes Region. To better understand the employment opportunities...

  6. Sandia Energy » Computational Modeling & Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new-crew-database-receives-first-set-of-datafeed 0 Aerodynamic Wind-Turbine Blade Design for the National Rotor Testbed http:energy.sandia.govaerodynamic-wind-turbin...

  7. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software ... Breakout Session Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan

  8. Building Energy Modeling Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    External Influences: DOE budget, Spin-off modeling tools & applications , Energy prices, Legislation Regulation, Private sector R&D Objectives Activities Partners Outputs Short ...

  9. NREL: Regional Energy Deployment System (ReEDS) Model - Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Qualitative Model Description The Regional Energy Deployment System (ReEDS) is a long-term ... To determine potential expansion of electricity generation, storage, and ...

  10. Regional Economic Models, Inc. (REMI) Model | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: REMI AgencyCompany Organization: Regional Economic Models Inc. Sector: Energy Focus Area: Transportation Resource Type: Softwaremodeling tools User Interface:...

  11. Scripted Building Energy Modeling and Analysis (Presentation)

    SciTech Connect (OSTI)

    Macumber, D.

    2012-10-01

    Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

  12. Modeling of battery energy storage in the National Energy Modeling System

    SciTech Connect (OSTI)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K.

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  13. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  14. World Energy Projection System Plus Model Documentation: District Heat Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  15. World Energy Projection System Plus Model Documentation: Coal Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  16. World Energy Projection System Plus Model Documentation: Commercial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Commercial Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  17. World Energy Projection System Plus Model Documentation: Natural Gas Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  18. World Energy Projection System Plus Model Documentation: Main Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  19. World Energy Projection System Plus Model Documentation: Industrial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  20. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  1. World Energy Projection System Plus Model Documentation: World Electricity Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  2. World Energy Projection System Plus Model Documentation: Transportation Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. World Energy Projection System Plus Model Documentation: Greenhouse Gases Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  4. World Energy Projection System Plus Model Documentation: Residential Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. Energy Modeling for the Artisan Food Center

    SciTech Connect (OSTI)

    Goel, Supriya

    2013-05-01

    The Artisan Food Center is a 6912 sq.ft food processing plant located in Dayton, Washington. PNNL was contacted by Strecker Engineering to assist with the building’s energy analysis as a part of the project’s U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) submittal requirements. The project is aiming for LEED Silver certification, one of the prerequisites to which is a whole building energy model to demonstrate compliance with American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) 90.1 2007 Appendix G, Performance Rating Method. The building incorporates a number of energy efficiency measures as part of its design and the energy analysis aimed at providing Strecker Engineering with the know-how of developing an energy model for the project as well as an estimate of energy savings of the proposed design over the baseline design, which could be used to document points in the LEED documentation. This report documents the ASHRAE 90.1 2007 baseline model design, the proposed model design, the modeling assumptions and procedures as well as the energy savings results in order to inform the Strecker Engineering team on a possible whole building energy model.

  6. Hawaii: A Model for Clean Energy Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii: A Model for Clean Energy Innovation Maurice Kaya, Project Director Hawaii Renewable Energy Development Venture, a Project of PICHTR STEAB Meeting, Berkeley, CA February 23, 2011 1 1 New technologies will be needed for Hawaii to reduce its dependence on oil Electricity Transportation 2 2 Volatility in the price of oil drives volatility in the local price of electricity Source: Hawaii Energy Efficiency and Conservation Programs 3 3 U.S. Department of Energy (DOE) & the State created

  7. Model Energy Savings Performance Contract, Schedules, and Exhibits...

    Energy Savers [EERE]

    Model Energy Savings Performance Contract, Schedules, and Exhibits Model Energy Savings Performance Contract, Schedules, and Exhibits An Energy Savings Performance Contract (ESPC) ...

  8. Annual Energy Outlook 2014 Modeling Updates

    U.S. Energy Information Administration (EIA) Indexed Site

    Analysis; Energy Consumption and Efficiency Analysis July 23, 2013 | Washington, DC Annual Energy Outlook 2014: Modeling Updates in the Transportation Sector Overview 2 AEO2014 Transportation Model Updates Washington, D.C., July 2013 Discussion purposes only - Do not cite or circulate * Light-duty vehicle - Vehicle miles traveled by age cohort, update modeling parameters, employment and VMT - E85 demand - Battery electric vehicle cost, efficiency, and availability * Heavy-duty vehicle, rail,

  9. stochastic energy production cost model simulator for electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production cost model simulator for electric power systems - Sandia Energy Energy ... Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  10. Sandia, NREL Release Wave Energy Converter Modeling and Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim - Sandia Energy ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  11. NREL: Education Center - A Model of Energy-Efficient Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Model of Energy-Efficient Design Photo of the Education Center trombe wall. The ... Passive solar energy features, energy-efficient lighting, an energy management system and ...

  12. Analytical Modeling | Open Energy Information

    Open Energy Info (EERE)

    & Analytical Models Website - University of Washington, Department of Economic Business and Geography Page Area Activity Start Date Activity End Date Reference Material...

  13. Conceptual Model | Open Energy Information

    Open Energy Info (EERE)

    and samples from wells, temperature and pressure data, and any other relevant data collected.1 Best Practices To develop an effective geothermal conceptual model, it...

  14. LEDCOM Model | Department of Energy

    Energy Savers [EERE]

    Zip file containing the LEDCOM model as an excel worksheet, the backend database, and an operating information document. Extract all files to the same local directory on your ...

  15. I Found My Energy Role Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I Found My Energy Role Model I Found My Energy Role Model August 24, 2009 - 5:00am Addthis Allison Casey Senior Communicator, NREL Last week, while home on a rare weekday afternoon, I happened to catch an episode of Oprah. One of her guests on this particular day was the actor Ed Begley, Jr. The episode caught my attention because it wasn't focused on his acting, but on his quest to make his home and life as environmentally friendly and energy efficient as possible. I had heard of Mr. Begley's

  16. NREL: Energy Analysis - BSM: Biomass Scenario Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BSM - Biomass Scenario Model Energy Analysis The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art, dynamic model of the domestic biofuels supply chain. BSM explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. BSM uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain. The model

  17. Wave-Energy/-Device Modeling: Developing A 1:17 Scaled Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... News & Events, Renewable Energy, Research & Capabilities, Systems Analysis, Water PowerWave-Energy-Device Modeling: Developing A 1:17 Scaled Model Wave-Energy-Device Modeling: ...

  18. The National Energy Modeling System: An overview

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

  19. Directory of energy information administration models 1995

    SciTech Connect (OSTI)

    1995-07-13

    This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

  20. Directory of Energy Information Administration Models 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-06

    This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

  1. Model Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

  2. Energy Policy Socioeconomic Impact Model

    Energy Science and Technology Software Center (OSTI)

    1993-05-13

    Econometric model simulates consumer demand response to residential demand-side management programs and two-part tariff electricity rate designs and assesses their economic impact on various population groups.

  3. Battery Life Predictor Model - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Battery Life Predictor Model National Renewable ... in order to meet the battery warrantee's end-of-life (EOL) power and energy requirements. ...

  4. About Energy Savings Performance Contracting Model Documents

    Broader source: Energy.gov [DOE]

    This page provides more information about the creation of the Energy Savings Performance Contracting (ESPC) Model Documents to be used when developing or updating procurement and contracting documents for ESPC projects and programs.

  5. System Advisor Model (SAM) | Open Energy Information

    Open Energy Info (EERE)

    graphs, which can be exported for use in reports or for further analysis in other models. History SAM was first developed in 2006 by the National Renewable Energy Laboratory...

  6. Systems Advisor Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Advisor Model Systems Advisor Model Systems Advisor Model (SAM) makes performance predictions and cost of energy estimates for grid-connected power projects based on installation and operating costs and system design parameters that you specify as inputs to the model. Projects can be on the customer side of the utility meter - buying and selling electricity at retail rates - or on the utility side of the meter, selling electricity at a price negotiated through a power purchase agreement.

  7. World Energy Projection System model documentation

    SciTech Connect (OSTI)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  8. Policy modeling for industrial energy use

    SciTech Connect (OSTI)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of

  9. OSTIblog Articles in the Accelerated Climate Modeling for Energy Topic |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Accelerated Climate Modeling for Energy

  10. World Energy Projection System Plus Model Documentation: Commercial Model

    Reports and Publications (EIA)

    2016-01-01

    The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.

  11. Sandia Energy - Sandians as Guest Editors of Modeling & Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as Guest Editors of Modeling & Simulation in Materials Science and Engineering Focus Section Home Energy Transportation Energy News News & Events Research & Capabilities Energy...

  12. NREL: Technology Deployment - REopt Model Expands Into Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REopt Model Expands Into Energy Storage, Resilience, and the Energy-Water Nexus News Upgrade ... Tool REopt: A Platform for Energy System Integration and Optimization ...

  13. Comparison of Real World Energy Consumption to Models and DOE...

    Broader source: Energy.gov (indexed) [DOE]

    Then, the study determines whether real world energy consumption differed substantially ... Comparison of Real World Energy Consumption to Models and Department of Energy Test ...

  14. Building Energy Model Development for Retrofit Homes

    SciTech Connect (OSTI)

    Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

    2012-09-30

    Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This “true up” procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The “trued” post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the “true up” procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or

  15. Building Energy Modeling Library - 2013 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Modeling Library - 2013 BTO Peer Review Building Energy Modeling Library - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building...

  16. Model Request for Qualifications to Pre-Qualify Energy Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for Qualifications to Pre-Qualify Energy Service Companies Model Request for Qualifications to Pre-Qualify Energy Service Companies This page contains a model Request for ...

  17. Department of Energy Land Ice Modeling Efforts (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Energy Land Ice Modeling Efforts Citation Details In-Document Search Title: Department of Energy Land Ice Modeling Efforts Authors: Price, Stephen F. Dr 1 + Show Author...

  18. Modeling the Energy Efficiency of Residential Attic Assemblies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Energy Efficiency of Residential Attic Assemblies Modeling the Energy Efficiency of Residential Attic Assemblies This graphic depicts all the modes of heat transfer ...

  19. Sandia Energy - Experiment for Improved Modeling of Trailing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment for Improved Modeling of Trailing-Edge Shedding Noise Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling & Simulation...

  20. Building Energy Modeling Program Overview - 2016 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Program Overview - 2016 BTO Peer Review Building Energy Modeling Program Overview - 2016 BTO Peer Review Presenter: Amir Roth, U.S. Department of Energy This presentation ...

  1. Model Guidelines for Including Energy Efficiency and Renewable Energy Into State Energy Emergency Plans

    SciTech Connect (OSTI)

    1999-09-01

    These model guidelines can serve as a planning guide for state and local emergency planners. It is intended to supplement existing energy emergency management plans.

  2. Building Energy Modeling Overview - 2015 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Overview - 2015 BTO Peer Review Building Energy Modeling Overview - 2015 BTO Peer Review Presenter: Amir Roth, U.S. Department of Energy View the Presentation Building Energy Modeling Overview - 2015 BTO Peer Review (654.06 KB) More Documents & Publications Building Energy Modeling Overview - 2014 BTO Peer Review Building Energy Modeling Subprogram Overview - 2016 BTO Peer Review Architecture firm Skidmore, Owings & Merrill (SOM) used EnergyPlus to design a new 380,000 square

  3. Business Models for Energy Access | Open Energy Information

    Open Energy Info (EERE)

    EASE-Enabling Access to Sustainable Energy Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Biomass, - Biomass Combustion, Grid Assessment and Integration...

  4. Development of an Integrated Global Energy Model

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1999-07-08

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

  5. Simple implementation of general dark energy models

    SciTech Connect (OSTI)

    Bloomfield, Jolyon K.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk

    2014-03-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data.

  6. State Energy Program Notice 14-2, Implementation Model Guidance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4-2, Implementation Model Guidance State Energy Program Notice 14-2, Implementation Model Guidance This State Energy Program (SEP) Notice 14-2 provides Implementation Model guidance for SEP competitive award recipients. SEP Program Notice 14-2 Implementation Model Guidance.pdf (3.89 MB) More Documents & Publications Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Financing Energy Upgrades for K-12

  7. Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  8. Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy...

    Open Energy Info (EERE)

    Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Jump to: navigation, search Tool Summary Name: Webinar-Terrestrial Solar Spectral Modeling for...

  9. Observing and modeling Earths energy flows

    SciTech Connect (OSTI)

    Stevens B.; Schwartz S.

    2012-05-11

    This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds

  10. Scripted Building Energy Modeling and Analysis: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  11. Webcast of the Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy held a webcast titled "Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce" on Monday, October 22, 2012. The Renewable Energy Competency...

  12. BTO Seeks Comments on Draft Building Energy Modeling Roadmap | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Seeks Comments on Draft Building Energy Modeling Roadmap BTO Seeks Comments on Draft Building Energy Modeling Roadmap The Department of Energy's Building Technologies Office (BTO) seeks input from stakeholders on a draft Building Energy Modeling Roadmap. The draft Roadmap provides background and context, then outlines steps that BTO's contractor recommends to help increase the use of BEM tools for the design and operation of energy-efficient buildings. The draft Roadmap is based in

  13. Model Documents for an Energy Savings Performance Contract Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Model Documents for an Energy Savings Performance Contract Project Model Documents for an Energy Savings Performance Contract Project This page contains a model contract template and companion documents to help you launch energy efficiency projects through Energy Savings Performance Contracting (ESPC). Read about how these documents were developed. The ESPC Model Documents were prepared as resources that can be used when developing or updating procurement and contracting

  14. National Energy Modeling System with Hydrogen Model (NEMS-H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling System with Hydrogen Model (NEMS-H2) (OnLocation, Inc. 1 ) Objectives Estimate the energy, economic, and environmental impacts of alternative energy policies and different ...

  15. U.S. Department of Energy Commercial Reference Building Models...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The reference building models are described in detail in this report and are available as EnergyPlus input files (http:commercialbuildings.energy.govreferencebuildings.html). ...

  16. Applying the Energy Service Company Model to Advance Deployment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure June 2014 ACKNOWLEDGEMENTS The Center for Climate and Energy Solutions ...

  17. Integrated Global System Modeling Framework | Open Energy Information

    Open Energy Info (EERE)

    System Modeling Framework AgencyCompany Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy...

