Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Northwestern University Team Wins 2013 National Clean Energy...  

Broader source: Energy.gov (indexed) [DOE]

Announcing the Clean Energy Trust Semifinalists SiNode Systems - Advanced silicon graphene batteries. | Photo courtesy of Sinode Systems. Startup Success: Energy Department...

2

CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...  

Open Energy Info (EERE)

| NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

3

The National Workshop on Clean Energy Education  

E-Print Network [OSTI]

The National Workshop on Clean Energy Education ENERGYLITERACY Recommendations and Strategies Full Report #12;THE NATIONAL WORKSHOP ON CLEAN ENERGY EDUCATION UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN OCTOBER 13, 2011 Full Report #12;#12;FOREWORD Clean energy education is an enabling foundation with far

Gilbert, Matthew

4

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

Not Available

2011-03-01T23:59:59.000Z

5

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti017ebron2012o.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

6

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti017ebron2011p.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

7

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

Not Available

2012-01-01T23:59:59.000Z

8

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

Not Available

2014-01-01T23:59:59.000Z

9

Diversity in Science and Technology Advances National Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

10

Clean Air Act General Conformity Requirements and the National...  

Broader source: Energy.gov (indexed) [DOE]

Clean Air Act General Conformity Requirements and the National Environmental Policy Act Process Clean Air Act General Conformity Requirements and the National Environmental Policy...

11

Application Periods Open for 2014 National Clean Energy Business...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Application Periods Open for 2014 National Clean Energy Business Plan Competition's Regional Contests Application Periods Open for 2014 National Clean Energy Business Plan...

12

National Clean Energy Business Plan Competition - EERE Commercializati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Clean Energy Business Plan Competition Learn more about the Department of Energy's National Clean Energy Business Plan Competition structure, past finalists, and past...

13

National Clean Energy Business Plan Competition: Unified Solar...  

Energy Savers [EERE]

Unified Solar Wins at MIT Clean Energy Prize National Clean Energy Business Plan Competition: Unified Solar Wins at MIT Clean Energy Prize May 2, 2014 - 11:01am Addthis Unified...

14

Cleaning with Environmentally Responsible Cleaning Solutions at Dalhousie University 1 Case Study  

E-Print Network [OSTI]

Cleaning with Environmentally Responsible Cleaning Solutions at Dalhousie University 1 Case Study: Usage of Environmentally Responsible Cleaning Solutions at Dalhousie University Summary Each year, Dalhousie University uses approximately 950,000 litres of cleaning solutions to clean 4.8 million square

Brownstone, Rob

15

FACT SHEET: Clean Coal University Research Awards and Project...  

Energy Savers [EERE]

FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's...

16

CONSULTANT REPORT The National Center for a Clean Energy  

E-Print Network [OSTI]

CONSULTANT REPORT The National Center for a Clean Energy Workforce: A Scoping Study FEBRUARY 2011 researched several options for the development of a National Center for the Clean Energy Workforce (NCCEW a clean energy economy rooted in a skilled workforce with broad access to good green jobs, which focus

17

New National Clean Fleets Partners Build New Roads to Sustainability...  

Energy Savers [EERE]

in the country. Read how UPS, another National Clean Fleets Partner, is reducing petroleum use and emissions of its vehicles. From picking up our recyclables to fixing our...

18

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Broader source: Energy.gov (indexed) [DOE]

information. 12 Approach Strategy Clean Cities Coordinators Training - Year 1 Trains coordinators on how to promote first responder training. Presentation Guide provides...

19

A University Consortium on Efficient and Clean High-Pressure...  

Broader source: Energy.gov (indexed) [DOE]

Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines 2010 DOE Vehicle Technologies and...

20

CLEMSON UNIVERSITY'S COMMITMENT TO GREEN ECONOMIC DEVELOPMENT WHITE PAPER ON CLEAN ENERGY  

E-Print Network [OSTI]

. A subsequent summit on renewable energy focused on South Carolina's "Job Opportunities in the Green EconomyCLEMSON UNIVERSITY'S COMMITMENT TO GREEN ECONOMIC DEVELOPMENT WHITE PAPER ON CLEAN ENERGY: Clemson of the 21st century for South Carolina and the nation -- energy. Energy is interwoven with the nation

Stuart, Steven J.

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

National Clean Energy Business Plan Competition | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process, termed "CANDO", for the removal and recovery of energy from waste...

22

UNIVERSITY OF CANADA FIRST NATIONS  

E-Print Network [OSTI]

UNIVERSITY DRIVE NORTH UNIVERSITYDRIVEEAST LIFT STATION BASEBALL DIAMOND FIRST NATIONS WAY FIRST NATIONS WAY G UNIVERSITYDRIVEWEST ENGINEERING GARAGE ARTIFICIAL TURF FIELD EASTLOOPROAD PLAYING FIELD 1

Argerami, Martin

23

Leading the Nation in Clean Energy Deployment (Fact Sheet)  

SciTech Connect (OSTI)

This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agencies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions.

Not Available

2012-07-01T23:59:59.000Z

24

2013 National Clean Energy Business Plan Competition | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergyofDepartment ofLabor2013 National Clean Energy

25

U.S. Department of Energy National Clean Energy Business Plan...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenge (College Park, MD) The University of Maryland's Atlantic Coast Conference Clean Energy Challenge plans to pool student talent around technology and business...

26

National Clean Energy Business Plan Competition Kicks Off With...  

Broader source: Energy.gov (indexed) [DOE]

to Inspire Collegiate Clean Energy Entrepreneurs Superior Ecotech's technology uses algae to convert carbon dioxide resulting from brewing beer into omega-3 oils, which lowers...

27

National Clean Energy Business Plan Competition: REEcycle Wins...  

Office of Environmental Management (EM)

earth elements are critical to manufacturing clean energy technologies, including wind turbines, energy-efficient lights, thin-film solar cells, and motors and batteries for...

28

National Clean Energy Business Plan Competition: Energy Internet...  

Office of Environmental Management (EM)

The company's technology was developed at Georgia Tech through an ARPA-e grant, under the Green Energy Network Integration program. After winning the ACC Clean Energy Challenge,...

29

DOE Announces 6 New Corporate Partners Join the National Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

today, the partnership includes charter members AT&T, FedEx, PepsiCoFrito-Lay, UPS, and Verizon. The partnership is part of the DOE Vehicle Technology Program's Clean...

30

National Clean Fleets Partnership Moves Forward | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department 6CleanClean

31

Energy Department and National Park Service Announce Clean Cities...  

Energy Savers [EERE]

And there are multiple benefits - we use less petroleum which saves money and reduces air pollution in America's national parks. Some of these alternative fuel vehicles are...

32

National Clean Fleets Partnership Fact Sheet and Progress Update |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department 6Clean

33

National Clean Energy Business Plan Competition: REEcycle Wins at Caltech  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S. Department of Energy OfficeWomenClean

34

National Clean Energy Business Plan Competition: Six Regional Winners  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S. Department of Energy OfficeWomenCleanAdvance

35

National Clean Energy Business Plan Competition: Energy Internet Wins ACC  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA CNathanUnitedClean Energy

36

National Clean Energy Business Plan Competition: Six Regional...  

Office of Environmental Management (EM)

Institute of Technology University of Houston, REEcycle REEcycle reclaims rare earth elements from magnets in electronics, creating a sustainable supply of critical...

37

The National Alliance of Clean Energy Incubators jgroelinger@cleanenergyalliance.com Phone: +1-609-516-7669  

E-Print Network [OSTI]

The National Alliance of Clean Energy Incubators jgroelinger@cleanenergyalliance.com Phone: +1, Executive Director (phone): 1-609-516-7669; (e-mail): jgroelinger@cleanenergyalliance.com CLEAN ENERGY ALLIANCE AND U.S. DEPARTMENT OF ENERGY LAUNCH PARTNERSHIP TO SUPPORT COMMERCIALIZATION OF CLEAN ENERGY

Delgado, Mauricio

38

Researchers at Montana State University and Idaho National Lab have developed a process to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates  

E-Print Network [OSTI]

to effectively and efficiently clean natural and man-made porous material of radioactive contamination. The system eliminates the practice of full demolition and removal of contaminated objects and can address contaminated substrate. Thus, building walls (interior or exterior), floors and ceilings can be remediated

Maxwell, Bruce D.

39

2013 National Clean Energy Business Plan Competition | Department...  

Broader source: Energy.gov (indexed) [DOE]

University 31 likes SiNode Systems is a battery materials venture developing silicon-graphene anodes for the next generation of lithium-ion batteries. SiNode anodes offer higher...

40

Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory  

SciTech Connect (OSTI)

The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

Lockie, K. A.; McNaught, W. B.

2002-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

National Clean Energy Business Plan Competition - EERE Commercialization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElected to

42

Clean Cities Internships  

Broader source: Energy.gov [DOE]

Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

43

The Clean Coal Technology Demonstration Program is a $5-billion national  

E-Print Network [OSTI]

commitment, cost-shared by the Government and the private sector, to demonstrate economic and environmentally sound methods for using our Nation's most abundant energy resource. The Program will foster the energy efficient use of the Nation's vast coal resource base. By doing so, the Program will contribute significantly to the long-term energy security of the United States, will further the Nation's objectives for a cleaner environment, and will improve its competitive standing in the international energy market. The first three Clean Coal Technology solicitations were issued in 1986, 1988,

unknown authors

44

FACT SHEET: Clean Coal University Research Awards and Project...  

Energy Savers [EERE]

Indiana University and partner Purdue University Indianapolis will collaborate with Praxair Surface Technologies, Indianapolis, to develop computational models to study the...

45

Clean Energy Business Plan Competition  

ScienceCinema (OSTI)

Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

2013-05-29T23:59:59.000Z

46

National Sun Yat-sen University FACTSHEET 2010-2011 Full name of university National Sun Yat-sen University  

E-Print Network [OSTI]

National Sun Yat-sen University FACTSHEET 2010-2011 1 Full name of university National Sun Yat of International Affairs National Sun Yat-sen University Room 2004, Administration Building 70 Lien Hai Road-cheng Wu, Ph.D. Head, Division of Student Exchange Office of International Affairs National Sun Yat

Petriu, Emil M.

47

Developing an Online Database of National and Sub-National Clean Energy Policies  

SciTech Connect (OSTI)

The Database of State Incentives for Renewables and Efficiency (DSIRE) was established in 1995 to provide summaries of energy efficiency and renewable energy policies offered by the federal and state governments. This primer provides an overview of the major policy, research, and technical topics to be considered when creating a similar clean energy policy database and website.

Haynes, R.; Cross, S.; Heinemann, A.; Booth, S.

2014-06-01T23:59:59.000Z

48

Department of Energy Awards $2 Million for National University...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE's Acting Assistant Secretary for Energy Efficiency and Renewable Energy, Dr. Henry Kelly, at a clean energy jobs event at the University of Florida-Gainesville yesterday, the...

49

National Central University Department of Optics and Photonics  

E-Print Network [OSTI]

National Central University Department of Optics and Photonics Rapid Constructions of Circular of Optics and Photonics, National Central University, Taiwan. 2. Institute of Nuclear Energy Research, Taiwan. #12;National Central University Department of Optics and Photonics 2 Outline · Interpolation

Arizona, University of

50

University-Industry-National Laboratory Partnership to Improve...  

Office of Environmental Management (EM)

University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National...

51

Northwestern University Team Wins 2013 National Clean Energy Business Plan  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced FramingBoost | DepartmentCompetition |

52

Northwestern University Team Wins Energy Department's National Clean  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCutWorkersNiketa KumarPotential |Energy

53

Lawrence Berkeley National Laboratory University of California  

E-Print Network [OSTI]

Lawrence Berkeley National Laboratory University of California Internal Audit T.L. HAMILTON Division Director Materials Sciences R.A. SEGALMAN Division Director, Acting Energy Sciences D.J. DEPAOLO Associate Laboratory Director Computational Research D.L. BROWN Division Director National Energy Research

Eisen, Michael

54

National Taiwan University NTU's institutional predecessor was Taihoku Imperial University,  

E-Print Network [OSTI]

students there; this fact shows that NTU has effectively transformed into a research university, and has National Taiwan University 2008/2009 #12; NTU's institutional predecessor was Taihoku Imperial-diversity Research Center. #12;331715 The total number of students at NTU, including those enrolled at the School

Wu, Yih-Min

55

University Partnerships | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014NationalUniversity Partnerships University

56

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

contributed to the nylon rod failure. Contact was removed and all mating surfaces cleaned with Carborundum

Chen, Ying

57

Aachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta University Amsterdam University Arizona University Auckland University Australian National University Bath University Beijing  

E-Print Network [OSTI]

Massachusetts University Massey University McGill University McMaster University Melbourne University Michigan State University Michigan University Minnesota University Monash University Montpellier UniversityAachen RWTH Aarhus University Aberdeen University Adelaide University Alabama University Alberta

Tisdell, Chris

58

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY  

E-Print Network [OSTI]

of Climate and Energy Financial support: Danish Environmental Protection Agency Please cite as: Lyck, E INdICATORS fOR dANISH GREENHOUSE GAS EMISSIONS fROM 1990 TO 2007 #12;[Blank page] #12;AU NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY INdICATORS fOR dANISH GREENHOUSE GAS EMISSIONS fROM 1990

59

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

. No oil was expected this time because there had been no accidental trapping of tank gas in the oilerAUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS l4Uti TANK OPENING REPORT NO.24 9th January, 1981 (1 day open) REFERENCES: Earlier Tank Opening Reports are referenced by the notation 12

Chen, Ying

60

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

must be made during the long tank opening scheduled for February 6. 2/ .. #12;#12;2 - A patch of oil~ While it was possible that the oil had come from the gas handling system it was assumed to be due to ourAUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS l4UD TANK OPENING REPORT NO. 10 Two

Chen, Ying

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of a Clean Air Act Title V permit application for Argonne National Laboratory  

SciTech Connect (OSTI)

The Clean Air Act Amendments (CAAA) of 1990 instituted major changes in the way that air emission sources are regulated and permitted. Along with being a major research and development laboratory owned by the US Department of Energy, Argonne National Laboratory (ANL) is also classified as a major source of oxides of nitrogen (NO{sub x}) in the Chicago metropolitan area which has been designated by the US Environmental Protection Agency (USEPA) as severe (17) for ozone. As a major source ANL is therefore required under Title V of CAAA to apply for a federally enforceable permit for all sources of air emissions at the facility. While the ANL Boiler House represents the most significant emission source at the Laboratory, there are, nevertheless, a large number of other emission sources, some of which are currently permitted by the State of Illinois and others of which are exempt from state permitting requirements. A large number of R & D related sources are of relatively small magnitude. The ability to identify, inventory, characterize and classify all sources under the various titles of CAAA constitutes a major challenge for R & D laboratories of this size.

