National Library of Energy BETA

Sample records for national user facilities

  1. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  2. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a premier user facility providing world-class expertise, instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research....

  3. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  4. PIA - Advanced Test Reactor National Scientific User Facility Users Week

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 | Department of Energy Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 (316.78 KB) More Documents & Publications PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL Education Programs Business Enclav

  5. User Facilities at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities at Argonne Argonne National Laboratory designs, builds, and operates national scientific user facilities for the benefit of researchers from industry, academia, and government laboratories. These one-of-a-kind facilities attract great minds from all over the nation to solve society's complex scientific problems. PDF icon User_Facilities

  6. PIA - Advanced Test Reactor National Scientific User Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 (316.78 KB) More Documents & ...

  7. National Laser Users' Facility Grant Program Awards | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) National Laser Users' Facility Grant Program Awards 2015 Awards 2012 Awards Learn More 2012 NLUF Awards 2015 NLUF Awards

  8. New User Facilities Web Page Highlights Work at National Laboratories...

    Office of Environmental Management (EM)

    User Facilities Web Page Highlights Work at National Laboratories New User Facilities Web Page Highlights Work at National Laboratories January 15, 2014 - 12:00am Addthis The User ...

  9. Biomass Feedstock National User Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstock National User Facility Biomass Feedstock National User Facility Breakout Session 1B-Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory kenney_biomass_2014.pdf (2.04 MB) More Documents & Publications Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics:Biomass as a Commodity 2013 Peer Review

  10. National Laser User Facilities Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester (UR) was established in 1970 to investigate the interaction of high power lasers with matter. It is home of the Omega Laser Facility that includes OMEGA, a 30 kJ UV 60-beam laser system (at a wavelength of 0.35 mm) and OMEGA EP, a four-beam, high-energy, laser system with up to 26 kJ UV. Two of the OMEGA

  11. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities A new research frontier awaits! Our door is open, and we thrive on mutually beneficial partnerships and collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, Los Alamos National Laboratory can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities. While our largest user

  12. Annual Meeting Focuses on Bridging Science Across National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Meeting Focuses on Bridging Science Across National User Facilities Annual Meeting: Bridging Science Across National User Facilities The 2014 Annual Meeting was hosted by the Environmental Molecular Science Laboratory at Pacific Northwest National Laboratory on April 30-May 2. This meeting attracted a cross- section of more than 70 individuals ranging from facility directors, user representatives, user administrators, communicators, financial representative, and governmental affairs

  13. New User Facilities Web Page Highlights Work at National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) recently added a Web page titled, "User Facilities," to highlight the work at BETO-supported national laboratories.

  14. National Laser Users' Facility Grant Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Laser Users' Facility Grant Program The Laboratory for Laser Energetics (LLE) at the University of Rochester (UR) was established in 1970 to investigate the interaction of high power lasers with matter. It is home of the Omega Laser Facility that includes OMEGA, a 30 kJ UV 60-beam laser system (at a wavelength of 0.35 mm) and OMEGA EP, a four-beam, high energy, laser system with up to 26 kJ UV. Two of the OMEGA EP beamlines can also be operated as

  15. ATR National Scientific User Facility 2013 Annual Report

    SciTech Connect (OSTI)

    Ulrich, Julie A.; Robertson, Sarah

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  16. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    SciTech Connect (OSTI)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  17. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  18. DOE national user facility in the Tropical Western Pacific.

    SciTech Connect (OSTI)

    Jones, L. A.; Porch, W. M.; Sisterson, Doug L.; Mather, J. H.; Long, C. N.

    2004-01-01

    In July 2003, the Department of Energy's Office of Biological and Environmental Research designated the Atmospheric Radiation Measurement sites as National User Facilities and renamed them the ARM Climate Research Facility (ACRF). As a result, the former ARM Cloud and Radiation Test bed (CART) sites are now collectively called Climate Research Sites. Part of the conditions associated with funding for ACRF is that the ARM program must attract new users. Located in Australia, and the island nations of Papua New Guinea and the Republic of Nauru, the three Tropical Western Pacific (TWP) research facilities offer unique scientific opportunities to prospective users. Although the locations of the facilities pose significant logistical challenges, particularly the two island sites, the TWP Office addresses these issues so that prospective users can focus on their research. The TWP Office oversees the operation of these sites by collaborating with the governments of Australia, Papua New Guinea, and the Republic of Nauru. Local observers are trained to effectively operate and maintain the facilities, and the state-side TWP Office offers supporting resources including daily instrument monitoring; equipment shipping, inventory tracking; customs coordination; and a readily deployable technical maintenance team at relatively minimal cost to prospective users. Satellite communications allow continuous, near-real time data from all three stations. The TWP Office also works diligently to maintain good local government and community relations with active outreach programs. This paper presents the TWP research facilities as the valuable resources they are to the scientific community.

  19. Facility Operations and User Support | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Facility Operations and User Support This sub-program provides both necessary physical ... groups that enable the program to improve its planning and execution of its mission. ...

  20. ATR National Scientific User Facility 2009 Annual Report

    SciTech Connect (OSTI)

    Todd R. Allen; Mitchell K. Meyer; Frances Marshall; Mary Catherine Thelen; Jeff Benson

    2010-11-01

    This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

  1. Facility Operations and User Support | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Facility Operations and User Support This sub-program provides both necessary physical facility and operational support for reliable, cross-lab production computing and storage environments as well as a suite of user services for effective use of ASC tri-lab computing resources. The scope of the facility operations includes planning, integration and deployment, continuing product support, software license and maintenance fees, procurement of operational equipment and

  2. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect (OSTI)

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  3. Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today designated the Idaho National Laboratory's (INL) Advanced Test Reactor (ATR) as a National Scientific User Facility.  Establishing the ATR...

  4. Advanced Test Reactor National Scientific User Facility: Addressing...

    Office of Scientific and Technical Information (OSTI)

    capability focused on resolving nuclear material performance issues through analysis on ... chemistry water loop for the ATR center flux trap, and a dedicated facility intended to ...

  5. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs » Office of Science » Programs & User Facilities Programs & User Facilities Enabling remarkable discoveries, tools that transform our understanding of energy and matter and advance national, economic, and energy security Advanced Scientific Computing Research Applied Mathematics Co-Design Centers Exascale Co-design Center for Materials in Extreme Environments (ExMatEx) Center for Exascale Simulation of Advanced Reactors (CESAR) Center for Exascale Simulation of

  6. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  7. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  8. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  9. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities User Facilities Print Text Size: A A A FeedbackShare Page The Nuclear Physics program supports the following national scientific user facilities: Argonne Tandem ...

  10. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  11. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    SciTech Connect (OSTI)

    Dan Ogden

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  12. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    SciTech Connect (OSTI)

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  13. DOE Designated User Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designated User Facilities DOE Designated User Facilities DOE Designated User Facilities Sept 30 2015 More Documents & Publications Microsoft Word - DesignatedUserFacilitiesApri...

  14. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    SciTech Connect (OSTI)

    Soelberg, Renae

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  15. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 jpg image, 64221 bytes The undulator hall of the Linac Coherent Light Source (LCLS). (SLAC National Accelerator Laboratory) jpg image, 93797 bytes Silicon

  16. National Security Facility (NSF) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Facility (NSF) National Security Facility (NSF) Argonne National Laboratory's National Security Facility (NSF) is a flexible, state-of-the-art secure user facility that contains multiple national security networks, video teleconference capability, high-resolution graphics support, a fully powered and cooled data center, multi-level training facilities, and conferencing facilities. The NSF provides tools and resources to enable and strengthen connections between government

  17. User Facilities Expert Team - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IMG_2298.JPG User Facilities Expert Team Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  18. Office of Science User Facilities

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information on the Office of Science User Facilities, which was given during the webinar on the DOE BRIDGE funding opportunity.

  19. Biomass -Feedstock User Facility

    Broader source: Energy.gov (indexed) [DOE]

    Kevin L. Kenney Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Feedstock Supply and Logistics 2 | ...

  20. Test and User Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities Our test and user facilities are available to industry and other organizations for researching, developing, and evaluating energy technologies. We can work with you to design the tests and operate the equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Distributed

  1. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  2. NP User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    User Facilities at a Glance NP User Facilities Print Text Size: A A A FeedbackShare Page The Nuclear Physics program supports the following national scientific user facilities: ...

  3. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  4. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  5. Guide to user facilities at the Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility. (GHT)

  6. DOE Thermochemical Users Facility A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    None

    2003-11-01

    The National Bioenergy Center at the National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products.

  7. Holifield Heavy Ion Research Facility: Users handbook

    SciTech Connect (OSTI)

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

  8. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F:

  9. BER User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The Biological and Environmental Research program supports the following national scientific user facilities: Atmospheric Radiation Measurement Climate Research Facility (ARM) at ...

  10. Official List of SC User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    On March 19, 2015 the Accelerator Test Facility was designated an Office of Science user facility and the National Synchrotron Light Source II entered operating status with a ...

  11. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  12. FES User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FES User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  13. ASCR User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASCR User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  14. All User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  15. HEP User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  16. User Facilities at a Glance | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities at a Glance User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  17. The Sixth Omega Laser Facility Users Group Workshop

    SciTech Connect (OSTI)

    Petrasso, R. D.

    2014-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Sixth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual OMEGA users, and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour lUtilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback from the users to LLE management about ways to improve and keep the facility and future experimental campaigns at the cutting edge.

  18. The Fifth Omega Laser Facility Users Group Workshop

    SciTech Connect (OSTI)

    Petrasso, R. D.

    2015-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Fifth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual Omega users and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback to LLE management from the users about ways to improve the facility and future experimental campaigns.

  19. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  20. 2011 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Press Releases Feature Stories In the News Users Meetings 2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events

  1. 2012 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Press Releases Feature Stories In the News Users Meetings 2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events

  2. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  3. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  4. User Facility Access Policy | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the

  5. 2008 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 CNM Users Meeting Tuesday, May 6, 2008 4:45-5:45 CNM Facility Tour 7:00-9:30 Users Week Banquet Wednesday, May 7, 2008 CNM Plenary and Science Session Bldg. 402 Lecture Hall 8:45-8:50 Welcome, Paul Evans, University of Wisconsin-Madison, CNM UEC Chair 8:50-9:00 Welcome from Laboratory Directorate,Al Sattelberger, Associate Laboratory Director for Energy Sciences & Engineering, Argonne National Laboratory 9:00-9:30 Update from Washington: Eric Rohlfing, Associate Director of Science for

  6. User Facilities | Department of Energy

    Office of Environmental Management (EM)

    Feedstock Preprocessing at INL The Process Demonstration Unit at Idaho National ... Conversion Processes and Analysis at LBNL The Advanced Biofuels Process Demonstration Unit ...

  7. National Laboratory Facilities and Capabilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Facilities and Capabilities National Laboratory Facilities and Capabilities National Laboratory Facilities and Capabilities With unique instrumentation and equipment, state-of-the-art facilities, as well as on-site experts, the national laboratories offer a myriad of facilities and capabilities to advance your business and technology development. logo-argonne.png ARGONNE NATIONAL LABORATORY Lemont, IL Advanced Photon Source User Facility-Allows better understanding of

  8. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    SciTech Connect (OSTI)

    Soelberg, Renae

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  9. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  10. Vehicle Technologies Office Merit Review 2015: User Facilities for Energy Storage Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about user facilities...

  11. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ... Atmospheric Radiation Measurement Climate Research Facility (ARM) at Global Network ARM is ...

  12. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... supply with characterization of feedstock inputs and gasification products (syngas and slag) * Expected Outcomes: - Non-proprietary: MSW characterization, processing data, thermal ...

  13. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was ...

  14. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility Home/Tag:National Solar Thermal Test Facility Illuminated receiver on top of tower Permalink Gallery High-Temperature Falling Particle Receiver Reaches New Limits Concentrating Solar Power, Energy, National Solar Thermal Test Facility, News, Renewable Energy, Solar, SunShot High-Temperature Falling Particle Receiver Reaches New Limits At its National Solar Thermal Test Facility, Sandia National Laboratories

  15. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Molten Nitrate Salt Initial Flow Testing is a ...

  16. Training Courses for Argonne User Facilities | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Courses for Argonne User Facilities All core courses can be taken via the Remote Training web site. See the user training requirements summary for general information....

  17. User Advisory Council | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | National Nuclear Security Administration | (NNSA) fieldoffices / Welcome to the NNSA Production Office / NPO News Releases Uranium Processing Facility Project Celebrates Changing the Skyline of Y-12 August 25, 2016 Groundbreaking Ceremony Held for the Construction Support Building OAK RIDGE, Tenn.-The Uranium Processing Facility (UPF) Project celebrated the groundbreaking for its Construction Support Building (CSB) today, signifying the first building construction activity where the

  18. Audit of the Department of Energy's User Facilities, IG-0395

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Due to technology transfer efforts and excess capacities, even more facilities, such as ... 725,000 in Department added factor and depreciation costs in 41 user facility agreements. ...

  19. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  20. User Support | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services The ALCF User Experience Help Desk assists users with support requests related to their ALCF projects. The help desk is open from 9 a.m. until 5 p.m. (Central time) Monday through Friday, exclusive of holidays. Contact Us Email: support@alcf.anl.gov Telephone: 630-252-3111 866-508-9181 Help Desk: Building 240, 2-D-15/16 Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Help Tickets To submit a help ticket for a technical issue, please email support@alcf.anl.gov and to

  1. Acknowledging User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acknowledging User Facilities User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources Acknowledging

  2. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Argonne maintains two state-of-the-art facilities for high-energy physics research. The Argonne Wakefield Accelerator Facility is home to technology that produces high accelerating gradients that could form the basis of the next generation of particle accelerators. Additionally, the 4 Tesla Magnet Facility reuses hospital MRI magnets to provide benchmarking for new muon experiments that will be performed at Fermilab. 4 Tesla Magnet Facility Learn More » Argonne Wakefield Accelerator

  3. Heating National Ignition Facility, Realistic Financial Planning...

    Office of Environmental Management (EM)

    National Ignition Facility, Realistic Financial Planning & Rapid Modification Lessons Learned Report Apr 2010 Heating National Ignition Facility, Realistic Financial Planning &...

  4. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Concentrating Solar Power (CSP)/National Solar Thermal Test Facility National Solar Thermal Test Facility admin 2016-04-14T21:34:04+00:00 Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and

  5. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, ... Accelerator Test Facility (ATF) at Brookhaven National Laboratory The Accelerator Test ...

  6. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities State-Of-The-Art Supporting all elements of IMS projects Facilities Labs and Test Sites Integrated Military Systems maintains a number of state-of-the-art testing and fabrication facilities. Supporting all elements of IMS projects including design, prototyping, fabrication, development, testing, and assessments, these facilities enable customers to quickly realize their projects and get the information they need in a fast and effective way. Use the "left" and

  7. User Survey | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey User Survey Results The ALCF conducts yearly surveys to gain a better understanding of how we can improve the user experience at ALCF. Below are the numeric results of these surveys. 2014 ALCF User Survey Results 2013 ALCF User Survey Results 2012 ALCF User Survey Results 2011 ALCF User Survey Results 2010 ALCF User Survey Results 2009 ALCF User Survey Results 2008 ALCF User Survey Results

  8. User Training | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Training Before performing work at the CNM, you must take certain orientation and safety training courses. We encourage you to take these courses remotely before you arrive at ...

  9. National Ignition Facility | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Ignition Facility Subscribe to RSS - National Ignition Facility National Ignition Facility Image: National Ignition Facility Summary of Assessment of Prospects for Inertial Fusion Energy Read more about Summary of Assessment of Prospects for Inertial Fusion Energy National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record Read more about National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record NATIONAL IGNITION FACILITY Read more about

  10. lasers. National Ignition Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    target shot of fiscal year 2015 WASHINGTON - Last week, the National Ignition Facility (NIF) fired its 300th laser target shot in fiscal year (FY) 2015, meeting the year's goal...

  11. On the future of BNL user facilities

    SciTech Connect (OSTI)

    Ben-Zvi, I.

