Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

User Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facilities Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Electron Microscopy Center...

2

PIA - Advanced Test Reactor National Scientific User Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

3

Berkeley Lab National User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

(Energy Sciences Network) Joint Genome Institute The Molecular Foundry National Center for Electron Microscopy (NCEM) National Energy Research Scientific Computing Center (NERSC)...

4

National Laser User Facilities Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

User Facilities Program | National Nuclear Security User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

5

National Laser User Facilities Program | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser User Facilities Program | National Nuclear Security Laser User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

6

User Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Electron Microscopy Center (EMC) at Argonne National Laboratory...

7

National Laser Users' Facility Grant Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Users' Facility Grant Program | National Nuclear Security Users' Facility Grant Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NLUF National Laser Users' Facility Grant Program Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > National Laser Users' Facility Grant Program

8

Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

9

National Scientific User Facility Purpose and Capabilities  

SciTech Connect

The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation allows the ATR to become a cornerstone of nuclear energy research and development (R&D) within the U.S. by making it easier for universities, the commercial power industry, other national laboratories, and international organizations to conduct nuclear energy R&D. The mission of the ATR NSUF is to provide nuclear energy researchers access to world-class facilities, thereby facilitating the advancement of nuclear science and technology within the U.S. In support of this mission, hot cell laboratories are being upgraded. These upgrades include a set of lead shielded cells that will house Irradiated Assisted Stress Corrosion Cracking (IASCC) test rigs and construction of a shielded laboratory facility. A primary function of this shielded laboratory is to provide a state of the art type laboratory facility that is functional, efficient and flexible that is dedicated to the analysis and characterization of nuclear and non-nuclear materials. The facility shall be relatively easy to reconfigure to provide laboratory scale hot cave space for housing current and future nuclear material scientific research instruments.

K. E. Rosenberg; T. R. Allen; J. C. Haley; M. K. Meyer

2010-09-01T23:59:59.000Z

10

DOE LABORATORY, DOE USER FACILITY EMSL is a national scientific user facility located at Pacific  

E-Print Network (OSTI)

Northwest National Laboratory. EMSL'S USEr FaciLity PrograM How to Become a User www.EMSL.PNNL.gOv EMSL-emsl_announcements@lyris.pnl.gov. For general proposal inquiries, contact the EMSL User Support Office: emsl@pnnl.gov 509-371-6003 Geochemistry. PNNL's mission is to deliver leadership and advancements in science, energy, national security

11

User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory's National User Facilities are available for cooperative research with institutions and the private sector worldwide. The Environmental...

12

Access to High Technology User Facilities at DOE National Laboratories |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access to High Technology User Facilities at DOE National Access to High Technology User Facilities at DOE National Laboratories Access to High Technology User Facilities at DOE National Laboratories In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities. For non-commercial, basic science research, researchers may seek to use the Non-proprietary User Agreement. Under this type of agreement, the user pays its own costs of the research with the DOE laboratory, may access specialized laboratory equipment and collaborate with laboratory scientists. The non-proprietary user and the National Laboratory retain

13

Advanced Test Reactor National Scientific User Facility 2010 Annual Report  

Science Conference Proceedings (OSTI)

This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

Mary Catherine Thelen; Todd R. Allen

2011-05-01T23:59:59.000Z

14

Oak Ridge National Laboratory - User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

15

LANL | Partnering | User Facility - Los Alamos National Lab ...  

User Facility Agreements Program (505) 665-9090; Back to Facility Directory; Los Alamos Radioisotopes and Analytical Resource.

16

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

17

LANL | Partnering | User Facility - Los Alamos National Lab ...  

The facility's runs a pulse standard certification program for outside users. The HSEL facilities comprise over 1,200 square feet of laboratory and office space.

18

LANL | TT | User Facilities - Los Alamos National Lab: National ...  

Superconductivity Technology Center; Supercritical Fluids Experimental Facility; Trident Laser Laboratory; Weapons Neutron Research Facility; Back to ...

19

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

20

LANL | Partnering | User Facility - Los Alamos National Lab ...  

The NHMFL at Los Alamos is a user facility for pulsed magnetic field up to 60 tesla and is available to qualified researchers through a proposal review process.

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Facility Operations and User Support | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Above image: Red Storm supercomputer at Sandia National LaboratoriesNew Mexico. (Sandia National Laboratories) This sub-program provides both necessary physical facility and...

22

National Laser Users' Facility Grant Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances > National...

23

ATR National Scientific User Facility 2009 Annual Report  

SciTech Connect

This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

Todd R. Allen; Mitchell K. Meyer; Frances Marshall; Mary Catherine Thelen; Jeff Benson

2010-11-01T23:59:59.000Z

24

Advanced Test Reactor National Scientific User Facility Progress  

SciTech Connect

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

2012-10-01T23:59:59.000Z

25

FACET User Facility  

NLE Websites -- All DOE Office Websites

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

26

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared Research Equipment (ShaRE) The Shared Research Equipment (ShaRE) User Facility at the Oak Ridge National Laboratory (ORNL) is one of three Electron Beam...

27

LANL | Partnering | User Facility - Los Alamos National Laboratory  

Organization; Home; Collaborative Agreements; Licensing; Partnering; ... Back to Facility Directory; Combustion-Driven Supersonic Flow Facility. Facility Description.

28

LANL | Partnering | User Facility - Los Alamos National Lab ...  

... to your computer. Investigators concerned with satellite anomalies, design, magnetospheric dynamics, and space weather are likely users of the database.

29

LANL | Partnering | User Facility - Los Alamos National Lab ...  

Library Without Walls is a digital library that delivers scientific, technical, and business information to users with a personal computer, Internet access, and one ...

30

LANL | Partnering | User Facility - Los Alamos National Laboratory  

Contacts Event Calendar Maps Organization Phonebook Policy Center Emergency. NEWS. LIBRARY. JOBS. Technology Transfer, TT . ... Back to Facility Directory;

31

LANL | Partnering | User Facility - Los Alamos National Lab ...  

Data acquisition developed in-house, which integrates data acquisition from all chambers Facility Access. The Personal Protective ...

32

LANL | Partnering | User Facility - Los Alamos National Lab ...  

explosives loading and assembling facility; laser velocity interferometry; electronic and mechanical streak and framing cameras; ... beamcode laser special profiles;

33

LANL | Partnering | User Facility - Los Alamos National Lab ...  

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA. Inside | © Copyright 2010-11 Los Alamos National Security, ...

34

Guidance for User Facility Agreements Los Alamos National Laboratory  

Energy™s Albuquerque Operations Office ... Pricing Policy - It is DOE policy to establish prices and charges for the facility, materials, and services provided

35

Workshop on a National Irradiation Sciences User Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 * SNS * Oak Ridge, TN 37831 Materials Irradiation Home Materials Irradiation & HFIR Agenda Registration Hotel Registration CommitteeContacts Workshop on a National...

36

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance ... U.S. Department of Energy designated the Advanced Test Reactor (ATR) as a National Scientific ...

37

Operational Philosophy for the Advanced Test Reactor National Scientific User Facility  

SciTech Connect

In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

2013-02-01T23:59:59.000Z

38

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Source Search by Equipment or Process User Portal Quick Links ORNL home User facility contacts ORNL Guest House Open Helpful Travel Information Learn More User...

39

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

40

User Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

USER PORTAL USER PORTAL BTRICBuilding Technologies Research Integration Center CNMSCenter for Nanophase Materials Sciences CSMBCenter for Structural Molecular Biology CFTFCarbon Fiber Technology Facility HFIRHigh Flux Isotope Reactor MDF Manufacturing Demonstration Facility NTRCNational Transportation Research Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Keeping it fresh at the Spallation Neutron Source Nanophase material sciences' nanotech toolbox Home | User Facilities SHARE ORNL User Facilities ORNL is home to a number of highly sophisticated experimental user facilities that provide unmatched capabilities to the broader scientific community, including a growing user community from universities, industry, and other laboratories research institutions, as well as to ORNL

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

User Facility Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

user-facilities/highlights/ The Office of Science user-facilities/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {611EDD39-818D-4CBA-BFD7-9568495C1566}http://science.energy.gov/bes/highlights/2013/bes-2013-09-a/ The Role of Stripes in Superconducting Behavior Using neutron diffraction, movement of charged atoms arranged as "stripes"

42

User Facility Agreement Form  

NLE Websites -- All DOE Office Websites (Extended Search)

5. Which Argonne user facility will be hosting you? * Advanced Leadership Computing Facility (ALCF) Advanced Photon Source (APS) Argonne Tandem Linear...

43

The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology  

Science Conference Proceedings (OSTI)

To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

2009-05-01T23:59:59.000Z

44

DOE Designated User Facilities Multiple Laboratories * ARM Climate Research Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designated User Facilities Designated User Facilities Multiple Laboratories * ARM Climate Research Facility Argonne National Laboratory * Advanced Photon Source (APS) * Electron Microscopy Center for Materials Research * Argonne Tandem Linac Accelerator System (ATLAS) * Center for Nanoscale Materials (CNM) * Argonne Leadership Computing Facility (ALCF) * Brookhaven National Laboratory * National Synchrotron Light Source (NSLS) * Accelerator Test Facility (ATF) * Relativistic Heavy Ion Collider (RHIC) * Center for Functional Nanomaterials (CFN) * National Synchrotron Light Source II (NSLS-II ) (under construction) Fermi National Accelerator Laboratory * Fermilab Accelerator Complex Idaho National Laboratory * Advanced Test Reactor ** * Wireless National User Facility (WNUF)

45

National facility for advanced computational science: A sustainable path to scientific discovery  

E-Print Network (OSTI)

User Facilities .Managing National User Facilities Berkeley Lab has been afour DOE national user facilities. The focus of Berkeley Lab

2004-01-01T23:59:59.000Z

46

New Sensors for In-Pile Temperature Measurement at the Advanced Test Reactor National Scientific User Facility  

SciTech Connect

The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) in April 2007 to support U.S. research in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie

2011-09-01T23:59:59.000Z

47

User Facilities for Industry 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

48

RHIC & AGS Userscenter;User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facilities User Facilities Experimenters work at one of five user facilities. The largest of these facilities is the Relativistic Heavy Ion Collider (RHIC), others include the Alternating Gradient Synchrotron facility (AGS), the Tandem Van de Graaff, the Accelerator Test Facility (ATF), and the NASA Space Radiation Laboratory (NSRL). See also: National User Facility Organization (NUFO). Accelerator Test Facility (ATF) Brookhaven's newest user facility, the ATF is a proposal driven Program Committee reviewed Users' Facility dedicated for long-term R&D in Physics of Beams. Alternating Gradient Synchrotron (AGS) Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world's premiere particle accelerators, well known for the three Nobel Prizes won as a result of research performed there.

49

NREL's Concentrated Solar Radiation User Facility  

DOE Green Energy (OSTI)

Declared a national user facility in 1993, NREL's Concentrated Solar Radiation User Facility (CSR) allows industry, government, and university researchers to examine the effects and applications of as much as 50,000 suns of concentrated solar radiation using a High-Flux Solar Furnace and long-term exposure using an ultraviolet (UV) concentrator.

Lewandowski, A.

1999-09-01T23:59:59.000Z

50

User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Facilities Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Atom probe sample chamber at the Environmental Molecular Sciences Laboratory. Atom probe sample chamber at the Environmental Molecular Sciences Laboratory. Pacific Northwest National Laboratory The x-ray nanoprobe at the Advanced Photon Source. The Hard X-ray Nanoprobe at the Advanced Photon Source. Argonne National Laboratory Titan The Titan Cray XK7 supercomputer at the Oak Ridge Leadership Computing Facility. Oak Ridge National Laboratory

51

NREL: Research Facilities - Test and User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

52

Argonne User Facility Agreements | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Master proprietary agreement sample (pdf) Master proprietary agreement sample (pdf) Master non-proprietary agreement sample (pdf) Differences between non-proprietary and proprietary Opens in a new window Argonne's National User Facilities Advanced Leadership Computing Facility (ALCF) Advanced Photon Source (APS) Argonne Tandem Linear Accelerator System (ATLAS) Center for Nanoscale Materials (CNM) Electron Microscopy Center (EMC) Argonne User Facility Agreements About User Agreements If you are not an Argonne National Laboratory employee, a user agreement signed by your home institution is a prerequisite for experimental work at any of Argonne's user facilities. The Department of Energy recently formulated master agreements that cover liability, intellectual property, and financial issues (access templates from the links in the left

53

U.S. Energy Department Streamlines Access to High-Tech User Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Streamlines Access to High-Tech User Facilities at DOE National Laboratories U.S. Energy Department Streamlines Access to High-Tech User Facilities at DOE National...

54

Physics Out Loud - User Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

SRF Accelerator Cavities Previous Video (SRF Accelerator Cavities) Physics Out Loud Main Index Next Video (Baryon) Baryon User Facility Andrew Hutton, Director of Accelerators at...

55

"Basic Research Directions Workshop on User Science at the National Ignition Facility"  

E-Print Network (OSTI)

#12;Strong NIF shot demand reflects scientific opportunities discussed in recent federal reports 2Keane--CIS Technical Review, April 13-15, 2011NIF-0311-21167.ppt The importance of access to NNSA facilities is emphasized in these reports- NIF is developing processes and infrastructure to support

56

THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

57

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

solving materials problems that limit the efficiency and reliability of systems for power generation and energy conversion, distribution and use. The six user centers in the High...

58

LANL | Partnering | User Facility  

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA. Inside | © Copyright 2010-11 Los Alamos National Security, ...

59

BTRIC - User Facility - ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations from old...

60

Fusion Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

FES User Facilities FES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences program supports the operation of the following national scientific user facilities: DIII-D Tokamak Facility: External link DIII-D, located at General Atomics in San Diego, California, is the largest magnetic fusion facility in the U.S. and is operated as a DOE national user facility. DIII-D has been a major contributor to the world fusion program

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FACET: SLAC___s New User Facility  

Science Conference Proceedings (OSTI)

FACET (Facility for Advanced Accelerator Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. The first User Run started in spring 2012 with 20 GeV, 3 nC electron beams. The facility is designed to provide short (20 {micro}m) bunches and small (20 {micro}m wide) spot sizes, producing uniquely high power beams. FACET supports studies from many fields but in particular those of Plasma Wakefield Acceleration and Dielectric Wakefield Acceleration. The creation of drive and witness bunches and shaped bunch profiles is possible with 'Notch' Collimation. FACET is also a source of THz radiation for material studies. Positrons will be available at FACET in future user runs. We present the User Facility and the available tools and opportunities for future experiments.

Clarke, C.I.; Decker, F.-J.; England, R.J.; Erickson, R.A.; Hast, C.; Hogan, M.J.; Li, S.Z.; Litos, M.D.; Nosochkov, Y.; Seeman, J.T.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

2012-05-16T23:59:59.000Z

62

LANL | Partnering | User Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

| toolbar | links | content Los Alamos National Laboratory Lab Home | Phone ABOUT LANL ContactsEvent CalendarMapsOrganizationPhonebookPolicy CenterEmergency NEWS LIBRARY JOBS...

63

User Facilities Frequently Asked Questions | U.S. DOE Office of Science  

Office of Science (SC) Website

User Facilities Frequently User Facilities Frequently Asked Questions User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facilities Frequently Asked Questions Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Science User Facilities are a unique resource for the Nation's researchers. Below are answers to some commonly asked questions. What is a user facility? A user facility is a federally sponsored research facility available for external use to advance scientific or technical knowledge under the

64

User Facility Training | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

See Also: See Also: Argonne WBT Argonne eJHQ ACIS Training APS Beamline Shielding Argonne National Laboratory User Facility Training Core Courses: These courses require your badge number and APS web password. If you have forgotten your web password, please click here. A temporary password will be sent to your e-mail address on record. Course Name APS 101 Advanced Photon Source User Orientation (2 year retraining) CNM 101 Center for Nanoscale Materials User Orientation (2 year retraining) ESH 100U Argonne National Laboratory User Facility Orientation (2 year retraining) ESH 223 Cybersecurity Annual Education and Awareness (1 year retraining) ESH 738 GERT: General Employee Radiation Training (2 year retraining) Additional Courses Available Remotely: These courses require your badge number and APS web password. If you have forgotten your web password, please click here. A temporary password will be sent to your e-mail address on record.

65

Basic Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

BES User Facilities BES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 BES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Basic Energy Sciences program supports the operation of the following national scientific user facilities: Synchrotron Radiation Light Sources National Synchrotron Light Source (NSLS): External link The NSLS at Brookhaven National Laboratory External link , commissioned in 1982, consists of two distinct electron storage rings. The x-ray storage

66

User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

User User Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page BES User Facilities Brochure .pdf file (7.4MB)Brochure .pdf file (7.4MB) The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well

67

Nuclear Physics User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

NP User Facilities NP User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 NP User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Nuclear Physics program supports the operation of the following national scientific user facilities: Relativistic Heavy Ion Collider (RHIC): External link RHIC at Brookhaven National Laboratory External link is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around

68

High Energy Physics User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

HEP User Facilities HEP User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 HEP User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The High Energy Physics program supports the operation of the following national scientific user facilities: Fermilab Accelerator Complex External link The Fermilab Accelerator Complex at Fermi National Accelerator Laboratory is composed of the accelerator complex and several experiments-both actual and proposed--that utilize its protons. The complex currently

69

Biological and Environmental Research User Facilities | U.S. DOE Office of  

Office of Science (SC) Website

BER User Facilities BER User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 BER User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Biological & Environmental Research program supports the operation of the following national scientific user facilities: William R. Wiley Environmental Molecular Sciences Laboratory (EMSL): External link The mission of the EMSL at the Pacific Northwest National Laboratory (PNNL) External link in Richland, Washington, is to provide integrated experimental and

70

Advanced Scientific Computing Research User Facilities | U.S. DOE Office of  

Office of Science (SC) Website

ASCR User Facilities ASCR User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 ASCR User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Advanced Scientific Computing Research program supports the operation of the following national scientific user facilities: Energy Sciences Network (ESnet): External link The Energy Sciences Network, or ESnet External link , is the Department of Energy's high-speed network that provides the high-bandwidth, reliable connections that link scientists at national laboratories, universities and

71

User's guide to DOE facilities  

SciTech Connect

The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

Not Available

1984-01-01T23:59:59.000Z

72

contacts-by-user-facility | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Find People General Contacts Leadership Team Media Contacts User Facility Contacts Internal Users Home | Our People | User Facility Contacts User Facility Contacts |...

73

FACET: The New User Facility at SLAC  

Science Conference Proceedings (OSTI)

FACET (Facility for Advanced Accelerator and Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. Its high power electron and positron beams make it a unique facility, ideal for beam-driven Plasma Wakefield Acceleration studies. The first 2 km of the SLAC linac produce 23 GeV, 3.2 nC electron and positron beams with short bunch lengths of 20 {mu}m. A final focusing system can produce beam spots 10 {mu}m wide. User-aided Commissioning took place in summer 2011 and FACET will formally come online in early 2012. We present the User Facility, the current features, planned upgrades and the opportunities for further experiments. Accelerators are our primary tool for discovering the fundamental laws to the universe. Each new frontier we probe requires a new, more powerful method. Accelerators are therefore increasing in size and cost. The future of this field requires new accelerating techniques that can reach the high energies required over shorter distances. New concepts for high gradient acceleration include utilizing the wakes in plasma and dielectric and metallic structures. FACET was built to provide a test bed for novel accelerating concepts with its high charge and highly compressed beams. As a test facility unlike any other, it has also attracted groups interested in beam diagnostic techniques and terahertz studies. The first phase of the construction was completed in May 2011. Beam commissioning began in June and was interleaved with the installation of five experiments. Users were invited to aid with the commissioning for the month of August during which time experimental hardware and software were checked out and some first measurements were taken. FACET is currently in the process of becoming a Department of Energy User Facility for High Energy Physics.

Clarke, C.I.; Decker, F.J.; Erikson, R.; Hast, C.; Hogan, M.J.; Iverson, R.; Li, S.Z.; Nosochkov, Y.; Phinney, N.; Sheppard, J.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC; Seryi, A.; /Oxford U., JAI; Wittmer, W.; /Michigan State U.