Barrett, G.L.

1994-06-01T23:59:59.000Z

62

Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines  

Broader source: Energy.gov [DOE]

A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

63

National Society of Black EngineersNational Society of Black Engineers Columbia University Chapter  

E-Print Network [OSTI]

National Society of Black EngineersNational Society of Black Engineers Columbia University Chapter #12;Columbia University Greetings NSBE Family and Friends! My name is Ken Yearwood, the 2008-2009 Columbia University NSBE (National Society of Black Engineers) Chapter President. On behalf of the Columbia

Hone, James

64

Clean Energy Teacher Training Colorado State University Extension programs are available to all without discrimination. If you need special accommodations to participate  

E-Print Network [OSTI]

Clean Energy Teacher Training Colorado State University Extension programs are available to all a second annual summer teacher training series on our newly enhanced Clean Energy Curriculum for Colorado: Background information on Colorado clean energy Hands-on experience teaching selected lesson plans on energy

Hardy, Darel

65

Clean Energy Resource Teams (Minnesota)  

Broader source: Energy.gov [DOE]

Clean Energy Resource Teams (CERTs) are community-based groups stemming from a state, university, and nonprofit partnership to encourage community energy planning and clean energy project...

66

THE UNIVERSITY OF CHICAGO Operator of Argonne National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

UNIVERSITY OF CHICAGO Operator of Argonne National Laboratory Comments on the Department of Energy Notice of Inquiry Concerning Preparation of Report to Congress on the...

67

Post Doctoral Positions at University of Cincinnati/Argonne National Laboratory/Oak Ridge National Laboratory and the University of Cape Town  

E-Print Network [OSTI]

Post Doctoral Positions at University of Cincinnati/Argonne National in a project that links Oak Ridge National Laboratory, Argonne National Laboratory, University of Cape Town At Argonne National Laboratory Dr. Jan Ilavsky and at Oak

Beaucage, Gregory

68

National University of Singapore MW5200 MSC SCIENCE COMMUNICATION PROJECT  

E-Print Network [OSTI]

National University of Singapore MW5200 MSC SCIENCE COMMUNICATION PROJECT Project Report Strengthening student engagement in the classroom. Course: Msc (Science Communication) Faculty of Science National University of Singapore Name: Ganeshini D/O Sri kanthan Student ID: A0075383Y Project Supervisor

Aslaksen, Helmer

69

University Partnerships | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Integrated Turbulence Simulations" University of Chicago, "Center for Astrophysical Thermonuclear Flashes" University of Illinois at Urbana-Champaign, "Center for Simulation of...

70

University of Minnesota Morris Clean Energy Investments Recognized by U.S.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014NationalUniversity PartnershipsScientific

71

National Clean Energy Business Plan Competition: Unified Solar Wins at MIT  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department 6Clean Energy

72

Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible  

E-Print Network [OSTI]

at the" Lawrence Radiation Laboratory" In Livermore, California..." " #12;Presentation to MIT 13NIF-0709, Inexhaustible Energy Source" John D. Moody, Lawrence Livermore National Laboratory" " Presented to: MIT ­ PSFC by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 #12;A few memories of MIT physics

73

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY  

E-Print Network [OSTI]

DENMARK'S NATIONAL INVENTORY REPORT 2009 Emission Inventories 1990-2007 ­ Submitted under the United INSTITUTE AARHUS UNIVERSITYAU NERI Technical Report no. 724 2009 DENMARK'S NATIONAL INVENTORY REPORT 2009 Emission Inventories 1990-2007 ­ Submitted under the United Nations Framework Convention on Climate Change

74

Materials Science Clean Room Facility at Tulane University (Final Technical Report)  

SciTech Connect (OSTI)

The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

Altiero, Nicholas

2014-10-28T23:59:59.000Z

75

Driving the Nation Toward a Clean Energy Future: Fuels Utilization Program Fact Sheet  

SciTech Connect (OSTI)

The transportation market in the United States is evolving. As the number of vehicles and miles traveled on American roadways continues to grow, the nation is looking toward advanced vehicles and fuels to meet the increasing demand for more energy efficient, environmentally friendly modes of transport. At the National Renewable Energy Laboratory, the Center for Transportation Technologies and Systems' Fuel Utilization Program is doing its part. We're developing and demonstrating engine and fuel technologies that allow alternative and advanced petroleum fuels to compete with their conventional counterparts.

Thomas, J.

2000-12-12T23:59:59.000Z

76

National Nuclear Security Administration Product Aids in Anthrax Clean-up |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.DemonstrateScientistsResourceTopics andNational

77

State and Local Clean Energy Policy Primer: Getting from Here to Clean Electricity with Policy (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Office of Energy Efficiency and Renewable Energy (EERE)

This fact sheet proposes a framework for how states and localities can build policy portfolios by first setting the stage for clean energy in the market with low cost policies, and then growing the market with successive policies until the need for financial incentives can be reduced and eventually eliminated.

78

Final Report for Clean, Reliable, Affordable Energy that Reflects the Values of the Pinoleville Pomo Nation  

SciTech Connect (OSTI)

This report aims to present and analyze information on the potential of renewable energy power systems and electric vehicle charging near the Pinoleville Pomo Nation in Ukiah, California to provide an environmentally-friendly, cost-effective energy and transportation options for development. For each renewable energy option we examine, solar, wind, microhydro, and biogas in this case, we compiled technology and cost information for construction, estimates of energy capacity, and data on electricity exports rates.

Steele, Lenora [Self-Governance Director; Sampsel, Zachary N [Program Director

2014-07-21T23:59:59.000Z

79

National Library of Energy : Main View : Search Results for Keyword: "clean  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuringInformationOfficeneutron

80

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY  

E-Print Network [OSTI]

Department: Department of Policy Analysis Publisher: National Environmental Research Institute Aarhus on Long Range Transboundary Air Pollution due by 15 February 2009. The report contains information)pyrene for the years 1990-2007 and (6) Dioxin and HCB. Further, the report contains infor- mation on background data

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY  

E-Print Network [OSTI]

Department: Department of Policy Analysis Publisher: National Environmental Research Institute Aarhus on Long Range Transboundary Air Pollution due by 15 February 2010. The report contains information)pyrene for the years 1990-2008 and (6) Dioxin and HCB. Further, the report contains infor- mation on background data

82

NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY  

E-Print Network [OSTI]

INTEgRATED MONITORINg AND ASSESSMENT Of AIR pOLLUTION #12;[Blank page] #12;AU NATIONAL ENVIRONMENTAL AND ASSESSMENT OF AIR POLLUTION #12;Data sheet Title: Integrated Monitoring and Assessment of Air Pollution Subtitle: Doctors dissertation (DSc) Author: Ole Hertel Department: Department of Atmospheric Environment

83

EK131/312: Clean Energy Boston University Fall 2014 College of Engineering  

E-Print Network [OSTI]

. In the process we will learn about different clean energy technologies, learn the physical principles solutions to real world problems. Topics will include batteries, biofuels, biomass, combined heat and power, fuel cells, geothermal, landfill gas, photovoltaics, small hydroelectric, solar cooking, solar thermal

Lin, Xi

84

University Partnerships / Academic Alliances | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National

85

University of Rochester | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL toRockyDECEMBER 1of Rochester |

86

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe  

E-Print Network [OSTI]

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe #12;The National Radio Astronomy Observatory is a facility of the National Science Foundation

Groppi, Christopher

87

Sandia National Laboratories: Iowa State University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University Sandia and Partners Complete

88

Australian National University Delegations Category ID: F&S06  

E-Print Network [OSTI]

Delegations SERVICE Service contracts Y 269 Execute service contracts relating to gas, electricity, cleaning

Botea, Adi

89

Computer Science Specimen Curriculum National University of Singapore  

E-Print Network [OSTI]

Computer Science Specimen Curriculum National University of Singapore Fall Semester Junior Year Science Project 3 CS DEPTH Computer Science Depth 3 CS DEPTH Computer Science Depth 3 LAC Liberal Arts MATH ELEC Math Elective 3 CS DEPTH Computer Science Depth 6 CS DEPTH Computer Science Depth 6 OPEN ELEC

Simaan, Nabil

90

National Geospatial Digital Archive University of California at Santa Barbara  

E-Print Network [OSTI]

National Geospatial Digital Archive Greg Jane University of California at Santa Barbara #12;Greg Jane Geospatial data preservation workshop 2006-10-27 2 Overview One of 8 NDIIPP projects funded of geospatial data Preservation architecture & prototype archive single-digit terabytes CaSIL: GIS

Jane, Greg

91

Biomedical Engineering Specimen Curriculum National University of Ireland, Galway  

E-Print Network [OSTI]

Biomedical Engineering Specimen Curriculum National University of Ireland, Galway Fall Semester ELEC Sci, Engineering, Math Elective 6* 16 Senior Year Fall VU Spring VU BME 271 Biomedical Seminar 1 BME 273 Design of Medical Engineering Systems II 3 BME 255w Biomedical Engineering Lab 3 18 SEM

Simaan, Nabil

92

e-Learning Seoul National University e-Teaching & Learning  

E-Print Network [OSTI]

e-Learning Seoul National University e-Teaching & Learning http://etl.snu.ac.kr #12;about eTL eTL ? eTL(e-Teaching & Learning) , , , , . e , , , , , , , , , (, ) , SSO(Single Sign On) , , #12;e-Teaching & Learning System 4 1. Moodle Moodle Modular Object

Bahk, Saewoong

93

National Environmental Research Institute University of Aarhus . Denmark  

E-Print Network [OSTI]

: Department of Policy Analysis Publisher: National Environmental Research Institute University of Aarhus and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. A consider- able decrease

94

AUSTRALIAN NATIONAL UNIVERSITY DEPART~ffiNT OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

AUSTRALIAN NATIONAL UNIVERSITY DEPART~ffiNT OF NUCLEAR PHYSICS 14UD Tfu~K OPENING REPORT No.4l 15th that came to us, (including fuzzballs), and tests that we carried out (40/8). Later, we evaluated that we were unable to pull open the door of the storage vessel because of partial vacuum inside

Chen, Ying

95

Clean Energy Infrastructure Educational Initiative  

SciTech Connect (OSTI)

The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master??s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master??s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master??s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

Hallinan, Kevin; Menart, James; Gilbert, Robert

2012-08-31T23:59:59.000Z

96

Stirling engine research at national and university laboratories in Japan  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

Hane, G.J.; Hutchinson, R.A.

1987-09-01T23:59:59.000Z

97

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Clean Energy Opportunity Forum  

E-Print Network [OSTI]

and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Clean Energy Opportunity Forum-47138 #12;National Renewable Energy Laboratory Innovation for Our Energy Future The Clean Energy Opportunity Renewable Energy Laboratory Innovation for Our Energy Future CO Growth Forum Applicants: Technologies

98

An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory  

SciTech Connect (OSTI)

Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ``best alternatives``: Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases.

Isakson, K.; Vessell, A.L.

1994-07-01T23:59:59.000Z

99

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

100

Department of Energy Awards $2 Million for National University Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S.Development Projects |Reserve |Education atProjects |Business

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cleaning on a Shoestring.  

E-Print Network [OSTI]

DOC , TA24S.7 873 0.1293 CLEANING ON A SHOESTRING Extension Home Management Specialists The Texas A&M University System Cleaning on a shoestring can be approached two ways - from the standpoint of time or money. It is possible to create your... own home-care products or to purchase commercial products. Home-created products often are less expensive but require more time to make. Many cleaning products available today are basic ingredients that have been premixed, perfumed and packaged...

Anonymous,

1980-01-01T23:59:59.000Z

102

National Computational Infrastructure for Lattice Gauge Theory SciDAC-2 Closeout Report Indiana University Component  

SciTech Connect (OSTI)

This is the closeout report for the Indiana University portion of the National Computational Infrastructure for Lattice Gauge Theory project supported by the United States Department of Energy under the SciDAC program. It includes information about activities at Indian University, the University of Arizona, and the University of Utah, as those three universities coordinated their activities.

Gottlieb, Steven Arthur [Indiana University; DeTar, Carleton [University of Utah; Tousaint, Doug [University of Arizona

2014-07-24T23:59:59.000Z

103

Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouthFundingInitiativeReports

104

Clean Cities  

Broader source: Energy.gov [DOE]

Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

105

South African National Biodiversity Institute and University of Cape Town (South Africa) Postdoctoral Fellow (1position)  

E-Print Network [OSTI]

South African National Biodiversity Institute and University of Cape Town (South Africa from designated groups in terms of South Africa's employment equity targets will have preference) Postdoctoral Fellow (1position) (Two year Contract) The South African National Biodiversity Institute

Jarrett, Thomas H.

106

Seoul National UniversitySeoul National University http://bp.snu.ac.kr1 The Effect of TiCl4-Treated TiO2  

E-Print Network [OSTI]

TiO2 Compact Layer on the Performance of Dye-Sensitized Solar Cell #12;Seoul National UniversitySeoul National University http://bp.snu.ac.kr Dye-Sensitized Solar Cell 2 Schematic Diagram of the Electron Flow by the TiO2 compact layer. Electrolyte Hydrolysis of TiCl4 Solution Dye-Coated TiO2 Back Electron Transfere

Park, Byungwoo

107

R E P O R T SThe National High Magnetic Field Laboratory Operated by: FLORIDA STATE UNIVERSITY UNIVERSITY OF FLORIDA LOS ALAMOS NATIONAL LABORATORY  

E-Print Network [OSTI]

· UNIVERSITY OF FLORIDA · LOS ALAMOS NATIONAL LABORATORY CAPS continued on page 4 CIRL/ST&U continued on page 5 is in the works at Innovation Park (between the Magnet Lab and the College of Engineering) that will provide CAPS S ALAMOS STATEFLOR IDA UN IVE R SITY #12;2 From the Director's Desk Jack Crow National Science Board

Weston, Ken

108

Clean Cities Regional Support & Petroleum Displacement Awards  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Regional Support & Petroleum Displacement Awards Mike Scarpino & Kay Kelly National Energy Technology Laboratory 052009 This presentation does not contain any...

109

Clean Energy Manufacturing Initiative: Increasing American Competitive...  