  18. Sandia Energy - DOE-Sponsored Reference Model Project Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

  19. Panel 2, Modeling the Financial and System Benefits of Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy ...

  20. Policy Analysis Modeling System (PAMS) | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: Policy Analysis Modeling System AgencyCompany Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Topics:...

  1. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Blog en EnergyPlus Logo Debuts on Revit Toolbar http:energy.goveerebuildingsarticlesenergyplus-logo-debuts-revit-toolbar

  2. Clean Energy Alliance to Expand NREL's Business Assistance Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Alliance to Expand NREL's Business Assistance Model October 25, 2006 The National Alliance of Clean Energy Business Incubators (NACEBI) begun in 2000 by U.S. ...

  3. Distributed Energy Resources Market Diffusion Model

    SciTech Connect (OSTI)

    Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

    2006-06-16

    Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase

  4. Mathematical modeling and computer simulation of processes in energy systems

    SciTech Connect (OSTI)

    Hanjalic, K.C. )

    1990-01-01

    This book is divided into the following chapters. Modeling techniques and tools (fundamental concepts of modeling); 2. Fluid flow, heat and mass transfer, chemical reactions, and combustion; 3. Processes in energy equipment and plant components (boilers, steam and gas turbines, IC engines, heat exchangers, pumps and compressors, nuclear reactors, steam generators and separators, energy transport equipment, energy convertors, etc.); 4. New thermal energy conversion technologies (MHD, coal gasification and liquefaction fluidized-bed combustion, pulse-combustors, multistage combustion, etc.); 5. Combined cycles and plants, cogeneration; 6. Dynamics of energy systems and their components; 7. Integrated approach to energy systems modeling, and 8. Application of modeling in energy expert systems.

  5. Property:Buildings/ModelType | Open Energy Information

    Open Energy Info (EERE)

    Minimum Cost Max Tech PV Takeoff Cost Neutral 30% Energy Savings 50% Energy Savings 70% Energy Savings Other Pages using the property "BuildingsModelType" Showing 12 pages using...

  6. Biomass Scenario Model | Open Energy Information

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline Topics:...

  7. Model Energy Service Company Pre-Qualification Contract | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Energy Service Company Pre-Qualification Contract Model Energy Service Company Pre-Qualification Contract This page provides model documents for developing a contract between an Energy Service Company (ESCO) and a state energy office (or other entity managing a performance contracting program). This model contract establishes requirements for each pre-qualified ESCO to provide performance contracting services for the program. Requirements include data collection and reporting,

  8. Building Energy Modeling Subprogram Overview - 2016 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Subprogram Overview - 2016 BTO Peer Review Building Energy Modeling Subprogram Overview - 2016 BTO Peer Review Presenter: Amir Roth, U.S. Department of Energy This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office's Building Energy Modeling Subprogram. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. 2016 BTO Peer Review Presentation-Building Energy Modeling Subprogram

  9. BTOs Building Energy Modeling Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BTO's Building Energy Modeling Program Amir Roth, Ph.D. amir.roth@ee.doe.gov BTO Peer Review 2016 2 BTO  ET/CBI  BEM BEM program unique within BTO  BEM is unique Unlike windows & LEDs, BTO is a direct player in BEM sector  we make software * We do this because: i) we can, ii) we always have, iii) transparency & impartiality matter * But we can't act like a company because we're trying to enable & nurture, not compete Our "constitution" * No end-user applications

  10. Sandia Energy - Developing a Fast-Running Turbine Wake Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing a Fast-Running Turbine Wake Model Home Renewable Energy Energy Water Power News News & Events Developing a Fast-Running Turbine Wake Model Previous Next Developing a...

  11. Solar Decathlon Design Models 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon Design Models 2009 Solar Decathlon Design Models 2009 Addthis Florida International 1 of 20 Florida International Image: Energy Department Image Team New Jersey 2...

  12. Biofuels Techno-Economic Models | Open Energy Information

    Open Energy Info (EERE)

    Techno-Economic Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biofuels Techno-Economic Models AgencyCompany Organization: National Renewable Energy Laboratory...

  13. Colorado: Energy Modeling Products Support Energy Efficiency Projects

    Broader source: Energy.gov [DOE]

    Xcel Energy, a Minnesota-based utility that supplies electricity and natural gas to eight states, employed two EERE-developed products in developing a program management tool for its Energy Design Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use.

  14. Chameleon dark energy models with characteristic signatures

    SciTech Connect (OSTI)

    Gannouji, Radouane; Moraes, Bruno; Polarski, David; Mota, David F.; Winther, Hans A.; Tsujikawa, Shinji

    2010-12-15

    In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today {gamma}{sub 0} can have significant dispersion on scales relevant for large scale structures. The values of {gamma}{sub 0} can be even smaller than 0.2 with large variations of {gamma} on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the {Lambda}-cold-dark-matter ({Lambda}CDM) model in future high-precision observations.

  15. The Electricity Market Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    The Electricity Market Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Electricity Market Module of the National Energy Modeling System: Model Documentation 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law,

  16. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's

  17. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  18. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  19. Clean Energy Bond Finance Model: Industrial Development Bonds (IDBs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bond Finance Model: Industrial Development Bonds (IDBs) Clean Energy Bond Finance Model: Industrial Development Bonds (IDBs) Overview of industrial development bonds. Author: Clean Energy and Bond Finance Initiative (CE+BFI) Industrial Development Bonds (IDBs) Fact Sheet More Documents & Publications Reduce Risk, Increase Clean Energy: How States and Cities are Using Old Finance Tools to Scale Up a New Industry Clean Energy and Bond Finance Initiative Financing

  20. US Energy Service Company Industry: History and Business Models |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy US Energy Service Company Industry: History and Business Models US Energy Service Company Industry: History and Business Models Information about the history of US Energy Service Company including industry history, setbacks, and lessons learned. session_1_financing_track_gilligan_en.pdf (310.42 KB) session_1_financing_track_gilligan_cn.pdf (877.96 KB) More Documents & Publications U.S. Energy Service Company (ESCO) Industry and Market Trends

  1. Category:Modeling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Analytical Modeling 1 pages C Conceptual Model 1 pages M Modeling-Computer Simulations 1 pages N Numerical Modeling 1 pages P Portfolio Risk...

  2. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect (OSTI)

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  3. Hawaii: A Model for Clean Energy Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... MESHED INTELLIGENT SYSTEM FOR ENERGY-USE REDUCTION (MISER) Concentris is demonstrating a smart metering technology in Oahu military housing which will enable residents and energy ...

  4. System Advisor Model (SAM) | Open Energy Information

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate...

  5. Developing an Energy Performance Modeling Startup Kit

    SciTech Connect (OSTI)

    none,

    2012-10-01

    In 2011, the NAHB Research Center began assessing the needs and motivations of residential remodelers regarding energy performance remodeling. This report outlines: the current remodeling industry and the role of energy efficiency; gaps and barriers to adding energy efficiency into remodeling; and support needs of professional remodelers to increase sales and projects involving improving home energy efficiency.

  6. International Energy Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of...

  7. International Energy Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    (LFMM) International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of...

  8. NREL: Energy Storage - Energy Storage Modeling and Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As battery size increases to meet EDVs' energy storage system demands, macroscopic design factors and highly dynamic environmental conditions significantly influence the ...

  9. NETL - CARBEN Model | Open Energy Information

    Open Energy Info (EERE)

    Website: www.netl.doe.govenergy-analysesrefshelfresults.asp?ptypeModelsToo Cost: Free Language: English References: NETL - CARBEN Model1 Logo: NETL - CARBEN Model CarBen...

  10. Portfolio Risk Modeling | Open Energy Information

    Open Energy Info (EERE)

    (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling...

  11. NREL: Energy Analysis - Regional Energy Deployment System (ReEDS) Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Energy Deployment System (ReEDS) Model Energy Analysis The Regional Energy Deployment System (ReEDS) helps the U.S. Department of Energy, utilities, public utility commissions, state/local regulators and others optimize and visualize the build-out of U.S. electricity generation and transmission systems. Learn more about ReEDS: Model Description Unique Value Documentation Publications Transformation of the Electric Sector (Compare to Baseline Projections) Printable Version Model

  12. Regional Short-Term Energy Model (RSTEM) Overview

    Reports and Publications (EIA)

    2009-01-01

    The Regional Short-Term Energy Model (RSTEM) utilizes estimated econometric relationships for demand, inventories and prices to forecast energy market outcomes across key sectors and selected regions throughout the United States.

  13. Building Energy Modeling Subprogram Overview - 2016 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Modeling Overview - 2014 BTO Peer Review BTO Seeks Comments on Draft ... "Building Energy ...

  14. Multiscale Modeling of Energy Storage Materials | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium ions are shown as spheres. Gregory A. Voth Multiscale Modeling of Energy Storage ... listed the transformation of the energy system of the country as a central goal to ...

  15. The National Energy Modeling System: An overview 1998

    SciTech Connect (OSTI)

    1998-02-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors world energy markets, resource availability and costs, behavior and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. 21 figs.

  16. Sandia Energy - Marine Hydrokinetics Technology: Reference Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Capabilities FAQ Request for Testing Safety Technical Staff Energy Storage Nuclear Power & Engineering Grid Modernization Resilient Electric Infrastructures Military...

  17. Oil and Gas Supply Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil and Gas Supply Module of the National Energy Modeling System: Model Documentation 2014 July 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Model Documentation 2014: Oil and Gas Supply Module i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  18. Coal Market Module of the National Energy Modeling System Model Documentation 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Market Module of the National Energy Modeling System Model Documentation 2013 June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Model Documentation: Coal Market Module 2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  19. Energy Analysis Models, Tools and Software Technologies - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Administration Crudeoil - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks,

  20. Model Financing Solicitation for Energy Savings Performance Contracts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Financing Solicitation for Energy Savings Performance Contracts Model Financing Solicitation for Energy Savings Performance Contracts Financial firms may be competitively selected to provide financing, where the solicitation can be handled by the end-user or by an Energy Service Company (ESCO) on behalf of an institution as part of an Energy Savings Performance Contract (ESPC). The financing agreement is a stand-alone document, separate from the ESPC, between the

  1. Comparison of software models for energy savings from cool roofs...

    Office of Scientific and Technical Information (OSTI)

    Comparison of software models for energy savings from cool roofs Citation Details In-Document Search This content will become publicly available on September 4, 2017 Title: ...

  2. Civil War Icon Becomes National Clean Energy Model

    Broader source: Energy.gov [DOE]

    Nearly a century and a half after the first shots of the Civil War, Fort Sumter National Monument is poised to become a national model for clean energy.

  3. Coarse-grained Energy Modeling of Rollback/Recovery Mechanisms...

    Office of Scientific and Technical Information (OSTI)

    Title: Coarse-grained Energy Modeling of RollbackRecovery Mechanisms. Abstract not provided. Authors: Ferreira, Kurt Brian ; Ibtesham, Dewan ; DeBonis, David ; Arnold, Dorian ...

  4. Energy Department Announces Funding to Develop Aggregate Purchasing Models

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $2 million to support aggregate purchasing models for plug-in electric and other alternative fuel and advanced technology vehicles, subsystems,...

  5. Comparison of Software Models for Energy Savings from Cool Roofs...

    Office of Scientific and Technical Information (OSTI)

    Title: Comparison of Software Models for Energy Savings from Cool Roofs A web-based Roof ... This tool employs modern web technologies, usability design, and national average defaults ...

  6. NREL: Regional Energy Deployment System (ReEDS) Model - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    posters - focusing on the Regional Energy Deployment System (ReEDS) and Wind Deployment System ... Sullivan, P., W. Short, and N. Blair. 2008. "Modeling the Benefits of Storage ...

  7. Commercial Demand Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  8. Commercial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  9. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    Gasoline and Diesel Fuel Update (EIA)

    Model Documentation: Electricity Generation and Fuel Consumption Models January 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Model Documentation: Electricity Generation and Fuel Consumption Models i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  10. Regional Dynamics Model (REDYN) | Open Energy Information

    Open Energy Info (EERE)

    use the REDYN model to estimate the effects of actions and policies on people and the economy. The REDYN model powers the unique Regional Dynamics Economic Service, an...

  11. MAPSS Vegetation Modeling | Open Energy Information

    Open Energy Info (EERE)

    mdrmapss MAPSS Vegetation Modeling Screenshot References: MAPSS1 Applications "A landscape- to global-scale vegetation distribution model that was developed to simulate the...

  12. Data and Modeling Techniques | Open Energy Information

    Open Energy Info (EERE)

    and then quantitative models of individual reservoirs. The constraint on individual models is improved as the number of independent data types and sets increases. Other...

  13. ICCT Roadmap Model | Open Energy Information

    Open Energy Info (EERE)

    of Use: Moderate Website: www.theicct.orgglobal-transportation-roadmap-model Cost: Free Related Tools Ex Ante Appraisal Carbon-Balance Tool (EX-ACT) Threshold 21 Model...

  14. Gold Standard Program Model | Open Energy Information

    Open Energy Info (EERE)

    Standard Program Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Gold Standard Program Model AgencyCompany Organization: The Gold Standard Foundation Sector:...

  15. IDRISI Land Change Modeler | Open Energy Information

    Open Energy Info (EERE)

    IDRISI Land Change Modeler Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IDRISI Land Change Modeler AgencyCompany Organization: Clark Labs Sector: Land Focus Area:...

  16. Building Energy Codes Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provide funding to help measure & improve code compliance The Building Energy Codes Program aims to "lock in" savings from energy codes by participating in code development processes and supporting local and state governments in the adoption and implementation of progressively more advanced building energy codes across the country. External Influences: DOE budget, Construction industry, Real estate market, State/local policies & budget Objectives Activities / Partners Outputs

  17. Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, Nate; Jenkin, Thomas; Milford, James; Short, Walter; Sullivan, Patrick; Evans, David; Lieberman, Elliot; Goldstein, Gary; Wright, Evelyn; Jayaraman, Kamala R.; Venkatesh, Boddu; Kleiman, Gary; Namovicz, Christopher; Smith, Bob; Palmer, Karen; Wiser, Ryan; Wood, Frances

    2009-09-01

    Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

  18. Modeling Solar Energy Technology Evolution breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Let us better understand why people choose NOT to invest in solar. The biggest dynamic ... Are scientific innovations required to enable the relevant functionality? * In energy ...