    2010-08-01

    The purpose of this document is to portray the emerging technology of high-power high-brightness electron beams. This new technology will impact several fields of science and it is essential that BNL stay abreast of the development. BNL has a relative advantage and vital interest in pursuing this technology that will impact its two major facilities, the NSLS and RHIC. We have a sensible development path towards this critical future technology, in which BNL will gradually acquire a strong basis of Superconducting Radio Frequency (SRF) technology while executing useful projects. The technology of high-power AND high-brightness (HPHB) electron beams is based of the convergence of two extant, but relatively recent technologies: Photoinjectors and superconducting energy-recovering linacs. The HPHB technology presents special opportunities for the development of future BNL user facilities for High-Energy and Nuclear Science (HE-NP) and Basic Energy Science (BES). In HE-NP this technology makes it possible to build high-energy electron cooling for RHIC in the short range and a unique linac-based electron-ion collider (eRHIC). In BES, we can build short pulse, coherent FIR sources and high flux femtosecond hard x-ray sources based on Compton scattering in the short range and, in the longer range, femtosecond, ultra-high brightness synchrotron light sources and, ultimately, an X-ray Free-Electron Laser (FEL).

  12. Facility Interface Capability Assessment (FICA) user manual

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Massaglia, J.L.; Williamson, D.A.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is describe the FICA computer software and to provide the FICA user with a guide on how to use the FICA system. The FICA computer software consists of two executable programs: the FICA Reactor Report program and the FICA Summary Report program (written in the Ca-Clipper version 5.2 development system). The complete FICA software system is contained on either a 3.5 in. (double density) or a 5.25 in. (high density) diskette and consists of the two FICA programs and all the database files (generated using dBASE III). The FICA programs are provided as ``stand alone`` systems and neither the Ca-Clipper compiler nor dBASE III is required to run the FICA programs. The steps for installing the FICA software system and executing the FICA programs are described in this report. Instructions are given on how to install the FICA software system onto the hard drive of the PC and how to execute the FICA programs from the FICA subdirectory on the hard drive. Both FICA programs are menu driven with the up-arrow and down-arrow keys used to move the cursor to the desired selection.

  13. National Ignition Facility | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was completed in March 2009. Current experiments are focusing on using the NIF laser and other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and SSP experiments. By the end of FY 2012, the

  14. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, ...

  15. A U. S. Department of Energy User Facility Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. S. Department of Energy User Facility Atmospheric ... INCOMING SOLAR RADIATION Surface Instruments REFLECTED ... Unfortunately, many of these useful datasets reside with the ...

  16. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  17. lasers. National Ignition Facility

    National Nuclear Security Administration (NNSA)

    data for NNSA's science-based Stockpile Stewardship Program in the area of high-energy-density physics, a scientific field of direct relevance to nuclear deterrence and national...

  18. Facilities | National Nuclear Security Administration | (NNSA...

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility, Los Alamos National ... Dual Axis Radiographic Hydrodynamic Test Facility High Explosives Application ...

  19. ESIF User Guide; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-01

    The ESIF User Guide provides information on safety, procedures, and policies for new users of the Energy Systems Integration Facility (ESIF).

  20. Major UMass User Facilities-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major UMass User Facilities TRPL photo Researchers can access the capabilities of the various investigator interested in organic electronic materials, in PHaSE's original participating departments, and other centers and facilities, including the following: Materials Research Science & Engineering Center Center for Hierarchal Manufacturing High Field NMR Facility Mass Spectrometry Facility EPR Facility Keck Nanostructures Laboratory X-ray powder and single crystal diffraction Polymer

  1. New User Guide | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] New User Guide ► USER TIP: View "Getting Started" --a video introduction to ALCF services and resources with useful tips to boost your job throughput. Step 1. Request an ALCF Project Step 2. Get an ALCF User Account Step 3. Logging in to an ALCF Resource Step 4. Setting Up Your Computing Environment Step 5. Data Step 6. How to Run a Job

  2. Argonne User Facility Agreements | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials (CNM), The Argonne Leadership Computing Facility (ALCF), The Argonne Tandem Linac Accelerator System (ATLAS), and The Intermediate Voltage Electron Microscopy...

  3. User Authentication Policy | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users of the Argonne production systems are required to use a CRYPTOCard one time password... are: Something you know (for example, a password); Something you have (for example, an ID ...

  4. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  5. 2015 APS/CNM/EMC Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Users Meeting 2014 Users Meeting 2013 Users Meeting 2012 Users Meeting 2011 Users Meeting 2009 Users Meeting 2008 Users Meeting 2007 Users Meeting Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events RESEARCH HIGHLIGHTS COLLOQUIUM SERIES SEMINAR SERIES Argonne Press

  6. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  7. Lawrence Livermore National Laboratory Federal Facility Agreement...

    Office of Environmental Management (EM)

    Site 300) Agreement Name Lawrence Livermore National Laboratory Federal Facility Agreement Under CERCLA Section 120, June 29, 1992 State California Agreement Type Federal Facility ...

  8. User Guides | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocations Mira/Cetus/Vesta Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] User Guides Information and instructions on system access, computing environment, running jobs, debugging and tuning performance for our computing resources at the ALCF. How to Get an Allocation How to get an Allocation: You must be awarded an allocation in order to use our computer systems. Please

  9. Joint Facilities User Forum on Data Intensive Computing Lessons Learned

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Forum on Data Intensive Computing Lessons Learned - NERSC/JGI Partnership Kjiersten Fagnan, NERSC User Services/JGI --- 1 --- June 1 7, 2 013 Outline * Overview o f N ERSC/JGI P artnership - DOE J GI b ackground - Team o verview - Compute r esources * CompuBng S trategic P lan - JGI G oals - NERSC G oals * Lessons Learned --- 2 --- DOE Joint Genome Institute 3 DOE JGI, Serving as a genomic user facility in support of the DOE missions: * Walnut Creek, CA facility opened in 1999 * 250

  10. User Facility News | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facility News Print Text Size: A A A FeedbackShare Page GO 09.02.16User Facility SLAC and Stanford Team Finds a Tough New Catalyst for Use in Renewable Fuels

  11. Data Needs for LCLS-II Amedeo Perazzo SLAC Joint Facilities User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amedeo Perazzo SLAC Joint Facilities User Forum on Data Intensive Computing, June 16 th 2014 Joint Facilities User Forum on Data Intensive Computing - LCLS-II Data Needs ...

  12. Current Awards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Laser User Facilities Program Current Awards Current Awards National Laser Users' Facility Grant Program Current Awards Under Construction

  13. Groundbreaking at National Ignition Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition Facility, a centerpiece of the stockpile stewardship program, at the Lawrence Livermore National Laboratory

  14. Brookhaven National Laboratory Federal Facility Agreement, February...

    Office of Environmental Management (EM)

    Brookhaven National Laboratory Agreement Name Brookhaven National Laboratory Federal Facility Agreement Under CERCLA Section 120, February 28, 1992 State New York Agreement Type ...

  15. Lawrence Livermore National Laboratory Federal Facility Compliance...

    Office of Environmental Management (EM)

    Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory ... treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State ...

  16. CNM User Access Program Overview | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Access Program Overview The Center for Nanoscale Materials (CNM) user program provides access to equipment, facilities, and personnel that support CNM's overall focus on nanoscale materials. The CNM makes access available to the international scientific community through a general user access program. Proposals are submitted through a web-based process. PDF icon CNM User Access Program Overview

  17. National Library of Energy : User Account

    Office of Scientific and Technical Information (OSTI)

    Reset your password Enter either your User Name or Email Address to reset your password. User Name: Email Address: Go...

  18. June 11, 1999: National Ignition Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, 1999: National Ignition Facility June 11, 1999: National Ignition Facility June 11, 1999: National Ignition Facility June 11, 1999 Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

  19. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  20. Bioenergy Impacts … National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    companies in moving their bioenergy business ventures from laboratory to commercial scale. ... Bioenergy companies are implementing new technology with less risk BIOENERGY To learn ...

  1. Users Executive Committee | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides advice to the Director on matters affecting the user community, and ensures good communication between the CNM user community and CNM management. The CNM UEC is also...

  2. ICF Facilities | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Facilities Nike mirror array and lens array ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser

  3. Facilities | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Evaluation / Research and Development Facilities Photo: DARHT's Accelerators help create the x-rays at DARHT, the world's most advanced radiography facility. Research and Development Facilities Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national stockpile stewardship agenda. Of varying size, scope and capabilities, the facilities work in a concert to accomplish the following

  4. Thomas Jefferson National Accelerator Facility Technology Marketing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Jefferson National Accelerator Facility Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Thomas...

  5. Dual Axis Radiographic Hydrodynamic Test Facility | National...

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test Facility An integral part of the national ... radiographic images of the imploding test object, in which materials are moving at ...

  6. Congressional Delegation visits Naval Reactors Facility | National...

    National Nuclear Security Administration (NNSA)

    Chuck Fleischmann of the House Appropriations Subcommittee on Energy and Water Development, visited the Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). ...

  7. Director of the National Ignition Facility, Lawrence Livermore National

    National Nuclear Security Administration (NNSA)

    Laboratory | National Nuclear Security Administration | (NNSA) Director of the National Ignition Facility, Lawrence Livermore National Laboratory Edward Moses Edward Moses September 2009 Edward Teller Medal Edward Moses of the Lawrence Livermore National Laboratory is a recipient of the 2009 Edward Teller Medal. Moses was cited for his "leadership in the development and completion of the National Ignition Facility" (NIF). As principal associate director for NIF and Photon Science

  8. User Access Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The PEB, an external panel of peer reviewers, evaluates CNM user proposals. PEB reviewers are directed to treat user proposals as confidential documents and to inform the CNM of ...

  9. Chapter 9: Enabling Capabilities for Science and Energy | User Facility Statistics Supplemental Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User Facility Statistics Chapter 9: Enabling Capabilities for Science and Energy Scientific User Facility Statistics User facilities 1 - federally sponsored research facilities available for external use to advance scientific or technical knowledge - are a core component of the Department of Energy's (DOE) Office of Science (DOE-SC) mission and an important part of the broader DOE mission. The 34 DOE user facilities 2 provide state-of-the-art experimental and/or computational resources that are

  10. EMC User Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Policies Safety at Work EMC User Safety Scheduled Maintenance Periods Transportation For Industrial Users Acknowledgment Statements for Publications End of Experiment Survey Users Executive Committee People Publications 2015 Publications 2014 Publications 2013 Publications 2012 Publications 2011 Publications 2010 Publications 2009 Publications 2008 Publications 2007 Publications 2006 Publications Fact Sheets & Other Documents Acknowledgment Statement News & Events RESEARCH

  11. Defense Nuclear Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Nuclear Facility NNSA's safety office accredited and recognized for leadership in safe operation of defense nuclear facilities Part of NNSA's commitment to maintaining the nation's safe, secure, and effective nuclear deterrent are relentlessly high standards for technically capable nuclear enterprise personnel qualifications for all aspects of Defense Nuclear Facility operations. In December 2015, the Department of Energy

  12. 2011 NMMSS Users Training Meeting | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    1 NMMSS Users Training Meeting | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  13. National Ignition Facility Reaches Milestone Early | National...

    National Nuclear Security Administration (NNSA)

    Reaches Milestone Early | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  14. Becoming a User | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal Process in Brief Proposal Form Guidelines Preparing for Your Visit Working at CNM For Industrial Users Acknowledgment Statements for Publications End of Experiment Survey Users Executive Committee People Publications 2015 Publications 2014 Publications 2013 Publications 2012 Publications 2011 Publications 2010 Publications 2009 Publications 2008 Publications 2007 Publications 2006 Publications Fact Sheets & Other Documents Acknowledgment Statement News & Events RESEARCH

  15. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Pulsed Power and Systems Validation Facility Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support
 The knowledgeable staff brings a broad spectrum of experience in the design and setup of experiments. Emphasis is placed on optimizing the operation and results

  16. Scientific User Facilities (SUF) Division Homepage | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) SUF Home Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Print Text Size: A A A FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Scientific User Facilities (SUF) Division supports the R&D, planning, construction, and operation of scientific user facilities for the development of novel nano-materials and for materials

  17. Program Objectives | National Nuclear Security Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Objectives National Laser Users' Facility Grant Program Objectives The primary purpose of the National Laser Users' Facility (NLUF) is to provide facility time for ...

  18. National Energy AudiT (NEAT) user`s manual

    SciTech Connect (OSTI)

    Krigger, J.K.; Adams, N.; Gettings, M.

    1997-10-01

    Welcome to the US Department of Energy`s (DOE`s) energy auditing tool called ``NEAT``. NEAT, an acronym for National Energy AudiT, is a program for personal computers that was designed for use by local agencies in the Weatherization Assistance Program. It is an approved alternative audit that meets all auditing requirements set forth by the program as well as those anticipated from new regulations pertaining to waiver of the 40% materials requirements. NEAT is easy to use. It applies engineering and economic calculations to evaluate energy conservation measures for single-family, detached houses or small multifamily buildings. You can use it to rank measured for each individual house, or to establish a priority list of conservation measures for nearly identical housing types. NEAT was written for the Weatherization Assistance Program by Oak Ridge National Laboratory. Many buildings energy consumption algorithms are taken from Lawrence Berkeley Laboratory`s to the computerized Instrumented Residential Audit (CIRA), published in 1982 for the Department of energy. Equipment retrofit conservation measures are based on published reports on various heating retrofits. Heating and cooling system replacement conservation measures are based on the energy ratings of new heating and cooling equipment. The Weatherization Program anticipates that this computer-based energy audit will offer substantial performance improvements to many states who choose to incorporate it into their programs. When conservation measures are evaluated locally according to climate, fuel cost, measure cost, and existing house conditions, the Program will be closer to its goal of assuring the maximum return for every federal dollar spent.

  19. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A National Skills Assessment of the U.S. Wind Industry in 2012 M. Leventhal and S. Tegen Technical Report NREL/TP-7A30-57512 June 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013

  20. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and

  1. For Industrial Users | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through

  2. 2009 CNM Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 CNM Users Meeting October 5-7, 2009 Full Information Available Here Meeting Summary Plenary Session Views from DOE and Washington Keynote Presentations Stephen Chou (Princeton University), "Nanostructure Engineering: A Path to Discovery and Innovation" Andreas Heinrich (IBM Almaden Research Center), "The Quantum Properties of Magnetic Nanostructures on Surfaces" User Science Highlights Focus Sessions Nanostructured Materials for Solar Energy Utilization Materials and

  3. Joint Facilities User Forum on Data-Intensive Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the Adaptable I/O System (ADIOS) Joint Facilities User Forum on Data-Intensive Computing June 18, 2014 Norbert Podhorszki Thanks to: H. Abbasi, S. Ahern, C. S. Chang, J. Chen, S. Ethier, B. Geveci, J. Kim, T. Kurc, S. Klasky, J. Logan, Q. Liu, K. Mu, G. Ostrouchov, M. Parashar, D. Pugmire, J. Saltz, N. Samatova, K. Schwan, A. Shoshani, W. Tang, Y. Tian, M. Taufer, W. Xue, M. Wolf + many more Subtle m essage o f t he f orum a genda . . . . . . . . . What i s A DIOS? * ADaptable I /O S ystem

  4. Princeton Plasma Physics Lab - National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb 2013 14:30:50 +0000 jgreenwa 1361 at http:www.pppl.gov National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record http:www.pppl.govnode248

  5. Highly Enriched Uranium Materials Facility | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Congressmen tour Y-12 facilities During a recent visit to the Y-12 National Security Complex, Rep. Mike Simpson (R-Idaho), chairman of the House Energy and Water Appropriations ...

  6. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    SciTech Connect (OSTI)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  7. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    SciTech Connect (OSTI)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  8. Supporting National User Communities at NERSC and NCAR

    SciTech Connect (OSTI)

    Killeen, Timothy L.; Simon, Horst D.

    2006-05-16

    The National Energy Research Scientific Computing Center(NERSC) and the National Center for Atmospheric Research (NCAR) are twocomputing centers that have traditionally supported large national usercommunities. Both centers have developed responsive approaches to supportthese user communities and their changing needs, providing end-to-endcomputing solutions. In this report we provide a short overview of thestrategies used at our centers in supporting our scientific users, withan emphasis on some examples of effective programs and futureneeds.