Broader source: Energy.gov (indexed) [DOE]

for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

110

Seoul National University http://bp.snu.ac.kr The Role of Carbon Incorporation in  

E-Print Network [OSTI]

O2 · Hydrothermal followed by carbonization at 500°C J. Phys. Chem. C 113, 20504 (2009). J. PhysSeoul National University http://bp.snu.ac.kr The Role of Carbon Incorporation in SnO2 of cracks during cycling Sn-Based Oxide Li Metal Carbon-Coated SnO2 #12;Seoul National University http

Park, Byungwoo

111

Department of Energy Announces Third Grant for U.S.-China Clean...  

Energy Savers [EERE]

by the University of Michigan to advance technologies for clean vehicles and one led by West Virginia University to focus on the next generation of clean coal technologies,...

112

The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initiated in 1974 to identify, investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940  

E-Print Network [OSTI]

, investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940s, 1950s, and 1960s. Activities at the sites were performed by the Manhattan Engineer District or under the Atomic Energy Commission. Both were predecessors

US Army Corps of Engineers

113

IDEA Clean Energy Application Center  

SciTech Connect (OSTI)

The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nations energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEACs. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEACs for multi building, multi-use projects. The award was instrumental in the development of a first-order screening/feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEACs for EPAs Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the awards incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

Thornton, Robert

2013-09-30T23:59:59.000Z

114

Self-Cleaning CSP Collectors  

Broader source: Energy.gov [DOE]

This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

115

Advance Standing Reference Guide AUSTRALIAN NATIONAL UNIVERSITY TEMASEK POLYTECHNIC  

E-Print Network [OSTI]

Intelligent Building Technology Clean Energy Aerospace Electronics 4 yrs 2 yrs Provided students continue at ANU Pre-Requisites Bachelor of Information Technology Computer Engineering Internet Computing Info-Communication Information Technology Mobile and Wireless Computing Cyber and Digital Security 3 yrs 1.5 yrs 1.5 years 3

Zhou, Xiangyun "Sean"

116

CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO)Burundi: EnergyCECG Maine,CHP

117

WEST VIRGINIA UNIVERSITY and NATIONAL RADIO ASTRONOMY OBSERVATORY APPLICATION FOR RARECATS PROGRAM Deadline for postmark of this application and supporting  

E-Print Network [OSTI]

WEST VIRGINIA UNIVERSITY and NATIONAL RADIO ASTRONOMY OBSERVATORY APPLICATION FOR RARECATS PROGRAM 604 Allen Hall, PO Box 6122 West Virginia University Morgantown, WV 26506-6122 #12;

Groppi, Christopher

118

TheGovernanceofCleanDevelopment WorkingPaper003December2009  

E-Print Network [OSTI]

DevelopmentBank ASEAN AssociationofSoutheastAsianNations CDM CleanDevelopmentMechanism CER Certified

Watson, Andrew

119

National Environmental Research Institute University of Aarhus . Denmark  

E-Print Network [OSTI]

. 667, 2008 Denmark's National Inventory Report 2008 Emission Inventories 1990-2006 ­ Submitted under Inventory Report 2008 Emission Inventories 1990-2006 ­ Submitted under the United Nations Framework VKHHW Series title and no.: NERI Technical Report No. 667 Title: Denmark's National Inventory Report

120

Puget Sound Clean Cities Petroleum Reduction Project  

Broader source: Energy.gov (indexed) [DOE]

3 universities, 9 private businesses Overview Puget Sound Clean Cities Coalition Petroleum Reduction Project - DE-EE0002020 Project Objectives: * Reduce petroleum use in the...

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Environmental Compliance Guide. Guidance manual for Department of Energy compliance with the Clean Water Act: National Pollutant Discharge Elimination System (NPDES)  

SciTech Connect (OSTI)

This manual provides general guidance for Department of Energy (DOE) officials for complying with Sect. 402 of the Clean Water Act (CWA) of 1977 and amendments. Section 402 authorizes the US Environmental Protection Agency (EPA) or states with EPA approved programs to issue National Pollutant Discharge Elimination System (NPDES) permits for the direct discharge of waste from a point source into waters of the United States. Although the nature of a project dictates the exact information requirements, every project has similar information requirements on the environmental setting, type of discharge(s), characterization of effluent, and description of operations and wastewater treatment. Additional information requirements for projects with ocean discharges, thermal discharges, and cooling water intakes are discussed. Guidance is provided in this manual on general methods for collecting, analyzing, and presenting information for an NPDES permit application. The NPDES program interacts with many sections of the CWA; therefore, background material on pertinent areas such as effluent limitations, water quality standards, toxic substances, and nonpoint source pollutants is included in this manual. Modifications, variances, and extensions applicable to NPDES permits are also discussed.

Not Available

1982-07-01T23:59:59.000Z

122

National Competition Names University of Rochester for Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

men and one young woman looking at the camera. The winning team in this year's National Geothermal Student Competition - the Energy Department's intercollegiate contest that...

123

National Conference on Undergraduate Research University of Montana  

E-Print Network [OSTI]

ENERGY REGULATION OF HIV-1 INFECTED HUMAN MACROPHAGES Baek Kim Microbiology and Immunology #12;National Physics & Astronomy Emilia Sola-Gracia ORNITHODIPLOSTOMUM PTYCHOCHEILUS (OP) METACERCARIAE EFFECTS

Mahon, Bradford Z.

124

Time Series Analysis c 2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 708  

E-Print Network [OSTI]

be estimated by statistical techniques. c 2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 717 GARCH heteroskedastic (GARCH) process. The simplest GARCH(1, 1) process adds a2V 2 t-1 to the ARCH(1) process

Lyuu, Yuh-Dauh

125

National Environmental Research Institute University of Aarhus . Denmark  

E-Print Network [OSTI]

. 632, 2007 Denmark's NationaI Inventory Report 2007 Emission Inventories ­ Submitted under the UnitedI Inventory Report 2007 Emission Inventories ­ Submitted under the United Nations Framework Convention.: NERI Technical Report No. 632 Title: Denmark's National Inventory Report 2007 Subtitle: Emission

126

Slide ICentre for Development of Teaching and Learning National University of Singapore  

E-Print Network [OSTI]

-C D T L S tudent IT w orkshops- Slide ICentre for Development of Teaching and Learning National IT w orkshops- Slide ICentre for Development of Teaching and Learning National University of SingaporePoint presentation based on styles from report Workshop Objectives: #12;-C D T L S tudent IT w orkshops- Slide

Chaudhuri, Sanjay

127

Utrecht University Academic Integrity Complaints Procedure This complaints procedure follows the national Model Complaints Procedure Academic  

E-Print Network [OSTI]

integrity or its researchers and guarantees it will investigate all well-founded suspicions of misconduct1 Utrecht University Academic Integrity Complaints Procedure This complaints procedure follows the national Model Complaints Procedure Academic Integrity of the joint Dutch universities. The model

Utrecht, Universiteit

128

"Leveraging University Expertise to Inform Better Policy" Session One: The Role of Freight Transportation in Achieving Clean Air,  

E-Print Network [OSTI]

of Energy for 4 years, and taught at the Independent University of Bangladesh and the University of Maryland is the Assistant Chief of the Stationary Source Division for the California Air Resources Board. He is responsible experience with the Air Resources Board. He is a graduate of UCLA with a degree in Chemical Engineering

California at Davis, University of

129

Clean Coal Technology Programs: Program Update 2009  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nations energy security and reliability, while protecting the environment using the nations most abundant energy resourcecoal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

130

Sandia National Laboratories: Clean Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacility CentralCerium

131

Sandia National Laboratories: Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacility CentralCeriumEnergy

132

Argonne National Laboratory is managed by The University of Chicago for the U.S.Department of Energy  

E-Print Network [OSTI]

Argonne National Laboratory is managed by The University of Chicago for the UTechnology Division Argonne National Laboratory #12;Disclaimer This report was prepared as an account of work States Government or any agency thereof, Argonne National Laboratory, or The University of Chicago. About

Harilal, S. S.

133

Clean Cities Reaches Across the Sea | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Sea Clean Cities Reaches Across the Sea May 27, 2011 - 3:31pm Addthis Dennis A. Smith Director, National Clean Cities Countries across the globe have a diversity of...

134
135

International Clean Energy Coalition  

SciTech Connect (OSTI)

In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

Erin Skootsky; Matt Gardner; Bevan Flansburgh

2010-09-28T23:59:59.000Z

136

University of Tennessee, USA Pacific Northwest National Laboratory,  

E-Print Network [OSTI]

Georgia Institute of Technology and Emory University, USA Royal Institute of Technology, Sweden driven by ultrasonic wave. Science, 2007, 316: 102­105 3 Qin Y, Wang XD, Wang ZL. Microfiber, Wang ZL. Self-powered nanowire devices. Nat Nanotech, 2010, 5: 366­373 5 Zhu G, Yang RS, Wang SH, Wang

Wang, Zhong L.

137

DARPA's HPCS Program: History, Models, Tools, Languages Jack Dongarra, University of Tennessee and Oak Ridge National Lab  

E-Print Network [OSTI]

of Tennessee and Oak Ridge National Lab Robert Graybill, USC Information Sciences Institute William Harrod, University of California ­ San Diego Jeffery Vetter, Oak Ridge National Laboratory Katherine Yelick, Lawrence Berkeley National Laboratory Sadaf Alam, Oak Ridge National Laboratory Roy Campbell, Army Research

Dongarra, Jack

138

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Energy Savers [EERE]

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

139

Clean Cities 2010 Annual Metrics Report  

SciTech Connect (OSTI)

This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

Johnson, C.

2012-10-01T23:59:59.000Z

140

Clean Cities 2011 Annual Metrics Report  

SciTech Connect (OSTI)

This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

Johnson, C.

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clean Energy? Can Do! ANZSES 2006 1 of 7 Effect of Paraboloidal Dish Structure on the Wind near a  

E-Print Network [OSTI]

Clean Energy? ­ Can Do! ­ ANZSES 2006 1 of 7 Effect of Paraboloidal Dish Structure on the Wind near a Cavity Receiver S. Paitoonsurikarn and K. Lovegrove Centre for Sustainable Energy Systems, Department of Engineering, Australian National University, Canberra ACT 0200, AUSTRALIA E-mail: sawat

142

Clean Cities: Detroit Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities coalition Contact Information Sean Reed (Acting) 734-585-5720 x18 reed@cec-mi.org Coalition Website Clean Cities Coordinator Sean Reed (Acting) Sean Reed (Acting) is...

143

NIF-0205-10331 Clean Energy  

E-Print Network [OSTI]

Lawrence Livermore National Laboratory--1960 3 days later Lawrence Livermore National Laboratory--1960 3P8430 #12;NIF-0205-10331 15EIM/sb P8434 Clean Energy: Humankind's Challenge #12;The National Ignition Facility P8435NIF-0105-10154-r2 31EIM/sb Magnetic Fusion Energy Inertial Fusion Energy Biggest

144

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

145

Clean Cities Fact Sheet  

SciTech Connect (OSTI)

This is a routine revision of a general fact sheet that describes the Clean Cities partnership efforts and includes a list of Clean Cities coordinators.

Not Available

2005-09-01T23:59:59.000Z

146

CT Clean Energy Communities  

Broader source: Energy.gov [DOE]

The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

147

CT Clean Energy Communities  

Broader source: Energy.gov [DOE]

The Clean Energy Communities program, offered by the Clean Energy Finance and Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

148

University Research & National Labs | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014NationalUniversity Partnerships UniversityUniversity

149

Specification and Design of Reactive Systems B.S. (National Chiao-Tung University) 1991  

E-Print Network [OSTI]

of Reactive Systems by Bilung Lee Doctor of Philosophy in Engineering ­ Electrical Engineering and ComputerSpecification and Design of Reactive Systems by Bilung Lee B.S. (National Chiao-Tung University of the requirements for the degree of Doctor of Philosophy in Engineering ­ Electrical Engineering and Computer

150

Solar Energy Research at the Australian National University A.W. Blakers  

E-Print Network [OSTI]

Solar Energy Research at the Australian National University A.W. Blakers Centre for Sustainable in the areas of photovoltaics and solar thermal energy. 1. INTRODUCTION The Centre for Sustainable Energy in photovoltaics and solar thermal energy. The Centre currently has 33 staff and 8 PhD students and an annual

151

IN FORMATION PU BLIC ATION SC H EME TITLE Agency plan for The Australian National University  

E-Print Network [OSTI]

1 | IN FORMATION PU BLIC ATION SC H EME TITLE Agency plan for The Australian National University on its website. It will be directly accessible from the webpage foi.anu.edu.au and be identified possible, provide online content that can be searched by web browsers Provide a search function

152

On fair pricing of emission-related derivatives National University of Singapore  

E-Print Network [OSTI]

On fair pricing of emission-related derivatives Juri Hinz National University of Singapore of such derivatives. Key words: environmental risk, energy economics, emission trading, emis- sion derivatives 1 #12 emissions and adjust allowance positions. In the following sections, we address the problem of fair pricing

Chaudhuri, Sanjay

153

University of Washington Focus the Nation Panel: Climate Change Impacts on Indigenous Populations  

E-Print Network [OSTI]

biodiesel and solar energy), and they have revised their commercial dredging policy so that only vacuum that because of their dependence on local resources and a life-way that is adapted to the cold arctic climateUniversity of Washington Focus the Nation Panel: Climate Change Impacts on Indigenous Populations 1

Rigor, Ignatius G.

154

The National Energy Policy Institute (NEPI) at The University of Tulsa (FINAL REPORT)  

SciTech Connect (OSTI)

NEPI, a non-profit organization located at The University of Tulsa (TU), was established to develop and disseminate national energy policy recommendations. Research under this grant covered a wide variety of projects, including research into the future of nuclear power, oil market pricing, and the feasibility of biofuels.

