Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Supplemental Tables to the Annual Energy Outlook 2003  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2003 Annual Energy Outlook 2003 Assumptions to the AEO2003 Nattional Energy Modeling System/Annual Energy Outlook 2003 Conference E-Mail Subscription Lists Forecasts Home Page Supplement Tables to the Annual Energy Outlook 2003 AEO Supplement Reference Case Forecast (2000-2025) - (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central)

2

Colorado: Energy Modeling Products Support Energy Efficiency...  

Office of Environmental Management (EM)

Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

3

Building Energy Modeling Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

4

Autotune Building Energy Models  

Broader source: Energy.gov (indexed) [DOE]

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

5

Tank Waste Corporate Board Meeting 07/29/09 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9/09 9/09 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board Meeting held on July 29th, 2009. Fuel Cycle Research and Development Program Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology Tank Waste System Integrated Project Team Gunite Tanks Waste Retrieval and Closure Operations at Oak Ridge Nattional Laboratory Integrated Facilities Disposition Program Oak Ridge National Laboratory TRU Waste Processing Center Tank Waste Processing Supernate Processing System Chemical Cleaning Program Review Enhanced Chemical Cleaning Hanford Single-Shell Tank Integrity Program Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal Nuclear Safety R&D in the Waste Processing Technology Development &

6

Energy Modeling Software | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings » Energy Modeling Software Commercial Buildings » Energy Modeling Software Energy Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The

7

Energy Transition Model | Open Energy Information  

Open Energy Info (EERE)

Energy Transition Model Energy Transition Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Transition Model Agency/Company /Organization: Quintel Intelligence Sector: Energy Topics: Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Website Website: energytransitionmodel.com/ Country: Netherlands Web Application Link: energytransitionmodel.com/ Cost: Free OpenEI Keyword(s): International UN Region: Western Europe References: webservice-energy.org[1] MINES Energy Transition Model[2] Logo: Energy Transition Model The Energy Transition Model is an independent, comprehensive and fact-based energy model that is used by governments, corporations, NGOs and educators in various countries. It is backed by more than 20 partners. There are

8

Building Energy Modeling  

Broader source: Energy.gov [DOE]

Building energy simulationphysics-based calculation of building energy consumptionis a multi-use tool for building energy efficiency.

9

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

10

Inventory of state energy models  

SciTech Connect (OSTI)

These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

1980-03-31T23:59:59.000Z

11

Accelerating Energy Savings Performance Contracting Through Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Provides...

12

Challenges for Long-Term Energy Models: Modeling Energy Use and Energy Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Long-Term Energy Models: Long-Term Energy Models: Modeling Energy Use and Energy Efficiency James Sweeney Stanford University Director, Precourt Institute for Energy Efficiency Professor, Management Science and Engineering Presentation to EIA 2008 Energy Conference 34 ! Years of Energy Information and Analysis Some Modeling History * Original Federal Energy Administration Demand Models in PIES and IEES (1974) - Residential, Industrial, Commercial Sectors * Econometric models * Dynamic specification * Allowed matrix of own-elasticities and cross- elasticities of demand for PIES and IEES - Electricity, Natural Gas, Oil, Coal - Designed to examine implications of changes in energy prices, taxes, price regulation - For analysis of "energy conservation" options, estimate of direct impacts used as reduction of

13

Acoustic Energy and Stellar Models  

Science Journals Connector (OSTI)

... the thermodynamic limitations of the generation of acoustic energy in stars. Quite recently, M. Schwarzschild and R. S. Richardson suggested that the transfer of energy in stars may, ... a heat engine, and this consideration does not support the views expressed by Richardson and Schwarzschild in dealing with the stellar model of red giants. In this model they suggest ...

1949-08-20T23:59:59.000Z

14

Energy Modeling Community Resources  

Broader source: Energy.gov [DOE]

Performers:-- National Renewable Energy Lab Golden, CO-- International Building Performance Simulation Association (IBPSA)-USA San Francisco, CA-- Rocky Mountain Institute Boulder, CO-- Big Ladder Software Denver, CO

15

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

16

Regions in Energy Market Models  

SciTech Connect (OSTI)

This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

Short, W.

2007-02-01T23:59:59.000Z

17

Modelling dark energy  

E-Print Network [OSTI]

One of the most pressing, modern cosmological mysteries is the cause of the accelerated expansion of the universe. The energy density required to cause this large scale opposition to gravity is known to be both far in ...

Jackson, Brendan Marc

2011-11-23T23:59:59.000Z

18

National Energy Modeling System (NEMS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

19

Models of National Energy Systems -focusing on biomass energy  

E-Print Network [OSTI]

Models of National Energy Systems - focusing on biomass energy Poul Erik Grohnheit Systems Analysis models · International development of large energy models · Biomass energy · Upstream expansion of the Pan European model for biomass and crops · Basic elements in a crop model for Denmark· Basic elements

20

Modeling Solar Energy Technology Evolution breakout session ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling Solar Energy Technology Evolution breakout session Modeling Solar Energy Technology Evolution breakout session This presentation summarizes the information given on the...

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

100% DD Energy Model Update  

SciTech Connect (OSTI)

The Miami Science Museum energy model has been used during DD to test the building??s potential for energy savings as measured by ASHRAE 90.1-2007 Appendix G. This standard compares the designed building??s yearly energy cost with that of a code-compliant building. The building is currently on track show 20% or better improvement over the ASHRAE 90.1-2007 Appendix G baseline; this performance would ensure minimum compliance with both LEED 2.2 and current Florida Energy Code, which both reference a less strict version of ASHRAE 90.1. In addition to being an exercise in energy code compliance, the energy model has been used as a design tool to show the relative performance benefit of individual energy conservation measures (ECMs). These ECMs are areas where the design team has improved upon code-minimum design paths to improve the energy performance of the building. By adding ECMs one a time to a code-compliant baseline building, the current analysis identifies which ECMs are most effective in helping the building meet its energy performance goals.

None

2011-06-30T23:59:59.000Z

22

Autotune E+ Building Energy Models  

SciTech Connect (OSTI)

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

23

Systems Advisor Model | Department of Energy  

Energy Savers [EERE]

Systems Advisor Model Systems Advisor Model Systems Advisor Model (SAM) makes performance predictions and cost of energy estimates for grid-connected power projects based on...

24

Model Energy Efficiency Program Impact Evaluation Guide | Open Energy  

Open Energy Info (EERE)

Model Energy Efficiency Program Impact Evaluation Guide Model Energy Efficiency Program Impact Evaluation Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Model Energy Efficiency Program Impact Evaluation Guide Focus Area: Energy Efficiency Topics: Best Practices Website: www.epa.gov/cleanenergy/documents/suca/evaluation_guide.pdf Equivalent URI: cleanenergysolutions.org/content/model-energy-efficiency-program-impac Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This document provides guidance on model approaches for calculating energy, demand and emissions savings resulting from energy efficiency programs. It

25

National Energy Modeling System (United States) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (United States) National Energy Modeling System (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (United States) Focus Area: Biomass Topics: Policy, Deployment, & Program Impact Website: www.eia.gov/oiaf/aeo/overview/ Equivalent URI: cleanenergysolutions.org/content/national-energy-modeling-system-unite Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Utility/Electricity Service Costs The National Energy Modeling System (NEMS) is a computer-based, energy-economy modelling system of the United States through 2030. NEMS

26

Retrofit Energy Savings Estimation Model | Open Energy Information  

Open Energy Info (EERE)

Retrofit Energy Savings Estimation Model Retrofit Energy Savings Estimation Model Jump to: navigation, search Tool Summary Name: Retrofit Energy Savings Estimation Model Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: btech.lbl.gov/tools/resem/resem.htm Cost: Free Language: English References: Retrofit Energy Savings Estimation Model[1] Logo: Retrofit Energy Savings Estimation Model RESEM, the Retrofit Energy Savings Estimation Model, is a PC-based tool designed to allow Department of Energy (DOE) Institutional Conservation Program (ICP) staff and participants to reliably determine the energy savings directly caused by ICP-supported retrofit measures implemented in a

27

Renewable Energy Technologies Financial Model (RET Finance) | Open Energy  

Open Energy Info (EERE)

Renewable Energy Technologies Financial Model (RET Finance) Renewable Energy Technologies Financial Model (RET Finance) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies Financial Model (RET Finance) Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: analysis.nrel.gov/retfinance/login.asp Equivalent URI: cleanenergysolutions.org/content/renewable-energy-technologies-financi Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The RET Finance model calculates levelized cost of energy of renewable electricity generation technologies including biomass, geothermal, solar, and wind. The model calculates project earnings, detailed cash flows, and debt payments and also computes a project's levelized cost of electricity,

28

Model Ordinance for Renewable Energy Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Model Ordinance for Renewable Energy Projects Model Ordinance for Renewable Energy Projects Model Ordinance for Renewable Energy Projects < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Wind Program Info State Oregon Program Type Solar/Wind Permitting Standards Provider Oregon Department of Energy '''''NOTE: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for renewable energy projects. While it was developed by the Oregon Department of Energy, the model itself has no legal or regulatory authority.'''''

29

SIMMODEL: A DOMAIN DATA MODEL FOR WHOLE BUILDING ENERGY SIMULATION  

E-Print Network [OSTI]

2010) Commercial Buildings Energy Modeling Guidelines andrequirements for modeling of building geometry for energy

O'Donnell, James

2013-01-01T23:59:59.000Z

30

COMMUTER Model | Open Energy Information  

Open Energy Info (EERE)

COMMUTER Model COMMUTER Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: COMMUTER Model Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Prepare a Plan Topics: Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.epa.gov/oms/stateresources/policy/pag_transp.htm Cost: Free References: http://www.epa.gov/oms/stateresources/policy/pag_transp.htm Related Tools Simplified Approach for Estimating Impacts of Electricity Generation (SIMPACTS)

31

State Energy Program: Kentucky Implementation Model Resources  

Broader source: Energy.gov [DOE]

Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

32

National Energy Modeling System (NEMS) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (NEMS) National Energy Modeling System (NEMS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (NEMS) Agency/Company /Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.eia.gov/oiaf/aeo/overview/index.html OpenEI Keyword(s): EERE tool, National Energy Modeling System, NEMS Language: English References: The National Energy Modeling System: An Overview[1] Project the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and

33

NREL: Energy Analysis - Energy Forecasting and Modeling Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Forecasting and Modeling Energy Forecasting and Modeling The following includes summary bios of staff expertise and interests in analysis relating to energy economics, energy system planning, risk and uncertainty modeling, and energy infrastructure planning. Team Lead: Nate Blair Administrative Support: Geraly Amador Clayton Barrows Greg Brinkman Brian W Bush Stuart Cohen Carolyn Davidson Paul Denholm Victor Diakov Aron Dobos Easan Drury Kelly Eurek Janine Freeman Marissa Hummon Jennie Jorganson Jordan Macknick Trieu Mai David Mulcahy David Palchak Ben Sigrin Daniel Steinberg Patrick Sullivan Aaron Townsend Laura Vimmerstedt Andrew Weekley Owen Zinaman Photo of Clayton Barrows. Clayton Barrows Postdoctoral Researcher Areas of expertise Power system modeling Primary research interests Power and energy systems

34

An energy-economic oil production model  

Science Journals Connector (OSTI)

......for more advanced energy-economic models...efficient (less energy intensive) than...hand, Germany's GDP per capita is much larger than...assumption that 100% of energy supply stems from oil. When oil demand is inelastic, this......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

35

Agegraphic Chaplygin gas model of dark energy  

E-Print Network [OSTI]

We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.

Ahmad Sheykhi

2010-02-07T23:59:59.000Z

36

Building Energy Modeling Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable Support and Training Services Platform Center-Led Projects CERC: Human Behavior, Standards and Tools to Improve Design & Operation CBERD: Building Energy Simulation &...

37

About Building Energy Modeling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

mechanical systems, and dynamic building control for energy optimization or demand response. The design use cases can exploit prescriptive guidelines rather than simulation....

38

Building Energy Simulation & Modeling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

strategies in a building or test bed equipped with a low-energy heating, ventilation, and air conditioning system. Project Impact Products: Improved design analysis tools and data,...

39

Building Energy Software Tools Directory: Energy Demand Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Demand Modeling Energy Demand Modeling The software is intended to be used for Energy Demand Modeling. This can be utilized from regional to national level. A Graphical User Interface of the software takes the input from the user in a quite logical and sequential manner. These input leads to output in two distinct form, first, it develops a Reference Energy System, which depicts the flow of energy from the source to sink with all the losses incorporated and second, it gives a MATLAB script file for advance post processing like graphs, visualization and optimizations to develop and evaluate the right energy mix policy frame work for a intended region. Keywords Reference Energy System, Software, GUI, Planning, Energy Demand Model EDM, Energy Policy Planning Validation/Testing

40

Evaluating Energy Efficiency Policies with Energy-Economy Models  

SciTech Connect (OSTI)

The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Directory of Energy Information Administration models, 1990  

SciTech Connect (OSTI)

This directory revises and updates the Directory of Energy Information Administration Models, DOE/EIA-0293(89), Energy Information Administration (EIA), US Department of Energy, May 1989. The major changes are the inclusion of the Building Energy End-Use Model (BEEM-PC), Residential Energy End-Use Model (REEM-PC), the Refinery Yield Model Spreadsheet System (RYMSS-PC), and the Capital Stock Model (CAPSTOCK-PC). Also, the following models have been inactivated: Energy Disaggregated Input-Output Model (EDIO), Household Model of Energy (HOME3-PC), Commercial Sector Energy Model (CSEM-PC), Outer Continental Shelf Oil and Gas Supply Model (OCSM), and the Stock Module of the Intermediate Future Forecasting System (STOCK). This directory contains descriptions about each basic and auxiliary model, including the title, acronym, purpose, and type, followed by more detailed information on characteristics, uses, and requirements. For developing models, limited information is provided. Sources for additional information are identified. Included in this directory are 38 EIA models active as of March 1, 1990, as well as the PC-AEO Forecasting Model Overview and the three Subsystems for the Short-Term Integrated Forecasting System (STIFS) Model. Models that run on personal computers are identified by PC'' as part of the acronym.

Not Available

1990-06-04T23:59:59.000Z

42

Building Technologies Office: Energy Modeling Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Software Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The plugin makes it easy to create and edit the building geometry in your EnergyPlus input files.

43

Business Models for Energy Access | Open Energy Information  

Open Energy Info (EERE)

Business Models for Energy Access Business Models for Energy Access Jump to: navigation, search Tool Summary Name: Business Models for Energy Access Agency/Company /Organization: EASE-Enabling Access to Sustainable Energy Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Biomass, - Biomass Combustion, Grid Assessment and Integration Topics: Background analysis, Co-benefits assessment, - Energy Access Resource Type: Case studies/examples, Lessons learned/best practices, Publications Website: www.ease-web.org/wp-content/uploads/2010/11/EASE-Business-models-for-e Country: Bolivia, Tanzania, Cambodia, Uganda, Laos, Mali, Vietnam, Senegal Cost: Free South America, Eastern Africa, South-Eastern Asia, Eastern Africa, South-Eastern Asia, Western Africa, South-Eastern Asia, Western Africa

44

Webcast of the Renewable Energy Competency Model | Department...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Competency Model Webcast of the Renewable Energy Competency Model Addthis Description The Department of Energy held a webcast titled ""Renewable Energy Competency...

45

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network [OSTI]

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: Buildingof comparing three Building Energy Modeling Programs (BEMPs)

Zhu, Dandan

2014-01-01T23:59:59.000Z

46

Comparison of Building Energy Modeling Programs: HVAC Systems  

E-Print Network [OSTI]

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: HVACassumptions of three building energy modeling programs (

Zhou, Xin

2014-01-01T23:59:59.000Z

47

National Energy Modeling System: An Overview  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 The National Energy Modeling System: An Overview March 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. PREFACE The National Energy Modeling System: An Overview (Overview) provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2015 for the Annual Energy Outlook 1996 (AEO96), (DOE/EIA- 0383(96)), released in January

48

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

The current world-wide increase of energy demand cannot be matched by energy production and power grid updateModeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators

Paris-Sud XI, Université de

49

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

50

Solar Resource Modelling for Energy Applications  

Science Journals Connector (OSTI)

Solar energy is the main driver of natural processes on the Earth surface. It is an important input parameter into environmental, ecological and risksimulation models as the energy budget at the land surface a...

Marcel ri; Thomas Huld; Ewan D. Dunlop; Jaroslav Hofierka

2007-01-01T23:59:59.000Z

51

Directory of Energy Information Administration models 1996  

SciTech Connect (OSTI)

This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

NONE

1996-07-01T23:59:59.000Z

52

Hybrid Energy System Modeling in Modelica  

SciTech Connect (OSTI)

In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

2014-03-01T23:59:59.000Z

53

Directory of Energy Information Administration Models 1994  

SciTech Connect (OSTI)

This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

Not Available

1994-07-01T23:59:59.000Z

54

Dark Energy and Dark Matter Models  

E-Print Network [OSTI]

We revisit the problems of dark energy and dark matter and several models designed to explain them, in the light of some latest findings.

Burra G. Sidharth

2015-01-07T23:59:59.000Z

55

Accelerated Climate Modeling for Energy | Argonne Leadership...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Credit: Alan Scott and Mark Taylor, Sandia National Laboratories Accelerated Climate Modeling for Energy PI Name: Mark Taylor PI Email: mataylo@sandia.gov Institution: Sandia...

56

Advanced Electrolyte Model - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Energy Storage Find More Like This Return to Search Advanced Electrolyte Model Idaho National Laboratory Contact INL About This Technology Publications: PDF Document...

57

Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

Analytical Modeling Analytical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Analytical Modeling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Analytical Modeling: A mathematical modeling technique used for simulating, explaining, and making predictions about the mechanisms involved in complex physical processes. Other definitions:Wikipedia Reegle Introduction Analytical models are mathematical models that have a closed form solution. Or in other words the solution to the equations used to describe changes in

58

Energy Band Model Based on Effective Mass  

E-Print Network [OSTI]

In this work, we demonstrate an alternative method of deriving an isotropic energy band model using a one-dimensional definition of the effective mass and experimentally observed dependence of mass on energy. We extend the effective mass definition to anti-particles and particles with zero rest mass. We assume an often observed linear dependence of mass on energy and derive a generalized non-parabolic energy-momentum relation. The resulting non-parabolicity leads to velocity saturation at high particle energies. We apply the energy band model to free relativistic particles and carriers in solid state materials and obtain commonly used dispersion relations and experimentally confirmed effective masses. We apply the model to zero rest mass particles in graphene and propose using the effective mass for photons. Therefore, it appears that the new energy band model based on the effective mass can be applied to relativistic particles and carriers in solid state materials.

Viktor Ariel

2012-09-06T23:59:59.000Z

59

The China-in-Global Energy Model  

E-Print Network [OSTI]

The China-in-Global Energy Model (C-GEM) is a global Computable General Equilibrium (CGE) model that captures the interaction of production, consumption and trade among multiple global regions and sectors including five ...

Qi, T.

60

Modelling energy efficiency for computation  

E-Print Network [OSTI]

In the last decade, efficient use of energy has become a topic of global significance, touching almost every area of modern life, including computing. From mobile to desktop to server, energy efficiency concerns are now ubiquitous. However...

Reams, Charles

2012-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Constraining Dark Matter and Dark Energy Models using Astrophysical Surveys  

E-Print Network [OSTI]

of current dark energy astrophysical surveys. Although manyMatter and Dark Energy Models using Astrophysical Surveys byMatter and Dark Energy Models using Astrophysical Surveys A

Cieplak, Agnieszka M.

62

Numerical Modeling | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling Numerical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Numerical Modeling Details Activities (8) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Dictionary.png Numerical Modeling: A computer model that is designed to simulate and reproduce the mechanisms of a particular system. Other definitions:Wikipedia Reegle

63

Summerschool Modelling of Mass and Energy  

E-Print Network [OSTI]

Summerschool Modelling of Mass and Energy Transport #12;Black Box Analogy )(teRi dt di L i and Energy Transport Exercise Given a flux vector approaching an oblique oriented surface element (line .constc G S dsndg *)(2 . #12;Mass and Energy Balance Continued V S dsnvudV dt d V S dsnvdV t u

Kornhuber, Ralf

64

Retrofit Energy Savings Estimation Model Reference Manual  

E-Print Network [OSTI]

Retrofit Energy Savings Estimation Model Reference Manual #12;#12;Retrofit Energy Savings commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does from the Department of Energy. Any conclusions or opinions expressed in this manual represent solely

65

Scripted Building Energy Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

Macumber, D.

2012-10-01T23:59:59.000Z

66

Modelling of Integrated Renewable Energy System  

Science Journals Connector (OSTI)

Energy is supplied in the form of electricity heat or fuels and an energy supply system must guarantee sufficient production and distribution of energy. An energy supply system based on renewable energy can be utilized as integrated renewable energy system (IRES) which can satisfy the energy needs of an area in appropriate & sustainable manner. Given the key role of renewable energy in rural electrification of remote rural areas the IRES for a given area can be modeled & optimized for meeting the energy needs. In the present paper Jaunpur block of Uttaranchal state of India has been selected as remote area. Based upon the data collected the resource potential and energy demand has been calculated & presented. The model on the basis of unit cost of the energy has been optimized using LINDO software 6.10 version. The results indicated that the optimized model has been found to the best choice for meeting the energy needs of the area. The results further indicated that for the above area either an IRES consisting of the above sources can provide a feasible solution in terms of energy fulfillments in the range of EPDF from 1.0 to 0.75.

A. K. Akella; R. P. Saini; M. P. Sharma

2007-01-01T23:59:59.000Z

67

Conceptual Model | Open Energy Information  

Open Energy Info (EERE)

Conceptual Model Conceptual Model Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Conceptual Model Details Activities (17) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Hydrothermal fluid flow characteristics, up-flow patterns Thermal: Temperature and pressure extrapolation throughout reservoir, heat source characteristics Dictionary.png Conceptual Model:

68

Models and Tools for Evaluating Energy Efficiency and Renewable...  

Energy Savers [EERE]

and Tools for Evaluating Energy Efficiency and Renewable Energy Project Opportunities Models and Tools for Evaluating Energy Efficiency and Renewable Energy Project Opportunities...

69

NETL - CARBEN Model | Open Energy Information  

Open Energy Info (EERE)

NETL - CARBEN Model NETL - CARBEN Model Jump to: navigation, search Tool Summary Name: NETL - CARBEN Model Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too Cost: Free Language: English References: NETL - CARBEN Model[1] Logo: NETL - CARBEN Model CarBen is a tool for determining the reductions in greenhouse gas (GHG) emissions by sector based on user-supplied changes to the baseline such as electricity supply options, transportation sector fuel demand and fuel use, non-CO2 GHG emission abatement, carbon pricing, and international offsets. NETL - CARBEN Model CarBen is a tool for determining the reductions in greenhouse gas (GHG)

70

Modeling and optimization of HVAC energy consumption  

Science Journals Connector (OSTI)

A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%.

Andrew Kusiak; Mingyang Li; Fan Tang

2010-01-01T23:59:59.000Z

71

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

72

Agent based modeling of energy networks  

Science Journals Connector (OSTI)

Abstract Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed.

Jos Mara Gonzalez de Durana; Oscar Barambones; Enrique Kremers; Liz Varga

2014-01-01T23:59:59.000Z

73

Dark Energy: Observational Evidence and Theoretical Models  

E-Print Network [OSTI]

The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

Novosyadlyj, B; Shtanov, Yu; Zhuk, A

2015-01-01T23:59:59.000Z

74

Category:Building Models | Open Energy Information  

Open Energy Info (EERE)

Models Models Jump to: navigation, search This category uses the form Buildings Model. Pages in category "Building Models" The following 12 pages are in this category, out of 12 total. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings General Merchandise 2009 TSD Chicago High Plug Load Baseline General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Chicago Low Plug Load Baseline G cont. General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami High Plug Load Baseline General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami Low Plug Load Baseline G cont. Grocery 2009 TSD Chicago 50% Energy Savings Grocery 2009 TSD Chicago Baseline

75

The National Energy Modeling System: An overview  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

Not Available

1994-05-01T23:59:59.000Z

76

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network [OSTI]

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

77

Directory of Energy Information Administration Models 1993  

SciTech Connect (OSTI)

This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

Not Available

1993-07-06T23:59:59.000Z

78

Directory of energy information administration models 1995  

SciTech Connect (OSTI)

This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

NONE

1995-07-13T23:59:59.000Z

79

Cosmic steps in modeling dark energy  

Science Journals Connector (OSTI)

Past and recent data analyses gave some hints of steps in dark energy. Considering dark energy as a dynamical scalar field, we investigate several models with various steps: a step in the scalar potential, a step in the kinetic term, a step in the energy density, and a step in the equation-of-state parameter w. These toy models provide a workable mechanism to generate steps and features of dark energy. Remarkably, a single real scalar can cross w=-1 dynamically with a step in the kinetic term.

Tower Wang

2009-11-17T23:59:59.000Z

80

Clustering properties of dynamical dark energy models  

SciTech Connect (OSTI)

We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter.