  9. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... continued safety and reliability of the nation's nuclear deterrent. Q. How soon will we have fusion power plants? ... (ITeR) will be built in France, with the first experiments ...

  10. An introduction to the National Tritium Labeling Facility

    SciTech Connect (OSTI)

    Dorsky, A.M.; Morimoto, H.; Saljoughian, M.; Williams, P.G.; Rapoport, H.

    1988-06-01

    The facilities and projects of the National Tritium Labeling Facility are described. 5 refs., 1 fig., 1 tab.

  11. Sandia National Laboratories: Lightning Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightning Facility The Sandia Lightning Simulator (SLS) allows test objects to be subjected to simulated lightning currents up to severe levels. The SLS can be configured to produce either one or two simulated strokes, with or without continuing current. It can deliver a maximum peak current of 200 kA for a single stroke, 100 kA for a subsequent stroke, and several hundred Amperes of continuing current for hundreds of milliseconds. The simulator output waveform is comparable to natural lightning

  12. National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record | Princeton Plasma Physics Lab National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record

  13. National Renewable Energy Laboratory's Energy Systems Integration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory. Download the National Renewable Energy Laboratory's energy systems integration facility overview. (4.91 MB) More Documents & Publications Facilities and Infrastructure Program FY 2016

  14. Uranium Processing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility

  15. Project Profile: National Solar Thermal Test Facility Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) ...

  16. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  17. National Solar Radiation Database 1991-2010 Update: User's Manual

    SciTech Connect (OSTI)

    Wilcox, S. M.

    2012-08-01

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  18. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security maintaining the nuclear weapons stockpile As the largest, highest-energy laser ever built, the National Ignition Facility (NIF) can create conditions in the laboratory-temperatures of 100 million degrees and pressures 100 billion times that of the earth's atmosphere-similar to those in stars and nuclear weapons. NIF is the only facility that can perform controlled, experimental studies of thermonuclear burn, the phenomenon that gives rise to the immense energy of modern nuclear weapons.

  19. Contained Firing Facility | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Contained Firing Facility The CFF firing chamber is the largest explosive chamber in the world, used for large-scale experiments using high-explosives with full containment of hazardous materials. The facility provides a combination of capabilities, including wide-angle flash radiography, laser velocimetry, pin-dome measurements, and high-speed optical cameras that are used to measure dynamics during the experiments. CFF is a key component of NNSA's national hydrotest strategy and was

  20. National Environmental Justice Advisory Council Federal Facilities Working

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Group Report | Department of Energy National Environmental Justice Advisory Council Federal Facilities Working Group Report National Environmental Justice Advisory Council Federal Facilities Working Group Report Environmental Justice and Federal Facilities: recommendations for improving stakeholder relations between federal facilities and environmental justice communities, October 2004 National Environmental Justice Advisory Council Federal Facilities Working Group Report (1.37 MB) More

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2008 [Facility News] National User Facility Organization Meets to Discuss Progress and Ideas Bookmark and Share In late April, the ARM Technical Director attended an annual meeting of the National User Facility Organization. Comprised of representatives from Department of Energy (DOE) national user facilities, the purpose of this group is to promote and encourage discussions among user facility administrators, their management, and their user organization representatives by communicating

  2. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    33 National Ignition Facility & Photon Science Frequently asked Questions Q. What is NIF? A. The National Ignition Facility (NIF) is the world's largest and highest-energy laser. NIF's 192 intense laser beams are capable of delivering to their target more than 100 times the energy of any previous laser system. experiments on the path to ignition began in 2010. during full-scale ignition experiments, NIF will direct up to 1.8 million joules of ultraviolet laser energy in billionth-of-a-second

  3. Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility- August 2008

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility

  4. Idaho CERCLA Disposal Facility at Idaho National Laboratory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy CERCLA Disposal Facility at Idaho National Laboratory Idaho CERCLA Disposal Facility at Idaho National Laboratory Full Document and Summary Versions are available for download Idaho CERCLA Disposal Facility at Idaho National Laboratory (822.35 KB) Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory (49.03 KB) More Documents & Publications Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Proposed On-Site Waste Disposal Facility

  5. National Ignition Facility Title II Design Plan

    SciTech Connect (OSTI)

    Kumpan, S

    1997-03-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  6. Safety overview of the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.

    1996-05-23

    The National Ignition Facility (NIF) is a proposed US Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium- tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low.

  7. Safety overview of the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.; Yatabe, J.

    1996-12-31

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory - New Mexico, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996, after independent review. This paper summarizes the safety issues associated with the construction and operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low. 9 refs., 2 figs., 2 tabs.

  8. National Biomedical Tracer Facility. Project definition study

    SciTech Connect (OSTI)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  9. DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D National Fusion Facility (DIII-D) Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington,

  10. National Ignition Facility project acquisition plan

    SciTech Connect (OSTI)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  11. Sandia National Laboratories: Advanced Simulation and Computing: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation & User Support Facilities Operation & User Support APPRO The Facilities, Operations and User Support (FOUS) program is responsible for operating and maintaining the computing systems procured by the Advanced Simulation and Computing (ASC) program, and for delivering additional computing related services to Defense Program customers located across the Nuclear Weapons Complex. Sandia has developed a robust User Support capability which provides various services to analysts,

  12. Omega Laser Facility Completes Record 25,000 Experiments | National...

    National Nuclear Security Administration (NNSA)

    The Omega Laser Facility performs more than half of the target shots for external users, including for the private sector. The research conducted by LLE scientists and the ...

  13. Underground Facility at Nevada National Security Site | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Underground Facility at Nevada National Security Site The U1a Complex is an underground laboratory at the Nevada National Security Site used for dynamic experiments with special nuclear material (SNM) and other weapon materials. The Complex provides an infrastructure of high-bandwidth diagnostics, data acquisition, timing and firing, control and monitor systems capable of supporting experiments designed to acquire information on fundamental materials

  14. Sandia National Laboratories participation in the National Ignition Facility project

    SciTech Connect (OSTI)

    Boyes, J.; Boyer, W.; Chael, J.; Cook, D.; Cook, W.; Downey, T.; Hands, J.; Harjes, C.; Leeper, R.; McKay, P.; Micano, P.; Olson, R.; Porter, J.; Quintenz, J.; Roberts, V.; Savage, M.; Simpson, W.; Seth, A.; Smith, R.; Wavrik, M.; Wilson, M.

    1996-08-01

    The National Ignition Facility is a $1.1B DOE Defense Programs Inertial Confinement Fusion facility supporting the Science Based Stockpile Stewardship Program. The goal of the facility is to achieve fusion ignition and modest gain in the laboratory. The NIF project is responsible for the design and construction of the 192 beam, 1.8 MJ laser necessary to meet that goal. - The project is a National project with participation by Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester Laboratory for Laser Energetics (URLLE) and numerous industrial partners. The project is centered at LLNL which has extensive expertise in large solid state lasers. The other partners in the project have negotiated their participation based on the specific expertise they can bring to the project. In some cases, this negotiation resulted in the overall responsibility for a WBS element; in other cases, the participating laboratories have placed individuals in the project in areas that need their individual expertise. The main areas of Sandia`s participation are in the management of the conventional facility design and construction, the design of the power conditioning system, the target chamber system, target diagnostic instruments, data acquisition system and several smaller efforts in the areas of system integration and engineering analysis. Sandia is also contributing to the technology development necessary to support the project by developing the power conditioning system and several target diagnostics, exploring alternate target designs, and by conducting target experiments involving the ``foot`` region of the NIF power pulse. The project has just passed the mid-point of the Title I (preliminary) design phase. This paper will summarize Sandia`s role in supporting the National Ignition Facility and discuss the areas in which Sandia is contributing. 3 figs.

  15. Need for the National Ignition Facility

    SciTech Connect (OSTI)

    Crandall, D.H.

    1996-12-31

    This paper has an attitude - that the National Ignition Facility (NIF) is needed. The NIF will be unique in its ability to address high energy density physics and to test fusion ignition in the laboratory. This is a major scientific step and has high appeal to scientists and engineers. The reason for taking this step now is the importance of high energy density physics for US policy on nuclear weapons. The fact that the same capability and experiments give the most fundamental information on the potential of inertial fusion for commercial energy, and have value for applications in astrophysics, further supports the case for proceeding with this facility. 21 refs., 6 figs.

  16. Data Management Resources at the Office of Science User Facilities...

    Office of Science (SC) Website

    ... for Advanced Accelerator Experimental Tests (FACET) SLAC Link External link Accelerator Test Facility (ATF) BNL Link External link Nuclear Physics (NP) Facility Host Institution ...

  17. Energy Systems Integration Facility at National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Systems Integration Facility at National Renewable Energy Laboratory Energy Systems Integration Facility at National Renewable Energy Laboratory Addthis Energy Systems Integration Facility 1 of 7 Energy Systems Integration Facility The Energy Department's Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory in Golden, Colorado. The 182,500-square-foot facility houses 15 experimental laboratories and several outdoor test beds.

  18. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL ...

  19. Annual Users Training Meeting Archives | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Annual Users Training Meeting Archives 2011 Users Training Meeting 2010 Users Training Meeting 2009 Users Training Meeting 2008 Users Training Meeting 2007 Users Training Meeting 2006 Users Training Meeting 2005 Users Training Meeting Learn More 2005 NMMSS Users Training Meeting 2006 NMMSS Users Training Meeting 2007 NMMSS Users Training Meeting 2008 NMMSS Users Training Meeting 2009 NMMSS Users Training Meeting 2010 NMMSS Users Training Meeting 2011 NMMSS Users

  20. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Weapon and Force Protection Center Weapon and Force Protection Center Video Cameras Weapon and Force Protection Center The Center for Security Systems is a fully integrated research-to- development-to-application center that provides systems and technologies that understand, identify, and solve the nation's security problems. The Center includes extensive development and testing facilities for all aspects of physical security including the following: sensors video image processing

  1. 2015 User Training Meeting Presentations | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 5 User Training Meeting Presentations Monday, May 11 Richard Meehan - Programmatic Update Nuclear Materials Landscape James Crabtree - Process to Return Loan/Lease Material Richard Meehan/Mitch Hembree - Analytical Approach for Validating the Accuracy of Nuclear Material Data Brian Horn - Lessons Learned and the Mechanics of Preparing for Reporting Data to the IAEA by a New Facility - Reporting Data Gary Hirsch - Lessons Learned and the Mechanics of Preparing for

  2. 2014 APS/CNM/EMC Users Meeting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 APS/CNM/EMC Users Meeting May 12-15, 2014 Meeting web site CNM-Specific Events Andreas Roelofs, Interim CNM Director CNM Facility Status Update CNM Plenary Session Keynote Speaker : Federico Capasso Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering Harvard University "Flat Optics with Metasurfaces" David Schuster Physics Department and James Franck Institute University of Chicago "Hybrid Quantum Computing with

  3. Los Alamos National Laboratory opens new waste repackaging facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL opens new waste repackaging facility Los Alamos National Laboratory opens new waste repackaging facility The Laboratory has brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. March 7, 2013 A view of the new box line facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new box line facility where transuranic waste will be repackaged at Los Alamos National Laboratory.

  4. National Ignition Facility project acquisition plan revision 1

    SciTech Connect (OSTI)

    Clobes, A.R.

    1996-10-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  5. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM ...

  6. Occupational dose estimates for the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    The National Ignition Facility (NIF) is currently being constructed at Lawrence Livermore National Laboratory (LLNL). During peak operation, the NIF will attain D-T fusion yields ...

  7. "New Results from the National Ignition Facility", Dr. John Lindl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March ...

  8. National Ignition Facility environmental protection systems

    SciTech Connect (OSTI)

    Mintz, J.M.; Reitz, T.C.; Tobin, M.T.

    1994-06-01

    The conceptual design of Environmental Protection Systems (EPS) for the National Ignition Facility (NIF) is described. These systems encompass tritium and activated debris handling, chamber, debris shield and general decontamination, neutron and gamma monitoring, and radioactive, hazardous and mixed waste handling. Key performance specifications met by EPS designs include limiting the tritium inventory to 300 Ci and total tritium release from NIF facilities to less than 10 Ci/yr. Total radiation doses attributable to NIF shall remain below 10 mrem/yr for any member of the general public and 500 mrem/yr for NIF staff. ALARA-based design features and operational procedures will, in most cases, result in much lower measured exposures. Waste minimization, improved cycle time and reduced exposures all result from the proposed CO2 robotic arm cleaning and decontamination system, while effective tritium control is achieved through a modern system design based on double containment and the proven detritiation technology.

  9. Radiological assessments for the National Ignition Facility

    SciTech Connect (OSTI)

    Hong, Kou-John; Lazaro, M.A.

    1996-08-01

    The potential radiological impacts of the National Ignition Facility (NIF), a proposed facility for fusion ignition and high energy density experiments, were assessed for five candidate sites to assist in site selection. The GENII computer program was used to model releases of radionuclides during normal NIF operations and a postulated accident and to calculate radiation doses to the public. Health risks were estimated by converting the estimated doses into health effects using a standard cancer fatality risk factor. The greatest calculated radiation dose was less than one thousandth of a percent of the dose received from natural background radiation; no cancer fatalities would be expected to occur in the public as the result of normal operations. The highest dose conservatively estimated to result from a postulated accident could lead to one in one million risk of cancer.

  10. President Reagan Calls for a National Spent Fuel Storage Facility |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Reagan Calls for a National Spent Fuel Storage Facility President Reagan Calls for a National Spent Fuel Storage Facility Washington, DC The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of high-level radioactive waste and lifts the ban on commercial reprocessing of nuclear fuel

  11. NIF Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users NIF Users Research Opportunities at the National Ignition Facility The National Ignition Facility provides the scientific community with an unprecedented capability for studying materials at extreme pressures, temperatures, and densities. NIF is expected to achieve temperatures and densities almost an order of magnitude greater than those in the sun's core and pressures far in excess of those at the core of Jupiter. The density of neutrons during the tens of picoseconds the NIF target

  12. A national facility for biological cryo-electron microscopy

    SciTech Connect (OSTI)

    Saibil, Helen R.; Grnewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  13. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 National Ignition Facility & Photon Science limitless energy the Promise of Limitless energy harnessing the energy of the sun and stars to meet the earth's energy needs has been a decades-long scientific and engineering quest. While a self-sustaining fusion burn has been achieved for brief periods under experimental conditions, the amount of energy that went into creating it was greater than the amount of energy it generated. There was no energy gain, which is essential if fusion energy is

  14. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    making a star 17 How to make a miniature star The idea for the National Ignition Facility (NIF) grew out of a decades-long effort to generate fusion burn and energy gain in the laboratory. Current nuclear power plants, which use the splitting of atoms (fission) to produce energy, have been pumping out electric power for more than 50 years. But achieving nuclear fusion burn and gain has not yet been demonstrated as viable for energy production. For fusion burn and gain to occur, a special fuel

  15. Sandia National Laboratories: Z Pulsed Power Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Z-Machine About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Z-Machine Z Pulsed Power Facility Science serving the nation Created to validate nuclear weapons models, the Z machine is also in the race for viable fusion energy. Z-Machine From Earth's Core to Black Holes Contributing to discovery science by studying matter at conditions found nowhere else on Earth Center of Z About Z Sandia's Z machine is the world's most powerful and efficient laboratory radiation source. It

  16. Advances in Ion Accelerators Boost Argonne's ATLAS User Facility...

    Office of Science (SC) Website

    generation, high-current accelerator-based isotope production facilities, and compact high-intensity proton accelerators for medical, industrial and homeland security applications. ...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on...

  18. The national ignition facility and atomic data

    SciTech Connect (OSTI)

    Crandall, David H.