Blais, Roger [The University of Tulsa

2013-10-31T23:59:59.000Z

155

Australian National University Job-Specific Delegations Profile: Executive Director (Administration and Planning)  

E-Print Network [OSTI]

Australian National University Job-Specific Delegations Profile: Executive Director (Administration Submit work requests for maintenance and small works funded against ledger segment 94 (Maintenance Levy Maintenance work for all areas within available Levy funds DS Y 220 Purchase goods and services (including

Botea, Adi

156

What is the Grid? A Three Point Checklist Argonne National Laboratory & University of Chicago  

E-Print Network [OSTI]

What is the Grid? A Three Point Checklist Ian Foster Argonne National Laboratory & University in the Grid makes it timely to revisit the question: What is the Grid, anyway? I propose here a three-point checklist for determining whether a system is a Grid. I also discuss the critical role that standards must

Foster, Ian

157

SEOUL NATIONAL UNIVERSITY 2 Gwanaksa Guide2 Gwanaksa Guide2 Gwanaksa Guide  

E-Print Network [OSTI]

Guide2 Gwanaksa Guide2 Gwanaksa Guide Gwanaksa is located in the northeastern side of the Seoul National University main campus. It includes 18 dormitory buildings, where Buildings 905, 919, 921-926 are for undergraduate students and Buildings 900-905 and 918 are for graduate students. Administrative o ce, Chief RA O

158

President's Energy Budget Invests in Innovation, Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

research at DOE's National Laboratories. Expands the use of clean, renewable energy sources such as solar, wind, and geothermal while supporting the Administration's...

159

NREL: Jobs and Economic Competitiveness - Clean Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Energy Innovation Analysis With increased global competition for market share in alternative energy, innovation in energy will be a major contributor to national economic...

160

Y-12 cleaning technology licensed by Knoxville engineering firm...  

National Nuclear Security Administration (NNSA)

cleaning technology licensed by Knoxville engineering firm | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Achieving High-Effiency Clean Ccombustion in Diesel Engines  

Broader source: Energy.gov (indexed) [DOE]

Achieving High-Efficiency Clean Combustion in Diesel Engines Robert M. Wagner, C. Scott Sluder, John M. Storey, Sam A. Lewis Oak Ridge National Laboratory Diesel Engine Emissions...

162

Clean coal technology programs: program update 2006  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

NONE

2006-09-15T23:59:59.000Z

163

35 Years of Innovation - Leading the Way to a Clean Energy Future (Brochure)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, our researchers have built unparalleled expertise in renewable energy technologies while supporting the nation's vision that wind and water can provide clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and universities around the world seeking to create a better, more sustainable future.

Not Available

2014-12-01T23:59:59.000Z

164

Looking for alternatives to PACE for your Clean  

E-Print Network [OSTI]

Program for Resource Efficient Communities Version 2.0 October 2010 Options for Clean Energy FinancingLooking for alternatives to PACE for your Clean Energy Financing Program? Start here. Options for Clean Energy Financing Programs Scalable Solutions for Florida's Local Governments University of Florida

Watson, Craig A.

165

OLCF Researcher to Work with Clean Combustion Center at Saudi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Engine Knock Research Researchers at the King Abdullah University of Science and Technology Clean Combustion Research Center and ORNL are using supercomputer simulations...

166

Clean Energy Portfolio Goal  

Broader source: Energy.gov [DOE]

In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied...

167

What Is Clean Cities?  

SciTech Connect (OSTI)

This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2007-08-01T23:59:59.000Z

168

What Is Clean Cities?  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2008-04-01T23:59:59.000Z

169

What is Clean Cities?  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2008-09-01T23:59:59.000Z

170

THE UNIVERSITY OF CHICAGO/ARGONNE NATIONAL LABORATORY CHICAGO: 5735 S. ELLIS AVENUE, SEARLE BLDG., CHICAGO, IL 60637  

E-Print Network [OSTI]

THE UNIVERSITY OF CHICAGO/ARGONNE NATIONAL LABORATORY CHICAGO: 5735 S. ELLIS AVENUE, SEARLE BLDG., CHICAGO, IL 60637 ARGONNE: 9700 S. CASS AVE, TCS BLDG., ARGONNE, IL 60439 PHONE: 773-834-6812 FAX: 773

Droegemeier, Kelvin K.

171

State perspectives on clean coal technology deployment  

SciTech Connect (OSTI)

State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

1997-12-31T23:59:59.000Z

172

Clean Cities: St. Louis Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis Clean Cities

173

Clean Cities: Tucson Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson Clean Cities

174

Clean Cities: Twin Cities Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson CleanTwin

175

National Energy Awareness Month  

Broader source: Energy.gov [DOE]

October is National Energy Awareness Month. It's also a chance to talk about our countrys energy security and its clean energy future.

176

ScienceWiseScience Magazine of the auStralian national univerSity -november/December 2008  

E-Print Network [OSTI]

for storing solar energy #12;ScienceWise Volume5No.6 Science Magazine of the australian national university Developing a practical system for storing solar energy solar concentrator dish at the Australian national with the collection of energy, others with it's storage and use. Australia is in an enviably strong position

Chen, Ying

177

Cleaning on a Shoestring.  

E-Print Network [OSTI]

or copper object is cleaned, a thin coat of tung oil may be applied to give it a soft luster. 4 BUTCHER BLOCK Most butcher blocks are made of solid hard maple and are, therefore, relatively easy to care for. Clean when necessary with warm water..., but fortunately, it can be cleaned with water and a sponge. If a build up of soap scum occurs, add one teaspoon washing soda or packaged water softener to the cleaning solution. Nonabrasive cleaning powders may also be used. Be sure to remove all traces...

McCutcheon, Linda Flowers

1982-01-01T23:59:59.000Z

178

Sensors & Measurement | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors & Measurement...

179

EDIN-USVI Clean Energy Quarterly: Volume 1 November 2010, Energy Development in Island Nations, U.S. Virgin Islands (Newsletter)  

SciTech Connect (OSTI)

This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the five working groups, and EDIN-sponsored renewable energy and energy efficiency projects.

Not Available

2010-11-01T23:59:59.000Z

180

EDIN-USVI Clean Energy Quarterly: Volume 1, Issue 2, March 2011, Energy Development in Island Nations, U.S. Virgin Islands (Newsletter)  

SciTech Connect (OSTI)

This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the five working groups, and project-related renewable energy and energy efficiency projects.

Not Available

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Clean Transportation | www.nccleantech.ncsu.edu North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831| www.nccleantech.ncsu.edu | Nov. `13  

E-Print Network [OSTI]

a mobile phone with NearE85, www.neare85.com. Locate alternative fuels with the Alternative Fuels Data Center, www.afdc.energy.gov. This document is supported in part through the Clean Fuel Advanced Motor Fleet Management's E85 fueling site on Blue Ridge Road in Raleigh. State agencies, colleges

182

Financing Public Sector Projects with Clean Renewable Energy Bonds; Fact Sheet Series on Financing Renewable Energy Projects, National Renewable Energy Laboratory (NREL)  

SciTech Connect (OSTI)

Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance renewable energy projects. The federal government lowers the cost of debt by providing a tax credit to the bondholder in lieu of interest payments from the issuer. Because CREBs are theoretically interest free, they may be more attractive than traditional tax-exempt municipal bonds. In February 2009, Congress appropriated a total of $2.4 billion for the "New CREBs" program. No more than one-third of the budget may be allocated to each of the eligible entities: governmental bodies, electric cooperatives, and public power providers. Applications for this round of "New CREBs" were due to the Internal Revenue Service (IRS) on August 4, 2009. There is no indication Congress will extend the CREBs program; thus going forward, only projects that are approved under the 2009 round will be able to issue CREBs. This factsheet explains the CREBs mechanism and provides guidance on procedures related to issuing CREBs.

Kreycik, C.; Couglin, J.

2009-12-01T23:59:59.000Z

183

Ris National Laboratory Technical University of Denmark November 2007 Ris Energy Report 6  

E-Print Network [OSTI]

CLEaR ENERgy 58 7.8 FuSIoN ENERgy 63 7.9 gEotHERmaL ENERgy 67 7.10 HyDRo, oCEaN, WaVE aND tIDaL 69 8 INNoRisø National Laboratory · Technical University of Denmark November 2007 Risø Energy Report 6 Future options for energy technologies Edited by Hans Larsen and Leif Sønderberg Petersen Risø-R-1612(EN

184

Evaluation of Ultra Clean Fuels from Natural Gas  

SciTech Connect (OSTI)

ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

2006-02-28T23:59:59.000Z

185

Cultivating clean energy in Mali: policy analysis and livelihood impacts of Jatropha curcas  

E-Print Network [OSTI]

Cultivating clean energy in Mali: policy analysis and livelihood impacts of Jatropha curcas Nicola;3 Cultivating clean energy in Mali: policy analysis and livelihood impacts of Jatropha curcas © Nicola Favretto politics with Jatropha: national energy policy and stakeholders

Mound, Jon

186

Project Profile: Low-Cost Self-Cleaning Reflector Coatings for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Self-Cleaning Reflector Coatings for CSP Collectors Project Profile: Low-Cost Self-Cleaning Reflector Coatings for CSP Collectors Oak Ridge National Laboratory logo The Oak...

187

C. Engelmann -University of Reading and Oak Ridge National Laboratory High Availability for Ultra-scale Scientific High-End Computing 1/48  

E-Print Network [OSTI]

June, 2006 C. Engelmann - University of Reading and Oak Ridge National Laboratory High AvailabilityAH, UK 2 Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, TN, USA #12;June, 2006 C. Engelmann - University of Reading and Oak Ridge National Laboratory High

Engelmann, Christian

188

National Parks Move Forward on Sustainable Transportation in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation in Partnership with Clean Cities National Parks Move Forward on Sustainable Transportation in Partnership with Clean Cities March 25, 2015 - 1:13pm...

189

University Research National Labs | U.S. DOE Office of Science...  

Office of Science (SC) Website

New Jersey Princeton University External link Rutgers University External link New Mexico University of New Mexico External link New York Columbia University External link...

190

Clean Technology Evaluation & Workforce Development Program  

SciTech Connect (OSTI)

The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

Patricia Glaza

2012-12-01T23:59:59.000Z

191

A University Consortium on Low Temperature Combustion (LTC) for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC...

192

Clean Cities Overview  

Broader source: Energy.gov (indexed) [DOE]

were funded to increase availability and awareness of alternative fuels and advanced technology vehicles. Clean Cities 11 * Tucson Coalition - moves Christmas tree across US...

193

What is Clean Cities?  

SciTech Connect (OSTI)

Clean Cities fact sheet describe this DOE program, which deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2006-07-01T23:59:59.000Z

194

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

195

Clean Cities: Denver Metro Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver Metro Clean

196

Clean Cities: Greater Philadelphia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven Clean

197

Clean Cities: Kentucky Clean Cities Partnership coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentucky Clean Cities

198

Clean Cities: Maine Clean Communities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentuckyLosMaine Clean

199

Clean Cities: Northern Colorado Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth Dakota CleanNorthern

200

Clean Cities: South Shore Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore Clean Cities Coalition The

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Clean Cities: Treasure Valley Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. LouisTampa

202

Clean Cities: Utah Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson

203

Clean Cities: Virginia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.TucsonValley

204

Clean Cities: Wisconsin Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington Clean

205

Clean Cities: Southern California Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCalifornia Clean

206

Cleaning Contaminated Water at Fukushima  

SciTech Connect (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2013-11-21T23:59:59.000Z

207

Cleaning Contaminated Water at Fukushima  

ScienceCinema (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2014-02-26T23:59:59.000Z

208

Clean Transportation | Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org 8/7/12  

E-Print Network [OSTI]

through sub- Advancing Clean Energy for a Sustainable Economy Clean Fuel Advanced Technology (CFAT) 2010Clean Transportation | Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org 8/7/12 Clean Fuel Advanced Technology (CFAT) Project 2006-20012: Administered by the NC Solar Center

209

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org 9/17/12 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

.cleantransportation.org 9/17/12 Advancing Clean Energy for a Sustainable Economy Clean Transportation | Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org Clean Fuel Advanced Technology (CFAT) 2010-2012: Iredell County Sheriff Propane (LPG) Vehicle Summary Clean Fuel Advanced Technology (CFAT) Project 2006

210

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.nccleantech.ncsu.edu 9/17/12 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

.nccleantech.ncsu.edu 9/17/12 Advancing Clean Energy for a Sustainable Economy Clean Transportation | www.nccleantech.ncsu.edu Clean Fuel Advanced Technology (CFAT) 2010-2012: Iredell County Sheriff Propane (LPG) Vehicle Summary Clean Fuel Advanced Technology (CFAT) Project 2006-2012: Administered by the NC Solar Center at NC State

211

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report  

Broader source: Energy.gov [DOE]

Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

212

GovernanceTheMissingLinkintheClean DevelopmentDebate  

E-Print Network [OSTI]

and affordable energy. Given the scale of resources required to bring about a transition to a lowcarbon economyCDMprojects.Wecannotafford forthecleandevelopmentagendatobedonorratherthandemanddriven.It is essential to build national energy and development strategies that TheGovernanceofClean Governance­TheMissingLinkintheClean DevelopmentDebate The question of reform and future

Watson, Andrew

213

E-Print Network 3.0 - accident clean-up workers Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 UNIVERSITY OF SOUTH CAROLINA CHEMICAL SPILL CLEAN-UP PROCEDURES Summary: workers are neither expected, nor allowed, to clean up chemical spills...

214

The Radiance Process: Water and Chemical Free Cleaning  

E-Print Network [OSTI]

Radiance Services Company manages a new technology called the Radiance Process, a dry non-toxic technology for surface cleaning. The Radiance Process received the National Pollution Prevention Roundtable's 1997 Most Valuable Pollution Prevention...

Robison, J. H.

215

The C3E Women in Clean Energy Symposium  

ScienceCinema (OSTI)

The Clean Energy Education & Empowerment initiative (C3E), provides a forum for thought leaders across the clean energy sector to devise innovative solutions to the nation's most pressing energy challenges. This year, the symposium was held at MIT's Media Lab in Cambridge, MA, on September 19-20, 2013. What sets the annual conference apart is its focus on building a strong community of professionals dedicated to advancing more women leaders in clean energy fields. By working to leverage the skills, talents and perspectives of women, the symposium helps to better position the U.S. to lead the global clean energy revolution.

Saylors-Laster, Kim; Kirsch, Emily; Brown, Sandra; Jordan, Rhonda; Mukherjee, Anuradha; Martin, Cheryl; Madden, Alice; Araujo, Kathy

2014-01-10T23:59:59.000Z

216

The C3E Women in Clean Energy Symposium  

SciTech Connect (OSTI)

The Clean Energy Education & Empowerment initiative (C3E), provides a forum for thought leaders across the clean energy sector to devise innovative solutions to the nation's most pressing energy challenges. This year, the symposium was held at MIT's Media Lab in Cambridge, MA, on September 19-20, 2013. What sets the annual conference apart is its focus on building a strong community of professionals dedicated to advancing more women leaders in clean energy fields. By working to leverage the skills, talents and perspectives of women, the symposium helps to better position the U.S. to lead the global clean energy revolution.