2011-12-13T23:59:59.000Z

74

INL User Facility welcomes three new experiments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INL User Facility welcomes three new experiments INL User Facility welcomes three new experiments INL User Facility welcomes three new experiments March 17, 2010 - 12:27pm Addthis Idaho Falls - The number of universities conducting nuclear energy experiments in Idaho National Laboratory's one-of-a-kind research reactor has now reached an even dozen. Three universities have been chosen to begin the next round of experiments at INL's Advanced Test Reactor National Scientific User Facility (ATR NSUF). The ATR NSUF grants free access so university-led research teams can use the ATR and other resources at INL and affiliated partner institutions. The three projects were chosen from 11 proposals that were submitted during the most recent solicitation for the user facility. The University of California, Berkeley; University of Nevada, Las Vegas; and Idaho State

75

Microsoft Word - Designated_User_Facilities_April_13_2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4/13/2010 4/13/2010 DOE Designated Scientific User Facilities Laboratory/Facility Argonne National Laboratory Advanced Photon Source (APS) Intense Pulsed Neutron Source (IPNS) Electron Microscopy Center for Materials Research Argonne Wakefield Accelerator (AWA) Argonne Tandem Linac Accelerator System (ATLAS) Center for Nanoscale Materials Leadership Computing Facility* Brookhaven National Laboratory Scanning Transmission Electron Microscope Facility National Synchrotron Light Source (NSLS) Accelerator Test Facility (ATF) Relativistic Heavy Ion Collider (RHIC) Center for Functional Nanomaterials Fermi National Accelerator Laboratory 1,000 GeV Superconducting Accelerator System

76

STATEMENT OF CONSIDERATIONS User Facilities Class Waiver  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by other Government entities and the general public. Under a typical user agreement, the user is given access to unique DOE facilities, such as equipment for producing high energy...

77

Thomas Jefferson National Accelerator Facility  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

78

SSRL and LCLS are national user facilities operated by Stanford University for the US Department of Energy.  

E-Print Network (OSTI)

SSRL Users' Organization Meeting Friday, August 12, 2011 The SSRL Users Organization Executive requested that the Klein award description on the SSRL website be clarified to distinguish the Spicer Young description will be modified accordingly: The Melvin P. Klein Scientific Development Award: https://www-conf.slac.stanford.edu/ssrl

Wechsler, Risa H.

79

User Facilities and Technical Capabilities | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facilities and Technical Capabilities BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About...

80

DOE Designated User Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microsoft Word - DesignatedUserFacilitiesApril132010 FY 2010 LDRD Report SYNCHROTRON RADIATION LIGHTSOURCES AT LAWRENCE BERKELEYNATIONAL LABORATORY ANDSTANFORD LINEAR...

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

STATEMENT OF CONSIDERATIONS User Facilities Class Waiver  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

User Facilities Class Waiver User Facilities Class Waiver This waiver is intended to cover public and private organizations which are using DOE facilities dedicated for research use by other Government entities and the general public. Under a typical user agreement, the user is given access to unique DOE facilities, such as equipment for producing high energy radiation, sophisticated instrumentation or a complex test facility. The research being performed is that of the user, not the Department. These agreements do not take the form of a research contract, cooperative agreement, or grant as these terms are used in the Federal Grant and Cooperative Agreement Act of 1977 (41 U.S.C. 501) and implementing guidance by OMB and OFPP. Also, the requirements of DOE's regulations covering contracts,

82

Identification of User Facility Related Publications  

SciTech Connect

Scientific user facilities provide physical resources and technical support that enable scientists to conduct experiments or simulations pertinent to their respective research. One metric for evaluating the scientific value or impact of a facility is the number of publications by users as a direct result of using that facility. Unfortunately, for a variety of reasons, capturing accurate values for this metric proves time consuming and error-prone. This work describes a new approach that leverages automated browser technology combined with text analytics to reduce the time and error involved in identifying publications related to user facilities. With this approach, scientific user facilities gain more accurate measures of their impact as well as insight into policy revisions for user access.

Patton, Robert M [ORNL; Stahl, Christopher G [ORNL; Potok, Thomas E [ORNL; Wells, Jack C [ORNL

2012-01-01T23:59:59.000Z

83

DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology  

DOE Green Energy (OSTI)

The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

Not Available

2003-10-01T23:59:59.000Z

84

Secure Facilities & Capabilities | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Facilities SHARE Secure Facilities and Capabilities...

85

BNL Guest, User and Visitor Center | User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Collider RHIC Access Information RHIC & AGS Users' Center Building 400A, Brookhaven National Lab Upton, NY 11973 631-344-3333 userscenter@bnl.gov CFN Center for Functional...

86

NREL: Biomass Research - Thermochemical Users Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Users Facility Users Facility Text version The state-of-the-art Thermochemical Users Facility (TCUF) consists of several complementary unit operations that can be configured to accommodate the testing and development of various reactors, filters, catalysts, and other unit operations. The TCUF offers clients the capability to test new processes and feedstocks in a timely and cost-effective manner and to quickly and safely obtain extensive performance data on their processes or equipment. The Thermochemical Users Facility contains the following equipment: Thermochemical Process Development Unit The heart of the TCUF is the 0.5-metric-ton-per-day Thermochemical Process Development Unit (TCPDU), which can be operated in either a pyrolysis or gasification mode. The main unit operations in the TCPDU include 8-inch

87

Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

Douglas M. Gerstner

2009-05-01T23:59:59.000Z

88

Los Alamos neutron science user facility - control system risk mitigation & updates  

SciTech Connect

LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

Pieck, Martin [Los Alamos National Laboratory

2011-01-05T23:59:59.000Z

89

CNST NanoFab Facility User Computer Security and Usage ...  

Science Conference Proceedings (OSTI)

Page 1. CNST NanoFab Facility User Computer Security and Usage Policy ... CNST NanoFab Facility User Computer Security and Usage Policy ...

2013-07-31T23:59:59.000Z

90

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion > Facilities Facilities Office of Inertial Confinement Fusion, Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser Energetics Z Machine, Sandia National Laboratories

91

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Groundbreaking at National Ignition Facility...

92

Audit of the Department of Energy's User Facilities, IG-0395  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19, 1996 August 19, 1996 REPLY TO ATTN OF: IG-1 SUBJECT: INFORMATION: Report on "Audit of the Department of Energy's User Facilities" TO: The Secretary BACKGROUND: The Department of Energy has for years made certain designated user facilities available to universities, industry, and other research organizations. Due to technology transfer efforts and excess capacities, even more facilities, such as defense program facilities, are being made available to outside users. Today, Department user facilities fall into one of three categories - designated user facilities, other user resources, and Technology Deployment Center/User Facilities. The objectives of the audit

93

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

The National Nuclear Security Administration Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Test...

94

User Facility Access Policy | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Access Policy Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the facility was upgraded to a state-of-the-art third generation lightsource in 2004, providing major improvements in emittance, ring current and new or upgraded beam lines. SSRL's research programs include both the x-ray and ultraviolet regions of the spectrum. SSRL is primarily supported by the DOE Offices of Basic Energy Sciences

95

User Services | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services User Support Machine Status Presentations Training & Outreach User Survey User Services The ALCF User Assistance Center provides support for ALCF resources. The center's normal support hours are 9 a.m. until 5 p.m. (Central time) Monday through Friday, exclusive of holidays. Contact Us Email: support@alcf.anl.gov Telephone: 630-252-3111 866-508-9181 Service Desk: Building 240, 2-D-15/16 Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Trouble Ticket System You can check the status of your existing tickets as well as send new support tickets. To do this, log in with your ALCF username and ALCF web accounts system password. (This is the password you chose when you requested your account, or which was assigned to you and sent with your new

96

User Facilities in the Environmental Assessment Division (EVS...  

NLE Websites -- All DOE Office Websites (Extended Search)

The ARM Climate Research Facility, a Department of Energy (DOE) Office of Science user facility, provides data from strategically located climate observatories around the...

97

A U. S. Department of Energy User Facility Atmospheric Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Department of Energy User Facility Atmospheric Radiation Measurement Climate Research Facility U.S. Department of Energy Atmospheric Radiation Measurement Program DOESC-ARM...

98

Audit of the Department of Energy's User Facilities, IG-0395...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Leased Administrative Facilities, IG-0402 Audit Report on "Cost Sharing at Basic Energy Sciences' User Facilities", DOEIG-0441 Audit of the Department of Energy's...

99

Nuclear Science Research Facilities Nuclear Science User Guide  

E-Print Network (OSTI)

LANSCE User Guide Nuclear Science Research Facilities #12;#12;Nuclear Science User Guide Table of Contents Introduction 3 Nuclear Science Research Facilities 3 The LANSCE Accelerator 4 Time structure techniques 8 Nuclear Science User Program 11 Proposal Process 13 Information for Prospective Users 14

100

National Solar Thermal Test Facility  

SciTech Connect

This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

Cameron, C.P.

1989-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Princeton Plasma Physics Lab - National Ignition Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

national-ignition-facility National Ignition Facility en Summary of Assessment of Prospects for Inertial Fusion Energy http:www.pppl.govnode1361

102

User Advisory Council | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources & Expertise Mira Cetus Vesta Intrepid Challenger Surveyor Visualization Clusters Data and Networking Our Teams User Advisory Council User Advisory Council The User...

103

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Office of Defense Science Office of Defense Science Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development > Facilities Facilities Office of Research and Development, Facilities The Office of Research and Development manages and oversees the operation of an exceptional suite of science, technology, and engineering facilities that support and further the national stockpile stewardship agenda. Of varying size, scope and capabilities, the facilities work in a concert to accomplish the following activities: Annual assessment of the stockpile in the face of increasing challenges due to aging or remanufacture, Reduced response times for resolving stockpile issues, Timely and certifiable completion of Life Extension Programs,

104

Target Visualization at the National Ignition Facility  

SciTech Connect

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

Potter, D

2011-11-21T23:59:59.000Z

105

June 11, 1999: National Ignition Facility  

Energy.gov (U.S. Department of Energy (DOE))

June 11, 1999Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

106

U.S. Energy Department Streamlines Access to High-Tech User Facilities...  

Office of Science (SC) Website

U.S. Energy Department Streamlines Access to High-Tech User Facilities at DOE National Laboratories News In the News 2013 2012 2011 2010 2009 2008 2007 2006 2005 In Focus...

107

On the future of BNL user facilities  

SciTech Connect

The purpose of this document is to portray the emerging technology of high-power high-brightness electron beams. This new technology will impact several fields of science and it is essential that BNL stay abreast of the development. BNL has a relative advantage and vital interest in pursuing this technology that will impact its two major facilities, the NSLS and RHIC. We have a sensible development path towards this critical future technology, in which BNL will gradually acquire a strong basis of Superconducting Radio Frequency (SRF) technology while executing useful projects. The technology of high-power AND high-brightness (HPHB) electron beams is based of the convergence of two extant, but relatively recent technologies: Photoinjectors and superconducting energy-recovering linacs. The HPHB technology presents special opportunities for the development of future BNL user facilities for High-Energy and Nuclear Science (HE-NP) and Basic Energy Science (BES). In HE-NP this technology makes it possible to build high-energy electron cooling for RHIC in the short range and a unique linac-based electron-ion collider (eRHIC). In BES, we can build short pulse, coherent FIR sources and high flux femtosecond hard x-ray sources based on Compton scattering in the short range and, in the longer range, femtosecond, ultra-high brightness synchrotron light sources and, ultimately, an X-ray Free-Electron Laser (FEL).

Ben-Zvi, I.

2010-08-01T23:59:59.000Z

108

Oak Ridge Leadership Computing Facility User Update: SmartTruck...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing...

109

U.S. Energy Department Streamlines Access to High-Tech User Facilities at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Streamlines Access to High-Tech User Department Streamlines Access to High-Tech User Facilities at DOE National Laboratories U.S. Energy Department Streamlines Access to High-Tech User Facilities at DOE National Laboratories October 27, 2008 - 4:14pm Addthis WASHINGTON, DC -- The U.S. Department of Energy's (DOE's) Technology Transfer Coordinator, Under Secretary for Science Dr. Raymond L. Orbach, announced today two new model agreements that will expand access to DOE's world-class research facilities by academia and industry. The streamlined agreements will also simplify the process for gaining access to DOE facilities and promote the transfer of cutting-edge technologies from DOE national laboratories. "This new approach will allow both university and industrial researchers greater access to our specialized, world-class facilities across the

110

Non-Proprietary User Agreement - Oak Ridge National Laboratory  

User Facility involved in this User Agreement. ... essential to the performance of work by CONTRACTOR personnel or (c) necessary for the health and

111

National Radiobiology Archives Distributed Access user's manual  

SciTech Connect

This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems.

Watson, C.; Smith, S. (Pacific Northwest Lab., Richland, WA (United States)); Prather, J. (Linfield Coll., McMinnville, OR (United States))

1991-11-01T23:59:59.000Z

112

Brookhaven National Laboratory Federal Facility Agreement, February...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven National Laboratory Agreement Name Brookhaven National Laboratory Federal Facility Agreement Under CERCLA Section 120, February 28, 1992 State New York Agreement Type...

113

Groundbreaking at National Ignition Facility | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Groundbreaking at National Ignition Facility | National Nuclear Security Groundbreaking at National Ignition Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility May 29, 1997 Livermore, CA Groundbreaking at National Ignition Facility

114

New User Guide | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. Feedback Form New User Guide Step 1. Request...

115

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

process contact the user liaison. User liaison James Aubert jhaubert@sandia.gov Sandia National Laboratories P.O. Box 5800 MS-0886 Albuquerque, New Mexico 87185-0886 phone:...

116

User Facility Science Highlights | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facility Science User Facility Science Highlights User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facility Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter by Program Or press Esc Key to close. close Select all that apply. Advanced Scientific Computing Research (ASCR) Basic Energy Sciences (BES) [+] Options « BES Chemical Sciences, Geosciences, and Biosciences Division (CSGB) Materials Sciences and Engineering Division (MSE) Scientific User Facilities Division (SUF)

117

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News Future of User Facility Discussed at Fall Workshop As a national user facility, ARM is accessible to scientists around the globe for...

118

National Library of Energy : User Login  

Office of Scientific and Technical Information (OSTI)

Login Login The National Library of Energy ALERTS feature will automatically update you regarding newly available information in your specific area(s) of interest. Simply register for the service, then create a search strategy which will be run against information added to . Select a schedule (weekly, monthly, etc.) for receiving the email Alerts. If you are a new patron, Register to learn how to set up Alerts to meet your needs. If you are an existing patron, enter your user name and password in the boxes to login. Once logged in, you may review or modify your search, add a new search and see recent Alerts results. User Name: Password: Remember Me Remember me on this computer. Login Don't have a user name? Register! Forgot your password? Reset your password Alerts

119

National Ignition Facility (NIF): Under Pressure: Ramp-Compression...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

120

User Authentication Policy | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Eureka / Gadzooks Eureka / Gadzooks Policies Pullback Policy ALCF Acknowledgment Policy Account Sponsorship & Retention Policy Accounts Policy Data Policy INCITE Quarterly Report Policy Job Scheduling Policy on BG/P Job Scheduling Policy on BG/Q Refund Policy Software Policy User Authentication Policy Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] User Authentication Policy Users of the Argonne production systems are required to use a CRYPTOCard one time password, multifactor authentication system. This document explains the policies users must follow regarding CRYPTOCard tokens for accessing the Argonne resources. MultiFactor Authentication "Authentication systems are frequently described by the authentication

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NanoFab User Facility Usage Fee Schedule  

Science Conference Proceedings (OSTI)

Page 1. NanoFab User Facility Usage Fee Schedule Effective 11/1/09 Tool Full Rate ($/hr) Reduced Rate ($/hr) Base NanoFab Use 60 30 ...

122

Smart sol: bringing user experience to facility management: designing the user interaction of a solar control unit  

Science Conference Proceedings (OSTI)

While a lot of attention is paid to the design of consumer electronics like mobile phones, various other domains have been neglected so far when it comes to user experience. In this paper a user-centered design approach for designing the user interface ... Keywords: facility management, human-machine interaction, nontraditional user interfaces, user experience, user interface design, user-centered design

Patricia Böhm; Tim Schneidermeier; Christian Wolff

2011-07-01T23:59:59.000Z

123

IKNO, a user facility for coherent terahertz and UV synchrotron radiation  

E-Print Network (OSTI)

IKNO is a real multi-user facility that accommodates a largeIKNO, a user facility for coherent terahertz and UVis a proposal for a multi-user facility based on an electron

Sannibale, Fernando

2009-01-01T23:59:59.000Z

124

National Ignition Facility Target Chamber  

DOE Green Energy (OSTI)

On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was necessary to achieve the overall schedule. Plans had to be developed for the precise location and alignment of laser beam ports. Upon completion of the fabrication of the aluminum target chamber in a temporary structure the 130 ton sphere was moved from the temporary construction enclosure to its final location in the target building. Prior to the installation of a concrete shield and after completion of the welding of the chamber penetrations vacuum leak checking was performed to insure the vacuum integrity of target chamber. The entire spherical chamber external surface supports a 40 cm thick reinforced concrete shield after installation in the target building. The final task is a total survey of the laser ports and the contour machining of spacer plates so that laser devices attached to these ports meet the alignment criteria.

Wavrik, R W; Cox, J R; Fleming, P J

2000-10-05T23:59:59.000Z

125

Microsoft Word - Designated_User_Facilities_April_13_2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications DOE Designated User Facilities PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) Microsoft Word - PSRP Updates...

126

Supporting National User Communities at NERSC and NCAR  

E-Print Network (OSTI)

National User Communities at NERSC and NCAR Timothy L.80301 and Horst D. Simon NERSC Center Division ErnestScientific Computing Center (NERSC) and the National Center

Killeen, Timothy L.; Simon, Horst D.

2006-01-01T23:59:59.000Z

127

Director of the National Ignition Facility, Lawrence Livermore National  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of the National Ignition Facility, Lawrence Livermore National Director of the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Edward Moses Director of the National Ignition Facility, Lawrence Livermore National Laboratory

128

Idaho CERCLA Disposal Facility at Idaho National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility at Idaho National Laboratory Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory More Documents & Publications Environmental Management...

129

National Library of Energy : User Account  

Office of Scientific and Technical Information (OSTI)

Reset your password Enter either your User Name or Email Address to reset your password. User Name: Email Address: Go...

130

High Explosives Application Facility | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration High Explosives Application Facility Home > About Us > Our...

131

Chemical Sciences Division: National Facilities & Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley National Facilities and Centers Chemical...

132

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

133

National Ignition Facility | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > Office of Inertial Confinement Fusion > Facilities >...

134

Infrastructure and Facilities Management | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Infrastructure and Facilities Management | National Nuclear Security Infrastructure and Facilities Management | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Infrastructure and Facilities Management Home > content > Infrastructure and Facilities Management Infrastructure and Facilities Management NNSA restores, rebuilds, and revitalizes the physical infrastructure of the

135

Contained Firing Facility | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Contained Firing Facility | National Nuclear Security Administration Contained Firing Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Contained Firing Facility Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development > Facilities > Contained Firing Facility

136

Contruction of User Facilities for the Proton Beam Utilization of PEFP (Proton Engineering Frontier Project)  

E-Print Network (OSTI)

Contruction of User Facilities for the Proton Beam Utilization of PEFP (Proton Engineering Frontier Project)

Kim, K R; Lee, H R; Nam, K Y; Park, B S

2003-01-01T23:59:59.000Z

137

Oak Ridge Leadership Computing Facility User Update: SmartTruck Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory (hi-res image)

138

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Office of Defense Science Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > Office of Research and...

139

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Office of Defense Science Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development...

140

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > Office of Test Capabilities and Evaluation > Facilities...

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement...

142

The National Ignition Facility: Status of Construction  

E-Print Network (OSTI)

Bruce Warner Deputy Associate Director, NIF Programs Lawrence Livermore National Laboratory October 11, 2005 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L2 27EIM/cld P LLNLLLNL P9266 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L28 27EIM/cld P LLNLLLNL National Ignition FacilityNational Ignition Facility P9292 San

143

U.S. Energy Department Streamlines Access to High-Tech User Facilities at  

Office of Science (SC) Website

U.S. Energy U.S. Energy Department Streamlines Access to High-Tech User Facilities at DOE National Laboratories News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 10.27.08 U.S. Energy Department Streamlines Access to High-Tech User Facilities at DOE National Laboratories Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC -- The U.S. Department of Energy's (DOE's) Technology Transfer Coordinator, Under Secretary for Science Dr. Raymond L. Orbach, announced today two new model agreements that will expand access to DOE's world-class research facilities by academia and industry. The streamlined

144

Video Gallery of the National Ignition Facility  

DOE Data Explorer (OSTI)

NIF houses the world’s largest and highest-energy laser, which has the goal of achieving nuclear fusion and energy gain in the laboratory for the first time - in essence, creating a miniature star on Earth. NIF, a program of the DOE National Nuclear Security Administration (NNSA) focuses the intense energy of 192 giant laser beams on a BB-sized target filled with hydrogen fuel, fusing the hydrogen atoms' nuclei and releasing many times more energy than it took to initiate the fusion reaction. NIF is capable of creating temperatures and pressures similar to those that exist only in the cores of stars and giant planets and inside nuclear weapons. Achieving nuclear fusion in the laboratory is at the heart of three complementary missions: 1) Helping ensure the nation’s security without nuclear weapons testing; 2) Blazing the path to a safe, virtually unlimited, carbon-free energy future; and 3) Achieving breakthroughs in a wide variety of scientific disciplines, including astrophysics, materials science, the use of lasers in medicine, radioactive and hazardous waste treatment, particle physics and X-ray and neutron science [taken, with editing, from https://lasers.llnl.gov/about/]. NIF’s Video Gallery presents several narrated clips from the construction phase and short videos about the science behind NIF. These include, “The Power of Light,” “From the Sun to a Sun,” and “A Legacy of Lasers.” One of the videos allows the user to watch a synthetic seed crystal grow into an 800 pound potassium dihydrogen phosphate (KDP) crystal for use in the facility. The most unique clip is “Stellar Gest,” the narration of a poem by Charan Sue Wollard, Poet Laureate for the city of Livermore, home of Lawrence Livermore Laboratory and NIF.