    1998-07-08

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  19. The national ignition facility and atomic data

    SciTech Connect (OSTI)

    Crandall, D.H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today{close_quote}s inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds. {copyright} {ital 1998 American Institute of Physics.}

  20. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2012-01-04

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  1. South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility November 27, 2013 - 12:00am Addthis The Energy Department and Clemson University officials on November 21 dedicated the nation's largest wind energy testing facility in North Charleston, South Carolina. The facility will help test and validate new turbines, particularly for offshore wind- €helping to speed deployment of next

  2. Office of Science User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Office of Science User Facilities DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support Graduate Transcripts for Current Graduate Institution Application

  3. Accommodations for Joint Facilities User Forum on Data-Intensive Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & HPCOR Accommodations Accommodations for Joint Facilities User Forum on Data-Intensive Computing & HPCOR Both the Joint Facilities User Forum on Data-Intensive Computing and the DOE HPCOR meetings are being held in downtown Oakland, CA. We have reserved room blocks at two locations in Berkeley, CA. We recommend making your reservations as soon as possible because hotel rooms in the San Francisco Bay Area are in great demand. Hotel Shattuck Plaza Reservation cutoff date is May 23,

  4. Data Management Resources at the Office of Science User Facilities | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) Data Management Resources at the Office of Science User Facilities Funding Opportunities Funding Opportunities Home Grants & Contracts Support Award Search / Public Abstracts Find Funding Early Career Research Program Statement on Digital Data Management Suggested Elements for a Data Management Plan Frequently Asked Questions Resources at the Office of Science User Facilities Acknowledgements of Federal Support Contact Information Office of Science U.S.

  5. Project Profile: National Solar Thermal Test Facility Operations and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintenance (SuNLaMP) | Department of Energy Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) Project Profile: National Solar Thermal Test Facility Operations and Maintenance (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: CSP Location: Sandia National Laboratory, Albuquerque, NM SunShot Award Amount: $2,250,000 This project maintains the National Solar Thermal Test Facility (NSTTF), which provides the CSP industry with established test

  6. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  7. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Explosive Components Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  8. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  9. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  10. National Ignition Facility wet weather construction plan

    SciTech Connect (OSTI)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  11. INL User Facility welcomes three new experiments | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research reactor has now reached an even dozen. Three universities have been chosen to begin the next round of experiments at INL's Advanced Test Reactor National ...

  12. National Ignition Facility Configuration Management Plan

    SciTech Connect (OSTI)

    Cabral, S G; Moore, T L

    2002-10-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  13. Infrastructure and Facilities Management | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    backlog of old facilities, reduction of excess facilities and utility construction. ... real property), and infrastructure planning and line item construction sub-programs. ...

  14. Idaho National Engineering Laboratory Federal Facility Agreement...

    Office of Environmental Management (EM)

    Federal Facility Agreement and Consent Order State Idaho Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts...

  15. 4 Tesla Magnet Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Tesla Magnet Facility 4 Tesla Magnet Facility Argonne researchers recently acquired two decommissioned magnets from magnetic resonance imaging (MRI) scanners from hospitals in ...

  16. high explosives pressing facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    pressing facility high explosives pressing facility Thornberry hosts House Majority Leader at Pantex visit Rep. Mac Thornberry, R-Texas, hosted Majority Leader Kevin McCarthy,...

  17. Support Facilities | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Y-12 site comprises more than 250 non-production facilities that help support ongoing and planned missions. We continue to maintain and modernize these support facilities - ...

  18. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Moses, E

    2009-06-22

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of

  19. New Research Facility Holds Promise For Nation's Energy Future...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Research Facility Holds Promise For Nation's Energy Future Leaders Praise Innovative ... Golden, Colo. - Ground was broken today on a new facility at the U.S. Department of ...

  20. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  1. User Facilities: Tools for Seeing Atoms | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Seeing Matter at Atomic and Molecular Scales » User Facilities: Tools for Seeing Atoms Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Facilities Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S.

  2. Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory

    Office of Environmental Management (EM)

    INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of

  3. Current Awards | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Current Awards National Laser Users' Facility Grant Program Current Awards Under Construction

  4. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  5. Argonne Wakefield Accelerator Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities 4 Tesla Magnet Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility In order to achieve the high accelerating gradients needed to produce the tremendous energies required by a future particle accelerator, scientists have been looking for new ideas and solutions. Wakefield acceleration offers a potentially bold new path for the construction of the next generation of particle accelerators. The Argonne Wakefield

  6. Project Profile: National Solar Thermal Test Facility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power » Project Profile: National Solar Thermal Test Facility Project Profile: National Solar Thermal Test Facility SNL logo The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF

  7. Energy Systems Integration Facility at National Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Energy Systems Integration Facility ... radical film for battery applications using a 3D ... Image: Dennis Schroeder, National Renewable Energy ...

  8. KCP celebrates production milestone at new facility | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates production milestone at new facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  9. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Support The knowledgeable staff brings a broad spectrum of experience in the ... specialized radiation transport and electromagnetic computer codes (Integrated Tiger ...

  10. Facilities and Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Initiatives Facilities Initiatives The Headquarters Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the Forrestal Building in Washington, DC, and Germantown Maryland. Many of these initiatives are part of their Energy Savings Performance Contract (ESPC). ESPCs allow Federal agencies to accomplish energy savings projects without up-front capital costs and without

  11. Facility Clearance Program | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Facility Clearance Program The Facility Clearance (FCL) Program regulates DOE approval of a Federal or contractor facility's eligibility to access, receive, generate, reproduce, store, transmit, or destroy classified information or matter, special nuclear material (SNM), other hazardous material presenting a potential radiological, chemical, or biological sabotage threat, and/or DOE property of significant monetary value, exclusive of facilities and land values (hereinafter referred

  12. Sandia National Laboratories: Locations: Kauai Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kauai Test Facility Kauai photo The Kauai Test Facility (KTF) is a rocket launch range in Hawaii operated by Sandia for the Department of Energy. The facilities and personnel support a variety of sounding-rocket missions, including weapons research and development; operational training, test, and evaluation; and technology development. To ensure maximum use of the facilities, Sandia conducts launch projects for other organizations or government agencies on a noninterference basis. These projects

  13. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications.

  14. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  15. Large optics for the National Ignition Facility

    SciTech Connect (OSTI)

    Baisden, P.

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.

  16. National Ignition Facility Comes to Life

    SciTech Connect (OSTI)

    Moses, E

    2003-09-01

    First conceived of nearly 15 years ago, the National Ignition Facility (NIF) is up and running and successful beyond almost everyone's expectations. During commissioning of the first four laser beams, the laser system met design specifications for everything from beam quality to energy output. NIF will eventually have 192 laser beams. Yet with just 2% of its final beam configuration complete, NIF has already produced the highest energy laser shots in the world. In July, laser shots in the infrared wavelength using four beams produced a total of 26.5 kilojoules of energy per beam, not only meeting NIF's design energy requirement of 20 kilojoules per beam but also exceeding the energy of any other infrared laser beamline. In another campaign, NIF produced over 11.4 kilojoules of energy when the infrared light was converted to green light. An earlier performance campaign of laser light that had been frequency converted from infrared to ultraviolet really proved NIF's mettle. Over 10.4 kilojoules of ultraviolet energy were produced in about 4 billionths of a second. If all 192 beamlines were to operate at these levels, over 2 megajoules of energy would result. That much energy for the pulse duration of several nanoseconds is about 500 trillion watts of power, more than 500 times the US peak generating power.

  17. COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab March 26, 2014, 3:00pm to 4:30pm Colloquia MBG Auditorium COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility Dr. M. John Edwards Lawrence Livermore National Laboratory Presentation: PDF icon WC26MAR2014_JEdwards.pdf The Inertial Confinement Fusion (ICF) Program is conducting experiments at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel

  18. CNM Users Executive Committee By-Laws | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users Executive Committee By-Laws This charter defines the roles and responsibilities of Argonne's Center for Nanoscale Materials Users Executive Committee. PDF icon CNM_users_organization_bylaws

  19. CRAD, Training - Los Alamos National Laboratory TA 55 SST Facility |

    Office of Environmental Management (EM)

    Department of Energy Training - Los Alamos National Laboratory TA 55 SST Facility CRAD, Training - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Training Program at the Los Alamos National Laboratory TA 55 SST Facility. CRADs provide a recommended approach and the types

  20. NERSC User's Group Meeting 2.4.14 Computational Facilities: NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User's Group Meeting 2.4.14 Computational Facilities: NERSC Collaborators: Martin Karplus, Eric Vanden-Eijnden, Kwangho Nam, Anne Houdusse, Robert Sauer Financial support: NIH Conformational change in biology: from amino acids to enzymes and molecular motors. Victor Ovchinnikov NERSC User's Group Meeting 2.4.14 2 Introduction  Conformational motions in biomolecules define all living things - Transport across membranes - Enzyme reactions (from proton transfer to DNA replication and repair) -

  1. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  2. Proposed UV-FEL user facility at BNL

    SciTech Connect (OSTI)

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.

    1990-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 1000{angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL consists of an exponential growth section followed by a tapered section. The amplifier input is a harmonic of a tunable visible laser generated either by nonlinear optical material or the non-linearity of the FEL itself. The FEL output in 10{sup {minus}4} bandwidth is 1 mJ per pulse, resulting in an average power of 10 watts. The availability of radiation with these characteristics would open up new opportunities in photochemistry, biology and non linear optics, as discussed in a recent workshop held at BNL. 10 refs., 4 figs., 1 tab.

  3. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities, is to provide capabilities to simulate a wide range of environments for component and system testing. The environments can range from normal in-use environments...

  4. Sandia National Laboratories: NMR Spectroscopy Facility: Homepage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and reaction kinetics of chemical warfare agents (CWA), particularly nerve agents ... For more information, contact Todd M. Alam MS&E logo NMR Facility Director - CV Contact ...

  5. ICF Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related ...

  6. LANL Biosafety Level 3 Facility Environmental Impact Statement | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) LANL Biosafety Level 3 Facility Environmental Impact Statement Los Alamos National Laboratory Biosafety Level 3 Facility Environmental Impact Statement (LANL BSL-3 EIS) DOE/EIS-0388 In 2002, NNSA prepared an Environmental Assessment (EA) for the construction and operation of the Facility. On February 23, 2002, NNSA issued a Final EA (DOE 2001a) and a Finding of No Significant Impact (FONSI) for the construction and operation of a BSL-3 Facility (DOE

  7. 2009 NMMSS Users Training Meeting | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 9 NMMSS Users Training Meeting U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2009 NMMSS Users Training Meeting General 2009 Annual Training Meeting List of Attendees Learn More 2009 NMMSS Users Annual Training Meeting 2009 NMMSS Users Annual Training Meeting Attendees

  8. 2011 NMMSS Users Training Meeting | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 1 NMMSS Users Training Meeting Agenda Presentations Attendees Photos

  9. National Ignition Facility & Photon Science NIF AT A GLANCe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 National Ignition Facility & Photon Science NIF AT A GLANCe the national ignition Facility at a glance The National Ignition Facility (NIF) is the world's largest laser system, housed in a 10-story building the size of three football fields at lawrence livermore National laboratory, east of san Francisco. NIF's 192 laser beams are capable of delivering at least 100 times more energy than any previous laser system. during full-scale ignition experiments, NIF will focus up to 1.8 million

  10. LANSCE | Users | User Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Office LANSCE User Office and Visitor Center The LANSCE User Office is responsible for coordinating the users with LANSCE instrument scientist and the facility. Users contact the User Office weeks before they arrive at the LANSCE Visitor Center at Technical Area 53. Among their many responsibilities, the team issues the call for proposals, coordinates proposal experiment schedules, directs users to the training center, issues badges and dosimeters, helps to arrange tours of the facilities,

  11. Access to High Technology User Facilities at DOE National Laboratories

    Broader source: Energy.gov [DOE]

    In recognition of the nation’s expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department has developed two special types of...

  12. CX Determination for National Laser Users Facility.pdf

    National Nuclear Security Administration (NNSA)

  13. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  14. Sandia National Laboratories: Other Facilities and Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Facilities and Capabilities High Voltage Breakdown Testing We can perform high voltage standoff testing with DC and pulsed voltages. DC testing can be conducted up to 200 kV....

  15. Public Reading Facilities | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    The DOE, as well as other DOE sites, has established a home page on the Internet with links to other Web Sites. If you determine a specific facility might have records in which you ...

  16. Facilities and Institutes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities and Infrastructure Facilities and Infrastructure Program Offices and Headquarters elements share the responsibility for management and overall stewardship of the Department's real property assets. Proper management and stewardship ensures real property assets are maintained in a manner that promotes operational readiness, safety, environmental protection, property preservation, and life-cycle cost-effectiveness while meeting the Department's missions. DOE Order 430.1B "Real

  17. High Explosives Application Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) High Explosives Application Facility A Livermore scientist uses a laser spectroscopic method with a diamond anvil DOE/NNSA has identified LLNL's High Explosives Applications Facility (HEAF) as the complex-wide "Center of Excellence" for High-Explosives Research and Development. In this capacity, HEAF is a source of subject matter expertise for high explosives and other energetic materials. Its mission is to provide this expertise to serve multiple government

  18. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  19. Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility

    Broader source: Energy.gov [DOE]

    After many years of planning, ground was officially broken on the Facility for Rare Isotope Beams (FRIB) in a ceremony held at the construction site on Michigan State University’s campus.

  20. 2010 NMMSS Users Training Meeting | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Training / Annual Users Training Meeting Archives 2010 NMMSS Users Training Meeting U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2010 NMMSS USERS ANNUAL TRAINING MEETING May 19-20, 2010 - Las Vegas, Nevada The 2010 Nuclear Materials Management and Safeguards System (NMMSS) Users Training Meeting was held in Las Vegas, Nevada May 19-20, 2010. The meeting was sponsored by the Department of Energy

  1. The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)

    SciTech Connect (OSTI)

    Moses, E

    2009-09-17

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely

  2. User Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and laboratories for physical and chemical analyses of biomass and engineered biomass feedstocks. Energy System Laboratory Access The biomass Feedstock Process Demonstration...

  3. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  4. The National Ignition Facility (NIF) - September 23, 2010 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    NIF03.23.10(1).pdf More Documents & Publications The National Ignition Facility (NIF) - September 23, 2010 EIS-0236-S1: Supplemental Environmental Impact Statement EIS-0236-S1:...

  5. The National Ignition Facility (NIF) - September 23, 2010 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    NIF03.23.10.pdf More Documents & Publications The National Ignition Facility (NIF) - September 23, 2010 EIS-0236-S1: Supplemental Environmental Impact Statement EIS-0236-S1:...

  6. South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility

    Broader source: Energy.gov [DOE]

    Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

  7. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect (OSTI)

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  8. Security Upgrades Completed at Three Russian Nuclear Facilities | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Security Upgrades Completed at Three Russian Nuclear Facilities December 10, 2004 NNSA continues work to keep nuclear material out of the hands of terrorists RUSSIA -- The National Nuclear Security Administration (NNSA) commemorated ten years of work securing nuclear and radiological material in Russia and the former Soviet Union by completing security upgrades at two Russian nuclear facilities this week. Upgrades at a third facility were completed in

  9. National Ignition Facility LLNL-AR-585912_NIF-0135637-AA_2012...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 47 6 * NIF User Guide * Lawrence Livermore National Laboratory Contents 5.11. Final Optics Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  10. CRAD, Management- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management at the Los Alamos National Laboratory TA 55 SST Facility.

  11. CRAD, Maintenance- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance program at the Los Alamos National Laboratory TA 55 SST Facility.