Saylors-Laster, Kim; Kirsch, Emily; Brown, Sandra; Jordan, Rhonda; Mukherjee, Anuradha; Martin, Cheryl; Madden, Alice; Araujo, Kathy

2013-09-30T23:59:59.000Z

217

Clean Cities Education & Outreach Activities  

Broader source: Energy.gov (indexed) [DOE]

information. Project ID: TI002 Clean Cities Education & Outreach Activities Kay L. Kelly U.S. Department of Energy Golden Field Office June 8, 2010 Clean Cities Education &...

218

Keeping condensers clean  

SciTech Connect (OSTI)

The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

Wicker, K.

2006-04-15T23:59:59.000Z

219

Cleaning method and apparatus  

DOE Patents [OSTI]

A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

Jackson, D.D.; Hollen, R.M.

1981-02-27T23:59:59.000Z

220

Clean Energy Alliance Expansion Continues http://www.mmdnewswire.com/pdf-86054/clean-energy-alliance-expansion-continues.pdf[2/3/2012 12:13:14 PM  

E-Print Network [OSTI]

practices and resources to support clean energy technology commercialization. Incubator members of CEA, to assist emerging clean energy technology companies in the commercialization process. Both new CEA members commercialization of university inventions." Jason Zielke, Vice President of Programs and Technology at the Clean

Wang, Deli

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities Coalition

222

Clean Cities: Sacramento Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities

223

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean

224

Clean Cities: Southern Colorado Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCalifornia

225

New Geothermal Data System Could Open Up Clean-Energy Reserves...  

Broader source: Energy.gov (indexed) [DOE]

New geothermal data could open up clean energy reserves nationwide. Scientific American reported that the National Geothermal Data System is helping to isolate geothermal...

226

Table 1. A survey of bicycle experience from 208 National Taiwan University students who use or have used a bicycle  

E-Print Network [OSTI]

Table 1. A survey of bicycle experience from 208 National Taiwan University students who use or have used a bicycle Questions Avg. Answer What is the total period that you ride a bike in campus? 2 and Participatory Sensing ABSTRACT Bicycle theft has been a well-known issue for many years. This study presents

Ouhyoung, Ming

227

Clean Energy Works (Oregon)  

Broader source: Energy.gov [DOE]

Clean Energy Works began in 2009 as a pilot program run by the City of Portland. In 2010, the US department of Energy awarded $20 million to create a statewide nonprofit to expand the program...

228

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D isfocused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

229

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

230

#CleanTechNow  

SciTech Connect (OSTI)

Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

Moniz, Ernest

2013-09-17T23:59:59.000Z

231

#CleanTechNow  

ScienceCinema (OSTI)

Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

Moniz, Ernest

2014-01-10T23:59:59.000Z

232

NREL's Clean Energy Policy Analyses Project: 2009 U.S. State  

E-Print Network [OSTI]

national-scale data regarding clean energy--including pricing and market informationNREL's Clean Energy Policy Analyses Project: 2009 U.S. State Clean Energy Data Book OCTOBER 2010 Energy Efficiency & Renewable Energy #12;Acknowledgments This report was produced by Rachel Gelman

233

What is Clean Cities? (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

Not Available

2011-03-01T23:59:59.000Z

234

Verification, Monitoring, and Certification of Clean Energy Project (Texas)  

Broader source: Energy.gov [DOE]

The Railroad Commission of Texas has the authority to certify a project as a clean energy project. An applicant is responsible for contracting with the Bureau of Economic Geology of The University...

235

Clean Transportation | Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org 9/17/12  

E-Print Network [OSTI]

in an liquefied petroleum gas (LPG) sub-award with the Iredell Advancing Clean Energy for a Sustainable EconomyClean Transportation | Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org 9/17/12 Clean Fuel Advanced Technology (CFAT) Project 2006-20012: Administered by the NC Solar

236

Clean Energy Research Areas | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonClean EnergyHorse

237

Clean Cities: Arkansas Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas Clean Cities

238

Clean Cities: Central Coast Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas CleanCapitol

239

Clean Cities: Clean Cities-Georgia coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansasCentralChicagoClean

240

Clean Cities: Clean Fuels Ohio coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition The

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Clean Cities: Detroit Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver Metro

242

Clean Cities: East Tennessee Clean Fuels coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBay

243

Clean Cities: Empire Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBayEmpire

244

Clean Cities: Granite State Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGranite State

245

Clean Cities: Greater Indiana Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGranite

246

Clean Cities: Los Angeles Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentuckyLos Angeles

247

Clean Cities: New Jersey Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater

248

Clean Cities: Norwich Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth Dakota

249

Clean Cities: Ocean State Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth DakotaOcean State

250

Clean Cities: Pittsburgh Region Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth DakotaOceanPittsburgh

251

Clean Cities: Iowa Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean Cities

252

Clean Cities: Long Beach Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa CleanLong Beach

253

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa CleanLong

254

Clean Cities: San Francisco Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSan

255

Clean Cities: Tampa Bay Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCaliforniaTampa Bay

256

National Clean Energy Business Plan Competition | Department...  

Office of Environmental Management (EM)

a low-cost, easily installed radiator retrofit that converts radiator heating systems into a controlled-zoned system, which significantly increases the efficiency of...

257

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Broader source: Energy.gov (indexed) [DOE]

members in the region. NTC Partner (as lead) in coordination with CCC Partner Conducts Train-the-Trainer This presentation does not contain any proprietary, confidential, or...

258

Sandia National Laboratories: clean water supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogen power Portable Hydrogen Fuel-Cell Unitwater

259

Sandia National Laboratories: Clean Energy Demonstration Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacility

260

Sandia National Laboratories: Clean Energy Ministerial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacilityMinisterial Mesa del

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sandia National Laboratories: Clean Energy States Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacilityMinisterial Mesa

262

Scaleable Clean Aluminum Melting Systems  

SciTech Connect (OSTI)

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

263

THE BIPBOP PROGRAMME: Providing access to reliable, affordable and clean energy with a combined  

E-Print Network [OSTI]

THE BIPBOP PROGRAMME: Providing access to reliable, affordable and clean energy with a combined and clean energy with a combined approach of investment, offers and training Gilles Vermot Desroches1 of Economics, Ecole Polytechnique, thomas.andre@polytechnique.edu Abstract Universal access to clean energy

Paris-Sud XI, Université de

264

Sep 26, 2006 K. Uhlemann, C. Engelmann, and S.L. Scott -The University of Reading and Oak Ridge National Laboratory  

E-Print Network [OSTI]

Sep 26, 2006 K. Uhlemann, C. Engelmann, and S.L. Scott - The University of Reading and Oak Ridge The University of Reading, Reading, UK 2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, USA #12;Sep 26, 2006 K. Uhlemann, C. Engelmann, and S.L. Scott - The University of Reading

Engelmann, Christian

265

FALL 2010 | vol. 1 no. 1 Welcome to the University of Utah, one of the nation's  

E-Print Network [OSTI]

to recreate; it is a powerhouse of academics, research, and service. As a university increasingly focused

266

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

267

Clean the Past  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonCleanClean the

268

An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National Laboratory Fellows Position on the University of  

E-Print Network [OSTI]

.S. Department of Energy's NNSA Los Alamos National Laboratory Fellows Position on the University of California Security, LLC for the U.S. Department of Energy's NNSA technical progress, or to the threat, whether

269

Beagle Dog Tissue Archive (previously part of National Radiobiology Archives): from the Janus Tissue Archive at Northwestern University  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Following the advent of the atomic age, many nations have investigated the effects of radioactive exposure in animal models. Some of these investigations involved costly and unique experiments that produced tissue and data archives which are unlikely to be reproduced. In an effort to extract the value from these collections, programs have started in Japan, Europe, and America to preserve and make public the data and tissues from these studies for further investigation. The Beagle Dog Experiments, carried out at Argonne National Laboratory from 1952 to 1991 by Thomas Fritz, William Norris, and Tom Seed and supported by grants from the Atomic Energy Commission, investigated the effects of Cobalt-60 radiation on beagle dogs. Documentation from these studies is availible in pdf form. This web portal seeks to make accessible the animal tissues and study data from the Beagle Dog Experiments using data organized by Charles Watson. Use the search form to the left to look for dog data from particular experimental conditions. Click a dog number to return the full dog record. Use the dog record to find tissues of interest and make a sample tissue request. These tissue samples and the data were known until recently as the the U.S. National Radiobiology Archives (NRA) and were maintained as the United States Transuranium and Uranium Registries (USTUR) at Washington State University. Life-span studies using beagle dogs were done at the Argonne National Laboratory, University of California at Davis, Pacific Northwest National Laboratory, Inhalation Toxicology Research Institute, and the University of Utah. The results and many microscope slides from these life-span studies, totaling some 6000 dogs, are now available to researchers. A seminal work included in the Archive is The Atlas of Experimentally-Induced Neoplasia in the Beagle Dog (Watson et al, 1997).

Watson, Charles R.

270

What is Clean Cities? Clean Cities, March 2010 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2010-03-01T23:59:59.000Z

271

What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2009-11-01T23:59:59.000Z

272

Clean Cities 2012 Annual Metrics Report  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Each year DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterizes the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this report.

Johnson, C.

2013-12-01T23:59:59.000Z

273

OpenEI Community - CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jumpcommunity 2013 Civic Hacking Day

274

Transcript: Biomass Clean Cities Webinar - Workforce Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript of the BiomassClean Cities Workforce...

275

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

276

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

277

CLEAN ENERGY WORKFORCE TRAINING PROGRAM  

E-Print Network [OSTI]

installation and product manufacturing Clean transportation #12;CALIFORNIA SOLAR WORKFORCE PARTNERSHIP $3 energy workforce needs Build regional capacity in clean energy sector development Deliver industry and Workforce Development Agency, Economic Strategy Panel, California Workforce Investment Board, Air Resources

278

Clean and Secure Energy from Coal  

SciTech Connect (OSTI)

The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: Oxy-Coal Combustion To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. High-Pressure, Entrained-Flow Coal Gasification To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. Chemical Looping Combustion (CLC) To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. Underground Coal Thermal Treatment To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. Mercury Control To understand the effect of oxy-firing on the fate of mercury. Environmental, Legal, and Policy Issues To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

2014-08-31T23:59:59.000Z

279

E-Print Network 3.0 - australian national university Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 19 ANU Centre for European Studies Summary: David Daly Panel Members: Rebecca Dodd, National Manager, International Humanitarian Law, Australian...

280

Sustainable development with clean coal  

SciTech Connect (OSTI)

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

What's Possible for Clean Energy  

E-Print Network [OSTI]

recognize a similar economic opportunity in clean energy technology. And this prospect isn't just about and a stable climate, which clean technology can ensure. FoR thE FIRSt tImE, WE hAvE A RoADmAP oF hoW to SCAl for clean energy technologies, and entrepreneurs can starting building the leading clean energy companies

Kammen, Daniel M.

282

NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency  

E-Print Network [OSTI]

Clean Air Through Energy Efficiency November 20, 2014 NCTCOG Solar Ready II Project Lori Clark Principal Air Quality Planner ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy Sun...Shot Initiative Rooftop Solar Challenge 2 ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy (DOE) SunShot Initiative The U.S. Department of Energy SunShot Initiative is a collaborative national...

Clark,L.

2014-01-01T23:59:59.000Z

283

Cleaning of Free Machining Brass  

SciTech Connect (OSTI)

We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

Shen, T

2005-12-29T23:59:59.000Z

284

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

285

Clean coal technology: Export finance programs  

SciTech Connect (OSTI)

Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

Not Available

1993-09-30T23:59:59.000Z

286

Clean steels for fusion  

SciTech Connect (OSTI)

Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

Gelles, D.S.

1995-03-01T23:59:59.000Z

287

Gas cleaning system and method  

SciTech Connect (OSTI)

A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

Newby, Richard Allen

2006-06-06T23:59:59.000Z

288

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 7/26/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

or solar is used to recharge. PEVs are also less expensive to drive, costing $0.50-1.00 per gallon enjoying large fuel and cost savings, emissions reductions, and other benefits over gasoline vehicles.ncsc.ncsu.edu | 7/26/13 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919

289

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 7/18/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic Hybrid 1.ncsc.ncsu.edu | 7/18/13 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919.S. Environmental Protection Agency (EPA) Green Vehicle Guide provides fuel economy estimates and tailpipe emission

290

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

city/44 hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic.ncsc.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919.S. Environmental Protection Agency (EPA) Green Vehicle Guide provides fuel economy estimates and tailpipe emission

291

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 8/2013 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

.nccleantech.nscu.edu Natural Gas A clean choice for your vehicle Natural gas is widely used in industrial and home applications. Increasingly it is also being employed as a clean burning vehicle fuel. Most natural gas is extracted from gas wells or produced in conjunction with crude oil. Renewable natural gas can also be produced from

292

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

city/44 hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic.nccleantech.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | www) Green Vehicle Guide provides fuel economy estimates and tailpipe emission levels on user customized

293

North Carolina State University, Campus Box 7401, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 3/20/12 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

. In addition, there is growing awareness of carbon dioxide (CO2) and other green house gas (GHG) emissions and federal regulations. The emissions certification of your vehicle as well as the miles per gallon.nccleantech.ncsu.edu | 3/20/12 Advancing Clean Energy for a Sustainable Economy Clean Transportation | www

294

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 www.cleantransportation.org 8/13/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

.cleantransportation.org 8/13/13 Advancing Clean Energy for a Sustainable Economy BIODIESEL Clean Transportation Program | 919-515-3480 | www.cleantransportation.org What is biodiesel? Biodiesel is a renewable fuel that can be made from vegetable oil, animal fat, recycled cooking oil, seed crops, and even algae. Biodiesel

295

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.nccleantech.ncsu.edu 8/13/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

.nccleantech.ncsu.edu 8/13/13 Advancing Clean Energy for a Sustainable Economy BIODIESEL Clean Transportation | www.nccleantech.ncsu.edu What is biodiesel? Biodiesel is a renewable fuel that can be made from vegetable oil, animal fat, recycled cooking oil, seed crops, and even algae. Biodiesel is often blended with petroleum die- sel

296

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization...  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and Intergovernmental Program (WIP) Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and...