  19. Generation and Transmission Maximization Model | Open Energy...

    Open Energy Info (EERE)

    its limited energy and transmission resources, but also firm contracts, independent power producer (IPP) agreements, and bulk power transaction opportunities on the spot...

  20. Building Energy Modeling 0017-1505

    Energy Savers [EERE]

    user confidence" Project II: ASHRAE Standard 140 Mainstays of BTO's program ... * EnergyPlus since 1997 (DOE-2 prior to that) * ASHRAE Standard 140 since 1989 (1 st ...

  1. IV. LMI Model Provisions for Shared Renewable Energy Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    www.irecusa.org | LMI Guidelines | 35 IV. LMI Model Provisions for Shared Renewable Energy Programs As indicated at the outset, these LMI Guidelines and accompanying LMI Model Provisions are intended to function in tandem with IREC's Model Rules for Shared Renewable Energy Programs. For policymakers, regulators and other entities using and refining these LMI Model Provisions, IREC emphasizes that coordination with customer advocates, especially LMI customer advocates, environmental and

  2. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  3. Steam System Modeler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Modeler Steam System Modeler April 17, 2014 - 11:34am Addthis There is often flexibility in the operational conditions and requirements of any steam system. In order to optimize performance, the impacts of potential adjustments need to be understood individually and collectively. The Steam System Modeler allows you to create up to a 3-pressure-header basic model of your current steam system. A second model can then be created by adjusting a series of characteristics simulating

  4. Cyclotron Road-A New Model for Clean Energy R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cyclotron Road-A New Model for Clean Energy R&D Cyclotron Road-A New Model for Clean Energy R&D Addthis Description This video is about a new model for clean energy research and development the U.S. Department is testing through a program at Lawrence Berkeley National Laboratory. The goal is to support scientific R&D that is still too risky for private-sector investment, and too applied for academia

  5. Building Energy Modeling Library - 2013 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling Library - 2013 BTO Peer Review Building Energy Modeling Library - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review commlbldgs03_franconi_040213.pdf (793.6 KB) More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Whole Building Performance-Based Procurement Training Autotune - 2013

  6. MHK Projects/Wave Star Energy 1 10 Scale Model Test | Open Energy...

    Open Energy Info (EERE)

    Star Energy 1 10 Scale Model Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  7. Developing an Energy Performance Modeling Startup Kit

    SciTech Connect (OSTI)

    Wood, A.

    2012-10-01

    In 2011, the NAHB Research Center began the first part of the multi-year effort by assessing the needs and motivations of residential remodelers regarding energy performance remodeling. The scope is multifaceted - all perspectives will be sought related to remodeling firms ranging in size from small-scale, sole proprietor to national. This will allow the Research Center to gain a deeper understanding of the remodeling and energy retrofit business and the needs of contractors when offering energy upgrade services. To determine the gaps and the motivation for energy performance remodeling, the NAHB Research Center conducted (1) an initial series of focus groups with remodelers at the 2011 International Builders' Show, (2) a second series of focus groups with remodelers at the NAHB Research Center in conjunction with the NAHB Spring Board meeting in DC, and (3) quantitative market research with remodelers based on the findings from the focus groups. The goal was threefold, to: Understand the current remodeling industry and the role of energy efficiency; Identify the gaps and barriers to adding energy efficiency into remodeling; and Quantify and prioritize the support needs of professional remodelers to increase sales and projects involving improving home energy efficiency. This report outlines all three of these tasks with remodelers.

  8. Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System May 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Macroeconomic Activity Module Documentation Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  9. Residential Demand Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Demand Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Residential Demand Module Documentation Report 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  10. Transportation and Vehicle Energy Modeling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Vehicle Energy Modeling Transportation and Vehicle Energy Modeling For the past 15 years, Argonne has been at the forefront of research in energy-efficient transportation. In recent years, the vehicle technologies have become increasingly complex with the introduction of new powertrain configurations (such as electrified vehicles), new component technologies (such as advanced transmissions and engines) and control strategies (such eco-routing). In addition, with increased

  11. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Program Plan Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan The NEAMS program plan includes information on the program vision, objective, scope, schedule and cost, management, development team and collaborations. NEAMS Executive Program Plan.pdf (1.2 MB) More Documents & Publications NEAMS Quarterly Report April-June 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements

  12. Structure formation in inhomogeneous Early Dark Energy models

    SciTech Connect (OSTI)

    Batista, R.C.; Pace, F. E-mail: francesco.pace@port.ac.uk

    2013-06-01

    We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ΛCDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on δ{sub c} parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ΛCDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ΛCDM model than its homogeneous counterparts.

  13. Sandia Energy - PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15-06-01T20:13:00+00:00 This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  14. Biotrans: Cost Optimization Model | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentbiotrans-cost-optimization-model,http Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration &...

  15. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  16. Advanced Modeling & Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches

  17. Model Cooperative Agreement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model Cooperative Agreement Model Cooperative Agreement One of the required forms for individuals applying for or receiving EERE funding. Model Cooperative Agreement (3.08 MB) More Documents & Publications Quarterly and Annual Reports Company Template (Expenditure-Based) Recipient's Guide to Award Negotiations with EERE

  18. Spatial Statistical Procedures to Validate Input Data in Energy Models

    SciTech Connect (OSTI)

    Johannesson, G.; Stewart, J.; Barr, C.; Brady Sabeff, L.; George, R.; Heimiller, D.; Milbrandt, A.

    2006-01-01

    Energy modeling and analysis often relies on data collected for other purposes such as census counts, atmospheric and air quality observations, economic trends, and other primarily non-energy related uses. Systematic collection of empirical data solely for regional, national, and global energy modeling has not been established as in the abovementioned fields. Empirical and modeled data relevant to energy modeling is reported and available at various spatial and temporal scales that might or might not be those needed and used by the energy modeling community. The incorrect representation of spatial and temporal components of these data sets can result in energy models producing misleading conclusions, especially in cases of newly evolving technologies with spatial and temporal operating characteristics different from the dominant fossil and nuclear technologies that powered the energy economy over the last two hundred years. Increased private and government research and development and public interest in alternative technologies that have a benign effect on the climate and the environment have spurred interest in wind, solar, hydrogen, and other alternative energy sources and energy carriers. Many of these technologies require much finer spatial and temporal detail to determine optimal engineering designs, resource availability, and market potential. This paper presents exploratory and modeling techniques in spatial statistics that can improve the usefulness of empirical and modeled data sets that do not initially meet the spatial and/or temporal requirements of energy models. In particular, we focus on (1) aggregation and disaggregation of spatial data, (2) predicting missing data, and (3) merging spatial data sets. In addition, we introduce relevant statistical software models commonly used in the field for various sizes and types of data sets.

  19. General Equilibrium Model for Economy - Energy - Environment...

    Open Energy Info (EERE)

    and non-energy related emissions of carbon dioxide (CO2), other GHG such as methane (CH4), nitrous oxide (N20) sulfur hexafluoride (SF6), hydrofluorocarbon (HFC), and...

  20. Energy Infrastructure Modeling and Analysis (EIMA) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    causes, have demonstrated a need for real-time status of the electric grid and energy ... Through its visualization tools and analysis, OE is able to provide real-time assessments ...

  1. Model Ordinance for Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Oregon Department of Energy issued guidance to local governments to address wind, solar, geothermal, biomass, and co-generation project planning needs at the city and county level in July 2005...

  2. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Y.-H. Yu, D.S. Jenne, and R. Thresher National Renewable Energy Laboratory A. Copping, S. Geerlofs, and L.A. Hanna Pacific Northwest National Laboratory Technical Report NREL/TP-5000-62861 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable

  3. Modeling-Computer Simulations | Open Energy Information

    Open Energy Info (EERE)

    the risk of inaccurate predictions.1 Potential Pitfalls Uncertainties in initial reservoir conditions and other model inputs can cause inaccuracies in simulations, which...

  4. NREL: Energy Analysis - Models and Tools Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are no longer active. See current models and tools here. ADVISOR (ADvanced VehIcle SimulatOR) Simulate and analyze conventional, advanced, light, and heavy vehicles, including...

  5. Wave Energy Converter Extreme Conditions Modeling Workshop |...

    Open Energy Info (EERE)

    process. The WEC industry has adopted extreme conditions design, modeling, and analysis techniques developed for offshore oil & gas and naval architecture applications. While...

  6. NREL's Building Component Library for Use with Energy Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

  7. Petroleum Market Model of the National Energy Modeling System

    Gasoline and Diesel Fuel Update (EIA)

    Expansion) If it is a reporting iteration, the Short Term Energy Outlook (STEO) benchmarking switch is on, and it is NEMS year 13 (2002); then the PMM LP is solved using input...

  8. BTO Publishes Two Important Building Energy Modeling Documents | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Publishes Two Important Building Energy Modeling Documents BTO Publishes Two Important Building Energy Modeling Documents February 10, 2016 - 3:41pm Addthis Selections from the front page of the BEM R&D roadmap draft and the recommended initiatives table. Image credit: Navigant Consulting. Selections from the front page of the BEM R&D roadmap draft and the recommended initiatives table. Image credit: Navigant Consulting. Amir Roth, Ph.D. Amir Roth, Ph.D. Building Energy

  9. Campus Energy Model for Control and Performance Validation

    Energy Science and Technology Software Center (OSTI)

    2014-09-19

    The core of the modeling platform is an extensible block library for the MATLAB/Simulink software suite. The platform enables true co-simulation (interaction at each simulation time step) with NREL's state-of-the-art modeling tools and other energy modeling software.

  10. A New Model to Simulate Energy Performance of VRF Systems

    SciTech Connect (OSTI)

    Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

    2014-03-30

    This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real

  11. Form:Buildings Model | Open Energy Information

    Open Energy Info (EERE)

    with that name already exists, you will be sent to a form to edit that page. Create or edit Retrieved from "http:en.openei.orgwindex.php?titleForm:BuildingsModel&oldid270041...

  12. Petroleum Market Model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

  13. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration NEMS Transportation Demand Model Documentation Report 2005 25 manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  14. Cosmological viability conditions for f(T) dark energy models

    SciTech Connect (OSTI)

    Setare, M.R.; Mohammadipour, N. E-mail: N.Mohammadipour@uok.ac.ir

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  15. Community Wind Handbook/Research Turbine Models | Open Energy...

    Open Energy Info (EERE)

    as how much energy you plan to produce. While consumers are free to choose any turbine model or type, it is important to know that many resources are available to help you...

  16. Building Energy Modeling Program Overview — 2016 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Building Energy Modeling Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  17. HOMER® Energy Modeling Software V2.64

    Energy Science and Technology Software Center (OSTI)

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  18. Heat Pump Water Heater Modeling in EnergyPlus (Presentation)

    SciTech Connect (OSTI)

    Wilson, E.; Christensen, C.

    2012-03-01

    This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.

  19. Heat Pump Water Heating Modeling in EnergyPlus

    SciTech Connect (OSTI)

    Wilson, Eric; Christensen, Craig

    2012-03-01

    This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.

  20. HOMER® Energy Modeling Software V2.0

    Energy Science and Technology Software Center (OSTI)

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  1. HOMER® Energy Modeling Software V2.19

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  2. HOMER® Energy Modeling Software V2.63

    Energy Science and Technology Software Center (OSTI)

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  3. HOMER® Energy Modeling Software V2.67

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  4. HOMER® Energy Modeling Software V2.65

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  5. Is the Danish wind energy model replicable for other countries?

    SciTech Connect (OSTI)

    Sovacool, Benjamin K.; Lindboe, Hans H.; Odgaard, Ole

    2008-03-15

    Though aspects of the Danish wind energy model are unique, policymakers might do well to imitate such aspects as a strong political commitment, consistent policy mechanisms, and an incremental, ''hands-on'' approach to R and D. (author)

  6. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  7. Technoeconomic Modeling of Battery Energy Storage in SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven; Nelson, Austin; Lundstrom, Blake

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  8. Community Renewables: Model Program Rules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Renewables: Model Program Rules Community Renewables: Model Program Rules The Interstate Renewable Energy Council (IREC) has worked closely with The Vote Solar Initiative to develop model program rules for community-scale renewables that consider many of the basic issues facing community renewables programs. IREC's model program rules address such issues as renewable system size, interconnection, eligibility for participation, allocation of the benefits flowing from participation, net

  9. National Strategic Unconventional Resource Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In

  10. Business Models Guide: Real Estate Agent | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Models Guide: Real Estate Agent Business Models Guide: Real Estate Agent With excellent marketing skills, a keen understanding of financing options, and a broad knowledge of the industry, real estate agents are natural advocates for smart energy efficiency upgrades. Business Models Guide: Real Estate Agent (50.43 KB) More Documents & Publications Working with the Real Estate Sector Business Models and Case Examples for Working with the Real Estate Sector Trends in Real Estate and

  11. Building Energy Modeling Overview- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Amir Roth, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Energy Modeling activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  12. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verification and Validation (V&V) Plan Requirements | Department of Energy Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan

  13. Delayed energy injection model for gamma-ray burst afterglows

    SciTech Connect (OSTI)

    Geng, J. J.; Huang, Y. F.; Yu, Y. B. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: hyf@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-12-10

    The shallow decay phase and flares in the afterglows of gamma-ray bursts (GRBs) are widely believed to be associated with the later activation of the central engine. Some models of energy injection involve a continuous energy flow since the GRB trigger time, such as the magnetic dipole radiation from a magnetar. However, in the scenario involving a black hole accretion system, the energy flow from the fall-back accretion may be delayed for a fall-back time ?t {sub fb}. Thus, we propose a delayed energy injection model. The delayed energy would cause a notable rise to the Lorentz factor of the external shock, which will 'generate' a bump in the multiple band afterglows. If the delayed time is very short, our model degenerates to the previous models. Our model can explain the significant re-brightening in the optical and infrared light curves of GRB 081029 and GRB 100621A. A considerable fall-back mass is needed to provide the later energy; this indicates that GRBs accompanied with fall-back material may be associated with a low energy supernova so that the fraction of the envelope can survive during eruption. The fall-back time can give meaningful information on the properties of GRB progenitor stars.

  14. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    SciTech Connect (OSTI)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An

  15. NREL's Building Component Library for Use with Energy Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

  16. Dynamics of holographic vacuum energy in the DGP model

    SciTech Connect (OSTI)

    Wu Xing; Zhu Zonghong; Cai Ronggen

    2008-02-15

    We consider the evolution of the vacuum energy in the Dvali-Gabadadze-Porrati (DGP) model according to the holographic principle under the assumption that the relation linking the IR and UV cutoffs still holds in this scenario. The model is studied when the IR cutoff is chosen to be the Hubble scale H{sup -1}, the particle horizon R{sub ph}, and the future event horizon R{sub eh}, respectively. The two branches of the DGP model are also taken into account. Through numerical analysis, we find that in the cases of H{sup -1} in the (+) branch and R{sub eh} in both branches, the vacuum energy can play the role of dark energy. Moreover, when considering the combination of the vacuum energy and the 5D gravity effect in both branches, the equation of state of the effective dark energy may cross -1, which may lead to the big rip singularity. Besides, we constrain the model with the Type Ia supernovae and baryon oscillation data and find that our model is consistent with current data within 1{sigma}, and that the observations prefer either a pure holographic dark energy or a pure DGP model.

  17. Building Energy Modeling Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test, validate, characterize & improve BEM engine accuracy. Increase use of BEM & DOE tools via market partnerships. Direct support for BTO apps, e.g., HES, Asset Score & Scout analysis tool. Direct & shared funding to enhance, support & maintain E+, OS & RD Enhance, maintain & support open- source BEM tools EnergyPlus (E+), OpenStudio. (OS) & Radiance (RD) Increased use of BEM (esp. E+ & OS-based tools) by utilities develop & administer programs Increased

  18. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    SciTech Connect (OSTI)

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume III lists the model equations and a one line definition for equations, in a short, readable format.

  19. Photovoltaic Theory and Modeling - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Theory and Modeling Los Alamos National Laboratory Contact LANL About This Technology Effect of Ligands on semiconductor QD DOS (quantum chemistry calculations) Effect of Ligands on semiconductor QD DOS (quantum chemistry calculations) Technology Marketing SummaryThe scientists developing this capability welcome the opportunity to unite with industry and advance its potential.DescriptionAs the solar industry works to build the infrastructure necessary to make electricity from

  20. White paper on VU for Modeling Nuclear Energy Systems

    SciTech Connect (OSTI)

    Klein, R; Turinsky, P

    2009-05-07

    The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

  1. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  2. How to obtain the National Energy Modeling System (NEMS)

    Reports and Publications (EIA)

    2013-01-01

    The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

  3. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  4. Municipal Bond- Power Purchase Agreement Model Continues to Provide Low-Cost Solar Energy

    Broader source: Energy.gov [DOE]

    Provides an overview for power purchase agreement model to provide low-cost solar energy. Author: National Renewable Energy Laboratory

  5. Models and Tools for Evaluating Energy Efficiency and Renewable Energy Programs Webinar

    Broader source: Energy.gov [DOE]

    In this webinar, attendees will learn about the models and tools developed by DOE and its partners to assist Tribes in assessing renewable energy and energy efficiency project potential. The webinar is held from 11:00 a.m. to 12:30 p.m. Mountain Standard Time on May 27, 2015.

  6. NREL: Energy Analysis - Jobs and Economic Development Impact (JEDI) Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Printable Version JEDI Fact Sheet The cover of JEDI: Jobs and Economic Development Impacts Model factsheet. PDF 563 KB The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local and state levels. First developed by NREL's WINDExchange program to model wind energy impacts, JEDI has been expanded to analyze biofuels, coal, concentrating solar power,

  7. Closing Gaps in Modeling Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closing Gaps in Modeling Multifamily Retrofits Closing Gaps in Modeling Multifamily Retrofits This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq6_closing_gaps_multifamily_dentz.pdf (1.61 MB) More Documents & Publications Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings? Building America Webinar: Central Multifamily Water Heating Systems -

  8. Geothermal Electricity Technology Evaluation Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Technologies Office has uploaded an updated version of the Geothermal Electricity Technology Evaluation Model (GETEM) provided by Idaho National Laboratory. GETEM is an Excel-based tool used to estimate the Levelized Cost of Energy for definable geothermal scenarios. Electrical power generation is the sole geothermal use considered by GETEM and does not provide assessment

  9. Enforcing elemental mass and energy balances for reduced order models

    SciTech Connect (OSTI)

    Ma, J.; Agarwal, K.; Sharma, P.; Lang, Y.; Zitney, S.; Gorton, I.; Agawal, D.; Miller, D.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length, as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a

  10. A quantum energy transport model for semiconductor device simulation

    SciTech Connect (OSTI)

    Sho, Shohiro; Odanaka, Shinji

    2013-02-15

    This paper describes numerical methods for a quantum energy transport (QET) model in semiconductors, which is derived by using a diffusion scaling in the quantum hydrodynamic (QHD) model. We newly drive a four-moments QET model similar with a classical ET model. Space discretization is performed by a new set of unknown variables. Numerical stability and convergence are obtained by developing numerical schemes and an iterative solution method with a relaxation method. Numerical simulations of electron transport in a scaled MOSFET device are discussed. The QET model allows simulations of quantum confinement transport, and nonlocal and hot-carrier effects in scaled MOSFETs.

  11. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  12. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  13. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect (OSTI)

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  14. Modeling of thermal storage systems in MILP distributed energy resource models

    SciTech Connect (OSTI)

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.

  15. OneidaTribe of Indians Energy Optimization Model Development and Energy Audits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Optimization Model Development & Energy Audits U.S. DOE - Tribal Energy Program - 11/14/12 2 12/13/2012 where is it? Overview ► Reservation size of 65,430 acres (roughly 8 x 12 miles) with Oneida ownership of approximately 24,173 acres ► Membership of 16,877 with 7,360 members living on the Reservation or in immediate area ► Repurchase and restoration of lands a priority since casino started in 1993 ► Surburban sprawl from Green Bay and rising land prices Energy Team ►

  16. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30

    The Renewable Energy and Efficiency Modeling and Analysis Partnership (REMAP) sponsors ongoing workshops to discuss individual 'renewable' technologies, energy/economic modeling, and - to some extent - policy issues related to renewable energy. Since 2002, the group has organized seven workshops, each focusing on a different renewable technology (geothermal, solar, wind, etc.). These workshops originated and continue to be run under an informal partnership of the Environmental Protection Agency (EPA), the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE), the National Renewable Energy Laboratory (NREL), and the American Council on Renewable Energy (ACORE). EPA originally funded the activities, but support is now shared between EPA and EERE. REMAP has a wide range of participating analysts and models/modelers that come from government, the private sector, and academia. Modelers include staff from the Energy Information Administration (EIA), the American Council for an Energy-Efficient Economy (ACEEE), NREL, EPA, Resources for the Future (RFF), Argonne National Laboratory (ANL), Northeast States for Coordinated Air Use Management (NESCAUM), Regional Economic Models Inc. (REMI), ICF International, OnLocation Inc., and Boston University. The working group has more than 40 members, which also includes representatives from DOE, Lawrence Berkeley National Laboratory (LBNL), Union of Concerned Scientists (UCS), Massachusetts Renewable Energy Trust, Federal Energy Regulatory Commission (FERC), and ACORE. This report summarizes the activities and findings of the REMAP activity that started in late 2006 with a kickoff meeting, and concluded in mid-2008 with presentations of final results. As the project evolved, the group compared results across models and across technologies rather than just examining a specific technology or activity. The overall goal was to better understand how and why different energy models give similar and

  17. Recovery Act. Development of a Model Energy Conservation Training Program

    SciTech Connect (OSTI)

    none,

    2012-07-05

    The overall objective of this project was to develop an updated model Energy Conservation training program for stationary engineers. This revision to the IUOE National Training Fund’s existing Energy Conservation training curriculum is designed to enable stationary engineers to incorporate essential energy management into routine building operation and maintenance tasks. The curriculum uses a blended learning approach that includes classroom, hands-on, computer simulation and web-based training in addition to a portfolio requirement for a workplace-based learning application. The Energy Conservation training program goal is development of a workforce that can maintain new and existing commercial buildings at optimum energy performance levels. The grant start date was July 6, 2010 and the project continued through September 30, 2012, including a three month non-funded extension.

  18. Unified dark energy-dark matter model with inverse quintessence

    SciTech Connect (OSTI)

    Ansoldi, Stefano; Guendelman, Eduardo I. E-mail: guendel@bgu.ac.il

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  19. A stochastic reorganizational bath model for electronic energy transfer

    SciTech Connect (OSTI)

    Fujita, Takatoshi E-mail: aspuru@chemistry.harvard.edu; Huh, Joonsuk; Aspuru-Guzik, Alán E-mail: aspuru@chemistry.harvard.edu

    2014-06-28

    Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies’ thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts – the reorganization shift – to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This

  20. Model documentation renewable fuels module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  1. Model studies of oscillating water column wave-energy device

    SciTech Connect (OSTI)

    Koola, P.M.; Ravindran, M.; Narayana, P.A.A.

    1995-04-01

    A harbor oscillating water column wave-energy device has been selected for the Indian pilot wave-energy program. The site has a water depth of about 12 m and an average annual wave-power potential of 13 kW/m. Such sites are attractive locations for fishing breakwaters. Due to the relatively low power potential, these oscillating water column devices arc intended to be modules of a multifunctional breakwater. The present paper highlights the results of the scale-model experiments carried out on a prototype wave-energy caisson.

  2. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  3. Text-Alternative Version: Webcast of the Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce

    Broader source: Energy.gov [DOE]

    This is the Webcast of Renewable Energy and Competency model. Led by Linda Silverman an economist at Energy Efficiency and Renewable Energy and Pam Frugoli Department of Labor. This webcast was on...

  4. Model documentation report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-02-07

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Macroeconomic Activity Module (MAM) used to develop the Annual Energy Outlook for 1994 (AEO94). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS MAM used for the AEO 1994 production runs for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  5. SEMATECH: A Model for Advancing Solar Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient

  6. Multiscale Modeling of Energy Storage Materials | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Multiscale Modeling of Energy Storage Materials PI Name: Gregory A. Voth PI Email: gavoth@uchicago.edu Institution: University of Chicago and Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 25,000,000 Year: 2012 Research Domain: Materials Science The leadership-class computing resources provided by the INCITE program will be used for the multiscale modeling of charge transport processes in materials relevant to fuel cell and battery

  7. Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: August 1, 2011 Emissions and Energy Use Model - GREET Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET The Greenhouse Gases, Regulated Emission, and Energy Use in Transportation (GREET) Model is a full life-cycle model for evaluating the energy and emission impacts of various vehicle and fuel combinations. The first version of the GREET model was released in 1996. Since then, the model has been updated and expanded to include additional vehicle types

  8. Wind energy conversion system analysis model (WECSAM) computer program documentation

    SciTech Connect (OSTI)

    Downey, W T; Hendrick, P L

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation. Thus, any user-supplied data for WECS performance, application load, utility rates, or wind resource may be entered into the scratch file to override the default data-base value. After the model and the inputs required from the user and derived from the data base are described, the model output and the various output options that can be exercised by the user are detailed. The general operation is set forth and suggestions are made for efficient modes of operation. Sample listings of various input, output, and data-base files are appended. (LEW)

  9. Relativistic mean-field model with energy dependent self-energies

    SciTech Connect (OSTI)

    Antic, S.; Typel, S.

    2015-02-24

    Conventional relativistic mean-field theory is extended with the introduction of higher-order derivative couplings of nucleons with the meson fields. The Euler-Lagrange equations follow from the principle of stationary action. From invariance principles of the Lagrangian density the most general expressions for the conserved current and energy-momentum tensor are derived. The nucleon self-energies show the explicit dependence on the meson fields. They contain additional regulator functions which describe the energy dependence. The density dependence of meson-nucleon couplings causes the apperance of additional rearrangement contributions in the self-energies. The equation of state of infinite nuclear matter is obtained and the thermodynamical consistency of the model is demonstrated. This model is applied to the description of spherical, non-rotating stars in β-equilibrium. Stellar structure is calculated by solving the Tolman-Oppenheimer-Volkov (TOV) equations. The results for neutron stars are shown in terms of mass-radius relations.

  10. Spreading of energy in the Ding-Dong model

    SciTech Connect (OSTI)

    Roy, S.; Pikovsky, A.

    2012-06-15

    We study the properties of energy spreading in a lattice of elastically colliding harmonic oscillators (Ding-Dong model). We demonstrate that in the regular lattice the spreading from a localized initial state is mediated by compactons and chaotic breathers. In a disordered lattice, the compactons do not exist, and the spreading eventually stops, resulting in a finite configuration with a few chaotic spots.

  11. Modeling Supermarket Refrigeration Systems with EnergyPlus

    SciTech Connect (OSTI)

    Stovall, Therese K; Baxter, Van D

    2010-01-01

    Supermarket refrigeration capabilities were first added to EnergyPlus in 2004. At that time, it was possible to model a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles all the building energy uses, typically on a 5 to 10 minute time step throughout the period of interest. The original refrigeration module included the ability to model the sensible and latent interactions between the refrigerated cases and the building HVAC system, along with some basic heat recovery capabilities. Over the last few years, the refrigeration module has been expanded to handle more complex systems, such as secondary loops, shared condensers, cascade condensers, subcoolers, and walk-in coolers exchanging energy with multiple conditioned zones.

  12. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  13. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  14. Short-Term Energy Outlook Model Documentation: Motor Gasoline Consumption Model

    Reports and Publications (EIA)

    2011-01-01

    The motor gasoline consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of total U.S. consumption of motor gasolien based on estimates of vehicle miles traveled and average vehicle fuel economy.

  15. Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

  16. Model documentation Coal Market Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1996-04-30

    This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

  17. Advanced Modeling of Renewable Energy Market Dynamics: May 2006

    SciTech Connect (OSTI)

    Evans, M.; Little, R.; Lloyd, K.; Malikov, G.; Passolt, G.; Arent, D.; Swezey, B.; Mosey, G.

    2007-08-01

    This report documents a year-long academic project, presenting selected techniques for analysis of market growth, penetration, and forecasting applicable to renewable energy technologies. Existing mathematical models were modified to incorporate the effects of fiscal policies and were evaluated using available data. The modifications were made based on research and classification of current mathematical models used for predicting market penetration. An analysis of the results was carried out, based on available data. MATLAB versions of existing and new models were developed for research and policy analysis.

  18. Model for Sustainable Urban Design With Expanded Sections on Distributed Energy Resources, February 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document describing a model design for urban development and redevelopment that will reduce urban energy consumption

  19. Comparison of Real World Energy Consumption to Models and Department of Energy Test Procedures

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Kar, Rahul; Foley, Kevin

    2011-09-01

    This study investigated the real-world energy performance of appliances and equipment as it compared with models and test procedures. The study looked to determine whether the U.S. Department of Energy and industry test procedures actually replicate real world conditions, whether performance degrades over time, and whether installation patterns and procedures differ from the ideal procedures. The study first identified and prioritized appliances to be evaluated. Then, the study determined whether real world energy consumption differed substantially from predictions and also assessed whether performance degrades over time. Finally, the study recommended test procedure modifications and areas for future research.

  20. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for

  1. Impacts of Modeled Recommendations of the National Commission on Energy Policy

    Reports and Publications (EIA)

    2005-01-01

    This report provides the Energy Information Administration's analysis of those National Commission on Energy Policy (NCEP) energy policy recommendations that could be simulated using the National Energy Modeling System (NEMS).

  2. The growth of structure in interacting dark energy models

    SciTech Connect (OSTI)

    Caldera-Cabral, Gabriela; Maartens, Roy; Schaefer, Bjoern Malte E-mail: roy.maartens@port.ac.uk

    2009-07-01

    If dark energy interacts with dark matter, there is a change in the background evolution of the universe, since the dark matter density no longer evolves as a{sup ?3}. In addition, the non-gravitational interaction affects the growth of structure. In principle, these changes allow us to detect and constrain an interaction in the dark sector. Here we investigate the growth factor and the weak lensing signal for a new class of interacting dark energy models. In these models, the interaction generalises the simple cases where one dark fluid decays into the other. In order to calculate the effect on structure formation, we perform a careful analysis of the perturbed interaction and its effect on peculiar velocities. Assuming a normalization to today's values of dark matter density and overdensity, the signal of the interaction is an enhancement (suppression) of both the growth factor and the lensing power, when the energy transfer in the background is from dark matter to dark energy (dark energy to dark matter)

  3. Energy Savings Modelling of Re-tuning Energy Conservation Measures in Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy

  4. Modeling of thermal storage systems in MILP distributed energy resource models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steen, David; Stadler, Michael; Cardoso, Gonçalo; Groissböck, Markus; DeForest, Nicholas; Marnay, Chris

    2014-08-04

    Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculations aremore » based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less

  5. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  6. Modeling heavy ion ionization energy loss at low and intermediate energies

    SciTech Connect (OSTI)

    Rakhno, I.L.; /Fermilab

    2009-11-01

    The needs of contemporary accelerator and space projects led to significant efforts made to include description of heavy ion interactions with matter in general-purpose Monte Carlo codes. This paper deals with an updated model of heavy ion ionization energy loss developed previously for the MARS code. The model agrees well with experimental data for various projectiles and targets including super-heavy ions in low-Z media.

  7. Model documentation report: Residential sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  8. Optimal Control of Distributed Energy Resources using Model Predictive Control

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

  9. Energy considerations in the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for the state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.

  10. Energy considerations in the Community Atmosphere Model (CAM)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less

  11. Nationwide water availability data for energy-water modeling.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Zemlick, Katie M.; Klise, Geoffrey Taylor

    2013-11-01

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  12. Results from Development of Model Specifications for Multifamily Energy Retrofits

    SciTech Connect (OSTI)

    Brozyna, K.

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  13. Results From Development of Model Specifications for Multifamily Energy Retrofits

    SciTech Connect (OSTI)

    Brozyna, Kevin

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  14. Modeling renewable energy resources in integrated resource planning

    SciTech Connect (OSTI)

    Logan, D.; Neil, C.; Taylor, A.

    1994-06-01

    Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

  15. Comparison of software models for energy savings from cool roofs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    New, Joshua; Miller, William A.; Huang, Yu; Levinson, Ronnen

    2015-06-07

    For this study, a web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savingsmore » to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Finally, radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.« less

  16. Comparison of software models for energy savings from cool roofs

    SciTech Connect (OSTI)

    New, Joshua; Miller, William A.; Huang, Yu; Levinson, Ronnen

    2015-06-07

    For this study, a web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savings to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Finally, radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.

  17. NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    NREL has developed a tool -- the System Advisor Model (SAM) -- that can help decision makers analyze cost, performance, and financing of any size grid-connected solar, wind, or geothermal power project. Manufacturers, engineering and consulting firms, research and development firms, utilities, developers, venture capital firms, and international organizations use SAM for end-to-end analysis that helps determine whether and how to make investments in renewable energy projects.

  18. Spatially and Temporally Resolved Energy and Environment Tool (STREET) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spatially and Temporally Resolved Energy and Environment Tool (STREET) Model (University of California-Irvine) Objectives Determine the number of strategically located hydrogen fueling stations needed within a geographic area to enable the introduction of commercial volumes of fuel cell electric vehicles (FCEVs), and determine the geographic distribution of the required stations while also assessing the environmental impacts. Key Attributes & Strengths Optimized hydrogen fueling station

  19. Thermal Management Studies and Modeling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Storage | Department of Energy Presentation on the Theory and Modeling of Weakly Bound/Physisorbed Materials for Hydrogen Storage given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006. storage_theory_session_williamson.pdf (836.55 KB) More Documents & Publications Summary Report from Theory Focus Session on Hydrogen Storage Materials Materials Go/No-Go Recommendation Document Summary Report from DOE Theory Focus Session on Hydrogen Storage Materials

    i T T

  20. General Equilibrium Emissions Model (GEEM) | Open Energy Information

    Open Energy Info (EERE)

    Development (IISD) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Goods...

  1. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  2. Oneida Tribe of Indians of Wisconsin Energy Optimization Model

    SciTech Connect (OSTI)

    Troge, Michael

    2014-12-01

    Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation and is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).

  3. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  4. Live Webinar on Better Buildings Case Competition: Energy Efficiency in the Restaurant Franchise Model Case Study

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "A Side of Savings: Energy Efficiency in the Restaurant Franchise Model Case Study."

  5. Evaluating Behind-the-Meter Energy Storage Systems with NREL's System Advisor Model (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Behind-the- Meter Energy Storage Systems with NREL's System Advisor Model A new model helps companies assess the performance and economic effects of integrating battery energy storage systems into the electric grid. The Challenge Battery energy storage is a key enabling technology for the integration of large amounts of solar generation onto the electric distribution system. With an 80% drop in battery prices in the last six years and new mandates for energy storage solutions in

  6. ENERGY INVESTMENTS UNDER CLIMATE POLICY: A COMPARISON OF GLOBAL MODELS

    SciTech Connect (OSTI)

    McCollum, David; Nagai, Yu; Riahi, Keywan; Marangoni, Giacomo; Calvin, Katherine V.; Pietzcker, Robert; Van Vliet, Jasper; van der Zwaan, Bob

    2013-11-01

    The levels of investment needed to mobilize an energy system transformation and mitigate climate change are not known with certainty. This paper aims to inform the ongoing dialogue and in so doing to guide public policy and strategic corporate decision making. Within the framework of the LIMITS integrated assessment model comparison exercise, we analyze a multi-IAM ensemble of long-term energy and greenhouse gas emissions scenarios. Our study provides insight into several critical but uncertain areas related to the future investment environment, for example in terms of where capital expenditures may need to flow regionally, into which sectors they might be concentrated, and what policies could be helpful in spurring these financial resources. We find that stringent climate policies consistent with a 2°C climate change target would require a considerable upscaling of investments into low-carbon energy and energy efficiency, reaching approximately $45 trillion (range: $30–$75 trillion) cumulative between 2010 and 2050, or about $1.1 trillion annually. This represents an increase of some $30 trillion ($10–$55 trillion), or $0.8 trillion per year, beyond what investments might otherwise be in a reference scenario that assumes the continuation of present and planned emissions-reducing policies throughout the world. In other words, a substantial "clean-energy investment gap" of some $800 billion/yr exists — notably on the same order of magnitude as present-day subsidies for fossil energy and electricity worldwide ($523 billion). Unless the gap is filled rather quickly, the 2°C target could potentially become out of reach.

  7. Comparison of Software Models for Energy Savings from Cool Roofs

    SciTech Connect (OSTI)

    New, Joshua Ryan; Miller, William A; Huang, Yu; Levinson, Ronnen

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  8. A modal approach to modeling spatially distributed vibration energy dissipation.

    SciTech Connect (OSTI)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  9. Modeling of customer adoption of distributed energy resources

    SciTech Connect (OSTI)

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-08-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible

  10. On the internal consistency of holographic dark energy models

    SciTech Connect (OSTI)

    Horvat, R

    2008-10-15

    Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT.

  11. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the

  12. Modeling the transfer function for the Dark Energy Survey

    SciTech Connect (OSTI)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; Peiris, H.; Abbott, T.; Abdalla, F. B.; Balbinot, E.; Banerji, M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Carnero, A.; Desai, S.; da Costa, L. N.; Cunha, C. E.; Eifler, T.; Evrard, A. E.; Fausti Neto, A.; Gerdes, D.; Gruen, D.; James, D.; Kuehn, K.; Maia, M. A. G.; Makler, M.; Ogando, R.; Plazas, A.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Zuntz, J.

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function – a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.

  13. Modeling the transfer function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.; Busha, M. T.; Wechsler, R. H.; Refregier, A.; Amara, A.; Rykoff, E.; Becker, M. R.; Bruderer, C.; Gamper, L.; Leistedt, B.; et al

    2015-03-04

    We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function – a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 deg2 coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulationmore »output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. As a result, it provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.« less

  14. Modeling the Transfer Function for the Dark Energy Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, C.

    2015-03-04

    We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with themore » corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less

  15. Fuel Cell Power (FCPower) Model | Open Energy Information

    Open Energy Info (EERE)

    of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen Topics: Finance Resource Type: Softwaremodeling tools User Interface: Spreadsheet...

  16. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    long term strategies by analysing cost optimal energy mixes, investment needs and other costs for new infrastructure, energy supply security, energy resource utilization, rate of...

  17. DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Two ENERGY STAR Models to EPA for Potential De-Listing DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing January 11, 2012 - 11:00am Addthis U.S. Department of...

  18. Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model

    Reports and Publications (EIA)

    2011-01-01

    The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

  19. An Energy Savings Model for the Heat Treatment of Castings

    SciTech Connect (OSTI)

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  20. Photovoltaic Energy Valuation Model v 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-01-09

    Currently, there is a need identified by Kennecott Land, as well as others in the real estate, appraisal and building industry to come up with a tool that is simple to use and can accurately value the electricity produced by a solar photovoltaic system. In the appraisal industry, comparable properties are used to help in the valuation of a residential property. Absent a comparable feature such as photovoltaic panels on a neighboring property, it ismore » difficult for appraisers to assign a value to that system. In many cases, photovoltaic systems are assigned a value of $0, which essentially ignores the value of energy being produced and being saved by the homeowner relative to the cost of energy they would otherwise have to purchase from the local utility. There are multiple programs that can calculate the value of the energy produced in terms of the payback period and desired internal rate of return, but none employ the concept of discounting the future value of the energy produced at any period in the expected lifetime of a photovoltaic energy system. By creating this spreadsheet, a necessary gap has been filled. It is the expectation that this product will be included in training programs aimed towards the local appraisal community in Salt Lake County, Utah as well as expand into training offered at the national level through the Appraisal Institute. This software product is an excel spreadsheet that is used to calculate the present value of future energy production for photovoltaic electricity generating systems on residential and commercial properties. Visual Basic (VB) code within the spreadsheet allows user data to be passed to the PVWatts System Advisor Model webservice (http://www.nrel.gov/rredc/pvwatts/) and back into the spreadsheet to estimate the annual solar energy production in Salt Lake County, Utah (as well as anywhere in the U.S.). VB is also used for a discount rate calculation and calls the most current Fannie Mae 30-Year Fixed Rate 60-day

  1. Fact #783: June 10, 2013 Emissions and Energy Use Model - GREET |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: June 10, 2013 Emissions and Energy Use Model - GREET Fact #783: June 10, 2013 Emissions and Energy Use Model - GREET The Greenhouse Gases, Regulated Emission, and Energy Use in Transportation (GREET) Model is a full life-cycle model for evaluating the energy and emission impacts of various vehicle and fuel combinations. The first version of the GREET model was released in 1996. Since then, the model has been updated and expanded to include additional vehicle types and

  2. Policy Analysis Modeling System (PAMS) | Open Energy Information

    Open Energy Info (EERE)

    System AgencyCompany Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Policiesdeployment programs...

  3. Construction of energy-stable Galerkin reduced order models.

    SciTech Connect (OSTI)

    Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart Gustaaf

    2013-05-01

    This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed

  4. May 27 Webinar Will Explore Models and Tools for Evaluating Tribal Energy Project Potential

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy, in partnership with Western Area Power Administration (Western), will present the next Tribal Renewable Energy Series webinar, Models and Tools for Evaluating Energy Efficiency and Renewable Energy Projects, on Wednesday, May 27, 2015, from 11 a.m. to 12:30 p.m. Mountain time.

  5. Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites

    SciTech Connect (OSTI)

    Coats, D.W.; Murray, R.C.

    1984-11-01

    Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

  6. Renewable Energy Deployment in Colorado and the West: A Modeling Sensitivity and GIS Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Deployment in Colorado and the West: A Modeling Sensitivity and GIS Analysis Clayton Barrows, Trieu Mai, Scott Haase, Jennifer Melius, and Meghan Mooney National Renewable Energy Laboratory Technical Report NREL/TP-6A20-65350 March 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy

  7. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  8. EIA model documentation: Petroleum Market Model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1994-02-24

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2.) The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. The report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; and Appendix E, Data Quality; and Appendix F, Estimation Methodologies.

  9. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    SciTech Connect (OSTI)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying

  10. Model Request for Qualifications to Pre-Qualify Energy Service Companies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Request for Qualifications to Pre-Qualify Energy Service Companies Model Request for Qualifications to Pre-Qualify Energy Service Companies This page contains a model Request for Qualifications (RFQ) and associated documents intended for use by a state program to pre-qualify Energy Service Companies (ESCOs) to be available for as-needed Energy Savings Performance Contracting (ESPC) services for state and local governments within that state. The RFQ sets the stage for a

  11. Comparison of Real World Energy Consumption to Models and DOE Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures | Department of Energy Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates the real-world energy performance of appliances and equipment as it compares with models and test procedures. The study looked to determine whether DOE and industry test procedures actually replicate real world conditions, whether performance degrades over time, and whether

  12. Benefits of Using Logic Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Using Logic Modeling Benefits of Using Logic Modeling Benefits of developing and using logic models are: The model helps communicate the program to people outside the ...

  13. EIA model documentation: Petroleum Market Model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1994-12-30

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). The PMM models petroleum refining activities, the marketing of products, the production of natural gas liquids and domestic methanol, projects petroleum provides and sources of supplies for meeting demand. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption.

  14. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    SciTech Connect (OSTI)

    1998-01-01

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  15. Stochastic Energy Deployment System (SEDS) World Oil Model (WOM)

    Energy Science and Technology Software Center (OSTI)

    2009-08-07

    The function of the World Oil Market Model (WOMM) is to calculate a world oil price. SEDS will set start and end dates for the forecast period, and a time increment (assumed to be 1 year in the initial version). The WOMM will then randomly select an Annual Energy Outlook (AEO) oil price case and calibrate itself to that case. As it steps through each year, the WOMM will generate a stochastic supply shock tomore » OPEC output and accept a new estimate of U.S. petroleum demand from SEDS. The WOMM will then calculate a new oil market equilibrium for the current year. The world oil price at the new equilibrium will be sent back to SEDS. When the end year is reached, the process will begin again with the selection of a new AEO forecast. Iterations over forecasts will continue until SEDS has completed all its simulation runs.« less

  16. Stochastic Energy Deployment System (SEDS) World Oil Model (WOM)

    SciTech Connect (OSTI)

    2009-08-07

    The function of the World Oil Market Model (WOMM) is to calculate a world oil price. SEDS will set start and end dates for the forecast period, and a time increment (assumed to be 1 year in the initial version). The WOMM will then randomly select an Annual Energy Outlook (AEO) oil price case and calibrate itself to that case. As it steps through each year, the WOMM will generate a stochastic supply shock to OPEC output and accept a new estimate of U.S. petroleum demand from SEDS. The WOMM will then calculate a new oil market equilibrium for the current year. The world oil price at the new equilibrium will be sent back to SEDS. When the end year is reached, the process will begin again with the selection of a new AEO forecast. Iterations over forecasts will continue until SEDS has completed all its simulation runs.

  17. Energy flow in passive and active 3D cochlear model

    SciTech Connect (OSTI)

    Wang, Yanli; Steele, Charles; Puria, Sunil

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  18. Energy Analysis Models, Tools and Software Technologies Available for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing - Energy Innovation Portal Energy Analysis Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Marketing Summaries (119) Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  19. Asia-Pacific Integrated Model (AIM) | Open Energy Information

    Open Energy Info (EERE)

    (LEDS). Key Outputs Emissions estimates (CO2, SO2, NOx), total primary energy supply, electricity generation by fuel-type, sector-wise energy consumption, economic output...

  20. Technoeconomic Modeling of Battery Energy Storage in SAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... charging from the PV array if PV production exceeded ... Hybrid Energy Systems," Solar Energy, vol. 50, 1993. 6 ... May 2015. 11 Valentin Software, "PV*SOL," 2015. Online. ...

  1. Quality Guidelines for Energy System Studies Process Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Company Ron Schoff, Electric Power Research Institute Robert D. Brasington, C12 Energy National Energy Technology Laboratory Office of Program Performance and Benefits 6 May...

  2. NREL: Energy Storage - NREL's Battery Life Predictive Model Helps...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EV) manufacturers, solar and wind energy generation companies, and utilities-need to know how to use batteries most effectively. As investment in large-scale battery energy ...

  3. Property:Buildings/ModelXmlFile | Open Energy Information

    Open Energy Info (EERE)

    Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + http:apps1.eere.energy.govbuildingsenergyplusmodelsChicago2009TSDGeneralMerchHPL50percent.xml +...

  4. Property:Buildings/ModelIdfFile | Open Energy Information

    Open Energy Info (EERE)

    Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + http:apps1.eere.energy.govbuildingsenergyplusmodelsChicago2009TSDGeneralMerchHPL50percent.idf +...

  5. Ventana's Energy, Environment, Economy-Society (E3S) Model |...

    Open Energy Info (EERE)

    Organization: Ventana Systems Inc. Partner: United States Department of Energy Sector: Climate, Energy Topics: Co-benefits assessment, - Macroeconomic, Pathways analysis...

  6. Model Guidelines for Incorporating Energy Efficiency and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disaster Organizations of the Use of PV Incorporating Energy Efficiency into Disaster Recovery Efforts Coordinating Energy Efficiency with Other Disaster Resiliency Services

  7. Residential Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  8. PROJECT PROFILE: System Advisor Model (SuNLaMP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: System Advisor Model (SuNLaMP) PROJECT PROFILE: System Advisor Model (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $2,232,000 This project focuses on the System Advisor Model (SAM) software created by the National Renewable Energy Laboratory (NREL). SAM is a performance and finance model designed to facilitate decision making for people involved in the renewable energy

  9. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  10. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect (OSTI)

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  11. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  12. EIA model documentation: Petroleum market model of the national energy modeling system

    SciTech Connect (OSTI)

    1995-12-28

    The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

  13. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART...

  14. Reservoir Modeling Working Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting Reservoir Modeling Working Group Meeting Reservoir Modeling working group meeting presentation on May 10, 2012 at the 2012 Peer Review ...

  15. Beaird Maxim Model TRP-12 | Open Energy Information

    Open Energy Info (EERE)

    Beaird Maxim Model TRP-12 Jump to: navigation, search Manufacturer Beaird Model Number Maxim Model TRP-12 Distributed Generation Purpose Domestic hot water, Space heat, HVAC reheat...

  16. Need for An Integrated Risk Model | Department of Energy

    Office of Environmental Management (EM)

    Need for An Integrated Risk Model Need for An Integrated Risk Model Need for An Integrated Risk Model Michael Salmon, LANL PDF icon Need for An Integrated Risk Model More Documents...

  17. Energy and Mass Dependences of the Parameters of the Semimicroscopic Folding Model for Alpha Particles at Low and Intermediate Energies

    SciTech Connect (OSTI)

    Kuterbekov, K.A.; Zholdybayev, T.K.; Kukhtina, I.N.; Penionzhkevich, Yu.E.

    2005-06-01

    The energy and mass dependences of the parameters of the semimicroscopic alpha-particle potential are investigated for the first time in the region of low and intermediate energies. Within the semimicroscopic folding model, both elastic and inelastic differential and total cross sections for reactions on various nuclei are well described by using global parameters obtained in this study.

  18. Building America Case Study: Community-Scale Energy Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PERFORMANCE DATA Annual Energy Consumption: Average: 15,459 kWh Median: 15,252 kWh ... To that end, the U.S. Department of Energy Building America team IBACOS analyzed ...

  19. Accelerating Energy Savings Performance Contracting Through Model Statewide Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides information on Energy Savings Performance Contracing (ESPC), including links to best practices and tools as well as the Accelerated ESCP initiative and types of assistance available. Author: Energy Services Coalition

  20. Modeling the Energy Use of a Connected and Automated Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... from policies, including legality, insurance, liability, incentives, and treatment ... on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors: http:...

  1. U.S. Department of Energy Public-Private Partnerships: A Model for Success

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy U.S. Department of Energy Public-Private Partnerships: A Model for Success U.S. Department of Energy Public-Private Partnerships: A Model for Success Addthis Description Below is the text version for "U.S. Department of Energy Public-Private Partnerships: A Model for Success." Text Version Dr. David Danielson: At the core, the real opportunity is for the DOE, through Clean Energy Manufacturing Initiative, to work with our partners to envision what might be

  2. Model Examines Cumulative Impacts of Wind Energy Development on the Greater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sage-Grouse | Department of Energy Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse March 31, 2014 - 11:34am Addthis Photo of a sage grouse. The U.S. Department of Energy's (DOE's) Argonne National Laboratory developed a spatially explicit individual-based model for examining the cumulative impacts of wind energy development on populations and habitats of the greater

  3. From the Building to the Grid: An Energy Revolution and Modeling Challenge;

    Office of Scientific and Technical Information (OSTI)

    Workshop Proceedings (Technical Report) | SciTech Connect From the Building to the Grid: An Energy Revolution and Modeling Challenge; Workshop Proceedings Citation Details In-Document Search Title: From the Building to the Grid: An Energy Revolution and Modeling Challenge; Workshop Proceedings This report summarizes the workshop entitled: From the Building to the Grid: An Energy Revolution and Modeling Challenge. The first workshop was held May 1-2, 2012 on NREL's campus in Golden, Colorado.

  4. Panel 2, Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy Storage for Grid and Transportation Services Workshop Sacramento, California May 14, 2014 Valuation challenges 2 Source: Lamontagne, C. 2014. Survey of Models and Tools for the Stationary Energy Storage Industry. Presentation at Infocast Storage Week. Santa Clara, CA. Transmission and Distribution planning Models lack

  5. A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard A.

    2013-01-01

    This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

  6. Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy Mary Werner Technical Report NREL/TP-7A20-49230 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Integrated Deployment Model: A

  7. Model Specification for LED Roadway Luminaires | Department of Energy

    Energy Savers [EERE]

    U.S. Department of Energy National Science Bowl | Department of Energy Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl Mira Loma High School and Hopkins Junior High School from California Win U.S. Department of Energy National Science Bowl May 4, 2009 - 12:00am Addthis WASHINGTON, DC - High school and middle school teams from California won the 2009 U.S. Department of Energy (DOE) National Science Bowl® today at the

  8. Ad Lucem Workshop: Modeling Breakout Session | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Modeling Breakout Session Ad Lucem Workshop: Modeling Breakout Session This presentation summarizes the information discussed during the modeling breakout session of the DOE Ad Lucem Workshop on Feb. 17, 2012. adlucem2012_modeling_breakout.pdf (1.66 MB) More Documents & Publications Ad Lucem: Modeling of Market Transformation Pathways Workshop Agenda Ad Lucem: Modeling Market Transformation Pathways Workshop Break-out Discussion i: Modeling Consumer Behavior Residential S

  9. EERE Success Story—Colorado: Energy Modeling Products Support Energy Efficiency Projects

    Broader source: Energy.gov [DOE]

    Xcel Energy, a Minnesota-based utility that supplies electricity and natural gas to eight states, employed two EERE-developed products in developing a program management tool for its Energy Design Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use.

  10. Model Guidelines for Incorporating Energy Efficiency and Renewable EnerÞ~/

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Guidelines for Incorporating Energy Efficiency and Renewable EnerÞ~/ Model Guidelines for Incorporating Energy Efficiency and Renewable EnerÞ~/ sep_emergency_plan_guide.pdf (157.99 KB) More Documents & Publications Problems and Solutions: Training Disaster Organizations of the Use of PV Incorporating Energy Efficiency into Disaster Recovery Efforts Coordinating Energy Efficiency with Other Disaster Resiliency Services

  11. Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy

    SciTech Connect (OSTI)

    Werner, M.

    2010-11-01

    This paper describes the Integrated Deployment model to accelerate market adoption of alternative energy solutions to power homes, businesses, and vehicles through a comprehensive and aggressive approach.

  12. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses comfort model enhancement/validation, climate system efficiency parameters and system trade off, and powertrain mode operation changes to further vehicle energy saving while preserving occupant comfort.

  13. From the Building to the Grid: An Energy Revolution and Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these questions) Is there value to integrating the existing models in building energy management systems with those of the grid? a. If so, what are the particular research...

  14. Short-Term Energy Outlook Model Documentation: Coal Supply, Demand, and Prices

    Reports and Publications (EIA)

    2016-01-01

    The coal module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, imports, exports, inventories, and prices.

  15. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    SciTech Connect (OSTI)

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential

  16. Chemistry, Reservoir, and Integrated Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry, Reservoir, and Integrated Models Chemistry, Reservoir, and Integrated Models Below are the project presentations and respective peer review results for Chemistry, Reservoir and Integrated Models. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS), Marte Gutierrez and Masami Nakagawa, Colorado School of Mines Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal

  17. Campus Cafeteria Serves As Sustainable Model for Energy-Efficient Food Service (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campus Cafeteria Serves As Sustainable Model for Energy- Efficient Food Service Unlike the less-than-appealing, traditional cafeteria you may have eaten at in school, the state-of-the-art Café on the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) campus, which opened in 2012, is breaking stereotypes from aesthetics to energy- effcient design. In addition to meeting staff needs as the primary dining location to grab snacks and eat lunch on the Golden, Colorado, campus,

  18. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    SciTech Connect (OSTI)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  19. U.S. Energy and Greenhouse Gas Model V2.0-2.X

    Energy Science and Technology Software Center (OSTI)

    2004-11-01

    The IJ.S. Energy and Greenhouse Gas Model (USEGM) is designed as a high-level dynamic simulation model to facilitate policy discussions on a real-time basis. The model focuses on U.S. energy demand by economic and electric power sectors through 2025, and is driven by gross domestic product (GOP), energy prices, energy intensities, and population effects. Price and GDP effects on energy demand are captured using a distributed lag model that allows demand to change over severalmore » years in response to price and GOP changes in a given year. Fuel allocation in the electricity sector is determined using a logistic formulation that takes into account relative electricity costs and existing capital allocation. Model outputs include energy demand by sector and type, carbon dioxide emissions, and oil import requirements.« less

  20. POET-DSM's Integrated Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM's Integrated Model POET-DSM's Integrated Model Breakout Session 1-C: Bringing Biorefineries into the Mainstream POET-DSM's Integrated Model Doug Berven, Vice President of ...

  1. Model documentation, Coal Market Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

  2. Low Carbon Development: Planning & Modelling Course | Open Energy...

    Open Energy Info (EERE)

    & Modelling Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Development: Planning & Modelling Course AgencyCompany Organization: World Bank...

  3. IPGT Reservoir Modeling Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPGT Reservoir Modeling Working Group IPGT Reservoir Modeling Working Group Summary of recommendations and geothermal reservoir benchmarking workshop gtp2012peerreviewreservoirm...

  4. Sandia Energy - Geomechanical Modeling to Investigate the Cause...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanical Modeling to Investigate the Cause of Oil Leaks in Wellbores at Big Hill Strategic Petroleum Reserve Home Highlights - HPC Geomechanical Modeling to Investigate the...

  5. Financial and Cost Assessment Model (FICAM) | Open Energy Information

    Open Energy Info (EERE)

    and Cost Assessment Model (FICAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial and Cost Assessment Model (FICAM) AgencyCompany Organization: UNEP-Risoe...

  6. NREL: Regional Energy Deployment System (ReEDS) Model - Documentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Operation and Reliability Cost Output ReEDS Standard Inputs and Assumptions Model Parameters, Variables, and Equations Appendix Printable Version ReEDS Home Model...

  7. Business Models Guide: Real Estate Agent | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Models Guide: Real Estate Agent Business Models Guide: Real Estate Agent With excellent marketing skills, a keen understanding of financing options, and a broad knowledge of the ...

  8. Category:Data and Modeling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Data and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data and Modeling Techniques page? For detailed...

  9. Renewable Fuel Vehicle Modeling and Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of use instead of centralized generation sources from power plants. State and local governments can implement policies and programs regarding distributed generation and its use to help overcome market and regulatory barriers to implementation. Resources related to different types of distributed generation renewable energy policies and programs are

  10. Model Energy Efficiency Program Impact Evaluation Guide | Open...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentmodel-energy-efficiency-program-impac Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  11. EERE Success Story-Colorado: Energy Modeling Products Support...

    Broader source: Energy.gov (indexed) [DOE]

    utility that supplies electricity and natural gas to eight ... energy consumption, and OpenStudio(tm), a software development kit that simplifies the creation of end-user ...

  12. Mid-Term Model Development - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    PDF Icon White papers Vincent DiVita, Jacobs Consultancy PDF Icon Terrence Higgins, Hart Downstream Energy Services PDF Icon David Hirshfeld, Mathpro Inc. PDF Icon Frederic...

  13. Modeling options for Current Energy Convertor Systems and Associated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Loading Blade Performance CFD FEA CAD Weight & Trim COE Global ... Environmental Loading Blade Performance CFD FEA CAD Weight & Trim Cost of Energy Global ...

  14. Global Trade and Environmental Model (GTEM) | Open Energy Information

    Open Energy Info (EERE)

    Australia Department of Agriculture, Fisheries, and Forestry (ABARES) Sector: Climate, Energy Topics: Analysis Tools ComplexityEase of Use: Advanced Website: www.daff.gov.au...

  15. Light Water Reactors A DOE Energy Innovation Hub for Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Simulation of Nuclear Reactors CASL is focused on three issues for nuclear energy: reducing cost, reducing the amount of used nuclear fuel, and safety. CASL core...

  16. Electricity Markets Analysis (EMA) Model | Open Energy Information

    Open Energy Info (EERE)

    U.S. wholesale electricity markets designed to examine how mid- to long-term energy and environmental policies will influence electricity supply decisions, electricity generation...

  17. NREL: Energy Analysis - The Resource Planning Model (RPM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Future Capacity Expansion Scenarios of the Western Electricity System: Implications of Coal-fired Plant Retirements. Golden, CO: National Renewable Energy Laboratory. Printable ...

  18. Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2015-10-01

    In this paper, an integrated assessment model (IAM) uses a newly-developed Monte Carlo analysis capability to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The paper finds that aggressive building-energy codes and equipment standards are an effective, cost-saving way to reduce energy consumption in buildings and greenhouse gas emissions in U.S. states. This conclusion is robust to significant uncertainties in population, economic activity, climate, carbon prices, and technology performance and costs.

  19. Numerical Modeling of PCCI Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PCCI Combustion Numerical Modeling of PCCI Combustion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Livermore National Laboratory/University of Michigan 2004_deer_flowers.pdf (252.97 KB) More Documents & Publications Modeling of HCCI and PCCI Combustion Processes Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Numerical Modeling of HCCI Combustion

  20. Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

  1. NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

  2. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    2014-04-18

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  3. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    SciTech Connect (OSTI)

    Sun, Kaiyu; Yan , Da; Hong , Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  4. Integrated Model to Access the Global Environment | Open Energy...

    Open Energy Info (EERE)

    models like TIMER and FAIR. It also uses results from agroeconomic models like LEITAP or IMPACT. When to Use This Tool This tool is most useful for development impacts assessments...

  5. Commercial Buildings Sector Agent-Based Model | Open Energy Informatio...

    Open Energy Info (EERE)

    OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US...

  6. Hybrid Power System Simulation Model | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenthybrid-power-system-simulation-model, Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  7. Modeling-Computer Simulations (Combs, Et Al., 1999) | Open Energy...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Combs, Et Al., 1999) Exploration Activity Details Location Unspecified...

  8. Modeling-Computer Simulations (Ozkocak, 1985) | Open Energy Informatio...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Ozkocak, 1985) Exploration Activity Details Location Unspecified...

  9. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    Resource Type: Softwaremodeling tools Website: www-tc.iaea.orgtcwebabouttcstrategyThematicpdfpresentationsener References: Overview of IAEA PESS Models 1 "MESSAGE...

  10. H2A Delivery Models and Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Models and Results H2A Delivery Models and Results Presentation on hydrogen analysis delivery models and results prepared for DOE January 25 workshop. wkshp_storage_mintz.pdf (1.89 MB) More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California H2A Delivery Scenario Model and Analyses Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002

  11. Parametric Adaptive Model Based Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parametric Adaptive Model Based Diagnostics Parametric Adaptive Model Based Diagnostics A model-based adaptive, robust technology is presented for on-board diagnostics of failure of diesel engine emission control devices and ethanol estimation of flex-fuel vehicles. p-06_franchek.pdf (256.08 KB) More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System

  12. Jobs and Economic Development Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs and Economic Development Modeling Jobs and Economic Development Modeling Project objective: Develop models to estimate jobs and economic impacts from geothermal project development and operation. analysis_young_economic_development_modeling.pdf (131.43 KB) More Documents & Publications Economic Impact Analysis for EGS Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook TAP Webcast Transcript July-29, 2009

  13. Sensitivity of a Wave Energy Converter Dynamics Model to Nonlinear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface in- tegral based method. NOMENCLATURE WEC Wave energy converter. T3R2 "Three-translation, two-rotation" WEC studied here. PCC Power-conversion-chain. PMT...

  14. End-use Breakdown: The Building Energy Modeling Blog | Department...

    Office of Environmental Management (EM)

    (left) and SIP Hut (right).
    Credit: Oak Ridge National Laboratory. When Saving Energy Helps Save Lives National lab researchers are working with U.S. Military to evaluate ...

  15. Department of Energy Land Ice Modeling Efforts (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to...

  16. HIA 2015 DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas Homes Anna Model Omaha, NE DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give

  17. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Wave Tank Test for Reference Model 3 Floating- Point Absorber Wave Energy Converter Project Y.-H. Yu, M. Lawson, and Y. Li National Renewable Energy Laboratory M. Previsic and J. Epler Re Vision Consulting J. Lou Oregon State University Technical Report NREL/TP-5000-62951 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no

  18. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation E. Wood, E. Burton, A. Duran, and J. Gonder Technical Report NREL/TP-5400-61109 June 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  19. NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    The energy market is diversifying. In addition to traditional power sources, decision makers can choose among solar, wind, and geothermal technologies as well. Each of these technologies has complex performance characteristics and economics that vary with location and other project specifics, making it difficult to analyze the viability of such projects. But that analysis is easier now, thanks to the National Renewable Energy Laboratory (NREL).

  20. Stimulating Energy Efficiency in Kentucky: An Implementation Model for

    Broader source: Energy.gov (indexed) [DOE]

    Production Costs | Department of Energy Blast Furnace Gas Recovery Boiler Provides Steam and Power at Steel Mill (10.02 MB) More Documents & Publications Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 EA-1745: Finding of No Significant Impact EA-1745: Final

    1: Identify Project Potential Presentation Agenda * Brief Review of Day 1 * Step 1: Identifying Project Potential - Community Market Potential - Resource Potential - Initial Site Considerations * Tools and

  1. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  2. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect (OSTI)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4

  3. Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model

    Reports and Publications (EIA)

    2009-01-01

    Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

  4. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  5. Combustion Model for Engine Concept Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Engine Concept Development Combustion Model for Engine Concept Development Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an advanced combustion model are used together for fast, reliable predictions deer12_andersson.pdf (1.12 MB) More Documents & Publications Partially Premixed Combustion Flex Fuel Optimized SI and HCCI Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  6. Continuum Modeling of Membrane Properties | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum Modeling of Membrane Properties Continuum Modeling of Membrane Properties Presentation at the DOE High Temperature Membrane Working Group Meeting, Oct. 14, 2010 high_temp_weber.pdf (1.4 MB) More Documents & Publications High Temperature Membrane Working Group Meeting Minutes Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Experimental and Modeling Investigation of Radionuclide Interaction and Transport in Representative Geologic Media

  7. GIS-Based Infrastructure Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GIS-Based Infrastructure Modeling GIS-Based Infrastructure Modeling Presentation by NREL's Keith Parks at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. parks_gis_infrastructure_modeling.pdf (993.56 KB) More Documents & Publications DOE Hydrogen Transition Analysis Workshop Geographically-Based Infrastructure Analysis for California Hydrogen and FCV Implementation Scenarios, 2010 - 2025

  8. Empirical Math Model: Ideal Gas Law | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Empirical Math Model: Ideal Gas Law Empirical Math Model: Ideal Gas Law January 29, 2013 - 9:54am Addthis What are the key facts? Empirical models are generally most useful in describing conditions close to the experiments used to develop or calibrate them. Predictive tools are essential to understanding phenomena that can not be described experimentally, like used fuel behavior over thousands of years in a repository. Predictability is measured by understanding errors where they are introduced

  9. Numerical Modeling of HCCI Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI Combustion Numerical Modeling of HCCI Combustion Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_aceves.pdf (840 KB) More Documents & Publications High Fidelity Modeling of Premixed Charge Compression Ignition Engines New Methodologies for Analysis of Premixed Charge Compression Ignition Engines Modeling of HCCI and PCCI Combustion Processes

  10. Vehicle Technologies Office: Modeling and Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling, Testing, Data & Results » Vehicle Technologies Office: Modeling and Simulation Vehicle Technologies Office: Modeling and Simulation The Vehicle Technologies Office (VTO) partners with researchers at the national laboratories and industry to identify technologies and strategies needed to achieve the best combination of high fuel economy and low emissions. There are a large number of advanced powertrain configurations that could potentially provide these benefits. However, it is not

  11. LES Modeling for IC Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LES Modeling for IC Engines LES Modeling for IC Engines Large eddy simulation offers better accuracy and sensitivity to study cyclic variability, mode transition and mixing effects in engine design and operation deer12_rutland.pdf (1.36 MB) More Documents & Publications Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Vehicle Technologies Office Merit Review 2016: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

  12. Sandia Energy - Results from the Human Resilience Index and Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results from the Human Resilience Index and Modeling project were reported recently in the National Intelligence Council's Global Trends 2030 Report Home Infrastructure Security...

  13. Model Ordinance for Siting of Wind-Energy Systems

    Broader source: Energy.gov [DOE]

    With respect to small wind turbines, the model ordinance addresses setbacks, access, lighting, noise, appearance, code compliance, utility notification, abandonment, and the permitting process....

  14. Numerical Modeling At Coso Geothermal Area (1995) | Open Energy...

    Open Energy Info (EERE)

    transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling...

  15. ENV-Linkages-KEI Model | Open Energy Information

    Open Energy Info (EERE)

    Moderate Related Tools CRED: A New Model of Climate and Development Manual for Social Impact Assessment of Land-Based Carbon Projects TEEMP ... further results A recursive...

  16. Numerical Modeling At Coso Geothermal Area (2010) | Open Energy...

    Open Energy Info (EERE)

    model was developed using Poly3D to simulate the distribution and magnitude of stress concentration in the vicinity of the borehole floor, and determine the conditions...

  17. NREL: Regional Energy Deployment System (ReEDS) Model - Unique...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ReEDS goes a step further with GIS data to produce images and animations with enhanced ... External Capabilities GIS Inputs While many models take advantage of geographic ...

  18. PNNL-MILAGRO Aerosol Modeling in Mexico | Open Energy Information

    Open Energy Info (EERE)

    Modeling in Mexico1 "MILGARO surface data includes measurements from Supersites, RAMA (Red Automatica de Monitoreo Atmosferico), Mobile, and Other sites. A description of each...

  19. Property:Buildings/ModelBuildingType | Open Energy Information

    Open Energy Info (EERE)

    Religious Worship Service Warehouse and Storage Other Vacant Pages using the property "BuildingsModelBuildingType" Showing 12 pages using this property. G General Merchandise...

  20. Global Trade and Analysis Project (GTAP) Model | Open Energy...

    Open Energy Info (EERE)

    standard model. In addition, GTAP-E incorporates carbon emissions from the combustion of fossil fuels and provides for a mechanism to trade these emissions internationally. When...

  1. Co-benefits Risk Assessment (COBRA) Screening Model | Open Energy...

    Open Energy Info (EERE)

    Ease of Use: Simple Website: www.epa.govstatelocalclimateresourcescobra.html Cost: Free Related Tools Applied Dynamic Analysis of the Global Economy (ADAGE) Model Simple...

  2. BENEFIT: A New Hybrid Approach to Energy Modeling | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Related Publications 2016 BTO Peer Review Presentation-A New Hybrid Approach to ... schematic view of the HyrdronicHeating exmample model from the Modelica Buildings Library. ...

  3. Modeling-Computer Simulations (Walker, Et Al., 2005) | Open Energy...

    Open Energy Info (EERE)

    occurrence model for geothermal systems based on fundamental geologic data. References J. D. Walker, A. E. Sabin, J. R. Unruh, J. Combs, F. C. Monastero (2005) Development Of...

  4. Numerical Modeling At Coso Geothermal Area (1997) | Open Energy...

    Open Energy Info (EERE)

    velocity structure have been estimated. It is suggested that the identification and modeling of guided waves is an effective tool to locate fracture-induced, low-velocity...

  5. Numerical Modeling At Coso Geothermal Area (2006) | Open Energy...

    Open Energy Info (EERE)

    transport and exchange analysis Notes Finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and...

  6. Complex-Energy Shell-Model Description of Alpha Decay

    SciTech Connect (OSTI)

    Id Betan, R.; Nazarewicz, Witold

    2011-01-01

    In his pioneering work of alpha decay, Gamow assumed that the alpha particle formed inside the nucleus tunnels through the barrier of the alpha-daughter potential. The corresponding metastable state can be viewed as a complex-energy solution of the time-independent Schroedinger equation with the outgoing boundary condition. The formation of the alpha cluster, missing in the original Gamow formulation, can be described within the R-matrix theory in terms of the formation amplitude. In this work, the alpha decay process is described by computing the formation amplitude and barrier penetrability in a large complex-energy configuration space spanned by the complex-energy eigenstates of the finite Woods-Saxon (WS) potential. The proper normalization of the decay channel is essential as it strongly modifies the alpha-decay spectroscopic factor. The test calculations are carried out for the ^{212}Po alpha decay.

  7. NREL: Energy Analysis - dGen: Distributed Generation Market Demand Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Distributed Generation Market Demand (dGen) model is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The dGen model builds on and provides significant advances over NREL's deprecated Solar Deployment System (SolarDS) model. The dGen model can help develop deployment forecasts for distributed resources,

  8. Modeling Tritium on Metal Surfaces | Department of Energy

    Office of Environmental Management (EM)

    Tritium on Metal Surfaces Modeling Tritium on Metal Surfaces Presentation from the 36th Tritium Focus Group Meeting held in Los Alamos, New Mexico, November 3-5, 2015. Modeling Tritium on Metal Surfaces (6.14 MB) More Documents & Publications Tritium on Metal Surfaces DOE-HDBK-1079-94 Overview of tritium activity in Japan

  9. Existing Whole-House Solutions Case Study: Community-Scale Energy Modeling - Southeastern United States

    SciTech Connect (OSTI)

    2014-12-01

    Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all-electric, production-built homes was modeled. The homes were in two communities: one built in the 1970s and the other in the mid-2000s.

  10. DOE Tour of Zero: Anna Model by Charles Thomas Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anna Model by Charles Thomas Homes DOE Tour of Zero: Anna Model by Charles Thomas Homes 1 of 11 Charles Thomas Homes built this 4,353-square-foot custom home in Omaha, Nebraska, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 11 In keeping with the requirements of the DOE Zero Energy Ready Home program, the home also meets the EPA's Indoor airPLUS and ENERGY STAR criteria and is expected to give its homeowners more than $1,200 per year in

  11. Solar energy teaching lab with large scale working model

    SciTech Connect (OSTI)

    Pearson, J.; Cook, T.

    1980-01-01

    An active solar energy retrofit has been added to an engineering building at John Brown University. A new system dependent evaluation procedure incorporating the f-chart method was used for panel selection. The system is designed and instrumented in order to provide various laboratory experiences and data collection capability. Data collection and system control are provided by a microcomputer. 7 refs.

  12. Model Energy Savings Performance Contract, Schedules, and Exhibits

    Broader source: Energy.gov [DOE]

    The Energy Savings Performance Contract defines the project, establishing how it will be implemented during construction and how it will be managed through the entire term of the agreement, addressing construction details, roles and responsibilities of the ESCO and Institution, and guaranteed savings through measurement and verification.

  13. Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, Renewable Energy, Research & Capabilities, Wind Energy, Wind News Virtual LIDAR Model Helps Researchers ...

  14. EV Everywhere: Find Electric Vehicle Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find Electric Vehicle Models EV Everywhere: Find Electric Vehicle Models Search Car: Year: -- ALL -- Make: -- ALL -- Market Class: -- ALL -- All-Electric Range: Min -- ALL -- 10 miles 20 miles 30 miles 40 miles 50 miles 60 miles 70 miles 80 miles 90 miles 100 miles 110 miles 120 miles 130+ miles Gasoline Back-Up Available: -- ALL -- No Yes Reset To find out if a plug-in electric vehicle (EV) will work for you, use the menus to the left to sort the available EV models on the market by year, make,

  15. Modeling-Computer Simulations (Gritto & Majer) | Open Energy...

    Open Energy Info (EERE)

    are shown in Figure 1. The parameters of the fault were modeled after Coates and Schoenberg (1995), where the orientation of the fault relative to the finite-difference grid...

  16. Conceptual Model At Coso Geothermal Area (1980) | Open Energy...

    Open Energy Info (EERE)

    thermal potential of the system. 2) Use field mapping to develop a model of the reservoir system. Notes 1) The seismograms of 44 events recorded by the telemetered array and nine...

  17. Category:Brophy Occurrence Models | Open Energy Information

    Open Energy Info (EERE)

    "Brophy Occurrence Models" The following 6 pages are in this category, out of 6 total. T Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C:...

  18. Property:Buildings/ModelName | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Pages using the property "BuildingsModelName" Showing 12 pages using this property. G General Merchandise 2009 TSD...

  19. Property:Buildings/ModelTargetType | Open Energy Information

    Open Energy Info (EERE)

    are: ASHRAE 90.1 2007 ASHRAE 90.1 2004 ASHRAE 189.1 LEED Pages using the property "BuildingsModelTargetType" Showing 12 pages using this property. G General Merchandise...

  20. Property:Buildings/ModelClimateZone | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Pages using the property "BuildingsModelClimateZone" Showing 12 pages using this property. G General Merchandise...

  1. Property:Buildings/ModelYear | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Date. Pages using the property "BuildingsModelYear" Showing 12 pages using this property. G General Merchandise 2009 TSD...

  2. MOBILE6 Vehicle Emission Modeling Software | Open Energy Information

    Open Energy Info (EERE)

    tools User Interface: Desktop Application Website: www.epa.govomsm6.htm Cost: Free References: http:www.epa.govomsm6.htm MOBILE6 is an emission factor model for...

  3. Job and Economic Development Impact Models (JEDI) | Open Energy...

    Open Energy Info (EERE)

    and biofuel plants at the local and state levels. It comes as a separate model for wind, PV, natural gas, CSP, coal, and biofuels. Job's, earnings, and impact are outputs. Inputs...

  4. Renewable Fuels Module of the National Energy Modeling System

    Gasoline and Diesel Fuel Update (EIA)

    sites is calculated by constructing a model of a representative 100-acre by 50-feet deep landfill site and by applying methane emission factors for high, low, and very low...

  5. Techno-economic Modeling - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The modeling projects the performance and cost of a wide array of promising new battery systems to be used either in electric vehicles or on the grid. Those systems predicted to ...

  6. Techno-economic Modeling - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCESR is applying techno-economic models to project the performance and cost of a wide array of promising new battery systems before they are prototyped. The results from ...

  7. New model of calculating the energy transfer efficiency for the spherical theta-pinch device

    SciTech Connect (OSTI)

    Xu, G.; Hock, C.; Loisch, G.; Jacoby, J.; Xiao, G.; Zhao, Y.; Weyrich, K.; Li, Y.

    2015-05-15

    Ion-beam-plasma-interaction plays an important role in the field of warm dense matter and inertial confinement fusion. A spherical theta pinch is proposed to act as a plasma target in various applications including a plasma stripper cell. One key parameter for such applications is the free electron density. A linear dependency of this density to the amount of energy transferred into the plasma from an energy storage was found by Teske. Since the amount of stored energy is known, the energy transfer efficiency is a reliable parameter for the design of a spherical theta pinch device. As the main assumption of a constant reflected plasma resistance is contradictory by the measured data, the traditional two models of energy transfer efficiency will lead to wrong results. From measurements, the parasitic resistance is derived as constant. Based on this key parameter, a new model is proposed. Due to no assumption, the new model is considered as exact. Further, a comparison of these three different models is given at a fixed operation voltage for the full range of working gas pressures. Due to the inappropriate assumptions included in the traditional models, one owns a tendency to overestimate the energy transfer efficiency whereas the other leads to an underestimation. Applying our new model to a wide spread set of operation voltages and gas pressures, an overall picture of the energy transfer efficiency results.

  8. Methane Hydrate Research and Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Modeling Methane Hydrate Research and Modeling Research is focused on understanding the physical and chemical nature of gas hydrate-bearing sediments. These studies advance the understanding of the in situ nature of GHBS and their potential response in terms of fluid flow and geomechanical response to destabilizing forces. The latest research results from DOE projects, both current and completed, can be found on the NETL website. These include: Gas Hydrate Characterization in the

  9. Advanced Modeling Grid Research Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development » Advanced Modeling Grid Research Program Advanced Modeling Grid Research Program The electric power industry has undergone extensive changes over the past several decades and become substantially more complex, dynamic, and uncertain, as new market rules, regulatory policies, and technologies have been adopted. The availability of more detailed data about system conditions from devices, such as phasor measurement units (PMUs) for wide area visibility and advanced meter

  10. Increased Efficiency with Model Based Calibration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency with Model Based Calibration Increased Efficiency with Model Based Calibration Meeting future TIER 4 emission limits requires the integration of many new technology elements. deer09_diewald.pdf (1.04 MB) More Documents & Publications Vehicle Evaluation of Downsized Dow ACM DPF Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine Review of Emerging Diesel Emissions and Control

  11. High-energy radiation damage in zirconia: Modeling results

    SciTech Connect (OSTI)

    Zarkadoula, E.; Devanathan, R.; Weber, W. J.; Seaton, M. A.; Todorov, I. T.; Nordlund, K.; Dove, M. T.; Trachenko, K.

    2014-02-28

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1–0.5?MeV energies with account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution, and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  12. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Devanathan, Ram; Weber, William J.; Seaton, Michael; Todorov, Ilian; Nordlund, Kai; Dove, Martin T.; Trachenko, Kostya

    2014-02-28

    Zirconia has been viewed as a material of exceptional resistance to amorphization by radiation damage, and was consequently proposed as a candidate to immobilize nuclear waste and serve as a nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with the account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely disjoint from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  13. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Evangelia; Devanathan, Ram; Weber, William J; Seaton, M; Todorov, I T; Nordlund, Kai; Dove, Martin T; Trachenko, Kostya

    2014-01-01

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with account of electronic energy losses. We nd that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  14. First-principles modeling of materials for nuclear energy applications

    SciTech Connect (OSTI)

    Dmitriev, Andrey I. Nikonov, Anton Yu.; Ponomareva, Alena V.; Abrikosov, Igor A.; Barannikova, Svetlana A.

    2014-11-14

    We discuss recent developments in the field of ab initio electronic structure theory and its use for studies of materials for nuclear energy applications. We review state-of-the-art simulation methods that allow for an efficient treatment of effects due to chemical and magnetic disorder, and illustrate their predictive power with examples of two materials systems, Fe-Cr-Ni alloys and Zr-Nb alloys.

  15. ATOMISTIC MODELING OF ELECTRODE MATERIALS | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Full Document and Summary Versions are available for download ARROW-PAK Report (1.17 MB) Summary - ARROW-PAK Container (55.7 KB) More Documents & Publications Compilation of ETR Summaries Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH TRAMPAC) Central Characterization Program (CCP) Transuranic Authorized Methods for Payload Control Department of Energy

    Greg Flach ASCEM Site Applications Team Performance & Risk Assessment Community of Practice

  16. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    Energy Science and Technology Software Center (OSTI)

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  17. Dark matter and dark energy from quark bag model

    SciTech Connect (OSTI)

    Brilenkov, Maxim; Eingorn, Maxim; Jenkovszky, Laszlo; Zhuk, Alexander E-mail: maxim.eingorn@gmail.com E-mail: ai.zhuk2@gmail.com

    2013-08-01

    We calculate the present expansion of our Universe endowed with relict colored objects — quarks and gluons — that survived hadronization either as isolated islands of quark-gluon ''nuggets'' or spread uniformly in the Universe. In the first scenario, the QNs can play the role of dark matter. In the second scenario, we demonstrate that uniform colored objects can play the role of dark energy providing the late-time accelerating expansion of the Universe.

  18. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  19. Evaluation of tools for renewable energy policy analysis: The ten federal region model

    SciTech Connect (OSTI)

    Engle, J.

    1994-04-01

    The Energy Policy Act of 1992 establishes a program to support development of renewable energy technologies including a production incentive to public power utilities. Because there is a wide range of possible policy actions that could be taken to increase electric market share for renewables, modeling tools are needed to help make informed decisions regarding future policy. Previous energy modeling tools did not contain the region or infrastructure focus necessary to examine renewable technologies. As a result, the Department of Energy Office of Utility Technologies (OUT) supported the development of tools for renewable energy policy analysis. Three models were developed: The Renewable Energy Penetration (REP) model, which is a spreadsheet model for determining first-order estimates of policy effects for each of the ten federal regions; the Ten Federal Region Model (TFRM), which employs utility capacity expansion and dispatching decision; and the Region Electric Policy Analysis Model (REPAM), which was constructed to allow detailed insight into interactions between policy and technology within an individual region. These Models were developed to provide a suite of fast, personal-computer based policy analysis tools; as one moves from the REP model to the TFRM to the REPAM the level of detail (and complexity) increases. In 1993 a panel was formed to identify model strengths, weaknesses (including any potential biases) and to suggest potential improvements. The panel met in January 1994 to discuss model simulations and to deliberate regarding evaluation outcomes. This report is largely a result of this meeting. This report is organized as follows. It provides a description of the TFRM and summarizes the panel`s findings. Individual chapters examine various aspects of the model: demand and load, capacity expansion, dispatching and production costing, reliability, renewables, storage, financial and regulatory concerns, and environmental effects.

  20. Short-Term Energy Outlook Model Documentation: Petroleum Product Prices Module

    Reports and Publications (EIA)

    2015-01-01

    The petroleum products price module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. average wholesale and retail price forecasts for motor gasoline, diesel fuel, heating oil, and jet fuel.