  12. CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

  13. NIF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    group NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for "Science Use of NIF" experiments and NIF management. Responsibility for NIF and the research programs carried out at NIF resides with the NIF Director. The NIF User Group advises the NIF Director on matters of concern to users, as well as providing a channel for communication for NIF users with funding agencies and

  14. 2014 User Training Meeting Presentations | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 4 User Training Meeting Presentations Monday, May 12 Pete Dessaules, Brian Horn - Introduction/Operational Update - Serving the DOE and NRC Users Community James Crabtree - NMMSS Analysts available onsite to support the DOE and NRC Users Community Richard Meehan - NMMSS in Context - Enhanced Material Protection and Nonproliferation Practices Gary Hirsch - Analysis and Feedback on NMMSS Performance Mitch Hembree - Challenges Related to Obligations Accounting Gary

  15. Sandia National Laboratories: Other Facilities and Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Facilities and Capabilities High Voltage Breakdown Testing We can perform high voltage standoff testing with DC and pulsed voltages. DC testing can be conducted up to 200 kV. Pulsed voltage from 140 - 400 kV can be attained, with a typical lightning waveform - unipolar, 1.2 microsecond risetime and 50 microsecond pulse width. Testing is conducted in humidity-controlled chambers. Breakdown voltage and current can be measured. Small TEM Cell We have a small transverse electromagnetic (TEM)

  16. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) High Altitude Chamber High Altitude chamber Technical Characteristics 27-foot diameter vacuum sphere Simulate altitudes up to 230,000 feet Test articles up to 1-ton weight and 60 inch diameter Testing centrifuge to 600 rpm 15-20 minutes to reach maximum altitude Explosive and pyrotechnic testing Ejection, inflation, and free-fall testing Remote high-speed video capability

  17. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) Hypersonic Wind Tunnel Technical Characteristics Blowdown to vacuum M = 5, 8, 14 Re = 0.2 - 10 x 106/ft Run times: ~45 sec at 45 minute intervals Gases: air at Mach 5 N2 at Mach 8 and 14 18" diameter test section 4" - 5" maximum diameter model size Stagnation temperature to 2500°R Related Links Wind tunnel operation maps Overview briefing of the wind tunnels

  18. Los Alamos National Laboratory Facility Review

    SciTech Connect (OSTI)

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  19. 2007 NMMSS Users Training Meeting | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Training Meeting U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2007 NMMSS Users Training Meeting NMMSS is ...

  20. 2009 NMMSS Users Training Meeting | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Training Meeting U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2009 NMMSS Users Training Meeting General 2009 ...

  1. The Department of Energy has opted to utilize the following agreement for Designated Non-Proprietary User Facilities transactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agreement for Designated Proprietary User Facilities transactions. Because these transactions are widespread across Departmental facilities, uniformity in agreement terms is desirable. Except for the *** provisions, minor modifications to the terms of this agreement may be made by CONTRACTOR, but any changes to the *** provisions or substantive changes to the non *** provisons will require approval by the DOE Contracting Officer, WHICH WILL LIKEY DELAY YOUR ACCESS TO THE USER FACILITY. In

  2. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Technical Characteristics Blowdown to atmosphere M∞= 0.5 - 1.3, 1.5, 2.0, 2.5, 3.0 Re = 3 - 20 × 106/ft Run times: 20-120 seconds at 20-30 minute intervals 12" × 12" test section ~1" diameter model size Transonic Test Section Multiple configurations 4 porous walls 3 porous & 1 solid wall (half-body models) 2 porous walls, 2 solid walls (imaging) 4 solid walls Test section enclosed in

  3. U.S. Department of Energy Commits $15 million to its Idaho National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... National Scientific User Facility Users Week, held at Idaho National Laboratory in June. | Photo courtesy of the Idaho National Laboratory The Internet Caf of the Nuclear World

  4. Overview of Idaho National Laboratory's Hot Fuels Examination Facility

    SciTech Connect (OSTI)

    Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

    2007-09-01

    The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Share As a national user facility, ARM is accessible to scientists around the globe for interdisciplinary research related to earth systems. In a continuing effort to...

  6. The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W. W.; Kalantar, D. H.; Kauffman, R. L.; Larson, D. J.; et al

    2016-01-06

    At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by themore » function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Lastly, recommendations for future diagnostics on the NIF are discussed.« less

  7. 2010 NMMSS Users Training Meeting | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Training Meeting U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2010 NMMSS USERS ANNUAL TRAINING MEETING May 19-20, ...

  8. Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Thomas Jefferson National Accelerator Facility Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Science Highlights Laboratory News Contact

  9. NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASCAR Green Gets First Place in Daytona 500 NASCAR Green Gets First Place in Daytona 500 February 21, 2014 - 10:20am Addthis At this year's Daytona 500, four fuel cell generators will power some of the broadcast cameras and spotlights, demonstrating how the technology could help NASCAR save money on fuel costs. This technology was beta-tested during the IMSA Rolex 24 race weekend last month. | Photo courtesy of P.T. Jones, Oak Ridge National Lab. At this year's Daytona 500, four fuel cell

  10. Ceremony celebrates new NNSA facility in Kansas City | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Ceremony celebrates new NNSA facility in Kansas City Friday, August 22, 2014 - 3:00pm Energy Secretary Ernest Moniz and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. Frank Klotz today hailed the completion of the new National Security Campus at a dedication ceremony in Kansas City, Mo. The new facility was completed ahead of schedule, $10 million under budget, and with the site's best safety and security performance on record. The event

  11. Sandia National Laboratories Algae Raceway Testing Facility Ribbon Cutting

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories will be hosting a ribbon cutting on Feb. 4, 2016 at its Livermore Valley Open Campus to commemorate the opening of a new algae raceway testing facility. The new facility will allow researchers to better understand algal cultivation techniques, and is funded in part by the Bioenergy Technologies Office. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Daniel Fishman will be in attendance.

  12. Simulation of Laser-Plasma Interaction in National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments | Argonne Leadership Computing Facility A volume visualization of the laser light that has been backscattered by Stimulated Raman Scattering A volume visualization of the laser light that has been backscattered by Stimulated Raman Scattering in a simulation of a National Ignition Facility inertial fusion experiment. The band of scattered light near the bottom of the simulation extends across all three quads and is an example of "cooperative backscattering." Eric Brugger

  13. 2005 NMMSS Users Training Meeting | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 5 NMMSS Users Training Meeting U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2005 NMMSS Users Training Meeting NMMSS is sponsored by the Office of Materials Integration within the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission Attachment Size NMMSS Brochure 202.94 KB Agenda 180.37 KB Acronyms 14 KB Zip File of All Presentations 4.85 MB Waste Reporting in NMMSS (Peter Dessaules)

  14. 2006 NMMSS Users Training Meeting | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 6 NMMSS Users Training Meeting U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2006 NMMSS Users Training Meeting NMMSS is sponsored by the Office of Materials Integration within the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission Attachment Size NMMSS Brochure 158.48 KB NMMSS Agenda 80.09 KB 30 Years of Service (Timothy Beckham) 60.26 KB ANSI Regulations Guide (Frank Fresella)

  15. 2007 NMMSS Users Training Meeting | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 7 NMMSS Users Training Meeting U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2007 NMMSS Users Training Meeting NMMSS is sponsored by the Office of Materials Integration within the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission Attachment Size Speaker Bios 50.51 KB Agenda 357.69 KB Brian Horn - Impact on Data Submitters 156.14 KB Brian Horn - Reconciliation 168.29 KB Brian Horn

  16. 2008 NMMSS Users Training Meeting | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) 8 NMMSS Users Training Meeting U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System 2008 NMMSS Users Training Meeting NMMSS is sponsored by the Office of Materials Integration within the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission Attachment Size Agenda 1.06 MB NMMSS Orientation (Brian Horn) 74.39 KB U.S. NRC's Preparations for Implementing the Additional Protocol (Thomas Grice)

  17. Users Frequently Asked Questions | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Users Frequently Asked Questions U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards Systems Users Frequently Asked Questions Q. How do I request NMMSS services? A. The most effective way to request NMMSS services is to contact a nuclear materials analyst and ask for assistance. If you are unsure whom to call, contact any member of the NMMSS staff and you will be directed to the person who can be the most help on the topic

  18. National Ignition Facility & Photon Science HOW NIF WORKS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 National Ignition Facility & Photon Science HOW NIF WORKS beam me up: how niF works In the National Ignition Facility (NIF), 192 laser beams travel a long path, about 1,500 meters, from their birth at the master oscillator-a device that generates the single pulse that seeds the entire NIF laser system-to the center of the target chamber. As the beams move through NIF's amplifiers, their energy increases exponentially. From beginning to end, the beams' total energy grows from one- billionth

  19. Sandia National Laboratories: Z Pulsed Power Facility: Z Research: National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security National Security Plutonium Shot Safe. Secure. Reliable. Z is crucial to Sandia's mission to assure the reliability and safety of our nuclear stockpile as it ages - it allows scientists to study materials under conditions similar to those produced by the detonation of a nuclear weapon, and it produces key data used to validate physics models in computer simulations. The detonation of nuclear weapons may affect equipment even at great distances from the explosion, which means

  20. Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... offered at CAMD's annual user meeting) or by retaking the online CAMD Radiation Safety Test. If your training has expired your access card will not allow access to the ...

  1. Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned

    Broader source: Energy.gov [DOE]

    Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

  2. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  3. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/20/13 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. To open or renew your SLAC user financial account, complete and submit this form along with a Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated

  4. National Ignition Facility Quality Assurance Program Plan. Revision 1

    SciTech Connect (OSTI)

    Wolfe, C.R.; Yatabe, J.

    1996-09-01

    The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

  5. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect (OSTI)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  6. Confinement of ignition and yield on the National Ignition Facility

    SciTech Connect (OSTI)

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-06-14

    The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

  7. Monte Carlo prompt dose calculations for the National Ingition Facility

    SciTech Connect (OSTI)

    Latkowski, J.F.; Phillips, T.W.

    1997-01-01

    During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.

  8. National RF Test Facility as a multipurpose development tool

    SciTech Connect (OSTI)

    McManamy, T.J.; Becraft, W.R.; Berry, L.A.; Blue, C.W.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Loring, C.M. Jr.; Moeller, F.A.; Ponte, N.S.

    1983-01-01

    Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments.

  9. National Solar Radiation Database 1991-2005 Update: User's Manual

    SciTech Connect (OSTI)

    Wilcox, S.

    2007-04-01

    This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

  10. Simulation of Laser-plasma Interaction in National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments | Argonne Leadership Computing Facility Figure 1a is a volume visualization of the laser light that has been backscattered by Stimulated Raman Scattering in a simulation of a National Ignition Facility inertial fusion experiment. At this point in time, light is scattering independently from the three laser quads (a quad is a group of 2x2 beams propagating in the same direction). Figure 1b is a volume visualization from the same simulation, but at a different time. The band of

  11. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Moses, E

    2009-10-15

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  12. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.

    1993-10-01

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  13. The National Ignition Facility: Studying the Stars in the Laboratory

    SciTech Connect (OSTI)

    Boyd, R

    2008-09-17

    The National Ignition Facility, to be completed in 2009, will be the highest energy laser ever built. The high temperatures and densities it will produce will enable a number of experiments in inertial confinement fusion and stockpile stewardship, as well as in nuclear astrophysics, X-ray astronomy, hydrodynamics, and planetary science. The National Ignition Facility, NIF (1), located at Lawrence Livermore National Lab, (LLNL) is expected to produce inertial confinement fusion (ICF) by delivering sufficient laser energy to compress and heat a millimeter-radius pellet of DT sufficiently to produce fusion to {sup 4}He+neutron and 17.6 MeV per reaction. NIF will be completed by March, 2009, at which time a National Ignition Campaign (2), NIC, a series of experiments to optimize the ICF parameters, will begin. Although NIF is a research facility, a successful NIC would have implications for future energy sources. In addition to the goal of ICF, NIF will support programs in stockpile stewardship. However, the conditions that NIF creates will simulate those inside stars and planets sufficiently closely to provide compelling motivation for experiments in basic high-energy-density (HED) science especially, for the first time, in nuclear astrophysics.

  14. User`s manual for TMY2s: Derived from the 1961--1990 National Solar Radiation Data Base

    SciTech Connect (OSTI)

    Marion, W.; Urban, K.

    1995-06-01

    This report is a user`s manual that describes typical meteorological year (TMY) data sets derived from the 1961-1990 National Solar Radiation Data Base. The TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. The intended use if for computer simulations of solar energy conversion systems and building systems. Section 1 of the manual provides general information about the TMYs; Section 2 lists the stations and provides station identifying information and classification; Section 3 details the contents of the TMY2 files and provides the hourly records of data values; Section 4 compares TMY2 with 30-year data sets; Appendices provide procedures used to develop TMYs and a table to convert SI data to other units.

  15. Nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Murphy, Thomas J.; Barnes, Cris W.; Berggren, R. R.; Bradley, P.; Caldwell, S. E.; Chrien, R. E.; Faulkner, J. R.; Gobby, P. L.; Hoffman, N.; Jimerson, J. L.

    2001-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, will provide unprecedented opportunities for the use of nuclear diagnostics in inertial confinement fusion experiments. The completed facility will provide 2 MJ of laser energy for driving targets, compared to the approximately 40 kJ that was available on Nova and the approximately 30 kJ available on Omega. Ignited NIF targets are anticipated to produce up to 10{sup 19} DT neutrons. In addition to a basic set of nuclear diagnostics based on previous experience, these higher NIF yields are expected to allow innovative nuclear diagnostic techniques to be utilized, such as neutron imaging, recoil proton techniques, and gamma-ray-based reaction history measurements.

  16. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  17. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are

  18. Confinement of ignition and yield on the National Ignition Facility

    SciTech Connect (OSTI)

    Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

    1996-12-31

    The National Ignition Facility Target Area and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented. 16 refs., 3 figs.

  19. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  20. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  1. PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

    2010-10-22

    A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

  2. National Energy Audit (NEAT) Users Manual Version 7

    SciTech Connect (OSTI)

    Gettings, M.

    2001-05-10

    Welcome to the U.S. Department of Energy's (DOE's) energy auditing tool, called ''NEAT.'' NEAT, an acronym for National Energy Audit Tool, a program for personal computers that was designed for use by local agencies in the Weatherization Assistance Program. It is an approved alternative audit that meets all auditing requirements set forth by the Program. NEAT is easy to use. It applies engineering and economic calculations to evaluate energy conservation measures for single-family, detached houses or small multifamily buildings. You can use it to rank measures for each individual house, or to establish a priority list of conservation measures for nearly identical housing types. NEAT was written for the Weatherization Assistance Program by Oak Ridge National Laboratory. Many building energy consumption algorithms are taken from Lawrence Berkeley Laboratory's Computerized Instrumented Residential Audit (CIRA), published in 1982 for the Department of Energy. Equipment retrofit conservation measures are based on published reports on various heating retrofits. Heating and cooling system replacement conservation measures are based on the energy ratings of new heating and cooling equipment. The Weatherization Program anticipates that this computer-based energy audit will offer substantial performance improvements to many states who choose to incorporate it into their programs. When conservation measures are evaluated locally according to climate, fuel cost, measure cost, and existing house conditions, the Program will be closer to its goal of assuring the maximum return for every federal dollar spent.

  3. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  4. User Science Exhibition March 28-29 in Washington DC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Exhibition March 28-29 in Washington DC User Science Exhibition March 28-29 in Washington DC February 17, 2012 by Francesca Verdier This March 28 and 29 the National User Facilities Organization is holding a User Science Exhibition on Capitol Hill. All major DOE facilities will have posters and representatives there. NERSC users are welcome to attend. This event will highlight the significant and important role that scientific user facilities play in science education, economic

  5. Laser design basis for the National Ignition Facility

    SciTech Connect (OSTI)

    Hunt, J.T.; Manes, K.R.; Murray, J.R.; Renard, P.A.; Sawicki, R.; Trenholme, J.B.; Williams, W.

    1994-06-01

    Controlled nuclear fusion initiated by highly intense laser beams has been the subject of experiment for many years. The National Ignition Facility (NIF) represents the culmination of design efforts to provide a laser facility that will successfully demonstrate fusion ignition in the laboratory. In this so-called inertial confinement approach, energetic driver beams (laser, X-ray, or charged particle) heat the outer surface of a spherical capsule containing deuterium and tritium (DT) fuel. As the capsule surface explosively evaporates, reaction pressure compresses the DT fuel causing the central core of the fuel to reach extreme density and temperature. When the central temperature is high enough, DT fusion reactions occur. The energy released from these reactions further heats the compressed fuel, and fusion burn propagates outward through the colder regions of the capsule much more rapidly than the inertially confined capsule can expand. The resulting fusion reactions yield many times more energy than was absorbed from the driver beams.