297

Metrics for Measuring Progress under the Hawai`i Clean Energy Initiative  

E-Print Network [OSTI]

ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Manoa #12 by Hawai`i Natural Energy Institute School of Ocean and Earth Science and Technology University of HawaiMetrics for Measuring Progress under the Hawai`i Clean Energy Initiative: Hawai`i Clean Energy

298

Cleaning Robot Navigation Using Panoramic Views and Particle Clouds as Landmarks Ralf Moller  

E-Print Network [OSTI]

Technology", Bielefeld University, D-33594 Bielefeld, Germany Abstract The paper describes a visual methodCleaning Robot Navigation Using Panoramic Views and Particle Clouds as Landmarks Ralf M Engineering, Faculty of Technology, Bielefeld University, Center of Excellence "Cognitive Interaction

Moeller, Ralf

299

National Student Conference in Metallic Materials Halifax Hall, Endcliffe Village, University of Sheffield  

E-Print Network [OSTI]

Stir Welding Sam Gascoyne1 , BP Wynne1 , PB Prangnell2 , 1 Advanced Metallic Systems CDT, University;Linear friction welding of aluminium to copper Imran Bhamji, RJ Moat, M Preuss, PL Threadgill, AC Addison Session B1 Joining, Ennis Room Chair Alexandra Panteli, The University of Manchester Corner Friction

Cambridge, University of

300

PipelinePipelineApril 2009 Volume 1, Issue 3 The nationally recognized University of  

E-Print Network [OSTI]

) and organics. Currently, over twelve tons of recyclable materials are recovered each working day. This amount represents 32 percent Recycling Program Celebrates 25 Years of the total solid waste generated by the University each year. University policies encouraging waste reduction and recycling activities were

Webb, Peter

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

National Clean Fuels Inc National Wind Solutions Inc | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof EnergyNapaInformation

302

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2004-03-31T23:59:59.000Z

303

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2005-03-31T23:59:59.000Z

304

EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Centers Offshore Marine Hydrokinetic Technology Testing Project, Florida  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic Universitys South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMRECs experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

305

Laboratory Directed Research & Development | National Nuclear...  

National Nuclear Security Administration (NNSA)

catalyzing the transformation of the nation's energy system, securing our leadership in clean energy, maintaining a vibrant scientific and engineering effort, and enhancing...

306

Enhanced Chemical Cleaning  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporation -| DepartmentEarnedEnhanced

307

ScienceWiseScience Magazine of the auStralian national univerSity January / february 2010  

E-Print Network [OSTI]

· Electricity ­ Carbon = Good How Maths May be the Key to Clean Coal Power #12;ScienceWise Volume7No.1 Science Maths May be the Key to Clean Coal Power (1)B (2)c (3)a (4)D (5)B (6)c (7)D (8)c (9)B (10)a Back cover

Chen, Ying

308

Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...  

Energy Savers [EERE]

Lending and Loan Loss Reserve Funds More Documents & Publications Path to Self-Sustainability Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve...

309

LOW-ENERGY NUCLEAR PHYSICS NATIONAL HPC INITIATIVE: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)  

SciTech Connect (OSTI)

This document is a summary of the physics research carried out by the University of Washington centered group. Attached are reports for the previous years as well as the full exit report of the entire UNEDF collaboration.

Bulgac, A

2013-03-27T23:59:59.000Z

310

University of Cincinnati 1 NEWSclips The excerpts presented here are select examples of local, national and  

E-Print Network [OSTI]

Relations and University Communications, and the Academic Health Center Office of Public Relations. Gregory, Ohio Scientists to Test Water Before Fracking Soars July 13, 2014 As the shale gas boom was making its

Papautsky, Ian

311

THE AUSTRALIAN NATIONAL UNIVERSITY ELECTION OF MEMBERS OF ACADEMIC STAFF BY THE ACADEMIC STAFF  

E-Print Network [OSTI]

in geology and physics at Otago University and my PhD at ANU on the newly completed SHRIMP mass spectrometer for chemical and isotopic analysis, as well as using new techniques. I completed my undergraduate studies

Chen, Ying

312

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

313

High Efficiency, Clean Combustion  

SciTech Connect (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

314

Optimization of Heat Exchanger Cleaning  

E-Print Network [OSTI]

decrease models of the heat recovery decay. A mathematical comparison of mechanical and chemical cleaning of heat exchangers has identified the most significant parameters which affect the choice between the two methods. INTRODUCTION In most... can be somewhat mitigated by periodic chemical or mechanical cleaning of the exchanger surface, and by the addition of antifoul ants. The typical decay in heat recovery capabil ity due to fou 1i ng and restoration afte r heat exchanger cleaning...

Siegell, J. H.

315

Clean Assembly Practices to Prevent Contamination and Damage to Optics  

SciTech Connect (OSTI)

A key lesson learned from the earliest optics installed in the National Ignition Facility (NIF) was that the traditional approach for maintaining cleanliness, such as the use of cleanrooms and associated garments and protocols, is inadequate. Assembly activities often negate the benefits provided by cleanrooms, and in fact generate contamination with high damage potential. As a result, NIF introduced ''clean assembly protocols'' and related practices to supplement the traditional clean room protocols. These new protocols included ''clean-as-you-go'' activities and regular bright light inspections. Introduction of these new protocols has greatly reduced the particle contamination found on more recently installed optics. In this paper we will describe the contamination mechanisms we have observed and the details of the clean assembly protocols we have successfully introduced to mitigate them.

Pryatel, J; Gourdin, W H

2005-12-19T23:59:59.000Z

316

Clean Energy Development Fund (CEDF)  

Broader source: Energy.gov [DOE]

NOTE: The Vermont Clean Energy Development Fund has issued its [http://publicservicedept.vermont.gov/sites/psd/files/Topics/Renewable_En... Five Year Strategic Plan]. See the [http:/...

317

Sustainable Electricity | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Analysis Advanced Components and Materials Systems Integration Energy Security Wind Geothermal Solar Energy-Water Resource Systems Systems Biology Transportation Clean Energy...

318

Connecting with Clean Tech CEO's  

Broader source: Energy.gov [DOE]

Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

319

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

320

The University of Arizona has a contract with Enterprise/National Auto Contract Number XZ50223  

E-Print Network [OSTI]

or damage to personal property. If airport does not have Enterprise or National rental: When you rent, medical or personal property. LDW (Loss Damage Waiver) for business purpose is the only insurance Management Services, Program Coordinator/Insurance, 220 W Sixth Street Room B229, PO Box 210300, Tucson

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Limonene and tetrahydrofurfurly alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, George W. (Harrisonville, MO); Carter, Richard D. (Lee's Summit, MO); Hand, Thomas E. (Lee's Summit, MO); Powers, Michael T. (Santa Rosa, CA)

1997-10-21T23:59:59.000Z

322

Limonene and tetrahydrofurfuryl alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

1996-05-07T23:59:59.000Z

323

Limonene and tetrahydrofurfuryl alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

1997-10-21T23:59:59.000Z

324

ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured by different methods, and the differences in the fraction removed are not statistically significant. (10) Chemical cleaning removed 10-50% of the barium, chromium, iron, magnesium, manganese, and silicon. (11) Chemical cleaning removed only {approx}1% of the nickel.

Poirier, M.; Fink, S.

2011-03-07T23:59:59.000Z

325

Norbert Azuma-Dicke, IER, University of Stuttgart Poul Erik Morthorst, Ris National Laboratory  

E-Print Network [OSTI]

market can either be handled exogenously, i.e., the increase in renewable capacity and an average annual Weber, IER, University of Stuttgart. Title: CO2-Emission Trading and Green Markets for Renewable Power Inte- gration in Liberalised Electricity Markets" (WILMAR) and de- scribes the application of two

326

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

327

Clean Energy Jobs Plan Introduction  

E-Print Network [OSTI]

times as many jobs per dollar as gas, oil or coal. And dollars invested in clean energy tend to stayClean Energy Jobs Plan Introduction When I was governor, California was the world leader capacity. That has changed-- China is now the worlds top renewable energy producer, and Texas and Iowa

328

Enact legislation supporting residential property assessed clean energy financing (PACE)  

SciTech Connect (OSTI)

Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nations states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nations state and metropolitan areas.

Saha, Devashree

2012-11-15T23:59:59.000Z

329

Clean Production of Coke from Carbonaceous Fines  

SciTech Connect (OSTI)

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

330

Expanding Undergraduate Education to Meet National Goals: The Role of Research Universities  

E-Print Network [OSTI]

estimate would increase the cost. We do not include the cost of new facilities because capital for new facilities often comes from non-operating budgets of states or foundations rather than the operating budgets of universities. Facilities...-old population than for the 10- to 13- year-old population. Estimation of Enrollment Requirements and Costs We focus here only on the expansion of undergraduate enrollment, i.e. associate and bachelors degrees. Assuming graduation rates remain unchanged...

McPherson, Peter; Shulenburger, David E.

2010-01-01T23:59:59.000Z

331

EV Community Readiness projects: Clean Energy Coalition (MI)...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Coalition (MI); Clean Fuels Ohio EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

332

Clean Cities: State of Delaware Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis Clean

333

Clean Cities: State of Maryland Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis CleanState

334

EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR  

SciTech Connect (OSTI)

Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan.

Russcher, G. E.; Cannon, L. W.; Goodman, R. L.; Hesson, G. M.; King, L. L.; McDuffie, P. N.; Marshall, R. K.; Nealley, C.; Pilger, J. P.; Mohr, C. L.

1981-04-01T23:59:59.000Z

335

NREL Spectrum of Clean Energy Innovation (Brochure)  

SciTech Connect (OSTI)

This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment. Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

Not Available

2011-09-01T23:59:59.000Z

336

Hangout with Clean Cities on Thursday, June 20, at 2:30 pm ET...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2013 - 5:45pm Q&A Want to know what we are doing to cut the nation's oil use in transportation? Ask Us Addthis Mark your calendars for a Google+ Hangout on Clean Cities:...

337

USVIEnergyRoadMap Charting the Course to a Clean Energy Future  

E-Print Network [OSTI]

USVIEnergyRoadMap Charting the Course to a Clean Energy Future EDIN Energy Development in Island's (DOE's) National Renewable Energy Laboratory (NREL), as well as financial and technical support from Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy

338

Clean Metal Casting  

SciTech Connect (OSTI)

The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

Makhlouf M. Makhlouf; Diran Apelian

2002-02-05T23:59:59.000Z

339

Preliminary assessment and analysis of CO{sub 2} cleaning for an inertial fusion device  

SciTech Connect (OSTI)

The mechanisms of cleaning with carbon dioxide ice (CO{sub 2}) for the National Ignition Facility (NIF) application are discussed and analyzed. The compatibility between this cleaning process and the materials proposed for energy-relevant liquid-interaction experiments is examined. The cleaning mechanisms include kinetic shear stress, sublimation followed by thermophoresis, and solvent action. The study shows that the debris size could determine the efficiency of this cleaning technique. Furthermore, if the condensed vapor particulate becomes flattened and embedded inside the abscissa while hitting the surface, a large kinetic shear would be needed for debris removal which might damage the surface. 20 refs., 5 figs.

Ying, A.; Abdou, M. [Univ. of California, Los Angeles, CA (United States)

1996-12-31T23:59:59.000Z

340

Bioenergy & Clean Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The...

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Clean Cities Regional Support & Petroleum Displacement Awards...  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Regional Support & Petroleum Displacement Awards Clean Cities Regional Support & Petroleum Displacement Awards 2009 DOE Hydrogen Program and Vehicle Technologies...

342

baepgig-clean | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Kentucky Pioneer IGCC...

343

Dry-cleaning of graphene  

SciTech Connect (OSTI)

Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universittsstr. 25, Bielefeld 33615 (Germany)

2014-04-14T23:59:59.000Z

344

A Tale of Two Cities: Greensburg Rebuilds as a National Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Innovation, NREL (National Renewable Energy Laboratory) Leading the Nation in Clean Energy Deployment Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study;...

345

NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet)  

SciTech Connect (OSTI)

For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors.

Not Available

2010-12-01T23:59:59.000Z

346

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (Regular; Twelve and ledges and clean fixtures. Maintain building entrances according to conditions by removing snow and ice

Endres. William J.

347

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month, full and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying

348

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12-month, full and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying

349

Triplet supercurrents in clean and disordered half-metallic ferromagnets  

E-Print Network [OSTI]

ARTICLES Triplet supercurrents in clean and disordered half-metallic ferromagnets MATTHIAS ESCHRIG Nanostructures, Universit¨at Karlsruhe, D-76128 Karlsruhe, Germany Present address: Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-412 96 G¨oteborg, Sweden *e-mail: eschrig

Loss, Daniel

350

Radiochemistry Education at Washington State University: Sustaining Academic Radiochemistry for the Nation  

SciTech Connect (OSTI)

Since 2002, Washington State University has been building radiochemistry as a component of its overall chemistry program. Using an aggressive hiring strategy and leveraged funds from the state of Washington and federal agencies, six radiochemistry faculty members have been added to give a total of seven radiochemists out of a department of twenty-five faculty members. These faculty members contribute to a diverse curriculum in radiochemistry, and the Chemistry Department now enjoys a significant increase in the number of trainees, the quantity of research expenditures, and the volume and quality of peer-reviewed scientific literature generated by the radiochemistry faculty and the trainees. These three factors are essential for sustaining the radiochemistry education and research program at any academic institution.