Avelino, P. P.; Beca, L. M. G. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Martins, C. J. A. P. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto (Portugal); DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

I Found My Energy Role Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

I Found My Energy Role Model I Found My Energy Role Model I Found My Energy Role Model August 24, 2009 - 5:00am Addthis Allison Casey Senior Communicator, NREL Last week, while home on a rare weekday afternoon, I happened to catch an episode of Oprah. One of her guests on this particular day was the actor Ed Begley, Jr. The episode caught my attention because it wasn't focused on his acting, but on his quest to make his home and life as environmentally friendly and energy efficient as possible. I had heard of Mr. Begley's efforts in this arena in the past (apparently he has a reality TV show), but I didn't know the details, so I tuned in. To be honest, I wasn't expecting to learn much or even be very impressed. After all, the guy is a famous actor and presumably has financial resources

82

I Found My Energy Role Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

I Found My Energy Role Model I Found My Energy Role Model I Found My Energy Role Model August 24, 2009 - 5:00am Addthis Allison Casey Senior Communicator, NREL Last week, while home on a rare weekday afternoon, I happened to catch an episode of Oprah. One of her guests on this particular day was the actor Ed Begley, Jr. The episode caught my attention because it wasn't focused on his acting, but on his quest to make his home and life as environmentally friendly and energy efficient as possible. I had heard of Mr. Begley's efforts in this arena in the past (apparently he has a reality TV show), but I didn't know the details, so I tuned in. To be honest, I wasn't expecting to learn much or even be very impressed. After all, the guy is a famous actor and presumably has financial resources

83

About Energy Savings Performance Contracting Model Documents  

Broader source: Energy.gov [DOE]

This page provides more information about the creation of the Energy Savings Performance Contracting (ESPC) Model Documents to be used when developing or updating procurement and contracting documents for ESPC projects and programs.

84

China End-Use Energy Demand Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

85

Nuclear curvature energy in relativistic models  

Science Journals Connector (OSTI)

The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement. 1996 The American Physical Society.

M. Centelles; X. Vias; P. Schuck

1996-02-01T23:59:59.000Z

86

Modelling Correlation in Carbon and Energy Markets  

E-Print Network [OSTI]

content. The crude oil price is included in the estimation in order to control for contemporaneous correlation with all other energy sources. This is this study does not take into account the lagged relationship between crude oil and natural gas, as a... Modelling Correlation in Carbon and Energy Markets Philipp Koenig February 2011 CWPE 1123 & EPRG 1107 www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Modelling Correlation...

Koenig, Philipp

2011-02-10T23:59:59.000Z

87

Synthesised Constraint Models for Distributed Energy Management  

E-Print Network [OSTI]

for optimisation have been widely ignored ­ a gap we aim to close. As a by-product, we give a formulation of warmSynthesised Constraint Models for Distributed Energy Management Alexander Schiendorfer, Jan frequently encountered in energy management systems such as the coordination of power generators in a virtual

Reif, Wolfgang

88

Policy modeling for industrial energy use  

SciTech Connect (OSTI)

The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

2003-03-01T23:59:59.000Z

89

System Advisor Model (SAM) | Open Energy Information  

Open Energy Info (EERE)

System Advisor Model (SAM) System Advisor Model (SAM) (Redirected from Solar Advisor Model) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: System Advisor Model Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Pathways analysis, Resource assessment Resource Type: Case studies/examples, Dataset, Guide/manual, Training materials, Software/modeling tools, Video User Interface: Desktop Application Website: sam.nrel.gov/ Web Application Link: sam.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured, EERE tool, System Advisor Model, SAM Language: English System Advisor Model Screenshot

90

System Advisor Model (SAM) | Open Energy Information  

Open Energy Info (EERE)

System Advisor Model (SAM) System Advisor Model (SAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: System Advisor Model Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Pathways analysis, Resource assessment Resource Type: Case studies/examples, Dataset, Guide/manual, Training materials, Software/modeling tools, Video User Interface: Desktop Application Website: sam.nrel.gov/ Web Application Link: sam.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured, EERE tool, System Advisor Model, SAM Language: English System Advisor Model Screenshot References: SAM[1] System Advisor Model [2]

91

System Advisor Model (SAM) | Open Energy Information  

Open Energy Info (EERE)

System Advisor Model (SAM) System Advisor Model (SAM) (Redirected from System Advisor Model) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: System Advisor Model Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Pathways analysis, Resource assessment Resource Type: Case studies/examples, Dataset, Guide/manual, Training materials, Software/modeling tools, Video User Interface: Desktop Application Website: sam.nrel.gov/ Web Application Link: sam.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured, EERE tool, System Advisor Model, SAM Language: English System Advisor Model Screenshot

92

Parameter estimation for energy balance models with memory  

Science Journals Connector (OSTI)

...model based on the energy balance of the Earth...climate dynamics. New York, NY: Springer...JA Coakley. 1981 Energy balance climate models...Climate sensitivity, energy balance models...Sciences, vol. 119. New York, NY: Springer...

2014-01-01T23:59:59.000Z

93

JEDI Models | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » JEDI Models Jump to: navigation, search The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation at the local and state levels.[1] Based on project-specific or default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind farm.[2] You can learn more about the JEDI model for wind and find reports based on

94

Model Wind Energy Facility Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Facility Ordinance Energy Facility Ordinance Model Wind Energy Facility Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Permitting Standards Provider Land Use Planning Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2008, the Governor's Task Force on Wind Power Development issued its final report. One of the Task Force's recommendations was that the State

95

Staffing Model | Department of Energy  

Office of Environmental Management (EM)

fingmodel(v06)---2009-09-23.xls More Documents & Publications 2013-10-08 DOE G 413.3-19 staffing model v07 DOE G 413.3-12 PDRI v02 Microsoft Word - DOEStaffingStudyCover.doc...

96

ICCT Roadmap Model | Open Energy Information  

Open Energy Info (EERE)

ICCT Roadmap Model ICCT Roadmap Model Jump to: navigation, search Tool Summary Name: ICCT Roadmap Model Agency/Company /Organization: International Council on Clean Transportation (ICCT) Sector: Climate, Energy User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.theicct.org/global-transportation-roadmap-model Cost: Free Related Tools Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Threshold 21 Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS An Excel-based modeling tool intended to aid policy makers with identifying trends, evaluating emissions and energy efficiency with respect to various policy options, and generate strategies to reduce greenhouse gas emissions

97

System Advisor Model (SAM) | Open Energy Information  

Open Energy Info (EERE)

System Advisor Model (SAM) System Advisor Model (SAM) (Redirected from SAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: System Advisor Model Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Pathways analysis, Resource assessment Resource Type: Case studies/examples, Dataset, Guide/manual, Training materials, Software/modeling tools, Video User Interface: Desktop Application Website: sam.nrel.gov/ Web Application Link: sam.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured, EERE tool, System Advisor Model, SAM Language: English System Advisor Model Screenshot References: SAM[1]

98

Revolutions in energy through modeling and simulation  

SciTech Connect (OSTI)

The development and application of energy technologies for all aspects from generation to storage have improved dramatically with the advent of advanced computational tools, particularly modeling and simulation. Modeling and simulation are not new to energy technology development, and have been used extensively ever since the first commercial computers were available. However, recent advances in computing power and access have broadened the extent and use, and, through increased fidelity (i.e., accuracy) of the models due to greatly enhanced computing power, the increased reliance on modeling and simulation has shifted the balance point between modeling and experimentation. The complex nature of energy technologies has motivated researchers to use these tools to understand better performance, reliability and cost issues related to energy. The tools originated in sciences such as the strength of materials (nuclear reactor containment vessels); physics, heat transfer and fluid flow (oil production); chemistry, physics, and electronics (photovoltaics); and geosciences and fluid flow (oil exploration and reservoir storage). Other tools include mathematics, such as statistics, for assessing project risks. This paper describes a few advancements made possible by these tools and explores the benefits and costs of their use, particularly as they relate to the acceleration of energy technology development. The computational complexity ranges from basic spreadsheets to complex numerical simulations using hardware ranging from personal computers (PCs) to Cray computers. In all cases, the benefits of using modeling and simulation relate to lower risks, accelerated technology development, or lower cost projects.

Tatro, M.; Woodard, J.

1998-08-01T23:59:59.000Z

99

Model Policies | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Center Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Model Policies States and local jurisdictions across the nation have demonstrated leadership in developing programs and policies that both encourage and require compliance with energy codes, stretch codes (e.g., above-minimum codes) and green building techniques, energy-efficiency practices, and environmentally-friendly procedures. The laws and regulations behind these programs and policies can help states and jurisdictions establish unique policies to address their particular needs. Model policies for residential and commercial building construction have

100

Improved diagnostic model for estimating wind energy  

SciTech Connect (OSTI)

Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

Endlich, R.M.; Lee, J.D.

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Walking model with no energy cost  

Science Journals Connector (OSTI)

We have numerically found periodic collisionless motions of a walking model consisting of linked rigid objects. Unlike previous designs, this model can walk on level ground at noninfinitesimal speed with zero energy input. The model avoids collisional losses by using an internal mode of oscillation: swaying of the upper body coupled to the legs by springs. Appropriate synchronized internal oscillations set the foot-strike collision to zero velocity. The concept might be of use for energy-efficient robots and may also help to explain aspects of human and animal locomotion efficiency.

Mario Gomes and Andy Ruina

2011-03-08T23:59:59.000Z

102

The National Energy Modeling System: An Overview 1998 - Appendix:  

Gasoline and Diesel Fuel Update (EIA)

APPENDIX: APPENDIX: BIBLIOGRAPHY The National Energy Modeling System is documented in a series of model documentation reports, available by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, National Energy Modeling System Integrating Module Documentation Report, DOE/EIA-M057(97) (Washington, DC, May 1997). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(97) (Washington, DC, December 1996). Energy Information Administration, Model Developer's Appendix to the Model Documentation Report: NEMS Macroeconomic Activity Module, DOE/EIA-M065A (Washington, DC, July 1994). Energy Information Administration, Documentation of the DRI Model of the

103

Bond Energies in Models of the Schrock Metathesis Catalyst. ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energies in Models of the Schrock Metathesis Catalyst. Bond Energies in Models of the Schrock Metathesis Catalyst. Abstract: Heats of formation, adiabatic and diabatic bond...

104

Comparison of Real World Energy Consumption to Models and DOE...  

Broader source: Energy.gov (indexed) [DOE]

Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates...

105

High-energy radiation damage in zirconia: modeling results ....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy radiation damage in zirconia: modeling results . High-energy radiation damage in zirconia: modeling results . Abstract: Zirconia has been viewed as a material of exceptional...

106

Building Energy Modeling Library - 2013 BTO Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Modeling Library - 2013 BTO Peer Review Building Energy Modeling Library - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies...

107

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

108

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

RR-08-26 Modeling of Energy Production Decisions: An Alaskarapid or gradual energy production in the future? Doesnet social benefit from energy production and achieving a

Leighty, Wayne

2008-01-01T23:59:59.000Z

109

NREL: Energy Analysis - Models and Tools Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Models and Tools Archive Models and Tools Archive Through the years, NREL has developed and supported several models and tools to assess, analyze, and optimize renewable energy and energy efficiency technologies. Some of these have been transferred to the private market. This page lists tools we have supported, but that are no longer active. See current models and tools here. ADVISOR (ADvanced VehIcle SimulatOR) Simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. In 2003, ADVISOR was commercialized by AVL Powertrain Engineering, Inc. Hybrid2 Conduct detailed long-term performance and economic analysis on a wide variety of hybrid power systems. RET Finance Calculate the cost of energy of renewable electricity generation

110

Advanced Modeling & Simulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

111

The National Energy Modeling System The  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 (AEO2000) are generated from the National Energy Modeling System (NEMS), developed and main- tained by the Office of Integrated Analysis and Fore- casting of the Energy Information Administration (EIA). In addition to its use in the development of the AEO projections, NEMS is also used in analytical studies for the U.S. Congress and other offices within the Department of Energy. The AEO forecasts are also used by analysts and planners in other govern- ment agencies and outside organizations. The projections in NEMS are developed with the use of a market-based approach to energy analysis. For each fuel and consuming sector, NEMS balances the energy supply and demand, accounting for the eco- nomic competition between the various energy fuels and sources. The time horizon of NEMS is the mid- term period, approximately 20 years in the future. In order to represent the regional differences

112

Falsifying Field-based Dark Energy Models  

E-Print Network [OSTI]

We survey the application of specific tools to distinguish amongst the wide variety of dark energy models that are nowadays under investigation. The first class of tools is more mathematical in character: the application of the theory of dynamical systems to select the better behaved models, with appropriate attractors in the past and future. The second class of tools is rather physical: the use of astrophysical observations to crack the degeneracy of classes of dark energy models. In this last case the observations related with structure formation are emphasized both in the linear and non-linear regimes. We exemplify several studies based on our research, such as quintom and quinstant dark energy ones. Quintom dark energy paradigm is a hybrid construction of quintessence and phantom fields, which does not suffer from fine-tuning problems associated to phantom field and additionally it preserves the scaling behavior of quintessence. Quintom dark energy is motivated on theoretical grounds as an explanation for the crossing of the phantom divide, i.e. the smooth crossing of the dark energy state equation parameter below the value -1. On the other hand, quinstant dark energy is considered to be formed by quintessence and a negative cosmological constant, the inclusion of this later component allows for a viable mechanism to halt acceleration. We comment that the quinstant dark energy scenario gives good predictions for structure formation in the linear regime, but fails to do that in the non-linear one, for redshifts larger than one. We comment that there might still be some degree of arbitrariness in the selection of the best dark energy models.

Genly Leon; Yoelsy Leyva; Emmanuel N. Saridakis; Osmel Martin; Rolando Cardenas

2009-12-02T23:59:59.000Z

113

CTG Sustainable Communities Model | Open Energy Information  

Open Energy Info (EERE)

CTG Sustainable Communities Model CTG Sustainable Communities Model Jump to: navigation, search Tool Summary Name: CTG Sustainable Communities Model Agency/Company /Organization: CTG Energetics Inc. Sector: Energy Focus Area: Buildings, Transportation Phase: Determine Baseline, Develop Goals Topics: Co-benefits assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.ctg-net.com/energetics/whatwedo/sustainableCommunities.aspx References: http://www.ctg-net.com/energetics/resources/newsDetails.aspx?id=17 "This model quantifies total CO2e emissions allowing communities the ability to optimize planning decisions that result in the greatest environmental benefit for the least cost. Total CO2e emissions are based on emissions from energy usage, water consumption and transportation. The

114

Building Energy Model Development for Retrofit Homes  

SciTech Connect (OSTI)

Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This true up procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The trued post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the true up procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.

Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

2012-09-30T23:59:59.000Z

115

Property:Buildings/Models | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Buildings/Models Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Publication. Pages using the property "Buildings/Models" Showing 2 pages using this property. G General Merchandise 50% Energy Savings Technical Support Document 2009 + General Merchandise 2009 TSD Chicago High Plug Load Baseline +, General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings +, General Merchandise 2009 TSD Chicago Low Plug Load Baseline +, ... Grocery Store 50% Energy Savings Technical Support Document 2009 + Grocery 2009 TSD Chicago Baseline +, Grocery 2009 TSD Chicago 50% Energy Savings +, Grocery 2009 TSD Miami Baseline +, ...

116

Sustainable energy for developing countries : modelling transitions to renewable and clean energy in rapidly developing countries.  

E-Print Network [OSTI]

??The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions (more)

Urban, Frauke

2009-01-01T23:59:59.000Z

117

Model warranty for solar energy contractors  

SciTech Connect (OSTI)

Model warranties are given for a solar collector and a pool cover. These model warranties are designed for use by solar equipment manufacturers in developing warranties that will comply with the warranty requirements contained in Section 2601(e) of the Solar Tax Credit Regulations promulgated by the California Energy Commission. A manufacturer's warranty which conforms substantially with this model warranty will qualify for the state solar tax credit. Significant aspects of the model warranty are explained for solar collector manufacturers, and the principal differences between the pool cover warranty and the solar collector warranty are enumerated. It is explained how to modify the solar collector warranty so that it may be applied to other solar and wind energy equipment. (WHK)

Not Available

1980-02-01T23:59:59.000Z

118

Conformal Higgs model: predicted dark energy density  

E-Print Network [OSTI]

Postulated universal Weyl conformal scaling symmetry provides an alternative to the $\\Lambda$CDM paradigm for cosmology. Recent applications to galactic rotation velocities, Hubble expansion, and a model of dark galactic halos explain qualitative phenomena and fit observed data without invoking dark matter. Significant revision of theory relevant to galactic collisions and clusters is implied, but not yet tested. Dark energy is found to be a consequence of conformal symmetry for the Higgs scalar field of electroweak physics. The present paper tests this implication. The conformal Higgs model acquires a gravitational effect described by a modified Friedmann cosmic evolution equation, shown to fit cosmological data going back to the cosmic microwave background epoch. The tachyonic mass parameter of the Higgs model becomes dark energy in the Friedmann equation. A dynamical model of this parameter, analogous to the Higgs mechanism for gauge boson mass, is derived and tested here. An approximate calculation yields a result consistent with the empirical magnitude inferred from Hubble expansion.

R. K. Nesbet

2014-11-03T23:59:59.000Z

119

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

120

Regional Economic Models, Inc. (REMI) Model | Open Energy Information  

Open Energy Info (EERE)

Regional Economic Models, Inc. (REMI) Model Regional Economic Models, Inc. (REMI) Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: REMI Agency/Company /Organization: Regional Economic Models Inc. Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Develop Goals Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Moderate Website: www.remi.com/ Cost: Paid References: http://www.remi.com/index.php?page=overview&hl=en_US Related Tools Job and Economic Development Impact Models (JEDI) The Integrated Environmental Strategies Handbook: A Resource Guide for Air Quality Planning

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NREL: Energy Storage - Modeling and Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling and Simulation Modeling and Simulation Two NREL researchers are silhouetted in front of computer screens displaying thermal model images. NREL modeling and simulation experts use an extensive portfolio of validated tools to assess ES solutions for advanced vehicles. Photo by Dennis Schroeder, NREL/PIX 22009 Multi-physics simulation of energy storage (ES) devices provides a less expensive, faster, and more controlled alternative to in-lab testing in the early stages of research and development (R&D)-which eventually leads to longer lasting, dependable and powerful batteries. NREL is a recognized leader in systems-level thermal design, performance, lifespan, reliability, and safety modeling and simulation. The lab's 1-D and 3-D steady-state and transient multi-physics models are used to examine heat transfer,

122

Models for Tribal Energy Development Organizations  

Broader source: Energy.gov [DOE]

Hosted by DOE, EERE's Tribal Energy Program, and the Western Area Power Administration, this webinar will cover business models such as the Section 17 corporation and the tribal utility on Feb. 25, 2015 from 11 a.m. to 12:30 p.m. Mountain Standard Time.

123

An energy-economic oil production model  

Science Journals Connector (OSTI)

......such as natural gas, coal, hydro and nuclear power...perspective, this energy-economic model offers an opportunity...Testimony before the Joint Economic Committee of the US Congress...HOEOEK, M. (2010) Coal and oil: the dark monarchs...2001) Introduction to Economic Growth, 2nd edn. New......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

124

Regional Dynamics Model (REDYN) | Open Energy Information  

Open Energy Info (EERE)

Regional Dynamics Model (REDYN) Regional Dynamics Model (REDYN) Jump to: navigation, search Tool Summary Name: REDYN Agency/Company /Organization: Regional Dynamics Inc. Sector: Energy Phase: Determine Baseline, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property., Develop Goals Topics: Market analysis, Policies/deployment programs, Co-benefits assessment, - Macroeconomic Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.regionaldynamics.com/

125

Biomass Scenario Model | Open Energy Information  

Open Energy Info (EERE)

Biomass Scenario Model Biomass Scenario Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Scenario Model (BSM) Agency/Company /Organization: National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options Topics: Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: bsm.nrel.gov/ Country: United States Cost: Free OpenEI Keyword(s): EERE tool, Biomass Scenario Model UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Modeling supermarket refrigeration energy use and demand  

SciTech Connect (OSTI)

A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

1991-07-01T23:59:59.000Z

127

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

DATES COVERED (From - To) Renewable Energy and EfficiencyModels Addressed a Common High Renewable Energy PenetrationWood (OnLocation) National Renewable Energy Laboratory 1617

Blair, N.

2010-01-01T23:59:59.000Z

128

The Sustainable Energy Utility (SEU) Model for Energy Service Delivery  

E-Print Network [OSTI]

-oriented focus. Conventional energy suppliers are very capable of marketing and delivering energy products

Delaware, University of

129

EPA NONROAD Model | Open Energy Information  

Open Energy Info (EERE)

EPA NONROAD Model EPA NONROAD Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EPA NONROAD Model Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation, Agriculture Phase: Determine Baseline, Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/oms/nonrdmdl.htm Country: United States Cost: Free UN Region: Northern America References: http://www.epa.gov/oms/nonrdmdl.htm Develops estimates of criteria pollutant and CO2 emissions for non-road sources. Develops estimates of criteria pollutant and CO2 emissions for non-road sources (e.g., RVs, agricultural equipment, construction equipment, etc.). Does not address commercial marine vessels, locomotives, or aircraft.

130

Gold Standard Program Model | Open Energy Information  

Open Energy Info (EERE)

Gold Standard Program Model Gold Standard Program Model Jump to: navigation, search Tool Summary Name: Gold Standard Program Model Agency/Company /Organization: World Wildlife Fund Sector: Climate, Energy User Interface: Other Complexity/Ease of Use: Moderate Website: www.cdmgoldstandard.org/project-certification/rules-and-toolkit Cost: Paid Related Tools Environmental Benefits Mapping and Analysis Program (BenMAP) MIT Emissions Prediction and Policy Analysis (EPPA) Model ProForm ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A bottom-up method of certifying Kyoto Protocol Clean Development Mechanism projects and voluntary programs that result in verifiable co-benefits. Approach It is a bottom up method of certifying Kyoto Protocol Clean Development Mechanism projects as well as voluntary programs that result in verifiable

131

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS  

Open Energy Info (EERE)

Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Jump to: navigation, search Tool Summary Name: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Agency/Company /Organization: National Renewable Energy Laboratory, Centro de Energías Renovables (CER), United States Department of Energy Sector: Energy Focus Area: Solar Resource Type: Software/modeling tools, Webinar, Training materials References: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model[1] Logo: Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Webinar Video SMARTSwebinar.JPG Announcement " Monday, December 6, 2010 11-12 a.m. Golden, CO 1-2 p.m., Washington, D.C. 3-4 p.m., Santiago, Chile

132

Webcast of the Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce  

Broader source: Energy.gov [DOE]

The Department of Energy held a webcast titled "Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce" on Monday, October 22, 2012. The Renewable Energy Competency...

133

Model Documents for an Energy Savings Performance Contract Project...  

Broader source: Energy.gov (indexed) [DOE]

to help you launch energy efficiency projects through Energy Savings Performance Contracting (ESPC). Read about how these documents were developed. The ESPC Model Documents...

134

Scripted Building Energy Modeling and Analysis: Preprint  

SciTech Connect (OSTI)

Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

2012-08-01T23:59:59.000Z

135

Model for Energy Supply System Alternatives and their General Environmental  

Open Energy Info (EERE)

Model for Energy Supply System Alternatives and their General Environmental Model for Energy Supply System Alternatives and their General Environmental Impacts (MESSAGE) (Redirected from Model for Energy Supply System Alternatives and their General Environmental Impacts) Jump to: navigation, search Tool Summary Name: Model for Energy Supply System Alternatives and their General Environmental Impacts Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Pathways analysis Resource Type: Software/modeling tools Website: www-tc.iaea.org/tcweb/abouttc/strategy/Thematic/pdf/presentations/ener References: Overview of IAEA PESS Models [1] "MESSAGE combines technologies and fuels to construct so-called "energy chains", making it possible to map energy flows from supply (resource

136

Model for Energy Supply System Alternatives and their General Environmental  

Open Energy Info (EERE)

Model for Energy Supply System Alternatives and their General Environmental Model for Energy Supply System Alternatives and their General Environmental Impacts (MESSAGE) Jump to: navigation, search Tool Summary Name: Model for Energy Supply System Alternatives and their General Environmental Impacts Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Pathways analysis Resource Type: Software/modeling tools Website: www-tc.iaea.org/tcweb/abouttc/strategy/Thematic/pdf/presentations/ener References: Overview of IAEA PESS Models [1] "MESSAGE combines technologies and fuels to construct so-called "energy chains", making it possible to map energy flows from supply (resource extraction) to demand (energy services). The model can help design long

137

A detailed loads comparison of three building energy modeling programs:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

detailed loads comparison of three building energy modeling programs: detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Title A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Publication Type Journal Year of Publication 2013 Authors Zhu, Dandan, Tianzhen Hong, Da Yan, and Chuang Wang Date Published 05/2013 Keywords building energy modeling program, building thermal loads, comparison, dest, DOE-2.1E, energyplus Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results from different building energy modeling programs (BEMPs). This leads many users and stakeholders

138

Thermal Management Studies and Modeling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Energy Storage R&D - Thermal Management Studies and Modeling Battery Thermal Modeling and Testing Vehicle Technologies Office Merit Review 2014:...

139

NREL Biorefinery Analysis Process Models | Open Energy Information  

Open Energy Info (EERE)

NREL Biorefinery Analysis Process Models AgencyCompany Organization: National Renewable Energy Laboratory Website: www.nrel.govextranetbiorefineryaspenmodels Transport...

140

Brazil LULUCF Modeling | Open Energy Information  

Open Energy Info (EERE)

LULUCF Modeling LULUCF Modeling Jump to: navigation, search Tool Summary Name: Brazil LULUCF Modeling Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Land Focus Area: Renewable Energy, Agriculture, Biomass, Forestry, Transportation Topics: Background analysis, Market analysis Resource Type: Lessons learned/best practices Website: www.esmap.org/esmap/sites/esmap.org/files/PR_brazil1_Low%20Carbon%20Ca Country: Brazil South America Coordinates: -14.235004°, -51.92528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-14.235004,"lon":-51.92528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chaotic scalar fields as models for dark energy Christian Beck*  

E-Print Network [OSTI]

. The nature and origin of the dominating dark energy component are not understood, and many different modelsChaotic scalar fields as models for dark energy Christian Beck* Kavli Institute for Theoretical stochastically quantized self-interacting scalar fields as suitable models to generate dark energy

Beck, Christian

142

New Modeling Tools for Energy Markets Chung-Li Tseng  

E-Print Network [OSTI]

EDITORIAL New Modeling Tools for Energy Markets Chung-Li Tseng Special Editor The electricity to the quantitative models for dealing with impacts of these changes on energy market modeling. The four papers in this issue provide a broad range of applications in energy markets. The first special issue addressed

Tseng, Chung-Li

143

Distributed Energy Resources Market Diffusion Model  

SciTech Connect (OSTI)

Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase DER adoption, and thus, shift building energy consumption to a more efficient alternative.

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

2006-06-16T23:59:59.000Z

144

Model documentation report: Transportation sector model of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

Not Available

1994-03-01T23:59:59.000Z

145

An Empirical Pricing Model for Renewable Energy Source  

Science Journals Connector (OSTI)

The characteristics of the renewable energy source make itself the Chinese energy strategy and the most important way to develop the low carbon mode. Therefore, the renewable energy is the only way for China to resolve the energy clearance and sustainable ... Keywords: pricing model, renewable energy source, marginal cost analysis

Bai Xueyan

2012-05-01T23:59:59.000Z

146

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

Learning Control for Thermal Energy Storage Systems. In:Predictive Control of Thermal Energy Storage in Buildingmaking use of building thermal energy storage, and this work

Ma, Yudong

2012-01-01T23:59:59.000Z

147

Energy-oriented models for WDM networks Abstract--A realistic energy-oriented model is necessary to  

E-Print Network [OSTI]

[4]. Recent initiatives gathering major IT companies started to explore the energy savings and greenEnergy-oriented models for WDM networks Abstract-- A realistic energy-oriented model is necessary to formally characterize the energy consumption and the consequent carbon footprint of actual and future high

Politècnica de Catalunya, Universitat

148

Modeling Energy Demand Dependency in Smart Multi-Energy Systems  

Science Journals Connector (OSTI)

Smart local energy networks provide an opportunity for more penetration of distributed energy resources. However, these resources cause an ... for internal and external dependencies in Smart Multi-Energy Systems ...

N. Neyestani; Maziar Yazdani Damavandi

2014-01-01T23:59:59.000Z

149

Entanglement in holographic dark energy models  

E-Print Network [OSTI]

We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoiding it virtually any application in other cosmological epochs or particle-physics phenomena. The p...

Horvat, R

2010-01-01T23:59:59.000Z

150

Cosmological supersymmetric model of dark energy  

Science Journals Connector (OSTI)

Recently, a supersymmetric model of dark energy coupled to cold dark matter, the supersymmetron, has been proposed. In the absence of cold dark matter, the supersymmetron field converges to a supersymmetric minimum with a vanishing cosmological constant. When cold dark matter is present, the supersymmetron evolves to a matter-dependent minimum where its energy density does not vanish and could lead to the present acceleration of the Universe. The supersymmetron generates a short-ranged fifth force which evades gravitational tests. It could lead to observable signatures on structure formation due to a very strong coupling to dark matter. We investigate the cosmological evolution of the field, focusing on the linear perturbations and the spherical collapse and find that observable modifications in structure formation can indeed exist. Unfortunately, we find that when the growth rate of perturbations is in agreement with observations, an additional cosmological constant is required to account for dark energy. In this case, effects on large-scale structures are still present at the nonlinear level which are investigated using the spherical collapse approach.

Philippe Brax; Anne-Christine Davis; Hans A. Winther

2012-04-18T23:59:59.000Z

151

Modelling spot and forward prices for energy companies  

E-Print Network [OSTI]

Modelling spot and forward prices for energy companies Dafydd Steele MSc Stochastics and Financial forward and spot prices for energy com- panies. The two main ways of modelling power prices are stochastic markets (coal, gas and power). The fundamental model is a mixed-integer programming stack model

Bhulai, Sandjai

152

LEAPs and Boundsan Energy Demand and Constraint Optimised Model of the Irish Energy System  

Science Journals Connector (OSTI)

This paper builds a model of energy demand and supply for Ireland with a focus on evaluating, and providing insights for, energy efficiency policies. The demand-side comprises sectoral sub-models, with a ... line...

Fionn Rogan; Caiman J. Cahill; Hannah E. Daly; Denis Dineen

2014-06-01T23:59:59.000Z

153

NREL: Regional Energy Deployment System (ReEDS) Model - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Energy Deployment System (ReEDS) Model Energy Analysis ReEDS Regional Energy Deployment System Model Regional Energy Deployment System (ReEDS) Model Energy Analysis ReEDS Regional Energy Deployment System Model Search More Search Options Site Map Printable Version Publications The following are publications - including technical reports, journal articles, conference papers, and posters - focusing on the Wind Deployment System (WinDS) and Regional Energy Deployment System (ReEDS) models. Technical Reports Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M. (2013). Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions. 55 pp.; NREL Report No. TP-6A20-55836. Martinez, A.; Eurek, K.; Mai, T.; Perry, A. (2013). Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS).

154

Policy modeling for industrial energy use  

E-Print Network [OSTI]

the market mechanism. Energy suppliers will try to maximizepolicy and program. Energy suppliers and consumers who are

2003-01-01T23:59:59.000Z

155

A Supply-Demand Model Based Scalable Energy Management System for Improved Energy  

E-Print Network [OSTI]

the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization

Bhunia, Swarup

156

Colorado: Energy Modeling Products Support Energy Efficiency Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

Xcel Energy, a Minnesota-based utility that supplies electricity and natural gas to eight states, employed two EERE-developed products in developing a program management tool for its Energy Design Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use.

157

The National Energy Modeling System: An Overview 2000 - appendix  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System is documented in a series of model documentation reports, available on the EIA Web site at http://www.eia.doe. gov/bookshelf/docs.html or by contacting the National Energy Information Center (202/586-8800). The National Energy Modeling System is documented in a series of model documentation reports, available on the EIA Web site at http://www.eia.doe. gov/bookshelf/docs.html or by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, Integrating Module of the National Energy Modeling System: Model Documentation DOE/EIA-M057(2000) (Washington, DC, December 1999). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2000) (Washington, DC, December 1999). Energy Information Administration, Documentation of the DRI Model of the U.S. Economy, DOE/EIA- M061 (Washington, DC, December 1993). Energy Information Administration, NEMS International Energy Module: Model Documentation Report, DOE/EIA-M071(99) (Washington, DC, February 1999).

158

The National Energy Modeling System: An Overview 2000 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). The National Energy Modeling System: An Overview presents an overview of the structure and methodology of NEMS and each of its components. This chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. More detailed model documentation reports for all the NEMS modules are also available from EIA (Appendix, “Bibliography”).

159

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

160

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics  

E-Print Network [OSTI]

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

Koledintseva, Marina Y.

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Network flow model for multi-energy systems  

Science Journals Connector (OSTI)

This paper describes a novel approach to model networks with multiple energy carrier. The proposed nodal matrix establishes a link between an optimization of enclosed areas and their interconnections via networks. In the envisioned network flow model ... Keywords: energy conversion, energy hubs, grids, line losses, network flow, optimal power flow

Matthias Schulze; Goran Gaparovi?

2010-02-01T23:59:59.000Z

162

Multi-Factor Energy Price Models Exotic Derivatives Pricing  

E-Print Network [OSTI]

of Statistics University of Toronto c Copyright by Samuel Hikspoors 2008 #12;Multi-Factor Energy Price Models of Toronto, May 2008 Abstract The high pace at which many of the world's energy markets have gradually beenMulti-Factor Energy Price Models and Exotic Derivatives Pricing by Samuel Hikspoors A thesis

Jaimungal, Sebastian

163

Modeling of solar energy for Malaysia using artificial neural networks  

Science Journals Connector (OSTI)

This paper presents a solar energy prediction method using artificial neural networks (ANNs). An ANN predicts a clearness index that is used to calculate global solar irradiation. The ANN model is based on the feed forward multilayer perception model ... Keywords: Malaysia, artificial neural network, solar energy, solar energy prediction

Tamer Khatib; Azah Mohamed; K. Sopian; M. Mahmoud

2011-10-01T23:59:59.000Z

164

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

165

Modeling Energy Conservation in a Completely Integrable Boussinesq system  

E-Print Network [OSTI]

Modeling Energy Conservation in a Completely Integrable Boussinesq system Alfatih Ali and Henrik Kalisch Department of Mathematics, University of Bergen Postbox 7800, 5020 Bergen, Norway March 23, 2013 Abstract This work presents a derivation of the energy density and energy flux of surface waves modeled

Kalisch, Henrik

166

A discrete model of energy-conserved wave function collapse  

Science Journals Connector (OSTI)

...articles 1009 159 A discrete model of energy-conserved wave function collapse Shan...100190, People's Republic of China Energy non-conservation is a serious problem...paper, we propose a discrete model of energy-conserved wave function collapse. It...

2013-01-01T23:59:59.000Z

167

Property:Buildings/ModelXmlFile | Open Energy Information  

Open Energy Info (EERE)

ModelXmlFile ModelXmlFile Jump to: navigation, search This is a property of type URL. Pages using the property "Buildings/ModelXmlFile" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + http://apps1.eere.energy.gov/buildings/energyplus/models/Chicago/2009_TSD_GeneralMerch_HPL_50percent.xml + General Merchandise 2009 TSD Chicago High Plug Load Baseline + http://apps1.eere.energy.gov/buildings/energyplus/models/Chicago/2009_TSD_GeneralMerch_HPL_Baseline.xml + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_50percent.xml + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_Baseline.xml +

168

Property:Buildings/ModelIdfFile | Open Energy Information  

Open Energy Info (EERE)

ModelIdfFile ModelIdfFile Jump to: navigation, search This is a property of type URL. Pages using the property "Buildings/ModelIdfFile" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + http://apps1.eere.energy.gov/buildings/energyplus/models/Chicago/2009_TSD_GeneralMerch_HPL_50percent.idf + General Merchandise 2009 TSD Chicago High Plug Load Baseline + http://apps1.eere.energy.gov/buildings/energyplus/models/Chicago/2009_TSD_GeneralMerch_HPL_Baseline.idf + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_50percent.idf + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + http://apps1.eere.energy.gov/buildings/energyplus/models/Miami/2009_TSD_GeneralMerch_LPL_Baseline.idf +

169

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

is to minimize the total energy consumptions (1.1a) whilethe closed-loop total energy consumption u J = N ?1 |u ? (violation and total energy consumption. It is observed that

Ma, Yudong

2012-01-01T23:59:59.000Z

170

Modelling the UK perennial energy crop market  

E-Print Network [OSTI]

Biomass produced from perennial energy crops, Miscanthus and willow or poplar grown as short-rotation coppice, is expected to contribute to UK renewable energy targets and reduce the carbon intensity of energy production. ...

Alexander, Peter Mark William

2014-11-27T23:59:59.000Z

171

Rotational and divergent kinetic energy in the mesoscale model ALADIN  

E-Print Network [OSTI]

Rotational and divergent kinetic energy in the mesoscale model ALADIN By V. BLAZ ICA1 *, N. Z AGAR1 received 7 June 2012; in final form 7 March 2013) ABSTRACT Kinetic energy spectra from the mesoscale. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy

Zagar, Nedjeljka

172

Modelling and geometry optimisation of wave energy converters  

E-Print Network [OSTI]

Modelling and geometry optimisation of wave energy converters Adi Kurniawan Supervisors: Prof DIY Riding radical wave power" #12;#12;Any device will deliver some energyAny device will deliver some energy #12;What matters is the cost of energy Ultimate problem Given the waves, design a device

Nørvåg, Kjetil

173

Energy Demand Modelling Introduction to the PhD project  

E-Print Network [OSTI]

Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

174

An Energy Model for a Low Income Rural African Village | Open Energy  

Open Energy Info (EERE)

An Energy Model for a Low Income Rural African Village An Energy Model for a Low Income Rural African Village Jump to: navigation, search Tool Summary LAUNCH TOOL Name: An Energy Model for a Low Income Rural African Village Agency/Company /Organization: Howells, Alfstad, Victor, Goldstein and Remme Sector: Energy Focus Area: Renewable Energy, Economic Development, Energy Efficiency, People and Policy Phase: Create a Vision Topics: - Energy Access Resource Type: Publications User Interface: Website Website: iea-etsap.org/web/Workshop/worksh_6_2003/2003P_howells.pdf Cost: Free UN Region: Southern Africa Language: English This paper reports on efforts to extend a MARKAL energy model for South Africa to include rural energy choices, allowing for computation of optimal energy systems in a typical (non-electrified) rural village.

175

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

176

An Energy-Aware Simulation Model and Transaction Protocol  

E-Print Network [OSTI]

1 An Energy-Aware Simulation Model and Transaction Protocol for Dynamic Workload Distribution of Southern California Oct. 15, 2003 Outline ! Introduction ! MANET Simulation Model ! Energy-aware Network of analytical approaches ! We presents a simulation model to evaluating power management policies for a MANET

Pedram, Massoud

177

EIA - The National Energy Modeling System: An Overview 2003-Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction The National Energy Modeling System: An Overview 2003 Introduction The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2025. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). The National Energy Modeling System: An Overview 2003 presents an overview of the structure and methodology of NEMS and each of its components. This chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. More detailed model documentation reports for all the NEMS modules are also available from EIA (Appendix, “Bibliography”).

178

CMIEM: the computerised model for intelligent energy management  

Science Journals Connector (OSTI)

Nowadays, the observed high energy consumption in most of the enterprises and the increased environmental preservation required are a proof that the energy management is essential to be applied in the sectors of final demand. Energy management as a mean for reducing the energy consumption and therefore energy costs, as well as the technical tools that are being used for this effort, is the central topic of this paper. In this framework, the Computerised Model for Intelligent Energy Management (CMIEM) can constitute a powerful technical tool in the hands of the final energy users, because it is a diagnostic mean of required energy consuming equipment, in order to improve the energy efficiency. The CMIEM has the potential of estimating the energy indicators and designing the energy consumption net. The CMIEM has been applied in both industrial units and buildings and the outcomes were really important for energy managers, as they strive towards the rational use of energy.

Konstantinos D. Patlitzianas; Alexandra Papadopoulou; Alexandros Flamos; John Psarras

2005-01-01T23:59:59.000Z

179

Generalizing thawing dark energy models: the standard vis--vis model independent diagnostics  

Science Journals Connector (OSTI)

......w X for thawing dark energy models which include...Oscillation Spectroscopic Survey data. Our analysis...type of thawing dark energy is favoured up...Oscillation Spectroscopic Survey (BOSS) data...fluid, namely dark energy, in huge abundances......

Debabrata Adak; Debasish Majumdar; Supratik Pal

2014-01-01T23:59:59.000Z

180

Solar Decathlon Design Models 2009 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Design Models 2009 Design Models 2009 Solar Decathlon Design Models 2009 Addthis Florida International 1 of 20 Florida International Image: Energy Department Image Team New Jersey 2 of 20 Team New Jersey Image: Energy Department Image The University of Tennessee 3 of 20 The University of Tennessee Image: Energy Department Image University of Maryland 4 of 20 University of Maryland Image: Energy Department Image Team Florida 5 of 20 Team Florida Image: Energy Department Image Ohio State University 6 of 20 Ohio State University Image: Energy Department Image Team Belgium 7 of 20 Team Belgium Image: Energy Department Image University of Hawaii 8 of 20 University of Hawaii Image: Energy Department Image Cal Tech 9 of 20 Cal Tech Image: Energy Department Image Team Tidewater Virginia 10 of 20 Team Tidewater Virginia

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

3) 3) The National Energy Modeling System: An Overview 2003 March 2003 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/aeo/overview/index.html The National Energy Modeling System: An Overview 2003 provides a summary description of the National En- ergy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, im- ports, and

182

Property:Buildings/ModelType | Open Energy Information  

Open Energy Info (EERE)

ModelType ModelType Jump to: navigation, search This is a property of type String. The allowed values for this property are: Baseline Minimum Cost Max Tech PV Takeoff Cost Neutral 30% Energy Savings 50% Energy Savings 70% Energy Savings Other Pages using the property "Buildings/ModelType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Baseline + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + Baseline + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 50% Energy Savings + General Merchandise 2009 TSD Miami High Plug Load Baseline + Baseline +

183

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network [OSTI]

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

184

Free energy and complexity of spherical bipartite models  

E-Print Network [OSTI]

We investigate both free energy and complexity of the spherical bipartite spin glass model. We first prove a variational formula in high temperature for the limiting free energy based on the well-known Crisanti-Sommers representation of the mixed p-spin spherical model. Next, we show that the mean number of local minima at low levels of energy is exponentially large in the size of the system and we derive a bound on the location of the ground state energy.

Antonio Auffinger; Wei-Kuo Chen

2014-05-09T23:59:59.000Z

185

Dislocation kink migration energies and the Frenkel-Kontorowa model  

Science Journals Connector (OSTI)

An analytic solution of the Peierls pinning energy EP in the discrete Frenkel-Kontorowa (FK) model is used to obtain estimates of the second-order Peierls stress ?2P controlling dislocation kink motion. From the Dorn-Rajnak model the kink migration energy is shown to be the Peierls pinning energy EP in the FK model. The required parameters are related to features of the generalized stacking fault surface. Examples illustrate use of the approach.

B. Jos and M. S. Duesbery

1997-05-01T23:59:59.000Z

186

Energy transfers in shell models for MHD turbulence  

E-Print Network [OSTI]

A systematic procedure to derive shell models for MHD turbulence is proposed. It takes into account the conservation of ideal quadratic invariants such as the total energy, the cross-helicity and the magnetic helicity as well as the conservation of the magnetic energy by the advection term in the induction equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited to the nearest neighbour shells, this procedure reproduces well known models but suggests a reinterpretation of the energy fluxes.

T. Lessinnes; M. K. Verma; D. Carati

2008-07-31T23:59:59.000Z

187

Federal Energy Management Program: Model Acquisition Language for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Acquisition Language for Energy-Efficient Product Contracts Model Acquisition Language for Energy-Efficient Product Contracts Training Available Graphic of the eTraining logo Energy-Efficient Federal Purchasing: This intermediate FEMP eTraining course offers hands-on learning on finding, specifying, and selecting energy-efficient products. Energy-Efficient Product Procurement: This introductory FEMP First Thursday Seminar details executive order and Federal Acquisition Regulation requirements for purchasing FEMP-designated and ENERGY STAR products. Federal agencies must insert specific contract language for Energy Efficiency in Energy-Consuming Products as defined in Federal Acquisition Regulation (FAR) Section 52.223-15 in solicitations and contracts when ENERGY STAR®-qualified or FEMP-designated energy-consuming products are:

188

Energy sector analysis and modeling From primary to final energy.  

E-Print Network [OSTI]

?? Climate change and energy supply limitation are growing concerns. Solving them requires strong implication from our societies and more and more stakeholders and scientists (more)

Praz, Bastien

2012-01-01T23:59:59.000Z

189

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Broader source: Energy.gov (indexed) [DOE]

Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

190

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program...  

Broader source: Energy.gov (indexed) [DOE]

Program Plan Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan The NEAMS program plan includes information on the program vision, objective, scope, schedule and...

191

Light Water Reactors A DOE Energy Innovation Hub for Modeling...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors CASL is focused on three issues for nuclear...

192

Evaluation of an Incremental Ventilation Energy Model for Estimating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

193

Fuel Cell Power (FCPower) Model | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Power (FCPower) Model Fuel Cell Power (FCPower) Model Jump to: navigation, search Tool Summary Name: Fuel Cell Power (FCPower) Model Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen Topics: Finance Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.hydrogen.energy.gov/fc_power_analysis.html Cost: Free OpenEI Keyword(s): EERE tool Fuel Cell Power (FCPower) Model Screenshot References: DOE Fuel Cell Power Analysis[1] Logo: Fuel Cell Power (FCPower) Model The Fuel Cell Power (FCPower) Model is a financial tool for analyzing high-temperature, fuel cell-based tri-generation systems. "The Fuel Cell Power (FCPower) Model is a financial tool for analyzing

194

Scale Models and Wind Turbines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale Models and Wind Turbines Scale Models and Wind Turbines Below is information about the student activitylesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy...

195

Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

SciTech Connect (OSTI)

Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K. R.; Venkatesh, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

2009-09-01T23:59:59.000Z

196

EIA - The National Energy Modeling System: An Overview 2003-Petroleum  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The National Energy Modeling System: An Overview 2003 Petroleum Market Module Figure 17. Petroleum Market Module Structure. Need help, contact the National Energy Information Center. Need help, contact the National Energy Information Center at 202-586-8800. Figure 18. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Products Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800. Crude Oil Categories in PMM Table. Need help, contact the National Energy Information Center at 202-586-8800. Refinery Processing Units Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800.

197

Model Acquisition Language for Energy-Efficient Product Contracts |  

Broader source: Energy.gov (indexed) [DOE]

Technologies » Energy-Efficient Products » Model Acquisition Technologies » Energy-Efficient Products » Model Acquisition Language for Energy-Efficient Product Contracts Model Acquisition Language for Energy-Efficient Product Contracts October 8, 2013 - 2:39pm Addthis Federal agencies must insert specific contract language for Energy Efficiency in Energy-Consuming Products as defined in Federal Acquisition Regulation (FAR) Section 52.223-15 in solicitations and contracts when ENERGY STAR®-qualified or FEMP-designated energy-consuming products are: Delivered Acquired by the contractor for use in performing services at a Federally-controlled facility Furnished by the contractor for use by the Government Specified in the design of a building or work, or incorporated during its construction, renovation, or maintenance.

198

A Dynamic Energy Budget (DEB) model for the energy usage and reproduction of the Icelandic capelin (Mallotus villosus)  

E-Print Network [OSTI]

DEB) model for the energy usage and reproduction of theto capture the growth, energy usage, and roe production of

Einarsson, Baldvin; Birnir, Bjorn; Sigursson, Sven .

2010-01-01T23:59:59.000Z

199

Modeling new approaches for electric energy efficiency  

SciTech Connect (OSTI)

To align utilities and consumers' interests, three incentive methods have emerged to foster efficiency: shared savings, bonus return on equity, and energy service company. A fourth incentive method, virtual power plant, is being proposed by Duke Energy. (author)

Munns, Diane

2008-03-15T23:59:59.000Z

200

Energy and cost optimization in industrial models  

Science Journals Connector (OSTI)

A program for Linear Energy Optimization (LEO...) which was used to investigate thermodynamical and technical options of reducing the energy-consumption of industrialized countries is extended to handle the cost ...

H. -M. Groscurth; R. Kmmel

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Transportation energy demand: Model development and use  

Science Journals Connector (OSTI)

This paper describes work undertaken and sponsored by the Energy Commission to improve transportation energy demand forecasting and policy analysis for California. Two ... , the paper discusses some of the import...

Chris Kavalec

1998-06-01T23:59:59.000Z

202

Numerical Wave Modeling and Wave Energy Estimation  

Science Journals Connector (OSTI)

In a rapidly evolving operational and research framework concerning the global energy resources, new frontiers have been set for ... the scientific community working on environmental and renewable energy issues. ...

G. Galanis; G. Zodiatis; D. Hayes

2013-01-01T23:59:59.000Z

203

Energy and Uncertainty: Models and Algorithms for Complex Energy Systems Warren B. Powell  

E-Print Network [OSTI]

, using a simple energy storage problem as a case application. Using this setting, we describe a common umbrella. The challenge of creating an efficient, sustainable energy system requires solvingEnergy and Uncertainty: Models and Algorithms for Complex Energy Systems Warren B. Powell

Powell, Warren B.

204

Manufacturing Plants Incorporate Energy Efficiency into Business Model |  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Plants Incorporate Energy Efficiency into Business Manufacturing Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Four Texas-based manufacturing plants are adopting robust energy efficiency standards as part of an energy management certification program led by the Department of Energy's Industrial Technologies Program. The certification program, called Superior Energy Performance, provides a

205

Manufacturing Plants Incorporate Energy Efficiency into Business Model |  

Broader source: Energy.gov (indexed) [DOE]

Manufacturing Plants Incorporate Energy Efficiency into Business Manufacturing Plants Incorporate Energy Efficiency into Business Model Manufacturing Plants Incorporate Energy Efficiency into Business Model April 27, 2011 - 12:15pm Addthis Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Participants of the Superior Energy Performance certification program | Photo Courtesy of Texas Industries of the Future/Dave Bray Lowell Sachs Lead Technology Partnership Specialist, Industrial Technologies Program Four Texas-based manufacturing plants are adopting robust energy efficiency standards as part of an energy management certification program led by the Department of Energy's Industrial Technologies Program. The certification program, called Superior Energy Performance, provides a

206

Civil War Icon Becomes National Clean Energy Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Civil War Icon Becomes National Clean Energy Model Civil War Icon Becomes National Clean Energy Model Civil War Icon Becomes National Clean Energy Model December 2, 2010 - 2:26pm Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program Nearly a century and a half after the first shots of the Civil War, Fort Sumter National Monument is poised to become a national model for clean energy. By adopting solar and hydrogen fuel cell technologies, the monument will generate clean, renewable power - establishing itself as an energy self-sufficient island. This project is part of the Energy SmartPARKS initiative. This first-of-its-kind collaboration - launched in 2008 with the Department of Energy, Department of Interior, and the National Park Service - is designed to implement and showcase sustainable energy

207

Civil War Icon Becomes National Clean Energy Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Civil War Icon Becomes National Clean Energy Model Civil War Icon Becomes National Clean Energy Model Civil War Icon Becomes National Clean Energy Model December 2, 2010 - 2:26pm Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program Nearly a century and a half after the first shots of the Civil War, Fort Sumter National Monument is poised to become a national model for clean energy. By adopting solar and hydrogen fuel cell technologies, the monument will generate clean, renewable power - establishing itself as an energy self-sufficient island. This project is part of the Energy SmartPARKS initiative. This first-of-its-kind collaboration - launched in 2008 with the Department of Energy, Department of Interior, and the National Park Service - is designed to implement and showcase sustainable energy

208

Model for electric energy consumption in eastern Saudi Arabia  

SciTech Connect (OSTI)

Electrical energy consumption in the eastern province of Saudi Arabia is modeled as a function of weather data, global solar radiation, population, and gross domestic product per capita. Five years of data have been used to develop the energy consumption model. Variable selection in the regression model is carried out by using the general stepping-regression technique. Model adequacy is determined from a residual analysis technique. Model validation aims to determine if the model will function successfully in its intended operating field. In this regard, new energy consumption data for a sixth year are collected, and the results predicted by the regression model are compared with the new data set. Finally, the sensitivity of the model is examined. It is found that the model is strongly influenced by the ambient temperature.

Al-Garni, A.Z.; Al-Nassar, Y.N.; Zubair, S.M.; Al-Shehri, A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

1997-05-01T23:59:59.000Z

209

Modeling Clean and Secure Energy Scenarios for the Indian Power Sector in 2030  

E-Print Network [OSTI]

6 International Developments in Energy Mix Modeling and Goalindicating an alternative energy mix could cost-effectively4 International Developments in Energy Mix Modeling and Goal

Abhyankara, Nikit

2014-01-01T23:59:59.000Z

210

Building energy modeling programs comparison Research on HVAC systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy modeling programs comparison Research on HVAC systems energy modeling programs comparison Research on HVAC systems simulation part Title Building energy modeling programs comparison Research on HVAC systems simulation part Publication Type Journal Year of Publication 2013 Authors Zhou, Xin, Da Yan, Tianzhen Hong, and Dandan Zhu Keywords Building energy modeling programs, comparison tests, HVAC system simulation, theory analysis Abstract Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in simulated results when different BEMPs are used to model the same building has caused wide concern. Urgent research is needed to identify the main elements that contribute towards the simulation results. This technical report summarizes methodologies, processes, and the main assumptions of three building energy modeling programs (BEMPs) for HVAC calculations: EnergyPlus, DeST, and DOE-2.1E, and test cases are designed to analyze the calculation process in detail. This will help users to get a better understanding of BEMPs and the research methodology of building simulation. This will also help build a foundation for building energy code development and energy labeling programs.

211

IDRISI Land Change Modeler | Open Energy Information  

Open Energy Info (EERE)

IDRISI Land Change Modeler IDRISI Land Change Modeler Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IDRISI Land Change Modeler Agency/Company /Organization: Clark Labs Sector: Land Focus Area: Agriculture, Forestry Topics: Co-benefits assessment, - Environmental and Biodiversity, Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Desktop Application Website: www.clarklabs.org/ Cost: Paid IDRISI Land Change Modeler Screenshot References: IDRISI Land Change Modeler[1] Overview "The Land Change Modeler is revolutionary land cover change analysis and prediction software with tools to analyze, measure and project the impacts of such change on habitat and biodiversity." References ↑ "IDRISI Land Change Modeler" Retrieved from

212

Some results on energy-conserving lattice Boltzmann models  

E-Print Network [OSTI]

Some results on energy-conserving lattice Boltzmann models Pierre Lallemand 1 and François Dubois 2 of "energy conserving" lattice Boltzmann models. A major difficulty observed in previous studies framework based on the knowledge of the partial equivalent equations of the lattice Boltzmann scheme

Paris-Sud XI, Université de

213

Simple Derivation of the Baxter-Model Free Energy  

Science Journals Connector (OSTI)

Starting with some observations due to A. B. Zamolodchikov, a short cut to the determination of the Baxter (eight-vertex) -model free energy is developed. The method involves factorizable S matrices in 1 + 1 dimensions, which are briefly reviewed. If the method generalizes, we may associate with each known S matrix a Baxter-like model with a known free energy.

R. Shankar

1981-10-26T23:59:59.000Z

214

Wind Energy Applications of Unified and Dynamic Turbulence Models  

E-Print Network [OSTI]

Wind Energy Applications of Unified and Dynamic Turbulence Models Stefan Heinz and Harish Gopalan applicable as a low cost alternative. 1 Introduction There is a growing interest in using wind energy suggests the possibility of providing 20% of the electricity in the U.S. by wind energy in 2030

Heinz, Stefan

215

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN  

E-Print Network [OSTI]

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN (ReviewArticle) Y. MAHRER.1. OBSERVATIONALAPPROACHES Evaluations of wind energy based on wind observations (usually surface winds) at well, the resolution of the wind energy pattern throughout an extended area by this methodology requires a large number

Pielke, Roger A.

216

Waste-To-Energy Feasibility Analysis: A Simulation Model  

E-Print Network [OSTI]

Waste- To- Energy Feasibility Analysis: A Simulation Model Viet- An Duong College of Engineering://www.funginstitute.berkeley.edu/sites/default/ les/WasteToEnergy.pdf May 1, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664-4337 | www of the main battles of our generation. Using waste to produce electricity can be a major source of energy

Sekhon, Jasjeet S.

217

Energy Systems Modeling Symposium Co-Sponsored by  

E-Print Network [OSTI]

and Sustainability ­ State of Ohio Perspective Mark Shanahan Director, Ohio Air Quality Development Authority, Energy Sport? Systems Modeling for Energy Policy and Planning Fred Murphy Temple University Energy Policy Hitzhusen Agricultural, Environmental & Development Economics, OSU Challenges of Incorporating Social Costs

218

Bayesian model selection for dark energy using weak lensing forecasts  

Science Journals Connector (OSTI)

......cosmic shear surveys show exceptional...constraining the dark energy equation of state...potential for a survey to constrain dark energy parameters for...The fiducial survey will be able...between dynamical dark energy models and lambdaCDM......

Ivan Debono

2014-01-01T23:59:59.000Z

219

On model selection forecasting, dark energy and modified gravity  

Science Journals Connector (OSTI)

......be achieved with the dark energy survey (DES) (Wester et...considered. DES is the Dark Energy Survey, PS1 is the Pan-STARRS...imaging (weak lensing) surveys should be able decisively distinguish a dark energy GR model from a DGP......

A. F. Heavens; T. D. Kitching; L. Verde

2007-09-21T23:59:59.000Z

220

Canopy radiation transmission for an energy balance snowmelt model  

E-Print Network [OSTI]

Canopy radiation transmission for an energy balance snowmelt model Vinod Mahat1 and David G January 2012. [1] To better estimate the radiation energy within and beneath the forest canopy for energy differential equations using a single path assumption were solved analytically to approximate the radiation

Tarboton, David

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

General Equilibrium Emissions Model (GEEM) | Open Energy Information  

Open Energy Info (EERE)

General Equilibrium Emissions Model (GEEM) General Equilibrium Emissions Model (GEEM) Jump to: navigation, search Tool Summary Name: General Equilibrium Emissions Model (GEEM) Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Goods and Materials, Greenhouse Gas, Industry, Offsets and Certificates, Transportation Topics: Background analysis, Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs, Technology characterizations Country: Kenya, Thailand UN Region: Eastern Africa, Caribbean Coordinates: 13.7240216°, 100.5798602°

222

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

223

The National Energy Modeling System: An Overview 2000 - Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic assessment at EIA involves several modes of analysis. The first type of analysis, used in forecasting the Annual Energy Outlook where energy prices change, uses kernel regression and response surface techniques to mimic the response of larger macroeconomic and industrial models. This mode of analysis requires a given economic baseline and then calculates the economic impacts of changing energy prices, calculated from the chosen growth path. The economic growth cases are derived from the larger core models and can reflect either high, low, or reference case growth assumptions. Analyzing economic impacts from energy price changes uses the macroeconomic activity module (MAM) within NEMS and provides a subset of the macroeconomic variables available in the larger core models. The composition of the subset is determined by the other energy modules in NEMS, as they use various macroeconomic concepts as assumptions to their particular energy model.

224

EIA - The National Energy Modeling System: An Overview 2003 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface The National Energy Modeling System: An Overview 2003 Preface The National Energy Modeling System: An Overview 2003 provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003 (AEO2003), (DOE/EIA-0383(2003)), released in January 2003. AEO2003 presents national forecasts of energy markets for five primary cases—a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The Overview presents a brief description of the methodology and scope of each of the component modules of NEMS. The model documentation reports listed in the appendix of this document provide further details.

225

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

226

Renewable Energy Sources Optimization: A Micro-Grid Model Design  

Science Journals Connector (OSTI)

Abstract This paper analyzes the possibility to develop the simple micro-grid model in optimizing the utilization of local renewable energy for on-grid area. The proposed micro-grid model integrates the power plants driven by renewable energy sources employing micro hydro (MHP) and photovoltaic system (PV) which is connected to grid system. This model is analyzed using HOMER and MATLAB software. Based on the load profiles and the availability of water resources, the HOMER simulates the proposed micro-grid model with three options of MHP capacity. The simulation results show that the micro-grid model with the largest capacity MHP produced the lowest energy cost, greatest reduction of CO2 emission, and largest fraction of renewable energy. However, these result required the expensive initial capital cost. In addition, the PV power generation was always recommended with a minimum capacity. Hence, MATLAB results show the performances of the power plants with renewable energy sources were used maximally.

R. Nazir; H.D. Laksono; E.P. Waldi; E. Ekaputra; P. Coveria

2014-01-01T23:59:59.000Z

227

US Energy Service Company Industry: History and Business Models  

Broader source: Energy.gov (indexed) [DOE]

Energy Service Company Industry: Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases * Business models in each phase * Financing models in each phase * Factors that forced change to next phase * Lessons learned US ESCO Industry: Five Phases * Pre-1985: The Beginning of Large-scale Energy Efficiency (EE) * 1985-1995: Early ESCo experience * 1995-2000: Consolidation and Growth * 2000-2004: Setbacks * 2004 - present: Growth and new services Beginning of EE: pre-1985 * Federal government mandates utilities to provide energy conservation * Business model: ESCOs provide services - Energy audits, arranging contracting, etc. * Finance model: fee for service - Utilities pay ESCOs for services

228

MAPSS Vegetation Modeling | Open Energy Information  

Open Energy Info (EERE)

MAPSS Vegetation Modeling MAPSS Vegetation Modeling Jump to: navigation, search Tool Summary Name: MAPSS Vegetation Modeling Agency/Company /Organization: United States Forest Service Sector: Land Focus Area: Agriculture, Biomass, Forestry Topics: Co-benefits assessment, - Environmental and Biodiversity, Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Desktop Application Website: www.fs.fed.us/pnw/mdr/mapss/ MAPSS Vegetation Modeling Screenshot References: MAPSS[1] Applications "A landscape- to global-scale vegetation distribution model that was developed to simulate the potential biosphere impacts and biosphere-atmosphere feedbacks from climatic change. Model output from MAPSS has been used extensively in the Intergovernmental Panel on Climate

229

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Broader source: Energy.gov (indexed) [DOE]

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

230

Definition: Conceptual Model | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Conceptual Model Jump to: navigation, search Dictionary.png Conceptual Model In the broadest terms, a conceptual model is anything used to represent anything else. In geothermal exploration a conceptual model is a descriptive and qualitative model (not used for calculations) integrating and bringing together the physical features of a system to create a representation of the geothermal reservoir.[1] View on Wikipedia Wikipedia Definition In the most general sense, a model is anything used in any way to represent anything else. Some models are physical objects, for instance, a toy model which may be assembled, and may even be made to work like the object it represents. Whereas, a conceptual model is a model that exists

231

Development of an Open Source Hourly Building Energy Modeling Software Tool.  

E-Print Network [OSTI]

??Computer building energy simulations are an important tool in the design of low-energy buildings. Building energy modeling is used to predict annual energy consumption, determine (more)

Hanam, Brittany

2010-01-01T23:59:59.000Z

232

The National Energy Modeling System: An Overview 1998 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

INTRODUCTION INTRODUCTION blueball.gif (205 bytes) Purpose of NEMS blueball.gif (205 bytes) Representations of Energy Market blueball.gif (205 bytes) Technology Representation blueball.gif (205 bytes) External Availability The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S.

233

EIA - The National Energy Modeling System: An Overview 2003-Residential  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The National Energy Modeling System: An Overview 2003 Residential Demand Module Figure 5. Residential Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Residential Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. NEMS Residential Module Equipment Summary Table. Need help, contact the National Energy Information Center at 202-586-8800. Characteristics of Selected Equipment Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from

234

Advanced Modeling and Simulation Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Modeling & Simulation » Advanced Modeling Advanced Modeling & Simulation » Advanced Modeling and Simulation Documents Advanced Modeling and Simulation Documents October 30, 2013 NEAMS Quarterly Report April-June 2013 The Nuclear Energy Advanced Modeling and Simulation (NEAMS) quarterly report includes highlights, fuel and reactor product line accomplishments, recent and upcoming milestones, news on BISON fuel benchmarks, the latest MeshKit release features, and information on numerical simulations of pebble-bed reactor cores performed by the thermal hydraulics team. September 9, 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan is to define what the NEAMS

235

An Evaluation of Biomass Energy Potential with a Global Energy and Land Use Model  

Science Journals Connector (OSTI)

The authors evaluate global land use competition and bioenergy potential through developing a global energy and land use model using a SD ... The model describes competition among various uses of biomass such as ...

H. Yamamoto; K. Yamaji

1997-01-01T23:59:59.000Z

236

Stochastic model for energy commercialisation of small hydro plants in the Brazilian energy market  

Science Journals Connector (OSTI)

This paper presents a stochastic model for energy commercialisation strategies of small hydro plants (SHPs) in the Brazilian electricity market. The model aims to find the maximum ... of the generation company, c...

Vitor L. de Matos; Mauro A. G. Sierra; Erlon C. Finardi

2014-04-01T23:59:59.000Z

237

Biofuels Techno-Economic Models | Open Energy Information  

Open Energy Info (EERE)

Biofuels Techno-Economic Models Biofuels Techno-Economic Models Jump to: navigation, search Tool Summary Name: Biofuels Techno-Economic Models Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Renewable Energy, Transportation Phase: Evaluate Options Topics: Potentials & Scenarios Resource Type: Software/modeling tools Website: www1.eere.energy.gov/analysis/tools.html#2 OpenEI Keyword(s): EERE tool, Biofuels Techno-Economic Models Language: English References: Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol[1] Model the production cost for ethanol to assess its competitiveness and market potential; quantify the economic impact of individual conversion performance targets and prioritize these in terms of their potential to

238

Decision Models for Bulk Energy Transportation  

E-Print Network [OSTI]

(ISU - Randy Larabee) · City of Ames (Ames - Merlin Hove) · MidAmerican Energy (Des Moines - Alan O of emission allowances? 5. What data can be made available to us? 6. Would you be interested in employing one in a description/depiction, a clear articulation of the "other flows" in the US energy system: · Information

Tesfatsion, Leigh

239

Modeling the Energy Efficiency of Heterogeneous Clusters  

E-Print Network [OSTI]

on heterogeneous clusters ­ Unexplored from energy-time performance perspective 10-Sep-14 ICPP 2014 7 #12;Objectiveth September 2014 43rd International Conference on Parallel Processing, Minneapolis, MN, USA #12;Outline · Motivation · Objective · Methodology · Analysis · Conclusions 10-Sep-14 2ICPP 2014 #12;Energy

Teo, Yong-Meng

240

Threshold 21 Model | Open Energy Information  

Open Energy Info (EERE)

Threshold 21 Model Threshold 21 Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Threshold 21 Model Agency/Company /Organization: Millennium Institute Sector: Climate Topics: Co-benefits assessment, - Macroeconomic, Pathways analysis Resource Type: Software/modeling tools Complexity/Ease of Use: Moderate Website: www.millenniuminstitute.net/integrated_planning/tools/T21/index.html#r Cost: Free Threshold 21 Model Screenshot References: Threshold 21 Model[1] Related Tools MIT Emissions Prediction and Policy Analysis (EPPA) Model Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Electricity Markets Analysis (EMA) Model

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Definition: Numerical Modeling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Numerical Modeling Jump to: navigation, search Dictionary.png Numerical Modeling A computer model that is designed to simulate and reproduce the mechanisms of a particular system.[1] View on Wikipedia Wikipedia Definition A computer simulation, a computer model, or a computational model is a computer program, run on a single computer, or a network of computers, that attempts to simulate an abstract model of a particular system. Computer simulations have become a useful part of mathematical modeling of many natural systems in physics, astrophysics, chemistry and biology, human systems in economics, psychology, social science, and engineering. Simulation of a system is represented as the running of the system's model.

242

Modeling Interregional Transmission Congestion in the National Energy Modeling System  

E-Print Network [OSTI]

Abbreviations AEO DOE ECAR ECP EERE EFD EIA EMM ERCOT FERCBudget and Analysis Program of EERE Rocky Mountain, Arizona,Efficiency and Renewable Energy (EERE) Program supports many

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-01-01T23:59:59.000Z

243

Developing an Energy Performance Modeling Startup Kit  

SciTech Connect (OSTI)

In 2011, the NAHB Research Center began the first part of the multi-year effort by assessing the needs and motivations of residential remodelers regarding energy performance remodeling. The scope is multifaceted - all perspectives will be sought related to remodeling firms ranging in size from small-scale, sole proprietor to national. This will allow the Research Center to gain a deeper understanding of the remodeling and energy retrofit business and the needs of contractors when offering energy upgrade services. To determine the gaps and the motivation for energy performance remodeling, the NAHB Research Center conducted (1) an initial series of focus groups with remodelers at the 2011 International Builders' Show, (2) a second series of focus groups with remodelers at the NAHB Research Center in conjunction with the NAHB Spring Board meeting in DC, and (3) quantitative market research with remodelers based on the findings from the focus groups. The goal was threefold, to: Understand the current remodeling industry and the role of energy efficiency; Identify the gaps and barriers to adding energy efficiency into remodeling; and Quantify and prioritize the support needs of professional remodelers to increase sales and projects involving improving home energy efficiency. This report outlines all three of these tasks with remodelers.

Wood, A.

2012-10-01T23:59:59.000Z

244

Human Behavior and Energy Use: Modeling the Relationships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Human Behavior and Energy Use: Modeling the Relationships Human Behavior and Energy Use: Modeling the Relationships Speaker(s): Bin Shui Thomas Sanquist Date: July 29, 2009 - 12:00pm Location: 90-3122 This presentation summarizes the conceptual framework and some initial data analyses for a Laboratory Directed Research and Development project to develop models of the relationships between human behavior, energy use, climate change and national/international security. A brief history of social science in energy research is provided, followed by methods and data from an approach involving Consumer Lifestyle Analysis. Growth patterns in energy usage in the residential and personal travel sectors are illustrated, along with the indirect energy requirements to support that usage. General research needs in the area of behavior are discussed, some

245

Property:Buildings/ModelName | Open Energy Information  

Open Energy Info (EERE)

ModelName ModelName Jump to: navigation, search This is a property of type String. Pages using the property "Buildings/ModelName" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago High Plug Load Baseline + General Merchandise 2009 TSD Chicago High Plug Load Baseline + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings +

246

An Integrated Framework for Parametric Design Using Building Energy Models  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Integrated Framework for Parametric Design Using Building Energy Models An Integrated Framework for Parametric Design Using Building Energy Models Speaker(s): Bryan Eisenhower Date: September 22, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter In this talk we will present a framework for analyses of building energy models including uncertainty and sensitivity analysis, optimization, calibration, and failure mode effect analysis. The methodology begins with efficient uniformly ergodic numerical sampling and regression analysis based on machine learning to derive an analytic representation of the full energy model (e.g. EnergyPlus, TRNSYS, etc). Once these steps are taken, and an analytical representation of the dynamics is obtained, multiple avenues for analysis are opened that were previously impeded by the

247

Modelling energy efficiency of OR protocols in wireless networks  

Science Journals Connector (OSTI)

Although opportunistic routing (OR) for ad hoc networks have been shown to improve network throughput, energy audit of these protocols have not been done. In this paper, an analytical model to characterise the energy consumption of OR protocols is presented. Total energy consumption is computed taking into account the energy consumed in exchanging control packets, data packet transmission including retransmission and reception. The model considers packet retransmissions that can occur due to network conditions and protocol inaccuracies. The proposed analytical model is used to compute the energy consumption of some well known OR protocols available in literature. The result of the mathematical model is compared with simulation results. The theoretical and experimental results are found to be in conformance.

Arka Prokash Mazumdar; Anandghan Waghmare; Ashok Singh Sairam

2014-01-01T23:59:59.000Z

248

NREL's Building Component Library for Use with Energy Models  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Building Component Library (BCL) is the U.S. Department of Energys comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

249

Policy Analysis Modeling System (PAMS) | Open Energy Information  

Open Energy Info (EERE)

Analysis Modeling System (PAMS) Analysis Modeling System (PAMS) (Redirected from Policy Analysis Modeling System) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Analysis Modeling System Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Spreadsheet Website: clasponline.org/ResourcesTools/Tools/PolicyAnalysisModelingSystem Equivalent URI: cleanenergysolutions.org/content/policy-analysis-modeling-system-pams Regulations: "Appliance & Equipment Standards and Required Labeling,Net Metering & Interconnection" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

250

Biotrans: Cost Optimization Model | Open Energy Information  

Open Energy Info (EERE)

Biotrans: Cost Optimization Model Biotrans: Cost Optimization Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biotrans: Cost Optimization Model Focus Area: Ethanol Topics: Market Analysis Website: www.ecn.nl/units/ps/models-and-tools/biotrans/ Equivalent URI: cleanenergysolutions.org/content/biotrans-cost-optimization-model,http Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation BIOTRANS optimizes the biofuel supply chain allocation by finding the least-cost configuration of resources and trade to meet a specified biofuel demand in the European transportation sector. The user can constrain the optimization by inputting a number of economic and technological assumptions for a specific target year. References Retrieved from

251

Model documentation Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

NONE

1996-01-01T23:59:59.000Z

252

Testing and selecting dark energy models with lens redshift data  

Science Journals Connector (OSTI)

In this paper, we compare seven popular dark energy models under the assumption of a flat universe by using the latest observational data of gravitationally-lensed image separations observed in the Cosmic Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital Sky Survey (SDSS) and other surveys, which are (nearly) complete for the image separation range 0??.3????7??. We combine the 29 lens redshift data with the cosmic microwave background (CMB) observation from the Wilkinson Microwave Anisotropy Probe (WMAP7) results, the baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) Data Release. The model comparison statistic, the Bayesian information criterion is also applied to assess the worth of the models. This statistic favors models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For the other dynamical dark energy models, we find that some of them, such as the Ricci dark energy model, the Affine equation-of-state dark energy, and the generalized Chaplygin gas, can provide good fits to the current data. The Dvali-Gabadadze-Porrati model is the only one-parameter model that can give a rather good fit but also nest ? while the three-parameter model, namely, the interactive dark energy, is clearly disfavored by the data, as it is unable to provide a good fit.

Shuo Cao; Zong-Hong Zhu; Ren Zhao

2011-07-07T23:59:59.000Z

253

Modelling and Assessment of Energy Demand  

Science Journals Connector (OSTI)

Until the four-fold increase in oil prices in 1973 energy* was generally taken as abundantly available cheap commodity with the result that its consumption was increasing very rapidly. It increased by a factor...

A. M. Khan

1984-01-01T23:59:59.000Z

254

Generation and Transmission Maximization Model | Open Energy Information  

Open Energy Info (EERE)

Generation and Transmission Maximization Model Generation and Transmission Maximization Model Jump to: navigation, search Tool Summary Name: Generation and Transmission Maximization Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.dis.anl.gov/projects/Gtmax.html Cost: Paid Generation and Transmission Maximization Model Screenshot References: Generation and Transmission Maximization Model [1] Logo: Generation and Transmission Maximization Model The GTMax model helps researchers study complex marketing and system operational issues. With the aid of this comprehensive model, utility operators and managers can maximize the value of the electric system, taking into account not only its limited energy and transmission resources,

255

Modeling and Simulation for Nuclear Reactors Hub | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub August 1, 2010 - 4:20pm Addthis Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas of energy science and engineering from the earliest stages of research to the point of commercialization where technologies can move to the private sector by bringing together leadings scientists to collaborate on critical energy challenges. The Energy Innovation Hubs aim to develop innovation through a unique

256

Energy Harvesting Enabled Wireless Sensor Networks: Energy Model and Battery Dimensioning  

E-Print Network [OSTI]

, Battery Dimensioning 1. INTRODUCTION Advances in micro-electro-mechanical systems (MEMS) as a technologyEnergy Harvesting Enabled Wireless Sensor Networks: Energy Model and Battery Dimensioning Raul to the required energy for the communication process creates the necessity of temporal storage. Unfortu- nately

Politècnica de Catalunya, Universitat

257

A single model of interacting dark energy: generalized phantom energy or generalized Chaplygin gas  

E-Print Network [OSTI]

I present a model in which dark energy interacts with matter. The former is represented by a variable equation of state. It is shown that the phantom crossing takes place at zero redshift, moreover, stable scaling solution of the Friedmann equations is obtained. I show that dark energy is most probably be either generalized phantom energy or the generalized Chaplygin gas.

Mubasher Jamil

2009-12-22T23:59:59.000Z

258

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

curves Renewable energy supply curves Least cost dispatchcosts and performance of all conventional power and renewable energyrenewable portfolio standard Stochastic Energy Deployment System model Union of Concerned Scientists weighted average cost

Blair, N.

2010-01-01T23:59:59.000Z

259

Modeling-Computer Simulations | Open Energy Information  

Open Energy Info (EERE)

Modeling-Computer Simulations Modeling-Computer Simulations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling-Computer Simulations Details Activities (78) Areas (31) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Cost Information Low-End Estimate (USD): 85.008,500 centUSD 0.085 kUSD 8.5e-5 MUSD 8.5e-8 TUSD / hour Median Estimate (USD): 195.0019,500 centUSD

260

Property:BrophyModel | Open Energy Information  

Open Energy Info (EERE)

BrophyModel BrophyModel Jump to: navigation, search Property Name BrophyModel Property Type Page Description Application of Brophy's occurrence models to each area based on its tectonic and structural setting. See also Brophy Occurrence Models Allows Values Type A: Magma-heated, Dry Steam Resource;Type B: Andesitic Volcanic Resource;Type C: Caldera Resource;Type D: Sedimentary-hosted, Volcanic-related Resource;Type E: Extensional Tectonic, Fault-Controlled Resource;Type F: Oceanic-ridge, Basaltic Resource This is a property of type Page. Subproperties This property has the following 3 subproperties: L Lightning Dock Geothermal Area V Valles Caldera - Redondo Geothermal Area Valles Caldera - Sulphur Springs Geothermal Area Pages using the property "BrophyModel"

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data and Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, and fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

262

Advanced Financing Models | Department of Energy  

Energy Savers [EERE]

models, third-party vendors, and green bonds. In addition to providing details about renewable project financing, presenters will cover federal and state incentives, local...

263

Wave Energy Converter Extreme Conditions Modeling Workshop |...  

Open Energy Info (EERE)

adopted extreme conditions design, modeling, and analysis techniques developed for offshore oil & gas and naval architecture applications. While leveraging these existing design...

264

A New Model to Simulate Energy Performance of VRF Systems  

SciTech Connect (OSTI)

This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real houses under real operating conditions will vary.

Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

2014-03-30T23:59:59.000Z

265

SimModel: A domain data model for whole building energy simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SimModel: A domain data model for whole building energy simulation SimModel: A domain data model for whole building energy simulation Title SimModel: A domain data model for whole building energy simulation Publication Type Conference Paper LBNL Report Number LBNL-5566E Year of Publication 2011 Authors O'Donnell, James, Richard See, Cody Rose, Tobias Maile, Vladimir Bazjanac, and Philip Haves Conference Name IBPSA Building Simulation 2011 Date Published 10/2011 Abstract Many inadequacies exist within industry-standard data models as used by present-day whole-building energy simulation software. Tools such as EnergyPlus and DOE-2 use custom schema definitions (IDD and BDL respectively) as opposed to standardized schema definitions (defined in XSD, EXPRESS, etc.). Non-standard data modes lead to a requirement for application developers to develop bespoke interfaces. Such tools have proven to be error prone in their implementation - typically resulting in information loss.

266

Comparison between the SIMPLE and ENERGY mixing models  

SciTech Connect (OSTI)

The SIMPLE and ENERGY mixing models were compared in order to investigate the limitations of SIMPLE's analytically formulated mixing parameter, relative to the experimentally calibrated ENERGY mixing parameters. For interior subchannels, it was shown that when the SIMPLE and ENERGY parameters are reduced to a common form, there is good agreement between the two models for a typical fuel geometry. However, large discrepancies exist for typical blanket (lower P/D) geometries. Furthermore, the discrepancies between the mixing parameters result in significant differences in terms of the temperature profiles generated by the ENERGY code utilizing these mixing parameters as input. For edge subchannels, the assumptions made in the development of the SIMPLE model were extended to the rectangular edge subchannel geometry used in ENERGY. The resulting effective eddy diffusivities (used by the ENERGY code) associated with the SIMPLE model are again closest to those of the ENERGY model for the fuel assembly geometry. Finally, the SIMPLE model's neglect of a net swirl effect in the edge region is most limiting for assemblies exhibiting relatively large radial power skews.

Burns, K.J.; Todreas, N.E.

1980-07-01T23:59:59.000Z

267

Policy Analysis Modeling System (PAMS) | Open Energy Information  

Open Energy Info (EERE)

Policy Analysis Modeling System (PAMS) Policy Analysis Modeling System (PAMS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Analysis Modeling System Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Spreadsheet Website: clasponline.org/ResourcesTools/Tools/PolicyAnalysisModelingSystem Equivalent URI: cleanenergysolutions.org/content/policy-analysis-modeling-system-pams Regulations: "Appliance & Equipment Standards and Required Labeling,Net Metering & Interconnection" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

268

Business Models for Code Compliance | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compliance Compliance Site Map Printable Version Development Adoption Compliance Basics Compliance Evaluation Software & Web Tools Regulations Resource Center Business Models for Code Compliance The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to demonstrate, quantify, and monetize energy code compliance and coordinate deployment at the local, state, and regional levels. Consumer Assurance through Code Compliance Energy efficiency measures in the buildings sector, if properly realized and captured, provide a tremendous opportunity to reduce energy consumption and expenditures. Yet currently there is a lack of assurance that buildings as designed realize the levels of energy efficiency established in the

269

Building an Efficient Model for Afterburn Energy Release  

SciTech Connect (OSTI)

Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

2012-02-03T23:59:59.000Z

270

Model Wind Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Model Wind Ordinance Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider North Carolina Department of Commerce ''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority.'' In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model

271

National Strategic Unconventional Resource Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In 2009 the Model was revised to update the cost data in the first Model. This second revision of the Model adds a fifth Hybrid technology that can be evaluated economically; and it also adds the capability of determining water requirements, CO2 production, and energy efficiency for the first four technologies. Subject to the

272

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

VISION Model for Vehicle Technologies and Alternative Fuels VISION Model for Vehicle Technologies and Alternative Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: VISION Model for Vehicle Technologies and Alternative Fuels Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Create a Vision Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/VISION/ OpenEI Keyword(s): EERE tool, VISION Model for Vehicle Technologies and Alternative Fuels References: The VISION Model [1] Estimate the potential energy use, oil use, and carbon emission impacts of advanced light and heavy-duty vehicle technologies and alternative fuels through 2050. The VISION model has been developed to provide estimates of the potential

273

National Strategic Unconventional Resource Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In 2009 the Model was revised to update the cost data in the first Model. This second revision of the Model adds a fifth Hybrid technology that can be evaluated economically; and it also adds the capability of determining water requirements, CO2 production, and energy efficiency for the first four technologies. Subject to the

274

Integrating Empirical Measures of Energy Efficiency into an Energy Modeling Framework  

E-Print Network [OSTI]

Integrating Empirical Measures of Energy Efficiency Into An Energy Modeling Framework Gale Boyd, Argonne National Laboratory Tools such as Data Envelopment Analysis and Stochastic Frontier Regressions provide a basis for empirical measures... of efficiency. The definition of efficiency these tools encompass can be as broadly defined as total factor productivity, or narrowly defined in terms of single inputs like energy. Given the ability to generate empirical measures of energy efficiency...

Boyd, G.

2006-01-01T23:59:59.000Z

275

Energy efficiency and renewable energy integration in data centres. Strategies and modelling review  

Science Journals Connector (OSTI)

Abstract The continuous growth in size, complexity and energy density of data centres due to the increasing demand for storage, networking and computation has become a worldwide energetic problem. The emergent awareness of the negative impact that the uncontrolled energy consumption has on natural environment, the predicted limitation of fossil fuels production in the upcoming decades and the growing associated costs have strongly influenced the energy systems engineering work in the last decades. Therefore, the implementation of well known and advanced energy efficiency measures to reduce data centres energy demand play an important role not only to a supportable growth but also to reduce its operational costs. The carbon footprint is greatly influenced by the energy sources used. Therefore, there have been recent efforts to exploit and reuse or combine green energy sources in data centres to lower brown energy consumption and CO2 emissions. This paper presents a comprehensible overview of the current data centre infrastructure and summarizes a number of currently available energy efficiency strategies and renewable energy integration into data centres and its characterization using numerical models. Moreover it would be necessary to develop dynamic models and metrics for properly understand and quantify the energy consumption and the benefits of applying the incoming energy efficiency strategies and renewable energy sources in the data centres. Thus, the researches or investors will be able to compare with reliability the different data centre designs and choose the best option depending on the renewable energy sources and capital available.

Eduard Or; Victor Depoorter; Albert Garcia; Jaume Salom

2015-01-01T23:59:59.000Z

276

The National Energy Modeling System: An Ocerview 2000 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface The National Energy Modeling System: An Overview provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2020 for the Annual Energy Outlook 2000 (AEO2000), (DOE/EIA-0383(2000)), released in November 1999. AEO2000 presents national forecasts of energy markets for five cases—a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The Overview presents a brief description of the methodology and scope of each of the component modules of NEMS. The model documentation reports listed in the appendix of this document provide further details.

277

Modeling Windows in Energy Plus with Simple Performance Indices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Windows in Energy Plus with Simple Performance Indices Modeling Windows in Energy Plus with Simple Performance Indices Title Modeling Windows in Energy Plus with Simple Performance Indices Publication Type Report LBNL Report Number LBNL-2804E Year of Publication 2009 Authors Arasteh, Dariush K., Christian Kohler, and Brent T. Griffith Date Published 10/2009 Call Number LBNL-2804E Abstract The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: performance metrics measurement system requirements data acquisition and archiving data visualization and reporting The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance.

278

An evaluation of the ORNL residential energy use model  

E-Print Network [OSTI]

This report provides an evaluation of the architecture, empirical foundation, and applications of the Oak Ridge National Laboratory (ORNL) residential energy use model. A particular effort is made to identify the strengths ...

McFadden, Daniel

1981-01-01T23:59:59.000Z

279

Find Your STEM Role Model: Google+ Hangout | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

recognize a role model or two that inspired you to take your current path. That's why NASA and the Energy Department are teaming up on Wednesday, March 5, 2014 at 1pm EST to host...

280

Dynamic energy budget approaches for modelling organismal ageing  

Science Journals Connector (OSTI)

...quantitative approach. New York, NY: Harwood Academic...1928 The rate of living. New York, NY: Knopf. Ricklefs...A. L. M. 2010 Dynamic energy budget theory restores coherence...Nothobranchius furzeri as a new model system for aging studies...

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heat Pump Water Heater Modeling in EnergyPlus (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL's development of a HPWH model for use in hourly building energy simulation programs, such as BEopt; this presentation was given at the Building America Stakeholder meeting on March 1, 2012, in Austin, Texas.

Wilson, E.; Christensen, C.

2012-03-01T23:59:59.000Z

282

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network [OSTI]

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

Alexander, J.

283

An energy-economic oil production model  

Science Journals Connector (OSTI)

......underlying economic factors such as labour or capital investment into oil infrastructure...L, Res), (1.4) where K denotes capital; L, labour and Res, natural resources...including other energy sources such as natural gas, coal, hydro and nuclear power, and......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

284

Random-energy model: An exactly solvable model of disordered systems  

Science Journals Connector (OSTI)

A simple model of disordered systemsthe random-energy modelis introduced and solved. This model is the limit of a family of disordered models, when the correlations between the energy levels become negligible. The model exhibits a phase transition and the low-temperature phase is completely frozen. The corrections to the thermodynamic limit are discussed in detail. The magnetic properties are studied, and a constant susceptibility is found at low temperature. The phase diagram in the presence of ferromagnetic pair interactions is described. Many results are qualitatively the same as those of the Sherrington-Kirkpatrick model. The problem of using the replica method is analyzed. Lastly, this random-energy model provides lower bounds for the ground-state energy of a large class of spin-glass models.

Bernard Derrida

1981-09-01T23:59:59.000Z

285

Petroleum Market Model of the National Energy Modeling System  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

NONE

1997-01-01T23:59:59.000Z

286

Coupling Air Flow Models to Load/Energy Models and Implications for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coupling Air Flow Models to Load/Energy Models and Implications for Coupling Air Flow Models to Load/Energy Models and Implications for Envelope Component Testing and Modeling Speaker(s): Brent Griffith Date: July 30, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Dariush Arasteh Air models allow accounting for air temperature variations within a thermal zone or along the surface of an envelope component. A recently completed ASHRAE research project (RP-1222) produced a source code toolkit focused on coupling airflow models to load routines typical of whole building energy simulation. The two modeling domains are computed separately (and iteratively) with relevant temperature boundary conditions passed back and forth. One of the air models in the toolkit is a new contribution to crude/fast airflow modeling that is based on solving the Euler equation

287

Simulation Models to Optimize the Energy Consumption of Buildings  

E-Print Network [OSTI]

Page 1 of paper submitted to ICEBO 2008 Berlin SIMULATION MODELS TO OPTIMIZE THE ENERGY CONSUMPTION OF BUILDINGS Sebastian Burhenne Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany Dirk Jacob Fraunhofer...-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT In practice, building operation systems are only adjusted during commissioning. This is done manually and leads to failure-free but often inefficient operation. This work deals...

Burhenne, S.; Jacob, D.

288

Evaluation of Energy Conservation Measures by Model Simulation  

E-Print Network [OSTI]

Evaluation of Energy Conservation Measures by Model Simulation Tim Giebler. Mingsheng Liu, and David Claridge Energy Systems Laboratory Texas A&M University Abstract Numerous energy conservation measures are being implemented into the air..., leaving the cold deck set point constant. Hot and cold deck reset schedules optimized according to outside air temperature have been studied and documented by Liu et a1 [3,4]. Knowledge of outside air dew point temperature or relative humidity can...

Giebler, T.; Liu, M.; Claridge, D. E.

1998-01-01T23:59:59.000Z

289

Brophy Occurrence Models | Open Energy Information  

Open Energy Info (EERE)

Brophy Occurrence Models Brophy Occurrence Models Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Brophy Occurrence Models Dictionary.png Brophy Occurrence Models: Paul Brophy has classified geothermal areas based on a variety of properties such as tectonic setting, controlling structures, and fluid properties. Other definitions:Wikipedia Reegle Type Examples Topography Climate Depth to Resource (m) Surface Manifestations Permeability Type A: Magma-heated, Dry Steam Resource The Geysers Rugged to mountainous Variable Usually deep (2500-4000) Restricted Low to moderate fracture permeability Type B: Andesitic Volcanic Resource Philippines, Indonesia, Central and South America Usually mountainous Variable - usually high precipitation Deep to moderate Restricted, depending on depth and shallow ground water Low to moderate fracture permeability - often high

290

Modeling the Performance and Energy of Storage Arrays  

E-Print Network [OSTI]

, it is desirable that techniques provide their energy savings while minimizing their impact on performance. DespiteModeling the Performance and Energy of Storage Arrays Sankaran Sivathanu Georgia Institute techniques for power optimization in storage. Given an ar- bitrary trace of disk requests, we split

Liu, Ling

291

MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES  

E-Print Network [OSTI]

of delivered power and energy capacities. Hydraulic storage or compressed air energy storage (CAES) can be used-turbine to displace a virtual liquid piston for air compression (Figure 1). A dynamic model of the storage system. It is based upon air compression storage using a hydraulic drive, which allows relatively high conversion

Paris-Sud XI, Université de

292

Commercial Buildings Sector Agent-Based Model | Open Energy Information  

Open Energy Info (EERE)

Commercial Buildings Sector Agent-Based Model Commercial Buildings Sector Agent-Based Model Jump to: navigation, search Tool Summary Name: Commercial Buildings Sector Agent-Based Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Buildings - Commercial Phase: Evaluate Options Topics: Implementation Resource Type: Technical report User Interface: Website Website: web.anl.gov/renewables/research/building_agent_based_model.html OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US Commercial Buildings Sector[1] Model the market-participants, dynamics, and constraints-help decide whether to adopt energy-efficient technologies to meet commercial building

293

Heat Pump Water Heating Modeling in EnergyPlus  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Water Heater Modeling Heat Pump Water Heater Modeling in EnergyPlus Building America Residential Energy Efficiency Stakeholder Meeting Eric Wilson Craig Christensen March 1, 2012 2 Modeling Issues Results Motivation Heat Pump Water Heater Modeling... 3 Gap: Existing analysis tools cannot accurately model HPWHs with reasonable runtime. 4 What have we achieved so far? Laboratory Evaluations 14 x Field Monitoring 5 Closing the Gap Laboratory Evaluations 6 sec timestep hourly timestep 14 x Field Monitoring CARB 6 Why is modeling important? * Performance varies: Can't just use EF * System interaction o HPWH affects building heating and cooling o Space conditions affect HPWH performance 7 Modeling Goals * Manage Risks o Accuracy o Run time o Occupant satisfaction * Flexibility to explore the effects of:

294

Electricity Markets Analysis (EMA) Model | Open Energy Information  

Open Energy Info (EERE)

Electricity Markets Analysis (EMA) Model Electricity Markets Analysis (EMA) Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Electricity Markets Analysis (EMA) Model Agency/Company /Organization: Research Triangle Institute Sector: Energy Topics: Co-benefits assessment, - Energy Access, Market analysis Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Advanced Website: www.rti.org/page.cfm?objectid=DDC06637-7973-4B0F-AC46B3C69E09ADA9 RelatedTo: Applied Dynamic Analysis of the Global Economy (ADAGE) Model Electricity Markets Analysis (EMA) Model Screenshot References: Electricity Markets Analysis (EMA) Model[1]

295

FOSSIL2 energy policy model documentation: FOSSIL2 documentation  

SciTech Connect (OSTI)

This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume III lists the model equations and a one line definition for equations, in a short, readable format.

None

1980-10-01T23:59:59.000Z

296

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

297

Free Energy of the Classical Heisenberg Model  

Science Journals Connector (OSTI)

High-temperature power-series expansions for the free energy of a classical Heisenberg ferromagnet in an applied field are given in the form -FNkT=?n,la2 n,lh2nxl, where h=g?Hk T and x=Jk T. The coefficients are given for l?7 and 4?2n?10. Estimates of the critical exponents for the fourth to tenth field derivatives of F are given.

R. L. Stephenson and P. J. Wood

1968-09-10T23:59:59.000Z

298

Business model innovation for sustainable energy: how German municipal utilities invest in offshore wind energy  

Science Journals Connector (OSTI)

Offshore wind energy is considered to have tremendous potential for Germany's future electricity supply. Due to the technology's capital intensity, however, offshore wind energy has so far been considered the domain of large utilities. Municipal utilities on the contrary traditionally have strong ties to their community and conduct low risk business models at the regional and local level. Recently, however, German municipal utilities started to invest in offshore wind energy. Based on a series of interviews with municipal utility executives, the present study identifies two innovative business models and ten key drivers for municipal utilities' engagement in offshore wind energy. It is found that the new business models may have significant further potential and help to stimulate the German market. The present study contributes to the industry debate by identifying business model blueprints for offshore wind and to the academic debate by suggesting three generic types of business model innovation with different characteristics.

Mario Richter

2013-01-01T23:59:59.000Z

299

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

300

BALANCING NATURAL AND ARTIFICIAL LIGHTING IN ENERGY CONSERVING COMMERCIAL GREENHOUSES: A MONTHLY ENERGY MODEL  

Science Journals Connector (OSTI)

ABSTRACT A model is proposed to calculate the heating and lighting energy fluxes in any type of greenhouse. A probabilistic approach is used to estimate the fractional time that the lighting system has to provide supplemental light at a given level. The comparisons with a one-year measured data set are satisfactory. The lamps contributed significantly (42%) to the heating load. The energy conservation potential of adding a thermal curtain or a heat storage is determined. The balance between the natural and artificial light levels is discussed, as well as the constraints to the artificial lighting technology. KEYWORDS Greenhouse, artificial lighting, energy modelling, photosynthetically active radiation, storage, energy conservation.

Christian GUEYMARD

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

302

Coastal Inlet Model Facility | Open Energy Information  

Open Energy Info (EERE)

Inlet Model Facility Inlet Model Facility Jump to: navigation, search Basic Specifications Facility Name Coastal Inlet Model Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 103.6 Beam(m) 48.8 Depth(m) 0.6 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.3 Wave Period Range(s) 2.3 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

303

Sectional Model Flume Facilities | Open Energy Information  

Open Energy Info (EERE)

Sectional Model Flume Facilities Sectional Model Flume Facilities Jump to: navigation, search Basic Specifications Facility Name Sectional Model Flume Facilities Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flume Length(m) 21.3 Beam(m) 1.4 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking No Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe

304

Stimulation Prediction Models | Open Energy Information  

Open Energy Info (EERE)

Stimulation Prediction Models Stimulation Prediction Models Jump to: navigation, search Geothermal ARRA Funded Projects for Stimulation Prediction Models Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

305

Definition: Brophy Occurrence Models | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Brophy Occurrence Models Jump to: navigation, search Dictionary.png Brophy Occurrence Models Paul Brophy has classified geothermal areas based on a variety of properties such as tectonic setting, controlling structures, and fluid properties.[2] References ↑ Colin F. Williams,Marshall J. Reed,Arlene F. Anderson. 2011. Updating the Classification of Geothermal Resources. In: Thirty-Sixth Workshop on Geothermal Reservoir Engineering; 2011/02/02; Stanford, California. Stanford, California: Stanford University; p. ↑ [1] Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Brophy_Occurrence_Models&oldid=699053"

306

Coastal Structures Modeling Complex | Open Energy Information  

Open Energy Info (EERE)

Structures Modeling Complex Structures Modeling Complex Jump to: navigation, search Basic Specifications Facility Name Coastal Structures Modeling Complex Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 54.9 Beam(m) 35.4 Depth(m) 1.4 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Both Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None

307

Coastal Harbors Modeling Facility | Open Energy Information  

Open Energy Info (EERE)

Modeling Facility Modeling Facility Jump to: navigation, search Basic Specifications Facility Name Coastal Harbors Modeling Facility Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 121.9 Beam(m) 48.8 Depth(m) 0.5 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.3 Wave Period Range(s) 2.3 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system

308

Energy landscape of a simple model for strong liquids  

E-Print Network [OSTI]

We calculate the statistical properties of the energy landscape of a minimal model for strong network-forming liquids. Dynamics and thermodynamic properties of this model can be computed with arbitrary precision even at low temperatures. A degenerate disordered ground state and logarithmic statistics for the energy distribution are the landscape signatures of strong liquid behavior. Differences from fragile liquid properties are attributed to the presence of a discrete energy scale, provided by the particle bonds, and to the intrinsic degeneracy of topologically disordered networks.

A. J. Moreno; S. V. Buldyrev; E. La Nave; I. Saika-Voivod; F. Sciortino; P. Tartaglia; E. Zaccarelli

2005-10-04T23:59:59.000Z

309

Natural gas transmission and distribution model of the National Energy Modeling System  

SciTech Connect (OSTI)

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

NONE

1997-02-01T23:59:59.000Z

310

Framework for Coupling Room Air Models to Heat Balance Model Load and Energy Calculations (RP-1222)  

E-Print Network [OSTI]

for Buildings and Thermal Systems, National Renewable Energy Laboratory, Golden, Colo., and Qingyan (Yan) Chen systems, estimating building energy use and predicting thermal comfort for buildings with buoyancy models with building energy and load calculations as an extension to the ASHRAE Toolkit for Building Load

Chen, Qingyan "Yan"

311

Modelling the very high energy flare of 3C279 using one-zone leptonic model  

Science Journals Connector (OSTI)

......Papers Modelling the very high energy flare of 3C279 using one-zone...AIP Conf. Vol. 745, High Energy Gamma-ray Astronomy: 2nd...International Symposium on High Energy Gamma-Ray Astronomy. Am. Inst. Phys., New York, p. 23. Shu F. H......

S. Sahayanathan; S. Godambe

2012-01-11T23:59:59.000Z

312

Energy efficiency in nonprofit agencies: Creating effective program models  

SciTech Connect (OSTI)

Nonprofit agencies are a critical component of the health and human services system in the US. It has been clearly demonstrated by programs that offer energy efficiency services to nonprofits that, with minimal investment, they can educe their energy consumption by ten to thirty percent. This energy conservation potential motivated the Department of Energy and Oak Ridge National Laboratory to conceive a project to help states develop energy efficiency programs for nonprofits. The purpose of the project was two-fold: (1) to analyze existing programs to determine which design and delivery mechanisms are particularly effective, and (2) to create model programs for states to follow in tailoring their own plans for helping nonprofits with energy efficiency programs. Twelve existing programs were reviewed, and three model programs were devised and put into operation. The model programs provide various forms of financial assistance to nonprofits and serve as a source of information on energy efficiency as well. After examining the results from the model programs (which are still on-going) and from the existing programs, several replicability factors'' were developed for use in the implementation of programs by other states. These factors -- some concrete and practical, others more generalized -- serve as guidelines for states devising program based on their own particular needs and resources.

Brown, M.A.; Prindle, B.; Scherr, M.I.; White, D.L.

1990-08-01T23:59:59.000Z

313

Application-oriented modelling of domestic energy demand  

Science Journals Connector (OSTI)

Abstract Detailed residential energy consumption data can be used to offer advanced services and provide new business opportunities to all participants in the energy supply chain, including utilities, distributors and customers. The increasing interest in the residential consumption data is behind the roll-out of smart meters in large areas and led to intensified research efforts in new data acquisition technologies for the energy sector. This paper introduces a novel model for generation of residential energy consumption profiles based on the energy demand contribution of each household appliance and calculated by using a probabilistic approach. The model takes into consideration a wide range of household appliances and its modular structure provides a high degree of flexibility. Residential consumption data generated by the proposed model are suitable for development of new services and applications such as residential real-time pricing schemes or tools for energy demand prediction. To demonstrate the main features of the model, an individual household consumption was created and the effects of a possible change in the user behaviour and the appliance configuration presented. In order to show the flexibility offered in creation of the aggregated demand, the detailed simulation results of an energy demand management algorithm applied to an aggregated user group are used.

J.K. Gruber; S. Jahromizadeh; M. Prodanovi?; V. Rako?evi?

2014-01-01T23:59:59.000Z

314

Modeling and simulation of HVAC Results in EnergyPlus  

E-Print Network [OSTI]

LBNL-5564E Modeling and simulation of HVAC Results in EnergyPlus Mangesh Basarkar, Xiufeng Pang;MODELING AND SIMULATION OF HVAC FAULTS IN ENERGYPLUS Mangesh Basarkar, Xiufeng Pang, Liping Wang, Philip not capture the significant impact of installation, operational and degradation HVAC system faults on actual

315

Property:Buildings/ModelYear | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelYear Buildings/ModelYear Jump to: navigation, search This is a property of type Date. Pages using the property "Buildings/ModelYear" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami High Plug Load Baseline + 2009 + General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings + 2009 + General Merchandise 2009 TSD Miami Low Plug Load Baseline + 2009 +

316

Water supply and demand in an energy supply model  

SciTech Connect (OSTI)

This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

Abbey, D; Loose, V

1980-12-01T23:59:59.000Z

317

Model selection as a science driver for dark energy surveys  

E-Print Network [OSTI]

A key science goal of upcoming dark energy surveys is to seek time evolution of the dark energy. This problem is one of {\\em model selection}, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments -- supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI, and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI -- and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.

Pia Mukherjee; David Parkinson; Pier Stefano Corasaniti; Andrew R. Liddle; Martin Kunz

2005-12-20T23:59:59.000Z

318

How to obtain the National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

2013-01-01T23:59:59.000Z

319

Linear and nonlinear instabilities in unified dark energy models  

SciTech Connect (OSTI)

We revisit the paradigm of unified dark energy discussing in detail the averaging problem in this type of scenario, highlighting the need for a full nonlinear treatment. We also address the question of if and how models with one or several dark fluids can be observationally distinguished. Simpler and physically clearer derivations of some key results, most notably on the relation between the generalized Chaplygin gas and the standard ({lambda}CDM) 'concordance' model and on a Jeans-type small-scale instability of some coupled dark energy/dark matter models are presented.

Avelino, P. P.; Beca, L. M. G. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Martins, C. J. A. P. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Centro de Astrofisica, Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto (Portugal); Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

2008-03-15T23:59:59.000Z

320

Reference Model 6 (RM6): Oscillating Wave Energy Converter.  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ResPoNSe: modeling the wide variability of residential energy consumption.  

E-Print Network [OSTI]

affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

Peffer, Therese; Burke, William; Auslander, David

2010-01-01T23:59:59.000Z

322

Further Program Development for the Cost Minimizing Global Energy System Model GET-RC.  

E-Print Network [OSTI]

??The linear programming Global Energy Transition (GET) model covers the global energy system and is designed to meet exogenously given energy demand levels, subject to (more)

Andersson, Magnus

2013-01-01T23:59:59.000Z

323

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

324

Model documentation: Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

Not Available

1994-04-01T23:59:59.000Z

325

Model documentation renewable fuels module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA`s ongoing mission to provide analytical and forecasting information systems.

NONE

1997-04-01T23:59:59.000Z

326

Enforcing elemental mass and energy balances for reduced order models  

SciTech Connect (OSTI)

Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length, as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a minimization algorithm based on Lagrangian multiplier method. Enthalpies of product streams are also modified to enforce the energy balance. The approach is illustrated for two ROMs, one based on a CFD model of an entrained-flow gasifier and the other based on the CFD model of a multiphase CO{sub 2} adsorber.

Ma, J.; Agarwal, K.; Sharma, P.; Lang, Y.; Zitney, S.; Gorton, I.; Agawal, D.; Miller, D.

2012-01-01T23:59:59.000Z

327

ORQA: Modeling Energy and Quality of Service within AUTOSAR Models  

E-Print Network [OSTI]

Systems]: Consumer Products--electric vehicle General Terms Design, Management Keywords Autosar, model­21, 2013, Vancouver, BC, Canada. 1. INTRODUCTION The Electric Vehicle (EV) has now reached an industrial CERIE, ESTACA Laval, France 2 MOCS, CACS team Lab-STICC, UEB, UBO Brest, France ABSTRACT Electric

Boyer, Edmond

328

EIA - The National Energy Modeling System: An Overview 2003-Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The National Energy Modeling System: An Overview 2003 Electricity Market Module Figure 9. Electricity Market Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. Electricity Market Module Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. Electricity Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Central-Station Generating Technologies. Need help, contact the National Energy Information Center at 202-586-8800. 2002 Overnight Capital Costs (including Contingencies), 2002 Heat Rates, and Online Year by Technology for the AEO2003 Reference Case Table. Need help, contact the National Energy Information Center at 202-586-8800.

329

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

330

Models and Tools for Evaluating Energy Efficiency and Renewable Energy Project Opportunities  

Broader source: Energy.gov [DOE]

In this webinar, attendees will learn about the models and tools developed by DOE and its partners to assist Tribes in assessing renewable energy and energy efficiency project potential. The webinar is held from 11:00 a.m. to 12:30 p.m. Mountain Standard Time on May 27, 2015.

331

An Energy-Flow Model for Self-Powered Routers and its Application for Energy-Aware Routing  

E-Print Network [OSTI]

of electrical energy. Depen- dence on renewable energy sources and variable power consump- tion make energy trend estimation we develop an energy flow model that accounts for communication and energy, network devices are self-powered, i.e., powered by energy harvested from renewable sources such as wind

Belding-Royer, Elizabeth M.

332

Modelling future private car energy demand in Ireland  

Science Journals Connector (OSTI)

Targeted measures influencing vehicle technology are increasingly a tool of energy policy makers within the EU as a means of meeting energy efficiency, renewable energy, climate change and energy security goals. This paper develops the modelling capacity for analysing and evaluating such legislation, with a focus on private car energy demand. We populate a baseline car stock and car activity model for Ireland to 2025 using historical car stock data. The model takes account of the lifetime survival profile of different car types, the trends in vehicle activity over the fleet and the fuel price and income elasticities of new car sales and total fleet activity. The impacts of many policy alternatives may only be simulated by such a bottom-up approach, which can aid policy development and evaluation. The level of detail achieved provides specific insights into the technological drivers of energy consumption, thus aiding planning for meeting climate targets. This paper focuses on the methodology and baseline scenario. Baseline results for Ireland forecast a decline in private car energy demand growth (0.2%, compared with 4% in the period 20002008), caused by the relative growth in fleet efficiency compared with activity.

Hannah E. Daly; Brian P. Gallachir

2011-01-01T23:59:59.000Z

333

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software  

Broader source: Energy.gov (indexed) [DOE]

Advanced Modeling and Simulation (NEAMS) Software Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan Requirements Version 0.pdf More Documents & Publications NEAMS Quarterly Report for January-March 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

334

ENV-Linkages-KEI Model | Open Energy Information  

Open Energy Info (EERE)

ENV-Linkages-KEI Model ENV-Linkages-KEI Model Jump to: navigation, search Tool Summary Name: ENV-Linkages-KEI Model Agency/Company /Organization: Korea Environment Institute (KEI) Sector: Climate, Energy Complexity/Ease of Use: Moderate Related Tools Healthcare Energy Impact Calculator Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Ex Ante Appraisal Carbon-Balance Tool (EX-ACT) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A recursive dynamic computable general equilibrium model covering 34 sectors and 13 regions. It projects CO2 emissions from feedstock use in petrochemical industry. Approach The model assesses the impacts of Korean and international greenhouse gas mitigation policies on the Korean economy. When to Use This Tool

335

Dark energy model selection with current and future data  

E-Print Network [OSTI]

The main goal of the next generation of weak lensing probes is to constrain cosmological parameters by measuring the mass distribution and geometry of the low redshift Universe and thus to test the concordance model of cosmology. A future all-sky tomographic cosmic shear survey with design properties similar to Euclid has the potential to provide the statistical accuracy required to distinguish between different dark energy models. In order to assess the model selection capability of such a probe, we consider the dark energy equation-of-state parameter $w_0$. We forecast the Bayes factor of future observations, in the light of current information from Planck} by computing the predictive posterior odds distribution. We find that Euclid is unlikely to overturn current model selection results, and that the future data are likely to be compatible with a cosmological constant model. This result holds for a wide range of priors.

Debono, Ivan

2014-01-01T23:59:59.000Z

336

Integrated Global System Modeling Framework | Open Energy Information  

Open Energy Info (EERE)

Integrated Global System Modeling Framework Integrated Global System Modeling Framework Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Integrated Global System Modeling Framework Agency/Company /Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy Phase: Determine Baseline, Evaluate Options Topics: - Macroeconomic Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Not Available Website: globalchange.mit.edu/research/IGSM Cost: Free Related Tools Transport Co-benefits Calculator General Equilibrium Modeling Package (GEMPACK)

337

Dark Energy Models and Laws of Thermodynamics in Bianchi I Model  

E-Print Network [OSTI]

This paper is devoted to check validity of the laws of thermodynamics for LRS Bianchi type I universe model which is filled with combination of dark matter and dark energy. We take two types of dark energy models, i.e., generalized holographic dark energy and generalized Ricci dark energy. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both the models. Further, we take fixed radius $L$ of the apparent horizon with original holographic or Ricci dark energy. We conclude that the first and generalized second laws of thermodynamics do not hold on the horizon of fixed radius $L$ for both the models.

M. Sharif; Rabia Saleem

2013-02-20T23:59:59.000Z

338

Urban energy simulation: Simplification and reduction of building envelope models  

Science Journals Connector (OSTI)

Abstract This paper describes a building model designed for an urban energy simulation tool. In this context, trade-off between computing time and result precision is particularly important. Our methodology involves physical simplifications and model order reduction. The physical simplications are achieved by using equivalent envelopes, linearization scheme and pre-processing, so that a Modelica detailed model can be derived into a linear and time-invariant system using fewer component models. Balanced realization reduction can then be applied on such systems leading finally to a 6-order model. Effects of the simplification and reduction on heating and cooling loads are evaluated using typical building envelope cases. Results show that the simplifications and reduction induce errors under 1% in annual energy consumption and a maximum of 3% in instantaneous values but are accurate enough to reproduce dynamics of the detailed model. Additionally, the final reduced model uses a simple numerical solver and runs in less than 1s without compromising precision for hourly annual simulations being 700 times faster than the detailed model, which is promising for use in urban energy simulation.

Eui-Jong Kim; Gilles Plessis; Jean-Luc Hubert; Jean-Jacques Roux

2014-01-01T23:59:59.000Z

339

Strategies for Energy Efficient Resource Management of Hybrid Programming Models  

SciTech Connect (OSTI)

Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to 13.8%) with some performance gain (up to 7.5%) or negligible performance loss.

Li, Dong [ORNL; Supinski, Bronis de [Lawrence Livermore National Laboratory (LLNL); Schulz, Martin [Lawrence Livermore National Laboratory (LLNL); Nikolopoulos, Dimitrios S [Virginia Polytechnic Institute and State University; Cameron, Kirk W. [Virginia Polytechnic Institute and State University

2013-01-01T23:59:59.000Z

340

Evolution of spherical overdensities in holographic dark energy models  

E-Print Network [OSTI]

In this work we investigate the spherical collapse model in flat FRW dark energy universes. We consider the Holographic Dark Energy (HDE) model as a dynamical dark energy scenario with a slowly time-varying equation-of-state (EoS) parameter $w_{\\rm de}$ in order to evaluate the effects of the dark energy component on structure formation in the universe. We first calculate the evolution of density perturbations in the linear regime for both phantom and quintessence behavior of the HDE model and compare the results with standard Einstein-de Sitter (EdS) and $\\Lambda$CDM models. We then calculate the evolution of two characterizing parameters in the spherical collapse model, i.e., the linear density threshold $\\delta_{\\rm c}$ and the virial overdensity parameter $\\Delta_{\\rm vir}$. We show that in HDE cosmologies the growth factor $g(a)$ and the linear overdensity parameter $\\delta_{\\rm c}$ fall behind the values for a $\\Lambda$CDM universe while the virial overdensity $\\Delta_{\\rm vir}$ is larger in HDE models ...

Naderi, Tayebe; Pace, Francesco

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Model documentation renewable fuels module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

NONE

1995-06-01T23:59:59.000Z

342

Franz Bakery: Model for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Franz Bakery: Model for Sustainability Franz Bakery: Model for Sustainability Franz Bakery: Model for Sustainability April 23, 2010 - 11:05am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE "Bread has never tasted so sustainable" is not just another pithy marketing slogan to make Franz Bakery seem green. The 104-year-old company earned the rights to the promotional phrase-and has the baked goods to back it up. During the last five years, the largest family-owned bakery on the West Coast has incorporated scads of environmentally-friendly practices-from water efficiency to wind energy to waste reduction-into its six locations throughout the Northwest. At the top of that list is the flagship facility in Portland, Ore., which earned the company an energy champion award from

343

Property:Buildings/ModelTargetType | Open Energy Information  

Open Energy Info (EERE)

ModelTargetType ModelTargetType Jump to: navigation, search This is a property of type String. The allowed values for this property are: ASHRAE 90.1 2007 ASHRAE 90.1 2004 ASHRAE 189.1 LEED Pages using the property "Buildings/ModelTargetType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago High Plug Load Baseline + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Chicago Low Plug Load Baseline + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings + ASHRAE 90.1 2004 + General Merchandise 2009 TSD Miami High Plug Load Baseline + ASHRAE 90.1 2004 +

344

Franz Bakery: Model for Sustainability | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Franz Bakery: Model for Sustainability Franz Bakery: Model for Sustainability Franz Bakery: Model for Sustainability April 23, 2010 - 11:05am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE "Bread has never tasted so sustainable" is not just another pithy marketing slogan to make Franz Bakery seem green. The 104-year-old company earned the rights to the promotional phrase-and has the baked goods to back it up. During the last five years, the largest family-owned bakery on the West Coast has incorporated scads of environmentally-friendly practices-from water efficiency to wind energy to waste reduction-into its six locations throughout the Northwest. At the top of that list is the flagship facility in Portland, Ore., which earned the company an energy champion award from

345

SEMATECH: A Model for Advancing Solar Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient manufacturing processes -- and to win the clean energy race, energy technologies not only need to be invented in America, but made in America too. That's why consortiums like SEMATECH in Albany, New York, are so important. Back in the '80s and '90s, SEMATECH breathed new life into the

346

Scenario Modelling: A Holistic Environmental and Energy Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scenario Modelling: A Holistic Environmental and Energy Management Scenario Modelling: A Holistic Environmental and Energy Management Technique for Building Managers Speaker(s): James O'Donnell Date: September 30, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Vladimir Bazjanac At the operational level of organisations, building managers most commonly evaluate environmental and energy performance. They originate from a variety of technical and non-technical backgrounds with corresponding experiences, knowledge and skill sets. The profile of building managers as established in this work accounts for this diverse variation. Building performance data and information that is typically available for the established profile of building managers is insufficient for optimum operation. This presentaion presents the scenario modelling technique

347

Quantum Yang-Mills Condensate Dark Energy Models  

E-Print Network [OSTI]

We review the quantum Yang-Mills condensate (YMC) dark energy models. As the effective Yang-Mills Lagrangian is completely determined by the quantum field theory, there is no adjustable parameter in the model except the energy scale. In this model, the equation-of-state (EOS) of the YMC dark energy, $w_y > -1$ and $w_y 0$ into $w_y < -1$, which is slightly suggested by the observations. At the same time, the total EOS in the attractor solution is $w_{tot} = -1$, the universe being the de Sitter expansion in the late stage, and the cosmic big rip is naturally avoided. These features are all independent of the interacting forms.

Zhao, W; Tong, M L

2009-01-01T23:59:59.000Z

348

Joint energy and reserve markets: Current implementations and modeling trends  

Science Journals Connector (OSTI)

Abstract The continuous penetration of intermittent technologies is gradually reinforcing the technical and economic importance of electricity ancillary services, which are responsible for guaranteeing the reliability and security of the power systems. Generation companies, regulating entities, system operators and other institutions (such as researchers on these fields) are more and more concerned on using market models to forecast most relevant outcomes for particular markets (such as energy and reserves cleared quantities and prices), under different simulation scenarios (such as costs or demand) and under different markets structures (such as more competitive or more oligopolistic). This paper reviews most energy and reserve markets implementations (mainly focusing on reserve types and dispatching methods), and discusses different approaches to model them. A theoretical equilibrium model for energy and reserve markets is also proposed.

Pablo Gonzlez; Jos Villar; Cristian A. Daz; Fco Alberto Campos

2014-01-01T23:59:59.000Z

349

Low Carbon Development: Planning & Modelling Course | Open Energy  

Open Energy Info (EERE)

Low Carbon Development: Planning & Modelling Course Low Carbon Development: Planning & Modelling Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Development: Planning & Modelling Course Agency/Company /Organization: World Bank Sector: Climate Focus Area: Renewable Energy, Economic Development, People and Policy Topics: Low emission development planning, Pathways analysis, Resource assessment Resource Type: Training materials, Workshop Website: einstitute.worldbank.org/ei/course/low-carbon-development Cost: Paid References: Low Carbon Development: Planning & Modelling[1] Program Overview This course has the following modules - (i) Introduction to Low Carbon Development Planning; (ii) Overview for Policymakers; (iii) Power; (iv) Household; (v) Transport - which introduce you to climate change

350

Text-Alternative Version: Webcast of the Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce  

Broader source: Energy.gov [DOE]

This is the Webcast of Renewable Energy and Competency model. Led by Linda Silverman an economist at Energy Efficiency and Renewable Energy and Pam Frugoli Department of Labor. This webcast was on...

351

MIT Emissions Prediction and Policy Analysis (EPPA) Model | Open Energy  

Open Energy Info (EERE)

MIT Emissions Prediction and Policy Analysis (EPPA) Model MIT Emissions Prediction and Policy Analysis (EPPA) Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: MIT Emissions Prediction and Policy Analysis (EPPA) Model Agency/Company /Organization: Massachusetts Institute of Technology (MIT) Topics: Analysis Tools Complexity/Ease of Use: Not Available Website: dspace.mit.edu/handle/1721.1/29790 Cost: Free Related Tools IGES GHG Calculator For Solid Waste Energy and Power Evaluation Program (ENPEP) Regional Economic Models, Inc. (REMI) Model ... further results The part of the MIT Integrated Global Systems Model (IGSM) that represents human systems; a recursive-dynamic multi-regional general equilibrium model

352

Global Trade and Analysis Project (GTAP) Model | Open Energy Information  

Open Energy Info (EERE)

Global Trade and Analysis Project (GTAP) Model Global Trade and Analysis Project (GTAP) Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Global Trade Analysis Project (GTAP) Model Agency/Company /Organization: Purdue University Sector: Climate, Energy Topics: Baseline projection, - Macroeconomic, Market analysis, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Moderate Website: www.gtap.agecon.purdue.edu/models/current.asp Cost: Free References: GTAP[1] Related Tools IGES GHG Calculator For Solid Waste ICCT Roadmap Model Applied Dynamic Analysis of the Global Economy (ADAGE) Model

353

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

354

EIA - The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System: An Overview 2003 This report provides a summary description of the NEMS which was used to generate the projections of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003. Preface Introduction Overview of NEMS Carbon Dioxide and Methane Emissions Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Renewable Fuels Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Bibliography Download the Report NEMS: An Overview 2003 Cover. Need help, contact the National Energy Information Center at 202-586-8800.

355

Pulsar model of the high energy phenomenology of LS 5039  

E-Print Network [OSTI]

Under the assumption that LS 5039 is a system composed by a pulsar rotating around an O6.5V star in a $\\sim 3.9$ day orbit, we present the results of a theoretical modeling of the high energy phenomenology observed by the High Energy Stereoscopy Array (H.E.S.S.). This model (including detailed account of the system geometry, Klein-Nishina inverse Compton, $\\gamma$-$\\gamma$ absorption, and cascading) is able to describe well the rich observed phenomenology found in the system at all timescales, both flux and spectrum-wise.

Agnieszka Sierpowska-Bartosik; Diego F. Torres

2007-10-04T23:59:59.000Z

356

Winding vacuum energies in a deformed O(4) sigma model  

E-Print Network [OSTI]

We consider the problem of calculating the Casimir energies in the winding sectors of Fateev's SS-model, which is an integrable two-parameter deformation of the O(4) non-linear sigma model in two dimensions. This problem lies beyond the scope of all traditional methods of integrable quantum field theory including the thermodynamic Bethe ansatz and non-linear integral equations. Here we propose a solution based on a remarkable correspondence between classical and quantum integrable systems and express the winding energies in terms of certain solutions of the classical sinh-Gordon equation.

Vladimir V. Bazhanov; Gleb A. Kotousov; Sergei L. Lukyanov

2014-09-01T23:59:59.000Z

357

Modeling nonlinear random vibration: Implication of the energy conservation law  

E-Print Network [OSTI]

Nonlinear random vibration under excitations of both Gaussian and Poisson white noises is considered. The model is based on stochastic differential equations, and the corresponding stochastic integrals are defined in such a way that the energy conservation law is satisfied. It is shown that Stratonovich integral and Di Paola-Falsone integral should be used for excitations of Gaussian and Poisson white noises, respectively, in order for the model to satisfy the underlining physical laws (e.g., energy conservation). Numerical examples are presented to illustrate the theoretical results.

Xu Sun; Jinqiao Duan; Xiaofan Li

2012-06-18T23:59:59.000Z

358

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

359

Model documentation report: Commercial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1994-08-01T23:59:59.000Z

360

Global Trade and Environmental Model (GTEM) | Open Energy Information  

Open Energy Info (EERE)

Global Trade and Environmental Model (GTEM) Global Trade and Environmental Model (GTEM) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Global Trade and Environmental Model (GTEM) Agency/Company /Organization: Australia Department of Agriculture, Fisheries, and Forestry (ABARES) Sector: Climate, Energy Topics: Analysis Tools Complexity/Ease of Use: Moderate Website: www.daff.gov.au/abares/publications_remote_content/publication_topics/ Related Tools Environmental Benefits Mapping and Analysis Program (BenMAP) Intertemporal Computable Equilibrium System (ICES) Ventana's Energy, Environment, Economy-Society (E3S) Model ... further results Captures the impact of policy changes on large numbers of economic

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Property:Buildings/ModelBuildingType | Open Energy Information  

Open Energy Info (EERE)

Buildings/ModelBuildingType Buildings/ModelBuildingType Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Model. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Retail Other Than Mall) Mercantile (Enclosed and Strip Malls) Office Public Assembly Public Order and Safety Religious Worship Service Warehouse and Storage Other Vacant Pages using the property "Buildings/ModelBuildingType" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + Mercantile (Retail Other Than Mall) + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Mercantile (Retail Other Than Mall) + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + Mercantile (Retail Other Than Mall) +

362

Mathematical modelling for the social impact to energy efficiency savings  

Science Journals Connector (OSTI)

Abstract In this paper, a mathematical model is formulated to quantify the social impact an individual has on his/her community when he/she performs any energy efficiency project and transmits that information to his/her neighbours. This model is called the expected power savings model; it combines direct and indirect expected power savings of the energy efficiency project for each individual within the network. The indirect savings are quantified through the social interactions people in the network. The example used in this paper illustrates the effectiveness of the model by identifying the households who should have free solar water heaters installed in their residential houses based on their influence through interactions in their community. Two case studies are considered in this paper, single and multiple sources case studies. In the multiple source case study, the results show that it is not necessarily the people with the highest connections who provide the maximum expected power savings.

Uduakobong E. Ekpenyong; Jiangfeng Zhang; Xiaohua Xia

2014-01-01T23:59:59.000Z

363

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper  

Science Journals Connector (OSTI)

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper ... Alumbrera (Argentina) ...

Pilar Swart; Jo Dewulf

2013-11-22T23:59:59.000Z

364

Model for Sustainable Urban Design With Expanded Sections on Distributed Energy Resources, February 2004  

Broader source: Energy.gov [DOE]

Document describing a model design for urban development and redevelopment that will reduce urban energy consumption

365

Small Residence Multizone Modeling with Partial Conditioning for Energy Effieiency in Hot and Humid Climates  

E-Print Network [OSTI]

Energy Conservation Code 2012 and Building America benchmark definitions. A detailed comparison was made between the commonly used energy modeling tools (DOE-2.1e, EnergyPlus and TRNSYS) and a modeling method was developed for the estimation...

Andolsun, Simge

2013-07-30T23:59:59.000Z

366

An inverse PDE-ODE model for studying building energy demand  

Science Journals Connector (OSTI)

Development of an accurate heat transfer model of buildings is of high importance. Such a model can be used for analyzing energy efficiency of buildings, predicting energy consumption and providing decision support for energy efficient operation of buildings. ...

Lianjun An, Young Tae Chae, Raya Horesh, Young Lee, Rui Zhang

2013-12-01T23:59:59.000Z

367

Integrating Photovoltaic Inverter Reliability into Energy Yield Estimation with Markov Models  

E-Print Network [OSTI]

Integrating Photovoltaic Inverter Reliability into Energy Yield Estimation with Markov Models of the inverters. Keywords-Photovoltaic energy conversion, Markov reliability models, utility-interactive inverters, energy yield estimation. I. INTRODUCTION Photovoltaic systems have gained prominence as economically

Liberzon, Daniel

368

Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism  

Science Journals Connector (OSTI)

...somewhat slower to save energy for later). The motivational factors are represented by the...events: modelling human energy conversion and metabolism. | The...computational model for energy conversion during bicycle racing...

2011-01-01T23:59:59.000Z

369

Cooperative Energy Efficiency Modeling and Performance Analysis in Co-Channel Interference Cellular Networks  

Science Journals Connector (OSTI)

......is envis- aged that new energy-efficient system design...network in Fig. 1, a new cooperative energy efficiency model with...Products. Academic Press, New York. The Computer Journal...8, 2013 Cooperative Energy Efficiency Modeling and......

Jing Zhang; Xi Yang; Qi Yao; Xiaohu Ge; Minho Jo; Guoqiang Mao

2013-08-01T23:59:59.000Z

370

On the Use of the Modelling System GAMS at an Energy Study Centre  

Science Journals Connector (OSTI)

......V. M. de Lange of the Energy Study Centre for sharing...linear programming model for energy system analysis. Report...National Laboratory, Upton, New York. [6] KENDRICK, D...LEV, B. (Ed.) 1983 Energy Models and Studies. Amsterdam......

J. J. BISSCHOP; F. VAN OOSTVOORN

1986-01-01T23:59:59.000Z

371

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

372

TEPP Model Needs Assessment Document | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Model Needs Assessment Document Model Needs Assessment Document TEPP Model Needs Assessment Document The purpose of this Model Needs Assessment is to assist state, tribal, or local officials in determining emergency responder readiness for response to a transportation accident involving radioactive material. This Model Needs Assessment was developed by the Department of Energy's Transportation Emergency Preparedness Program (TEPP) as a planning and assessment tool for state, tribal, or local government officials. To implement this Model Needs Assessment, a designated official from the jurisdiction will conduct a self-assessment by answering various questions. By doing so, the official will determine strengths and identify improvement areas. To support the assessment process, and any proposed recommendations for improvement, this document includes

373

Ventana's Energy, Environment, Economy-Society (E3S) Model | Open Energy  

Open Energy Info (EERE)

Ventana's Energy, Environment, Economy-Society (E3S) Model Ventana's Energy, Environment, Economy-Society (E3S) Model Jump to: navigation, search Tool Summary Name: Energy, Environment, Economy-Society (E3S) Model Agency/Company /Organization: Ventana Systems Inc. Partner: United States Department of Energy Sector: Climate, Energy Topics: Co-benefits assessment, - Macroeconomic, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Not Available Website: www.ventanasystems.com/modelpage.php?modelID=11 Country: China UN Region: South-Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy Design in the UK  

E-Print Network [OSTI]

residential energy consumers in the UK by considering property energy efficiency levels, the greenness1 A Three-Dimensional Model of Residential Energy Consumer Archetypes for Local Energy Policy lines of research in residential energy consumption in the UK, i.e. economic/infrastructure, behaviour

Aickelin, Uwe

375

Model documentation Coal Market Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

NONE

1996-04-30T23:59:59.000Z

376

Models of the Prompt and High Energy Emission of GRB  

SciTech Connect (OSTI)

Gamma-ray bursts have been detected at photon energies up to tens of GeV. We review some recent developments in the X-ray to GeV photon phenomenology in the light of Swift and Fermi observations, and some of the theoretical models developed to explain them.

Meszaros, Peter; Toma, Kenji; Wu Xuefeng; He Haoning [Center for Particle Astrophysics, Dept. of Astronomy and Astrophysics and Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States)

2010-10-15T23:59:59.000Z

377

DYNAMIC PHASORS IN MODELING, ANALYSIS AND CONTROL OF ENERGY  

E-Print Network [OSTI]

in: power electronics, electric drives and power systems. NEU Energy Processing Laboratory (1994) is a confluence of research and educational efforts: 1. Areas: power electronics, electric drives and power (ONR YIP) Systems Power Drives Electric Electronics Adaptive Converters Resonant Modeling Load

Stankoviæ, Aleksandar

378

Structured Deformations as Energy Minimizers in Models of Fracture and  

E-Print Network [OSTI]

Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis R. Choksi and for a bar experiencing both smooth exten- sion and macroscopic fractures then are determined, and applications to the shearing of single crystals and to the cohesive fracture of solids are discussed. Yield

379

Development of nuclear models for higher energy calculations  

SciTech Connect (OSTI)

Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs.

Bozoian, M.; Siciliano, E.R.; Smith, R.D.

1988-01-01T23:59:59.000Z

380

Modeling Supermarket Refrigeration Systems with EnergyPlus  

SciTech Connect (OSTI)

Supermarket refrigeration capabilities were first added to EnergyPlus in 2004. At that time, it was possible to model a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles all the building energy uses, typically on a 5 to 10 minute time step throughout the period of interest. The original refrigeration module included the ability to model the sensible and latent interactions between the refrigerated cases and the building HVAC system, along with some basic heat recovery capabilities. Over the last few years, the refrigeration module has been expanded to handle more complex systems, such as secondary loops, shared condensers, cascade condensers, subcoolers, and walk-in coolers exchanging energy with multiple conditioned zones.

Stovall, Therese K [ORNL; Baxter, Van D [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Development of an Energy Consumption Model at a Multi-Product Chemical Plant  

E-Print Network [OSTI]

Carlo technique. In some units, energy consumption does not correlate with production rate, which indicates that energy savings may be possible through better control of energy usage. The model should also lay the framework for an on-line energy...

Wyhs, N. A.; Logsdon, J. E.

1980-01-01T23:59:59.000Z

382

Impacts of Modeled Recommendations of the National Commission on Energy Policy  

Reports and Publications (EIA)

This report provides the Energy Information Administration's analysis of those National Commission on Energy Policy (NCEP) energy policy recommendations that could be simulated using the National Energy Modeling System (NEMS).

2005-01-01T23:59:59.000Z

383

Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration  

E-Print Network [OSTI]

is a whole-building energy modeling program developed byZ. Energy modeling of two office buildings with data centerand Modeling of Occupancy Patterns in Open-Plan Offices using Measured Lighting-Switch Data, Journal of Building

Sun, Kaiyu

2014-01-01T23:59:59.000Z

384

FOSSIL2 energy policy model documentation: FOSSIL2 documentation  

SciTech Connect (OSTI)

This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

None

1980-10-01T23:59:59.000Z

385

Singularity and entropy of the viscosity dark energy model  

E-Print Network [OSTI]

In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter $\\zeta\\propto\\lambda_{0}+\\lambda_{1}(1+z)^{n}$ proposed in the previous work by X.H.Meng and X.Dou in 2009\\cite{md} is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known $\\Lambda$CDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the $Om$ parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are...

Meng, X H

2009-01-01T23:59:59.000Z

386

Commercial Prototype Building Models | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

387

Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Implementing SAV with InCITeTM Title Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Implementing SAV with InCITeTM Publication Type Report LBNL Report Number LBNL-3525E Year of Publication 2010 Authors Wray, Craig P., and Max H. Sherman Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow, building, duct, energy, energy performance of buildings group, fan, hvac, indoor environment department, other, power, retrofits, simulation, system Abstract This project addressed two significant deficiencies in air-handling systems for large commercial building: duct leakage and duct static pressure reset. Both constitute significant energy reduction opportunities for these buildings. The overall project goal is to bridge the gaps in current duct performance modeling capabilities, and to expand our understanding of air-handling system performance in California large commercial buildings. The purpose of this project is to provide technical support for the implementation of a duct leakage modeling capability in EnergyPlus, to demonstrate the capabilities of the new model, and to carry out analyses of field measurements intended to demonstrate the energy saving potential of the SAV with InCITeTM duct static pressure reset (SPR) technology.A new duct leakage model has been successfully implemented in EnergyPlus, which will enable simulation users to assess the impacts of leakage on whole-building energy use and operation in a coupled manner. This feature also provides a foundation to support code change proposals and compliance analyses related to Title 24 where duct leakage is an issue. Our example simulations continue to show that leaky ducts substantially increase fan power: 10% upstream and 10% downstream leakage increases supply fan power 30% on average compared to a tight duct system (2.5% upstream and 2.5% downstream leakage). Much of this increase is related to the upstream leakage rather than to the downstream leakage. This does not mean, however, that downstream leakage is unimportant. Our simulations also demonstrate that ceiling heat transfer is a significant effect that needs to be included when assessing the impacts of duct leakage in large commercial buildings. This is not particularly surprising, given that "ceiling regain" issues have already been included in residential analyses as long as a decade ago (e.g., ASHRAE Standard 152); mainstream simulation programs that are used for large commercial building energy analyses have not had this capability until now. Our analyses of data that we collected during our 2005 tests of the SAV with InCITeTM duct static pressure reset technology show that this technology can substantially reduce fan power (in this case, by about 25 to 30%). Tempering this assessment, however, is that cooling and heating coil loads were observed to increase or decrease significantly depending on the time window used. Their impact on cooling and heating plant power needs to be addressed in future studies; without translating the coil loads to plant equipment energy use, it is not possible to judge the net impact of this SPR technology on whole-building energy use. If all of the loads had decreased, such a step would not be as necessary.

388

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

389

General Equilibrium Modeling Package (GEMPACK) | Open Energy Information  

Open Energy Info (EERE)

General Equilibrium Modeling Package (GEMPACK) General Equilibrium Modeling Package (GEMPACK) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: General Equilibrium Modeling Package (GEMPACK) Agency/Company /Organization: Centre of Policy Studies, Monash University Sector: Climate Topics: Analysis Tools Complexity/Ease of Use: Advanced Website: www.monash.edu.au/policy/gempack.htm Cost: Paid Related Tools Ex Ante Appraisal Carbon-Balance Tool (EX-ACT) MIT Emissions Prediction and Policy Analysis (EPPA) Model Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) ... further results A system for computable general equilibrium economic modeling, produced and

390

Descriptive Model of a Generic WAMS | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Descriptive Model of a Generic WAMS Descriptive Model of a Generic WAMS Descriptive Model of a Generic WAMS The Department of Energy's (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation's electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study. Descriptive Model of a Generic WAMS More Documents & Publications Securing Wide Area Measurement Systems 2012 Advanced Applications Research & Development Peer Review - Day 1

391

Hybrid Power System Simulation Model | Open Energy Information  

Open Energy Info (EERE)

Hybrid Power System Simulation Model Hybrid Power System Simulation Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hybrid Power System Simulation Model Focus Area: Renewable Energy Topics: System & Application Design Website: www.umass.edu/windenergy/OLD_SITE/projects/hybrid2/ Equivalent URI: cleanenergysolutions.org/content/hybrid-power-system-simulation-model, Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This tool performs detailed long-term performance and economic analysis on a wide variety of hybrid power systems. It is a probabilistic/time-series computer model, using time-series data for loads, wind speed, solar insolation, temperature, and the power system designed or selected by the user, to predict the performance of the hybrid power system. An economic

392

Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing  

E-Print Network [OSTI]

XXXXX Commercial Building Energy Baseline Modeling Software:2013 Commercial Building Energy Baseline Modeling Software:evaluating the building-level baseline modeling capabilities

Price, Phillip N

2014-01-01T23:59:59.000Z

393

PART 2. MATHEMATICAL MODELS IN POLLUTION CHAPTER V. MATHEMATICAL MODELS TO ESTIMATE THE ENERGY -  

E-Print Network [OSTI]

of the methodology introduced in a section 5.1, which was used to estimate the atmospheric pollution by the fuelPART 2. MATHEMATICAL MODELS IN POLLUTION CHAPTER V. MATHEMATICAL MODELS TO ESTIMATE THE ENERGY the necessary analysis from the point of view of estimating all the pollution effects in correlation

Baica, Malvina

394

The EFOM 12C energy supply model within the EC modelling system  

Science Journals Connector (OSTI)

This article describes the EC-EFOM 12C model in general and refers where possible to existing documentation. It also reports on the first completed experimental case study and on planned future analysis. This model was developed in one of the research programs undertaken by the European Commission aimed primarily at multinational studies. Data are obtained from research carried out by an interactive network of national implementation teams working with a central group at the Commission. The energy system used is an oriented network carrying the primary energy over intermediate stages till finally meeting consumers' demand. The numerical information, constituting the attributes that characterise the various energy transformation processes, is stored in the European energy data base. About 225 transformation processes distributed over 17 subsystems characterised for six time periods up till 2020 for all EC countries are involved. The management of the data base is performed by an interactive software and this data base is designed for use in simulation studies and for linear programming optimisation with various objective functions. The model has been used in a parallel case study to explore substitution possibilities between an investment policy reducing the primary energy imports and one where these investments are restrained at the cost of having to import more primary energy. Results are shown and briefly discussed. Finally the relationship of this EFOM 12C model with the other EC models developed in the same research subprogram is outlined.

E Van der Voort

1982-01-01T23:59:59.000Z

395

Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.  

SciTech Connect (OSTI)

Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

2008-02-28T23:59:59.000Z

396

Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

2015-01-01T23:59:59.000Z

397

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

398

Confronting dark energy models using galaxy cluster number counts  

SciTech Connect (OSTI)

The mass function of cluster-size halos and their redshift distribution are computed for 12 distinct accelerating cosmological scenarios and confronted to the predictions of the conventional flat {Lambda}CDM model. The comparison with {Lambda}CDM is performed by a two-step process. First, we determine the free parameters of all models through a joint analysis involving the latest cosmological data, using supernovae type Ia, the cosmic microwave background shift parameter, and baryon acoustic oscillations. Apart from a braneworld inspired cosmology, it is found that the derived Hubble relation of the remaining models reproduces the {Lambda}CDM results approximately with the same degree of statistical confidence. Second, in order to attempt to distinguish the different dark energy models from the expectations of {Lambda}CDM, we analyze the predicted cluster-size halo redshift distribution on the basis of two future cluster surveys: (i) an X-ray survey based on the eROSITA satellite, and (ii) a Sunayev-Zeldovich survey based on the South Pole Telescope. As a result, we find that the predictions of 8 out of 12 dark energy models can be clearly distinguished from the {Lambda}CDM cosmology, while the predictions of 4 models are statistically equivalent to those of the {Lambda}CDM model, as far as the expected cluster mass function and redshift distribution are concerned. The present analysis suggests that such a technique appears to be very competitive to independent tests probing the late time evolution of the Universe and the associated dark energy effects.

Basilakos, S.; Plionis, M.; Lima, J. A. S. [Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efesiou 4, 11527, Athens (Greece); Institute of Astronomy and Astrophysics, National Observatory of Athens, Thessio 11810, Athens, Greece, and Instituto Nacional de Astrofisica, Optica y Electronica, 72000 Puebla (Mexico); Departamento de Astronomia (IAGUSP), Universidade de Sao Paulo, Rua do Matao, 1226, 05508-900, Sao Paulo (Brazil)

2010-10-15T23:59:59.000Z

399

High-energy nuclear collisions in the geometrical branching model  

Science Journals Connector (OSTI)

The geometrical branching model, which has been successful in describing multiparticle production in hadron-hadron and hadron-nucleus collisions, is extended to the case of nucleus-nucleus collisions at high energy. We discuss the issue related to the collision between broken nucleons. The calculated result is in good agreement with the data. We show that the multiplicity and transverse-energy distributions of the produced particles are insensitive to the detail properties of hadronization. Measurable quantities that could reveal relevant information on them are suggested.

Rudolph C. Hwa and Xin-Nian Wang

1990-09-01T23:59:59.000Z

400

Calibration of Building Energy Models: Supercomputing, Big-Data and Machine-Learning  

E-Print Network [OSTI]

Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposesCalibration of Building Energy Models: Supercomputing, Big-Data and Machine-Learning Jibonananda Sanyal, Joshua New, Richard Edwards Energy and Environmental Sciences Directorate Building Energy

Wang, Xiaorui "Ray"

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling and analyzing technology innovation in the energy sector: Patent-based HMM approach  

Science Journals Connector (OSTI)

Energy is essential for global economy. To satisfy the huge demand for energy in an environmentally friendly manner, it will be imperative to develop new technologies for using renewable and sustainable energy. As a result, R&D efforts in the energy ... Keywords: Clustering, Energy technology, Hidden Markov models (HMMs), Innovation patterns, Patent analysis, Trend modeling

Sungjoo Lee; Hyoung-Joo Lee; Byungun Yoon

2012-11-01T23:59:59.000Z

402

EIA - The National Energy Modeling System: An Overview 2003-Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module The National Energy Modeling System: An Overview 2003 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) links NEMS to the rest of the economy by providing projections of economic driver variables for use by the supply, demand, and conversion modules of NEMS. The derivation of the baseline macroeconomic forecast lays a foundation for the determination of the energy demand and supply forecast. MAM is used to present alternative macroeconomic growth cases to provide a range of uncertainty about the growth potential for the economy and its likely consequences for the energy system. MAM is also able to address the macroeconomic impacts associated with changing energy market conditions, such as alternative world oil price assumptions. Outside of the Annual Energy Outlook setting, MAM represents a system of linked modules which can assess the potential impacts on the economy of changes in energy events or policy proposals. These economic impacts then feed back into NEMS for an integrated solution. MAM consists of five modules:

403

Estimating home energy decision parameters for a hybrid energyYeconomy policy model  

E-Print Network [OSTI]

-constrained world. Long-run simulations were created using CIMS, a hybrid energy-economy model supply submodel was built to simulate economies of scale in infrastructure. Capital costs, technology performance, infrastructure, fuel prices, and other conditions were varied in the simulations. All scenarios

404

Job and Economic Development Impact Models (JEDI) | Open Energy Information  

Open Energy Info (EERE)

Job and Economic Development Impact Models (JEDI) Job and Economic Development Impact Models (JEDI) Jump to: navigation, search Site head analysis jedi.jpg Overview Originally developed in 2002 for the U.S. Department of Energy's Wind Powering America project, the Job and Economic Development Impact (JEDI) model was designed to be an easy-to-use, excel based calculator which uses IMPLAN's economic multipliers to estimate the economic impacts of constructing and operating power generation and biofuel plants at the local and state levels. It comes as a separate model for wind, PV, natural gas, CSP, coal, and biofuels. Job's, earnings, and impact are outputs. Inputs are construction costs, equipment costs, O&M costs, financing parameters and any other costs associated with the project. With its success in

405

Model Wind Ordinance for Local Governments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ordinance for Local Governments Ordinance for Local Governments Model Wind Ordinance for Local Governments < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Pennsylvania Program Type Solar/Wind Permitting Standards Provider Pennsylvania Department of Environmental Protection Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2006, Pennsylvania developed a model local ordinance for wind energy facilities through a collaborative effort involving several state

406

Small Wind Innovation Zone and Model Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Wind Innovation Zone and Model Ordinance Small Wind Innovation Zone and Model Ordinance Small Wind Innovation Zone and Model Ordinance < Back Eligibility Institutional Local Government Schools State Government Utility Savings Category Wind Buying & Making Electricity Program Info State Iowa Program Type Solar/Wind Permitting Standards Provider Iowa League of Cities In May 2009, the Iowa legislature created the Small Wind Innovation Zone Program, which allows any city, county, or other political subdivision to create small wind innovation zones that promote small wind production. In order to qualify for the designation, the city must adopt the Small Wind Innovation Zone Model Ordinance and also establish an expedited approval process for small wind energy systems. System owners must also enter into a

407

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

408

Live Webinar on Better Buildings Case Competition: Energy Efficiency in the Restaurant Franchise Model Case Study  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar titled "A Side of Savings: Energy Efficiency in the Restaurant Franchise Model Case Study."

409

From the Building to the Grid: An Energy Revolution and Modeling...  

Office of Scientific and Technical Information (OSTI)

From the Building to the Grid: An Energy Revolution and Modeling Challenge Workshop Proceedings Benjamin Kroposki and Connie Komomua National Renewable Energy Laboratory Mark...

410

Modeling renewable energy resources in integrated resource planning  

SciTech Connect (OSTI)

Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

1994-06-01T23:59:59.000Z

411

NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

NREL has developed a tool -- the System Advisor Model (SAM) -- that can help decision makers analyze cost, performance, and financing of any size grid-connected solar, wind, or geothermal power project. Manufacturers, engineering and consulting firms, research and development firms, utilities, developers, venture capital firms, and international organizations use SAM for end-to-end analysis that helps determine whether and how to make investments in renewable energy projects.

Not Available

2015-01-01T23:59:59.000Z

412

An experimentally validated bimorph cantilever model for piezoelectric energy harvesting  

Science Journals Connector (OSTI)

Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of RayleighRitz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the EulerBernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance frequency excitations and the accuracy of the model is shown in all cases.

A Erturk; D J Inman

2009-01-01T23:59:59.000Z

413

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

and carbon nanotubes, Advanced Energy Materials, vol. 1,carbon nanotubes supercapacitors: Improving both energy andcarbon nanotubes for enhanced electrochemical energy

Wang, Hainan

2013-01-01T23:59:59.000Z

414

Model for Energy Supply System Alternatives and their General...  

Open Energy Info (EERE)

their General Environmental Impacts AgencyCompany Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Pathways...

415

Model for Analysis of Energy Demand (MAED-2) | Open Energy Information  

Open Energy Info (EERE)

Analysis of Energy Demand (MAED-2) AgencyCompany Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Pathways...

416

Oneida Tribe of Indians of Wisconsin Energy Optimization Model  

SciTech Connect (OSTI)

Oneida Nation is located in Northeast Wisconsin. The reservation is approximately 96 square miles (8 miles x 12 miles), or 65,000 acres. The greater Green Bay area is east and adjacent to the reservation. A county line roughly splits the reservation in half; the west half is in Outagamie County and the east half is in Brown County. Land use is predominantly agriculture on the west 2/3 and suburban on the east 1/3 of the reservation. Nearly 5,000 tribally enrolled members live in the reservation with a total population of about 21,000. Tribal ownership is scattered across the reservation and is about 23,000 acres. Currently, the Oneida Tribe of Indians of Wisconsin (OTIW) community members and facilities receive the vast majority of electrical and natural gas services from two of the largest investor-owned utilities in the state, WE Energies and Wisconsin Public Service. All urban and suburban buildings have access to natural gas. About 15% of the population and five Tribal facilities are in rural locations and therefore use propane as a primary heating fuel. Wood and oil are also used as primary or supplemental heat sources for a small percent of the population. Very few renewable energy systems, used to generate electricity and heat, have been installed on the Oneida Reservation. This project was an effort to develop a reasonable renewable energy portfolio that will help Oneida to provide a leadership role in developing a clean energy economy. The Energy Optimization Model (EOM) is an exploration of energy opportunities available to the Tribe and it is intended to provide a decision framework to allow the Tribe to make the wisest choices in energy investment with an organizational desire to establish a renewable portfolio standard (RPS).

Troge, Michael [Project Manager

2014-12-30T23:59:59.000Z

417

Nuclear Energy Level Argument for a Spheroidal Nuclear Model  

Science Journals Connector (OSTI)

Recently there has been notable success, particularly by Maria Mayer, in explaining many nuclear phenomena including spins, magnetic moments, isomeric states, etc. on the basis of a single particle model for the separate nucleons in a spherical nucleus. The spherical model, however, seems incapable of explaining the observed large quadrupole moments of nuclei. In this paper it is shown that an extension of the logic of this model leads to the prediction that greater stability is obtained for a spheroidal than for a spherical nucleus of the same volume, when reasonable assumptions are made concerning the variation of the energy terms on distortion. The predicted quadrupole moment variation with odd A is in general agreement with the experimental values as concerns variation with A, but are even larger than the experimental values. Since the true situation probably involves considerable "dilution" of the extreme single particle model, it is encouraging that the present predictions are larger rather than smaller than the experimental results. A solution is given for the energy levels of a particle in a spheroidal box.

James Rainwater

1950-08-01T23:59:59.000Z

418

Property:Buildings/ModelClimateZone | Open Energy Information  

Open Energy Info (EERE)

ModelClimateZone ModelClimateZone Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Model. The allowed values for this property are: Climate Zone 1A Climate Zone 1B Climate Zone 2A Climate Zone 2B Climate Zone 3A Climate Zone 3B Climate Zone 3C Climate Zone 4A Climate Zone 4B Climate Zone 4C Climate Zone 5A Climate Zone 5B Climate Zone 5C Climate Zone 6A Climate Zone 6B Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Pages using the property "Buildings/ModelClimateZone" Showing 12 pages using this property. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings + Climate Zone 5A + General Merchandise 2009 TSD Chicago High Plug Load Baseline + Climate Zone 5A + General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings + Climate Zone 5A +

419

Modelling challenges for battery materials and electrical energy storage  

Science Journals Connector (OSTI)

Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high-throughput methods allow rapid screening of promising new candidates for battery materials, illustrated for Li-ion olivine phosphates by Hajiyani et al . This collection includes descriptions of new techniques to model the chemistry at an electrodeelectrolyte interface; Gunceler et al demonstrate coupling an electronic description of the electrode chemistry with the fluid electrolyte in a joint density functional theory method. Bridging to longer length scales to probe mechanical properties and transport, Preiss et al present a proof-of-concept phase field approach for a permeation model at an electrochemical interface, An and Jiang examine finite element simulations for transient deformation and transport in electrodes, and Haftabaradaran et al study the application of an analytical model to investigate the critical thickness for fracture in thick film electrodes. The focus section concludes with a study by Chung et al which combines modelling and experiment, examining the validity of the Bruggeman relation for porous electrodes. All of the papers were peer-reviewed following the standard procedure established by the Editorial Board of Modelling and Simulation in Materials Science and Engineering .

Richard P Muller; Peter A Schultz

2013-01-01T23:59:59.000Z

420

DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing |  

Broader source: Energy.gov (indexed) [DOE]

Refers Two ENERGY STAR Models to EPA for Potential De-Listing Refers Two ENERGY STAR Models to EPA for Potential De-Listing DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing January 11, 2012 - 11:00am Addthis U.S. Department of Energy ("DOE") testing has identified one refrigerator-freezer that does not meet the ENERGY STAR program's energy efficiency requirement and one dishwasher that may not meet an ENERGY STAR requirement. Dayton-brand refrigerator-freezer model 5NTX1, imported by Grainger Global Sourcing ("Grainger"), and ASKO Appliances, Inc. ("ASKO") dishwasher model D5253XXL were selected for testing as part of the DOE ENERGY STAR Verification Testing Program. DOE testing revealed that Grainger's Dayton-brand model 5NTX1 does not meet the ENERGY STAR energy efficiency requirement. The four tested units

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing |  

Broader source: Energy.gov (indexed) [DOE]

DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing DOE Refers Two ENERGY STAR Models to EPA for Potential De-Listing January 11, 2012 - 11:00am Addthis U.S. Department of Energy ("DOE") testing has identified one refrigerator-freezer that does not meet the ENERGY STAR program's energy efficiency requirement and one dishwasher that may not meet an ENERGY STAR requirement. Dayton-brand refrigerator-freezer model 5NTX1, imported by Grainger Global Sourcing ("Grainger"), and ASKO Appliances, Inc. ("ASKO") dishwasher model D5253XXL were selected for testing as part of the DOE ENERGY STAR Verification Testing Program. DOE testing revealed that Grainger's Dayton-brand model 5NTX1 does not meet the ENERGY STAR energy efficiency requirement. The four tested units

422

Reconstruction of f-essence and fermionic Chaplygin gas models of dark energy  

E-Print Network [OSTI]

Recently, it was proposed a new fermionic model of dark energy, the so-called f-essence. In this work, we explicitly reconstruct the different f-essence models. In particular, these models include the fermionic Chaplygin gas and the fermionic generalized Chaplygin gas models of dark energy. We also derive the equation of state parameter of the selected f-essence models.

P. Tsyba; K. Yerzhanov; K. Esmakhanova; I. Kulnazarov; G. Nugmanova; R. Myrzakulov

2011-03-30T23:59:59.000Z

423

Energy Saving Model for Sensor Network Using Ant Colony Optimization Algorithm  

Science Journals Connector (OSTI)

In this paper, we propose an energy saving model for sensor network by finding the ... results show that the proposed model reduces the energy consumption by reducing the amount of data...

Doreswamy; S. Narasegouda

2014-01-01T23:59:59.000Z

424

Fuel-Cycle Energy and Emissions Analysis with the GREET Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Cycle Energy and Emissions Analysis with the GREET Model Fuel-Cycle Energy and Emissions Analysis with the GREET Model 2009 DOE Hydrogen Program and Vehicle Technologies...

425

Cooperative Energy Efficiency Modeling and Performance Analysis in Co-Channel Interference Cellular Networks  

Science Journals Connector (OSTI)

......Communications Cooperative Energy Efficiency Modeling and Performance...cooperative communications, energy efficiency is becoming increasingly...but also the green-house gas emission and carbon...most cases, high energy efficiency performance should......

Jing Zhang; Xi Yang; Qi Yao; Xiaohu Ge; Minho Jo; Guoqiang Mao

2013-08-01T23:59:59.000Z

426

Constraining dynamical dark energy models through the abundance of high-redshift supermassive black holes  

Science Journals Connector (OSTI)

......Constraining dynamical dark energy models through the abundance...its contribution to the energy density would become rapidly...provided by the NASA Joint Dark Energy Mission (JDEM) -Wide-Field Infrared Survey Telescope (WFIRST) space......

A. Lamastra; N. Menci; F. Fiore; C. Di Porto; L. Amendola

2012-03-01T23:59:59.000Z

427

Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism  

Science Journals Connector (OSTI)

...computational model of energy turnover and heat transport...in the phosphocreatine energy buffer status can be predicted, although...central metabolism allows us to investigate hypotheses...main fates of metabolic energy converted in the muscle...

2011-01-01T23:59:59.000Z

428

Comparison of Software Models for Energy Savings from Cool Roofs  

SciTech Connect (OSTI)

A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

2014-01-01T23:59:59.000Z

429

STREAM: A Model for a Common Energy Future Anders Kofoed-Wiuff, EA Energianalyse; Jesper Werling, EA Energianalyse; Peter  

E-Print Network [OSTI]

: an energy consumption model, an optimisation model for power and heat production and consumption and finally a simple energy flow model ensuring coherence between production of energy services and consumption. For consolidation of the model calculations of more complicated energy plan and energy optimisation models have been

430

Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

1999-08-01T23:59:59.000Z

431

Interacting entropy-corrected agegraphic Chaplygin gas model of dark energy  

E-Print Network [OSTI]

In this work, we consider the interacting agegraphic dark energy models with entropy correction terms due to loop quantum gravity. We study the correspondence between the Chaplygin gas energy density with the interacting entropy-corrected agegraphic dark energy models in non-flat FRW universe. We reconstruct the potentials and the dynamics of the interacting entropy-corrected agegraphic scalar field models. This model is also extended to the interacting entropy-corrected agegraphic generalized Chaplygin gas dark energy.

M. Malekjani; A. Khodam-Mohammadi

2010-04-07T23:59:59.000Z

432

MARS15 study of the Energy Production Demonstrator Model for Megawatt  

E-Print Network [OSTI]

MARS15 study of the Energy Production Demonstrator Model for Megawatt proton beams in the 0.5 ­ 120 Targetry Workshop HPT5, Fermilab #12;Energy Production Demonstrator MARS15 Model · Solid targets · R= 60 cm · Energy Production/Materials Testing · LAQGSM/CEM generators were usedU-nat, 3 GeV, Energy deposition, Ge

McDonald, Kirk

433

Modelling Office Energy Consumption: An Agent Based Approach , Peer-Olaf Siebers1  

E-Print Network [OSTI]

1 Modelling Office Energy Consumption: An Agent Based Approach Tao Zhang1 , Peer-Olaf Siebers1 integrates four important elements, i.e. organisational energy management policies/regulations, energy, to simulate the energy consumption in office buildings. With the model, we test the effectiveness of different

Aickelin, Uwe

434

Distributed generation capabilities of the national energy modeling system  

SciTech Connect (OSTI)

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

435

A Phenomenological Cost Model for High Energy Particle Accelerators  

E-Print Network [OSTI]

Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

Vladimir Shiltsev

2014-04-15T23:59:59.000Z

436

Application of the distributed activation energy model to blends devolatilisation  

Science Journals Connector (OSTI)

In this study, an investigation was carried out into the thermal behaviour of coal, petcoke and their blend as a generic feedstock in combustion and IGCC plants for energy production. The samples were pyrolysed in a TG analyzer in nitrogen atmosphere (constant flow of 0.0335m/s) at several heating rates with temperatures ranging from 300 to 1223K. The distributed activation energy model was applied to study the effects of heating rates on the reactions of single solids. The results obtained were used in the calculation of curves mass loss vs. temperature at more realistic heating rates. The algorithm used to obtain the distribution of reactivities for single solids was successfully implemented to allow the prediction of blends performance.

M.V. Navarro; A. Aranda; T. Garcia; R. Murillo; A.M. Mastral

2008-01-01T23:59:59.000Z

437

Modelling the Transfer Function for the Dark Energy Survey  

SciTech Connect (OSTI)

We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function -- a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 sq. deg coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modelling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies which is sufficiently realistic and highly controllable.

Chang, C.

2014-10-31T23:59:59.000Z

438

Ris DTU 09-06-08 Waste-to-energy technologies in TIMES models  

E-Print Network [OSTI]

Risø DTU 09-06-08 1 Waste-to-energy technologies in TIMES models Poul Erik Grohnheit, Kenneth DTU 09-06-08 2 Waste-to-energy technologies in TIMES models · European law 1999 Directive and current (focusing on Denmark) Long tradition for waste incineration for district heating · How to model waste-to-energy

439

Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings  

E-Print Network [OSTI]

Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings Jeff models for the indoor-air environment in control design for energy efficient buildings. In one method by a desire to incorporate models of the indoor-air environment in the design of energy efficient buildings

Gugercin, Serkan

440

An Energy Savings Model for the Heat Treatment of Castings  

SciTech Connect (OSTI)

An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

Y. Rong; R. Sisson; J. Morral; H. Brody

2006-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

electrochemical capacitor energy storage systems. 1.2 Energyto electrochemical energy storage in TiO 2 (anatase)3D nanoarchitec- tures for energy storage and conversion,

Wang, Hainan

2013-01-01T23:59:59.000Z

442

Thermochemical energy storage systems: modelling, analysis and design.  

E-Print Network [OSTI]

??Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. (more)

Haji Abedin, Ali

2010-01-01T23:59:59.000Z

443

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

444

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

density of di?erent electrical energy stor- age systems (carbonate in electrical energy storage applications,challenges facing electrical energy storage, MRS Bulletin,

Wang, Hainan

2013-01-01T23:59:59.000Z

445

Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

Coats, D.W.; Murray, R.C.

1984-11-01T23:59:59.000Z

446

Model documentation, Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook 1998 (AEO98) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. For AEO98, the RFM was modified in three principal ways, introducing capital cost elasticities of supply for new renewable energy technologies, modifying biomass supply curves, and revising assumptions for use of landfill gas from municipal solid waste (MSW). In addition, the RFM was modified in general to accommodate projections beyond 2015 through 2020. Two supply elasticities were introduced, the first reflecting short-term (annual) cost increases from manufacturing, siting, and installation bottlenecks incurred under conditions of rapid growth, and the second reflecting longer term natural resource, transmission and distribution upgrade, and market limitations increasing costs as more and more of the overall resource is used. Biomass supply curves were also modified, basing forest products supplies on production rather than on inventory, and expanding energy crop estimates to include states west of the Mississippi River using information developed by the Oak Ridge National Laboratory. Finally, for MSW, several assumptions for the use of landfill gas were revised and extended.

NONE

1998-01-01T23:59:59.000Z

447

Using suite energy-use and interior condition data to improve energy modeling of a 1960s MURB  

Science Journals Connector (OSTI)

Abstract Energy modeling is a useful tool for evaluating the performance of contemplated building energy retrofit measures. Traditionally, energy models are developed using data collected from building floor plans and site visits and are then calibrated using utility bills. In the work presented here, an energy model for an existing multi-unit residential building (MURB) was developed using this traditional approach. Next, a refined approach was taken. Using data gathered from a suite-based monitoring program, input data uncertainties in the energy model were addressed. Data from one year of monitoring were assembled to characterize the actual building performance and to calibrate this refined energy model. In order to identify which parameters could be used to improve the model accuracy, the output of this refined model was compared to the output from the traditional modeling approach. It was found that the interior temperature measurements and the sub-metered suite electricity use were the most beneficial in refining the energy model. However, other data collected including window operation and differential air pressures were useful for determining how the building was operating. The use of a local weather file generated from a roof-top weather station has also been discussed.

Marianne F. Touchie; Kim D. Pressnail

2014-01-01T23:59:59.000Z

448

The National Energy Modeling System: An Overview 2000 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. Figure 11. Renewable Fuels Module Structure Each submodule of RFM is solved independently of the rest. Because variable operation and maintenance costs for renewable technologies are lower than for any other major generating technology and they produce almost no air pollution, all available renewable generating capacity is dispatched first by EMM.

449

? decay in the complex-energy shell model  

Science Journals Connector (OSTI)

Background: Alpha emission from a nucleus is a fundamental decay process in which the alpha particle formed inside the nucleus tunnels out through the potential barrier.Purpose: We describe alpha decay of 212Po and 104Te by means of the configuration interaction approach.Method: To compute the preformation factor and penetrability, we use the complex-energy shell model with a separable T=1 interaction. The single-particle space is expanded in a Woods-Saxon basis that consists of bound and unbound resonant states. Special attention is paid to the treatment of the norm kernel appearing in the definition of the formation amplitude that guarantees the normalization of the channel function.Results: Without explicitly considering the alpha-cluster component in the wave function of the parent nucleus, we reproduce the experimental alpha-decay width of 212Po and predict an upper limit of T1/2=5.510?7sec for the half-life of 104Te.Conclusions: The complex-energy shell model in a large valence configuration space is capable of providing a microscopic description of the alpha decay of heavy nuclei having two valence protons and two valence neutrons outside the doubly magic core. The inclusion of proton-neutron interaction between the valence nucleons is likely to shorten the predicted half-live of 104Te.

R. Id Betan and W. Nazarewicz

2012-09-27T23:59:59.000Z

450

Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

NONE

1998-01-01T23:59:59.000Z

451

Generalizing the running vacuum energy model and comparing with the entropic-force models  

E-Print Network [OSTI]

We generalize the previously proposed running vacuum energy model by including a term proportional to \\dot{H}, in addition to the existing H^2 term. We show that the added degree of freedom is very constrained if both low redshift and high redshift data are taken into account. Best-fit models are undistinguishable from LCDM at the present time, but could be distinguished in the future with very accurate data at both low and high redshifts. We stress the formal analogy at the phenomenological level of the running vacuum models with recently proposed dark energy models based on the holographic or entropic point of view, where a combination of \\dot{H} and H^2 term is also present. However those particular entropic formulations which do not have a constant term in the Friedmann equations are not viable. The presence of this term is necessary in order to allow for a transition from a decelerated to an accelerated expansion. In contrast, the running vacuum models, both the original and the generalized one introduced here contain this constant term in a more natural way. Finally, important conceptual issues common to all these models are emphasized.

Spyros Basilakos; David Polarski; Joan Sola

2012-07-19T23:59:59.000Z

452

Physical modeling and computer graphic simulation of the depletion of world energy reserve  

Science Journals Connector (OSTI)

A physical modeling device and a computer graphic simulation program of the depletion of world energy reserve are developed to demonstrate how rapidly our energy reserve is depleted, how quickly and enormously our demands for energy grows, and how important energy conservation is to us. In both modeling and simulation cases, the total world energy reserve, the current energy usage annual growth rate, and the current energy consumption rate are given as parameters. One can view the energy shortage in terms of the rapidly falling levels in the physical water tank or the simulated oil barrels.

Chih Wu

1981-01-01T23:59:59.000Z

453

An indoor??outdoor building energy simulator to study urban modification effects on building energy use ?? Model description and validation  

E-Print Network [OSTI]

DifferenceThermal Modeling,BuildingandEnvironment20(required in building energy modeling (one year). Bouyer etenergymodelingofindividualbuildingsandurbancanopies,

Yaghoobian, Neda; Kleissl, Jan

2012-01-01T23:59:59.000Z

454

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

inputs. The idea of modeling building thermal behavior usingThe detail of building thermal modeling is pre- sented in [Modeling and optimal control algorithm design for hvac systems in energy efficient buildings,

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

455

Development of whole-building energy performance models as benchmarks for retrofit projects  

Science Journals Connector (OSTI)

This paper presents a systematic development process of whole-building energy models as performance benchmarks for retrofit projects. Statistical regression-based models and computational performance models are being used for retrofit projects in industry ...

Omer Tugrul Karaguzel; Khee Poh Lam

2011-12-01T23:59:59.000Z

456

Climate Studies with a Multi-Layer Energy Balance Model. Part I: Model Description and Sensitivity to the Solar Constant  

Science Journals Connector (OSTI)

A nine-layer, zonally averaged, steady-state model has been developed for use in climate sensitivity studies. The model is based upon thermal energy balance and includes recently developed accurate treatment of radiative transfer, parameterized ...

Li Peng; Ming-Dah Chou; Albert Arking

1982-12-01T23:59:59.000Z

457

RF System Modeling for the CEBAF Energy Upgrade  

SciTech Connect (OSTI)

An RF system model, based on MATLAB/SIMULINK, has been developed for analyzing the basic characteristics of the low level RF (LLRF) control system being designed for the CEBAF 12 GeV Energy Upgrade. In our model, a typical passband cavity representation is simplified to in-phase and quadrature (I&Q) components. Lorentz Force and microphonic detuning are incorporated as a new quadrature carrier frequency (frequency modulation). Beam is also represented as in-phase and quadrature components and superpositioned with the cavity field vector. Signals pass through two low pass filters, where the cutoff frequency is equal to half of the cavity bandwidth, then they are demodulated using the same detuning frequency. Because only baseband I&Q signals are calculated, the simulation process is very fast when compared to other controller-cavity models. During the design process we successfully analyzed gain requirements vs. field stability for different superconducting cavity microphonic backgrounds and Lorentz Force coefficients. Moreover, we were able to evaluate different types of a LLRF systems control algorithm: GDR (Generator Driven Resonator) and SEL (Self Excited Loop) [1] as well as klystron power requirements for different cavities and beam loads.

Tomasz Plawski, J. Hovater

2009-05-01T23:59:59.000Z

458

Modelling the Transfer Function for the Dark Energy Survey  

E-Print Network [OSTI]

We present a forward-modelling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function -- a mapping from cosmological and astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator, Berge et al. 2013) and catalogs representative of the DES data. In this work we simulate the 244 sq. deg coadd images and catalogs in 5 bands for the DES Science Verification (SV) data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples, star/galaxy classification and proximity effects on object detection, are then used to demonstrate how one can use the simulations to address systematics issues in data ana...

Chang, C; Wechsler, R H; Refregier, A; Amara, A; Rykoff, E; Becker, M R; Bruderer, C; Gamper, L; Leistedt, B; Peiris, H; Abbott, T; Abdalla, F B; Banerji, M; Bernstein, R A; Bertin, E; Brooks, D; Rosell, A Carnero; Desai, S; da Costa, L N; Cunha, C E; Eifler, T; Evrard, A E; Neto, A Fausti; Gerdes, D; Gruen, D; James, D; Kuehn, K; Maia, M A G; Makler, M; Ogando, R; Plazas, A; Sanchez, E; Schubnell, M; Sevilla-Noarbe, I; Smith, C; Soares-Santos, M; Suchyta, E; Swanson, M E C; Tarle, G; Zuntz, J

2014-01-01T23:59:59.000Z

459

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3  

SciTech Connect (OSTI)

This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

NONE

1998-01-01T23:59:59.000Z

460

EIA model documentation: Petroleum Market Model of the National Energy Modeling System  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). The PMM models petroleum refining activities, the marketing of products, the production of natural gas liquids and domestic methanol, projects petroleum provides and sources of supplies for meeting demand. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption.

NONE

1994-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "nattional energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Clean Energy Works Portland: A Model For Retrofit Projects | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Works Portland: A Model For Retrofit Projects Clean Energy Works Portland: A Model For Retrofit Projects Clean Energy Works Portland: A Model For Retrofit Projects June 4, 2010 - 4:34pm Addthis Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this mean for me? Clean Energy Works Portland (CEWP) seeks to cut energy costs for residents, create green jobs and slash greenhouse gases by retrofitting 500 homes in the Portland area by this fall. A program developed by the city of Portland, Ore., is proving to be a model of public and private collaboration for large-scale home retrofit projects throughout the country. Clean Energy Works Portland (CEWP) seeks to cut energy costs for residents, create green jobs and slash greenhouse gases by retrofitting 500 homes in

462

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy Department of Energy Commercial Reference Building Models of the National Building Stock Michael Deru, Kristin Field, Daniel Studer, Kyle Benne, Brent Griffith, and Paul Torcellini National Renewable Energy Laboratory Bing Liu, Mark Halverson, Dave Winiarski, and Michael Rosenberg Pacific Northwest National Laboratory Mehry Yazdanian Lawrence Berkeley National Laboratory Joe Huang Formerly of Lawrence Berkeley National Laboratory Drury Crawley Formerly of the U.S. Department of Energy Technical Report NREL/TP-5500-46861 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory

463

Model for energy efficiency in radio over fiber distributed indoor antenna Wi-Fi network  

E-Print Network [OSTI]

Model for energy efficiency in radio over fiber distributed indoor antenna Wi-Fi network Yves Josse communications in indoor environments. In this paper, the power consumption and energy efficiency of a DAS using for different transmission configurations, yielding a distance- dependent energy efficiency model. In a second

Paris-Sud XI, Université de

464

Data-driven Techniques to Estimate Parameters in the Homogenized Energy Model for Shape Memory Alloys  

E-Print Network [OSTI]

, ferroelectric, and ferromagnetic materials. The energy origin of the model was originally investigated for SMA]. The original mod- els determined the equilibrium phase using the Gibbs energy to predict the mesoscopic (orData-driven Techniques to Estimate Parameters in the Homogenized Energy Model for Shape Memory

465

A Kinetic Energy Budget and Internal Instabilities in the Fine Resolution Antarctic Model  

Science Journals Connector (OSTI)

An energy analysis of the Fine Resolution Antarctic Model (FRAM) reveals the instability processes in the model. The main source of time-mean kinetic energy is the wind stress and the main sink is transfer to mean potential energy. The wind ...

V. O. Ivchenko; A. M. Treguier; S. E. Best

1997-01-01T23:59:59.000Z

466

Modelling international wind energy diffusion: Are the patterns of induced diffusion `S'  

E-Print Network [OSTI]

Modelling international wind energy diffusion: Are the patterns of induced diffusion `S' shaped datasets, the paper explores the patterns of international wind energy diffusion in OECD countries. The model employed in the paper predicted that wind energy, as a complex and expensive innovation, would

Feigon, Brooke

467

Modeling and Analysis of Energy Harvesting Nodes in Body Sensor Networks  

E-Print Network [OSTI]

Modeling and Analysis of Energy Harvesting Nodes in Body Sensor Networks Alireza Seyedi Department@ecse.rpi.edu Abstract--A Markov based unified model for an energy har- vesting node in a body sensor network. The results provide insight into the performance of energy harvesting nodes in a body sensor network as well

Sikdar, Biplab

468

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors  

E-Print Network [OSTI]

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors Stefan Holst #12;tting mixed #12;nite-element method is used to discretize the stationary energy. Energy-transport models describe the ow of electrons through a semi- conductor device, in uenced by di

Pietra, Paola

469

Modeling Interregional Transmission Congestion in the NationalEnergy Modeling System  

SciTech Connect (OSTI)

Congestion analysis using National Energy Modeling National Energy Modeling System (NEMS) or NEMS-derivatives, such as LBNL-NEMS, is subject to significant caveats because the generation logic inherent in NEMS limits the extent to which interregional transmission can be utilized and intraregional transmission is not represented at all. The EMM is designed primarily to represent national energy markets therefore regional effects may be simplified in ways that make congestion analysis harder. Two ways in particular come to mind. First, NEMS underutilizes the capability of the traditional electric grid as it builds the dedicated and detached grid. Second, it also undervalues the costs of congestion by allowing more transmission than it should, due to its use of a transportation model rather than a transmission model. In order to evaluate benefits of reduced congestion using LBNL-NEMS, Berkeley Lab identified three possible solutions: (1) implement true simultaneous power flow, (2) always build new plants within EMM regions even to serve remote load, and (3) the dedicated and detached grid should be part of the known grid. Based on these findings, Berkeley Lab recommends the following next steps: (1) Change the build logic that always places new capacity where it is needed and allow the transmission grid to be expanded dynamically. (2) The dedicated and detached grid should be combined with the traditional grid. (3) Remove the bias towards gas fired combine cycle and coal generation, which are the only types of generation currently allowed out of region. (4) A power flow layer should be embedded in LBNL-NEMS to appropriately model and limit transmission.

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-05-25T23:59:59.000Z

470

Major models and data sources for residential and commercial sector energy conservation analysis. Final report  

SciTech Connect (OSTI)

Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

Not Available

1980-09-01T23:59:59.000Z

471

Annual Energy Outlook 2002 with Projections to 2020 - Model Results  

Gasoline and Diesel Fuel Update (EIA)

Model Results To view PDF Files, Download Free Copy of Adobe Reader Get Acrobat Reader Logo AEO2002 Report Available Formats Entire AEO Report as Printed (PDF, 2,292KB) Preface (PDF, 52KB) Overview (PDF, 117KB) Legis