  6. A safety overview of Sandia National Laboratories' reactor facilities

    SciTech Connect (OSTI)

    Philbin, J.S.

    1989-04-01

    This report provides an overview of Sandia National Laboratories' safety policies and practices supporting the operation of Sandia's nuclear reactor facilities. These policies and practices have evolved from Sandia's 30 years of experience and leadership in the design, construction, and operation of steady-state and pulse research reactors. The report illustrates how Sandia has implemented DOE orders and research reactor standards with the goal of reducing risks to the lowest reasonable levels for its employees, contractors, the public, and the environment. The impact of DOE orders and standards on virtually all aspects of reactor operations and administration is illustrated. Included in the report are descriptions of safety documentation (Technical Specifications and Safety Analysis Reports); the facility safety review system for addressing radiological protection and other environmental, safety and health issues; experiment activities; quality assurance; training and certification; and emergency planning.

  7. Molecular Foundry User Meeting - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Foundry User Meeting Molecular Foundry User Meeting Thu, Aug 11, 2016 5:00pm 17:00 Fri, Aug 12, 2016 6:00pm 18:00 Lawrence Berkeley National Laboratory Berkeley, CA USA The Molecular Foundry is hosting its annual Users' Meeting - a nanoscience conference at Lawrence Berkeley National Lab - on August 11-12, 2016. The Molecular Foundry is a Department of Energy user facility for academic, national laboratory and industrial researchers. Whether you are a returning user, a prospective

  8. Uranium Processing Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly,...

  9. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Dual Axis Radiographic Hydrodynamic Test Facility An integral part of the national hydrotest program, the DARHT is the world's most powerful x-ray machine. DARHT consists of two electron accelerators oriented at right angles to one another. Each accelerator creates a powerful electron beam that is focused onto a metal target which converts the kinetic energy of the electron beam into high energy x or gamma-rays. The x-ray dose from one DARHT accelerator is

  10. The First Experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J; Mertens, E; Munro, D; Murray, J; Neumann, J; Newton, M; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rinnert, R; Riordan, B; Ross, G; Robert, V; Tobin, M; Sailors, S; Saunders, R; Schmitt, M; Shaw, M; Singh, M; Spaeth, M; Stephens, A; Tietbohl, G; Tuck, J; Van Wonterghem, B; Vidal, R; Wegner, P; Whitman, P; Williams, K; Winward, K; Work, K

    2005-11-11

    A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options.

  11. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  12. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  13. Department of Energy Designates the Idaho National Laboratory...

    Office of Environmental Management (EM)

    Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test ...

  14. National ignition facility environment, safety, and health management plan

    SciTech Connect (OSTI)

    1995-11-01

    The ES&H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES&H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK.

  15. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  16. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    SciTech Connect (OSTI)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  17. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

  18. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

  19. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect (OSTI)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  20. Control and Information Systems for the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; Demaret, Robert; Fedorov, Mike; Flegel, Michael; Folta, Peg; Fraizer, Timothy; Hutton, Matthew; Kegelmeyer, Laura; et al

    2015-11-03

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  1. Control and Information Systems for the National Ignition Facility

    SciTech Connect (OSTI)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; Demaret, Robert; Fedorov, Mike; Flegel, Michael; Folta, Peg; Fraizer, Timothy; Hutton, Matthew; Kegelmeyer, Laura; Lagin, Lawrence; Ludwigsen, Pete; Reed, Robert; Speck, Douglas; Wilhelmsen, Karl

    2015-11-03

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second. NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.

  2. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    SciTech Connect (OSTI)

    Alton, G.D.; Beene, J.R.

    1998-03-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBS). The reconfiguration, construction, and equipment-commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target/ion source related problems, endemic to the production of specific short-lived RIBs will be discussed. In addition, plans, which involve either a 200-MeV or a 1-GeV proton-linac driver for a second-generation ISOL facility, will be presented.

  3. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    SciTech Connect (OSTI)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented.

  4. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Careers Apply ...

  5. SSRL User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    07/25/16 SSRL User Financial Account Form Establish an SSRL user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities or to send samples, dewars, or other equipment between SLAC and your institution. To open or renew your SLAC user financial account, complete and submit this form along with a Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of

  6. Development of nuclear diagnostics for the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Roberts, S.; Barrera, C. A.; Celeste, J. R.; Cerjan, C. J.; Dauffy, L. S.; Eder, D. C.; Griffith, R. L.; Haan, S. W.; Hammel, B. A.; Hatchett, S. P.; Izumi, N.; Kimbrough, J. R.; Koch, J. A.; Landen, O. L.; Lerche, R. A.; MacGowan, B. J.

    2006-10-15

    The National Ignition Facility (NIF) will provide up to 1.8 MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 10{sup 19} DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.

  7. Validating hydrodynamic growth in National Ignition Facility implosions

    SciTech Connect (OSTI)

    Peterson, J. L. Casey, D. T.; Hurricane, O. A.; Raman, K. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    We present new hydrodynamic growth experiments at the National Ignition Facility, which extend previous measurements up to Legendre mode 160 and convergence ratio 4, continuing the growth factor dispersion curve comparison of the low foot and high foot pulses reported by Casey et al. [Phys. Rev. E 90, 011102(R) (2014)]. We show that the high foot pulse has lower growth factor and lower growth rate than the low foot pulse. Using novel on-capsule fiducial markers, we observe that mode 160 inverts sign (changes phase) for the high foot pulse, evidence of amplitude oscillations during the Richtmyer-Meshkov phase of a spherically convergent system. Post-shot simulations are consistent with the experimental measurements for all but the shortest wavelength perturbations, reinforcing the validity of radiation hydrodynamic simulations of ablation front growth in inertial confinement fusion capsules.

  8. Target diagnostic system for the national ignition facility (invited)

    SciTech Connect (OSTI)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.; Fehl, D.L.; Hebron, D.E.; Moats, A.R.; Noack, D.D.; Porter, J.L.; Ruggles, L.E.; Ruiz, C.L.; Torres, J.A.; Cable, M.D.; Bell, P.M.; Clower, C.A.; Hammel, B.A.; Kalantar, D.H.; Karpenko, V.P.; Kauffman, R.L.; Kilkenny, J.D.; Lee, F.D.; Lerche, R.A.; MacGowan, B.J.; Moran, M.J.; Nelson, M.B.; Olson, W.; Orzechowski, T.J.; Phillips, T.W.; Ress, D.; Tietbohl, G.L.; Trebes, J.E.; Bartlett, R.J.; Berggren, R.; Caldwell, S.E.; Chrien, R.E.; Failor, B.H.; Fernandez, J.C.; Hauer, A.; Idzorek, G.; Hockaday, R.G.; Murphy, T.J.; Oertel, J.; Watt, R.; Wilke, M.; Bradley, D.K.; Knauer, J.; Petrasso, R.D.; Li, C.K.

    1997-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests. {copyright} {ital 1997 American Institute of Physics.}

  9. Configuring the National Ignition Facility for direct-drive experiments

    SciTech Connect (OSTI)

    Eimerl, D.

    1995-07-01

    The National Ignition Facility (NIF) is a project whose primary mission is to provide an above-ground experimental capability for maintaining nuclear competence and weapons effects simulation, and to pursue the achievement of fusion ignition utilizing solid state lasers as the energy driver. In this facility a large number of laser beams are focused onto a small target located at the center of a spherical target chamber. The laser energy is delivered in a few billionths of a second, raising the temperature and density of the nuclear materials in the target to levels where significant thermonuclear energy is released. The thermonuclear reaction proceeds very rapidly, so that the target materials remain confined by their own inertia during the thermonuclear reaction. This type of approach is called inertial confinement fusion (ICF). The proposed project is described in a conceptual design report (CDR) that was released in May 1994. Early in FY95, a collaboration between the University of Rochester and the Lawrence Livermore National Laboratory was established to study reconfiguring the NIF to accommodate direct-drive experiments. The present paper is a report to the scientific community, primarily the scientists and engineers working on the design of the NIF. It represents results from work in progress, specifically work completed by the end of the second quarter FY95. This report has two main sections. The first describes the target requirements on the laser drive, and the second part describes how the NIF laser can be configured to accommodate both indirect and direct drive. The report includes a description of the scientific basis for these conclusions. Though a complete picture does not exist, the present understanding is sufficient to conclude that the primary target requirements and laser functional requirements for indirect and direct drive are quite compatible. It is evidently straightforward to reconfigure the NIF to accommodate direct and indirect drive.

  10. Nuclear Energy Advisory Committee Facility Subcommittee visit to Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    The NEAC Facilities Subcommittee made a site visit to Oak Ridge National Laboratory (ORNL) on August 26, 2010. Subcommittee members included John Ahearne (Vice Chairman of NEAC and Facilities...

  11. National Ignition Facility fires 300th laser target shot of fiscal year

    National Nuclear Security Administration (NNSA)

    2015 | National Nuclear Security Administration | (NNSA) Ignition Facility fires 300th laser target shot of fiscal year 2015 August 18, 2015 WASHINGTON - Last week, the National Ignition Facility (NIF) fired its 300th laser target shot in fiscal year (FY) 2015, meeting the year's goal more than six weeks early. In comparison, the facility completed 191 target shots in FY 2014. Located at Lawrence Livermore National Laboratory (LLNL), the NIF is the world's most energetic laser. Increasing

  12. 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA CHP Partnership Meeting, October 2002 | Department of Energy 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 This is an announcement of the 3rd Annual National CHP Roadmap Workshop which was held in conjunction with the CHP and Distributed Energy Resources for Federal Facilities Workshop, October 23-25,

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Board Established for ARM Climate Research Facility Bookmark and Share The scientific infrastructure established by the ARM Program - heavily instrumented research sites, the ARM Data Archive, and the ARM Mobile Facility under development - is now available for use by scientists worldwide through the ARM Climate Research Facility. As a national user facility, this unique asset provides the opportunity for a broader national and international research community to study global change. The

  14. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  15. Y-12 demos former utilities and maintenance facility | National...

    National Nuclear Security Administration (NNSA)

    demos former utilities and maintenance facility Friday, September 26, 2014 - 1:05pm The ... 9744, a former utilities and maintenance facility occupying more than 9,000 square feet. ...

  16. Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

    SciTech Connect (OSTI)

    Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

    2011-03-18

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

  17. Research Facilities | ANSER Center | Argonne-Northwestern National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Facilities Home > Research > Research Facilities Facilities Beyond the extensive facilities available in laboratories of ANSER Center members, the participating institutions below bring substantial collateral resources that strengthen ANSER Center programs. The Argonne Advanced Photon Source (APS): a third-generation synchrotron hard x-ray source providing unprecedented brilliance and photon flux for state-of-the-art time-resolved structural characterization The Northwestern

  18. Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility - Critical Experiments Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor Facility Critical Experiments (SPRF/CX) test reactor - a reactor stripped down to its simplest form. The Sandia Pulsed Reactor Facility - Critical Experiments (SPRF/CX) provides a flexible, shielded location for performing critical experiments that employ different reactor core

  19. X-ray area backlighter development at the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    the National Ignition Facility (invited) 1D spectral imaging was used to characterize the K-shell emission of Z 30-35 and Z 40-42 laser-irradiated foils at the National...

  20. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility Hanford, WA Groves selects Hanford, Washington, as site for full-scale plutonium production and separation facilities. Three reactors--B, D, and F--are built

  1. Oak Ridge Facilities Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Oak Ridge Environmental Management: 30 years in 30 minutes Oak Ridge Environmental Management: 30 years in 30 minutes Addthis

    Facilities ... Oak Ridge Facilities Construction Work in wet and mud was common during the construction of Oak Ridge facilities

  2. Cell Analysis, Modeling, and Prototyping Facility | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Cell Analysis, Modeling, and Prototyping Facility The goal of Argonne's Cell Analysis, Modeling, and Prototyping (CAMP) Facility is to design, fabricate, and characterize high-quality prototype cells using the latest discoveries in high-energy anode and cathode battery materials created at Argonne and in research labs around the world. PDF icon CAMP_Facility_fact_sheet

  3. Direct drive: Simulations and results from the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; et al

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  4. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  5. National Ignition Facility monthly status report--April 2000

    SciTech Connect (OSTI)

    Moses, E

    2000-05-26

    The Project provides for the design, procurement, construction, assembly, installation, and acceptance testing of the National Ignition Facility (NIF), an experimental inertial confinement fusion facility intended to achieve controlled thermonuclear fusion in the laboratory by imploding a small capsule containing a mixture of the hydrogen isotopes, deuterium and tritium. The NIF will be constructed at the Lawrence Livermore National Laboratory (LLNL), Livermore, California as determined by the Record of Decision made on December 19, 1996, as a part of the Stockpile Stewardship and Management Programmatic Environmental Impact Statement (SSM PEIS). Safety: On Saturday April 29, 2000, while preparing the Ringer crane for operation at the NIF site, a mechanical malfunction was observed by the operator. He stopped work and consulted with line management. They agreed with the operator's assessment, and with the Livermore Emergency Duty Officer, implemented a precautionary evacuation of the area around the crane. DOE was notified of the situation. The crane was then placed in a safe condition. A crane maintenance vendor is inspecting the crane and a management team headed by the Beampath Infrastructure System Associate Project Manager is reviewing the documentation, crane history, and repairs to ensure that the crane is fully safe before reuse. Technical Status: The general status of the technologies underlying the NIF Project remains satisfactory. The issues currently being addressed are (1) cleanliness for installation, assembly, and activation of the laser system by Systems Engineering working groups; (2) laser glass, where a second pilot run at both commercial suppliers is expected to confirm the mitigation steps identified in the first pilot run; and (3) operational costs associated with Final Optics Assembly (FOA) optics components, where methods are being developed to mitigate 3 {omega} damage and to resolve beam rotation issues. Schedule: The project completion

  6. BES User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sources Neutron Sources SNS Chamber Neutron Scattering Facilities Nanoscience Centers TMF Clean Room Nanoscale Science Research Centers (NSRCs) Last modified: 352016 7:54:57

  7. HEC-DPSSL 2012 Workshop, NIF Tour: National Ignition Facility & Photon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NIF Tour TEXT SIZE Workshops About Organizing Committee Agenda Deadlines Abstract Submission Venue NIF Tour Directions Lake Tahoe Workshop Sign-up NIF Tour Non-US Citizen Deadline: July 11, 2012 US Citizen Deadline: August 10, 2012 Lawrence Livermore National Laboratory is home to the National Ignition Facility (NIF). NIF is a national resource — a unique experimental facility addressing compelling national security, energy, and science missions. NIF's 192 powerful laser beams,

  8. Sandia National Laboratories environmental fluid dynamics code : sediment transport user manual.

    SciTech Connect (OSTI)

    Grace, Matthew D.; Thanh, Phi Hung X.; James, Scott Carlton

    2008-09-01

    This document describes the sediment transport subroutines and input files for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC). Detailed descriptions of the input files containing data from Sediment Erosion at Depth flume (SEDflume) measurements are provided along with the description of the source code implementing sediment transport. Both the theoretical description of sediment transport employed in SNL-EFDC and the source code are described. This user manual is meant to be used in conjunction with the EFDC manual (Hamrick 1996) because there will be no reference to the hydrodynamics in EFDC. Through this document, the authors aim to provide the necessary information for new users who wish to implement sediment transport in EFDC and obtain a clear understanding of the source code.