Clark, Sue B.; Nash, Ken; Benny, Paul; Clark, Aurora [Department of Chemistry, Washington State University, Pullman, WA 99164 (United States); Wall, Nathalie [Nuclear Radiation Center, Washington State University, Pullman, WA 99164 (United States); Wall, Don [Department of Chemistry, Washington State University, Pullman, WA 99164 (United States); Nuclear Radiation Center, Washington State University, Pullman, WA 99164 (United States); Yoo, Choong-Shik [Department of Chemistry, Washington State University, Pullman, WA 99164 (United States); Institute for Shock Physics, Washington State University, Pullman, WA 99164 (United States)

2009-08-19T23:59:59.000Z

351

Clean Transportation Program | 919-513-7831 | www.cleantransportation.org North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831| www.cleantransportation.org| Aug_13  

E-Print Network [OSTI]

a mobile phone with NearE85, www.neare85.com. Locate alternative fuels with the Alternative Fuels Data Center, www.afdc.energy.gov. This document is supported in part through the Clean Fuel Advanced of Administration Motor Fleet Management's E85 fueling site on Blue Ridge Road in Raleigh. State agencies, colleges

352

Clean Transportation Program | 1 919-515-3480 | www.ncsc.ncsu.edu North Carolina State University, Campus Box 7401, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 1/30/12  

E-Print Network [OSTI]

a mobile phone with NearE85, www.neare85.com. Locate alternative fuels with the Alternative Fuels Data Center, www.afdc.energy.gov. This document is supported in part through the Clean Fuel Advanced 828-322-7867 Lexington Sparky's Marketplace 106 Regents Center Court (US-52, exit 86) 336

353

Clean Transportation Program | 919-513-7831 | www.cleantransportation.org North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831| www.cleantransportation.org| Nov_13  

E-Print Network [OSTI]

a mobile phone with NearE85, www.neare85.com. Locate alternative fuels with the Alternative Fuels Data Center, www.afdc.energy.gov. This document is supported in part through the Clean Fuel Advanced of Administration Motor Fleet Management's E85 fueling site on Blue Ridge Road in Raleigh. State agencies, colleges

354

Chemical and Oil Spill/Release Clean-Up and Reporting Requirements Chemicals and oils are used throughout Penn State University. Chemicals may be loosely defined as any material  

E-Print Network [OSTI]

Chemical and Oil Spill/Release Clean-Up and Reporting Requirements Chemicals and oils are used, reactive, flammable, or toxic. This can include, for example, oil-based paints, alcohol, WD-40, and any number of laboratory materials. Oils include petroleum products, vegetable oils, hydraulic and mineral

Maroncelli, Mark

355

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 8/2013 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

-515-3480 | www.cleantransportation.org Natural Gas A clean choice for your vehicle Natural gas is widely used. Most natural gas is extracted from gas wells or produced in conjunction with crude oil. Renewable natural gas can also be produced from decaying organic materials, such as waste from plants, landfills

356

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu |7/29/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

-515-3480 | www.cleantransportation.org PROPANE A clean choice for your vehicle Propane, or Liquefied Petroleum vehicles on US roads in 2010. The commercial grade of propane for automotive use is known as HD-5 in North propane often require less engine maintenance. Fleet fuel and operating costs can be reduced with private

357

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 7/29/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

.cleantransportation.org PROPANE A clean choice for your vehicle Propane, or Liquefied Petroleum Gas (LPG), is a simple hydrocarbon grade of propane for automotive use is known as HD-5 in North America and is also called Autogas cleaner than gasoline. Reduced Costs- Engines running on HD- 5 propane often require less engine

358

Alternative and Clean Energy Program  

Broader source: Energy.gov [DOE]

It is important to note that some applicants are only eligible to apply under some aspects of the program. Political subdivisions are only permitted to apply for loans or grants for Clean Energy...

359

Connecticut Clean Energy Fund (CCEF)  

Broader source: Energy.gov [DOE]

'''''Note: Connecticut's 2013 Budget Bill, enacted in June 2013, transfers a total of $25.4 million out of the Clean Energy Finance and Investment Authority into the General Fund - $6.2 million in...

360

Clean Energy Tax Credit (Maryland)  

Broader source: Energy.gov [DOE]

The Clean Energy Tax Credit is 0.85 cents for each kilowatt hour of electricity sold that was produced from a Maryland qualified energy resource during the 5-year period specified in the initial...

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

362

Clean Water Partnership Law (Minnesota)  

Broader source: Energy.gov [DOE]

The main purpose of the Clean Water Partnership Law is to provide financial and technical assistance to local governments for the protection, enhancement, and restoration of surface waters. However...

363

Clean Energy Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

'''''NOTE: Due to a high level of interest, the Clean Energy Tax Credit annual funding of $5 million for years 2012, 2013 and 2014 has been fully allocated to compensate applicants wait listed from...

364

Clean Energy-Environment State  

E-Print Network [OSTI]

As states pursue their clean energy policies and programs, they can obtain assistance from a variety of federal programs, as described below. Cross-Cutting Programs Cross-cutting federal programs support planning, program development, and initiatives for both energy efficiency and clean energy supply measures. The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) offer a variety of crosscutting programs, described below.

unknown authors

365

Clean Energy Solutions Center (Presentation)  

SciTech Connect (OSTI)

The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

Reategui, S.

2012-07-01T23:59:59.000Z

366

Clean Energy Application Center  

SciTech Connect (OSTI)

The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.

Freihaut, Jim

2013-09-30T23:59:59.000Z

367

Clean Cities Now, Vol. 10, No. 4  

SciTech Connect (OSTI)

Official Publication of Clean Cities and the Alternative Fuels Data Center (Newsletter) volume 10, number 4

Not Available

2006-10-01T23:59:59.000Z

368

What is Clean Cities? May 2011 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

Not Available

2011-05-01T23:59:59.000Z

369

Plugging Vehicles into Clean Energy October, 2012  

E-Print Network [OSTI]

Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

California at Davis, University of

370

Clean Energy and Bond Finance Initiative  

Broader source: Energy.gov [DOE]

Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

371

A Characterization of Commutative Clean Rings Warren Wm. McGovern  

E-Print Network [OSTI]

and Statistics Bowling Green State University Bowling Green, OH 43403 USA warrenb@bgnet.bgsu.edu Abstract of commutative clean rings is given. Included in the list is one given by Johnstone [5] which we presently state

McGovern, Warren W.

372

E-Print Network 3.0 - advanced surface cleaning Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SungKyunKwan University, Suwon... with the Si on the sample surface resulting in the generation of the by-products of cleaning process, SiF .4... as a function of the flow...

373

2009 U.S. State Clean Energy Data Book: NREL's Clean Energy Policy Analyses Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The 2009 U.S. State Clean Energy Data Book is 16 pages of data summarized in tables, figures and charts, and text. It provides a look at the states leading the U.S. in renewable energy capacities in 2009. Developed at the National Renewable Energy Laboratory (NREL) for DOE's Office of Energy Efficiency and Renewable Energy (EERE), it was produced by Rachel Gelman, Marissa Hummon, Joyce McLaren and Elizabeth Doris, edited by Michelle Kubik, and designed by Stacy Buchanan. Release date is October, 2010. Report number for this data book is DOE/GO-102010-3139.

374

The development of clean coal technology in the United States  

SciTech Connect (OSTI)

The United States has made a $5-billion commitment, to be shared by the government and the private sector, to the development of a new generation of clean-coal technologies. Because the nation has a resource imperative to develop domestic coal supplies and a strong commitment to environmental protection, it seems that clean coal technologies are the preferred solution for power generation needs in the United States in the medium-term. The lessons learned during this demonstration program could have important implications for technology development and deployment in other countries. The purpose of this paper is to discuss some of the aspects of the US Clean Coal Technology (CCT) demonstration program that could be relevant to other countries. 2 refs., 8 tabs.

Streets, D.G.

1989-01-01T23:59:59.000Z

375

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

376

Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38.  

E-Print Network [OSTI]

#12;i Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory@adonis.osti.gov #12;ii Argonne National Laboratory 9700 South Cass Ave Argonne, IL 60439, USA ANL-ET-CPH-03 by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109- ENG

Harilal, S. S.

377

2 WHO'S WINNING THE CLEAN ENERGY RACE? WHO'S WINNING THE CLEAN ENERGY RACE?  

E-Print Network [OSTI]

2 WHO'S WINNING THE CLEAN ENERGY RACE? WHO'S WINNING THE CLEAN ENERGY RACE? Growth, Competition and Opportunity in the World's Largest Economies G-20 CLEAN ENERGY FACTBOOK #12;3 WHO'S WINNING THE CLEAN ENERGY the Clean Energy Race? was developed for public informational and educational purposes. It reviews

378

National Nuclear Security Administration Product Aids in Anthrax...  

National Nuclear Security Administration (NNSA)

Product Aids in Anthrax Clean-up | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

379

DOE Marks First Anniversary of EPAct & Releases National Electric...  

Energy Savers [EERE]

progress in delivering clean energy alternatives and spurring investment in renewable and nuclear energy. DOE also released the National Electric Transmission Congestion Study...

380

Department of Energy's National Renewable Energy Lab to Dramatically...  

Broader source: Energy.gov (indexed) [DOE]

Energy's National Renewable Energy Lab to Dramatically Increase Use of Clean, Renewable Energy October 30, 2007 - 4:21pm Addthis New "Green Building," Biomass and Solar...

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean Cities: Capitol Clean Cities of Connecticut coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas CleanCapitol Clean

382

Clean Cities: Clean Communities of Western New York (Buffalo) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition The Clean

383

Clean Cities: East Bay Clean Cities coalition (Oakland)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBay Clean

384

Clean Cities: Greater New Haven Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven Clean Cities

385

Clean Cities: Greater Washington Region Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven CleanWashington

386

Clean Cities: Lone Star Clean Fuels Alliance (Central Texas) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentucky CleanLandLone

387

Clean Cities: San Diego Regional Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorthSacramento CleanDiego

388

Clean Cities: Southeast Louisiana Clean Fuels Partnership coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore Clean Cities

389

Clean Cities: State of West Virginia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis

390

Clean Cities: Western Washington Clean Cities (Seattle) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington Clean Cities

391

OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F  

SciTech Connect (OSTI)

The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

Poirier, M.; Fink, S.

2011-07-22T23:59:59.000Z

392

Oxalate Mass Balance During Chemical Cleaning in Tank 5F  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

Poirier, M.; Fink, S.

2011-07-08T23:59:59.000Z

393

Clean Energy Options for Sabah an analysis of resource availability and cost  

E-Print Network [OSTI]

Clean Energy Options for Sabah an analysis of resource availability and cost Tyler McNish1, 2 and Appropriate Energy Laboratory 2 University of California, Berkeley School of Law 3 University of California, Berkeley Energy and Resources Group 4 University of California, Berkeley Goldman School of Public Policy 5

Kammen, Daniel M.

394

Consolidating N.J.'s clean-tech resources into database for Online center a one-stop center for incentives, assistance programs  

E-Print Network [OSTI]

Jersey Clean Energy Resource Network. Housed on Rutgers University's site and developed by the Rutgers Plan, which aims to develop more resources for clean energy business development. It also has createdConsolidating N.J.'s clean-tech resources into database for businesses Online center a one

Delgado, Mauricio

395

4th Annual Clean Coal  

E-Print Network [OSTI]

Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

Ferriter John P

396

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

397

Vehicle Technologies Office 2013 Merit Review: A University Consortium...  

Broader source: Energy.gov (indexed) [DOE]

Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient...

398

Clean Cities 2013 Annual Metrics Report  

SciTech Connect (OSTI)

Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.

Johnson, C.; Singer, M.

2014-10-01T23:59:59.000Z

399

Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project  

SciTech Connect (OSTI)

This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

Not Available

1994-01-01T23:59:59.000Z

400

Clean Energy | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr. DanMediaClean

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Clean Markets | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:Clean AirGroupRanchoHomeClean

402

Clean Vita | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:CleanCleanVita Jump to:

403

Alternate cleaning methods for LCCAs. Final report  

SciTech Connect (OSTI)

The purpose of this project was to evaluate DI water followed by isopropyl alcohol (IPA) cleaning and no cleaning of leadless chip carriers (LCCs). Both environmentally safe methods were to be tested against the current chlorofluorocarbon (CFC) material cleaning baseline. Several experiments were run to compare production and electrical yields of LCCs cleaned by all three methods. The critical process steps most affected by cleaning were wire bonding, sealing, particle induced noise detection (PIND), moisture content, and electrical. Yields for the experimental lots cleaned by CFC, DI water plus IPA, and no cleaning were 56%, 72%, and 75%, respectively. The overall results indicated that vapor degreasing/ultrasonic cleaning in CFCs could be replaced by the aqueous method. No cleaning could also be considered if an effective dry method of particle removal could be developed.

Adams, B.E.

1993-04-01T23:59:59.000Z

404

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12 month/40 and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying be exercised over seasonal/temporary university employees and student assistants. QUALIFICATION REQUIREMENTS

405

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12 mos and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying be exercised over seasonal/temporary university employees and student assistants. QUALIFICATION REQUIREMENTS

406

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month/20 hours and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying be exercised over seasonal/temporary university employees and student assistants. QUALIFICATION REQUIREMENTS

407

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect (OSTI)

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

408

Carbon smackdown: visualizing clean energy  

ScienceCinema (OSTI)

The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

Juan Meza

2010-09-01T23:59:59.000Z

409

Carbon smackdown: visualizing clean energy  

SciTech Connect (OSTI)

The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

Juan Meza

2010-08-11T23:59:59.000Z

410

National Renewable Energy Laboratory  

E-Print Network [OSTI]

Hydrogen-Production Technology Hydrogen offers great promise as a clean fuel in our nation's energy research and collaboration to improve the durability of photovoltaic cells for PEC hydrogen production-indium-phosphide/ gallium-arsenide) with an impressive 12.4% solar-to-hydrogen efficiency. Unfortunately, the tandem cell

411

Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit  

SciTech Connect (OSTI)

The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nations finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nations balance sheet, and stimulate job-creation and economic renewal.

Muro, Mark; Rothwell, Jonathan

2012-11-15T23:59:59.000Z

412

Property-Assessed Clean Energy Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Financing Financing Structures Property-Assessed Clean Energy Programs Property-Assessed Clean Energy Programs The property-assessed clean energy (PACE) model is an...

413

New Clean Renewable Energy Bonds | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Clean Renewable Energy Bonds New Clean Renewable Energy Bonds New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital...

414

Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed...  

Broader source: Energy.gov (indexed) [DOE]

Guide, Chapter 12: Commercial Property-Assessed Clean Energy (PACE) Financing Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed Clean Energy (PACE) Financing...

415

Clean Energy Lending From the Financial Institution Perspective...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Lending From the Financial Institution Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd Edition) Clean Energy Lending From the Financial Institution...

416

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

417

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

418

NREL National Bioenergy Center Overview  

SciTech Connect (OSTI)

The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

None

2012-01-01T23:59:59.000Z

419

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

Not Available

2012-03-01T23:59:59.000Z

420

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

Not Available

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Clean Tennessee Energy Grant Program (Tennessee)  

Broader source: Energy.gov [DOE]

The purpose of the Clean Tennessee Energy Grant Program is to select and fund projects that best result in a reduction of emissions and pollutants identified below. The Clean Tennessee Energy...

422

Clean Cities Web Sites and Web Tools  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Web Sites and Web Tools Johanna Levene July 28, 2010 Innovation for Our Energy Future Fuel Economy fueleconomy.gov What vehicle? Clean Cities Web Site * Information...

423

Clean Coal Incentive Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

424

Clean Air Act Amendments of 1990  

E-Print Network [OSTI]

Congress is currently debating amendments to the Clean Air Act which would strengthen and enhance the current Clean Air Act. The bill would guarantee a reduction of 10 million tons of sulfur dioxide from 1980 levels; would sharply reduce pollutants...

Hanneschlager, R. E.

425

Clean Cities: Las Vegas Regional Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean

426

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

427

What is Clean Cities? December 2010 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

Not Available

2010-12-01T23:59:59.000Z

428

Heat pumps in industrial cleaning applications  

E-Print Network [OSTI]

Heat pumps in industrial cleaning applications Achema 2012 - Frankfurt Bjarke Paaske, bjpa consuming n Plants are often heated by electricity n No standard heat pump units available Project to promote heat pumps in industrial cleaning apps. #12;Cleaning plant, drum type Items enter here #12;Washing

Oak Ridge National Laboratory

429

Economic Impact of the American Clean Energy  

E-Print Network [OSTI]

Economic Impact of the American Clean Energy and Security Act of 2009 on the West Virginia Economy ........................................................................................................................ 1 American Clean Energy and Security Act of 2009 at reducing greenhouse gas emissions. This report examines the impact of the American Clean Energy

Mohaghegh, Shahab

430

Advanced Clean Cars Zero Emission Vehicle Regulation  

E-Print Network [OSTI]

Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program 2020 2021 2022 2023 2024 2025 Current Regulation -ZEVs Current Regulation -PHEVs Projected: PHEVs 15Net ­ Blueprint Plan ­ Regional clusters, environmental and economic analysis · Clean Fuels Outlet

California at Davis, University of

431

Clean Energy Solutions Center Services (Fact Sheet)  

SciTech Connect (OSTI)

The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

Not Available

2014-04-01T23:59:59.000Z

432

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

433

APEC experts` group on clean coal technology  

SciTech Connect (OSTI)

These proceedings are the result of a Technical Seminar of the APEC Experts Group on Clean Coal Technology, held in Thailand, September 6-10, 1993. The National Energy Policy Council of Thailand requested the seminar in response to growing public, government and private sector environmental concerns related to increased use of lignite for electricity generation in Thailand. The core of the seminar was a two-day series of 25 technical papers contained in these proceedings. The goals were: (1) to inform government officials and electric utility managers on the range of CCTs, their commercial status, environmental performance, and suitability for various types of coal, including lignite; and (2) to hold a public seminar to inform the public about the same issues set in the context of energy policy concerns that were articulated by the National Energy Policy Council. Sixty people participated in the technical seminar held in Chiang Mai, and approximately 170 people attended the public seminar in Bangkok, Thailand. All papers have been abstracted and indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1993-12-31T23:59:59.000Z

434

Clean Cities Now, Vol. 13, No. 2 - June 2009 (Brochure)  

SciTech Connect (OSTI)

The June 2009 issue of Clean Cities Now features stories about elementary school students establishing no-idle zones in San Antonio; recent Propane Road Shows in Virginia, Maryland, and South Carolina; green vehicles helping children's charities in California; and a new truck stop electrification system in South Carolina. The Fleet Experiences story features the University of Illinois-Chicago's mixed fleet of alternative fuel vehicles.

Not Available

2009-06-01T23:59:59.000Z

435

Green Clean Day Planning Guide A practical guide for creating a successful Green Clean Day  

E-Print Network [OSTI]

Green Clean Day Planning Guide A practical guide for creating a successful Green Clean Day A publication of U of M Waste Management Services July 2013 #12;Table of Contents What is a Green Clean Day? 2 Why have a Green Clean Day? 2 How Do We Get Started? 2 How Waste Management Services Can Help 2

Awtar, Shorya

436

Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition  

SciTech Connect (OSTI)

Document serves as an instruction manual for developing, implementing, and running a Clean Cities coalition.

Not Available

2008-04-01T23:59:59.000Z

437

CleanEnergyPatentMapper: Visualization of the sources of clean tech inventions  

E-Print Network [OSTI]

CleanEnergyPatentMapper, a tool that visualizes clean energy patents by technology type, inventing organization, and geography. This tool maps all U.S. clean technology patents by rst inventor location across;Introduction* In#response#to#global#warming,#many#concerned#actors#have#initiated#or# increased#their#efforts#to#discover#better#clean#energy#technologies

Sekhon, Jasjeet S.

438

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

MacKenzie, D.; Odell, C.

1994-03-01T23:59:59.000Z

439

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

Odell, D. MacKenzie C. (Aiken, SC)

1996-01-01T23:59:59.000Z

440

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

Odell, D. MacKenzie C. (Aiken, SC)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Clean Air Act. Revision 5  

SciTech Connect (OSTI)

This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

Not Available

1994-02-15T23:59:59.000Z

442

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-58252 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Rationale for Measuring Duct Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National

443

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

444

Semi-Annual Report University Transportation Centers Program  

E-Print Network [OSTI]

, Management Assistant Donald Blackketter, Director, Center for Clean Vehicle Technology Melissa Lines................................................................. 2 Center for Clean Vehicle Technology for Advanced Transportation Technology University of Idaho Michael Kyte, Director Judith C. Breedlove

Kyte, Michael

445

National Nuclear Security Administration Babcock & Wilcox Technical  

National Nuclear Security Administration (NNSA)

a new rinse method for uranium chip cleaning that eliminates the need for ultrasonic tanks. B&W Y-12 successfully pursued work in other national security mission areas to...

446

Haskell Indian Nations University Roundtable: Increased Productions of Traditional and Other Foods in an Era of Abrupt Climate Change  

Office of Energy Efficiency and Renewable Energy (EERE)

Hosted by the Haskell Indian University International Institute for Indigenous Resource Management and Indigenous Peoples Climate Change Working Group, this roundtable discussion will identify and...

447

Photoelectron spectroscopic study of the cleaned, thermally treated and oxidized Zr??Ni?? amorphaus alloy  

E-Print Network [OSTI]

PHOTOELECTRON SPECTROSCOPIC STUDY OF THE CLEANED, THERMALLY TREATED AND OXIDIZED ZrssNi34 AMORPHOUS ALLOY A Thesis by GUIPING LIANG Submitted to the Graduate College of Texas A & 51 University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1987 Major Subject: Physics PHOTOELECTRON SPECTROSCOPIC STUDY OF THE CLEANED, THERMALLY TREATED AND OXIDIZED ZrssNi34 AMORPHOUS ALLOY A Thesis by GUIPING LIANG Approved as to style and content by: Donald G...

Liang, Guiping

1987-01-01T23:59:59.000Z

448

New Energy Efficient Method for Cleaning Oilfield Brines with Carbon Dioxide  

E-Print Network [OSTI]

NEW ENERGY EFFICIENT METHOD FOR CLEANING OILFIELD BRINES WITH CARBON DIOXIDE C. T. LITTLE A. F. SEIBERT Research Engineer Technical Manager Amoco Oil Company Separations Research Program Naperville, Illinois The University of Texas Austin... dioxide to clean oilfield brines. The new treatment method, described in this work, is actually an enhancement of existing gas flotation technology. The enhancement results from the use of carbon dioxide as the sweeping gas combined with its ability...

Little, C. T.; Seibert, A. F.; Bravo, J. L.; Fair, J. R.

449

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicy Options for the Hawaii Clean

450

Clean Cities: Capital District Clean Communities coalition (Albany)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas Clean

451

Clean Cities: Columbia-Willamette Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition

452

Clean Cities: Connecticut Southwestern Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) CoalitionConnecticut

453

Clean Cities: Dallas-Fort Worth Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)

454

Clean Cities: Genesee Region Clean Communities (Rochester) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver

455

Clean Cities: Greater Lansing Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGraniteLansing

456

Clean Cities: Greater Long Island Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York

457

Clean Cities: San Joaquin Valley Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorthSacramentoJoaquin

458

Clean Cities: Yellowstone-Teton Clean Energy coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington

459

Clean Cities: Land of Enchantment Clean Cities (New Mexico) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean CitiesLand

460

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSanSilicon

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Clean Cities: Triangle Clean Cities (Raleigh, Durham, Chapel Hill)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCaliforniaTampa

462

Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the Sun Clean

463

NASULGC survey-Colorado findings The National Association of State Universities and Land Grant Colleges contracted with a  

E-Print Network [OSTI]

Colleges contracted with a consulting firm, Copernicus, to survey the nation regarding the value members of a representative online panel; criteria included gender, age, urban/rural, ethnicity, education should address are: o Energy ­ biofuels, solar,

464

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

465

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2  

SciTech Connect (OSTI)

A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of the program will provide peak fuel cladding temperatures of up to 1172K (1650{degree}F) and 1061K (1450{degree}) respectively. for a long enough time to cause test fuel cladding deformation and rupture in both. Reflood coolant delay times and the reflooding rates for the experiments were selected from thermal-hydraulic data measured in the National Research Universal (NRU) reactor facilities and test train assembly during the first experiment.

Russcher, G. E.; Wilson, C. L.; Marshall, R, K.; King, L. L.; Parchen, L. J.; Pilger, J. P.; Hesson, G. M.; Mohr, C. L.

1981-09-01T23:59:59.000Z

466

Exhaust gas clean up process  

DOE Patents [OSTI]

A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

Walker, R.J.

1988-06-16T23:59:59.000Z

467

Clean Air Act, Section 309  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of EnergyClasses, Kits23CLEAN

468

Exhaust gas clean up process  

DOE Patents [OSTI]

A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

Walker, Richard J. (McMurray, PA)

1989-01-01T23:59:59.000Z

469

Clean Energy | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.

470

Clean Fractionation - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.2 P r o j e

471

Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Energy Innovation Portal Last week the student team of Black Pine Engineering from Michigan State University took top honors at the Eastern Midwest regional competition of...

472

Repowering with clean coal technologies  

SciTech Connect (OSTI)

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01T23:59:59.000Z

473

Clean Coal Program Research Activities  

SciTech Connect (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

474

Southeast Regional Clean Energy Policy Analysis (Revised)  

SciTech Connect (OSTI)

More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

McLaren, J.

2011-04-01T23:59:59.000Z

475

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2012-10-01T23:59:59.000Z

476

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2013-01-01T23:59:59.000Z

477

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2012-09-01T23:59:59.000Z

478

Transcript: Biomass Clean Cities Webinar ? Workforce Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Page 1 of 12 Alicia Lindauer: My name is Alicia Lindauer. I work for the Department of Energy's Biomass Program....

479

Clean Cities Recovery Act: Vehicle & Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

480

Illinois Clean Energy Community Foundation Grants  

Broader source: Energy.gov [DOE]

The Illinois Clean Energy Community Foundation (ICECF) was established in December 1999 as an independent foundation with a $225 million endowment provided by Commonwealth Edison. The ICECF invests...

Note: This page contains sample records for the topic "national university clean" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Clean Tech Now | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and...

482

-UNIT NAME C-728 Motor Cleaning Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNIT NUMBER 33 -UNIT NAME C-728 Motor Cleaning Facility -REGULATORY STATUS--3:.:::.0:..04(--u) -LOCATION North of C-720 (Map...

483

Clean Cities & Transportation Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Transportation Tools Clean Cities & Transportation Tools U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation on...

484

Clean Cities Now, Vol. 10, No. 2  

SciTech Connect (OSTI)

Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

Not Available

2006-05-01T23:59:59.000Z

485

The Political Economy of Clean Coal .  

E-Print Network [OSTI]

??This dissertation investigates the nature of the political economy of Clean Coal. It begins by reviewing the literature of global warming and the current usage (more)

Wu, Hao Howard

2010-01-01T23:59:59.000Z

486

What is Clean Cities? 2007 Update  

SciTech Connect (OSTI)

Clean Cities fact sheet describing this DOE program that deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2007-03-01T23:59:59.000Z

487

Clean Cities Fact Sheet: March 2006  

SciTech Connect (OSTI)

Clean Cities fact sheet describe this DOE program, which deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2006-03-01T23:59:59.000Z

488

Exploring the Business Link Opportunity: Transmission & Clean...  

Energy Savers [EERE]

Jennifer Weddle, Greenberg Traurig LLP Rapid Response Team for Transmission: Laura Smith Morton, DOE Energy Storage: Michael Stosser, Day Pitney LLP Centennial West Clean...

489

Hawaii Clean Energy Initiative Scenario Analysis: Quantitative...  

Office of Environmental Management (EM)

Hawaii Clean Energy Initiative Scenario Analysis Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010) R. Braccio, P. Finch, and R. Frazier Booz Allen...

490

MiniCLEAN Dark Matter Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

discrimination of the triplet-to-singlet light ratio. External backgrounds (surface radon progeny and fast neutrons) are rejected by self-shielding and fiducialization. MiniCLEAN...

491

Clean Cities 2009 Petroleum Displacement Awards  

Broader source: Energy.gov (indexed) [DOE]

confidential or otherwise restricted information. Project ID: TI004 Clean Cities 2009 Petroleum Displacement Awards (ARRA & non-ARRA) Mike Scarpino U.S. Department of Energy...

492

Clean Cities Now, Vol. 10, No. 3  

SciTech Connect (OSTI)

Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

Not Available

2006-07-01T23:59:59.000Z

493

Utility Generation and Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

494

clean energy manufacturing | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American...

495

UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO SANTA BARBARA SANTA CRUZ  

E-Print Network [OSTI]

on the University of California Regents Steering Committee for Clean Energy/Green Buildings. SB 289 requires

Kammen, Daniel M.

496

University Research Summaries  

Broader source: Energy.gov [DOE]

The Idaho National Laboratory published the U.S. Department of Energy's (DOE) Geothermal Technologies Office 2001 University Research Summaries.

497

Energy 101: Promoting Energy Education in the Nation's Colleges...  

Office of Environmental Management (EM)

Energy 101: Promoting Energy Education in the Nation's Colleges and Universities Energy 101: Promoting Energy Education in the Nation's Colleges and Universities June 25, 2014 -...

498

Transforming Pits into Clean Energy | National Security Science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thousands of Surplus Plutonium Pits. On September 1, 2000, the United States and Russia committed to each "permanently dispose" of "no less than or at least" 34 metric tons...

499

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

50 schools that survived Hurricanes Katrina and Rita. The city is also using biodiesel-fueled city buses and propane hybrid airport shuttles. Statewide Activities DOE and...

500

Where Are They Now? National Clean Energy Business Plan Competition...  

Office of Environmental Management (EM)

of Colorado Cleantech New Venture Challenge SiNode Systems - Advanced silicon graphene batteries. | Photo courtesy of Sinode Systems. Startup Success: Energy Department...