145

High Explosives Application Facility | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Explosives Application Facility | National Nuclear Security Explosives Application Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration High Explosives Application Facility Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development >

146

2009 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

9 NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

147

2011 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

1 NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

148

Annual Users Training Meeting Archives | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Users Training Meeting Archives | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

149

2007 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

7 NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

150

2005 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

5 NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

151

National Library of Energy : User Account  

Office of Scientific and Technical Information (OSTI)

Create User Account User Name: Email Address: I want to: Always receive emails Receive emails if there are new results Never receive emails Email Format: HTML Text New Password:...

152

SLAC National Accelerator Laboratory - Annual Users Conference...  

NLE Websites -- All DOE Office Websites (Extended Search)

Farrel W. Lytle Award on Oct. 24, during the 2011 SSRLLCLS Annual Users' Meeting at SLAC. The award ceremony capped the third day of the users' meeting, which drew more than...

153

Preparing for Ignition Experiments on the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing ignition experiments for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light ({lambda} = 351 nm) making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities for producing and developing ICF. The ignition studies will be an essential step in developing inertial fusion energy (IFE). the NIF Project is over 93% complete and scheduled for completion in 2009. Experiments using one beam have demonstrated that NIF can meet all of its performance goals. A detailed plan called the National Ignition Campaign (NIC) has been developed to begin ignition experiments in 2010. The plan includes the target physics and the equipment such as diagnostics, cryogenic target manipulator and user optics required for the ignition experiment. Target designs have been developed that calculate to ignite at energy as low as 1 MJ. Plans are under way to make NIF a national user facility for experiments on HED physics and nuclear science, including experiments relevant to the development of IFE.

Moses, E; Meier, W

2007-08-28T23:59:59.000Z

154

2010 NMMSS Users Training Meeting | National Nuclear Security  

National Nuclear Security Administration (NNSA)

NMMSS Users Training Meeting | National Nuclear Security NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog 2010 NMMSS Users Training Meeting Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > Training > Annual Users Training Meeting Archives > 2010 NMMSS Users Training Meeting

155

National Biomedical Tracer Facility: Project definition study  

SciTech Connect

The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

1995-05-31T23:59:59.000Z

156

Underground Facility at Nevada National Security Site | National...  

National Nuclear Security Administration (NNSA)

for Our Jobs Our Jobs Working at NNSA Blog U1A Underground Facility at Nevada National Security Site Home > About Us > Our Programs > Defense Programs > Office of Research,...

157

Idaho CERCLA Disposal Facility at Idaho National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho CERCLA Disposal Facility at Idaho National Laboratory Idaho CERCLA Disposal Facility at Idaho National Laboratory Full Document and Summary Versions are available for...

158

Los Alamos National Laboratory opens new waste repackaging facility  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL opens new waste repackaging facility Los Alamos National Laboratory opens new waste repackaging facility The Laboratory has brought a third waste repackaging facility online...

159

Public Reading Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reading Facilities | National Nuclear Security Administration Reading Facilities | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Public Reading Facilities Home > About Us > Our Operations > NNSA Office of General Counsel > Freedom of Information Act (FOIA) > Public Reading Facilities Public Reading Facilities The FOIA and E-FOIA require that specific types of records as well as

160

Supporting National User Communities at NERSC and NCAR  

Science Conference Proceedings (OSTI)

The National Energy Research Scientific Computing Center(NERSC) and the National Center for Atmospheric Research (NCAR) are twocomputing centers that have traditionally supported large national usercommunities. Both centers have developed responsive approaches to supportthese user communities and their changing needs, providing end-to-endcomputing solutions. In this report we provide a short overview of thestrategies used at our centers in supporting our scientific users, withan emphasis on some examples of effective programs and futureneeds.

Killeen, Timothy L.; Simon, Horst D.

2006-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Users Frequently Asked Questions | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Users Frequently Asked Questions | National Nuclear Security Administration Users Frequently Asked Questions | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Users Frequently Asked Questions Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > NMMSS Information, Reports & Forms > Frequently Asked Questions > Users Frequently Asked Questions

162

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and room-temperature semiconductors for detection arrays of x-rays, gamma rays and neutrons. User Support The facility's special capabilities include: low-noise environment to test solid-state detectors for x-ray, gamma-ray, and neutron response mass spectrometry to quantify contaminants in detectors and detector-grade materials photoluminescence and thermally-stimulated current to measure

163

Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research  

Science Conference Proceedings (OSTI)

Conceptually, modern medical imaging can be traced back to the late 1960's and into the early 1970's with the advent of computed tomography . This pioneering work was done by 1979 Nobel Prize winners Godfrey Hounsfield and Allan McLeod Cormack which evolved into the first prototype Computed Tomography (CT) scanner in 1971 and became commercially available in 1972. Unique to the CT scanner was the ability to utilize X-ray projections taken at regular angular increments from which reconstructed three-dimensional (3D) images could be produced. It is interesting to note that the mathematics to realize tomographic images was developed in 1917 by the Austrian mathematician Johann Radon who produced the mathematical relationships to derive 3D images from projections - known today as the Radon Transform . The confluence of newly advancing technologies, particularly in the areas of detectors, X-ray tubes, and computers combined with the earlier derived mathematical concepts ushered in a new era in diagnostic medicine via medical imaging (Beckmann, 2006). Occurring separately but at a similar time as the development of the CT scanner were efforts at the national level within the United States to produce user facilities to support scientific discovery based upon experimentation. Basic Energy Sciences within the United States Department of Energy currently supports 9 major user facilities along with 5 nanoscale science research centers dedicated to measurement sciences and experimental techniques supporting a very broad range of scientific disciplines. Tracing back the active user facilities, the Stanford Synchrotron Radiation Lightsource (SSRL) a SLAC National Accelerator Laboratory was built in 1974 and it was realized that its intense x-ray beam could be used to study protein molecular structure. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was commissioned in 1982 and currently has 60 x-ray beamlines optimized for a number of different measurement techniques including imaging and tomography. The next generation NSLS-II facility is now under construction. The Advanced Light Source (ALS) commissioned in 1993 has one of the world's brightest sources of coherent long wavelength x-rays suitable for probing biological samples in 3D. The Advanced Photon Source at Argonne National Laboratory also has a number of x-ray beamlines dedicated to imaging and tomography suitable for biological and medical imaging research. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) also has a number of beamlines suitable for studying the structure and dynamics of proteins and other biological systems. A neutron imaging and tomography beamline is currently being planned for SNS. Similarly, the High Flux Isotope Reactor (HFIR) also at ORNL has beamlines suitable for examining biological matter and has an operational imaging beamline. In addition, the production of medical isotopes is another important HFIR function. These user facilities have been intended to facilitate basic and applied research and were not explicitly designed with the intention to scan patients the same way a commercial medical imaging scanner does. Oftentimes the beam power is significantly more powerful than those produced by medical scanners. Thus the ionizing radiation effects of these beams must be considered when contemplating how these facilities can contribute to medical research. Suitable research areas involving user facilities include the study of proteins, human and animal tissue sample scanning, and in some cases, the study of non-human vertebrate animals such as various rodent species. The process for scanning biological and animal specimens must be approved by the facility biosafety review board. The national laboratories provide a number of imaging and scattering instruments which can be used to facilitate basic medical research. These resources are available competitively via the scientific peer review process for proposals submitted through the user programs operated by each facility. Imaging human and animal

Miller, Stephen D [ORNL; Bilheux, Jean-Christophe [ORNL; Gleason, Shaun Scott [ORNL; Nichols, Trent L [ORNL; Bingham, Philip R [ORNL; Green, Mark L [ORNL

2011-01-01T23:59:59.000Z

164

Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)  

Science Conference Proceedings (OSTI)

The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge, while for proprietary efforts, the user pays the entire project costs based on DOE guidelines for ORNL costs.

Angelini, P

2004-04-27T23:59:59.000Z

165

A SPECIALIZED, MULTI-USER COMPUTER FACILITY FOR THE HIGH-SPEED, INTERACTIVE PROCESSING OF EXPERIMENTAL DATA  

E-Print Network (OSTI)

of a proposed five user facility is shown In Figure 1. TheA SPECIALIZED, MULTI-USER COMPUTE* FACILITY FOR THE HIGH-to support aultiple ' users on the facility, each capable.of

Maples, C.C.

2010-01-01T23:59:59.000Z

166

National Solar Radiation Database 1991-2010 Update: User's Manual  

SciTech Connect

This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

Wilcox, S. M.

2012-08-01T23:59:59.000Z

167

UCRL-PRES-225531 National ignition facility  

E-Print Network (OSTI)

Title Page UCRL-PRES-225531 #12;National ignition facility #12;NIF is 705,000 #12;NIF laser system #12;NIF us 885 #12;NIF-0506-11956 Laser bay 2 #12;Switchyard 2 #12;Target chamber in the air #12 experiments on NIF have demonstrated #12;21 1 MJ shaping results: Comparison of requested vs measured 3 pulse

168

National Ignition Facility Title II Design Plan  

Science Conference Proceedings (OSTI)

This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

Kumpan, S

1997-03-01T23:59:59.000Z

169

Prospective Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Prospective Users Prospective Users Prospective Users Print The Advanced Light Source (ALS) welcomes researchers from universities, government labs, and industry who are interested in performing experiments at the general sciences and structural biology beamlines open to users. An overview of user opportunities, and the procedures to become a user, are outlined below: What is an ALS User? Research Facilities Available to Users Costs to Users Users from Industry User Policy How to Become an ALS User What is an ALS User? The ALS is a third generation synchrotron light source, providing over 35 beamlines, where samples may be illuminated with x-ray, ultraviolet or infrared light to explore the structure and electronic properties of materials. The ALS operates as a national user facility, and is open to researchers worldwide to submit proposals for research.

170

National Ignition Facility project acquisition plan  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

171

National Biomedical Tracer Facility. Project definition study  

Science Conference Proceedings (OSTI)

We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

Schafer, R.

1995-02-14T23:59:59.000Z

172

Facility Operations Office, Brookhaven National Laboratory, BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Operations Office Facility Operations Office Safely supporting the missions of the laboratory... The Facility Operations Office addresses key issues in work planning, maintenance engineering, service-delivery models, and annual facility-work plans. Facility Operations Center: The Facility Operations Center provides computer programs designed to assist in the planning, management and administrative procedures required for an effective maintenance and asset management process. As an information technology tool for managing the maintenance process, a Computerized Maintenance Management System (CMMS) is a mission-essential part of any organization, and a tool for success. Infrastructure Management: IM's goal is to ensure Brookhaven National Laboratory real property assets are planned for, managed, tracked, and upgraded as required in order to meet BNL's current and future programmatic needs. To accomplish this IM performs site and utilities master planning, manages BNL's new project request and prioritization system (3PBP), maintains utilities maps, manages BNL's space and facilities data base, and provides program management for BNL's GPP, Line Item and Operating Funded Project programs.

173

2008 NMMSS Users Training Meeting | National Nuclear Security  

National Nuclear Security Administration (NNSA)

8 NMMSS Users Training Meeting | National Nuclear Security 8 NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog 2008 NMMSS Users Training Meeting Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > Training > Annual Users Training Meeting Archives > 2008 NMMSS Users Training Meeting

174

2006 NMMSS Users Training Meeting | National Nuclear Security  

National Nuclear Security Administration (NNSA)

6 NMMSS Users Training Meeting | National Nuclear Security 6 NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog 2006 NMMSS Users Training Meeting Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > Training > Annual Users Training Meeting Archives > 2006 NMMSS Users Training Meeting

175

2007 NMMSS Users Training Meeting | National Nuclear Security  

National Nuclear Security Administration (NNSA)

7 NMMSS Users Training Meeting | National Nuclear Security 7 NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog 2007 NMMSS Users Training Meeting Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > Training > Annual Users Training Meeting Archives > 2007 NMMSS Users Training Meeting

176

2005 NMMSS Users Training Meeting | National Nuclear Security  

National Nuclear Security Administration (NNSA)

5 NMMSS Users Training Meeting | National Nuclear Security 5 NMMSS Users Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog 2005 NMMSS Users Training Meeting Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > Training > Annual Users Training Meeting Archives > 2005 NMMSS Users Training Meeting

177

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact For more information about Sandia technology deployment centers or for help in selecting a center to meet your needs, contact Mary Monson at mamonso@sandia.gov, (505) 844-3289. Advanced Power Sources Laboratory Combustion Research Facility Design, Evaluation, and Test Technology Facility

178

President Reagan Calls for a National Spent Fuel Storage Facility...  

National Nuclear Security Administration (NNSA)

for a National Spent Fuel Storage Facility The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

179

Highly Enriched Uranium Materials Facility | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Enriched Uranium ... Highly Enriched Uranium Materials Facility HEUMF The Highly Enriched Uranium Materials Facility is our nation's central repository for highly enriched...

180

Prospective Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Prospective Users Print Prospective Users Print The Advanced Light Source (ALS) welcomes researchers from universities, government labs, and industry who are interested in performing experiments at the general sciences and structural biology beamlines open to users. An overview of user opportunities, and the procedures to become a user, are outlined below: What is an ALS User? Research Facilities Available to Users Costs to Users Users from Industry User Policy How to Become an ALS User What is an ALS User? The ALS is a third generation synchrotron light source, providing over 35 beamlines, where samples may be illuminated with x-ray, ultraviolet or infrared light to explore the structure and electronic properties of materials. The ALS operates as a national user facility, and is open to researchers worldwide to submit proposals for research.

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

National Solar Radiation Database 1991…2010 Update: User's Manual  

Open Energy Info (EERE)

is a national laboratory of the U.S. Department of Energy, Office of Energy is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Solar Radiation Database 1991-2010 Update: User's Manual Stephen Wilcox Technical Report NREL/TP-5500-54824 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 National Solar Radiation Database 1991-2010 Update: User's Manual

182

EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY  

Science Conference Proceedings (OSTI)

Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

Michelle D. Shinn

2007-08-26T23:59:59.000Z

183

NCEM National Center for Electron Microscopy: Becoming an NCEM User  

NLE Websites -- All DOE Office Websites (Extended Search)

New Research New Research Gallery Microscopy Links Becoming an NCEM User Step 1: Submit a proposal Step 2: Before you begin your research Step 3: Instrument qualification Step 4: Accessing NCEM facilities and performing research Step 1: Submit a proposal Deadlines for new proposals are March 15, June 15, September 15, December 15. Access to NCEM facilities is granted to researchers whose proposals are accepted by the NCEM proposal review committee. NCEM users are expected to have a strong background in transmission electron microscopy, and submitted proposals should include evidence of prior electron microscopy experience by the intended operator. Researchers who do not have sufficient experience in electron microscopy may be able to use NCEM facilities through a collaborative project.

184

User Financing in a National Payments for Environmental  

E-Print Network (OSTI)

National government-funded payments for environmental services (PES) programs often lack sustainable financing and fail to target payments to providers of important environmental services. In principle, these problems can be mitigated by supplementing government financing with contributions from leading environmental service users. We use original survey data and official statistics to analyze user financing in Costa Rica’s renowned national PES program, focusing on the amounts and sources of user financing, the drivers of contributions, and contributors ’ perceptions of the PES program. We find that user financing has supported less than three percent of the acres enrolled in the program and that hydroelectric plants are the largest private sector contributors. Large hydroelectric plants tend to contribute while small ones do not. The weight of evidence suggests that in addition to ensuring the provision of forest environmental services, hydroelectric plants ’ motives for contributing to the PES program include improving relations with local communities and government regulators—common drivers of participation in all manner of voluntary environmental programs. These findings raise questions about the potential of user financing to improve the efficiency and financial sustainability of national PES programs.

Costa Rican Hydropower; Allen Blackman; Richard T. Woodward; Allen Blackman; Richard T. Woodward

2009-01-01T23:59:59.000Z

185

Facilities, Central Fabrication Services, Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Fabrication Services Division's capabilities range from a large Electron Beam Welding facility, to a state of the art cleaning facility, to a large fabricating facility...

186

Stockpile Stewardship and the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

Moses, E

2012-01-04T23:59:59.000Z

187

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center...

188

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2008 Facility News National User Facility Organization Meets to Discuss Progress and Ideas In late April, the ARM Technical Director attended an annual meeting of the...

189

Ignition and Inertial Confinement Fusion at The National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

Moses, E

2009-10-01T23:59:59.000Z

190

STATEMENT OF CONSIDERATIONS New York Blue Supercomputer User Facility Class Waiver  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New York Blue Supercomputer User Facility Class Waiver New York Blue Supercomputer User Facility Class Waiver for Non-Proprietary and Proprietary Research W(C)-2008-007 This class waiver is intended to provide for the disposition of intellectual property rights for public and private organizations (hereinafter, Users) that are using the New York Blue (NYBlue) Supercomputing facility for research and commercial use. It is also intended that this class waiver will follow the considerations and terms of the user agreements spelled out in the two recently issued Proprietary and Non-proprietary Class Waivers for designated user facilities at DOE laboratories, W(C)-2008-003 and 005. For the sake of economy, the considerations and user agreements contained in the 003 and 005 waivers will not be repeated verbatim in this class

191

CRAD, Maintenance - Los Alamos National Laboratory TA 55 SST Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory TA 55 SST Los Alamos National Laboratory TA 55 SST Facility CRAD, Maintenance - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance program at the Los Alamos National Laboratory TA 55 SST Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Maintenance - Los Alamos National Laboratory TA 55 SST Facility More Documents & Publications CRAD, Maintenance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Configuration Management - Los Alamos National Laboratory TA 55 SST

192

User:GregZiebold/U.S. National Concept test | Open Energy Information  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon User:GregZieboldU.S. National Concept test < User:GregZiebold Jump to: navigation, search Energy Initiatives: Energy Initiatives -...

193

Scientific User Facilities (SUF) Division Homepage | U.S. DOE Office of  

Office of Science (SC) Website

SUF Home SUF Home Scientific User Facilities (SUF) Division SUF Home About User Facilities Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Scientific User Facilities (SUF) Division supports the R&D, planning, construction, and operation of scientific user facilities for the development of novel nano-materials and for materials characterization through x-ray, neutron, and electron beam scattering; the former is accomplished through five Nanoscale Science Research Centers and the latter is accomplished through the world's largest suite of synchrotron radiation light source facilities, neutron scattering facilities, and electron-beam

194

Sandia National Laboratories: Z Pulsed Power Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Z-Machine Z-Machine About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Z-Machine Z Pulsed Power Facility Science serving the nation Created to validate nuclear weapons models, the Z machine is also in the race for viable fusion energy. Z-Machine From Earth's Core to Black Holes Contributing to discovery science by studying matter at conditions found nowhere else on Earth Center of Z About Z Sandia's Z machine is the world's most powerful and efficient laboratory radiation source. It uses high magnetic fields associated with high electrical currents to produce high temperatures, high pressures, and powerful X-rays for research in high energy density science. The Z machine creates conditions found nowhere else on Earth. Z is part of Sandia's Pulsed Power program, which began in the 1960s.

195

National Ignition Facility and Managing Location, Component, and State  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

2011-07-25T23:59:59.000Z

196

EMSL: User Access  

NLE Websites -- All DOE Office Websites (Extended Search)

WHAT CAN EMSL DO FOR YOU? Researcher with microscope As a national scientific user facility with a diverse range of capabilities and expertise, EMSL has something to offer...

197

Description of Facilities and Resources Oak Ridge National Laboratory  

E-Print Network (OSTI)

1 Description of Facilities and Resources Oak Ridge National Laboratory and the UT-ORNL Joint National Laboratory (ORNL) hosts three petascale computing facilities: the Oak Ridge Leadership Computing Center (NCRC), formed as collaboration between ORNL and the National Oceanographic and Atmospheric

198

IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed and has high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments to be conducted by the academic community is planned for summer 2009. This paper summarizes the design, performance, and status of NIF, experimental plans for NIC, and will present a brief discussion of the unparalleled opportunities to explore frontier basic science that will be available on the NIF.

Moses, E

2009-06-22T23:59:59.000Z

199

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

200

Sandia National Laboratories: Research: Facilities: Annular Core...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annular Core Research Reactor facility Nuclear science photo At the Annular Core Research Reactor (ACRR) facility, Sandia researchers can subject various test objects to a mixed...

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major...

202

"New Results from the National Ignition Facility", Dr. John Lindl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009, a wide variety of diagnostics, facility...

203

PLANNING STUDY FOR ADVANCED NATIONAL SYNCHROTRON-RADIATION FACILITIES  

NLE Websites -- All DOE Office Websites (Extended Search)

FOR ADVANCED NATIONAL SYNCHROTRON-RADIATION FACILITIES Printed March 14, 1984 The report of a study sponsored by the Department of Energy, Office of Basic Energy Sciences, and...

204

Newest LANL Facility Receives LEED Gold Certification | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newest LANL Facility Receives LEED Gold Certification | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

205

Oak Ridge National Laboratory Carbon Fiber Technology Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

206

User`s guide for the KBERT 1.0 code: For the knowledge-based estimation of hazards of radioactive material releases from DOE nuclear facilities  

Science Conference Proceedings (OSTI)

The possibility of worker exposure to radioactive materials during accidents at nuclear facilities is a principal concern of the DOE. The KBERT software has been developed at Sandia National Laboratories under DOE support to address this issue by assisting in the estimation of risks posed by accidents at chemical and nuclear facilities. KBERT is an acronym for Knowledge-Based system for Estimating hazards of Radioactive material release Transients. The current prototype version of KBERT focuses on calculation of doses and consequences to in-facility workers due to accidental releases of radioactivity. This report gives detailed instructions on how a user who is familiar with the design, layout and potential hazards of a facility can use KBERT to assess the risks to workers in that facility. KBERT is a tool that allows a user to simulate possible accidents and observe the predicted consequences. Potential applications of KBERT include the evaluation of the efficacy of evacuation practices, worker shielding, personal protection equipment and the containment of hazardous materials.

Browitt, D.S.; Washington, K.E.; Powers, D.A. [and others

1995-07-01T23:59:59.000Z

207

The Department of Energy has opted to utilize the following agreement for Designated Non-Proprietary User Facilities transactions  

NLE Websites -- All DOE Office Websites (Extended Search)

4- 4- Between UT-BATTELLE, LLC "CONTRACTOR" Operator of Oak Ridge National Laboratory (hereinafter "Laboratory" or "ORNL") under Prime Contract No. DE-AC05-00OR22725 with the United States Government (hereinafter "U.S. Government" or "Government"), as represented by the United States Department of Energy (hereinafter "DOE"), AND NAME OF USER INSTITUTION "USER" (Collectively, "the Parties") The obligations of the above-identified DOE CONTRACTOR may be transferred to and shall apply to any successor in interest to said CONTRACTOR continuing the operation of the Laboratory. ARTICLE I. FACILITIES AND SCOPE OF WORK CONTRACTOR will make available to duly authorized employees, consultants and/or

208

National Ignition Facility makes history with record 500 terawatt...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Ignition Facility makes history with record 500 terawatt shot Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov Printer-friendly The preamplifiers of the National...

209

Development of an XUV-IR free-electron laser user facility for scientific research and industrial applications  

Science Conference Proceedings (OSTI)

Los Alamos has designed and proposes to establish an XUV-IR free- electron laser (FEL) user facility for scientific research and industrial applications based on coherent radiation ranging from soft x-rays as short as 1 nm to far-infrared wavelengths as long as 100 {mu}m. As the next-generation light source beyond low-emittance storage rings with undulator insertion devices, this proposed national FEL user facility should make available to researchers broadly tunable, picosecond-pulse, coherent radiation with 10{sup 4} to 10{sup 7} greater spectral flux and brightness. The facility design is based on two series of FEL oscillators including one regenerative amplifier. The primary series of seven FEL oscillators, driven by a single, 1-GeV rf linac, spans the short-wavelength range from 1 to 600 nm. A second 60-MeV rf linac, synchronized with the first, drives a series of three Vis/IR FEL oscillators to cover the 0. 5 to 100-{mu}m range. This paper presents the motivation for such a facility arising from its inherently high power per unit bandwidth and its potential use for an array of scientific and industrial applications, describes the facility design, output parameters, and user laboratories, makes comparisons with synchrotron radiation sources, and summarizes recent technical progress that supports the technical feasibility. 80 refs., 9 figs., 6 tabs.

Newnam, B.E.; Warren, R.W.; Conradson, S.D.; Goldstein, J.C.; McVey, B.D.; Schmitt, M.J.; Elliott, C.J.; Burns, M.J.; Carlsten, B.E.; Chan, K.C.; Johnson, W.J.; Wang, T.S.; Sheffield, R.L.; Meier, K.L.; Olsher, R.H.; Scott, M.L.; Griggs, J.E.

1991-01-01T23:59:59.000Z

210

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support The knowledgeable staff...

211

DOE Designated User Facilities Multiple Laboratories * ARM Climate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Center for Nanophase Materials Sciences (CNMS) * High Flux Isotope Reactor (HFIR) * National Center for Computational Sciences (NCCS) * Shared Research Equipment...

212

STATEMENT OF CONSIDERATIONS CLASS WAIVER OF GOVERNMENT PATENT RIGHTS FOR PROPRIETARY USERS OF FACILITIES ESTABLISHED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GOVERNMENT PATENT RIGHTS FOR PROPRIETARY USERS OF FACILITIES ESTABLISHED GOVERNMENT PATENT RIGHTS FOR PROPRIETARY USERS OF FACILITIES ESTABLISHED UNDER THE PHOTOVOLTAIC MANUFACTURING INITIATIVE (DE-FOA-0000259) DOE WAIVER NO. W(C) 2011-004 The following is a class patent waiver of the rights of the United States to inventions made or conceived of during the use of facilities that were funded, in at least part, through the Photovoltaic Manufacturing Initiative ("PVMI") by proprietary users. The waiver applies only to the inventions of proprietary users as defined below. In order to avail itself of this class patent waiver, a proprietary user must report the inventions to DOE. DOE' s Solar Energy Technologies Program launched PVMI to support the creation of a robust photovoltaic (PV) manufacturing base in the U.S. The U.S. is a leader in the research and development

213

The User Agreement  

NLE Websites -- All DOE Office Websites (Extended Search)

User Agreement User Agreement Oak Ridge National Laboratory is home to a number of highly sophisticated experimental user facilities. These research facilities, instruments, and laboratories are designed to serve Laboratory researchers, engineers, and technical staff, as well as external researchers from universities, industries, foreign institutions and other government laboratories. Sharing these state-of-the-art facilities with the scientific, industrial, and technical communities provides access to unique and specialized technology, equipment and instrumentation without burdening the user with the astronomical capital costs of building such facilities. Characteristics of User Agreements * User Agreements come in two types; proprietary and non-proprietary. The characteristics of

214

The explosive components facility - fulfilling its role as a national resource  

DOE Green Energy (OSTI)

The Explosive Components Facility (ECF) is a major, low-hazard, non-nuclear, research and development facility of the Sandia National Laboratories/Albuquerque (SNL). Sandia Corporation, a subsidiary of Lockheed-Martin, operates this designated User Facility for the Department of Energy (DOE). The ECF consolidates many SNL energetic-materials activities and provides a unique combination of explosive-technologies, neutronic-components, batteries, and weapons-evaluation capabilities. This paper describes the project objectives, the basic building features, programmatic capabilities, and the processes used to beneficially occupy and assess readiness to operate.

Johnson, D.R.; Bonzon, L.L.

1996-08-01T23:59:59.000Z

215

NREL Facility Named One of Nation's Top Sustainable Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings June 24, 2011 - 12:31pm Addthis The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office It's been a little over a year since the Energy Department's Research Support Facility (RSF) opened on the National Renewable Energy Laboratory (NREL) campus in Colorado. The innovative approach taken in the design and

216

NREL Facility Named One of Nation's Top Sustainable Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings June 24, 2011 - 12:31pm Addthis The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office It's been a little over a year since the Energy Department's Research Support Facility (RSF) opened on the National Renewable Energy Laboratory (NREL) campus in Colorado. The innovative approach taken in the design and

217

Heating National Ignition Facility, Realistic Financial Planning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Essential Lessons Learned Report Apr 2010.pdf More Documents & Publications Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA,...

218

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

219

Contained Firing Facility | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > Office of Research and Development > Facilities >...

220

Support Facilities | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

maintenance shops, waste management and storage facilities, guard portals and posts, cooling towers and chiller buildings - with an emphasis on sustainment, cost savings and...

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Transforming our Nation's Energy System, Energy Systems Integration Facility (ESIF)  

SciTech Connect

The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will soon be the nation's first facility that can conduct integrated megawatt-scale testing of the components and strategies needed in order to safely move clean energy technologies onto the electrical grid 'in-flight' at the speed and scale required to meet national goals.

Not Available

2011-08-01T23:59:59.000Z

222

The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report  

SciTech Connect

The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

S. Bragg-Sitton; J. Bess; J. Werner

2011-09-01T23:59:59.000Z

223

Sandia National Laboratories: Research: Facilities: Gamma Irradiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Irradiation Facility Gamma Irradiation Facility Photo of Gamma Irradiation Facility The Gamma Irradiation Facility (GIF) provides high-fidelity simulation of nuclear radiation environments for materials and component testing. The low-dose irradiation facility also offers an environment for long-duration testing of materials and electronic components. Such testing may take place over a number of months or even years. Research and other activities The single-structure GIF can house a wide variety of gamma irradiation experiments with various test configurations and at different dose and dose rate levels. Radiation fields at the GIF are produced by high-intensity gamma-ray sources. To induce ionizing radiation effects and damage in test objects, the objects are subjected to high-energy photons from gamma-source

224

Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities, August 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Review Report Review Report Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities May 2011 August 2011 Office of Health, Safety and Security Office of Enforcement and Oversight Office of Safety and Emergency Management Evaluations Table of Contents Background ................................................................................................................................................... 1 Results ........................................................................................................................................................... 2 Conduct of the FCA ......................................................................................................................... 2

225

Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities, August 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review Report Review Report Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities May 2011 August 2011 Office of Health, Safety and Security Office of Enforcement and Oversight Office of Safety and Emergency Management Evaluations Table of Contents Background ................................................................................................................................................... 1 Results ........................................................................................................................................................... 2 Conduct of the FCA ......................................................................................................................... 2

226

Omega Laser Facility Users Group Workshop (April 25 -27, 2012)  

E-Print Network (OSTI)

-doctoral fellows participated in the workshop, and 42 were supported by travel grants from NNSA. The content two received travel assistance from an NNSA grant. Travel assistance has already been arranged: "This is an excellent model" for all NNSA facilities. #12;- 10 - The banquet at the Meliora

227

PIA - OpenGov UserVoice System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration, PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009...

228

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Moses, E

2009-09-17T23:59:59.000Z

229

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications. Material Characterization Shock wave experiments are an established technique to determine the equation of state at high pressures and temperature, which can be applied to virtually all materials. This technique allows the probing of the internal structure of the material as it undergoes deformation. This provides a better understanding of the material properties for development

230

Sandia National Laboratories: Locations: Kauai Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility P.O. Box 308 Waimea, Kauai HI 96796-0308 7:30 a.m. - 4:30 p.m. Hawaii-Aleutian Standard Time, M - F Steven Lautenschleger, Manager (505) 845-9234,...

231

National Cemetery Administration (NCA) Facilities Design ...  

Science Conference Proceedings (OSTI)

... For relatively larger facilities, evaluate the use of a hot water heating system (with natural gas and/or No. 2 oil as the fuel) and a chilled water ...

2011-02-11T23:59:59.000Z

232

2009 NMMSS Users Annual Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > Training > Annual Users Training Meeting Archives > 2009 NMMSS Users Training...

233

2008 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

> 2008 NMMSS Users Training Meeting 2008 NMMSS Users Training Meeting U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

234

CHALLENGES IN DATA INTENSIVE ANALYSIS AT SCIENTIFIC EXPERIMENTAL USER FACILITIES  

SciTech Connect

This chapter will discuss the critical data intensive analysis and visualiza-tion challenges faced by the experimental science community at large scale and laboratory based facilities. The chapter will further highlight initial solutions under development through community efforts and lay out perspectives for the future, such as the potential of more closely linked experimental and computational science approaches, methods to achieve real time analysis capabilities and the challenges and opportunities of data integration across experimental scales, levels of theory and varying techniques.

Kleese van Dam, Kerstin; Li, Dongsheng; Miller, Stephen D.; Cobb, John W.; Green, Mark L.; Ruby, Catherine L.

2011-12-31T23:59:59.000Z

235

Sandia National Laboratories Combustion Research Facility  

E-Print Network (OSTI)

: · Reformers: steam methane and autothermal (partial oxidation) · Fuel cell system · Compressor (mechanical) · High-pressure storage vessel · Electrolyzer · Photovoltaic Solar Collector Module descriptions: · Steam-methane-located with a business, an industrial energy user, or a domestic village · H2 generators -- reformers, electrolyzers · H2

236

Facility Resources - National Transportation Research Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

can then be certified by one of several regulatory authorities, usually DOE, the National Nuclear Security Administration, or the Nuclear Regulatory Commission, for use on the...

237

National Ignition Facility | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

238

NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

239

TTED news Summer 06 and User Facilities Insert  

NLE Websites -- All DOE Office Websites (Extended Search)

  ORNL Technology Transfer & Economic Development (TTED) seeks to foster economic development and the growth of business and industry by making available the most innovative equipment, the latest technology, and the expertise of ORNL researchers to technology-based companies throughout the nation. (continued on page 2) First-of-its-kind Technology Park Created in Oak Ridge F ederal, state, and local officials have dedicated a new technology park at ORNL that proponents predict will bring new companies and jobs to East Tennessee. The Oak Ridge Science and Technol- ogy Park, located in the Knoxville-Oak Ridge Innovation Valley on land pro- vided by the Department of Energy, is the nation's first technology park on the campus of a national laboratory.

240

Precision Shock Tuning on the National Ignition Facility  

E-Print Network (OSTI)

Ignition implosions on the National Ignition Facility [ J.?D. Lindl et al. Phys. Plasmas 11 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (?R) to sustain ...

Frenje, Johan A.

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Visualization of Target Inspection data at the National Ignition Facility  

SciTech Connect

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

Potter, D; Antipa, N

2012-02-16T23:59:59.000Z

242

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

than any other quarter on record-961 The U.S. Department of Energy requires national user facilities to report facility use by total visitor days and facility to track actual...

243

National Ignition Facility faces an uncertain future David Kramer  

E-Print Network (OSTI)

at the National Ignition Facility to achieve a self-sustaining fusion reaction fell short. Now NIF stands to lose that were specified for NIF when the massive laser facility was ap- proved for construction in 1996. President Obama's fiscal year 2014 budget request calls for the end of NIF support for experiments proposed

244

A Description of the CSU–CHILL National Radar Facility  

Science Conference Proceedings (OSTI)

The subject of this paper is the Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) National Radar Facility’s S-band polarimetric research radar. Key features of this system include polarization agility (...

David Brunkow; V. N. Bringi; Patrick C. Kennedy; Steven A. Rutledge; V. Chandrasekar; E. A. Mueller; Robert K. Bowie

2000-12-01T23:59:59.000Z

245

President Reagan Calls for a National Spent Fuel Storage Facility |  

National Nuclear Security Administration (NNSA)

Reagan Calls for a National Spent Fuel Storage Facility | Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Reagan Calls for a National Spent ... President Reagan Calls for a National Spent Fuel Storage Facility October 08, 1981

246

Challenges in Data Intensive Analysis at Scientific Experimental User Facilities  

Science Conference Proceedings (OSTI)

Today's scientific challenges such as routes to a sustainable energy future, materials by design or biological and chemical environmental remediation methods, are complex problems that require the integration of a wide range of complementary expertise to be addressed successfully. Experimental and computational science research methods can hereby offer fundamental insights for their solution. Experimental facilities in particular can contribute through a large variety of investigative methods, which can span length scales from millions of kilometers (radar) to the sub-nucleus (LHC). These methods are used to probe structure, properties, and function of objects from single elements to whole communities. Hereby direct imaging techniques are a powerful means to develop an atomistic understanding of scientific issues. For example, the identification ofmechanisms associated with chemical, material, and biological transformations requires the direct observation of the reactions to build up an understanding of the atom-by-atom structural and chemical changes. Computational science can aid the planning of such experiments, correlate results, explain or predict the phenomena as they would be observed and thus aid their interpretation. Furthermore computational science can be essential for the investigation of phenomena that are difficult to observe due to their scale, reaction time or extreme conditions. Combining experimental and computational techniques provides scientists with the ability to research structures and processes at various levels of theory, e.g. providing molecular 'movies' of complex reactions that show bond breaking and reforming in natural time scales, along with the intermediate states to understand the mechanisms that govern the chemical transformations. This chapter will discuss the critical data intensive analysis challenges faced by the experimental science community at large scale and laboratory based facilities. The chapter will highlight current solutions and lay out perspectives for the future, such as methods to achieve real time analysis capabilities and the challenges and opportunities of data integration across experimental scales, levels of theory, and varying techniques.

Kleese Van Dam, Kerstin [ORNL; Li, Dongsheng [Pacific Northwest National Laboratory (PNNL); Cobb, John W [ORNL; Green, Mark L [ORNL; Burley, Catherine L [ORNL; Miller, Stephen D [ORNL

2011-01-01T23:59:59.000Z

247

Uranium Processing Facility | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

About / Transforming Y-12 / Uranium Processing Facility About / Transforming Y-12 / Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly, disassembly, dismantlement, quality evaluation, and product certification. An integral part of Y-12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium Processing Facility is one of two facilities at Y-12 whose joint mission will be to accomplish the storage and processing of all enriched uranium in one much smaller, centralized area. Safety, security and flexibility are key design attributes of the facility, which is in the preliminary design phase of work. UPF will be built to modern standards and engage new technologies through a responsive and agile

248

LANL | Partnering | User Facility - Los Alamos National Lab ...  

Developing plasma science and base technologies for materials synthesis, environmentally-conscious manufacturing, pollution prevention, and cleaning and ...

249

LANL | Partnering | User Facility - Los Alamos National Lab ...  

high-temperature superconductivity, laser processing, machining, surface analysis, spectroscopy, microwave processing, advanced thermomechanical processing, and;

250

Guidance for User Facility Agreements Los Alamos National Laboratory  

estimate of the LANL cost is developed to meet the Participant’s preliminary requirements. While these early discussions with LANL are important in meeting the ...

251

LANL | Partnering | User Facility - Los Alamos National Lab ...  

The lidar operates by emitting a pulse of infrared or visible laser light into the atmosphere. Aerosols and, to a limited extent molecules, ...

252

Facility Operations and User Support | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

programmatic support for collaboration with external agencies on specific high-performance computing projects. This product also includes collaborations with internal or...

253

LANL | Partnering | User Facility - Los Alamos National Lab ...  

... low-inductance, multiple-cable, transmission-line network that feeds closing switches and headers at the firing runway. ...

254

LANL | Partnering | User Facility - Los Alamos National Lab ...  

The target solute can then be recovered in concentrated for reuse or proper waste management and the empty polymer is recycled back to the process for further solute ...

255

LANL | Partnering | User Facility - Los Alamos National Lab ...  

Offers electro-optical techniques to provide quantitative analysis of a variety of cellular properties, which are sequentially studied in a continuous-flow system ...

256

LANL | Partnering | User Facility - Los Alamos National Lab ...  

... hydrothermal conditions are capable of processing highly corrosive and salt-containing organic wastes as well, such as Hanford tank waste.

257

Adaptive Comfort in Mixed-Mode Buildings: Research Support Facility, National Renewable Energy Lab  

E-Print Network (OSTI)

Support Facility, National Renewable Energy Lab Gail Brager,Facility of the National Renewable Energy Lab in Golden, CO.for energy efficiency and renewable energy technologies. The

Brager, Gail; Pigman, Margaret

2013-01-01T23:59:59.000Z

258

KCP celebrates production milestone at new facility | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

celebrates production milestone at new facility | National Nuclear celebrates production milestone at new facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > KCP celebrates production milestone at new facility KCP celebrates production milestone at new facility Posted By Office of Public Affairs The Kansas City Plant celebrated yet another milestone at the National

259

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

260

Newest LANL Facility Receives LEED Gold Certification | National Nuclear  

National Nuclear Security Administration (NNSA)

Newest LANL Facility Receives LEED Gold Certification | National Nuclear Newest LANL Facility Receives LEED Gold Certification | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Newest LANL Facility Receives LEED Gold Certification Newest LANL Facility Receives LEED Gold Certification Posted By Office of Public Affairs RULOB LANL's newest facility, the Radiological Laboratory Utility Office

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NNSA Holds Groundbreaking at MOX Facility | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Groundbreaking at MOX Facility | National Nuclear Security Groundbreaking at MOX Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Holds Groundbreaking at MOX Facility NNSA Holds Groundbreaking at MOX Facility October 14, 2005 Aiken, SC NNSA Holds Groundbreaking at MOX Facility

262

User Facilities: Tools for Seeing Atoms | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Seeing Seeing Matter at Atomic and Molecular Scales » User Facilities: Tools for Seeing Atoms Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Facilities Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Seeing Matter at Atomic and Molecular Scales User Facilities: Tools for Seeing Atoms Print Text Size: A A A RSS Feeds FeedbackShare Page

263

Sandia National Laboratories' Readiness in Technical Base and Facilities Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories' Sandia National Laboratories' Readiness in Technical Base and Facilities Program OAS-L-13-13 September 2013 Department of Energy Washington, DC 20585 September 5, 2013 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Sandia National Laboratories' Readiness in Technical Base and Facilities Program" BACKGROUND The Department of Energy's (Department) Sandia National Laboratories (Sandia) is a Government-owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. One of Sandia's key missions is to ensure the safety, reliability and performance of the Nation's nuclear weapons stockpile. To accomplish

264

Overview of Idaho National Laboratory's Hot Fuels Examination Facility  

SciTech Connect

The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

2007-09-01T23:59:59.000Z

265

FEDS user`s guide: Facility energy screening. Release 2.10  

SciTech Connect

The Facility Energy Decision Screening (FEDS) Model is under development at Pacific Northwest Laboratory (PNL) for the US DOE Federal Energy Management Program (DOE-FEMP) and the US Army Construction Engineering REsearch Laboratory (USA-CERL). FEDS is a multi-level energy analysis software system designed to provide a comprehensive approach to fuel-neutral, technology-independent, integrated (energy) resource planning and acquisition. The FEDS system includes Level-1, which is a top-down, first-pass energy systems analysis and energy resource acquisition decision software model for buildings and facilities, and the Level-2 software model, which allows specific engineering inputs and provides detailed output. The basic intent of the model is to provide an installation with the information necessary to determine the minimum life-cycle cost (LCC) configuration of the installation`s energy generation and consumption infrastructure. The model has no fuel or technology bias; it simply selects the technologies that will provide an equivalent or superior level of service (e.g., heating, cooling, illumination) at the minimum LCC.

Dirks, J.A.

1995-01-01T23:59:59.000Z

266

Hanford, WA Selected as Plutonium Production Facility | National Nuclear  

National Nuclear Security Administration (NNSA)

Hanford, WA Selected as Plutonium Production Facility | National Nuclear Hanford, WA Selected as Plutonium Production Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility January 16, 1943 Hanford, WA

267

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004°, -93.0551795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

268

High Explosives Pressing Facility on budget and on schedule | National  

NLE Websites -- All DOE Office Websites (Extended Search)

Explosives Pressing Facility on budget and on schedule | National Explosives Pressing Facility on budget and on schedule | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > High Explosives Pressing Facility on budget and ... High Explosives Pressing Facility on budget and on schedule Posted By Office of Public Affairs Construction crews prepare to pour concrete at the new High Explosives

269

High Explosives Pressing Facility on budget and on schedule | National  

National Nuclear Security Administration (NNSA)

Pressing Facility on budget and on schedule | National Pressing Facility on budget and on schedule | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > High Explosives Pressing Facility on budget and ... High Explosives Pressing Facility on budget and on schedule Posted By Office of Public Affairs Construction crews prepare to pour concrete at the new High Explosives

270

Brookhaven National Laboratory is home to world-class research facilities and sc  

NLE Websites -- All DOE Office Websites (Extended Search)

is home to world-class research facilities and scientific is home to world-class research facilities and scientific departments which attract resident and visiting scientists in many fields. This outstanding mix of machine- and mind-power has on seven occasions produced research deemed worthy of the greatest honor in science: the Nobel Prize. 2009 Nobel Prize in Chemistry Venkatraman Ramakrishnan, of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, a former employee in Brookhaven's Biology Department, and a long-time user of Brookhaven's National Synchrotron Light Source (NSLS), and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for studying the structure and function of the ribosome.

271

Sandia National Labs: PCNSC: Departments: CINT User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

User Program > CINT Science Small Science Cluster Business Office News Partnering Research Neal Shinn Neal Shinn Manager Lupita Serna Lupita Serna Admin. Asst. Resources CINT...

272

The Berkeley accelerator space effects facility (BASE) - A new mission for the 88-inch cyclotron at LBNL  

E-Print Network (OSTI)

as a DOE National User Facility in FY04. This was a majorion test facility, the control system and user interface has

McMahan, M.A.

2005-01-01T23:59:59.000Z

273

DOE Selects Lawrence Livermore National Security, LLC to Manage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enterprise-wide activities; completing construction of the National Ignition Facility (NIF) and operating NIF as a national user facility to support NNSA missions as well as the...

274

Development of nuclear diagnostics for the National Ignition Facility ,,invited...  

E-Print Network (OSTI)

July 2006; published online 5 October 2006 The National Ignition Facility NIF will provide up to 1.8 MJ of laser energy for imploding inertial confinement fusion ICF targets. Ignited NIF targets are expected of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF

275

Idaho National Engineering Laboratory Consolidated Transportation Facility. Environmental Assessment  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0822, addressing environmental impacts that could result from siting, construction, and operation of a consolidated transportation facility at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The DOE proposes to construct and operate a new transportation facility at the Central Facilities Area (CFA) at the INEL. The proposed facility would replace outdated facilities and consolidate in one location operations that are conducted at six different locations at the CFA. The proposed facility would be used for vehicle and equipment maintenance and repair, administrative support, bus parking, and bus driver accommodation. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, the preparation of an environmental impact statement (EIS) is not required and the Department is issuing this finding of no significant impact.

1993-04-01T23:59:59.000Z

276

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

277

2009 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Training Meeting | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

278

User Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

User Policy Print User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs assurance of adequate access to the facility. On the other hand, qualified groups that make a large commitment of time and resources need some assurance of an equitable return on their investment. A national facility should be accessible to all qualified researchers and at the ALS there are three modes of access: as a General User, a member of an Approved Program (AP), or as a member of a Participating Research Team (PRT). All proposals for research to be conducted at the ALS are evaluated based on the criteria endorsed by the International Union of Pure and Applied Physics (IUPAP). These criteria are detailed on the IUPAP Web site at IUPAP Recommendations for the Use of Major Physics Users Facilities (pdf version).

279

2008 NMMSS Users Training Meeting | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

178.63 KB Foreign Obligations at DOE Facilities (Karen McCulloch) 805.24 KB Department of Energy Reporting of Radioactive Sealed Source DOE N 234.1 (Len Myers) 193.84 KB DOE...

280

Partnerships and Technology Transfer - Oak Ridge National ...  

User Facilities; Visiting Us; Contact Us; Home; ... [an error occurred while processing this directive] ... Oak Ridge National Laboratory ...

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

2009 NMMSS Users Annual Training Meeting Attendees | National...  

National Nuclear Security Administration (NNSA)

Security Technologies Administrative Staff harrislr@nv.doe.gov 41 Hart, Dee Department of Energy National Nuclear Security Administration Acant dhart@doeal.gov 42 Hart, Patricia...

282

Isotopes facilities deactivation project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

Eversole, R.E.

1997-05-01T23:59:59.000Z

283

Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility  

SciTech Connect

Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from 9 national laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. As a result of this work, DIII-D data is available on a 24 x 7 basis from a set of viewing and analysis tools that can be run either on the collaborators' or DIII-Ds computer systems. Additionally, a Web based data and code documentation system has been created to aid the novice and expert user alike.

Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; Meyer, W.H.; Parker, C.T.

1999-08-01T23:59:59.000Z

284

Data Management and Its Role in Delivering Science at DOE BES User Facilities Past, Present, and Future  

Science Conference Proceedings (OSTI)

Abstract. The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research [1]. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one s laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today s data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need [2]. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990 s to integrate data from across multiple modalities to achieve better diagnoses [3] similarly, data fusion across BES facilities will lead to new scientific discoveries.

Miller, Stephen D [ORNL; Herwig, Kenneth W [ORNL; Ren, Shelly [ORNL; Vazhkudai, Sudharshan S [ORNL

2009-01-01T23:59:59.000Z

285

Argonne National Laboratory Terahertz- and Millimeter-Wave Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

PROFILE: PROFILE: Argonne Homeland Security Technologies APPLICATIONS A R G O N N E N A T I O N A L L A B O R A T O R Y Terahertz- and Millimeter-Wave Test Facility B E N E F I T S Detect Terrorist-Related Contraband with Terahertz Technology * Spectral "fingerprints" uniquely identify materials * Can identify the factory where explosives and other chemicals were manufactured * Detects minute amounts of chemicals from a distance * Identifies materials in seconds Companies that develop or manufacture instruments to detect terrorist contraband can benefit by using a unique facility at the U.S. Department of Energy's Argonne National Laboratory. Called the Terahertz Test Facility, its sensitive, new instruments - developed at Argonne and available nowhere else in the world - can obtain spectral "fingerprints" that uniquely

286

Idaho CERCLA Disposal Facility at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Operations Idaho Operations Review of the Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE, and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 5 December 2007 i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 1 3. LINE OF INQUIRY NO. 1 2 3.1 Containerized Waste 2 3.2 Compacted Mixtures of Soil and Debris 3 3.3 Final Cover Settlement 3 3.4 Leachate Collection System and Leak Detection Zone Monitoring 4 4. LINE OF INQUIRY NO. 2 4 5. LINE OF INQUIRY NO. 3 5 6. SUMMARY OF RECOMMENDATIONS 6 7. ACKNOWLEDGEMENTS 6 FIGURES 7 1 1. INTRODUCTION The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility authorized by the US

287

STANDARD USER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

REV 6/3/2010 REV 6/3/2010 Proprietary User Agreement No. PR-14- BETWEEN UT-BATTELLE, LLC. ("CONTRACTOR") Operator of Oak Ridge National Laboratory (hereinafter "Laboratory") under U.S. Department of Energy (DOE) Contract No. DE-AC05-00OR22725 and NAME OF USER INSTITUTION ("USER") (Collectively, "the Parties") The obligations of the Contractor may be transferred and shall apply to any successor in interest to said Contractor continuing the operation of the DOE facilities involved in this Proprietary User Agreement. ARTICLE I. FACILITIES AND SCOPE OF WORK CONTRACTOR will make available to employees, consultants and representatives of USER

288

National Solar Radiation Database 1991-2005 Update: User's Manual  

DOE Green Energy (OSTI)

This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

Wilcox, S.

2007-04-01T23:59:59.000Z

289

User Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Policy User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs assurance of adequate access to the facility. On the other hand, qualified groups that make a large commitment of time and resources need some assurance of an equitable return on their investment. A national facility should be accessible to all qualified researchers and at the ALS there are three modes of access: as a General User, a member of an Approved Program (AP), or as a member of a Participating Research Team (PRT). All proposals for research to be conducted at the ALS are evaluated based on the criteria endorsed by the International Union of Pure and Applied Physics (IUPAP). These criteria are detailed on the IUPAP Web site at IUPAP Recommendations for the Use of Major Physics Users Facilities (pdf version).

290

Power conditioning development for the National Ignition Facility  

DOE Green Energy (OSTI)

The National Ignition Facility (NIF) is a high energy glass laser system and target chamber that will be used for research in inertial confinement fusion. The 192 beams of the NIF laser system are pumped by over 8600 Xenon flashlamps. The power conditioning system for NIF must deliver nearly 300 MJ of energy to the flashlamps in a cost effective and reliable manner. The present system design has over 200 capacitive energy storage modules that store approximately 1.7 MJ each and deliver that energy through a single switch assembly to 20 parallel sets of two series flashlamps. Although there are many possible system designs, few will meet the aggressive cost goals necessary to make the system affordable. Sandia National Laboratory (SNL) and Lawrence Livermore National Laboratory (LLNL) are developing the system and component technologies that will be required to build the power conditioning system for the National Ignition Facility. This paper will describe the ongoing development activities for the NIF power conditioning system.

Newton, M.A.; Larson, D.W. [Lawrence Livermore National Lab., CA (United States); Wilson, J.M.; Harjes, H.C.; Savage, M.E. [Sandia National Labs., Albuquerque, NM (United States); Anderson, R.L. [American Controls, Inc., San Diego, CA (United States)

1996-10-01T23:59:59.000Z

291

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

DOE Green Energy (OSTI)

The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

Ballinger, Marcel Y.; Gervais, Todd L.

2004-11-15T23:59:59.000Z

292

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

293

Department of Energy Designates the Idaho National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test...

294

Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility- January 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System

295

Concentrating Photovoltaic Module Testing at NREL's Concentrating Solar Radiation Users Facility  

DOE Green Energy (OSTI)

There has been much recent interest in photovoltaic modules designed to operate with concentrated sunlight (>100 suns). Concentrating photovoltaic (CPV) technology offers an exciting new opportunity as a viable alternative to dish Stirling engines. Advantages of CPV include potential for>40% cell efficiency in the long term (25% now), no moving parts, no intervening heat transfer surface, near-ambient temperature operation, no thermal mass, fast response, concentration reduces cost of cells relative to optics, and scalable to a range of sizes. Over the last few years, we have conducted testing of several CPV modules for DOEs Concentrating Solar Power (CSP) program. The testing facilities are located at the Concentrating Solar Radiation Users Facility (CRULF) and consist the 10 kW High-Flux Solar Furnace (HFSF) and a 14m2 Concentrating Technologies, LLC (CTEK) dish. This paper will primarily describe the test capabilities; module test results will be detailed in the presentation.

Bingham, C.; Lewandowski, A.; Stone, K.; Sherif, R.; Ortabasi, U.; Kusek, S.

2003-05-01T23:59:59.000Z

296

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry  

E-Print Network (OSTI)

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron.1088/0029-5515/53/4/043014 Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry J at the National Ignition Facility (NIF) provides essential information about the implosion performance. From

297

National Solar Radiation Database 1991--2005 Update: Users Manual  

Open Energy Info (EERE)

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future National Solar Radiation Database 1991-2005 Update: User's Manual Technical Report NREL/TP-581-41364 April 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Solar Radiation Database 1991-2005 Update: User's Manual Prepared under Task No. PVA7.6102 Technical Report NREL/TP-581-41364 April 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

298

User`s manual for TMY2s: Derived from the 1961--1990 National Solar Radiation Data Base  

DOE Green Energy (OSTI)

This report is a user`s manual that describes typical meteorological year (TMY) data sets derived from the 1961-1990 National Solar Radiation Data Base. The TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. The intended use if for computer simulations of solar energy conversion systems and building systems. Section 1 of the manual provides general information about the TMYs; Section 2 lists the stations and provides station identifying information and classification; Section 3 details the contents of the TMY2 files and provides the hourly records of data values; Section 4 compares TMY2 with 30-year data sets; Appendices provide procedures used to develop TMYs and a table to convert SI data to other units.

Marion, W.; Urban, K.

1995-06-01T23:59:59.000Z

299

The Advanced Superconducting Test Accelerator (ASTA) at Fermilab: A User-Driven Facility Dedicated to Accelerator Science \\& Technology  

E-Print Network (OSTI)

Fermilab is currently constructing a superconducting electron linac that will eventually serve as the backbone of a user-driven facility for accelerator science. This contribution describes the accelerator and summarizes the enabled research thrusts. A detailed description of the facility can be found at [\\url{http://apc.fnal.gov/programs2/ASTA_TEMP/index.shtml}].

Piot, P; Nagaitsev, S; Church, M; Garbincius, P; Henderson, S; Leibfritz, J

2013-01-01T23:59:59.000Z

300

The First Experiments on the National Ignition Facility  

Science Conference Proceedings (OSTI)

A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options.

Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J; Mertens, E; Munro, D; Murray, J; Neumann, J; Newton, M; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rinnert, R; Riordan, B; Ross, G; Robert, V; Tobin, M; Sailors, S; Saunders, R; Schmitt, M; Shaw, M; Singh, M; Spaeth, M; Stephens, A; Tietbohl, G; Tuck, J; Van Wonterghem, B; Vidal, R; Wegner, P; Whitman, P; Williams, K; Winward, K; Work, K

2005-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experimental Facilities Division/User Program Division technical progress report 1999-2000.  

SciTech Connect

In October 1999, the two divisions of the Advanced Photon Source (APS), the Accelerator Systems Division (ASD) and the Experimental Facilities Division (XFD), were reorganized into four divisions (see high-level APS organizational chart, Fig. 1.1). In addition to ASD and XFD, two new divisions were created, the APS Operations Division (AOD), to oversee APS operations, and the User Program Division (UPD), to serve the APS user community by developing and maintaining the highest quality user technical and administration support. Previous XFD Progress Reports (ANL/APS/TB-30 and ANL/APS/TB-34) covered a much broader base, including APS user administrative support and what was previously XFD operations (front ends, interlocks, etc.) This Progress Report summarizes the main scientific and technical activities of XFD, and the technical support, research and development (R and D) activities of UPD from October 1998 through November 2000. The report is divided into four major sections, (1) Introduction, (2) SRI-CAT Beamlines, Technical Developments, and Scientific Applications, (3) User Technical Support, and (4) Major Plans for the Future. Sections 2 and 3 describe the technical activities and research accomplishments of the XFD and UPD personnel in supporting the synchrotron radiation instrumentation (SRI) collaborative access team (CAT) and the general APS user community. Also included in this report is a comprehensive list of publications (Appendix 1) and presentations (Appendix 2) by XFD and UPD staff during the time period covered by this report. The organization of section 2, SRI CAT Beamlines, Technical Developments, and Scientific Applications has been made along scientific techniques/disciplines and not ''geographical'' boundaries of the sectors in which the work was performed. Therefore items under the subsection X-ray Imaging and Microfocusing could have been (and were) performed on several different beamlines by staff in different divisions. The management of SRI CAT encourages this type of cross-fertilization among the staff responsible for different beamlines and feels that this approach will ultimately result in the best scientific output. The section on User Technical Support, on the other hand, is laid out more closely along group lines, namely insertion devices, high-heat-load optics, instrumentation engineering, optics fabrication and metrology, and beamline controls and data acquisition.

2001-01-22T23:59:59.000Z

302

Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.  

SciTech Connect

Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

Catechis, Christopher Spyros

2013-10-01T23:59:59.000Z

303

Inertial Confinement Fusion and the National Ignition Facility (NIF)  

SciTech Connect

Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

Ross, P.

2012-08-29T23:59:59.000Z

304

User Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Print Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs assurance of adequate access to the facility. On the other hand, qualified groups that make a large commitment of time and resources need some assurance of an equitable return on their investment. A national facility should be accessible to all qualified researchers and at the ALS there are three modes of access: as a General User, a member of an Approved Program (AP), or as a member of a Participating Research Team (PRT). All proposals for research to be conducted at the ALS are evaluated based on the criteria endorsed by the International Union of Pure and Applied Physics (IUPAP). These criteria are detailed on the IUPAP Web site at IUPAP Recommendations for the Use of Major Physics Users Facilities (pdf version).

305

User Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Print Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs assurance of adequate access to the facility. On the other hand, qualified groups that make a large commitment of time and resources need some assurance of an equitable return on their investment. A national facility should be accessible to all qualified researchers and at the ALS there are three modes of access: as a General User, a member of an Approved Program (AP), or as a member of a Participating Research Team (PRT). All proposals for research to be conducted at the ALS are evaluated based on the criteria endorsed by the International Union of Pure and Applied Physics (IUPAP). These criteria are detailed on the IUPAP Web site at IUPAP Recommendations for the Use of Major Physics Users Facilities (pdf version).

306

NTRC | National Transportation Research Center | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

improves engine efficiency Home | User Facilities | NTRC NTRC | National Transportation Research Center SHARE Located a few miles down the road from Oak Ridge National...

307

Welcome - National Transportation Research Center (NTRC)  

NLE Websites -- All DOE Office Websites (Extended Search)

National Transportation Research Center Welcome Welcome to a User Facility dedicated to Transportation R&D. Located a few miles down the road from Oak Ridge National Laboratory...

308

The national ignition facility: early operational experience with a large Ada control system  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-Megajoule, 500-Terawatt laser being built by the Department of Energy and the National ...

Robert W. Carey; Paul J. Van Arsdall; John P. Woodruff

2002-12-01T23:59:59.000Z

309

User Agreements | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreements Agreements Institutional Agreements Required to Access DOE National User Facilities In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department of Energy (DOE) has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities, see http://www.gc.doe.gov/1002.htm. Non-Proprietary User Agreement (PDF) (General User Agreement; no cost for general users) Proprietary User Agreement (PDF) (For Confidential or Proprietary Research; also requires advance payment) A User Agreement is required for all users and must be executed by the appropriate institutional officer(s) at the user's institution. A single User Agreement covers all experimenters from that institution (User

310

The German National Analysis Facility as a tool for ATLAS analyses  

E-Print Network (OSTI)

In 2008 the German National Analysis Facility (NAF) at DESY was established. It is attached to and builds on top of the DESY Grid infrastructure. The facility was designed to provide the best possible analysis infrastructure for high energy particle physics of the ATLAS, CMS, LHCb and ILC experiments. The Grid and local infrastructure of the German NAF will be reviewed with a focus on the ATLAS part. Both parts include large scale storage and a batch system. The main emphasis of this presentation is the ATLAS specific customisation and utilisation of the NAF. This refers not only to the NAF components but also to the different components of the ATLAS analysis framework. Experience from operating and supporting ATLAS users on the German NAF will be presented. The ATLAS usage of the different components will be shown including some typical use cases of user analysis. Finally, the question will be addressed if the design of the NAF meets the ATLAS expectations for efficient data analysis in the era of LHC data t...

Mehlhase, S; The ATLAS collaboration; Leffhalm, K

2010-01-01T23:59:59.000Z

311

1 The German National Analysis Facility as a tool for ATLAS analyses  

E-Print Network (OSTI)

In 2008 the German National Analysis Facility (NAF) at DESY was established. It is attached to and builds on top of DESY Grid infrastructure. The facility is designed to provide the best possible analysis infrastructure for high energy particle physics of the ATLAS, CMS, LHCb and ILC experiments. The Grid and local infrastructure of the NAF is reviewed with a focus on the ATLAS part. Both parts include large scale storage and a batch system. Emphasis is put on ATLAS specific customisation and utilisation of the NAF. This refers not only to the NAF components but also to the di erent components of the ATLAS analysis framework. Experience from operating and supporting ATLAS users on the NAF is presented in this paper. The ATLAS usage of the di erent components are shown including some typical use cases of user analysis. Finally, the question is addressed, if the design of the NAF meets the ATLAS expectations for effcient data analysis in the era of LHC data taking.

Mehlhase, S; The ATLAS collaboration; Leffhalm, K

2011-01-01T23:59:59.000Z

312

The Department of Energy has opted to utilize the following agreement for Designated Non-Proprietary User Facilities transactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Proprietary User Non-Proprietary User Facilities transactions. Because these transactions are widespread across Departmental facilities, uniformity in agreement terms is desirable. Except for the *** provisions, minor modifications to the terms of this agreement may be made by CONTRACTOR, but any changes to the *** provisions or substantive changes to the non *** provisons will require approval by the DOE Contracting Officer, WHICH WILL LIKELY DELAY YOUR ACCESS TO THE USER FACILITY. In instances where DOE Contracting Officer approval for substantive changes cannot be obtained, Work for Others (WFOs) and Cooperative Research and Development Agreements (CRADAs) may be more appropriate due to the increased flexibility such agreements afford. Where this agreement is to be used as an umbrella agreement for multiple transactions it may be modified to reflect such

313

Shock timing on the National Ignition Facility: First Experiments  

Science Conference Proceedings (OSTI)

An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

Celliers, P M; Robey, H F; Boehly, T R; Alger, E; Azevedo, S; Berzins, L V; Bhandarkar, S D; Bowers, M W; Brereton, S J; Callahan, D; Castro, C; Chandrasekaran, H; Choate, C; Clark, D; Coffee, K R; Datte, P S; Dewald, E L; DiNicola, P; Dixit, S; Doeppner, T; Dzenitis, E; Edwards, M J; Eggert, J H; Fair, J; Farley, D R; Frieders, G; Gibson, C R; Giraldez, E; Haan, S; Haid, B; Hamza, A V; Haynam, C; Hicks, D G; Holunga, D M; Horner, J B; Jancaitis, K; Jones, O S; Kalantar, D; Kline, J L; Krauter, K G; Kroll, J J; LaFortune, K N; Pape, S L; Malsbury, T; Maypoles, E R; Milovich, J L; Moody, J D; Moreno, K; Munro, D H; Nikroo, A; Olson, R E; Parham, T; Pollaine, S; Radousky, H B; Ross, G F; Sater, J; Schneider, M B; Shaw, M; Smith, R F; Thomas, C A; Throop, A; Town, R J; Trummer, D; Van Wonterghem, B M; Walters, C F; Widmann, K; Widmayer, C; Young, B K; Atherton, L J; Collins, G W; Landen, O L; Lindl, J D; MacGowan, B J; Meyerhofer, D D; Moses, E I

2011-10-24T23:59:59.000Z

314

National Ignition Facility Project Completion and Control System Status  

SciTech Connect

The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

2009-10-02T23:59:59.000Z

315

CRAD, Quality Assurance - Los Alamos National Laboratory TA 55 SST Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TA 55 SST TA 55 SST Facility CRAD, Quality Assurance - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program at the Los Alamos National Laboratory TA 55 SST Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Los Alamos National Laboratory TA 55 SST Facility More Documents & Publications CRAD, Quality Assurance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Management - Los Alamos National Laboratory TA 55 SST Facility

316

Design of the Uranium Storage Facility at the Y-12 National Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In 1998, the Department of Energy determined that a new facility to store highly enriched uranium materials at the Y-12 National Security Complex was needed. The new facility...

317

Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

The Nuclear Energy Advisory Committee, Facility Subcommittee visited the Idaho National Laboratory on 19-20 May 2010 to tour the nuclear infrastructure and to discuss the INL plans for facility...

318

Tag: uranium processing facility | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility project has received approval to begin field work. More... Category: News From aging infrastructure to the unaparalleled UPF The proposed Uranium Processing Facility...

319

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

320

The Omega Laser FaciLiTy Users grOUp WOrkshOp LLE Review, Volume 120 161  

E-Print Network (OSTI)

(NNSA) already allocated for student/postdoctoral travel expenses. #12;The Omega Laser FaciLiTy Users gr Administration (NNSA) mission. The next section of this article contains a summary of the range of presentations-two students and postdoctoral fellows (Fig. 120.2), 27 of whom were supported by travel grants from NNSA

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The National Ignition Facility (NIF) A Path to Fusion Energy  

SciTech Connect

Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

Moses, E

2006-11-27T23:59:59.000Z

322

Data Analysis Software Tools for Enhanced Collaboration at the DIII-D National Fusion Facility  

SciTech Connect

Data analysis at the DIII-D National Fusion Facility is simplified by the use of two software packages in analysis codes. The first is GAP1otObj, an IDL-based object-oriented library used in visualization tools for dynamic plotting. GAPlotObj gives users the ability to manipulate graphs directly through mouse and keyboard-driven commands. The second software package is MDSplus, which is used at DIED as a central repository for analyzed data. GAPlotObj and MDSplus reduce the effort required for a collaborator to become familiar with the DIII-D analysis environment by providing uniform interfaces for data display and retrieval. Two visualization tools at DIII-D that benefit from them are ReviewPlus and EFITviewer. ReviewPlus is capable of displaying interactive 2D and 3D graphs of raw, analyzed, and simulation code data. EFITviewer is used to display results from the EFIT analysis code together with kinetic profiles and machine geometry. Both bring new possibilities for data exploration to the user, and are able to plot data from any fusion research site with an MDSplus data server.

Schachter, J.; Peng, Q.; Schissel, D.P.

1999-07-01T23:59:59.000Z

323

The Neutron Imaging System Fielded at the National Ignition Facility  

SciTech Connect

A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

2012-08-01T23:59:59.000Z

324

Imaging VISAR diagnostic for the National Ignition Facility (NIF)  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF) requires diagnostics to analyze high-energy density physics experiments. A VISAR (Velocity Interferometry System for Any Reflector) diagnostic has been designed to measure shock velocities, shock breakout times, and shock emission of targets with sizes from 1 to 5 mm. An 8-inch-diameter fused silica triplet lens collects light at f/3 inside the 30-foot-diameter vacuum chamber. The optical relay sends the image out an equatorial port, through a 2-inch-thick vacuum window, and into two interferometers. A 60-kW VISAR probe laser operates at 659.5 nm with variable pulse width. Special coatings on the mirrors and cutoff filters are used to reject the NIF drive laser wavelengths and to pass a band of wavelengths for VISAR, passive shock breakout light, or thermal imaging light (bypassing the interferometers). The first triplet can be no closer than 500 mm from the target chamber center and is protected from debris by a blast window that is replaced after every event. The front end of the optical relay can be temporarily removed from the equatorial port, allowing other experimenters to use that port. A unique resolution pattern has been designed to validate the VISAR diagnostic before each use. All optical lenses are on kinematic mounts so that the pointing accuracy of the optical axis can be checked. Seven CCD cameras monitor the diagnostic alignment.

Malone, R M; Bower, J R; Bradley, D K; Capelle, G A; Celeste, J R; Celliers, P M; Collins, G W; Eckart, M J; Eggert, J H; Frogget, B C; Guyton, R L; Hicks, D G; Kaufman, M I; MacGowan, B J; Montelongo, S; Ng, E W; Robinson, R B; Tunnell, T W; Watts, P W; Zapata, P G

2004-08-30T23:59:59.000Z

325

Frequency converter development for the National Ignition Facility  

SciTech Connect

The design of the National Ignition Facility (NIF) incorporates a type I/type II third harmonic generator to convert the 1.053-{micro}m fundamental wavelength of the laser amplifier to a wavelength of 0.351 {micro}m for target irradiation. To understand and control the tolerances in the converter design, we have developed a comprehensive error budget that accounts for effects that are known to influence conversion efficiency, including variations in amplitude and phase of the incident laser pulse, temporal bandwidth of the incident laser pulse, crystal surface figure and bulk non-uniformities, angular alignment errors, Fresnel losses, polarization errors and crystal temperature variations. The error budget provides specifications for the detailed design of the NIF final optics assembly (FOA) and the fabrication of optical components. Validation is accomplished through both modeling and measurement, including full-scale Beamlet tests of a 37-cm aperture frequency converter in a NIF prototype final optics cell. The prototype cell incorporates full-perimeter clamping to support the crystals, and resides in a vacuum environment as per the NIF design.

Auerbach, J M; Barker, C E; Burkhart, S C; Couture, S A; DeYoreo, J J; Hackel, L A; Hibbard, R L; Liou, L W; Norton, M A; Wegner, P J; Whitman, P A

1998-10-30T23:59:59.000Z

326

National Ignition Facility monthly status report-January 2000  

SciTech Connect

The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement. Safety: On January 13, 2000, a worker received a back injury when a 42-in.-diameter duct fell during installation. He was taken by helicopter to the hospital and released on January 16, 2000. All work in the area was suspended, and the construction contractors went through a thorough safety review before work was started. A DOE occurrence report was filed. An independent LLNL Incident Analysis Team is reviewing the cause of the accident and will report out on March 1. A Project management review team is reviewing construction line management and safety support and will also report out on March 1. Several changes in work planning and site management have been incorporated to increase site safety. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering; (2) laser glass--a second pilot run at one of the two commercial suppliers is ongoing; and (3) operational costs associated with final optics assembly (FOA) optics components--methods are being developed to mitigate 3 {omega}damage and resolve beam rotation issues. Schedule: The completion of the Title II design of laser equipment is now approximately 80% complete. The Beampath Infrastructure System is on the critical schedule path. The procurement strategy is being evaluated by commercial construction management and Architectural/Engineering (A/E) contractors with a report presented to a panel of independent experts, the Beampath Infrastructure System Implementation Review Committee Advisory Group who wrote a set of recommendations for proceeding with this critical path activity. In January, a briefing was given to DOE Oakland (OAK) Field Manager who then arranged briefings for the DOE OAK Procurement organization with the LLNL Procurement organization to review the proposed procurement strategies. The next step is to review the strategy with DOE Headquarters (HQ) procurement. The construction status of the Conventional Facilities at the end of January is 83% complete and is projected to finish within budget and on schedule. Cost: The NIF Project Total Project Cost (TPC) is $1.2B. The Project has obligated 73% of the TPC funds. The remaining contingency is $21.8M. Because of schedule delays and projected increases in the design, construction management, assembly, and installation of the system infrastructure, cost growth of the TPC is anticipated and will remain a major concern until the budget rebaseline process is completed.

Moses, E

2000-01-31T23:59:59.000Z

327

Status of the National Ignition Facility Project, IG-0598 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

conventional facility; laser system; target experimental system; integrated computers and controls; assembly, installation, and refurbishment equipment; and utilities. To...

328

Independent Oversight Review of the Idaho National Laboratory Fuel Conditioning Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT OVERSIGHT INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS April 2010 U.S. Department of Energy Office of Health, Safety and Security Office of Independent Oversight i INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS Table of Contents Acronyms ............................................................................................................................ ii Executive Summary ........................................................................................................... iii 1.0 Introduction ..................................................................................................................1

329

User Financial Account Form  

NLE Websites -- All DOE Office Websites (Extended Search)

URA REVISED 2/20/13 URA REVISED 2/20/13 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. To open or renew your SLAC user financial account, complete and submit this form along with a Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated expenditures (the suggested minimum is $1,000). Send this form with the PO (or a letter from the financial officer of your institution) to: Jackie Kerlegan (SSRL) or Theresa Wong (LCLS) User Research Administration, MS 99 User Research Administration, MS 99 SLAC National Accelerator Laboratory

330

Implosion dynamics measurements at the National Ignition Facility  

Science Conference Proceedings (OSTI)

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 {mu}m ({approx}10%) thicker targets and laser powers at or beyond facility limits.

Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-12-15T23:59:59.000Z

331

Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments  

SciTech Connect

A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys of Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.

Town, R J; Rosen, M D; Michel, P A; Divol, L; Moody, J D; Kyrala, G A; Schneider, M B; Kline, J L; Thomas, C A; Milovich, J L; Callahan, D A; Meezan, N B; Hinkel, D E; Williams, E A; Berger, R L; Edwards, M J; Suter, L J; Haan, S W; Lindl, J D; Dixit, S; Glenzer, S H; Landen, O L; Moses, E I; Scott, H A; Harte, J A; Zimmerman, G B

2010-11-22T23:59:59.000Z

332

Review of the Los Alamos National Laoratory Nuclear Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

CM Configuration Management CMR Chemistry and Metallurgy Research CSE Cognizant System Engineer DNFSB Defense Nuclear Facilities Safety Board DOE U.S. Department of Energy...

333

Advanced Free Electron Laser Facility - Los Alamos National Lab ...  

The AFEL Facility is used for applications requiring high-brightness electron beams or a tunable source of high-energy infrared light pulses in the wavelength range ...

334

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External...

335

Review of the Los Alamos National Laoratory Nuclear Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

facility configuration management (CM) program in conjunction with a Los Alamos Site Office (LASO) scheduled assessment. Field activities focused on review of the generation and...

336

Omega Laser Facility Completes Record 25,000 Experiments | National...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > Omega Laser Facility Completes Record 25,000...

337

Transforming our Nation's Energy System, Energy Systems Integration Facility (ESIF)  

SciTech Connect

The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will soon be the nation's first facility that can conduct integrated megawatt-scale testing of the components and strategies needed in order to safely move clean energy technologies onto the electrical grid 'in-flight' at the speed and scale required to meet national goals.

2011-08-01T23:59:59.000Z

338

ARM - Become a User  

NLE Websites -- All DOE Office Websites (Extended Search)

ARMBecome a User About Become a User Recovery Act Mission FAQ History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF,...

339

User:GregZiebold/U.S. National Lab cleanup | Open Energy Information  

Open Energy Info (EERE)

National Lab cleanup National Lab cleanup < User:GregZiebold Jump to: navigation, search Energy Initiatives ANL Wind Power Forecasting and Electricity Markets Afghanistan-NREL Mission Afghanistan-NREL Resource Maps and Toolkits Algeria-NREL Energy Activities Argentina-NREL Bi-National Energy Working Group Assessment of Biomass Resources from Marginal Lands in APEC Countries Assisting Mexico in Developing Energy Supply and Demand Projections Berkeley India Joint Leadership on Energy and Environment Brazil-NETL Advanced Fossil Fuels Partnerships Brazil-NREL Biofuels and EERE Cooperation Canada-NREL Energy Activities Caribbean-NREL Cooperation Center for BioEnergy Sustainability Chile-NREL Renewable Energy Center and CSP Activities Chile-NREL Rural Electrification Activities China and India Industrial Efficiency NREL Partnership

340

Bauer named Facilities, Infrastructure and Services head | Y-12 National  

NLE Websites -- All DOE Office Websites (Extended Search)

Bauer named Facilities, ... Bauer named Facilities, ... Bauer named Facilities, Infrastructure and Services head Posted: August 27, 2012 - 1:01pm B&W Y-12 President and General Manager Chuck Spencer has named Linda Bauer as vice president of Facilities, Infrastructure and Services (FI&S). Bauer most recently served as senior vice president with Los Alamos Technical Associates, Inc. helping direct large-scale government and private endeavors, such as the Portsmouth Environmental Restoration Project and the Depleted Uranium Hexafluoride Conversion Project. Linda Bauer, vice president of Facilities, Infrastructure and Services With 24 years of experience, she also has held positions such as senior operations manager for the Babcock and Wilcox Technical Services Group and multiple management roles at BWXT Savannah River Company.

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Pulsed Reactor Facility - Critical Experiments Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor Facility Critical Experiments (SPRF/CX) test reactor - a reactor stripped down to its simplest form. The Sandia Pulsed Reactor Facility - Critical Experiments (SPRF/CX) provides a flexible, shielded location for performing critical experiments that employ different reactor core configurations and fuel types. The facility is also available for hands-on nuclear criticality safety training. Research and other activities The 7% series, an evaluation of various core characteristics for higher commercial-fuel enrichment, is currently under way at the SPRF/CX. Past critical experiments at the SPRF/CX have included the Burnup Credit

342

Cryogenic thermonuclear fuel implosions on the National Ignition Facility  

Science Conference Proceedings (OSTI)

The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 {mu}m diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 {+-} 3) {mu}m, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 {+-} 0.09) g cm{sup -2} result in fuel densities approaching 600 g cm{sup -3}. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 {+-} 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 10{sup 15} that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5{+-}0.1) Multiplication-Sign 10{sup 14} which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 {+-} 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P{tau} Asymptotically-Equal-To 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.

Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.; Alger, E. T.; Berger, R. L.; Bernstein, L. A.; Bleuel, D. L.; Bradley, D. K.; Burkhart, S. C.; Burr, R.; Caggiano, J. A.; Castro, C.; Choate, C.; Clark, D. S.; Celliers, P.; Cerjan, C. J.; Collins, G. W.; Dewald, E. L.; DiNicola, P.; DiNicola, J. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

343

National Utility Financial Statement model (NUFS). Volume II of III: user's guide. Final report  

SciTech Connect

This volume is a User's Guide for the National Utility Financial Statement Model (NUFS). This is the second of three volumes describing NUFS provided by ICF Incorporated under contract DEAC01-79EI10579. The three volumes are entitled: Model Overview and Description; User's Guide; and Software Description. This volume describes each necessary input file, discusses user options, and describes the job stream necessary to run the model.

1981-10-29T23:59:59.000Z

344

Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Committee, Facility Subcommittee visit to Idaho National Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010 The Nuclear Energy Advisory Committee, Facility Subcommittee visited the Idaho National Laboratory on 19-20 May 2010 to tour the nuclear infrastructure and to discuss the INL plans for facility modernization as a dimension of the DOE Office of Nuclear Energy's (NE) mission. Team Members: Dr. John Ahearne, Sigma Xi, Research Triangle Park, NC Dr. Dana Christensen, Oak Ridge National Laboratory Dr. Thomas Cochran, Natural Resource Defense Council, Washington DC Dr. Andrew Klein, Oregon State University (second day only) Mr. Paul Murray, AREVA Federal Services Dr. John I. Sackett, Idaho National Laboratory, Retired, Support: Andrew Griffith, DOE/NE

345

Progress Toward Ignition on the National Ignition Facility  

SciTech Connect

The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimiza

Kauffman, R L

2011-10-17T23:59:59.000Z

346

Powerline Conductor Accelerated Testing Facility (PCAT) The Powerline Conductor Accelerated Testing facility (PCAT) at Oak Ridge National  

E-Print Network (OSTI)

associated with electricity transmission reliability and security in the US. Figures 1 and 2 show a view). The facility consists of five 161kV-rated steel transmission poles, which have extensive support to ensure of Energy's (DOE) National Transmission Technology Research Center (NTTRC). PCAT is part of DOE's effort

347

Physical Sciences Facility at the Pacific Northwest National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

iii Proposed Action: Construction and Operation of Research Buildings and Supporting Infrastructure, on the North Federal Campus, Pacific Northwest National Laboratory Site,...

348

Oak Ridge National Laboratory - Facilities and Operations Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Search Go Find People Contact Site Index Comments Home News News Releases Story Tips Features Contacts ORNL Review Magazine ORNL in the News...

349

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

350

The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Liquid Waste Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory" BACKGROUND The Department of Energy's Los Alamos National Laboratory (Los Alamos) is a Government- owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. Los Alamos' primary responsibility is to

351

Analysis of Fluctuating Static Pressure Measurements in the National Transonic Facility  

Science Conference Proceedings (OSTI)

Dynamic measurements of fluctuating static pressure levels were taken with flush-mounted, high-frequency response pressure transducers at 11 locations in the circuit of the National Transonic Facility (NTF) across the complete operating range of this ...

Igoe William B.

1996-03-01T23:59:59.000Z

352

Academic Alliances | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

High Energy Density Laboratory Plasmas National Laser Users' Facility Stewardship Science Graduate Fellowship Stewardship Science Academic Alliances Banner photo: The Texas...

353

Self-assembling nanoparticles | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content Argonne National Laboratory About Work with Argonne Safety News Community Events Careers Directory Energy Environment Security User Facilities Science...

354

3-3 User Services & Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

(USO) group promotes awareness of the national user facility, leading to its increased usage and impact to science, and facilitates and documents this usage for the W.R. Wiley...

355

Operator Training Facility at Oncor Utilizing On-Line Training and Instructor User Manuals  

Science Conference Proceedings (OSTI)

This report describes a training program for utility transmission, generation, and distribution operators. The program developed an on-line user's guide to Oncor's Transmission Management System (TMS) and an instructor's guide for its Operator Training Simulator (OTS).

2002-12-06T23:59:59.000Z

356

to User Agreement No. NP-09- UT-BATTELLE, LLC (CONTRACTOR ...  

Facility National Center for Computational Sciences (NCCS) ... It is the sole responsibility of the NCCS User to identify the type of information that is to

357

The National Ignition Facility and the Ignition Campaign  

E-Print Network (OSTI)

(atm-s) Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition Callahan -- AAAS, February 14-18, 2013 82013-047661s2.ppt NIF Ignition #12;2013-047661s2.ppt Callahan -- AAAS and initiated operation of NIF as the world's premier HED science facility Story of NIF and Ignition 102013

358

: The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resumption of Criticality Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site OAS-M-13-09 September 2013 Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE PRINCIPAL DEPUTY ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site" BACKGROUND The mission of the Criticality Experiments Facility, located at the Los Alamos National Laboratory (Los Alamos) was to conduct nuclear criticality experiments and hands-on training in nuclear safeguards, criticality safety and emergency response in support of the National

359

Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Facilities Disposition Project Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Oak Ridge National Laboratory Y-12 National Security Complex Tennessee Tennessee Assessment of the Integrated Facility Disposition Project at ORNL & Y-12 for Transfer of Facilities & Materials to EM Challenge In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). In parallel with the EM-1 initiative, the Oak Ridge Reservation was conducting a Critical

360

Large-Scale User Facility Imaging and Scattering Techniques to Facilitate  

E-Print Network (OSTI)

guide hall (HFIR) #12;OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY SANS guide hall (HFIR

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

User Questionnaire Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Questionnaire Page 1 of 3 041613 TANDEM FACILITY USER QUESTIONNAIRE Organization: Contact Person:...

362

Innovative cement helps DOE safeguard nuclear facilities | Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative cement helps DOE safeguard nuclear facilities Innovative cement helps DOE safeguard nuclear facilities By Jared Sagoff * April 25, 2008 Tweet EmailPrint ARGONNE, Ill. - When Argonne materials scientists Arun Wagh and Dileep Singh initially developed Ceramicrete®, a novel phosphate cement that stabilizes radioactive waste streams, they did not immediately recognize that with one or two extra ingredients, the cement could solve another problem in the nuclear complex. In the course of the development of the Ceramicrete technology, Wagh and Singh formed a multilayered collaboration among Argonne, the Russian Federal Nuclear Center (VNIIEF) in Sarov, Russia, and Ceradyne Boron Products LLC. This international scientific partnership created an unusually efficient nuclear shield that blocks the neutrons and gamma rays

363

National Test Facility civilian agency use of supercomputers not feasible  

SciTech Connect

Based on interviews with civilian agencies cited in the House report (DOE, DoEd, HHS, FEMA, NOAA), none would be able to make effective use of NTF`s excess supercomputing capabilities. These agencies stated they could not use the resources primarily because (1) NTF`s supercomputers are older machines whose performance and costs cannot match those of more advanced computers available from other sources and (2) some agencies have not yet developed applications requiring supercomputer capabilities or do not have funding to support such activities. In addition, future support for the hardware and software at NTF is uncertain, making any investment by an outside user risky.

1994-12-01T23:59:59.000Z

364

Nuclear Energy Advisory Committee Facility Subcommittee visit to Oak Ridge National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Subcommittee visit to Oak Ridge National Facility Subcommittee visit to Oak Ridge National Laboratory 26 August 2010 The NEAC Facilities Subcommittee made a site visit to Oak Ridge National Laboratory (ORNL) on August 26, 2010. Subcommittee members included John Ahearne (Vice Chairman of NEAC and Facilities Subcommittee Chairman), Dana Christensen (ORNL), Thomas B. Cochran (Natural Resources Defense Council), Michael Corradini, (University of Wisconsin-Madison), and Andrew Klein (Oregon State University). Tansel Selekler (Department of Energy Office of Nuclear Energy) accompanied the Subcommittee. The visit was well-coordinated by Sherrell Greene, who insured that briefings were on time and that Cochran, Corridini, and Ahearne could get to the airport on time to catch departing flights.

365

Emergency Management Standards and Schools National Clearinghouse for Educational Facilities  

E-Print Network (OSTI)

There are no nationally-adopted emergency management standards for schools, but the U.S. Department of Education’s Practical Information on Crisis Planning: A Guide for Schools and Communities, which provides a four-phase approach to school emergency planning activities, is widely used throughout the country. In addition, many states and local school districts have their own emergency management mandates, policies, and procedures, often based on this guide. A number of emergency management standards intended for voluntary adoption by emergency response organizations are produced by standards-making organizations such as the National Fire Protection

unknown authors

2009-01-01T23:59:59.000Z

366

Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANL-2012-07-20 ANL-2012-07-20 Site: Argonne National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07/17/2012 - 07/20/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance.

367

Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL-2012-07-20 ANL-2012-07-20 Site: Argonne National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07/17/2012 - 07/20/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance.

368

National facility for advanced computational science: A sustainable path to scientific discovery  

Science Conference Proceedings (OSTI)

Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

2004-04-02T23:59:59.000Z

369

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2004 Facility News ARM Climate Research Facility Achieves User Milestone Three Months Ahead of Schedule Bookmark and Share Summary of the ARM Climate Research Facility User...

370

Finding of No Significant Impact Improvements at the Thomas Jefferson National Accelerator Facility Newsport News, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY NEWPORT NEWS, VIRGINIA AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an Environmental Assessment (DOE/EA-1384) for proposed Improvements at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Newport News, Virginia. Based on the results of the impacts analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No

371

Particle-beam fusion research facilities at Sandia National Laboratories  

SciTech Connect

Sandia research in inertial-confinement fusion (ICF) is based on pulse-power capabilities that grew out of earlier developments of intense relativistic electron-beam (e-beam) radiation sources for weapon effects studies. ICF involves irradiating a deuterium-tritium pellet with either laser light or particle beams until the center of the pellet is compressed and heated to the point of nuclear fusion. This publication focuses on the use of particle beams to achieve fusion, and on the various facilities that are used in support of the particle-beam fusion (PBF) program.

1980-12-31T23:59:59.000Z

372

Activation of Air and Utilities in the National Ignition Facility  

Science Conference Proceedings (OSTI)

Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

Khater, H; Pohl, B; Brererton, S

2010-04-08T23:59:59.000Z

373

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

374

Sandia National Laboratories: Z Pulsed Power Facility: About Z  

NLE Websites -- All DOE Office Websites (Extended Search)

About Z About Z Picture of Z Machine Sandia's Z machine is Earth's most powerful pulsed-power facility and X-ray generator. Z compresses energy in time and space to achieve extreme powers and intensities, found nowhere else on Earth. In approximately 200 shots Z fires every year, the machine uses currents of about 26 million amps to reach peak X-ray emissions of 350 terawatts and an X-ray output of 2.7 megajoules. The Z machine is located in Albuquerque, N.M., and is part of Sandia's Pulsed Power Program, which began in the 1960s. Pulsed power is a technology that concentrates electrical energy and turns it into short pulses of enormous power, which are then used to generate X-rays and gamma rays. Produced in the laboratory, this controlled radiation creates conditions similar to those caused by the detonation of nuclear weapons,

375

Omega Laser Facility Completes Record 25,000 Experiments | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Omega Laser Facility Completes Record 25,000 Experiments | National Nuclear Omega Laser Facility Completes Record 25,000 Experiments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > Omega Laser Facility Completes Record 25,000 Experiments Press Release Omega Laser Facility Completes Record 25,000 Experiments Nov 5, 2013

376

Idaho National Engineering Laboratory Federal Facility Agreement and Consent Order, December 9, 1991  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 EM Home | Regulatory Compliance | Environmental Compliance Agreements Idaho National Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, REGION 10, THE STATE OF IDAHO, DEPARTMENT OF HEALTH AND WELFARE, AND THE UNITED STATES DEPARTMENT OF ENERGY IN THE MATTER OF: ) FEDERAL FACILITY AGREEMENT ) AND CONSENT ORDER THE U.S. DEPARTMENT OF ENERGY ) IDAHO NATIONAL ENGINEERING ) LABORATORY ("INEL"), ) ) Administrative Docket Number: ) 1088-06-120 Idaho Falls, Idaho ) Table of Contents I. Jurisdiction II. Definitions III. Parties IV. Statement Of Purpose

377

Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Facility Compliance Act Order for Lawrence Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 96/97-5002 State California Agreement Type Federal Facility Agreement Legal Driver(s) FFCAct Scope Summary Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 2/24/1997 SCOPE * Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory. * Address LDR requirements pertaining to storage and treatment of covered waste at LLNL. ESTABLISHING MILESTONES * The Compliance Plan Volume of the STP provides overall schedules for achieving

378

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE issued the Draft SEIS for public review and comment by mailings to stakeholders and by announcements in the Federal Register (FR) on November 5, 1999, (64 FR 60430) (Attachment 4 of Volume I) and on November 12, 1999 (64 FR 61635) correcting a document title (Attachment 5 of Volume I). On

379

Neutron and Nano User Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Users Workshops "New Techniques, New Users, and Enhancing the User Experience" Oak Ridge National Laboratory, Building 5200 Monday and Thursday, August 12 and 15, 2013 The User...

380

Sandia National Laboratories: Z Pulsed Power Facility: Z News  

NLE Websites -- All DOE Office Websites (Extended Search)

Z News Z News Dry-run experiments verify key aspect of Sandia nuclear fusion concept View All News Releases News Releases Fusion instabilities lessened by unexpected effect Jan. 9, 2014 Japanese city councilor journeys to end furor over Sandia Z tests May 23, 2013 Sandia physicist wins two national awards Nov. 29, 2012 Dry-run experiments verify key aspect of Sandia nuclear fusion concept Sept. 17, 2012 Nuclear fusion simulation shows high-gain energy output March 20, 2012 Z researcher Dan Sinars awarded $2.5 million DOE Early Career grant May 25, 2011 Second Z plutonium "shot" safely tests materials for NNSA May 11, 2011 Sandia effort images the sea monster of nuclear fusion: the Rayleigh-Taylor instability Nov. 11, 2010 Image Gallery Video Z In the News Triple-threat method sparks hope for fusion

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sandia National Laboratories: Z Pulsed Power Facility: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z-Machine Z-Machine About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Top Z News Publications Z-Machine Publications Archive Inertial Confinement Fusion Dynamic Hohlraums Thomas W. L. Sanford, "Overview of the Dynamic-Hohlraum X-ray Source at Sandia National Laboratories," April 2007 (1.5 MB PDF) T.W.L. Sanford, "Comparative properties of the Interior and Blowoff Plasmas in a dynamic Hohlraum," April 2007 (1.39 KB PDF) Tom Nash, "Current Scaling of Axially Radiated Power in dynamic Hohlraums and Dynamic Hohlraum Load Design for ZR," March 2007 (2.15 PDF) R. A. Vesey, "Target Design for High Fusion Yield with the Double Z-pinch driven Hohlraums," March 2007 (1.65 PDF) T.W.L. Sanford, "Wire Initiation Critical for Radiation symmetry

382

Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility  

SciTech Connect

The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL`s Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed.

Charak, I; Pedersen, D.R. [Argonne National Lab., IL (United States); Forrester, R.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

1993-09-01T23:59:59.000Z

383

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

384

Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment  

Science Conference Proceedings (OSTI)

Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory`s (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL`s substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL.

NONE

1994-10-01T23:59:59.000Z

385

Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility  

SciTech Connect

The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicating a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the creation of focus groups to assess the effectiveness of communicating material through an interactive game. Numerical assessments programmed into the game could also be used to collect statistics that reflect difficulty or level of frustration that students experience.

Lin, E

2009-08-06T23:59:59.000Z

386

Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility  

SciTech Connect

The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicating a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the creation of focus groups to assess the effectiveness of communicating material through an interactive game. Numerical assessments programmed into the game could also be used to collect statistics that reflect difficulty or level of frustration that students experience.

Lin, E

2009-08-06T23:59:59.000Z

387

Recent National Solar Thermal Test Facility activities, in partnership with industry  

DOE Green Energy (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

388

National Ignition Facility computational fluid dynamics modeling and light fixture case studies  

SciTech Connect

This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

1998-02-01T23:59:59.000Z

389

DOE Joint Genome Institute: A DOE Office of Science User Facility of  

NLE Websites -- All DOE Office Websites

MyJGISubmit ProposalsInternalEmergency InfoCareers MyJGISubmit ProposalsInternalEmergency InfoCareers JGI website People Go Genomes Project List User Programs Sequencing Informatics Systems Education News & Publications Events About Us JGI Home DOE Joint Genome Institute Latest News R. irregularis December 20, 2013 A gluttonous plant reveals how its cellular power plant devours foreign DNA. Amborella trichopoda, a sprawling shrub that grows on just a single island in the remote South Pacific, is the only plant in its family and genus. It is also one of the oldest flowering plants, having branched off from others about 200 million years ago. more... R. irregularis November 25, 2013 How Scavenging Fungi Became a Plant's Best Friend. Glomeromycota is an ancient lineage of fungi that has a symbiotic relationship with roots that

390

NSLS II: The Future National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Preliminary Design Report PDR cover image Brookhaven National Laboratory has prepared a preliminary design for a world class user facility for scientific research using...

391

Department of Energy Designates the Idaho National Laboratory Advanced Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates the Idaho National Laboratory Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility April 23, 2007 - 12:36pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today designated the Idaho National Laboratory's (INL) Advanced Test Reactor (ATR) as a National Scientific User Facility. Establishing the ATR as a National Scientific User Facility will help assert U.S. leadership in nuclear science and technology, and will attract new users - universities, laboratories and industry - to conduct research at the ATR. This facility will support basic and applied nuclear research and development (R&D), furthering

392

User's Guide for the NREL Teetering Rotor Analysis Program (STRAP). [National Renewable Energy Laboratory (NREL)  

DOE Green Energy (OSTI)

The following report gives the reader an overview of instructions on the proper use of the National Renewable Energy Laboratory (formerly the Solar Energy Research Institute, or SERI) teetering Rotor Analysis Program (STRAP version 2.20). STRAP is a derivative of the Force and Loads Analysis program (FLAP). It is intended as a tool for prediction of rotor and blade loads and response for only two-bladed teetering hub wind turbines. The effects of delta-3, undersling, hub mass, and wind turbulence are accounted for. The objectives of the report are to give an overview of the code and also show the methods of data input and correct code execution steps in order to model an example two-bladed teetering hub turbine. A large portion of the discussion (Sections 6.0, 7.0, and 8.0) is devoted to the subject of inputting and running the code for wind turbulence effects. The ability to include turbulent wind effects is perhaps the biggest change in the code since the release of FLAP version 2.01 in 1988. This report is intended to be a user's guide. It does not contain a theoretical discussion on equations of motion, assumptions, underlying theory, etc. It is intended to be used in conjunction with Wright, Buhl, and Thresher (1988).

Wright, A.D.

1992-08-01T23:59:59.000Z

393

HELIOS: a computer program for modeling the solar thermal test facility, a users guide  

DOE Green Energy (OSTI)

HELIOS is a flexible computer code for evaluations of proposed designs for central tower solar energy collector systems, for safety calculations on the threat to personnel and to the facility itself, for determination of how various input parameters alter the power collected, and for design trade-offs. Input variables include atmospheric transmission effects, reflector shape and surface errors, suntracking errors, focusing and alignment strategies, receiver design, placement positions of the tower and mirrors, time-of-day, and day-of-year for the calculation. Plotting and editing computer codes are available. Complete input instructions, code-structure details, and output explanation are given. The code is in use on CDC 6600 and CDC 7600 computers.

Vittitoe, C.N.; Biggs, F.; Lighthill, R.E.

1977-03-01T23:59:59.000Z

394

Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84 84 Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia June 2002 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1384 i TABLE OF CONTENTS Executive Summary.....................................................................................................................1 1. INTRODUCTION..................................................................................................................... 6 1.1 PREVIOUS ACTIONS ............................................................................................................................................. 6 1.2 SCOPE OF THIS PROPOSED ACTION..............................................................................................................

395

The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic  

E-Print Network (OSTI)

The WIPP is the nation's first geologic facility designed for permanent disposal of transuranic, New Mexico to dispose of this waste. The TRU waste being disposed at the WIPP is packaged into drums-level waste and spent nuclear fuel. The WIPP has a total capacity of 6.2 million cubic feet of TRU waste

396

The Sanford Underground Research Facility at Homestake U.C Berkeley and Lawrence Berkeley National Laboratory  

E-Print Network (OSTI)

and Engineering Laboratory (DUSEL). With the National Science Board's decision to halt development of a NSF directly. A dedicated 1500 kVA substation provides sufficient capacity for the experiment and facility. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! "!Lesko, K.T., et al., "Deep Underground Science and Engineering Laboratory - Preliminary Design Report

397

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a)  

E-Print Network (OSTI)

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a) Cris W unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments to produce up to 1019 DT neutrons. In addition to a basic set of nuclear diagnostics based on previous

398

Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems  

Science Conference Proceedings (OSTI)

Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

2009-04-08T23:59:59.000Z

399

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network (OSTI)

-Average-Power Laser NIF-1005-11471 07BEW/dj P9765 Agenda #12;P9516NIF-0805-11197 01EIM/dj Stockpile Stewardship #12;P9504NIF-0404-08345r2 27EIM/ld Basic Science and Cosmology #12;NIF-0702-05346rIFSA Fusion Energy Campaign and point design NIF-0305-10564 23MLS/cld P8719 The NIF Laser User Optics Physics Operations

400

The National Ignition Facility: The Path to a Carbon-Free Energy Future  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

Stolz, C J

2011-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory  

SciTech Connect

The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options.

Brinker, S.D.; Streit, R.D.

1996-04-01T23:59:59.000Z

402

Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS-2011-001 NNSS-2011-001 Site: Nevada National Security Site Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer William Macon Activity Description/Purpose: The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), visited the Nevada Site Office (NSO) and the Nevada National Security Site (NNSS) from February 14-17, 2011. The purpose of the visit was to observe the Defense Nuclear Facilities Safety Board (DNFSB) review and maintain operational awareness of NNSS activities. Result:

403

Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility Date of Activity: 02/27/2013 Report Preparer: Thomas Rogers Activity Description/Purpose: The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help

404

French national network of large academic technology facilities Renatech Users Meeting, March 21, 2011  

E-Print Network (OSTI)

for DRAM STIP NSTIN P BPSG TEOS Resist STIP NSTIN P BPSG TEOS Resist CMP Process STIP NSTIN P BPSG TEOS Resist STIP NSTIN P BPSG TEOS Resist STIP NSTIN P BPSG TEOS Resist STIP NSTIN P BPSG TEOS Resist CMP

van Tiggelen, Bart

405

BASIC RESEARCH DIRECTIONS for User Science at the National Ignition Facility  

E-Print Network (OSTI)

(K.O.H.). XAS data were measured at the Stanford Synchro- tron Radiation Laboratory (SSRL), which is supported by the Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular

Stewart, Sarah T.

406

User Agreement Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

*required 5. Which user facility will be hosting you? *required Advanced Leadership Computing Facility (ALCF) Advanced Photon Source (APS) Argonne Tandem Linear Accelerator...

407

EIS-0388: Operation of a Biosafety Level 3 Facility at the Los Alamos National Laboratory, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the operation of a Biosafety Level 3 Facility (BSL–3 Facility) at the Los Alamos National Laboratory (LANL). A BSL-2 Alternative, an existing BSL-2 permitted facility, and a No Action Alternative will be analyzed. The EIS is currently on hold.

408

Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

NONE

1995-04-01T23:59:59.000Z

409

3-3 User Services & Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

USO Overview USO Overview Section 3-3-1 User Services and Outreach The User Services and Outreach (USO) group promotes awareness of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), leading to its increased use and impact to science, and facilitates and documents this use for the national user facility and its sponsors. Capabilities USO plans, develops, and coordinates implementation of EMSL's outreach strategy to promote the awareness, reputation, and use of EMSL as a national user facility. The USO group is one of the primary points of contact for Pacific Northwest National Laboratory (PNNL) and external media requests for general information. Outreach activities, which are undertaken to increase local, regional, and national awareness of the capabilities and

410

Lawrence Livermore National Laboratory Federal Facility Agreement, June 29, 1992 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site 300) Site 300) Agreement Name Lawrence Livermore National Laboratory Federal Facility Agreement Under CERCLA Section 120, June 29, 1992 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Toxic Substances Control; Central Valley Regional Water Quality Control Board Date 6/29/1992 SCOPE * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site. * Identify operable units (OUs) which are appropriate at the Site prior to the implementation of final remedial action(s).

411

Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space  

SciTech Connect

The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

412

STANDARD USER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

acceptance by the Parties. In order for the USER to gain access to andor use of the User facilities, the research must first receive programmatic approval of the facility director...

413

The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site, OAS-L-12-05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Actinide Shock Physics Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site OAS-L-12-05 April 2012 Department of Energy Washington, DC 20585 April 23, 2012 MEMORANDUM FOR THE MANAGER, NEVADA SITE OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site" BACKGROUND The Department of Energy, National Nuclear Security Administration's, Joint Actinide Shock Physics Experimental Research (JASPER) facility plays an integral role in the certification of the Nation's nuclear weapons stockpile by providing a method to generate and measure data

414

National Ignition Facility & Photon Science - Bringing Star Power to Earth  

NLE Websites -- All DOE Office Websites (Extended Search)

NIF Go NIF Go LLNL Logo Lawrence Livermore National Laboratory LLNL Home NIF Home LIFE Home Jobs Site Map Contact News Press Releases In the News Status Update Media Assistance About Us National Ignition Facility About NIF How NIF Works The Seven Wonders of NIF Building NIF An Engineering Marvel NIFFY Early Light Collaborators Status Visiting NIF Missions National Security Energy for the Future Understanding the Universe People The People of NIF Awards NIF Professor Sabbatical Opportunities NIF Online Store Programs National Ignition Campaign How to Make a Star (ICF) Target Physics Target Fabrication Cryogenic Target System Diagnostics Participants Photon Science & Applications Advanced Optics Advanced Radiography Directed Energy Fusion Energy Inertial Fusion Energy How IFE Works Science at the Extremes

415

POWGEN Users | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

User Information User Information Announcement: POWGEN has started a new partnership with beam line 11A at the Advanced Photon Source where users can get x-ray data if they have an approved POWGEN proposal. Become a POWGEN User POWGEN Experiment Guide: A - Z POWGEN Mail In Program Guide Shipping Addresses for Samples For more detailed information, please visit the ORNL User Facilities Sample Handling and Shipping page. Non-activated samples coming to SNS: Attention: Special requirements (like refrigeration) To: Neutron Sciences User Sample IPTS # XXXX Oak Ridge National Laboratory / SNS Site Chestnut Ridge, Bldg 8920 Oak Ridge, TN 37830 Activated samples (these will also be brought to SNS but must go through check-in procedures at another on-site location): Attention: Special requirements (like refrigeration)

416

STANDARD USER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

USER. CONTRACTOR is not obligated to continue to provide USER access to andor use of the User Facility unless it is holding an adequate advance. Upon completion of the project...

417

Assessment of Nuclear Safety Culture at the Y-12 National Security Complex Urnaium Processing Facility Project, June 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 National Security Complex Y-12 National Security Complex Uranium Processing Facility Project May 2011 June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Assessment of Safety Culture at the Y-12 National Security Complex Uranium Processing Facility Project Table of Contents 1.0 Introduction ........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3

418

Assessment of Nuclear Safety Culture at the Y-12 National Security Complex Urnaium Processing Facility Project, June 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 National Security Complex Y-12 National Security Complex Uranium Processing Facility Project May 2011 June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Assessment of Safety Culture at the Y-12 National Security Complex Uranium Processing Facility Project Table of Contents 1.0 Introduction ........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3

419

Remote Technology for Facility Deactivation and Decommissioning at the Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The facilities at the Oak Ridge National Laboratory (ORNL) that will undergo deactivation and decommissioning (D and D) over the next several years include highly contaminated hot cell facilities, reactor facilities, process facilities, and a variety of other buildings. The D and D effort will require physical, chemical, and radiological characterization as well as decontamination, material sorting, size reduction, dismantlement, and waste removal and packaging. D and D planning for ORNL facilities includes recognizing that a significant number of the facilities contain hazards that prevent the use of safe manual D and D techniques. These hazards include seriously deteriorated structural integrity as well as very high dose rates (some in the hundreds of R/hr). The hazards also include high levels of fixed and removable radioactive contamination on facility surfaces and in equipment as well as chemically hazardous materials. Thus, manned entry may be highly restricted. In these situations, remotely operated technologies will be required to complete the necessary D and D activities, minimize dose and protect workers. To prepare to use remote technologies, it is first necessary to understand the tasks typically required to complete D and D of these facilities as well as the availability, applicability, and sustainability of previously deployed remote technologies. Technologies of specific interest included remote inspection, characterization, decontamination, and dismantlement. The Applied Research Center (ARC) at Florida International University (FIU), in partnership with NuVision Engineering (NVE, formerly AEA Technology), assessed the requirements for remotely operated technologies to support D and D at ORNL. FIU-ARC and NVE then identified existing technologies that can meet the expected requirements and performed a gap analysis between the D and D needs and currently available technologies. (authors)

Shoffner, P.A.; Lagos, L.E.; Varona, J. [Applied Research Center, Florida International University, Miami, FL (United States); Faldowski, J.A.; Vesco, D. [NuVision Engineering, Inc., Road, Mooresville, NC (United States)

2008-07-01T23:59:59.000Z

420

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M. [Directorate Science and Technology, AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

422

Factsheet Overview The Savannah River National Laboratory's Shielded Cells Facility gives the  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The Savannah River National Laboratory's Shielded Cells Facility gives the laboratory the ability to safely work with a wide variety of highly radioactive samples and items in support of various research and development initiatives. Skilled operators, standing safely outside the cells, use manipulator arms to perform work inside the cells. The facility consists of sixteen 6-foot by 6-foot work stations or cells with the following features: The exterior walls of the facility are made of 3-foot-thick high-density * concrete with a 1/8-inch thick stainless steel liner. Each cell has a 3' x3' shielding window. Shielding windows are 3-foot thick * leaded glass, filled with mineral oil for optimal viewing capabilities.

423

Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility  

SciTech Connect

Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

2012-04-20T23:59:59.000Z

424

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

DOE Green Energy (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

425

Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

NONE

1996-07-01T23:59:59.000Z

426

Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

1996-07-01T23:59:59.000Z

427

Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory  

SciTech Connect

The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

1994-09-01T23:59:59.000Z

428

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-05-01T23:59:59.000Z

429

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-08-01T23:59:59.000Z

430

Charter for the ARM Climate Research Facility Science Board  

Science Conference Proceedings (OSTI)

The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

Ferrell, W

2013-03-08T23:59:59.000Z

431

User Obligations  

NLE Websites -- All DOE Office Websites (Extended Search)

User Obligations User Obligations Summary of what APS expects of users in return for access to the facility. Registration Register with the APS as far in advance of your initial visit as possible (even when you are simply planning an experiment). User Agreement Ensure that a User Agreement is in place between the APS and your home institution. Training Ensure that you complete all required training before conducting hands-on work at the APS. Safety Assessement Complete Experiment Safety Assessment Forms. End of Experiment Form Complete End of Experiment form to provide feedback (required for General Users, optional for others). Published Reports of Work Carried Out at the APS As an APS user, you are required to notify both the APS and your host beamline staff of all work published in the open literature (including

432

Baytap08 User's Manual  

E-Print Network (OSTI)

Baytap08 User’s Manual OriginalBAYTAP-G Manual by Y. Tamura National AstronomicalProgram version 1.9; Manual date 30 June 2008 Introduction

Tamura, Y; Agnew, D C

2008-01-01T23:59:59.000Z

433

1998 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

8 User Survey Results 1998 User Survey Results Respondent Summary NERSC has completed its first user survey since its move to Lawrence Berkeley National Laboratory. The survey is...

434

User Financial Accounts | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Accounts Financial Accounts Why Have a User Financial Account? Each user group should establish a user financial account to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. Establishing/Renewing a User Financial Account The most common method of establishing or renewing a user financial account is by providing a purchase order (PO) (or a letter from the financial officer of the user institution). The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated expenditures (the suggested minimum is $1,000). The PO should include the expiration date, user names, funding agency, grant/contract number and whether expenditures

435

PNNL: EDO - Facilities & Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities & Equipment Facilities & Equipment Facilities Equipment Decades of government investment on and around the Pacific Northwest National Laboratory campus has made PNNL a business-friendly resource for conducting a wide range of research. As a mission-focused organization, we are dedicated to teaming with government agencies, industry and academia to address what we believe are among the nation's most pressing needs in the areas of energy, environment, national security, and fundamental science. But behind these important missions is a wealth of supporting capabilities including incubator space, research laboratories, and user facilities that may be just what your business needs. We invite you to learn more about how we can work with businesses as well as what research laboratories and user facilities are available.

436

2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Mike lewis

2011-02-01T23:59:59.000Z

437

2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

Mike Lewis

2013-02-01T23:59:59.000Z

438

Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility  

Science Conference Proceedings (OSTI)

The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

2011-07-25T23:59:59.000Z

439

Ground Broken for New Job-Creating Accelerator Research Facility at DOE’s Fermi National Accelerator Laboratory in Illinois  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, D.C. – Today, ground was broken for a new accelerator research facility being built at the Department of Energy’s (DOE’s) Fermi National Accelerator Laboratory (Fermilab) in Batavia,...

440

Overview and Status of the Power Conditioning System for the National Ignition Facility  

DOE Green Energy (OSTI)

The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that provides over 34 kilojoules of energy to each of the nearly 8000 flashlamps in the NIF laser. Up to 400 megajoules of energy can be stored in the NIF PCS system, discharged through spark gaps and delivered to the flashlamps through a coaxial transmission line system requiring nearly 100 miles of high-voltage cable. The NIF PCS has been under development for nearly 4 years. During this time, the system was developed and designed by Sandia National Laboratory in Albuquerque, NM (SNLA) in conjunction with Lawrence Livermore National Laboratory (LLNL). Extensive reliability testing was performed at SNLA on the First Article NIF Test Module (FANTM) test facility and design improvements were implemented based on FANTM test results, leading to the final design presently undergoing system reliability testing at LLNL. Low-cost energy-storage capacitors, charging power supplies, and reliable, fault-tolerant components were developed through partnerships with numerous contractors. Extensive reliability and fault testing of components has also been performed. This paper will provide an overview of the many efforts that have culminated in the final design of the NIF PCS. The PCS system design will be described and the cost tradeoffs discussed. Plans for fabrication and installation of the NIF PCS system over the next 6 years will be presented.

Newton, M A; Fulkerson, E S; Hulsey, S D; Kamm, R E; Pendleton, D L; Petersen, D E; Smith, C R; Ullery, G T; McKay, P F; Moore, W B; Muirhead, D A

2001-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PLEASE PRINT APS USER AGREEMENT QUESTIONNAIRE  

E-Print Network (OSTI)

? * _______ Advanced Leadership Computing Facility (ALCF) _______ Advanced Photon Source (APS) _______ Argonne Tandem are not permitted to do hands-on work at any Argonne User Facilities until a User Agreement (UA known") ______________________________ 5. Which Argonne user facility will be hosting you

Kemner, Ken

442

17th Annual ALS Users' Association Meeting  

E-Print Network (OSTI)

and other Berkeley Lab user facilities that will reside inis one of the best facilities for users to do great science.facility,research activities, and plans for the future. Figure 2. User

Robinson, Art; Tamura, Lori

2004-01-01T23:59:59.000Z

443

Grouting at the Idaho National Laboratory Tank Farm Facility, R. Mark Shaw  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grouting at the Grouting at the Idaho National Laboratory Tank Farm Facility R. Mark Shaw, U. S. Department of Energy safety v performance v cleanup v closure M E Environmental Management Environmental Management 2 Topics/Agenda * Tank Farm Overview * Tank and Vault Grouting * Cooling Coil and Transfer Line Grouting safety v performance v cleanup v closure M E Environmental Management Environmental Management 3 INTEC TANK FARM CLOSURE INTEC TANK FARM CLOSURE VES-WM-103 VES-WM-104 VES-WM-105 VES-WM-106 182 183 185 186 187 189 190 188 184 181 180 Tank Farm Facility Octagon Vaults: WM-180, WM-181 Pillar and Panel Vaults: WM-182, WM-183, WM-184, WM-185, WM-186 Square Vaults: WM-187, WM-188, WM-189, WM-190 GV99 0008 safety v performance v cleanup v closure M E Environmental Management

444

The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Facility Data Requirements Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL SC08 BOF: Computing with Massive and Persistent Data LLNL-PRES-408909. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344 2 Target chamber One Terabyte of data to be downloaded in ~50 Minutes for each shot. 5 Full Aperture Backscatter Diagnostic Instrument Manipulator (DIM) Diagnostic Instrument Manipulator (DIM) X-ray imager Streaked x-ray detector VISAR Velocity Measurements Static x-ray imager FFLEX Hard x-ray spectrometer Near Backscatter Imager DANTE Soft x-ray temperature Diagnostic Alignment System Cross Timing System Each Diagnostic Produces Data that Requires Analysis 6 Tools are being built to manage and integrate:

445

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

446

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

447

Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

Weaver, Phyllis C

2013-12-12T23:59:59.000Z

448

Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory  

Science Conference Proceedings (OSTI)

This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

1997-04-01T23:59:59.000Z

449

Electrical Characterization Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Characterization Electrical Characterization Laboratory may include: * Equipment manufacturers * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Energy Systems Integration Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Electrical Characterization Laboratory Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using

450

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

451

Buildings to Grid Integration Technical Meeting: National Renewable Energy Laboratory, Energy Systems Integration Facility, Golden, CO  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings to Grid Integration Buildings to Grid Integration Technical Meeting: National Renewable Energy Laboratory, Energy Systems Integration Facility Golden, CO December 2012 1 WELCOME Welcome to the Buildings to Grid Integration Technical Meeting and to Golden, Colorado. On behalf of the U.S. Department of Energy Building Technologies Program, I would like to thank you for attending and for your active participation. I look forward to meeting you and hearing your perspective on enabling significant buildings to grid integration. Everyone is here because we are working to make efficient transactions between buildings and the grid a commercial reality, whether it is through

452

The Gated X-ray Detector for the National Ignition Facility  

Science Conference Proceedings (OSTI)

Two new gated x-ray imaging cameras have recently been designed, constructed and delivered to the National Ignition Facility in Livermore, CA. These Gated X-ray Detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significant different from earlier generations of gated x-ray images due in parts to an innovative impendence matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution and no detectable impendence reflections.

Oertel, J A; Barnes, C; Archuleta, T; Casper, L; Fatherley, V; Heinrichs, T; King, R; Landers, D; Lopez, F; Sanchez, P; Sandoval, G; Schrank, L; Walsh, P; Bell, P; Brown, M; Costa, R; Holder, J; Montalongo, S; Pederson, N

2006-05-18T23:59:59.000Z

453

Ultraviolet free-electron laser (uv FEL) facility at Brookhaven National Laboratory  

DOE Green Energy (OSTI)

The proposal for a Ultraviolet Free-Electron Laser Facility UV-FEL grew from the realization that neither existing lasers or synchrotrons, nor the third generation synchrotron radiation sources now under construction address all of the needs of scientists interested in the ultraviolet region of the spectrum, particularly with respect to the combination of continuous wavelength selection, high peak power and short pulse duration. Several workshops have been held at BNL and elsewhere which explored applications and source requirements in the 5 to 30 eV range. A critical requirement determined was is for very high peak power and short wavelength, especially for applications in chemical physics and non-linear optics. The need for wavelength tuning with the ease and agility to which synchrotron radiation users have become accustomed has also been strongly emphasized. With these initial parameters in mind, the accelerator physics staff set about devising ways to produce this radiation. Their design is for an FEL that has unique characteristics both in terms of possible applications, and in the range of radiation it could produce. In addition, the proposed location of the UV-FEL adjacent to the NSLS means that pump-probe experiments involving radiation from both sources will be possible. Each successive design has been reviewed in consultation with potential users in an iterative process to arrive at the present proposal design.

Johnson, E.D.; Sutherland, J.C.

1992-12-31T23:59:59.000Z

454

Ultraviolet free-electron laser (uv FEL) facility at Brookhaven National Laboratory  

DOE Green Energy (OSTI)

The proposal for a Ultraviolet Free-Electron Laser Facility UV-FEL grew from the realization that neither existing lasers or synchrotrons, nor the third generation synchrotron radiation sources now under construction address all of the needs of scientists interested in the ultraviolet region of the spectrum, particularly with respect to the combination of continuous wavelength selection, high peak power and short pulse duration. Several workshops have been held at BNL and elsewhere which explored applications and source requirements in the 5 to 30 eV range. A critical requirement determined was is for very high peak power and short wavelength, especially for applications in chemical physics and non-linear optics. The need for wavelength tuning with the ease and agility to which synchrotron radiation users have become accustomed has also been strongly emphasized. With these initial parameters in mind, the accelerator physics staff set about devising ways to produce this radiation. Their design is for an FEL that has unique characteristics both in terms of possible applications, and in the range of radiation it could produce. In addition, the proposed location of the UV-FEL adjacent to the NSLS means that pump-probe experiments involving radiation from both sources will be possible. Each successive design has been reviewed in consultation with potential users in an iterative process to arrive at the present proposal design.

Johnson, E.D.; Sutherland, J.C.

1992-01-01T23:59:59.000Z

455

Summary of the first neutron image data collected at the National Ignition Facility  

Science Conference Proceedings (OSTI)

A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 {+-} 3 {mu}m, as indirect cores 25 {+-} 4 and 29 {+-} 4 {mu}m and more asymmetric, P2/P0 = 47% vs. -14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

Grim, G P; Archuleta, T N; Aragonez, R J; Atkinson, D P; Batha, S H; Barrios, M A; Bower, D E; Bradley, D K; Buckles, R A; Clark, D D; Clark, D J; Cradick, J R; Danly, C; Drury, O B; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Glenn, S M; Hsu, A H; Izumi, N; Jaramillo, S A; Kyrala, G A; Pape, S L; Loomis, E N; Mares, D; Martinson, D D; Ma, T; MacKinnon, A J; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tommasini, T; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Kauffman, M I; Lutz, S S; Malone, R M; Traille, A

2011-11-01T23:59:59.000Z

456

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Website Integration Effort Delivers One-Stop Shopping for Data Bookmark and Share The ARM website was upgraded with a new capability in September. ARM data users now have the ability to order data using the data cart from www.arm.gov. The ARM website was upgraded with a new capability in September. ARM data users now have the ability to order data using the data cart from www.arm.gov. On September 27, a new way to browse and order ARM data became available on the ARM website after nine months of development. ARM infrastructure staff from three national laboratories-Brookhaven National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory-teamed together to integrate the ARM web pages with the ARM

457

Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems  

SciTech Connect

Battelle-Pacific Northwest Division operates numerous research and development (R and D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)'s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

Barnett, J. M.; Brown, Jason H.; Walker, Brian A.

2012-04-01T23:59:59.000Z

458

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

459

Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico  

Science Conference Proceedings (OSTI)

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

1999-12-01T23:59:59.000Z

460

2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Michael G. Lewis

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "national user facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility, IG-0887  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Use of Staff Augmentation The Use of Staff Augmentation Subcontracts at National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility DOE/IG-0887 May 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 15, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility" BACKGROUND Shaw AREVA MOX Services, LLC (MOX Services) is responsible for the design and construction of the National Nuclear Security Administration's (NNSA) nearly $5 billion Mixed

462