  9. Sandia National Laboratories: Research: Facilities: Annular Core Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Facility Annular Core Research Reactor facility Nuclear science photo At the Annular Core Research Reactor (ACRR) facility, Sandia researchers can subject various test objects to a mixed photon and neutron irradiation environment featuring either a very rapid pulse rate or a long-term, steady-state rate. Research and other activities The radiation produced at the ACRR is used for the following research activities: Neutron-scattering experiments Nondestructive testing, including

  10. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Froula, D. H.; and others

    2015-05-15

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drivespecific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D{sub 2} gas were imploded with total drive energies ranging from ?500 to 750?kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8??10{sup 14} to 1.2??10{sup 15?}W/cm{sup 2}. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  11. Polar-direct-drive experiments on the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; et al

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore » geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  12. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Bates, J. W.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Fitzsimmons, P.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Harding, D. R.; Kalantar, D. H.; Karasik, M.; Kessler, T. J.; Kilkenny, J. D.; Knauer, J. P.; Kurz, C.; Lafon, M.; LaFortune, K. N.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; McCrory, R. L.; McKenty, P. W.; Meeker, J. F.; Meyerhofer, D. D.; Nagel, S. R.; Nikroo, A.; Obenschain, S.; Petrasso, R. D.; Ralph, J. E.; Rinderknecht, H. G.; Rosenberg, M. J.; Schmitt, A. J.; Wallace, R. J.; Weaver, J.; Widmayer, C.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  13. Polar-direct-drive experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; LePape, S.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Bates, J. W.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Fitzsimmons, P.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Harding, D. R.; Kalantar, D. H.; Karasik, M.; Kessler, T. J.; Kilkenny, J. D.; Knauer, J. P.; Kurz, C.; Lafon, M.; LaFortune, K. N.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; McCrory, R. L.; McKenty, P. W.; Meeker, J. F.; Meyerhofer, D. D.; Nagel, S. R.; Nikroo, A.; Obenschain, S.; Petrasso, R. D.; Ralph, J. E.; Rinderknecht, H. G.; Rosenberg, M. J.; Schmitt, A. J.; Wallace, R. J.; Weaver, J.; Widmayer, C.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2015-05-01

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ~500-750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 x 1014 to 1.2 x 1015 W/cm2. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  14. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    ...Stewardship A- Environment Safety and Health B+ Business Systems B+ Facilities Maintenance and Infrastructure A- Security and Emergency Management For information regarding ...

  15. NNSA Holds Groundbreaking at MOX Facility | National Nuclear...

    National Nuclear Security Administration (NNSA)

    NNSA's plutonium disposition program moved another step forward with the start of site preparation for its Mixed Oxide (MOX) Fuel Fabrication Facility at the Savannah River Site. ...

  16. Uranium Processing Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Readiness-complete Site Infrastructure and Services-underway Substation Mechanical Electrical Building Process Support Facility Salvage and Accountability Building Main ...

  17. Progress Toward Ignition on the National Ignition Facility

    SciTech Connect (OSTI)

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger

  18. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science

  19. NIF and Jupiter User Group Meeting 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshops / user group 2014 / NIF and Jupiter User Group Meeting 2014 About the NIF and Jupiter User Group Meeting The 192-beam National Ignition Facility (NIF), the most energetic inertial confinement fusion (ICF) facility in the world, is now operational. The NIF laser's unprecedented power, precision, and reproducibility, coupled with over 50 available diagnostics and sophisticated target fabrication capability, enable a wide range of leading edge scientific experiments. Initial experiments

  20. Mixed Oxide Fuel Fabrication Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Mixed Oxide Fuel Fabrication Facility Mixed Oxide (MOX) Fuel Fabrication Facility Documents related to the project: Plutonium Disposition Study Options Independent Assessment Phase 1 Report, April 13, 2015 Plutonium Disposition Study Options Independent Assessment Phase 2 Report, August 20, 2015 Final Report of the Plutonium Disposition Red Team, August 13, 2015 Commentary on

  1. Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume II of III: user's guide. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-10-29

    This volume is a User's Guide to the National Utility Regulatory Model (NUREG) and its implementation of the National Coal Model. This is the second of three volumes provided by ICF under contract number DEAC-01-79EI-10579. These three volumes are: a manual describing the NUREG methodology; a users guide; and a description of the software. This manual provides a brief introduction to the National Utility Regulation Model, describes the various programs that comprise the National Utility Regulatory Model, gives sample input files, and provides information needed to run the model.

  2. Army National Guard (ARNG) Objective Supply Capability Adaptive Redesign (OSCAR) end-user manual

    SciTech Connect (OSTI)

    Pelath, R.P.; Rasch, K.A.

    1997-12-01

    The Objective Supply Capability Adaptive Redesign (OSCAR) project is designed to identify and develop programs which automate requirements not included in standard army systems. This includes providing automated interfaces between standard army systems at the National Guard Bureau (NGB) level and at the state/territory level. As part of the OSCAR project, custom software has been installed at NGB to streamline management of major end items. This software allows item managers to provide automated disposition on excess equipment to states operating the Standard Army Retail Supply System Objective (SARSS-O). It also accelerates movement of excess assets to improve the readiness of the Army National Guard (ARNG)--while reducing excess on hand. The purpose of the End-User Manual is to provide direction and guidance to the customer for implementing the ARNG Excess Management Program.

  3. "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore National Laboratory | Princeton Plasma Physics Lab November 7, 2012, 4:15pm Colloquia MBG Auditorium "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been qualified. NIF reached its design goal of 1.8 MJ and 500 TW of ultraviolet light in 2012. The Ignition Campaign

  4. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    SciTech Connect (OSTI)

    James, Scott Carlton; Roberts, Jesse D.

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in an open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.

  5. New Osage Nation Facilities Deliver High Energy Performance,...

    Broader source: Energy.gov (indexed) [DOE]

    The Osage Nations new state-of-the-art Welcome Center is elegant, inviting, and highly energy efficient. The Osage Nation's new state-of-the-art Welcome Center is elegant, ...

  6. Grouting at the Idaho National Laboratory Tank Farm Facility...

    Office of Environmental Management (EM)

    Small Tank Farm Facility * A system of 11 underground, 300,000-gallon stainless steel tanks - Tanks are fifty feet in diameter and twenty-five feet tall - Eight tanks have...

  7. President Reagan Calls for a National Spent Fuel Storage Facility...

    National Nuclear Security Administration (NNSA)

    nuclear energy policy that anticipates the establishment of a facility for the storage of high-level radioactive waste and lifts the ban on commercial reprocessing of nuclear fuel

  8. Los Alamos National Laboratory opens new waste repackaging facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos to repackage transuranic (TRU) waste stored in large boxes. Built inside a dome once used to house containers of waste at the Laboratory, the facility is the largest...

  9. Tag: uranium processing facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uranium processing ... Tag: uranium processing facility Displaying 1 - 3 of 3... Category: News UPF Project celebrates changing the Y-12 skyline Groundbreaking Ceremony Held for the Construction Support Building More... Category: News From aging infrastructure to the unaparalleled UPF The proposed Uranium Processing Facility upgrades most Building 9212 processes to modern equipment and complies with today's nuclear safety and security standards. More... Category: Nuclear Deterrence Processing

  10. Edlund Named DOE Facility Representative of the Year | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex Edlund Named DOE Facility ... Edlund Named DOE Facility Representative of the Year Posted: May 10, 2016 - 10:24am Jeff Edlund of the National Nuclear Security Administration Production Office was recently named Facility Representative of the Year by the U.S. Department of Energy. OAK RIDGE, Tenn. -- Jeff Edlund, who conducts day-to-day federal oversight of enriched uranium facility operations at the Y-12 National Security Complex, has been named the U.S. Department of Energy

  11. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  12. 2012 LANSCE Topical User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 LANSCE Topical User Meeting January 9-10, 2012 The Office of Defense Programs is developing a long-term strategy for the construction of new experimental science facilities supporting NNSA missions. The new facilities will provide the critical science and technology capabilities necessary to execute the 21 st century responsibilities of NNSA in executing its mission and in supporting the broader national security agenda. The call focuses on large facilities with costs exceeding $100M. The NNSA

  13. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility

  14. Highly Enriched Uranium Materials Facility | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uranium, a vital national security asset. HEUMF is a massive concrete and steel structure that provides maximum security for the highly enriched uranium material that it protects. ...

  15. Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic...

    Office of Environmental Management (EM)

    More Documents & Publications EIS-0236-SA-06: Draft Supplement Analysis FPD's Perspective Photos - Los Alamos National Labratory - NISA EIS-0236-SA-06: Final Supplement Analysis

  16. User Safety | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Safety User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources User Safety Print Text Size: A

  17. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  18. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  19. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing

  20. EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

  1. Overview of the preliminary safety analysis of the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.; McLouth, L.; Odell, B.

    1997-06-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, New Mexico, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 individual laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF has been classified as a low hazard, radiological facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis report be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A Preliminary Safety Analysis Report (PSAR) has been approved, which documents and evaluates the safety issues associated with the construction, operation, and decommissioning of the NIF. 10 refs., 6 figs., 4 tabs.

  2. X-ray area backlighter development at the National Ignition Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: X-ray area backlighter development at the National Ignition Facility (NIF) Authors: Barrios, M A ; Regan, S P ; Fournier, K B ; Epstein, R ; Smith, R ; Lazicki, A ; Rygg, R ...

  3. CRAD, Criticality Safety- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Criticality Safety program at the Los Alamos National Laboratory, TA 55 SST Facility.

  4. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  5. CRAD, Conduct of Operations- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations program at the Los Alamos National Laboratory, TA 55 SST Facility.

  6. CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  7. CRAD, Quality Assurance- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program at the Los Alamos National Laboratory TA 55 SST Facility.

  8. CRAD, Maintenance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  9. CRAD, Radiological Controls- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program at the Los Alamos National Laboratory TA 55 SST Facility.

  10. CRAD, Environmental Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Environmental Compliance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  11. CRAD, Quality Assurance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  12. CRAD, Fire Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Fire Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  13. CRAD, Emergency Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  14. CRAD, Training- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Training Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  15. CRAD, Radiological Controls- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  16. CRAD, DOE Oversight- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  17. CRAD, Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  18. CRAD, Safety Basis- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Safety Basis at the Los Alamos National Laboratory TA 55 SST Facility.

  19. CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  20. CRAD, Safety Basis- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Safety Basis portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  1. Extreme behavior: New national security facility will open its doors to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study materials at extreme conditions | Argonne National Laboratory Extreme behavior: New national security facility will open its doors to study materials at extreme conditions August 4, 2016 Tweet EmailPrint A new, first-of-its-kind-worldwide research capability will help unravel the mysteries of material behavior at extreme conditions and short time scales in support of the National Nuclear Security Administration's (NNSA's) vital national security missions. NNSA, the Department of

  2. New Solicitations | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    New Solicitations There are currently no open solicitations for the National Laser Users' Facility Program. You can search for other opportunities at www.grants.gov.

  3. New Solicitations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    New Solicitations National Laser Users' Facility Grant Program New Solicitations There is no open solicitation at this time. You can look for other federal assistance grants by ...

  4. New Solicitations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    New Solicitations There are currently no open solicitations for the National Laser Users' Facility Program. You can search for other opportunities at www.grants.gov.

  5. Nanoscience and Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NST Division Addressing grand challenges in nanoscience and nanotechnology More The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility,...

  6. Congressmen tour Y-12 facilities | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    During a recent visit to the Y-12 National Security Complex, Rep. Mike Simpson (R-Idaho), chairman of the House Energy and Water Appropriations Subcommittee, is shown some of the ...

  7. Mixed Oxide (MOX) Fuel Fabrication Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) fieldoffices / Savannah River Field Office Mixed Oxide (MOX) Fuel Fabrication Facility Documents related to the project: Plutonium Disposition Study Options Independent Assessment Phase 1 Report, April 13, 2015 Plutonium Disposition Study Options Independent Assessment Phase 2 Report, August 20, 2015 Final Report of the Plutonium Disposition Red Team, August 13, 2015 Commentary on Report by High Bridge Associates, Inc., Feb. 12, 2016 Related Topics Mixed Oxide Fuel

  8. National Renewable Energy Laboratory's Energy Systems Integration Facility Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A megawatt-scale systems integration R&D facility. Unique Capabilites Hardware-in-the-Loop at Megawatt-scale Power Megawatt-scale power-in-the-loop allows researchers and manufacturers to conduct integration tests at full power and actual load levels in real-time simulation and evaluate component and system performance before going to market. High Performance Computing Data Center (HPCDC) Petascale computing at the HPCDC enables unprecedented large-scale modeling and simulation of material

  9. National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

    SciTech Connect (OSTI)

    Lagunas-Solar, M.C.

    1995-02-15

    This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

  10. Program Objectives | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Program Objectives National Laser Users' Facility Grant Program Objectives The primary purpose of the National Laser Users' Facility (NLUF) is to provide facility time for university- and business-led high energy density experiments on the Omega Laser Facility at the University of Rochester's Laboratory for Laser Energetics. Currently, approximately 15% of the Omega Facility time is devoted to NLUF. Through this program, two of the world's most powerful laser systems, OMEGA and OMEGA EP, are

  11. Sandia National Laboratories: Z Pulsed Power Facility: About Z

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Z Picture of Z Machine Sandia's Z machine is Earth's most powerful pulsed-power facility and X-ray generator. Z compresses energy in time and space to achieve extreme powers and intensities, found nowhere else on Earth. In approximately 200 shots Z fires every year, the machine uses currents of about 26 million amps to reach peak X-ray emissions of 350 terawatts and an X-ray output of 2.7 megajoules. The Z machine is located in Albuquerque, N.M., and is part of Sandia's Pulsed Power

  12. Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

    SciTech Connect (OSTI)

    SAAD, MAX P.; RICHARDSON, ANASTASIA DAWN

    2003-03-01

    The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

  13. Activation of Air and Utilities in the National Ignition Facility

    SciTech Connect (OSTI)

    Khater, H; Pohl, B; Brererton, S

    2010-04-08

    Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

  14. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect (OSTI)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  15. Sandia National Laboratories: Z Pulsed Power Facility: Z News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Z News Dry-run experiments verify key aspect of Sandia nuclear fusion concept View All News Releases News Releases Fusion instabilities lessened by unexpected effect Jan. 9, 2014 Japanese city councilor journeys to end furor over Sandia Z tests May 23, 2013 Sandia physicist wins two national awards Nov. 29, 2012 Dry-run experiments verify key aspect of Sandia nuclear fusion concept Sept. 17, 2012 Nuclear fusion simulation shows high-gain energy output March 20, 2012 Z researcher Dan Sinars

  16. Support - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During experiments at the Radiation Effects Facility users are assisted by the experienced ... shops are available to the users of the Radiation Effects Facility for design, ...

  17. MWIR-1995 DOE national mixed and TRU waste database users guide

    SciTech Connect (OSTI)

    1995-11-01

    The Department of Energy (DOE) National 1995 Mixed Waste Inventory Report (MWIR-1995) Database Users Guide provides information on computer system requirements and describes installation, operation, and navigation through the database. The MWIR-1995 database contains a detailed, nationwide compilation of information on DOE mixed waste streams and treatment systems. In addition, the 1995 version includes data on non- mixed, transuranic (TRU) waste streams. These were added to the data set as a result of coordination of the 1995 update with the National Transuranic Program Office`s (NTPO`s) data needs to support the Waste Isolation Pilot Plant (WIPP) TRU Waste Baseline Inventory Report (WTWBIR). However, the information on the TRU waste streams is limited to that associated with the core mixed waste data requirements. The additional, non-core data on TRU streams collected specifically to support the WTWBIR is not included in the MWIR-1995 database. With respect to both the mixed and TRU waste stream data, the data set addresses {open_quotes}stored{close_quotes} streams. In this instance, {open_quotes}stored{close_quotes} streams are defined as (a) streams currently in storage at both EM-30 and EM-40 sites and (b) streams that have yet to be generated but are anticipated within the next five years from sources other than environmental restoration and decontamination and decommissioning (ER/D&D) activities. Information on future ER/D&D streams is maintained in the EM-40 core database. The MWIR-1995 database also contains limited information for both waste streams and treatment systems that have been removed or deleted since the 1994 MWIR. Data on these is maintained only through Section 2, Waste Stream Identification/Tracking/Source, to document the reason for removal from the data set.

  18. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  19. User Resources | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources Print Text Size: A A A

  20. Magnetic Resonance Facility (Fact Sheet), National Bioenergy Center Laboratory Capabilities (NBCLC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonance Facility Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers. NREL's state-of-the-art Magnetic Resonance Facility provides: *

  1. The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos

  2. ALS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS User Meeting October 3-5, 2011 Lawrence Berkeley National Laboratory, California

  3. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly ReportJanuary 2015

    SciTech Connect (OSTI)

    Soelberg, Renae

    2015-01-01

    Highlights; Mike Worley and Shane Johnson visited INL Jan. 22 for an NSUF strategy discussion; Rory Kennedy attended a NSLS-2 Beamline Advisory Team meeting at Brookhaven; Provided a final cost estimate to the NSUF Program Office in support of the NEET/NSUF proposal, “Metal-ceramic and metal-metal composites for extreme radiation and temperature environment: An in situ interface stability and mechanical behavior study by high energy x-ray diffraction with a synchrotron probe.”; Assisted in the development of conceptual designs and performed a preliminary thermal hydraulic analysis for two NEET/NSUF proposals. The challenge for both experiments is to provide high (>1000 C and up to 1600 C)) specimen temperatures in a small space (0.5" diameter ATR Outboard A-position) without overheating the coolant. Several designs were analyzed and found to be feasible, although detailed design and analysis will be required after the projects are awarded; and A single USU TEM specimen is packaged and awaiting shipment from MFC to CAES. Once at CAES, SEM, TEM and LEAP analysis will be performed. Professor Ban has requested additional sub-samples to be made to take back to his laboratory at USU for thermal diffusivity studies.

  4. Irradiation Test Plan for the ATR National Scientific User Facility - University of Wisconsin Pilot Project

    SciTech Connect (OSTI)

    Heather J. MacLean; Kumar Sridharan; Timothy A. Hyde

    2008-06-01

    The performance of advanced nuclear systems critically relies on the performance of the materials used for cladding, duct, and other structural components. In many proposed advanced systems, the reactor design pushes the temperature and the total radiation dose higher than typically seen in a light water reactor. Understanding the stability of these materials under radiation is critical. There are a large number of materials or material systems that have been developed for greater high temperature or high dose performance for which little or no information on radiation response exists. The goal of this experiment is to provide initial data on the radiation response of these materials. The objective of the UW experiment is to irradiate materials of interest for advanced reactor applications at a variety of temperatures (nominally 300°C, 400°C, 500°C, and 700°C) and total dose accumulations (nominally 3 dpa and 6 dpa). Insertion of this irradiation test is proposed for September 2008 (ATR Cycle 143A).

  5. Categorical Exclusion determination - National Laser Users Facility (NLUF) Program Funding Opportunity DE-FOA-0001109.pdf

    National Nuclear Security Administration (NNSA)

  6. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report December 2014

    SciTech Connect (OSTI)

    Renae Soelberg

    2014-12-01

    • PNNL has completed sectioning of the U.C. Berkeley hydride fuel rodlet 1 (highest burn-up) and is currently polishing samples in preparation for optical metallography. • A disk was successfully sectioned from rodlet 1 at the location of the internal thermocouple tip as desired. The transition from annular pellet to solid pellet is verified by the eutectic-filled inner cavity located on the back face of this disk (top left) and the solid front face (bottom left). Preliminary low-resolution images indicate interesting sample characteristics in the eutectic surrounding the rodlet at the location of the outer thermocouple tip (right). This sample has been potted and is currently being polished for high-resolution optical microscopy and subsequent SEM analysis. (See images.)

  7. Oak Ridge Leadership Computing Facility (OLCF) | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Oak Ridge Leadership Computing Facility (OLCF) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Argonne Leadership Computing Facility (ALCF) Energy Sciences Network (ESnet) National Energy Research Scientific Computing Center (NERSC) Oak Ridge Leadership Computing Facility (OLCF) Accessing ASCR Facilities Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding

  8. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Advanced Solar Photophysics (CASP) Biological & Environmental Research Next Generation Ecosystem Experiments (NGEE) - Arctic Next Generation Ecosystem Experiments ...

  9. Joint Facilities User Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) The environmental management system (EMS) has two areas of focus: environmental compliance and environmental sustainability. The environmental compliance aspect of the EMS consists of regulatory compliance and monitoring programs that implement federal, state, local, and tribal requirements; agreements; and permits under the Legacy Management contract. The

  10. User Facility Science Highlights

    Office of Science (SC) Website

    In this experiment, a 5.5-GeV beam of electrons was directed onto a target of liquid hydrogen, which has a single proton in its nucleus. The researchers collected data on...

  11. Status of the US inertial fusion program and the National Ignition Facility

    SciTech Connect (OSTI)

    Crandall, David H.

    1997-04-15

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP)

  12. Enterprise Assessments Targeted Review of Nuclear Reactor Facility Operations at Sandia National Laboratories … March 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Nuclear Reactor Facility Operations at Sandia National Laboratories March 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  13. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  14. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    SciTech Connect (OSTI)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-04-08

    BattellePacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energys Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  15. Sandia National Laboratories/New Mexico Facilities and Safety Information Document [NOTE: Volume I, Chapter 1

    SciTech Connect (OSTI)

    March, F.; Guerrero, J.V.; Johns, W.H.; Schetnan, R.; Bayliss, L.S.; Kuzio, K.A.; White, B.B.

    1999-09-01

    Sandia National Laboratories (SNL) began in 1945 as the ''Z'' Division of what was then Los Alamos Scientific Laboratory on Oxnard Field, which was owned by the Air Technical Service Command, as a base of operations to store materials and house personnel. Oxnard Field was transferred to the U.S. Engineers, Manhattan District, on July 21, 1945, who converted several wood frame structures to serve functions that were transferred from Los Alamos. Development of the SNL/New Mexico (SNL/NM) site began in 1946 and 1947 with construction of the first four buildings in what is now Tech Area I. Construction of another 14 permanent buildings in Tech Area I began in 1948. SNL constructed a high-explosive assembly area in Tech Area II, a half mile south of Tech Area I, and started plans for several outdoor testing facilities for Tech Area III, about seven miles to the south of Tech Area I, in 1952. By 1953, SNL completed and put into operation the first group of Tech Area III facilities, which included a rocket sled track, a large centrifuge, a vibration facility, and an instrument control center. Tech Area IV and Tech Area V were developed later to provide facilities for pulsed power and high-energy experiments. As the need developed for outdoor testing facilities remote from the public and other work areas, SNL added many facilities on U.S. Air Force and other federal property in the area known as Coyote Test Field (Sandia National Laboratories, 1997b). Most recently, DOE leased U.S. Air Force facilities in the Manzano Area for SNL to use for storage of low-level radioactive waste, mixed waste (a combination of radioactive and hazardous waste), and transuranic waste (Sandia National Laboratories, 1997a).

  16. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    SciTech Connect (OSTI)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  17. Lightning Protection Certification for High Explosives Facilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Clancy, T J; Brown, C G; Ong, M M; Clark, G A

    2006-01-11

    Presented here is an innovation in lighting safety certification, and a description of its implementation for high explosives processing and storage facilities at Lawrence Livermore National Laboratory. Lightning rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to lightning safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of lightning protection for modern structures and these methods comply with the requirements of the National Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.

  18. EIS-0388: Operation of a Biosafety Level 3 Facility at the Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    This EIS evaluates the operation of a Biosafety Level 3 Facility (BSL–3 Facility) at the Los Alamos National Laboratory (LANL). A BSL-2 Alternative, an existing BSL-2 permitted facility, and a No Action Alternative will be analyzed. The EIS is currently on hold.

  19. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    SciTech Connect (OSTI)

    Stange, Sy; Mayo, Douglas R.; Herrera, Gary D.; McLaughlin, Anastasia D.; Montoya, Charles M.; Quihuis, Becky A.; Trujillo, Julio B.; Van Pelt, Craig E.; Wenz, Tracy R.

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  20. Progress in the title I design of the National Ignition Facility

    SciTech Connect (OSTI)

    Paisner, J.A.; Hogan, W.J.

    1996-12-31

    The National Ignition Facility (NIF) Project officially began in December of 1995. In October of 1996, advanced conceptual design studies, complete environmental impact study, facilitization of the manufacturing capabilities of optics vendors began. The Title I preliminary engineering design had not yet began until the end of December, but it is expected to be on schedule. It is expected that the conventional facilities design will be completed first. The Independent Cost Estimate (ICF) process will begin after the facilities design is complete. Other elements of the design will be submitted in one- or two-week intervals. This phase method of completing Title I was also used at the end of Complete Design Report and proved to be efficient. 9 refs., 11 figs.

  1. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  2. Response to Comment on "The National Ignition Facility Laser Performance Status"

    SciTech Connect (OSTI)

    Haynam, C A; Sacks, R A; Moses, E I; Manes, K; Haan, S; Spaeth, M L

    2007-12-11

    We appreciate Stephen Bodner's continuing interest in the performance of the NIF laser system. However, we find it necessary to disagree with the conclusions he reached in his comments [Appl. Opt. 47, XXX (2008)] on 'National Ignition Facility Laser Performance Status' [Appl. Opt. 46, 3276 (2007)]. In fact, repeated and ongoing tests of the NIF beamlines have demonstrated that NIF can be expected not only to meet or exceed its requirements as established in the mid-1990s in the document National Ignition Facility Functional Requirements and Primary Criteria [Revision 1.3, Report NIF-LLNL-93-058 (1994)], but also to have the flexibility that provides for successfully meeting an ever expanding range of mission goals, including those of ignition.

  3. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  4. Summary of the First Neutron Image Data Collected at the National Ignition Facility

    SciTech Connect (OSTI)

    Grim, G P; Aragonez, R J; Batha, S H; Clark, D D; Clark, D J; Clark, D J; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T.-S. F; Wilde, C H; Wilke, M D; Wilson, D C; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M

    2011-11-01

    A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 +/- 3 um, as indirect cores (25 +/- 4 and 29 +/- 4 um and more asymmetric, P2/P0 = 47% vs. -14% and -7%. Further, comparison with the size and shape of X-ray image data from on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion. This work was performed for the U.S. Department of Energy, National Nuclear Security Administration and by the National Ignition Campaign partners; Lawrence Livermore National Laboratory (LLNL), University of Rochester -Laboratory for Laser Energetics (LLE), General Atomics(GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL). Other contributors include Lawrence Berkeley National Laboratory (LBNL), Massachusetts Institute of Technology (MIT), Atomic Weapons Establishment (AWE), England, and Commissariat `a l’ ´ Energie Atomique (CEA), France.

  5. Construction safety program for the National Ignition Facility Appendix A: Safety Requirements

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-01-14

    These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

  6. Design, Assembly, and Testing of the Neutron Imaging Lens for the National Ignition Facility

    SciTech Connect (OSTI)

    Malone, R. M., Kaufman, M. I.

    2010-12-01

    The Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) is the world’s largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density science. Neutron imaging of ICF targets provides a powerful tool for understanding the implosion conditions of deuterium and tritium (DT) filled targets. The primary purpose of imaging ICF targets at NIF is to determine the symmetry of the fuel in an imploded ICF target. The image data are then combined with other nuclear information to gain insight into the drive laser and radiation conditions required to drive the targets to ignition.

  7. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  8. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  9. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  10. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  11. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  12. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  13. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  14. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  15. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence

  16. Status of the US inertial fusion program and the National Ignition Facility

    SciTech Connect (OSTI)

    Crandall, D.H.

    1997-04-01

    Research programs supported by the United States Office of Inertial Fusion and the NIF are summarized. The US inertial fusion program has developed an approach to high energy density physics and fusion ignition in the laboratory relying on the current physics basis of capsule drive by lasers and on the National Ignition Facility which is under construction. (AIP) {copyright} {ital 1997 American Institute of Physics.}

  17. The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL SC08 BOF: Computing with Massive and Persistent Data LLNL-PRES-408909. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344 2 Target chamber One Terabyte of data to be downloaded in ~50 Minutes for each shot. 5 Full Aperture Backscatter Diagnostic Instrument Manipulator (DIM) Diagnostic Instrument Manipulator (DIM) X-ray imager

  18. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  19. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

  20. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  1. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  2. User Statistics Collection Practices Archives | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Policies and Processes » User Statistics Collection Practices » User Statistics Collection Practices Archives User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Definition Designation Process Official List of SC User Facilities User Statistics Collection Practices User Statistics Collection Practices Archives Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2010 [Facility News] User Facilities in Spotlight at Inaugural Office of Science Graduate Fellows Conference Bookmark and Share Office of Science director Dr. William Brinkman delivers his <em>Adventures in Science</em> address during the inaugural Graduate Fellows Conference. Photo courtesy Argonne National Laboratory. Office of Science director Dr. William Brinkman delivers his Adventures in Science address during the inaugural Graduate Fellows Conference. Photo courtesy

  4. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  5. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility. Thorough discussion with users of current projects, as well as plans for the future, will place ALS management in a better position to evaluate the needs of users and...

  6. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  7. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  8. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

  9. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    SciTech Connect (OSTI)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  10. User Statistics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics By Institution By Project Data Archive User Statistics Collection Practices Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Statistics Print Text Size: A A A FeedbackShare Page The Office of Science

  11. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  12. Gamma Irradiation Facility at Sandia National Laboratories, Albuquerque, New Mexico. Final environmental assessment

    SciTech Connect (OSTI)

    1995-11-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed construction and operation of a new Gamma Irradiation Facility (GIF) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to: enhance capabilities to assure technical excellence in nuclear weapon radiation environments testing, component development, and certification; comply with all applicable ES and H safeguards, standards, policies, and regulations; reduce personnel radiological exposure to comply with ALARA limits in accordance with DOE orders and standards; consolidate major gamma ray sources into a central, secured area; and reduce operational risks associated with operation of the GIF and LICA in their present locations. This proposed action provides for the design, construction, and operation of a new GIF located within TA V and the removal of the existing GIF and Low Intensity Cobalt Array (LICA). The proposed action includes potential demolition of the gamma shield walls and removal of equipment in the existing GIF and LICA. The shielding pool used by the existing GIF will remain as part of the ACRR facility. Transportation of the existing {sup 60}Co sources from the existing LICA and GIF to the new facility is also included in the proposed action. Relocation of the gamma sources to the new GIF will be accomplished by similar techniques to those used to install the sources originally.

  13. LANSCE | Users | LUG | Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charter I. NAME The name of this organization shall be the Los Alamos Neutron Science Center (LANSCE) User Group. II. PURPOSE The purpose of the LANSCE User Group (LUG) is to: * Provide a formal channel for the exchange of information between LANSCE management and the researchers who use the facilities. * Supply a vehicle for users of LANSCE to transmit concerns and recommendations to the LANSCE management about operating policy, facilities, and other matters affecting the user community. *

  14. Site selection study for Sandia National Laboratories/New Mexico as an alternative site for the National Ignition Facility

    SciTech Connect (OSTI)

    Miller, D.; Wheeler, T.; McClellan, Y.

    1996-03-01

    The Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF) in support of the Stockpile Stewardship and Management (SSM) Programmatic Environmental impact Statement (PEIS). The National Environmental Policy Act requires the DOE to look at alternative sites for the NIF. The SSM PEIS will evaluate four alternative locations for the NIF. This study documents the process and results of a site selection study for a preferred site for the NIF at SNL/NM. The NIF research objectives are to provide the world`s most powerful laser systems to be used in ignition of fusion fuel and energy gain to perform high energy density and radiation effects experiments in support of the DOE`s national security, energy, and basic science research mission. The most immediate application of the NIF will be to provide nuclear-weapon-related physics data, since many phenomena occurring on the laboratory scale are similar to those that occur in weapons. The NIF may also provide an important capability for weapons effects simulation. The NIF is designed to achieve propagating fusion bum and modest energy gain for development as a source of civilian energy.

  15. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  16. Shielding calculations and verifications for the new Radiation Instrument Calibration Facility at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    George, G. L.; Olsher, R. H.; Seagraves, D. T.

    2002-01-01

    MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservative assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.

  17. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The

  18. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists

  19. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  20. User Statistics Collection Practices | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Statistics Collection Practices User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Definition Designation Process Official List of SC User Facilities User Statistics Collection Practices User Statistics Collection Practices Archives Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: