National Library of Energy BETA

Sample records for national transportation systems

  1. Transportation System Simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation System Simulation Transportation System Simulation Today's transportation systems are becoming more and more complex, with integration of communication technologies, vehicle automation and innovative mobility solutions. The advent of connected and autonomous vehicles (CAVs) will see no shortage of new technologies aimed at transforming transportation. While some will likely succeed and others fail, to truly understand their potential and their impacts on the larger transportation

  2. Development of an analysis capability for the National Transportation System

    SciTech Connect (OSTI)

    Anson, D.; Nelson, R.

    1997-10-24

    The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.

  3. Alternative battery systems for transportation uses | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lmost 50% of the petroleum consumed in the United States is imported. By the year 2000, 73% of total petroleum demand will be imported, making America vulnerable to a cutoff in our energy lifeline. Transportation, which is 98% dependent on petroleum, uses two-thirds of the oil consumed in the United States. If we instead used American-produced natural gas to power our vehicles, we could become energy independent. Natural gas could also solve some of our toughest environmental prob- lems.

  4. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  5. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    N ti l T t ti National Transportation Stakeholders Forum Chicago, IL, May 26, 2010 Ahmad Al-Daouk Date and page number - 1 Director, National Security Department National Nuclear Security Administration Service Center - Albuquerque, NM National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with applicable regulations (e.g. federal, local, tribal) * Great majority of NNSA shipments

  6. Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository

    SciTech Connect (OSTI)

    Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

    2001-02-01

    The U.S.Department of Energys (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, EM shall design and fabricate DOE SNF canisters for shipment to RW. (1) It also states, EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71. (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

  7. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory.

  8. Spring 2016 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation ...

  9. National Transportation Stakeholders Forum (NTSF) Charter | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Waste Management Packaging and Transportation National Transportation Stakeholders Forum National Transportation Stakeholders Forum (NTSF) Charter National ...

  10. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Registration is OPEN! National Transportation Stakeholders Forum 2015 Annual Meeting May 12-14, 2015 Embassy Suites Albuquerque, New Mexico Online registration is now open for the 2015 Annual Meeting of the National Transportation Stakeholders' Forum (NTSF), to be held in Albuquerque, New Mexico. The meeting will begin at 8:00am on Tuesday, May 12th, and will conclude by 10:00am on Thursday, May 14th. To view a preliminary draft agenda, please visit the NTSF meeting website. DOE will be hosting

  11. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  12. Spring 2015 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders ...

  13. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  14. Intelligent Transportation Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligent Transportation Systems This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background The development and deployment of Intelligent Transportation Systems (ITS) in the United States is an effort of national importance. Through the use of advanced computing, control, and communication technologies, ITS promises to greatly improve the efficiency and safety of the existing surface transportation system and reduce the

  15. Strategic Plan for Coordinating Rural Intelligent Transportation System (ITS) Transit Development in the Great Smoky Mountains National Park

    SciTech Connect (OSTI)

    Truett, L.F.

    2002-12-19

    The Great Smoky Mountains National Park, located along the border between North Carolina and Tennessee, is the most visited national park in the United States. This rugged, mountainous area presents many transportation challenges. The immense popularity of the Smokies and the fact that the primary mode of transportation within the park is the personal vehicle have resulted in congestion, damage to the environment, impacts on safety, and a degraded visitor experience. Access to some of the Smokies historical, cultural, and recreational attractions via a mass transit system could alleviate many of the transportation issues. Although quite a few organizations are proponents of a mass transit system for the Smokies, there is a lack of coordination among all parties. In addition, many local residents are not completely comfortable with the idea of transit in the Smokies. This document provides a brief overview of the current transportation needs and limitations in the Great Smoky Mountains National Park, identifies agencies and groups with particular interests in the Smokies, and offers insights into the benefits of using Intelligent Transportation Systems (ITS) technologies in the Smokies. Recommendations for the use of rural ITS transit to solve two major transportation issues are presented.

  16. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Influencing the future of vehicles, fuels Argonne's transportation research efforts bring together scientists and engineers from many disciplines to find cost-effective solutions to critical issues like foreign-oil dependency and greenhouse gas emissions. As one of the U.S. Department of Energy's lead laboratories for research in hybrid powertrains, batteries, and fuel-efficient technologies, Argonne's transportation program is critical to advancing the development of

  17. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    National Nuclear Security Administration's Space-Based Nuclear Detonation Detection Program OAS-L-14-09 July 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 July 28, 2014 MEMORANDUM FOR THE DEPUTY ADMINISTRATOR FOR DEFENSE NUCLEAR NONPROLIFERATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "National Nuclear Security

  18. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Map of Argonne Site Showing CNM Location A shuttle bus operates between Argonne and the University of Chicago's Hyde Park campus. Northwestern University offers a car pool program to Argonne. From early spring until early fall, Argonne offers a bike-share program that facility users are welcome to join. Before using the bikes, you must take a online bike safety course and sign a liability waiver. On completion of the training and waiver, you will receive an Argonne-issued bike

  19. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    TRANSPORTATION STAKEHOLDERS FORUM Activities and Accomplishments May 16, 2013 Buffalo, New York NTSF RESOURCES  Wiki Site  Private domain / Registration required  Repository of information  Users are allowed editing capabilities  Webinars  Cover a variety of topics (NRC Rulemaking, Section 180(c), BRC Recommendations, Strategy for Management and Disposal of UNF and HLRW, etc.)  Recording are available on the wiki site  Input is needed for future content NTSF Working

  20. Spring 2014 National Transportation Stakeholder Forum Meeting...

    Energy Savers [EERE]

    Transportation Stakeholder Forum Meeting, Minnesota Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota NTSF 2014 Meeting Agenda PRESENTATIONS - MAY 13, ...

  1. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  2. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect (OSTI)

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  3. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  4. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  5. transportation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    transportation Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security Pantex's Calvin Nelson was recently awarded the 2015 Analyst of the Year for Transportation Security by the Department of Energy's Nuclear Materials Information Program. The award, for which Nelson is the first-ever Pantex recipient, recognizes outstanding analytic support to the NMIP. All... Office of Secure Transportation Celebrates 40th Anniversary On Thursday morning, Dec. 17, NNSA's Office

  6. National Transportation Fuels Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizational Chart » National Training Center National Training Center MISSION The National Training Center (NTC), the Department's Center of Excellence for Security and Safety Training and Professional Development, designs, develops, and implements state-of-the-art security and safety training programs for Department federal and contractor personnel nationwide, including the National Nuclear Security Administration (NNSA). Conducts on-going job analysis, and develops and delivers training in

  7. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building...

  8. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  9. Spring 2013 National Transportation Stakeholders Forum Meeting, New York |

    Energy Savers [EERE]

    Department of Energy National Transportation Stakeholders Forum » Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Save the Date NTSF Registration Announcement NTSF 2013 Agenda EM's Huizenga Gives Keynote Address at National Transportation Stakeholders Forum Spring 2013 NTSF Presentations May 14, 2013 Presentations

  10. 2013 US Department of Energy National Transportation Stakeholders...

    Office of Environmental Management (EM)

    3 US Department of Energy National Transportation Stakeholders Forum Hello Everyone, It's time to register for the 2013 U.S. Department of Energy National Transportation...

  11. Energy, Transportation Ministers from Asia-Pacific Nations Pledge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific ...

  12. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account for individual traveler response to the dynamic transportation environment. In contrast, TRANSIMS provides disaggregated information that more explicitly represents the complex nature of humans interacting with the transportation system. It first generates a synthetic population that represents individuals and their households in the metropolitan region in a statistically valid way. The demographic makeup and spatial distribution of this synthetic population is derived from census data so that it matches that of the region’s real population. From survey data, a model is built of household and individual activities that may occur at home, in the workplace, school or shopping centers, for example. Trip plans including departure times, travel modes, and specific routes are created for each individual to get to his or her daily activities. TRANSIMS then simulates the movement of millions of individuals, following their trip plans throughout the transportation network, including their use of vehicles such as cars or buses, on a second-by-second basis. The virtual travel in TRANSIMS mimics the traveling and driving behavior of real people in the metropolitan region. The interactions of individual vehicles produce realistic traffic dynamics from which analysts can judge to performance of the transportation sysime and estimate vehicle emissions. Los Alamos, in cooperation with the Department of Transportation, Federal HIghway Administration and the local Metropolitan Planning Offices, has done TRANSIMS micro-simulations of auto traffic patterns in these two urban areas and completed associated scenario-based studies.« less

  13. Heat transport system

    DOE Patents [OSTI]

    Pierce, Bill L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.

  14. Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee |

    Energy Savers [EERE]

    Department of Energy 2 National Transportation Stakeholder Forum Meetings, Tennessee Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee NTSF Registration Website Save The Date! NTSF Spring 2012 Agenda NTSF Agenda Midwestern Radioactive Materials Transportation Committee Agenda Northeast High-Level Radioactive Waste Transportation Task Force Agenda Transuranic Waste Transportation Working Group Agenda Western Governor's Association Agenda NTSF Presentations Session

  15. National Transportation Stakeholders Forum (NTSF) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) The U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE communicates at a national level with states and tribes about the Department's shipments of radioactive waste and materials, as well as occasional high-visibility shipments that are nonradioactive. The purpose of the NTSF is to

  16. Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico

    Energy Savers [EERE]

    | Department of Energy 5 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico The Spring 2015 meeting of the National Transportation Stakeholders Forum will be held on May 12-14, 2015 in Albuquerque, NM. Save the Date NTSF 2015 Registration Announcement NTSF 2015 Agenda - Preliminary More Documents & Publications NTSF Spring 2015

  17. Spring 2016 National Transportation Stakeholders Forum Meeting, Florida |

    Energy Savers [EERE]

    Department of Energy 6 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida The Spring 2016 meeting of the National Transportation Stakeholders Forum will be held on June 7-9, 2016 in Orlando, FL. Save the Date NTSF 2016 Registration Announcement More Documents & Publications NTSF Spring 2016 Save the Date NTSF Spring 2016 Registration

  18. transportation-system-modeling-webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar Announcement Webinar for the Intelligent Transportation Society of the Midwest (ITS Midwest) May 16, 2011 1:00 PM(CST) Hubert Ley Director, TRACC Argonne National Laboratory Argonne, Illinois High Performance Computing in Transportation Research - High Fidelity Transportation Models and More The Role of High-Performance Computing Because ITS relies on a very diverse collection of technologies, including communication and control technologies, advanced computing, information management

  19. National Security System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-03-08

    The manual provides baseline requirements and controls for the graded protection of the confidentiality, integrity, and availability of classified information and information systems used or operated by the Department of Energy (DOE), contractors, and any other organization on behalf of DOE, including the National Nuclear Security Administration. Cancels DOE M 471.2-2. Canceled by DOE O 205.1B.

  20. Transportation, Aging and Disposal Canister System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 ...

  1. The Complex Systems Landscape of Future Urban Transportation | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory The Complex Systems Landscape of Future Urban Transportation In an effort "to examine the nexus of energy and mobility for future transportation systems," the U.S. Department of Energy (DOE) has launched the Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility consortium. By studying mobility as a system researchers can predict future trends, an invaluable asset to policymakers as they prepare for the future of transportation. This

  2. Safeguards Transporter | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home Safeguards Transporter General Davis kicks the tires on a Safeguards Transporter Brigadier General Stephen L. Davis, NNSA's Acting Deputy Administrator for Defense Programs, gets a lesson on how to drive a Safeguards Transporter during a recent visit to the Office of Secure Transportation (OST) headquarters in Albuquerque, New Mexico. OST is responsible for transporting...

  3. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  4. Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota |

    Energy Savers [EERE]

    Department of Energy 4 National Transportation Stakeholder Forum Meeting, Minnesota Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota NTSF 2014 Meeting Agenda PRESENTATIONS - MAY 13, 2014 Program and Stakeholder Briefings EM Office of Packaging and Transportation DOE Office of Nuclear Energy TRANSCOM National Nuclear Security Administration Nuclear Regulatory Commission Commercial Vehicle Safety Alliance NTSF Tribal Caucus Section 180(c) Ad Hoc Working Group

  5. Spring 2011 National Transportation Stakeholder Forum Meetings, Colorado |

    Energy Savers [EERE]

    Department of Energy 1 National Transportation Stakeholder Forum Meetings, Colorado Spring 2011 National Transportation Stakeholder Forum Meetings, Colorado NTSF Spring 2011 Agenda Final Agenda NTSF Presentations Activities and Accomplishments Developing a Regulatory Framework for Extended Storage and Transportation DOE Railcar Fleet Asset Planning & Lessons Learned DOE Shipment Activities: What We Accomplished and a Look Forward DOE-Idaho's Packaging and Transportation Perspective

  6. National Alliance for Advanced Transportation Battery Cell Manufacture...

    Open Energy Info (EERE)

    Manufacture Product: US-based consortium formed to research, develop, and mass produce lithium ion batteries. References: National Alliance for Advanced Transportation Battery Cell...

  7. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  8. Heat transport system

    DOE Patents [OSTI]

    Harkness, Samuel D.

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  9. Energy Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Research to strengthen the economy, protect the environment and enable energy independence and national security The Energy Systems (ES) division conducts applied energy research to strengthen the economy, protect the environment and enable energy independence and national security. From invention through demonstration, ES actively forms critical alliances with industrial partners, universities, other national laboratories and other Argonne divisions to conduct research,

  10. Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Analysis - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  11. Not planning a sustainable transport system

    SciTech Connect (OSTI)

    Finnveden, Gran kerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 20102021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: Two cases are studied to analyse if current planning supports a sustainable transport system. Results show that the plans are in conflict with several of the environmental quality objectives. Long-term climate goals are not included in the planning processes. Current practices do not contribute to a sustainable planning processes. Methodology and process for environmental assessments must be further developed and discussed.

  12. Energy Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities Publications News Green delivery Major Chicago-based baking company sees ...

  13. Transportation, Aging and Disposal Canister System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specification: Revision 1 | Department of Energy Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. PDF icon Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 More Documents &

  14. National Transportation Stakeholders Forum (NTSF) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    national level with states and tribes about the Department's shipments of radioactive waste and materials, as well as occasional high-visibility shipments that are nonradioactive. ...

  15. Spring 2013 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NFST) Program Status WIPP Status Update U.S. Global Threat Reduction InitiativeU.S.-Origin Nuclear Fuel Removals Breakout Session 1 DOE Office of Nuclear Energy Transportation ...

  16. National Renewable Energy Laboratory's Energy Systems Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This ...

  17. Packaging and Transfer or Transportation of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-09-29

    To establish requirements and responsibilities for the Transportation Safeguards System (TSS) packaging and transportation and onsite transfer of nuclear explosives, nuclear components, Naval nuclear fuel elements, Category I and Category II special nuclear materials, special assemblies, and other materials of national security interest. Cancels: DOE 5610.12 and DOE 5610.14.

  18. NREL: Transportation Research - NREL Describes to U.S. Senate Role National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Labs Play in Sustainable Transportation Innovation Describes to U.S. Senate Role National Labs Play in Sustainable Transportation Innovation January 26, 2016 On Thursday, January 21, 2016, NREL's Transportation and Hydrogen Systems Center Director Chris Gearhart provided a testimony on new technologies in the automobile industry before the U.S. Senate Energy and Natural Resources Committee. Members of the committee are currently evaluating a bipartisan bill that will include several

  19. National Transportation Stakeholders Forum | Department of Energy

    Office of Environmental Management (EM)

    Offshore Wind Energy Grid Interconnection Study Executive Summary DOE Award No. EE-0005365 ABB, Inc. 12040 Regency Pkwy. Suite 200 Cary, NC 27518-7708 Project Period: 10/11 - 04/14 Authors: John P. Daniel Dr. Shu Liu Dr. Eduardo Ibanez (Principal Investigator) ABB, Inc. National Renewable Energy Laboratory ABB, Inc. 919-856-2473 303-384-6926 940 Main Campus Dr. shu.liu@us.abb.com eduardo.ibanez@nrel.gov Raleigh, NC 27606 919-856-3306 john.daniel@us.abb.com Ken Pennock Dr. Gregory Reed Spencer

  20. Evaluation of the Whooshh Fish Transport System

    Broader source: Energy.gov [DOE]

    Last November, John Oliver highlighted during his program Last Week Tonight the Whooshh Fish Transport System (aka “salmon cannon”), a new, innovate fish transport system developed by Whooshh...

  1. Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling – Approach and Example

    Broader source: Energy.gov [DOE]

    Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling – Approach and Example

  2. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect (OSTI)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  3. Phase stable RF transport system

    DOE Patents [OSTI]

    Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.

    1992-01-01

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  4. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  5. Vehicle Technologies Office: Transportation System Analytical Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Transportation System Analytical Tools Vehicle Technologies Office: Transportation System Analytical Tools The Vehicle Technologies Office (VTO) has supported the development of a number of software packages and online tools to model individual vehicles and the overall transportation system. Most of these tools are available for free or a nominal charge. Modeling tools that simulate entire vehicles and

  6. Sustainable Transport Systems STS | Open Energy Information

    Open Energy Info (EERE)

    STS Jump to: navigation, search Name: Sustainable Transport Systems (STS) Place: Santa Cruz, California Zip: 95062 Sector: Carbon, Efficiency Product: California-based...

  7. National setting for productive conservation in urban transportation

    SciTech Connect (OSTI)

    Johnson, L.R.; LaBelle, S.J.

    1981-04-01

    The need for productive conservation strategies in urban transportation is discussed. Key trends in urban transportation are discussed as a basis for identifying target areas for productive conservation strategies. The need for and expected impacts of such candidate strategies as improvements in conventional automobiles, increases in automobile load factors, changes in highway and transit system operation, price-driven reductions in travel, and shifts to more-efficient modes are briefly outlined.

  8. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  9. National Geothermal Data System Architecture Design, Testing...

    Broader source: Energy.gov (indexed) [DOE]

    To create the National Geothermal Data System (NGDS) comprised of a core and distributed network of databases and data sites that will comprise a federated system for acquisition,...

  10. National Geothermal Data System (NGDS) Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Data System (NGDS) Initiative National Geothermal Data System (NGDS) Initiative Geothermal energy in the subsurface is better understood through data visualization, as ...

  11. Tool - Transportation System Simulation (POLARIS) | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil demand - Petrodollar reinvestment - Purchasing power rise - Power sector constraints u Natural gas shortages for power generation mean balance of risks to any Middle East oil demand forecast are firmly to the upside, adding to summer upside seasonality u Lehman Brothers has pegged 3Q08 as the tightest quarter of the

  12. Sandia National Laboratories: National Security Missions: Defense Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Assessments: Cybersecurity Programs Cybersecurity Delivering experience & expertise Training the next generation of cyber defenders Cybersecurity computing Defending national security Applying science and engineering to protect cyber systems from malicious attacks Cyber worker inspecting supercomputer Protecting cyberspace An expert team, passionate about defending the nation's critical infrastructure Computer Annex "The cyber threat to our nation is one of the most serious

  13. Alternative Fuels Data Center: Transportation System Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Traveled (VMT) U.S. Light-Duty Fuel Consumption and Vehicle Miles Traveled (VMT) More ... on How to Transform Cities by Improving Energy Efficiency in Urban Transport Systems ...

  14. National Energy Modeling System (NEMS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  15. A reflective optical transport system for ultraviolet Thomson...

    Office of Scientific and Technical Information (OSTI)

    transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA Citation Details In-Document Search Title: A reflective optical transport system for ...

  16. Alternative battery systems for transportation uses

    ScienceCinema (OSTI)

    Michael Thackeray

    2013-06-05

    Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

  17. The Geography of Transport Systems-Maritime Transportation |...

    Open Energy Info (EERE)

    report Website: people.hofstra.edugeotransengch3enconc3ench3c4en.html Cost: Free Language: English References: Maritime Transportation1 "Maritime transportation, similar to...

  18. NA 15 - Assistant Deputy Administrator for Secure Transportation | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration NA 15 - Assistant Deputy Administrator for Secure Transportation

  19. Sandia National Laboratories: National Security Missions: Defense Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Assessments: Program Areas Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs Program Areas EOD security and defense photo Sandia's engineering, science, and technology expertise helps anticipate and solve the nation's toughest security challenges. Defense Systems & Assessments work is focused in seven main program areas: Information Operations: Information Operations develops technologies that help protect U.S. government,

  20. PNNL: About PNNL - The National Laboratory System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Laboratory System The national laboratory system is comprised of 17 of the country's top scientific research facilities. The laboratories are owned by the U.S. Department of Energy and house many of the world's top scientists and engineers, as well as unique equipment, some of which is unmatched anywhere else in the world. The Energy Department's national laboratories date back to the immense investment in scientific research in the period preceding World War II, and to the

  1. National Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    National Solar Systems Place: Al-Khobar, Saudi Arabia Zip: 31952 Product: Leading system intergrator in Saudi Arabia. Coordinates: 26.28665, 50.21434 Show Map Loading map......

  2. Building International Emergency Management Systems | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Building International Emergency Management Systems NNSA helps nations develop the core elements of an emergency response program. Based on preliminary discussions with counterparts, NNSA develops emergency management programs with partner nations to exchange views and enhance development of effective emergency management systems. Generally, NNSA will assist foreign governments and international organizations with integration of emergency-program core elements,

  3. Pantex Occupational Health System (OHS), National Nuclear Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security ...

  4. Pantex Occupational Health System (OHS), National Nuclear Security...

    Energy Savers [EERE]

    Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security...

  5. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  6. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; Van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  7. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  8. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  9. Heat transport system, method and material

    DOE Patents [OSTI]

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  10. office of secure transportation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    office of secure transportation Acquisition and Project Management Office volunteers get up-close look at Office of Secure Transportation exercise Contracting professionals from the NNSA Acquisition & Project Management (APM) Field Program Section (FPS) recently served as role players for Office of Secure Transportation (OST) training exercises in Arkansas and Oklahoma. OST Federal Agents transport U.S. nuclear weapons, components and... General Davis kicks the tires on a Safeguards

  11. RHIC electron lens beam transport system design considerations

    SciTech Connect (OSTI)

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2010-10-01

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

  12. Liners for ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  13. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect (OSTI)

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  14. Automated Transportation Logistics and Analysis System (ATLAS) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Services » Waste Management » Packaging and Transportation » Automated Transportation Logistics and Analysis System (ATLAS) Automated Transportation Logistics and Analysis System (ATLAS) The Department of Energy's (DOE's) Automated Transportation Logistics and Analysis System is an integrated web-based logistics management system allowing users to manage inbound and outbound freight shipments by highway, rail, and air. PDF icon Automated Transportation Logistics and Analysis

  15. Energy Systems Organization Charts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Organization Charts Charts showing the organizational structure of the Energy Systems Division and the Center for Transportation Research at Argonne. PDF icon es_org_chart_08-25-14.pdf PDF icon es_CTR_orgchart_04-01-16

  16. Transportation Beamline at the Advanced Photon Source | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Transportation Beamline at the Advanced Photon Source Argonne's dedicated transportation research beamline at Argonne's Advanced Photon Source (APS) allows researchers to use the powerful X-ray beams created by the APS to penetrate materials and reveal details that cannot otherwise be seen. Transportation researchers use this tool to peer inside liquid sprays from fuel injectors for diesel engines. With a greater understanding of fuel spray composition, researchers have the

  17. Transportation and Vehicle Energy Modeling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Vehicle Energy Modeling Transportation and Vehicle Energy Modeling For the past 15 years, Argonne has been at the forefront of research in energy-efficient transportation. In recent years, the vehicle technologies have become increasingly complex with the introduction of new powertrain configurations (such as electrified vehicles), new component technologies (such as advanced transmissions and engines) and control strategies (such eco-routing). In addition, with increased

  18. Low energy beam transport system developments

    SciTech Connect (OSTI)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup ?} beams up to 60?mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100?mA) proton beam transport. Preservation of low emittances (~0.15 ? mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1?m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup ?} beams, but such gas densities cause unacceptably high H{sup ?} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup ?} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  19. EERE National Lab Transportation and Fuels Initiatives and Capabilitie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Sector - Major Initiatives and Consortia * Co-Optima - Co-Optimization of ... highly durable electrocatalysts for fuel cells- driving down the cost of fuel cell ...

  20. Office of Secure Transportation History | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    and redesigned transport equipment to incorporate features that more effectively enhanced self-protection and denied unauthorized access to the materials. During this time TSD...

  1. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration NEMS Transportation Demand Model Documentation Report 2005 25 manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  2. Heat transport system, method and material

    DOE Patents [OSTI]

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  3. Steve Ciatti: Emerging Technologies in Transportation | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Steve Ciatti: Emerging Technologies in Transportation Share Argonne researcher Steve Ciatti talks about the emerging technologies in transportation, as well as the current technology being developed at the lab and placed on the market. Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research

  4. Chapter 8 - Advancing Clean Transportation and Vehicle Systems and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway vehicles; rail; aircraft; and ships used for personal transport, movement of goods, construction, agriculture, and mining as

  5. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System ...

  6. Occupational Medical Surveillance System (OMSS) PIA, Idaho National...

    Energy Savers [EERE]

    (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System...

  7. Occupational Medical Surveillance System (OMSS) PIA, Idaho National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory PDF icon Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury & Illness System

  8. emergency management systems | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    systems NNSA sites prepared for disasters using real-time response management system Pantex Emergency Services now uses the Emergency Management Information System, or EMInS. From left: Maribel Martinez, Brenda Graham and Greg Roddahl. One of NNSA's missions is emergency response, so it only makes sense that our sites and labs excel at emergency management on the local level. When... Building International Emergency Management Systems NNSA helps nations develop the core elements of an emergency

  9. information systems | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    information systems NNSA's G2 Management Information System Wins Association for Enterprise Information's (AFEI) "Excellence in Enterprise Information Award" The G2 team and the 2015 Association for Enterprise Information's (AFEI) Excellence in Enterprise Information Award. (WASHINGTON, D.C) - The National Nuclear Security Administration (NNSA) has received the 2015 Association for Enterprise Information's (AFEI) Excellence in Enterprise Information

  10. NEMS - National Energy Modeling System: An Overview

    Reports and Publications (EIA)

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  11. Energy Systems Modeling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Modeling Argonne develops models and software packages that can assist fleet managers and technology developers in assessing the potential impacts of implementing new technologies. Proposed transformations to the nation's energy system will introduce astonishing new technologies into the market, cause widespread changes in our energy consumption patterns, and even physical changes to the power grid. The result? Our energy system will be altered in complex and interdependent ways

  12. National SCADA Test Bed - Enhancing control systems security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) National SCADA Test Bed - Enhancing control systems security in the energy sector...

  13. Safety System Oversight Assessment, Los Alamos National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment, Los Alamos National Laboratory - May 2011 Safety System Oversight Assessment, Los Alamos National Laboratory - May 2011 May 2011 Safety System Oversight Assessment of ...

  14. National Geothermal Data System (NGDS) Fact Sheet | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Data System (NGDS) Fact Sheet National Geothermal Data System (NGDS) Fact Sheet Industry has named one of the largest barriers to widespread adoption of ...

  15. Innovative technology summary report: Transportable vitrification system

    SciTech Connect (OSTI)

    NONE

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  16. Sensor system for fuel transport vehicle

    DOE Patents [OSTI]

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  17. Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's

  18. Electricity for road transport, flexible power systems and wind...

    Open Energy Info (EERE)

    systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and wind power Country Denmark...

  19. RISKIND: An enhanced computer code for National Environmental Policy Act transportation consequence analysis

    SciTech Connect (OSTI)

    Biwer, B.M.; LePoire, D.J.; Chen, S.Y.

    1996-03-01

    The RISKIND computer program was developed for the analysis of radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel (SNF) or other radioactive materials. The code is intended to provide scenario-specific analyses when evaluating alternatives for environmental assessment activities, including those for major federal actions involving radioactive material transport as required by the National Environmental Policy Act (NEPA). As such, rigorous procedures have been implemented to enhance the code`s credibility and strenuous efforts have been made to enhance ease of use of the code. To increase the code`s reliability and credibility, a new version of RISKIND was produced under a quality assurance plan that covered code development and testing, and a peer review process was conducted. During development of the new version, the flexibility and ease of use of RISKIND were enhanced through several major changes: (1) a Windows{sup {trademark}} point-and-click interface replaced the old DOS menu system, (2) the remaining model input parameters were added to the interface, (3) databases were updated, (4) the program output was revised, and (5) on-line help has been added. RISKIND has been well received by users and has been established as a key component in radiological transportation risk assessments through its acceptance by the U.S. Department of Energy community in recent environmental impact statements (EISs) and its continued use in the current preparation of several EISs.

  20. Road Transportable Analytical Laboratory system. Phase 1

    SciTech Connect (OSTI)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  1. Aerial Monitoring System | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Aerial Monitoring System NNSA to Participate in Aerial Radiation Training Exercise in Philadelphia, Pennsylvania (WASHINGTON, D.C.) - On March 21 through March 24, the Department of Energy's National Nuclear Security Administration (NNSA) will participate in a federal and state/local training exercise in Philadelphia that will also include the Philadelphia Police Department and the Departments of Defense,

  2. Foreign National Access to DOE Cyber Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-01

    DOE N 205.16, dated 9-15-05, extends this Notice until 9-30-06, unless sooner rescinded. To ensure foreign national access to DOE cyber systems continues to advance DOE program objectives while enforcing information access restrictions.

  3. Biomimetic Materials for Protein Storage and Transport | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Biomimetic Materials for Protein Storage and Transport Technology available for licensing: Unique, first-of-its-kind method for storing proteins in their native state for assay, application and delivery to sites outside of initial extraction and storage facilities. Enables delivery to sites outside of initial extraction and storage facilities Allows isolation, maintenance, and indefinite storage of protein in its native state PDF icon biomimetic

  4. National Geoscience Data Repository System. Final report

    SciTech Connect (OSTI)

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  5. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  6. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  7. PIA - NGP Fellow Application System PIA, Pacific Northwest National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy NGP Fellow Application System PIA, Pacific Northwest National Laboratory PIA - NGP Fellow Application System PIA, Pacific Northwest National Laboratory PIA NGP Fellow Application System PIA, Pacific Northwest National Laboratory PDF icon PIA - NGP Fellow Application System PIA, Pacific Northwest National Laboratory More Documents & Publications PIA - WEB iPASS System DOE PIA Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory

  8. Transportation Deployment (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Expertise Puts More Green Vehicles on the Road Automakers, commercial fleet operators, component manufactur- ers, and government agencies all turn to the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab's independent analyses and evaluations pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized

  9. National Renewable Energy Laboratory's Energy Systems Integration Facility Overview

    Broader source: Energy.gov [DOE]

    This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory.

  10. MOX Services Unclassified Information System PIA, National Nuclear Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration | Department of Energy MOX Services Unclassified Information System PIA, National Nuclear Services Administration MOX Services Unclassified Information System PIA, National Nuclear Services Administration MOX Services Unclassified Information System PIA, National Nuclear Services Administration PDF icon MOX Services Unclassified Information System PIA, National Nuclear Services Administration More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant

  11. Pantex Occupational Health System (OHS), National Nuclear Security

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Pantex Site Office | Department of Energy Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office PDF icon Pantex Occupational Health System (OHS), National Nuclear Security Administration Pantex Site Office More Documents &

  12. Charged and neutral particle transport methods and applications: The CALOR code system

    SciTech Connect (OSTI)

    Gabriel, T.A.; Charlton, L.A.

    1997-04-01

    The CALOR code system, which is a complete radiation transport code system, is described with emphasis on the high-energy (> 20 MeV) nuclear collision models. Codes similar to CALOR are also briefly discussed. A current application using CALOR which deals with the development of the National Spallation Neutron Source is also given.

  13. Safety System Oversight Assessment, Los Alamos National Laboratory- May 2011

    Broader source: Energy.gov [DOE]

    Safety System Oversight Assessment of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Tritium Gas Handling System

  14. Transportation Project Development and the National Environmental Policy Act

    SciTech Connect (OSTI)

    Lanthrum, J.G.

    2006-07-01

    This paper explores the nexus between project management and the National Environmental Policy Act (NEPA) activities for developing the Nevada Rail Line to Yucca Mountain. In many federal agencies, the responsibility for project management is completely separate from the responsibility for NEPA implementation; however, each Department of Energy (DOE) Departmental Element has a NEPA Compliance Officer. This ensures effective integration between NEPA and project management activities. As the project management and NEPA activities are implemented, it becomes clear that they are very complimentary processes. This paper will describe the integration of NEPA and project management activities for development of a rail line to the Yucca Mountain geologic repository in Nye County, Nevada. (authors)

  15. National Geothermal Data System - DOE Geothermal Data Repository...

    Broader source: Energy.gov (indexed) [DOE]

    National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngdsgdrgeneralpresentation.pdf More Documents & Publications How to Utilize the National Geothermal Data...

  16. MOX Services Unclassified Information System PIA, National Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MOX Services Unclassified Information System PIA, National Nuclear Services Administration MOX ... TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory ...

  17. Sandia Energy - Sandia Solar Energy Test System Cited in National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Test System Cited in National Engineering Competition Home Renewable Energy Energy Facilities Partnership News News & Events Concentrating Solar Power Solar National...

  18. Spring 2010 National Transportation Stakeholder Forum Meetings, Illinois |

    Energy Savers [EERE]

    Spinning with the Sun Spinning with the Sun April 4, 2013 - 3:31pm Addthis Patrick Yarn Mills, located in Kings Mountain North Carolina, installed a 105-kilowatt rooftop solar system with the help of the Energy Department's State Energy Program. | Photo courtesy of the NC Energy Office. Patrick Yarn Mills, located in Kings Mountain North Carolina, installed a 105-kilowatt rooftop solar system with the help of the Energy Department's State Energy Program. | Photo courtesy of the NC Energy Office.

  19. International Conference on Surface Transportation System Resilience...

    Broader source: Energy.gov (indexed) [DOE]

    practices and state of the art research results on how to adapt surface transportation networks to the potential impacts of climate change and extreme weather events. Learn More......

  20. A reflective optical transport system for ultraviolet Thomson scattering

    Office of Scientific and Technical Information (OSTI)

    from electron plasma waves on OMEGA (Journal Article) | SciTech Connect A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA Citation Details In-Document Search Title: A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA A reflective optical transport system has been designed for the OMEGA Thomson-scattering diagnostic. A Schwarzschild objective that uses two concentric spherical

  1. IDAHO NATIONAL LABORATORY TRANSPORTATION TASK REPORT ON ACHIEVING MODERATOR EXCLUSION AND SUPPORTING STANDARDIZED TRANSPORTATION

    SciTech Connect (OSTI)

    D.K. Morton

    2011-09-01

    Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for the foreseeable future. This report proposes supplementing the ongoing research and development work related to potential degradation of used fuel, baskets, poisons, and storage canisters during an extended period of storage with a parallel path. This parallel path can assure criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). Using updated risk assessment insights for additional technical justification and relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal conditions of transportation. A demonstrating testing program supporting a detailed analytical effort as well as updated risk assessment insights can provide the basis for moderator exclusion during hypothetical accident conditions. This report also discusses how this engineered concept can support the goal of standardized transportation.

  2. Cloud-Based Transportation Management System Delivers Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE spends tens of millions of dollars transporting hazardous and radioactive materials and waste each year. DOE developed several useful software tools and information systems to ...

  3. Systems and methods for selective hydrogen transport and measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy ... Systems and methods for selective hydrogen transport and measurement United States Patent ...

  4. SYSTEMS AND METHODS FOR SELECTIVE HYDROGEN TRANSPORT AND MEASUREMENT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy ... SYSTEMS AND METHODS FOR SELECTIVE HYDROGEN TRANSPORT AND MEASUREMENT United States Patent ...

  5. GIZ Sourcebook Module 4e: Intelligent Transport Systems | Open...

    Open Energy Info (EERE)

    from the LEDS Global Partnership. When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these...

  6. Base Technology for Radioactive Material Transportation Packaging Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  7. Low tritium partial pressure permeation system for mass transport...

    Office of Scientific and Technical Information (OSTI)

    Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic Citation Details In-Document Search This content will become publicly ...

  8. Analysis Insights, August 2015: Sustainable Transportation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    NREL Analysis Insights mines our body of analysis work to synthesize topical insights and key findings. In this issue, we examine transportation systems, alternative fuels, and implications of increasing electrification of transit. Moving people and goods from point A to B has never been easier, but our current transportation systems also take a toll on our environment. Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation’s total carbon emissions. With new technology, can we make our transportation system cleaner and more cost effective? NREL is applying its analytical expertise and imagination to do just that. Solutions start with systems thinking. Connecting the dots between physical components - vehicles, fueling stations, and highways - and institutional components - traffic laws, regulations, and vehicle standards - helps illuminate solutions that address the needs of the transportation system's many stakeholders.

  9. Natural convection heat transport in a small, HLMC reactor system

    SciTech Connect (OSTI)

    Spencer, B.W.; Sienicki, J.J.; Farmer, M.T.

    1999-09-01

    Concepts are being developed and evaluated at Argonne National Laboratory for a small nuclear steam supply system (NSSS) with proliferation-resistant features targeted for export to developing countries. Here the authors are specifically investigating how simple and compact such a system can be. A heavy-liquid-metal coolant (HLMC) is being considered owing to its excellent heat transport characteristics and its relative inertness with the reference thermodynamic working fluid (water/steam). The purpose of the present work is to explore the possibility to take advantage of these HLMC characteristics by eliminating the intermediate loop needed in sodium-cooled systems and additionally eliminating the primary system coolant pumps. The criteria imposed on the system include the following: (1) low power, i.e., 300 MW(thermal); (2) small size for factory fabrication and overland transportation; (3) elimination of fuel access at the site (no refueling, fuel shuffling, nor storage at site); integral fueled module replacement at 15-yr goal interval; and (4) completion of all research and development needed for detailed prototype design within 5 yr. To accomplish the latter requirement, the authors are addressing whether existing coolant and materials technology is capable of supporting the sought-after simplifications. In this regard, they are at present considering technology developed in Russia for Pb-Bi eutectic as a reactor coolant and ferritic-martensitic stainless steel with oxide-layer corrosion protection as cladding. The figure of merit in the investigation is the peak cladding temperature insofar as the cladding technology is considered proven to {approximately}600 C.

  10. Nohemi Brewer Transportation Program Manager U.S. Department of Energy (DOE), National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Working Group Meeting November 16, 2012 Welcome! Page 2 Page 2Title ID 411- 11/16/2012 - Page 2 Meeting Purpose Provide forum for information exchange related to the Site-Wide Environmental Impact Statement (SWEIS) analysis of low-level/mixed low-level radioactive waste (LLW/MLLW) transportation to the Nevada National Security Site (NNSS) Page 3 Page 3Title ID 411- 11/16/2012 - Page 3 Transportation Working Group Members * State of Nevada * Counties * Cities * Tribal * Nevada

  11. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  12. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  13. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Advancing Clean Transportation and Vehicle Systems and Technologies September 2015 Quadrennial Technology Review 8 Advancing Clean Transportation and Vehicle Systems and Technologies Issues and RDD&D Opportunities  Transportation accounts for 10% of U.S. gross domestic product and provides essential services throughout the economy and for quality of life. It also represents 70% of all U.S. petroleum use and 27% of U.S. greenhouse gas (GHG) emissions.  Research opportunities to

  14. DOE Technical Targets for Fuel Cell Systems for Transportation Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Transportation Applications DOE Technical Targets for Fuel Cell Systems for Transportation Applications These tables list the U.S. Department of Energy (DOE) technical targets for integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications. These targets have been developed with input from the U.S. DRIVE Partnership, which includes automotive and energy companies, specifically

  15. DRAFT - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest.

  16. Selecting RMF Controls for National Security Systems

    SciTech Connect (OSTI)

    Witzke, Edward L.

    2015-08-01

    In 2014, the United States Department of Defense started tra nsitioning the way it performs risk management and accreditation of informatio n systems to a process entitled Risk Management Framework for DoD Information Technology or RMF for DoD IT. There are many more security and privacy contro ls (and control enhancements) from which to select in RMF, than there w ere in the previous Information Assurance process. This report is an attempt t o clarify the way security controls and enhancements are selected. After a brief overview and comparison of RMF for DoD I T with the previously used process, this report looks at the determination of systems as National Security Systems (NSS). Once deemed to be an NSS, this report addr esses the categorization of the information system with respect to impact level s of the various security objectives and the selection of an initial baseline o f controls. Next, the report describes tailoring the controls through the use of overl ays and scoping considerations. Finally, the report discusses organizatio n-defined values for tuning the security controls to the needs of the information system.

  17. The National Energy Modeling System: An overview

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

  18. Research and Development Program for transportation packagings at Sandia National Laboratories

    SciTech Connect (OSTI)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-02-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support.

  19. GTP Adds Meeting on the National Geothermal Data System Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adds Meeting on the National Geothermal Data System Project to Peer Review GTP Adds Meeting on the National Geothermal Data System Project to Peer Review May 10, 2010 - 2:41pm...

  20. National Geothermal Data System Deployed to Serve Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy National Geothermal Data System Deployed to Serve Industry National Geothermal Data System Deployed to Serve Industry May 28, 2014 - 9:08am Addthis The National Geothermal Data System deploys free, open-source online scientific information, a mammoth resource of geoscience data. In the data visualization shown here, Schlumberger utilized bottom hole temperatures from the National Geothermal Data Systems (NDGS) on-line platform to supplement subscription data temperatures used to

  1. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E.

    1990-10-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  2. Nuclear reactor heat transport system component low friction support system

    DOE Patents [OSTI]

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  3. MEMS-based chemical analysis systems development at Sandia National...

    Office of Scientific and Technical Information (OSTI)

    MEMS-based chemical analysis systems development at Sandia National Labs. Citation Details In-Document Search Title: MEMS-based chemical analysis systems development at Sandia ...

  4. LANL installs high-performance computer system | National Nuclear...

    National Nuclear Security Administration (NNSA)

    computer system Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. Wolf will help...

  5. National Wildlife Refuge System Administration Act | Open Energy...

    Open Energy Info (EERE)

    Wildlife Refuge System Administration Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: National Wildlife Refuge System...

  6. PIA - NGP Fellow Application System PIA, Pacific Northwest National...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications PIA - WEB iPASS System DOE PIA Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory Integrated Safety Management Workshop ...

  7. National Geothermal Data Systems Data Acquisition and Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Data Acquisition and Access National Geothermal Data Systems Data Acquisition and Access Project objective: To support the acquisition of new and legacy data from...

  8. National SCADA Test Bed - Enhancing control systems security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) National SCADA Test Bed - Enhancing control systems security in the energy sector ...

  9. Low tritium partial pressure permeation system for mass transport

    Office of Scientific and Technical Information (OSTI)

    measurement in lead lithium eutectic (Journal Article) | SciTech Connect Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic Citation Details In-Document Search This content will become publicly available on November 28, 2016 Title: Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic This paper describes a new experimental system designed to investigate tritium mass transfer properties in

  10. List of Major Information Systems,National Nuclear Security Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADaPT Networked: | Department of Energy List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems, Defense Line of Business National Nuclear Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear

  11. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  12. Going the Distance? NRC's Response to the National Academy of Science's Transportation Study

    SciTech Connect (OSTI)

    Easton, E.P.; Bajwa, C.S.

    2008-07-01

    In February 2006, the National Academy of Sciences (NAS) published the results of a 3 1/2-year study, titled Going the Distance, that examined the safety of transporting spent nuclear fuel (SNF) and high level waste (HLW) in the United States. NAS initiated this study to address what it perceived to be a national need for an independent, objective, and authoritative analysis of SNF and HLW transport in the United States. The study was co-sponsored by the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), the U.S. Department of Transportation (DOT), the Electric Power Research Institute and the National Cooperative Highway Research Program. This paper addresses some of the recommendations made in the NAS study related to the performance of SNF transportation casks in long duration fires, the use of full-scale package testing, and the need for an independent review of transportation security prior to the commencement of large scale shipping campaigns to an interim storage site or geologic repository. In conclusion: The NRC believes that the current regulations in 10 CFR Part 71 for the design of SNF and HLW transportation packages provide a very high level of protection to the public for very severe accidents and credible threat scenarios. As recommended by the NAS study, additional studies of accidents involving severe fires have been completed. These studies have confirmed that spent fuel casks would be expected to withstand very severe fires without the release of any fission products from the spent fuel. Additionally, changes in rail operating procedures such as the use of dedicated trains and prohibition on the co-location of SNF and flammable liquids in rail tunnels can further reduce the already low probability of severe rail accident fires involving SNF and HLW. (authors)

  13. Conceptual design of an RTG Facility Transportation System

    SciTech Connect (OSTI)

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1994-06-03

    The conceptual design of an Radioisotope Thermoelectric Generator (RTG) Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during loading and unloading sequences. The RTG Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a uniquely designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock limiting Transit Device Subsystem consists of a consumable honeycomb transit frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the unloading and loading of the RTG , of the Transport Trailer as well as meet ALARA radiation Package into and out exposure guidelines.

  14. Sandia National Laboratories Releases Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport

    Broader source: Energy.gov [DOE]

    The Department of Energy is helping to develop an understanding of scientific questions associated with the production, treatment, and transportation of crude oils, including Bakken crude oil. To support this effort, the Department’s Sandia National Laboratory recently completed a report in cooperation with the Department of Transportation -- Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

  15. Sandia National Laboratories: National Security Missions: Defense Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Assessments Programs Defense Systems & Assessments Accelerating Innovation for the Warfighter Accelerating Innovation into the Hands of the Warfighter Supporting Ballistic Missile Defense Supporting Ballistic Missile Defense Launching GPS Satellites Launch of GPS satellite About Defense Systems & Assessments Our engineering, science, and technology expertise supports soldiers on the battlefield. About Us Program Areas Our multi-faceted research detects and defends against threats

  16. World Energy Projection System Plus Model Documentation: Transportation Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  17. Automated Transportation Logistics and Analysis System (ATLAS)

    Energy Savers [EERE]

    Department of Energy Automated Office Systems Support (AOSS) Quality Assurance Model Automated Office Systems Support (AOSS) Quality Assurance Model A quality assurance model, including checklists, for activity relative to network and desktop computer support. PDF icon Automated Office Systems Support (AOSS) Quality Assurance Model More Documents & Publications Audit Report: CR-B-97-04 CITSS Project Plan Quality Assurance Checklist Insulated Cladding Systems | Department of Energy

  18. What is the National Geothermal Data System (NGDS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-03

    Overview of the National Geothermal Data System, a distributed, interoperable network of data repositories and state geological service providers from across the U.S. and the nation's leading academic geothermal centers.

  19. 54 USC Subtitle I - National Park System | Open Energy Information

    Open Energy Info (EERE)

    54 USC Subtitle I - National Park System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 54 USC Subtitle I - National Park...

  20. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-20

    The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Supersedes DOE O 461.1A.

  1. Letter to Science from Michael Wang, Center for Transportation Research, Argonne National Laboratory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Letter to Science (Original version submitted to Science on Feb. 14 th , 2008; revised on March 14 th , 2008) Michael Wang Center for Transportation Research Argonne National Laboratory Zia Haq Office of Biomass Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy The article by Searchinger et al. in Sciencexpress ("Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land Use Change," February 7, 2008) provides a timely

  2. Transportation Secure Data Center: Real-world Data for Planning, Modeling, and Analysis (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Secure Data Center Real-World Data for Planning, Modeling, and Analysis The Transportation Secure Data Center (TSDC) at www.nrel.gov/tsdc provides free, web-based access to detailed transportation data from a variety of travel surveys conducted across the nation. While preserving the privacy of survey participants, this online repository makes vital transportation data broadly available to users from the comfort of their own desks via a secure online connection. Data Available

  3. Workshop on technology issues of superconducting Maglev transportation systems

    SciTech Connect (OSTI)

    Wegrzyn, J.E. ); Shaw, D.T. )

    1991-09-27

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.

  4. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  5. NREL: Transportation Research - Systems Analysis and Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wireless power transfer for on-road electric vehicles, as depicted in the e-roadway animation. NREL's systems analysis and integration work supports a wide range of...

  6. Pulse thermal energy transport/storage system

    DOE Patents [OSTI]

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  7. Secondary ion collection and transport system for ion microprobe

    DOE Patents [OSTI]

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  8. NREL: Transportation Research - Systems Analysis and Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Systems Analysis and Integration Publications NREL publishes technical reports, fact sheets, and other documents about its systems analysis and integration activities. For a complete collection of publications, search NREL's Publications Database or find publications via the following author and keyword selections: Authors: Robb Barnitt Brennan Borlaug Aaron Brooker Evan Burton Yuche Chen Josh Eichman Jeff Gonder Jacob Holden Tony Markel Marc Melaina Michael Penev Laurie Ramroth

  9. National Geothermal Data System Design and Testing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    National Geothermal Data System Design and Testing presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ngds_peer2013.pdf More Documents & Publications AASG State Geological Survey How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" National Geothermal Data Systems Data Acquisition and Access

  10. Energy Department Announces National Geothermal Data System to Accelerate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Development | Department of Energy National Geothermal Data System to Accelerate Geothermal Energy Development Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development May 28, 2014 - 3:32pm Addthis In support of the Obama Administration's Open Data Policy to make data more accessible to the public and entrepreneurs, the Energy Department today officially launched the National Geothermal Data System (NGDS), an online open-source

  11. Project Management and Systems Support | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Project Management and Systems Support | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation ...

  12. Pantex Develops Tooling System To Save Time, Money | National...

    National Nuclear Security Administration (NNSA)

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced that its Pantex Plant in Amarillo, Texas, has created a special tooling system designed to ...

  13. WAC - 173 - 220 - National Pollutant Discharge Elimination System...

    Open Energy Info (EERE)

    WAC - 173 - 220 - National Pollutant Discharge Elimination System Permit Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  14. Transportation functions of the Civilian Radioactive Waste Management System

    SciTech Connect (OSTI)

    Shappert, L.B.; Attaway, C.R.; Pope, R.B.; Best, R.E.; Danese, F.L.; Dixon, L.D.; Jones, R.H.; Klimas, M.J.; Peterson, R.W.

    1992-03-01

    Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

  15. Radionuclide transport through engineered barrier system alteration products

    SciTech Connect (OSTI)

    Viani, B.E.; Torretto, P.C.; Matzen, S.L.

    1997-12-01

    The primary rationale for studying the transport behavior of radionuclides through the Engineered Barrier system / Near Field Environment (EBS/NFE) is to ascertain whether the material properties of the introduced and altered host rock can significantly affect the transport of radionuclides from the waste container to the far field. The intent of this report is to present data and modeling results that can be used to assess the importance of canister corrosion products and cementitious materials to transport of radionuclides to the far field.

  16. Safety analysis report for packaging (onsite) sample pig transport system

    SciTech Connect (OSTI)

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  17. Designing a beam transport system for RHIC's electron lens

    SciTech Connect (OSTI)

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.

  18. NREL: News - New Energy Systems Enhance National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Enhance National Security Washington D.C., March 14, 2002 Experts from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have identified key renewable energy technologies that can be used to strengthen U.S. energy security. "Renewable energy technologies offer the nation powerful tools for enhancing homeland security," NREL Director Richard Truly said today at the National Press Club. More broadly, Truly said, the growing energy contributions

  19. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A. S. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Cooper, A. B.R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacLaren, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Graham, P. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Lu, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seugling, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Satcher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klingmann, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Comley, A. J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Marrs, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmann, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glendinning, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sain, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Back, C. A. [General Atomics, San Diego, CA (United States); Hund, J. [General Atomics, San Diego, CA (United States); Baker, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading (United Kingdom); Young, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-01

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in bench-marking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic di#11;usive Marshak wave which propagates into a high atomic number Ta2O5 aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range

  20. Sandia National Laboratories: Careers: Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Systems engineering robot Systems engineers contribute to every aspect that impacts how a product is conceived, developed, and deployed into the field. Systems engineers at Sandia have the opportunity to contribute technically and programmatically in the development of our many breakthrough products. Systems engineers have responsibilities across the entire product life cycle, giving them a unique, hands-on work experience. Systems engineers work with business development

  1. Geographic information system applications in coal transportation analysis

    SciTech Connect (OSTI)

    Elmes, G.

    1996-12-31

    Geographic information systems (GIS) offer great potential to the coal transportation industry for capitalizing on the growing availability of spatially-referenced data. As computer-based systems for the collection, storage, retrieval and analysis of spatial data, generating information products in a variety of formats, GIS have a great capability to improve the efficiency and effectiveness of coal transportation operations, planning, engineering, and facilities management. Currently GIS are used in the transportation industry at large to analyze, and display information about network infrastructure, fleet operations, property ownership, routing and scheduling, and utilities. Current coal transportation applications include consumer service inquiries, train and locomotive scheduling, and evaluation of network usage. The paper describes the significant potential uses of GIS in the coal transportation sector when integrated with optimization and decision support systems, scientific visualization, data forecasting, and strategic system planning approaches. Ultimately consumer demand and the drive for economic efficiency are likely to stimulate the integration and management of spatial information across the entire coal chain.

  2. Feasibility study for a transportation operations system cask maintenance facility

    SciTech Connect (OSTI)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  3. National Geothermal Data System Architecture Design, Testing and Maintenance

    Broader source: Energy.gov [DOE]

    Project objective: To create the National Geothermal Data System (NGDS) comprised of a core and distributed network of databases and data sites that will comprise a federated system for acquisition, management, maintenance, and dissemination of geothermal and related data.

  4. Building International Emergency Management Systems | National...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home ... International Emergency Management Systems Building ... response management system DC Survey 2013 NNSA ...

  5. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System NMMSS ...

  6. Hybrid Radiator Cooling System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiator Cooling System Technology available for licensing: Hybrid radiator cooling system uses conventional finned air cooling under most driving conditions that would be...

  7. Coal Market Module of the National Energy Modeling System Model...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... The transportation costs are assumed to change over time ... modules of the NEMS integrating system are also provided. ... percent of revenue for Class I railroads. 20 18 U.S. ...

  8. High-performance computer system installed at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-performance computer system installed at Los Alamos National Laboratory Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf, will be used for unclassified research September 2, 2014 New insights to changing the atomic structure of metals The Wolf computer system modernizes

  9. Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-09-25

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  10. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-01-05

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  11. Sandia National Laboratories: Integrated Military Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Military Systems (IMS) Capabilities Facilities Projects Facebook Twitter YouTube Flickr RSS Integrated Military Systems (IMS) Integrated Military Systems Missile Air Defense Demonstrates advanced technologies, delivers responsive technical solutions in anticipation of Missile Defense mission needs, and facilitates the integration and sustainment of operational capabilities across the broad Missile Defense mission Missile Air Defense Strike Systems & Aerospace Technologies Provides

  12. Thaw flow control for liquid heat transport systems

    DOE Patents [OSTI]

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  13. Collaboration Topics - System Software | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration System Software This collaboration focuses on research and development of parallel file system interfaces and tools, system resource management capabilities, operating system evaluation, and software for high-performance interconnects. Current activities include the test and evaluation of technologies and tools associated with the Lustre parallel file system, the development and analysis of middleware to encapsulate application I/O requirements and abstract the capabilities of

  14. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  15. Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation

    Broader source: Energy.gov [DOE]

    SAN FRANCISCO – Energy and transportation ministers from 21 economies in the Asia-Pacific region today agreed to continue progress on initiatives to make transportation in the region cleaner and...

  16. ORISE: Argonne National Laboratory Electonic Medical Records System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    designed to manage worker health data Argonne Electronic Medical Records System ORISE collaborates to successfully design electronic medical records system for Argonne National Laboratory Health worker accessing electronic medical records Argonne National Laboratory (ANL) provides occupational health examinations and monitors exposures to workplace hazards for its employees. ANL has been operating since 1946 and, in ANL's legacy system, worker health and occupational exposure records were

  17. Road Transportable Analytical Laboratory (RTAL) system: Volume I. Final report

    SciTech Connect (OSTI)

    Finger, S.M.; De Avila, J.C.; Keith, V.F.

    1996-08-01

    This report describes a portable laboratory system for the analysis of soils, ground water, and surface waters for the detection and quantification of hazardous materials, organics, and radioactive contaminants. The goal of the Road Transportable Analytical Laboratory (RTAL) is a sample throughput of 20 samples per day, providing a full range of analysis on each sample within 16 hours of preparation with high accuracy.

  18. Aerial Measuring System | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Management Aerial Measuring System AMS Logo NNSA's Aerial Measuring System (AMS) provides specialized airborne radiation detection systems to provide real-time measurements of low levels of air and ground contamination. The AMS team consists of scientists, technicians, pilots, and ground support personnel. These trained experts are in charge of maintaining a state of readiness to respond to a radiological emergency at any time. The team is based out of Nellis Air Force Base in Las Vegas, Nevada,

  19. NNSA Policy System | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    SDs are utilized, in conjunction with the Department's Directives System to indicate how NNSA will implement a Departmental directive in a cost efficient manner. Enterprise ...

  20. National Laboratories' Energy Technologies and System Solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories' Energy Technologies and System Solutions Center Director - Sandia Energy Energy Search Icon Sandia Home Locations ... Nuclear Fuel Cycle Defense Waste Management Programs ...

  1. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  2. Access Business Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system (such as Windows, Mac, Linux, Apple IOS, Android) Through most browsers (Internet Explorer, Firefox, Safari; Chrome is not currently recommended) All access is through...

  3. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect (OSTI)

    King, D.A.

    1994-11-10

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  4. State Geological Survey Contributions to the National Geothermal Data System

    Broader source: Energy.gov [DOE]

    Project objectives: Deploy and populate the National Geothermal Data System (NGDS) with state-specific data by creating a national, sustainable, distributed, interoperable network of state geological survey-based data providers that will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral compliant component of NGDS.

  5. Ecological Resources and Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecological Resources and Systems Argonne develops and applies innovative approaches and tools to integrate environmental compliance and environmental performance into an organization's structure in a cost-effective manner. Argonne knows that our world exists in a delicate balance with technology. Our research focuses on measuring advanced energy and technology's effects on the world's ecological systems, creating preventive strategies to protect the Earth from harm and inventing new ways to

  6. Screening study on high temperature energy transport systems

    SciTech Connect (OSTI)

    Graves, R.L.

    1980-10-01

    The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

  7. National Geothermal Data System - DOE Geothermal Data Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" Guidelines for Provision and Interchange of Geothermal ...

  8. How to Utilize the National Geothermal Data System (NGDS) and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network with "Node-In-A-Box" How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" PDF icon ...

  9. An Overview of Liquid Fluoride Salt Heat Transport Systems

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Cetiner, Sacit M

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and this report also describes more recently developed technologies such as dry gas seals. This report also provides a high-level, parametric evaluation of LSHT loop performance to allow general intercomparisons between heat-transport fluid options as well as provide an overview of the properties and requirements for a representative loop. A compilation of relevant thermophysical properties of useful fluoride salts is also included for salt heat transport systems. Fluoride salts can be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report includes an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize corrosion issues. Salt chemistry control technology, however, remains at too low a level of understanding for widespread industrial usage. Loop operational issues such as start-up procedures and system freeze-up vulnerability are also discussed. Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

  10. National Geothermal Data System Deployed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployed National Geothermal Data System Deployed In support of the Obama Administration's Open Data Policy, on May 28, 2014, the United States Department of Energy (DOE) announced deployment of the National Geothermal Data System (NGDS), an online, open-source platform that facilitates discovery and use of subsurface geothermal data for research and energy production. This open source platform responds to one of industry's greatest barriers to geothermal development and deployment: the

  11. Sandia National Laboratories: MicroElectroMechanical Systems (MEMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroElectroMechanical Systems (MEMS) MEMS The MEMS Technology Department at Sandia National Laboratories conducts research and development for advanced microelectromechanical systems that push the technology envelope for national security applications Custom Solutions Inertial & Pressure Sensors Inertial sensors have emerged as the most significant MEMS product in consumer electronics. Sandia develops MEMS inertial sensors with an emphasis on nuclear and space environments where radiation

  12. International Monitoring System | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home International Monitoring System NNSA Contributes to International Efforts to Further Strengthen Detection of Nuclear Explosions Every day, thousands of patients worldwide undergo medical tests, diagnostics, and treatments that use radioactive materials. These vital materials, such as molybdeum-99 (Mo-99), must be produced continuously to keep up with demand. One consequence of some Mo-...

  13. High-performance computer system installed at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-performance computer system installed at Lab High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf, will be used for unclassified research. June 17, 2014 The Wolf computer system modernizes mid-tier resources for Los Alamos scientists. The Wolf computer system modernizes mid-tier resources for Los Alamos scientists. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "This machine

  14. Energy Systems Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Analysis All stages of energy production have inputs and outputs. Argonne researchers analyze the total production picture and develop tools for members of the public to use in conducting their own assessments. All stages of energy production have inputs and outputs. Argonne researchers analyze the total production picture and develop tools for members of the public to use in conducting their own assessments. Consumer behavior, economic conditions and market forces interact on

  15. Integration of Nontraditional Isotopic Systems Into Reaction-Transport

    Broader source: Energy.gov (indexed) [DOE]

    Models of EGS For Exploration, Evaluation of Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability | Department of Energy Nontraditional Isotopic Systems Into Reaction-Transport Models of EGS For Exploration, Evaluation of Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon sonnenthal_foa_peer2013.pdf More Documents & Publications track 4:

  16. Transportation Routing Analysis Geographic Information System (TRAGIS) User's Manual

    SciTech Connect (OSTI)

    Johnson, PE

    2003-09-18

    The Transportation Routing Analysis Geographic Information System (TRAGIS) model is used to calculate highway, rail, or waterway routes within the United States. TRAGIS is a client-server application with the user interface and map data files residing on the user's personal computer and the routing engine and network data files on a network server. The user's manual provides documentation on installation and the use of the many features of the model.

  17. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    SciTech Connect (OSTI)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  18. R&D ERL: Photocathode Deposition and Transport System

    SciTech Connect (OSTI)

    Pate, D.; Ben-Zvi, I.; Rao, T.; Burrill, R.; Todd, R.; Smedley, J.; Holmes, D.

    2010-01-01

    The purpose of the photocathode deposition and transport system is to (1) produce a robust, high yield multialkali photocathode and (2) have a method of transporting the multialkali photocathode for insertion into a super conducting RF electron gun. This process is only successful if a sufficient quantum efficiency lifetime of the cathode, which is inserted in the SRF electron gun, is maintained. One important element in producing a multialkali photocathode is the strict vacuum requirements of 10{sup -11} torr to assure success in the production of longlived photocathodes that will not have their QE or lifetime depleted due to residual gas poisoning in a poor vacuum. A cutaway view of our third generation deposition system is shown in figure 1. There are certain design criteria and principles required. One must be able to install, remove, rejuvenate and replace a cathode without exposing the source or cathode to atmosphere. The system must allow one to deposit Cs, K, and Sb on a cathode tip surface at pressures in the 10{sup -10} to 10{sup -9} torr range. The cathode needs to be heated to as high as 850 C for cleaning and maintained at 130 C to 150 C during deposition. There should also be the capability for in-situ QE measurements. In addition the preparation of dispenser photocathodes must be accounted for, thus requiring an ion source for cathode cleaning. Finally the transport cart must be mobile and be able to negotiate the ERL facility labyrinth.

  19. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    SciTech Connect (OSTI)

    Zhang Xi; Shia Runlie; Yung, Yuk L.

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  20. Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations

    SciTech Connect (OSTI)

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Renslow, Ryan S.; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.

  1. Applying GIS characterizing and modeling contaminant transport in surface water at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Becker, N.M.; Van Eeckhout, E.; David, N.A.; Irvine, J.M.

    1995-10-01

    During World War II, Los Alamos, New Mexico was chosen as the site for the secret development of the first atomic bomb. The remote location in the southwestern United States was ideal for such a project. After the war, research activities continued at the Los Alamos installation, focusing on new nuclear weapons models as well as greater effectiveness and reliability of existing weapons. Due to the emphasis on nuclear and non-nuclear weapons development as well as associated nuclear research, a large inventory of radionuclides and heavy metals have been tested, expended, and disposed of in the local environment, a high plateau of tuffaceous volcanic rocks incised by deep canyons in a semi-arid climate. In recent years an intensive evaluation of the environmental, impact of weapons testing at Los Alamos and elsewhere has been undertaken. GIS system utilization and image processing of past and current data has been an important part of this evaluation. Important problems can be more easily displayed and understood using this methodology. The main objective in this paper is to illustrate how transport of depleted uranium and associated heavy metals (copper in this case) used in dynamic testing of weapons components at open air firing sites can be evaluated and visualized. In our studies, surface water has been found to be the predominant transport mechanism. We have sampled soils, sediments, fallout, runoff water and snowmelt over a number of years in order to understand contaminant transport on- and offsite. Statistical analyses of these data have assisted in our characterization of issues such as contaminant variability, spatially and temporally, as well as in development of transport rates.

  2. Sandia National Laboratories, California Environmental Management System program manual

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  3. Sandia National Laboratories, California Environmental Management System program manual.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  4. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics and Thermal Management Thermal Management This is the March 2016 issue of the Transportation and Hydrogen Newsletter. March 31, 2016 Photo of a man seated before a microphone and speaking. NREL's Chris Gearhart provides congressional testimony on sustainable transportation. U.S. Senate Hears of Role National Labs Play in Sustainable Transportation Innovation On January 12, 2016, NREL's Chris Gearhart, director of the Transportation and Hydrogen Systems Center, provided

  5. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    SciTech Connect (OSTI)

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  6. Feed gas contaminant control in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Minford, Eric; Waldron, William Emil

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  7. Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

    SciTech Connect (OSTI)

    Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

    2011-03-18

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

  8. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  9. A 10kW photovoltaic/hybrid system for Pinnacles National Monument

    SciTech Connect (OSTI)

    Ball, T.J.; DeNio, D.

    1997-12-31

    Visitors to the Chaparral area of the Pinnacles National Monument now can enjoy this beautiful section of the park without the constant drone of diesel generators, thanks to a recently installed photovoltaic/hybrid system. Electrical power had been supplied by two 100 KW diesel generators operating 24 hours per day. The diesels were running lightly loaded resulting in poor efficiency and high operating cost. Applied Power Corporation under contract with the National Park Service designed and supplied a 10 KW photovoltaic array, 200 KW hr battery bank and 24 KW of inverters to power the maintenance facility, visitor center and ranger residences. A new 20 KW propane generator was installed to provide supplemental power, totally eliminating the storage and transport of diesel fuel at this site. The Pinnacles PV/Hybrid system was brought on line in early 1996 and the park is now benefiting from the cost savings associated with the system.

  10. IEA-GIA ExCo - National Geothermal Data System and Online Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IEA-GIA ExCo - National Geothermal Data System and Online Tools IEA-GIA ExCo - National Geothermal Data System and Online Tools National Geothermal Data System presentation by Jay ...

  11. IEA-GIA ExCo - National Geothermal Data System and Online Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IEA-GIA ExCo - National Geothermal Data System and Online Tools IEA-GIA ExCo - National Geothermal Data System and Online Tools National Geothermal Data System presentation by Jay...

  12. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications View Larger Map Main Address 1 Cyclotron Rd‎ University of California Berkeley Berkeley, CA 94720 The Laboratory is in Berkeley on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Road, Berkeley CA 94720. To make the Lab easily accessible, the

  13. Chapter 8 - Advancing Clean Transportation and Vehicle Systems...

    Office of Environmental Management (EM)

    Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway vehicles; rail; aircraft; and ships used for personal transport, movement of ...

  14. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect (OSTI)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  15. Efficient Mobility Summit: Transportation and the Future of Dynamic Mobility Systems

    SciTech Connect (OSTI)

    2015-12-01

    On October 27, 2015, The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) brought together local and national thought leaders to discuss the convergence of connectivity, vehicle automation, and transportation infrastructure investments at the Future Energy Efficient Mobility Workshop. The half-day workshop was held in conjunction with the Colorado Department of Transportation's (CDOT) Transportation Matters Summit and featured four panel sessions that showcased perspectives on efficient mobility from federal and state agencies, automakers and their suppliers, transportation data providers, and freight companies. This summary provides highlights from the meeting's exchanges of ideas and existing applications. Transportation's (CDOT) Transportation Matters Summit and featured four panel sessions that showcased perspectives on efficient mobility from federal and state agencies, automakers and their suppliers, transportation data providers, and freight companies. This summary provides highlights from the meeting's exchanges of ideas and existing applications.

  16. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, B.K.

    1997-01-01

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG{close_quote}s performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS. {copyright} {ital 1997 American Institute of Physics.}

  17. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, Barry K.

    1997-01-10

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  18. NNSA, Djibouti Transition Radiation Detection System | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration NNSA, Djibouti Transition Radiation Detection System March 26, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) recently celebrated the transition of full responsibility to the government of Djibouti for the radiation detection system located at the Doraleh Container Terminal at the Port of Djibouti. The joint ceremony was held in Djibouti's capital to mark the event attended by senior officials from Djibouti, the U.S., and Ethiopia. This

  19. NNSA, Argentina Transition Radiation Detection System | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Argentina Transition Radiation Detection System May 19, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and the Government of Argentina recently completed the transition of full responsibility for the radiation detection systems located at the Port of Buenos Aires and Port of Dock Sud at an official signing in Argentina's capital of Buenos Aires. This transition reflects the strong commitment of Argentina's government to deter, detect and

  20. Computational Systems & Software Environment | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Computational Systems & Software Environment The mission of this national sub-program is to build integrated, balanced, and scalable computational capabilities to meet the predictive simulation requirements of NNSA. This sub-program strives to provide users of ASC computing resources a stable and seamless computing environment for all ASC-deployed platforms. Along with these powerful systems that ASC will maintain and field the supporting software infrastructure that the

  1. Ion mixing, hydration, and transport in aqueous ionic systems

    SciTech Connect (OSTI)

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  2. Preliminary systems engineering evaluations for the National Ecological Observatory Network.

    SciTech Connect (OSTI)

    Robertson, Perry J.; Kottenstette, Richard Joseph; Crouch, Shannon M.; Brocato, Robert Wesley; Zak, Bernard Daniel; Osborn, Thor D.; Ivey, Mark D.; Gass, Karl Leslie; Heller, Edwin J.; Dishman, James Larry; Schubert, William Kent; Zirzow, Jeffrey A.

    2008-11-01

    The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

  3. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  4. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  5. Modeling interfacial area transport in multi-fluid systems

    SciTech Connect (OSTI)

    Yarbro, S.L.

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  6. Photovoltaic power systems and the National Electrical Code: Suggested practices

    SciTech Connect (OSTI)

    Wiles, J.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  7. A Reactive Transport Simulator for Biogeochemical Processes in Subsurface System

    Energy Science and Technology Software Center (OSTI)

    2003-04-01

    BIOGEOCHEM is a Fortran code that mumerically simulates the coupled processes of solute transport, microbial population dynamics, microbial metabolism, and geochemical reactions. The potential applications of the code include, but not limited to, (a) sensitivity and uncertainty analyses for assessing the impact of microbial activity on subsurface geochemical systems; (b) extraction of biogeochemical parameter values from field observations or laboratory measurements, (c) helping to design and optimize laboratory biogeochemical experiments, and (d) data integration. Methodmore » of Solution: A finite difference method and a Newton-Raphson technique are used to solve a set of coupled nonlinear partial differential equations and algebraic equations. Practical Application: Environmental analysis, bioremediation performance assessments of radioactive or non-radioactive wase disposal, and academic research.« less

  8. Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)

    SciTech Connect (OSTI)

    Alger, D.L.

    1992-08-01

    Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.

  9. National Parks Move Forward on Sustainable Transportation in Partnership with Clean Cities

    Broader source: Energy.gov [DOE]

    America’s National Parks are dedicated to safeguarding and providing access to our country’s natural, cultural, and historical treasures. Through the Clean Cities National Parks Initiative, the...

  10. GRC Workshop: The Power of the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Drilling Down: How Legacy and New Research Data Can Advance Geothermal DevelopmentThe Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects and consistent, reliable geological and geothermal information from all 50 states, this free, interactive tool can shorten project development timelines and facilitate scientific discovery and best practices. Stop by our workshop for an overview of how your company can benefit from implementing, and participating in this open-source based, distributed network. To register for the GRC Annual Meeting, visit the GRC Annual Meeting and GEA Geothermal Energy Expo event website.

  11. NEMS Freight Transportation Module Improvement Study

    U.S. Energy Information Administration (EIA) Indexed Site

    ... National Energy Modeling System (NEMS) is a general ... VMT projections are calculated directly by the change in ... Transportation Board (STB) for Class I Railroads only. ...

  12. Transportation technology R&D-Steve Ciatti | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation technology R&D-Steve Ciatti Share Description Argonne researcher Steve Ciatti talks about emerging technologies in transportation, as well as the current technology being developed at the lab and placed on the market. Topic Energy Energy efficiency Vehicles Alternative fuels Diesel Powertrain research

  13. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect (OSTI)

    Satoh, J.A.

    1994-11-09

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  14. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport

    SciTech Connect (OSTI)

    Lee, Chee Kong; Moix, Jeremy; Cao, Jianshu

    2015-04-28

    Quantum transport in disordered systems is studied using a polaron-based master equation. The polaron approach is capable of bridging the results from the coherent band-like transport regime governed by the Redfield equation to incoherent hopping transport in the classical regime. A non-monotonic dependence of the diffusion coefficient is observed both as a function of temperature and system-phonon coupling strength. In the band-like transport regime, the diffusion coefficient is shown to be linearly proportional to the system-phonon coupling strength and vanishes at zero coupling due to Anderson localization. In the opposite classical hopping regime, we correctly recover the dynamics described by the Fermis Golden Rule and establish that the scaling of the diffusion coefficient depends on the phonon bath relaxation time. In both the hopping and band-like transport regimes, it is demonstrated that at low temperature, the zero-point fluctuations of the bath lead to non-zero transport rates and hence a finite diffusion constant. Application to rubrene and other organic semiconductor materials shows a good agreement with experimental mobility data.

  15. Functional requirements for the Automated Transportation Management System: TTP number: RL 439002

    SciTech Connect (OSTI)

    Portsmouth, J.H.

    1992-12-31

    This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

  16. National Parks Move Transportation Forward in America’s Great Outdoors

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department's Clean Cities is helping National Parks across the country reduce air pollution and lower fuel costs.

  17. Chapter 8: Advancing Clean Transportation and Vehicle Systems...

    Energy Savers [EERE]

    Overview of vehicle lightweighting Reducing vehicle weight affects transportation energy consumption by improving efficiency. Upwards of 85% of the energy in fuel is lost to ...

  18. Fuels Performance Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

  19. Investing in Sustainable Transport and Urban Systems: The GEF...

    Open Energy Info (EERE)

    expand clean public transportation choices that also have the added benefits of lowering air pollution and reducing traffic congestion. LEDSGP green logo.png This tool is included...

  20. EA-0822: Idaho National Engineering Laboratory Consolidated Transportation Facility, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a new transportation facility at the Central Facilities Area that would consolidate six existing facilities at the...

  1. Anti-Zeno effect for quantum transport in disordered systems (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Anti-Zeno effect for quantum transport in disordered systems Citation Details In-Document Search Title: Anti-Zeno effect for quantum transport in disordered systems We demonstrate that repeated measurements in disordered systems can induce a quantum anti-Zeno effect under certain conditions to enhance quantum transport. The enhancement of energy transfer is really exhibited in multisite models under repeated measurements. The optimal measurement interval for the

  2. Transportation system benefits of early deployment of a 75-ton multipurpose canister system

    SciTech Connect (OSTI)

    Wankerl, M.W.; Schmid, S.P.

    1995-12-31

    In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper.

  3. LEDSGP/Transportation Toolkit/Key Actions/Evaluate the System...

    Open Energy Info (EERE)

    framework are intended to guide decision makers rather than prescribe a specific methodology. Evaluate the System Assess the current transportation situation in your country or...

  4. Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen

    Broader source: Energy.gov [DOE]

    Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen.Solid and liquid hydrogen carriers for use in hydrogen storage and delivery.

  5. Sandia National Laboratories, California sewer system management plan.

    SciTech Connect (OSTI)

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  6. The National Energy Modeling System: An overview 1998

    SciTech Connect (OSTI)

    1998-02-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors world energy markets, resource availability and costs, behavior and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. 21 figs.

  7. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    SciTech Connect (OSTI)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a worst-case simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  8. Expansion joint for guideway for magnetic levitation transportation system

    DOE Patents [OSTI]

    Rossing, T.D.

    1993-02-09

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.

  9. Expansion joint for guideway for magnetic levitation transportation system

    DOE Patents [OSTI]

    Rossing, Thomas D.

    1993-01-01

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  10. Control and Information Systems for the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; Demaret, Robert; Fedorov, Mike; Flegel, Michael; Folta, Peg; Fraizer, Timothy; Hutton, Matthew; Kegelmeyer, Laura; et al

    2015-11-03

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  11. Sandia National Laboratories, California Environmental Management System program manual.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

  12. Sandia National Laboratories, California Environmental Management System Program Manual.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

  13. How to obtain the National Energy Modeling System (NEMS)

    Reports and Publications (EIA)

    2013-01-01

    The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

  14. Sandia National Laboratories, California Environmental Management System Program Manual.

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

  15. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  16. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

  17. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

  18. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Underwood, Richard Paul; Makitka, III, Alexander; Carolan, Michael Francis

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  19. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    SciTech Connect (OSTI)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  20. Second Draft - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  1. Energy Storage Systems 2012 Peer Review Presentations- Poster Session 1 (Day 1): National Lab Projects

    Broader source: Energy.gov [DOE]

    Day 1 poster session presentations (national lab projects) for OE's Energy Storage Systems Program (ESS) 2012 Peer Review

  2. National Geothermal Data System & Online Tools Presentation (IEA-GIA event)

    SciTech Connect (OSTI)

    Jay Nathwani

    2011-09-30

    Geothermal Technologies Program presentation by Jay Nathwani on the National Geothermal Data System, 9-30-2011.

  3. Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Injury & Illness System (01&15) PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory PDF icon Occupational Injury & Illness System (01&15) PIA, Idaho National Laboratory More Documents & Publications Energy Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy

  4. National Geothermal Data System Demo 01-28-14 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demo 01-28-14 National Geothermal Data System Demo 01-28-14 PDF icon ngds-webinar-azgs.pdf More Documents & Publications How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" State Geological Survey Contributions to the National Geothermal Data System AASG State Geological Survey

  5. Certification and Accreditation Process for Information Systems Including National Security Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-19

    The Notice ensures the effectiveness of security controls on DOE Federal information systems including national security systems. The Notice will also ensure compliance with the requirements of DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, and protect DOE information and information systems from unauthorized access, use, disclosure, modification, or destruction. No cancellations. DOE N 205.15, dated 3-18-05, extends this directive until 3-18-06.

  6. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  7. Packaging and Transfer or Transportation of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-26

    To establish requirements and responsibilities for offsite shipments of naval nuclear fuel elements, Category I and Category II special nuclear material, nuclear explosives, nuclear components, special assemblies, and other materials of national security interest. Cancels DOE O 461.1. Canceled by DOE O 461.1B and DOE O 461.2.

  8. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  9. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  10. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energys Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  11. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  12. Argonne OutLoud: "The Future of Transportation" | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Argonne OutLoud: "The Future of Transportation" Untitled 1 of 22 Untitled Untitled 1 of 22 Untitled Untitled 2 of 22 Untitled Untitled 3 of 22 Untitled Untitled 4 of 22 Untitled Untitled 5 of 22 Untitled Untitled 6 of 22 Untitled Untitled 7 of 22 Untitled Untitled 8 of 22 Untitled Untitled 9 of 22 Untitled Untitled 10 of 22 Untitled Untitled 11 of 22 Untitled Untitled 12 of 22 Untitled Untitled 13 of 22 Untitled Untitled 14 of 22 Untitled Untitled 15 of 22 Untitled

  13. Analysis Insights, August 2015: Sustainable Transportation (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis & Projections Glossary › FAQS › Overview Projection Data Monthly Short-Term Forecasts to 2012 Annual Projections to 2035 International Projections Analysis & Projections Most Requested All Reports Models & Documentation AEO Working Groups Purpose of Working Groups The Annual Energy Outlook, prepared by the U.S. Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices, based on results from EIA's National Energy Modeling

  14. Target diagnostic system for the national ignition facility (invited)

    SciTech Connect (OSTI)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.; Fehl, D.L.; Hebron, D.E.; Moats, A.R.; Noack, D.D.; Porter, J.L.; Ruggles, L.E.; Ruiz, C.L.; Torres, J.A.; Cable, M.D.; Bell, P.M.; Clower, C.A.; Hammel, B.A.; Kalantar, D.H.; Karpenko, V.P.; Kauffman, R.L.; Kilkenny, J.D.; Lee, F.D.; Lerche, R.A.; MacGowan, B.J.; Moran, M.J.; Nelson, M.B.; Olson, W.; Orzechowski, T.J.; Phillips, T.W.; Ress, D.; Tietbohl, G.L.; Trebes, J.E.; Bartlett, R.J.; Berggren, R.; Caldwell, S.E.; Chrien, R.E.; Failor, B.H.; Fernandez, J.C.; Hauer, A.; Idzorek, G.; Hockaday, R.G.; Murphy, T.J.; Oertel, J.; Watt, R.; Wilke, M.; Bradley, D.K.; Knauer, J.; Petrasso, R.D.; Li, C.K.

    1997-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests. {copyright} {ital 1997 American Institute of Physics.}

  15. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  16. Transportation Sector Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  17. Nohemi Brewer Transportation Program Manager U.S. Department of Energy (DOE), National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 16, 2012 Nevada National Security Site (NNSS) Radioactive Waste Shipment Update Page 2 Page 2Title ID 412- 11/16/2012 - Page 2 Log No 2012-263 Updated Generator Forecasts for Disposal at the NNSS in FY 2012 (cubic feet*) * Currently, there are 25 approved generator programs at 19 sites that can send low-level waste (LLW) and mixed low level waste (MLLW) to the NNSS * Based on actual disposal volumes received, total FY 2012 disposal was less than the April forecast update *Rounded to the

  18. Automated system for removal and pneumatic transport of fly ash from electric precipitator hoppers

    SciTech Connect (OSTI)

    V.K. Konovalov; O.V. Yashkin; V.V. Ermakov

    2008-03-15

    A system for removal and pneumatic transport of fly ash is examined, in which air pulses act on batches (pistons) of ash formed in a duct. Studies are made of the effect of several physical parameters on the force required to displace a piston of ash and these serve as a basis for choosing a system for removal and pneumatic transport of ash simultaneously from several hoppers of an electric precipitator. This makes it possible to separate the ash particles according to size without introducing additional components. Formulas are given for calculating the structural and dynamic parameters of this system and measurements of indirect dynamic parameters are used to calculate the input-output characteristics of the system. In order to optimize the system, configurations for summing several ducts into a single transport duct for pneumatic ash transport are proposed. Some variants of dry ash utilization and the advantages of producing of size-separated particles are considered.

  19. 16 USC 797c - Dams in National Park System Units | Open Energy...

    Open Energy Info (EERE)

    16 USC 797c - Dams in National Park System Units Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 16 USC 797c - Dams in National...

  20. National Template: Stationary & Portable Fuel Cell Systems (Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) US DRIVE Hydrogen Codes and Standards Technical Team Roadmap CODES & STANDARDS FOR THE HYDROGEN ECONOMY...

  1. Building GHGs National Inventory Systems | Open Energy Information

    Open Energy Info (EERE)

    order to enable all developing countries with REDD potential to compile and present their national greenhouse gas inventories, it is absolutely essential that all available...

  2. Energy Systems Integration Facility at National Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Image: Dennis Schroeder, National Renewable Energy Laboratory Hydrogen refueling simulation 5 of 7 Hydrogen refueling simulation Research engineer Kevin Harrison uses a robot to ...

  3. MOX Services Unclassified Information System PIA, National Nuclear...

    Energy Savers [EERE]

    Services Administration More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory Manchester Software 1099 Reporting PIA,...

  4. Occupational Injury & Illness System (01&15) PIA, Idaho National...

    Energy Savers [EERE]

    Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Occupational Medicine - Assistant PIA, Idaho National Laboratory VisitDosimBadgeTrckg-PIA.pdf...

  5. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 1: Inventory, Release, and Transport Modules

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Miley, Terri B.; Engel, David W.; Nichols, William E.; Gerhardstein, Lawrence H.; Strenge, Dennis L.; Lopresti, Charles A.; Wurstner, Signe K.

    2004-09-12

    This document contains detailed user instructions for the transport codes for Rev. 1 of the System Assessment Capability.

  6. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  7. Lunar dust transport and potential interactions with power system components

    SciTech Connect (OSTI)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers.

  8. Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program

    SciTech Connect (OSTI)

    S. G. Johnson; K. L. Lively

    2010-05-01

    This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type B shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

  9. Dallas area-wide intelligent transportation system plan. Draft research report, August 1992-August 1996

    SciTech Connect (OSTI)

    Carvell, J.D.; Seymour, E.J.; Walters, C.H.; Starr, T.R.; Balke, K.

    1996-07-01

    This report documents the development of a comprehensive plan for implementation of Intelligent Transportation Systems (ITS) in the Dallas Urban Area. The contract defined objectives: Develop a Broadly Based Steering Committee; Assess Existing Transportation Management Systems and Potential ITS Technology; Identify Institutional Issues and Legal Barriers; Develop an Implementable, Area-Wide Multi-Jurisdictional ITS Plan; and Develop Cost, Benefits, and an Implementation Plan.

  10. Linking home energy rating systems with energy efficiency financing: Progress on national and state programs

    SciTech Connect (OSTI)

    Farhar, B.C.; Collins, N.E.; Walsh, R.W.

    1996-10-01

    In 1991 and early 1992, the U.S. Department of Energy (DOE), in cooperation with the U.S. Department of Housing and Urban Development (HUD), established a National Collaborative on Home Energy Rating Systems (HERS) and Energy Efficient Mortgages (EEMs). The Collaborative's purpose was to involve stakeholders at a national policy level to develop a plan leading the nation toward a voluntary system linking HERS with EEMs. The National Renewable Energy Laboratory (NREL) coordinated the National Collaborative's meetings for DOE. Composed of representatives from 25 stakeholder organizations, the Collaborative, after some 14 meetings, reached consensus on two documents, both published by NREL in mg 1992: A National Program for Energy-Efficient Mortgages and Home Energy Rating Systems: A Blueprint for Action and Going National with HERS and EEMs: Issues and Impacts, The Collected Papers of the National Collaborative.

  11. Conceptual design of an RTG shipping and receiving facility transportation system

    SciTech Connect (OSTI)

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1995-01-20

    The conceptual design of an RTG Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during onloading and offloading sequences. The RTG Shipping & Receiving Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a custom designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock Limiting Transit Device Subsystem consists of a consumable honeycomb anti-shock frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the offloading and onloading of the RTG Package into and out of the semitrailer as well as meet ALARA (as low as reasonably achievable) radiation exposure guidelines. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  12. Transportation Research and Analysis Computing Center Fact Sheet | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Transportation Research and Analysis Computing Center Fact Sheet The Transportation Research and Analysis Computing Center (TRACC) is the intersection of state-of-the-art computing and critical science and engineering research that is improving how the nation plans, builds, and secures a transportation system for the 21st Century. PDF icon TRACC_fact_sheet

  13. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary

    Office of Scientific and Technical Information (OSTI)

    of Lessons Learned (Conference) | SciTech Connect Conference: Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned Citation Details In-Document Search Title: Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created

  14. IEA-GIA ExCo - National Geothermal Data System and Online Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy IEA-GIA ExCo - National Geothermal Data System and Online Tools IEA-GIA ExCo - National Geothermal Data System and Online Tools National Geothermal Data System presentation by Jay Nathwani at the September 30, 2011 IEA-GIA ExCo conference in London. PDF icon gtp_iea-gia_presentation_nathwani_9-30-11.pdf More Documents & Publications International Partnership for Geothermal Technology - 2012 Peer Review Presentation Innovative Exploration Technologies Subprogram

  15. Risk assessment of climate systems for national security.

    SciTech Connect (OSTI)

    Backus, George A.; Boslough, Mark Bruce Elrick; Brown, Theresa Jean; Cai, Ximing; Conrad, Stephen Hamilton; Constantine, Paul; Dalbey, Keith R.; Debusschere, Bert J.; Fields, Richard; Hart, David Blaine; Kalinina, Elena Arkadievna; Kerstein, Alan R.; Levy, Michael; Lowry, Thomas Stephen; Malczynski, Leonard A.; Najm, Habib N.; Overfelt, James Robert; Parks, Mancel Jordan; Peplinski, William J.; Safta, Cosmin; Sargsyan, Khachik; Stubblefield, William Anthony; Taylor, Mark A.; Tidwell, Vincent Carroll; Trucano, Timothy Guy; Villa, Daniel L.

    2012-10-01

    Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments.

  16. User interface in ORACLE for the Worldwide Household Goods Information System for Transportation Modernization (WHIST-MOD)

    SciTech Connect (OSTI)

    James, T. ); Loftis, J. )

    1990-07-01

    The Directorate of Personal Property of the Military Traffic Management Command (MTMC) requested that Oak Ridge National laboratory (ORNL) design a prototype decision support system, the Worldwide Household Goods Information System for Transportation Modernization (WHIST-MOD). This decision support system will automate current tasks and provide analysis tools for evaluating the Personal Property Program, predicting impacts to the program, and planning modifications to the program to meet the evolving needs of military service members and the transportation industry. The system designed by ORNL consists of three application modules: system dictionary applications, data acquisition and administration applications, and user applications. The development of the user applications module is divided into two phases. Round 1 is the data selection front-end interface, and Round 2 is the output or back-end interface. This report describes the prototyped front-end interface for the user application module. It discusses user requirements and the prototype design. The information contained in this report is the product of in-depth interviews with MTMC staff, prototype meetings with the users, and the research and design work conducted at ORNL. 18 figs., 2 tabs.

  17. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    SciTech Connect (OSTI)

    Sig Drellack, Lance Prothro

    2007-12-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides in situ concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions.

  18. National Geothermal Data System State Submissions by Date (Appendix A-1-a)

    SciTech Connect (OSTI)

    Love, Diane

    2015-12-20

    This multipaged spreadsheet tracks submissions of all data records to the State Geological Survey Contributions to the National Geothermal Data System by state and by type.

  19. Overview of the National Geothermal Data System (NGDS) and DOEs...

    Broader source: Energy.gov (indexed) [DOE]

    RAM Power Courtesy NREL Courtesy GRC 1 Arlene F. Anderson Technology Manager Geothermal Technologies Office Overview of the National Geothermal Data System (NGDS) &...

  20. National Geothermal Data System - DOE Geothermal Data Repository

    Broader source: Energy.gov (indexed) [DOE]

    Tennessee, Nevada and California Next Week | Department of Energy National Energy Action Month Takes Energy Department Officials to Tennessee, Nevada and California Next Week Next Week Highlights New DOE Partnerships on Smart Grid Technologies, SunShot Awards and the President's Climate Action Plan WASHINGTON-The Department of Energy is continuing participation in National Energy Action Month with events in Tennessee, Nevada, California and other states next week. These events highlight the

  1. Systems and methods for selective hydrogen transport and measurement

    DOE Patents [OSTI]

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  2. Notice of Intent to Revise Department of Energy Order 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-15

    The purpose of this memorandum is to provide justification for the proposed revision of DOE O 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest, dated 12-16-2010, as part of the the quadrennial review and recertification as required by DOE O 251.1C, Departmental Directives Program.

  3. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

  4. Microfluidic systems and methods for transport and lysis of cells and analysis of cell lysate

    DOE Patents [OSTI]

    Culbertson, Christopher T [Oak Ridge, TN; Jacobson, Stephen C [Knoxville, TN; McClain, Maxine A [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-02

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  5. Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate

    DOE Patents [OSTI]

    Culbertson, Christopher T.; Jacobson, Stephen C.; McClain, Maxine A.; Ramsey, J. Michael

    2004-08-31

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  6. Energy-efficient mortgages and home energy rating systems: A report on the nation`s progress

    SciTech Connect (OSTI)

    Farhar, B.C.; Eckert, J.

    1993-09-01

    This report summarizes progress throughout the nation in establishing voluntary programs linking home energy rating systems (HERS) and energy-efficient mortgages (EEMs). These programs use methods for rating the energy efficiency of new and existing homes and predicting energy cost savings so lenders can factor in energy cost savings when underwriting mortgages. The programs also encourage lenders to finance cost-effective energy-efficiency improvements to existing homes with low-interest mortgages or other instruments. The money saved on utility bills over the long term can more than offset the cost of such energy-efficiency improvements. The National Collaborative on HERS and EEMs recommended that this report be prepared.

  7. OMEGA Laser System completes 20,000th target shot | National...

    National Nuclear Security Administration (NNSA)

    Laser System completes 20,000th target shot | National Nuclear Security Administration ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog OMEGA Laser System ...

  8. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    SciTech Connect (OSTI)

    Caudill, Christy

    2015-12-20

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  9. National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for stationary and portable fuel cell systems.

  10. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    -- its amenities include a fitness center with indoor pool, whirlpool and onsite Spa Botanica. About the NTSF The NTSF is the mechanism through which the DOE communicates with...

  11. Tool - Vehicle System Simulation (Autonomie) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool - Vehicle System Simulation (Autonomie) Tool - Vehicle System Simulation (Autonomie) Autonomie s a most powerful and robust system simulation tool for vehicle energy consumption and performance analysis. Developed in collaboration with General Motors, Autonomie is a MATLAB©-based software environment and framework for automotive control-system design, simulation, and analysis. Its application covers energy consumption, performance analysis throughout the entire vehicle development process

  12. Enhanced Renewable Methane Production System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  13. Access Rate Control System | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Rate Control System Access Rate Control System The mp4 video format is not supported by this browser. Download video Captions: On Time: 4:03 min Developed to support safeguards and security, the Access Rate Control System (ARCS) controls the speed of entry through full-height turnstiles

  14. Ion transport membrane reactor systems and methods for producing synthesis gas

    DOE Patents [OSTI]

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  15. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2011-03-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  16. National SCADA Test Bed - Enhancing control systems security in the energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sector (September 2009) | Department of Energy SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) National SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) Improving the security of energy control systems has become a national priority. Since the mid-1990's, security experts have become increasingly concerned about the threat of malicious cyber attacks on the vital supervisory control and data acquisition (SCADA)

  17. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HPC Data Center of the Future HPC J oint F acility U ser F orum June 1 6, 2 014 Agenda * NERSC's s torage s ystems & s ervices * Trends o f e xisGng s torage---class h ardware - Flash o vertakes d isk f or $ /GB/sec * Future s torage---class h ardware - Memristor, M RAM * Storage soKware advancements - Metadata p erformance - Burst b uffer - Access t o s torage s ystems * NERSC i n 2 020 * What t his m eans t o t he u ser --- 2 --- National Energy Research Scientific ! Computing Center

  18. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    SciTech Connect (OSTI)

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.; Liu, Yuan

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL based RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.

  19. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise: Capabilities Capabilities Capabilities Sandia continues to advance the next generation of Synthetic Aperture Radar (SAR) and Intelligence, Surveillance and Reconnaissance (ISR) systems with highly integrated, miniaturized, and fully mission-capable radar systems to impact tactical Surveillance and Reconnaissance (S&R) capabilities Sandia has a broad range of engineering, testing and analysis capabilities for Airborne Intelligence, Surveillance and Reconnaissance (ISR) systems.

  20. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise: Modes & Frequency Bands of Operation Modes & Frequency Bands of Operation SAR Radar Models Multi-mode and tailored systems to meet mission objectives Sandia's world-class Synthetic Aperture Radar (SAR) systems offer an expansive set of radar modes ready to be packaged and utilized on both manned and unmanned platforms. Sandia's radar systems are custom designed and developed with the right frequencies, modes and methods for meeting the customer's specific mission needs.

  1. Remote Systems Experience at the Oak Ridge National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-worldmore hazardous environments. less ...

  2. NNSA Launches New Personnel Management System | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blog Home Library Press Releases NNSA Launches New Personnel Management System NNSA Launches New Personnel ... the U.S. Department of Energy responsible for enhancing ...

  3. National Energy Modeling System (NEMS) | Open Energy Information

    Open Energy Info (EERE)

    Modeling System (NEMS) AgencyCompany Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies...

  4. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  5. Safety System Oversight Assessment of the Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... engineering are resolved. The SSO assessment activities included reviewing documentation that supports the design and ... the system's maintenance history is appropriately ...

  6. Commercial Demand Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  7. National Energy Modeling System (United States) | Open Energy...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentnational-energy-modeling-system-unite Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  8. Dynamic Impregnator Reactor System (Poster), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Several unit operations are combined into one robust system, off ering fl exible and staged process confi gurations in one vessel. Spraying, soaking, low-severity pretreat- ment,...

  9. TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2011-05-01

    This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.0510-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

  10. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS;  Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  11. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Gregory, Louis

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  12. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect (OSTI)

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  13. The ecological relevance of transport in waste disposal systems in Western Europe

    SciTech Connect (OSTI)

    Salhofer, Stefan Schneider, Felicitas; Obersteiner, Gudrun

    2007-07-01

    With the development of modern waste management systems in Western Europe, a remarkable increase in the distances for waste transportation has been observed. The question thus arises whether recycling with longer transport distances is ecologically advantageous or whether disposal without recycling is to be preferred. This situation was analysed using selected product and waste streams. This included refrigerators, paper, polyethylene films and expanded polystyrene. For each of these streams, a life cycle analysis was conducted with an emphasis on waste transport. The system boundaries were set in terms of the generation of waste to recycling or landfilling. The comparison included several scenarios with recycling and different transport distances. Landfilling was used as the reference scenario. The results obtained demonstrated how transport distances influence the ecological benefit of recycling. In the case of expanded polystyrene, the ecological boundaries are reached in practical situations, while with other materials these boundaries are far from being attained. In these cases, more complex and elaborate collection schemes, such as kerbside collection, which is economically convenient and shows the highest collection rates, can also be recommended.

  14. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  15. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  16. The National Carbon Capture Center at the Power Systems Development

    Office of Scientific and Technical Information (OSTI)

    None 01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored...

  17. The National Carbon Capture Center at the Power Systems Development...

    Office of Scientific and Technical Information (OSTI)

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology...

  18. The National Carbon Capture Center at the Power Systems Development...

    Office of Scientific and Technical Information (OSTI)

    Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. ...

  19. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise Pathfinder Airborne ISR Systems Areas of Expertise Capabilities Capabilities Sandia's Intelligence, Surveillance and Reconnaissance (ISR) breadth of capabilities include everything from mission planning to system design and integration to data collection and analysis. Hardware Hardware Sandia has over 30 years of experience in the development of Synthetic Aperture Radar (SAR) and other Intelligence, Surveillance and Reconnaissance (ISR) hardware components. Modes and Frequencies

  20. Sandia National Laboratories: Pathfinder Airborne ISR Systems: What is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthetic Aperture Radar? What is Synthetic Aperture Radar (SAR)? What is Synthetic Aperture Radar? Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Often, this imagery must be acquired at night or during inclement weather. Synthetic Aperture Radar (SAR) provides such a capability. Synthetic Aperture Radar (SAR) systems take advantage of the long-range propagation characteristics of radar signals and the complex

  1. Vertical Pretreatment Reactor System (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Pretreatment Reactor System Two-vessel system for primary and secondary pretreatment at diff erent temperatures * Biomass is heated by steam injection to temperatures of 120°C to 210°C in the pressurized mixing tube * Preheated, premixed biomass is retained for specified residence time in vertical holding vessel; material continuously moves by gravity from top to bottom of reactor in plug-fl ow fashion * Residence time is adjusted by changing amount of material held in vertical vessel

  2. Interim UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-03-30

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a draft list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during very long term storage (VLTS). The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of SSCs and degradation mechanisms developed by the UFD Storage Task (Stockman et al. 2010)

  3. Ion transport membrane module and vessel system with directed internal gas flow

    DOE Patents [OSTI]

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  4. IEA-GIA ExCo - National Geothermal Data System and Online Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IEA-GIA ExCo National Geothermal Data System & Online Tools Jay Nathwani Enel Salt Wells - ... Capacity Increases 2005-2010 5 In 2010 only 15 MW came online in the United States. ...

  5. EA-1247: Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to upgrade the electrical power supply system for the U.S. Department of Energy Los Alamos National Laboratory to increase the...

  6. GTP Adds Meeting on the National Geothermal Data System Project to Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    The design of the National Geothermal Data System (NGDS) was initiated in early fiscal year 2010 to address capturing and providing geothermal data to users -- researchers, industry, state and federal agencies, and the public.

  7. EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho.  The...

  8. National Geothermal Data System State Contributions by Data Type (Appendix A1-b)

    SciTech Connect (OSTI)

    Love, Diane

    2015-12-20

    Multipaged spreadsheet listing an inventory of data submissions to the State contributions to the National Geothermal Data System project by services, by state, by metadata compilations, metadata, and map count, including a summary of information.

  9. The Electricity Market Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    The Electricity Market Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Electricity Market Module of the National Energy Modeling System: Model Documentation 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law,

  10. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's

  11. MEMS-based chemical analysis systems development at Sandia National Labs.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect MEMS-based chemical analysis systems development at Sandia National Labs. Citation Details In-Document Search Title: MEMS-based chemical analysis systems development at Sandia National Labs. No abstract prepared. Authors: Simonson, Robert Joseph ; Manginell, Ronald Paul ; Staton, Alan W. ; Porter, Daniel Allen ; Whiting, Joshua J. ; Moorman, Matthew Wallace ; Wheeler, David Roger Publication Date: 2010-08-01 OSTI Identifier: 1024439 Report Number(s):

  12. Options Impacting the Electric System of the Future (ESF); NREL (National

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory) (Conference) | SciTech Connect Conference: Options Impacting the Electric System of the Future (ESF); NREL (National Renewable Energy Laboratory) Citation Details In-Document Search Title: Options Impacting the Electric System of the Future (ESF); NREL (National Renewable Energy Laboratory) As utilities are faced with adapting to new technologies, technology and policy due diligence are necessary to ensure the development of a future grid that brings greater

  13. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind.energy.gov WIND PROGRAM NEWSLETTER - MAY 2015 1 National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 303-275-3000 * www.nrel.gov NREL prints on paper that contains recycled content. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking partners to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the

  14. Sandia National Laboratories: Research: Intelligent Systems, Robotics, &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybernetics: Factsheets Publications and Factsheets Robotics Homepage About Robotics Research & Development Advanced Controls Advanced Manipulation Cybernetics High-Consequence Automation Perception and Decision Tools Unique Mobility Facilities Publications and Factsheets Robotics Image Gallery Robotics Videos Contact Robotics Research Publications and Factsheets Factsheets Intelligent Systems, Robotics, and Cybernetics (PDF, 991 KB) Gemini Scout - Mine Rescue Vehicle (PDF, 922 KB) One

  15. Rapid Deployment Shelter System | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Deployment Shelter ... Rapid Deployment Shelter System The mp4 video format is not supported by this browser. Download video Captions: On Time: 5:03 min. Originally designed as a mobile surgical suite, the RDSS can also be converted and used for a command, control, logisitics, or operations center

  16. Rapid Deployment Shelter System, Application | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Rapid Deployment Shelter ... Rapid Deployment Shelter System, Application The mp4 video format is not supported by this browser. Download video Captions: On Time: 3:30 min. The RDSS provides humanitarian and disaster relief first responders with a versatile portable shelter that is rapidly deployed under adverse conditions

  17. A compendium of the radioisotope thermoelectric generator transportation system and recent programmatic changes

    SciTech Connect (OSTI)

    Becker, D.L.; McCoy, J.C.

    1996-03-01

    Because RTGs contain significant quantities of radioactive materials, usually plutonium-238 and its decay products, they must be transported in packages built in accordance with 10 CFR 71 (1994). To meet these regulatory requirements, US DOE commissioned Westinghouse Hanford Co. in 1988 to develop a Radioisotope Thermoelectric Generator Transportation System (RTGTS) that would fully comply while protecting RTGs from adverse environmental conditions during normal transport conditions (eg, mainly shock and heat). RTGTS is scheduled for completion Dec. 1996 and will be available to support NASA`s Cassini mission to Saturn in Oct. 1997. This paper provides an overview of the RTGTS project, discusses the hardware being produced, and summarizes various programmatic and management innovations required by recent changes at DOE.

  18. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-10-12

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

  19. Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles May 4, 2016 - 10:57am Addthis As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories As part of the Co-Optimization of Fuels & Engines initiative, researchers

  20. Modeling of battery energy storage in the National Energy Modeling System

    SciTech Connect (OSTI)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K.

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  1. Proceedings of the National Renewable Energy Laboratory Wind Energy Systems Engineering Workshop

    SciTech Connect (OSTI)

    Dykes, K.

    2014-12-01

    The second National Renewable Energy Laboratory (NREL) Wind Energy Systems Engineering Workshop was held in Broomfield, Colorado, from January 29 to February 1, 2013. The event included a day-and-a-half workshop exploring a wide variety of topics related to system modeling and design of wind turbines and plants. Following the workshop, 2 days of tutorials were held at NREL, showcasing software developed at Sandia National Laboratories, the National Aeronautics and Space Administration's Glenn Laboratories, and NREL. This document provides a brief summary of the various workshop activities and includes a review of the content and evaluation results from attendees.

  2. Integrated System for Nanofiber Production | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated System for Nanofiber Production Technology available for licensing: Achieves true continuous scalable fabrication of oxide/metallic nanofibers or nanotubes by integrating electrospinning with controlled nanofiber deposition orientation, fast IR heating and pneumatic collection of nanofiber/nanotubes. It not only makes the production scalable, but also provides precise morphology control of the nanofiber/nanotubes. It can be easily switched between configurations to produce high

  3. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise: Tasking, Processing, Exploitation & Dissemination (TPED) Tasking, Processing, Exploitation & Dissemination (TPED) TPED Transforming Data into Actionable Intelligence for the Decision Maker With the goal to increase decision superiority through enhanced understanding, Sandia's radar systems incorporate processing and analysis on-board the aircraft in order to quickly and efficiently provide the analyst with relevant data. Sandia strives to provide end-to-end solutions that

  4. National Laboratories' Energy Technologies and System Solutions Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Laboratories' Energy Technologies and System Solutions Center Director - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  5. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  6. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scalability Challenges in Large-Scale Tape Environments IEEE M SST June 4 , 2 014 Agenda * NERSC a nd i ts s torage s ystems * The G olden A ge o f T ape * Our c hallenges a t s cale - Reading d ata, s ystem u sability - Proac5vely m aintaining t he s ystem - Having e nough p eople * Industry c hallenges a t s cale - Component a nd e nd---system r eliability * Mechanical f ailures - fl ash, d isk, t ape - Speed v ersus s ize o f s ingle d evices - Detec5ng a nd r epairing f ailures * Summary ---

  7. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-05-01

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG`S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG`S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria.

  8. Preliminary definition of the DOE/OCRWM transportation operating system: Final report

    SciTech Connect (OSTI)

    Rawl, R.R.; Kline, S.C.

    1988-01-01

    This paper is based on the report ''Preliminary Definition of the Transportation Operations System'' and presents a summary of the preliminary definition of transportation operations activities for the cask shipment cycle, commencing with the dispatch of an empty cask, to loading and unloading of cask contents, and preparation of the empty cask for redispatch. It first presents a high-level description of the transportation cycle and then further describes each of the major activities in greater detail. For simplicity of presentation, the highway mode of transport is most often used to describe activities. The reader should keep in mind that the use of other modes will slightly alter the activities and possibly the sequences. Major activities and functions of the system are organized into a first cut of how they could be allocated to specific facilities. The reader should keep in mind that the assignment of functions and the aggregation of these into specific facilities are tasks which have yet to be performed. This paper simply presents a first look at possible groupings of the functions on a facility basis. 12 figs.

  9. NASA Expert Discusses NextGen - the Next Generation Air Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System on Nov. 18 | Jefferson Lab Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 NASA Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 NEWPORT NEWS, Va., Nov. 7, 2008 -- The U.S. Department of Energy's Jefferson Lab invites the public to an evening lecture about the nation's Next Generation Air Transportation System on Tuesday, Nov. 18. Although today's National Airspace System offers one of the safest means of

  10. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Ramsey, James L., Jr.; Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  11. Ball State University Completes Nation's Largest Ground-Source Geothermal System with Support from Recovery Act

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today congratulated Ball State University for its campus-wide ground-source geothermal system, the nation's largest geothermal heating and cooling system.

  12. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  13. National Geoscience Data Repository System, Phase III: Implementation and operation of the repository

    SciTech Connect (OSTI)

    American Geological Institute

    2000-03-13

    The American Geological Institute's (AGI) National Geoscience Data Repository System (NGDRS) was initiated in response to the fact that billions of dollars worth of domestic geoscience data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the U.S. energy and minerals industry. Preservation and access to domestic geological and geophysical data are critical to the energy security and economic prosperity of the nation. There is a narrow window of opportunity to act before valuable data are destroyed. The data truly represent a national treasure and immediate steps must be taken to assure their preservation.

  14. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    SciTech Connect (OSTI)

    Allison, Lee; Richard, Stephen; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive, holistic set of data critical to geothermal energy development. As of May 2012 , we have nearly 37,000 records registered in the system catalog, and 550,075 data resources online, along with hundreds of Web services to deliver integrated data to the desktop for free downloading or online use. The data exchange mechanism is built on the U.S. Geoscience Information Network (USGIN, http://usgin.org and http://lab.usgin.org) protocols and standards developed as a partnership of the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS). Keywords Data

  15. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Challenge Transportation Ensure essential functions Innovating multi-modal tools to assess transportation risks at city, regional, national & international levels Picture of global map and transportation evaluation Sandia has extensive experience helping cities create redundant and resilient transportation systems to ensure operation of essential response functions during a disruptive event as well as long term transportaion planning. This allows for evacuation, access to

  16. Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems

    SciTech Connect (OSTI)

    Michael Spata

    2012-08-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.

  17. AASG State Geothermal Data Repository for the National Geothermal Data System.

    Energy Science and Technology Software Center (OSTI)

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  18. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    SciTech Connect (OSTI)

    Becker, N.M.; Vanta, E.B.

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  19. Improvements in transport calculations by the optimized multigroup libraries for fast neutron systems

    SciTech Connect (OSTI)

    Mosca, P.; Mounier, C.; Bellier, P.; Zmijarevic, I.

    2012-07-01

    This paper shows how to improve the accuracy of the transport calculations using in the APOLLO2 code the optimized multigroup libraries calculated by AEMC for fast neutron systems. These ameliorations concern the fission source calculation and the self-shielding models. The calculation of the fission source was generalized to fission spectra including an incident neutron energy dependence. The subgroup self-shielding model was updated for a mixture of resonant nuclides. Some tests on a Pu-239 sphere without reflectors and a fast sodium cell show that the use of four fission spectra guarantees a correct representation of the fission source. The test on a Pu-239 sphere with a thick steel reflector proves that the subgroup self-shielding, accounting for the mutual shielding of several resonant nuclides, allows us to improve the accuracy of the neutron transport solution in the reflector. (authors)

  20. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    SciTech Connect (OSTI)

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs.

  1. POWER SUPPLY CONTROL AND MONITORING FOR THE SNS RING AND TRANSPORT SYSTEM

    SciTech Connect (OSTI)

    LAMBIASE,R.; OERTER,B.; PENG,S.; SMITH,J.

    2001-06-28

    There are approximately 300 magnet power supplies in the SNS accumulator ring and transport lines. Control and monitoring of the these converters will be primarily accomplished with a new Power Supply Interface and Controller (PSI/PSC) system developed for the SNS project. This PSI/PSC system provides all analog and digital commands and status readbacks in one fiber isolated module. With a maximum rate of 10KHz, the PSI/PSC must be supplemented with higher speed systems for the wide bandwidth pulsed injection supplies, and the even wider bandwidth extraction kickers. This paper describes the implementation of this PSI/PSC system, which was developed through an industry/laboratory collaboration, and the supplementary equipment used to support the wider bandwidth pulsed supplies.

  2. PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories

    SciTech Connect (OSTI)

    1992-01-01

    This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

  3. Concept of the transport system in the western part of the Arctic

    SciTech Connect (OSTI)

    Parfenov, A.F.

    1994-09-01

    According to the concept of the energy policy of Russia under new economic conditions, the production of oil and gas condensate after a decline to 300-345 million tons/yr in 1997 will reach 370-400 million tons in 2010, and the export of oil and petroleum products, apart from countries of the CIS, will be 90-120 million tons/yr and of natural gas 130-140 billion m{sup 3}. The main sources of oil and gas production will be Volga region and Tyumen, Yamal, and Pechora-Nenets provinces. The most prospective oil and gas fields are located in an extensive territory north of the Arctic Circle and on the continental shelf of the Barnets and Kara Seas. The geographic location of the world`s richest fields of energy resources creates favorable conditions for their export to Northern Europe, northern states of the USA and Canada, and after developing direct sailing along the Northern Sea Route. According to preliminary data, the volume of export of oil and petroleum products in the next 10-15 years form this region can amount to 20-25 millions tons and delivery of supplies 1.5-2.0 million tons. Sea transport plays a substantial role in export shipments. In 1989, 98.0 Million tons of oil was unloaded through Black Sea and Baltic ports. The transport system should be reliable, ecologically safe, and cost-effective, should adapt well for providing the fields being developed on the continent and shelf with transport services, and should deliver oil and products to any importing country. With consideration of the complex; and importance of the problem, in the present concept the transport system in the stretch of domestic traffic is examined in there variants: variant 1 - {open_quotes}Island terminal,{close_quotes} variant 2 - {open_quotes}Oil trunk pipeline,{close_quotes} 3 - {open_quotes}Shore terminal.{close_quotes}

  4. How to Utilize the National Geothermal Data System (NGDS) and Create Your

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Own Federated Data Network with "Node-In-A-Box" | Department of Energy How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" PDF icon ngds-niab-webinar.pdf More Documents & Publications CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database

  5. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    SciTech Connect (OSTI)

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  6. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    SciTech Connect (OSTI)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-04

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current 'metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of advanced lightweight structures for new generation vehicles in the context of whole life performance parameters.

  7. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect (OSTI)

    Gregory, Louis

    2014-12-02

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.

  8. ESIF 2015: Bring Us Your Challenges (Book), Energy Systems Integration Facility (ESIF), NREL (National Renewable Energy Laboratory) NREL (National Renewble Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | 1 | ESIF 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Bring us your challenges | 2 | | 3 | The Energy Systems Integration Facility (ESIF) is the nation's premier facility for research, development, and demonstration of the components and strategies needed to optimize our entire energy system. It was established in 2013 by the U.S. Department of Energy (DOE), Office of

  9. Recovery Act: 'Carbonsheds' as a Framework for Optimizing United States Carbon Capture and Storage (CCS) Pipeline Transport on a Regional to National Scale

    SciTech Connect (OSTI)

    Pratson, Lincoln

    2012-11-30

    Carbonsheds are regions in which the estimated cost of transporting CO{sub 2} from any (plant) location in the region to the storage site it encompasses is cheaper than piping the CO{sub 2} to a storage site outside the region. We use carbonsheds to analyze the cost of transport and storage of CO{sub 2} in deploying CCS on land and offshore of the continental U.S. We find that onshore the average cost of transport and storage within carbonsheds is roughly $10/t when sources cooperate to reduce transport costs, with the costs increasing as storage options are depleted over time. Offshore transport and storage costs by comparison are found to be roughly twice as expensive but t may still be attractive because of easier access to property rights for sub-seafloor storage as well as a simpler regulatory system, and possibly lower MMV requirements, at least in the deep-ocean where pressures and temperatures would keep the CO{sub 2} negatively buoyant. Agent-based modeling of CCS deployment within carbonsheds under various policy scenarios suggests that the most cost-effective strategy at this point in time is to focus detailed geology characterization of storage potential on only the largest onshore reservoirs where the potential for mitigating emissions is greatest and the cost of storage appears that it will be among the cheapest.

  10. International Conference on Surface Transportation System Resilience to Climate Change and Extreme Weather Events

    Broader source: Energy.gov [DOE]

    The conference will provide transportation professionals with information on emerging best practices and state of the art research results on how to adapt surface transportation networks to the...

  11. National Ignition Facility sub-system design requirements integrated timing system SSDR 1.5.3

    SciTech Connect (OSTI)

    Wiedwald, J.; Van Aersau, P.; Bliss, E.

    1996-08-26

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Integrated Timing System, WBS 1.5.3 which is part of the NIF Integrated Computer Control System (ICCS). The Integrated Timing System provides all temporally-critical hardware triggers to components and equipment in other NIF systems.

  12. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park

    Broader source: Energy.gov [DOE]

    Case study describes the performance of a mobile photovoltaic system installed in 2011 to provide power to Bechler Ranger Station in Yellowstone National Park, Wyoming. This small, remote outpost is not served by the electric utility grid and previously relied on a propane generator as the only source of power.

  13. Model documentation Coal Market Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1996-04-30

    This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

  14. Energy Systems Integration: NREL + Raytheon (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory (NREL) provides the R&D capabilities needed for private industry, academia, government, and public entities to collaborate on utility- scale solutions for integrating renewable energy and other efficiency technologies into our energy systems. To learn more about the ESIF, visit: www.nrel.gov/esif. NREL + RAYTHEON NREL has partnered with Raytheon Company, Primus Power, and Advanced Energy to

  15. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    SciTech Connect (OSTI)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  16. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  17. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  18. Deployment at the Savannah River Site of a standardized, modular transportable and connectable hazard category 2 nuclear system for repackaging TRU waste

    SciTech Connect (OSTI)

    Lussiez, G.; Hickman, S.; Anast, K. R.; Oliver, W. B.

    2004-01-01

    This paper describes the conception, design, fabrication and deployment of a modular, transportable, connectable Category 2 nuclear system deployed at the Savannah River site to be used for characterizing and repackaging Transuranic Waste destined for the Waste Isolation Pilot Plant (WIPP). A standardized Nuclear Category 2 and Performance Category 2 envelope called a 'Nuclear Transportainer' was conceived and designed that provides a safety envelope for nuclear operations. The Nuclear Transportainer can be outfitted with equipment that performs functions necessary to meet mission objectives, in this case repackaging waste for shipment to WIPP. Once outfitted with process and ventilation systems the Nuclear Transportainer is a Modular Unit (MU). Each MU is connectable to other MUS - nuclear or non-nuclear - allowing for multiple functions, command & control, or increasing capacity. The design took advantage of work already in-progress at Los Alamos National Laboratory (LANL) for a similar system to be deployed at LANL's Technical Area 54.

  19. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-60650 * November 2013 NREL prints on paper that contains recycled content. NREL-Led Team Improves and Accelerates Battery Design The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineer- ing for Electric Drive Vehicle

  20. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    SciTech Connect (OSTI)

    Whicker, Jeffrey J.; Kirchner, Thomas B.; Breshears, David D.; Field, Jason P.

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant succession and environmental disturbance. Aeolian, or wind-driven, sediment transport drives soil erosion, affects biogeochemical cycles, and can lead to the transport of contaminants. Rates of aeolian sediment transport depend in large part on the type, amount, and spatial pattern of vegetation. In particular, the amount of cover from trees and shrubs, which act as roughness elements, alters rates of aeolian sediment transport. The degree to which the understory is disturbed and the associated spacing of bare soil gaps further influence sediment transport rates. Changes in vegetation structure and patterns over periods of years to centuries may have profound impacts on rates of wind-driven transport. For recently disturbed areas, succession is likely to occur through a series of vegetation communities. Area G currently exhibits a mosaic of vegetation cover, with patches of grass and forbs over closed disposal units, and bare ground in heavily used portions of the site. These areas are surrounded by less disturbed regions of shrubland and pinon-juniper woodland; some ponderosa pine forest is also visible in the canyon along the road. The successional trajectory for the disturbed portions of Area G is expected to proceed from grasses and forbs (which would be established during site closure), to shrubs such as chamisa, to a climax community of pinon-juniper woodland. Although unlikely under current conditions, a ponderosa pine forest could develop over the site if the future climate is wetter. In many ecosystems, substantial and often periodic disturbances such as fire or severe drought can rapidly alter vegetation patterns. Such disturbances are likely to increase in the southwestern US where projections call for a warmer and drier climate. With respect to Area G, the 3 most likely disturbance types are surface fire, crown fire, and drought-induced tree mortality. Each type of disturbance has a different frequency or likelihood of occurrence, but all 3 tend to reset the vegetation succession cycle to earlier stages. The Area G performance assessment and composite an

  1. Transport and accumulation of cesium-137 and mercury in the Clinch River and Watts Bar Reservoir system. Environmental Restoration Program

    SciTech Connect (OSTI)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; Moriones, C.R.; Ford, C.J.; Dearstone, K.C.; Turner, R.R.; Kimmel, B.L.; Brandt, C.C.

    1992-06-01

    Operations and waste disposal activities at the Oak Ridge Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) have introduced a variety of airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams, which ultimately drain into the Clinch and Tennessee river system. Previously reported concentrations of radionuclides, metals and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of a variety of contaminants of possible concern to the protection of human health and the environment. The work reported here represents part of the initial scoping phase for the Clinch River RCRA Facility Investigation. In this work, the distribution of {sup 137}Cs is used to identify contaminant accumulation patterns and potential problem, or ``hot-spot,`` areas with regard to environmental hazard or human health. Radiocesium was chosen for this scoping effort because (1) its history of release into the Clinch River is reasonably well documented, (2) it is easy and inexpensive to measure by gamma spectrometry, and (3) it is rapidly sorbed to particulate matter and thus serves as a cost-effective tracer for identifying the transport and accumulation patterns of many other particle-reactive contaminants, such as mercury (Hg), lead (Pb), and plutonium (Pu), and polychlorinated biphenyls (PCBs).

  2. Transport and accumulation of cesium-137 and mercury in the Clinch River and Watts Bar Reservoir system

    SciTech Connect (OSTI)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; Moriones, C.R.; Ford, C.J.; Dearstone, K.C.; Turner, R.R.; Kimmel, B.L.; Brandt, C.C.

    1992-06-01

    Operations and waste disposal activities at the Oak Ridge Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant) on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) have introduced a variety of airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams, which ultimately drain into the Clinch and Tennessee river system. Previously reported concentrations of radionuclides, metals and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of a variety of contaminants of possible concern to the protection of human health and the environment. The work reported here represents part of the initial scoping phase for the Clinch River RCRA Facility Investigation. In this work, the distribution of {sup 137}Cs is used to identify contaminant accumulation patterns and potential problem, or hot-spot,'' areas with regard to environmental hazard or human health. Radiocesium was chosen for this scoping effort because (1) its history of release into the Clinch River is reasonably well documented, (2) it is easy and inexpensive to measure by gamma spectrometry, and (3) it is rapidly sorbed to particulate matter and thus serves as a cost-effective tracer for identifying the transport and accumulation patterns of many other particle-reactive contaminants, such as mercury (Hg), lead (Pb), and plutonium (Pu), and polychlorinated biphenyls (PCBs).

  3. Status of the SNS H- ion source and low-energy beam transport system

    SciTech Connect (OSTI)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-04-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H{sup -} ion beams to the Spallation Neutron Source (SNS) Front End and the accelerator chain have been developed into a mature unit that will satisfy the operational needs through the commissioning and early operating phases of SNS. The ion source was derived from the SSC ion source, and many of its original features have been improved to achieve reliable operation at 6% duty factor, producing beam currents in the 35-mA range and above. The LEBT utilizes purely electrostatic focusing and includes static beam-steering elements and a pre-chopper. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on relevant commissioning results obtained with the SNS RFQ accelerator. Perspectives for further improvements will be outlined in concluding remarks.

  4. Modeling the Energy Use of a Connected and Automated Transportation System (Poster)

    SciTech Connect (OSTI)

    Gonder, J.; Brown, A.

    2014-07-01

    Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing traffic flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.

  5. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    SciTech Connect (OSTI)

    Reyna, D.; Bernstein, A.; Lund, J.; Kiff, S.; Cabrera-Palmer, B.; Bowden, N. S.; Dazeley, S.; Keefer, G.

    2011-07-01

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino detectors that were deployed. Finally, some preliminary results of our aboveground test will be shown. (authors)

  6. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Franco, Manuel,

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.

  7. National Ignition Facility sub-system design requirements computer system SSDR 1.5.1

    SciTech Connect (OSTI)

    Spann, J.; VanArsdall, P.; Bliss, E.

    1996-09-05

    This System Design Requirement document establishes the performance, design, development and test requirements for the Computer System, WBS 1.5.1 which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1.5) which is the document directly above.

  8. Quantification of uranium transport away from firing sites at Los Alamos National Laboratory: A mass balance approach

    SciTech Connect (OSTI)

    Becker, N.M.

    1992-01-01

    Investigations were conducted at Los Alamos National Laboratory to quantify the extent of migration of depleted uranium away from firing sites. Extensive sampling of air particles, soil, sediment, and water was conducted to establish the magnitude of uranium contamination throughout one watershed. The uranium source term was estimated, and mass balance calculations were performed to compare the percentage of migrated uranium with original expenditures. Mass balance calculations can be powerful in identification of the extent of waste migration and used as an aid in planning future waste investigations.

  9. Quantification of uranium transport away from firing sites at Los Alamos National Laboratory: A mass balance approach

    SciTech Connect (OSTI)

    Becker, N.M.

    1992-02-01

    Investigations were conducted at Los Alamos National Laboratory to quantify the extent of migration of depleted uranium away from firing sites. Extensive sampling of air particles, soil, sediment, and water was conducted to establish the magnitude of uranium contamination throughout one watershed. The uranium source term was estimated, and mass balance calculations were performed to compare the percentage of migrated uranium with original expenditures. Mass balance calculations can be powerful in identification of the extent of waste migration and used as an aid in planning future waste investigations.

  10. Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes

    SciTech Connect (OSTI)

    Boedo, J. A. Rudakov, D. L.; Myra, J. R.; D'Ippolito, D. A.; Zweben, S.; Maingi, R.; Maqueda, R. J.; Bell, R.; Kugel, H.; Leblanc, B.; Roquemore, L. A.; Soukhanovskii, V. A.; Ahn, J. W.; Canik, J.; Crocker, N.

    2014-04-15

    Transport and turbulence profiles were directly evaluated using probes for the first time in the edge and scrape-off layer (SOL) of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] in low (L) and high (H) confinement, low power (P{sub in}? 1.3?MW), beam-heated, lower single-null discharges. Radial turbulent particle fluxes peak near the last closed flux surface (LCFS) at ?410{sup 21}?s{sup ?1} in L-mode and are suppressed to ?0.210{sup 21}?s{sup ?1} in H mode (80%90% lower) mostly due to a reduction in density fluctuation amplitude and of the phase between density and radial velocity fluctuations. The radial particle fluxes are consistent with particle inventory based on SOLPS fluid modeling. A strong intermittent component is identified. Hot, dense plasma filaments 410?cm in diameter, appear first ?2?cm inside the LCFS at a rate of ?110{sup 21}?s{sup ?1} and leave that region with radial speeds of ?35?km/s, decaying as they travel through the SOL, while voids travel inward toward the core. Profiles of normalized fluctuations feature levels of 10% inside LCFS to ?150% at the LCFS and SOL. Once properly normalized, the intermittency in NSTX falls in similar electrostatic instability regimes as seen in other devices. The L-H transition causes a drop in the intermittent filaments velocity, amplitude and number in the SOL, resulting in reduced outward transport away from the edge and a less dense SOL.

  11. Radioisotope Thermoelectric Generator Transportation System licensed hardware second certification test series and package shock mount system test

    SciTech Connect (OSTI)

    Ferrell, P.C.; Moody, D.A.

    1996-03-01

    This paper presents a summary of two separate drop test activities that were performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of {ital Title} 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, {open_quote}{open_quote}Part 71{close_quote}{close_quote} (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the U.S. Department of Energy{close_quote}s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, {ital Transit} {ital Drop} {ital Procedure} (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G{close_quote}s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G{close_quote}s was not exceeded in any test from a free drop height of 457 mm (18 in.). {copyright} {ital 1996 American Institute of Physics.}

  12. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. May 3, 2016 NREL Convenes Gathering of U.S.-China Electric Vehicle Battery Experts On April 25-26, NREL and Argonne National Laboratory (ANL) hosted the 11th United States (U.S.)-China Electric Vehicle and Battery Technology Information Exchange to share insights on battery technology advancements and identify opportunities to collaborate on electric vehicle battery research. The meeting represents the 11th

  13. Flow and Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Waichler, Scott R.; Yabusaki, Steven B.

    2005-07-13

    Contaminant migration in the 300 Area unconfined aquifer is strongly coupled to fluctuations in the Columbia River stage. To better understand the interaction between the river, aquifer, and vadose zone, a 2-D saturated-unsaturated flow and transport model was developed for a vertical cross-section aligned west-east across the Hanford Site 300 Area, nearly perpendicular to the river. The model was used to investigate water flow and tracer transport in the vadose zone-aquifer-river flow system, in support of the ongoing study of the 300 Area uranium plume. The STOMP simulator was used to model 1-year from 3/1/92 to 2/28/93, a period when hourly data were available for both groundwater and river levels. Net water flow to the river (per 1-meter width of shoreline) was 182 m3/y in the base case, but the cumulative exchange or total flow back and forth across the riverbed was 30 times greater. The low river case had approximately double the net water and Groundwater tracer flux into the river as compared to the base case.

  14. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    SciTech Connect (OSTI)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  15. Optimization problems in natural gas transportation systems. A state-of-the-art review

    SciTech Connect (OSTI)

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-term basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.

  16. Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility

    SciTech Connect (OSTI)

    Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

    2003-08-20

    The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

  17. Residential Demand Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Demand Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Residential Demand Module Documentation Report 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  18. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  19. The EGS4 Code System: Solution of Gamma-ray and Electron Transport Problems

    DOE R&D Accomplishments [OSTI]

    Nelson, W. R.; Namito, Yoshihito

    1990-03-01

    In this paper we present an overview of the EGS4 Code System -- a general purpose package for the Monte Carlo simulation of the transport of electrons and photons. During the last 10-15 years EGS has been widely used to design accelerators and detectors for high-energy physics. More recently the code has been found to be of tremendous use in medical radiation physics and dosimetry. The problem-solving capabilities of EGS4 will be demonstrated by means of a variety of practical examples. To facilitate this review, we will take advantage of a new add-on package, called SHOWGRAF, to display particle trajectories in complicated geometries. These are shown as 2-D laser pictures in the written paper and as photographic slides of a 3-D high-resolution color monitor during the oral presentation. 11 refs., 15 figs.

  20. Idaho National Laboratory Integrated Safety Management System 2010 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Thomas J. Haney

    2010-12-01

    Idaho National Laboratory completes an annual Integrated Safety Management System effectiveness review per 48 CFR 970.5223-1 “Integration of Environment, Safety and Health into Work Planning and Execution.” The annual review assesses ISMS effectiveness, provides feedback to maintain system integrity, and helps identify target areas for focused improvements and assessments for the following year. Using one of the three Department of Energy (DOE) descriptors in DOE M 450.4-1 regarding the state of ISMS effectiveness during Fiscal Year (FY) 2010, the information presented in this review shows that INL achieved “Effective Performance.”

  1. Sodium laser guide star system at Lawrence Livermore National Laboratory: System description and experimental results

    SciTech Connect (OSTI)

    Avicola, K.; Brase, J.; Morris, J.

    1994-03-02

    The architecture and major system components of the sodium-layer kw guide star system at LLNL will be described, and experimental results reported. The subsystems include the laser system, the beam delivery system including a pulse stretcher and beam pointing control, the beam director, and the telescope with its adaptive-optics package. The laser system is one developed for the Atomic Vapor Laser Isotope Separation (AVLIS) Program. This laser system can be configured in various ways in support of the AVLIS program objectives, and was made available to the guide star program at intermittent times on a non-interference basis. The first light transmitted into the sky was in July of 1992, at a power level of 1. 1 kW. The laser pulse width is about 32 ns, and the pulse repetition rate was 26 kHz for the 1. 1 kW configuration and 13 kHz for a 400 W configuration. The laser linewidth is tailored to match the sodium D{sub 2} absorption line, and the laser system has active control of beam pointing and wavefront quality. Because of the short pulse length the sodium transition is saturated and the laser power is not efficiently utilized. For this reason a pulse stretcher was developed, and the results of this effort will be reported. The beam is delivered via an evacuated pipe from the laser building to the guide star site, a distance of about 100 meters, and then launched vertically. A beam director provides the means to track the sky in the full AO system, but was not used in the experiments reported here. The return signal is collected by a 1/2 meter telescope with the AO package. This telescope is located 5 meters from the km launch tube. Smaller packages for photometry, wavefront measurement, and spot image and motion analysis have been used. Although the unavailability of the AVLIS laser precluded a full AO system demonstration, data supporting feasibility and providing input to the system design for a Lick Observatory AO system was obtained.

  2. Energy Systems Integration Partnerships, NREL + Abengoa, Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL + ABENGOA NREL is collaborating with solar power company Abengoa at the Energy Systems Integration Facility (ESIF) to develop a new, more cost-effective manufacturing process for critical components of concentrating solar power systems. Concentrating solar power is positioned to become a major source of renewable electricity generation in the United States. The goal of the partnership is to lower the cost of the technology-currently a barrier to more widespread implementation-by introducing

  3. Water Transport Exploratory Studies

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on water transport exploratory studies, was given by Rod Borup of Los Alamos National laboratory at a DOE fuel cell meeting in February 2007.

  4. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-62241 * June 2014 NREL prints on paper that contains recycled content. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management Researchers at the National Renewable Energy Laboratory (NREL) are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are

  5. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect (OSTI)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

  6. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  7. U.S. Drought Portal: Data from the National Integrated Drought Information System (NIDIS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Drought Policy Commission was established under the National Drought Policy Act of 1998 to ensure collaboration between different government agencies on drought-related issues. The Commission issued a groundbreaking report, Preparing for Drought in the 21st Century, in 2000. Following the Commission's recommendations, the National Integrated Drought Information System (NIDIS) was envisioned in a Western Governors' Association Report in 2004. The NIDIS Act was introduced in the U.S. Congress and signed by the President in 2006. The first version of the NIDIS was launched in 2007, with the Portal interface following within the next couple of years. The U.S. Drought Portal is part of the interactive system to provide early warning about emerging and anticipated droughts, assimilate quality control and risk data, explain how to plan for and manage the impacts of droughts, and provide a stakeholder forum. [Taken from the Overview at http://www.drought.gov/portal/server.pt/community/what_is_nidis/207

  8. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  9. National resource accounting for a sustainable energy system in the United States of America

    SciTech Connect (OSTI)

    Dorsey, J.W.

    1995-12-01

    The conflict resulting in Operation Desert Storm re-enforces the fact that nations of the Persian Gulf are in no position to provide a steady, long-term supply of oil. It is imperative that the US take account of itself and seek ways and means to lessen its dependence on oil and other non-renewable sources of energy, whether foreign or domestic. A national energy policy that focuses on energy efficiency through taxes, conservation, investment in new technologies and alternate fuels can provide a broad base to established an autonomous and sustainableenergyy system, freer of outside influence. This paper contains the following major sections in discussing the topic: History; Present Situation; Probable Solutions; Projections for the Future; Conclusions.

  10. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    SciTech Connect (OSTI)

    Barfuss, Brad C.; Barnett, J. M.; Ballinger, Marcel Y.

    2009-04-08

    BattellePacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energys Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  11. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect (OSTI)

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1 g?cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  12. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  13. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  14. Feasibility evaluation of fuel cells for selected heavy-duty transportation systems

    SciTech Connect (OSTI)

    Huff, J.R.; Murray, H.S.

    1982-10-01

    A study of the feasibility of using fuel cell power plants for heavy duty transportation applications is performed. It is concluded that it will be feasible to use fuel cell technology projected as being available by 1995 to 2000 for powering 3000-hp freight locomotives and 6000-hp river boats. The fuel cell power plant is proposed as an alternative to the currently used diesel or diesel-electric system. Phosphoric acid and solid polymer electrolyte fuel cells are determined to be the only applicable technologies in the desired time frame. Methanol, chemically reformed to produce hydrogen, is determined to be the most practical fuel for the applications considered. Feasibility is determined on the basis of weight and volume constraints, compatibility with existing propulsion components, and adequate performance relative to operational requirements. Simulation results show that performance goals are met and that overall energy consumption of heavy duty fuel cell power plants is lower than that of diesels for the same operating conditions. Overall energy consumption is substantially improved over diesel operation for locomotives. Operating cost comparisons are made using assumed diesel fuel and methanol costs. Development areas are identified to achieve the desired fuel cell capabilities. The required activities are in the areas of fuel cell electrode performance, catalyst development, fuel processing, controls, power conditioning, and system integration.

  15. WASTES-II: Waste System Transportation and Economic Simulation--Release 24: User's guide

    SciTech Connect (OSTI)

    Ouderkirk, S.J.

    1988-12-01

    WASTES models each reactor pool and an at-reactor, out-of-pool (ex-pool) storage facility for each reactor site. Spent fuel transfers between pools can be simulated under various constraints controlled by user input. In addition to simulating each pool and ex-pool facility, WASTES can accommodate up to ten other storage facilities of four different types: federal interim storage (FIS), monitored retrievable storage (MRS), auxiliary plants, and repositories. Considerable flexibility is allowed for the user to specify system configuration and priorities for fuel receipts. In addition, the WASTES computer code simulates very detailed (assembly-specific) movements of spent fuel throughout the waste management system. Spent fuel characteristics that are tracked by WASTES for each movement are: discharge year and month, number of assemblies, weight of uranium (MTU), exposure, original enrichment, and heat generation rate (calculated from the preceding characteristics). Data for the WASTES model is based upon the DOE reactor-specific spent fuel data base, which is developed and maintained by the Energy Information Administration (EIA). In addition to the spent fuel characteristics, this data includes reactor location, type, transportation access, and historical and projected discharge data on the number of fuel assemblies. 8 refs., 3 figs., 4 tabs.

  16. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determinemore » operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.« less

  17. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  18. Application of geographic information systems to waste minimization efforts at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Lyttle, T.W.; Smith, D.M.; Burns, M.; Weinrach, J.B.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is often difficult in part due to a lack of tools to assist the generators themselves in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This Process Waste Assessment (PWA) system is an application constructed within the Process Modeling System and currently being integrated with the InFoCAD Geographic Information System (GIS) . The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation framework written using the Common Lisp Object System (CLOS) . Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste streams and generation of facility profiles for materials consumption, resource utilization and worker exposure. Development activities include integration with the LANL facilities management Geographic Information System (GIS) and provisions for a Best Available Technologies (BAT) database. The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results.

  19. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  20. NISAC | National Infrastructure Simulation and Analysis Center | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISAC Featured Previous National Transportatio... National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries,... Read More Chemical Supply Chain ... Chemical Supply Chain Analysis

  1. NATIONAL GEOTHERMAL DATA SYSTEM: AN EXEMPLAR OF OPEN ACCESS TO DATA

    SciTech Connect (OSTI)

    Blackman, Harold; Blackman, Harold M.; Blackman, Harold M.; Blackman, Harold; Blackman, Harold; Blackman, Harold

    2013-10-01

    The formal launch of National Geothermal Data System (NGDS www.geothermaldata.org) in 2014 will provide open access to technical geothermal-relevant data from all of the Department of Energy- sponsored geothermal development and research projects and geologic data from all 50 states. By making data easily discoverable and accessible this system will open new exploration opportunities and shorten project development. The prototype data system currently includes multiple data nodes, and nationwide data online and available to the public, indexed through a single catalog under construction at http://search.geothermaldata.org. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Additional data record is being added by companion projects run by Boise State University, Southern Methodist University, and the USGS. The National Renewable Energy Laboratory is managing the Geothermal Data Repository, an NGDS node that will be a clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational system sustainable after the original implementation will require four core elements: continued serving of data and applications by providers; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges currently under consideration.

  2. Evaluation of the Argonne National Laboratory servo-controlled calorimeter system

    SciTech Connect (OSTI)

    Foster, L.A.

    1997-01-01

    The control system of a replacement mode, twin-bridge, water-bath calorimeter originally built by Mound EG&G Applied Technologies was modified by Argonne National Laboratory. The calorimeter was upgraded with a PC-based computer control and data acquisition system. The system was redesigned to operate in a servo-control mode, and a preheater was constructed to allow pre-equilibration of samples. The instrument was sent to the Plutonium Facility at Los Alamos National Laboratory for testing and evaluation of its performance in the field using heat source standards and plutonium process materials. The important parameters for calorimeter operation necessary to satisfy the nuclear materials control and accountability requirements of the Plutonium Facility were evaluated over a period of several months. These parameters include calorimeter stability, measurement precision and accuracy, and average measurement time. The observed measurement precision and accuracy were found to be acceptable for most accountability measurements, although they were slightly larger than the values for calorimeters in routine use at the Plutonium Facility. Average measurement times were significantly shorter than measurement times for identical items in the Plutonium Facility calorimeters. Unexplained shifts in the baseline measurements were observed on numerous occasions. These shifts could lead to substantial measurement errors if they are not very carefully monitored by the operating facility. Detailed results of the experimental evaluation are presented in this report.

  3. Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System

    SciTech Connect (OSTI)

    A. C. Owen; J. D. Bernardin; K. L. Lam

    1998-08-01

    This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

  4. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plants lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived and verified. The 600 MWt VHTR core input file developed in preparation for the transient tritium analysis of VHTR systems was replaced with the original steady-state inputs for future calculations. A Finite Element Method analysis was performed using COMSOL Multiphysics software to accurately predict tritium permeation through the PCHE type heat exchanger walls. This effort was able to estimate the effective thickness for tritium permeations and develop a correlation for general channel configurations, which found the effective thickness to be much shorter than the average channel distance because of dead spots on the channel side.

  5. PPPL to design a high-resolution diagnostic system for the National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility | Princeton Plasma Physics Lab to design a high-resolution diagnostic system for the National Ignition Facility By Johm Greenwald November 16, 2015 Tweet Widget Google Plus One Share on Facebook Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP laser-produced plasmas. (Photo by Elle Starkman/Office of Communications) Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP

  6. design a high-resolution diagnostic system for the National Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility | Princeton Plasma Physics Lab design a high-resolution diagnostic system for the National Ignition Facility By John Greenwald November 16, 2015 Tweet Widget Google Plus One Share on Facebook Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP laser-produced plasmas. (Photo by Elle Starkman/Office of Communications) Kenneth Hill and Manfred Bitter inspect an X-ray crystal spectrometer to be used to study OMEGA EP laser-produced plasmas.

  7. OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC.

    Office of Legacy Management (LM)

    ' ! ,' c;. I' , . ad OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITE0 STATES DEPARTMENT OF ENERGY 0 1; , : 3 ., q (-g.lis oRNL/TM-11182 Results of the Preliminary Radiological Survey at the Former Diamond Magnesium Company Site, Luckey, Ohio (DMLOOI) R. D. Foley J. W. Crutcher b-1 ORNLKM-11182 HEALTH AND SAFEIY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AT3 10 05 00 0; ONLWCOl) RESULTS OFTHE PRELIMIN ARY RADIOLOGICAL SURVEY AT

  8. 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC.

    Office of Legacy Management (LM)

    .I Y. ,J,.- i - 3AK RIDGE NATIONAL LABORATORY OPERAiEO BY MARTIN MARIE,TA ENERGY SYSTEMS, INC. POST OFFICE BOX X OAK RIOGE. TENNESSEE 37631 July 20, 1984 Ms. Gale P. Turi Division of Remedial Action Projects Office of Nuclear Energy U.S. Department of Energy MS - NE24 Washington, D.C. 20545 Dear Ms. Turi: Radfoloafcal Survey of the Guterl Steel Fad1 ftya 1 o&a As requested, a visit was made to the Guterl Steel facility (formerly Simonds Saw and Steel) on July 9, 1984 to determine if there

  9. Flight Test of Weapons System Body by Navy Successful | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Flight Test of Weapons System Body by Navy Successful April 02, 2015 Third Flight Demonstrated Dynamics and Functional Performance in Flight Environment WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced the Follow-On Commander Evaluation Test-51 (FCET-51) flight body was successfully flown by the Navy recently. This test was one of several in a sequence of flight tests for the qualification efforts of the W88-0/Mk5 ALT 370 Program

  10. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect (OSTI)

    Zhang, Shuo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mayer, Bernhard [Univ. of Calgary (Canada). Dept. of Geosciences

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  11. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  12. National Carbon Sequestration Database and Geographic Information System (NatCarb)

    SciTech Connect (OSTI)

    Kenneth Nelson; Timothy Carr

    2009-03-31

    This annual and final report describes the results of the multi-year project entitled 'NATional CARBon Sequestration Database and Geographic Information System (NatCarb)' (http://www.natcarb.org). The original project assembled a consortium of five states (Indiana, Illinois, Kansas, Kentucky and Ohio) in the midcontinent of the United States (MIDCARB) to construct an online distributed Relational Database Management System (RDBMS) and Geographic Information System (GIS) covering aspects of carbon dioxide (CO{sub 2}) geologic sequestration. The NatCarb system built on the technology developed in the initial MIDCARB effort. The NatCarb project linked the GIS information of the Regional Carbon Sequestration Partnerships (RCSPs) into a coordinated regional database system consisting of datasets useful to industry, regulators and the public. The project includes access to national databases and GIS layers maintained by the NatCarb group (e.g., brine geochemistry) and publicly accessible servers (e.g., USGS, and Geography Network) into a single system where data are maintained and enhanced at the local level, but are accessed and assembled through a single Web portal to facilitate query, assembly, analysis and display. This project improves the flow of data across servers and increases the amount and quality of available digital data. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO{sub 2} emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project worked to provide all stakeholders with improved online tools for the display and analysis of CO{sub 2} carbon capture and storage data through a single website portal (http://www.natcarb.org/). While the external project is ending, NatCarb will continue as an internal US Department of Energy National Energy Technology Laboratory (NETL) project with the continued cooperation of personnel at both West Virginia University and the Kansas Geological Survey. The successor project will continue to organize and enhance the information about CO{sub 2} sources and developing the technology needed to access, query, analyze, display, and distribute natural resource data critical to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at the national level in specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. To address the broader needs of a spectrum of users form high-end technical queries to the general public, NatCarb will be moving to an improved and simplified display for the general public using readily available web tools such as Google Earth{trademark} and Google Maps{trademark}. The goal is for NatCarb to expand in terms of technology and areal coverage and remain the premier functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas, and forms the foundation of a functioning carbon cyber-infrastructure. NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of CO{sub 2} capture and storage, including public perception and regulatory aspects.

  13. Development and application of a hybrid transport methodology for active interrogation systems

    SciTech Connect (OSTI)

    Royston, K.; Walters, W.; Haghighat, A.; Yi, C.; Sjoden, G.

    2013-07-01

    A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)

  14. Toward A National Early Warning System for Forest Disturbances Using Remotely Sensed Land Surface Phenology

    SciTech Connect (OSTI)

    HargroveJr., William Walter; Spruce, Joe; Gasser, Gerry; Hoffman, Forrest M

    2009-12-01

    We are using a statistical clustering method for delineating homogeneous ecoregions as a basis for identifying disturbances in forests through time over large areas, up to national and global extents. Such changes can be shown relative to past conditions, or can be predicted relative to present conditions, as with forecasts of future climatic change. This quantitative ecoregion approach can be used to predict destinations for populations whose local environments are forecast to become unsuitable and are forced to migrate as their habitat shifts, and is also useful for predicting the susceptibility of new locations to invasive species like Sudden Oak Death. EFETAC and our sister western center WWETAC, along with our NASA and ORNL collaborators, are designing a new national-scale early warning system for forest threats, called FIRST. Envisioned as a change-detection system, FIRST will identify all land surface cover changes at the MODIS observational scale, and then try to discriminate normal, expected seasonal changes from locations having unusual activity that may represent potential forest threats. As a start, we have developed new national data sets every 16 days from 2002 through 2008, based on land surface phenology, or timing of leaf-out in the spring and brown-down in the fall. Changes in such phenological maps will be shown to contain important information about vegetation health status across the United States. The standard deviation of the duration of fall can be mapped, showing places where length of fall is relatively constant or is variable in length from year to year.

  15. Idaho National Laboratory Integrated Safety Management System 2011 Effectiveness Review and Declaration Report

    SciTech Connect (OSTI)

    Farren Hunt

    2011-12-01

    Idaho National Laboratory (INL) performed an annual Integrated Safety Management System (ISMS) effectiveness review per 48 Code of Federal Regulations (CFR) 970.5223-1, 'Integration of Environment, Safety and Health into Work Planning and Execution.' The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and helped identify target areas for focused improvements and assessments for fiscal year (FY) 2012. The information presented in this review of FY 2011 shows that the INL has performed many corrective actions and improvement activities, which are starting to show some of the desired results. These corrective actions and improvement activities will continue to help change culture that will lead to better implementation of defined programs, resulting in moving the Laboratory's performance from the categorization of 'Needs Improvement' to the desired results of 'Effective Performance.'

  16. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    SciTech Connect (OSTI)

    Allison, M. Lee; Richard, Stephen M.

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  17. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    SciTech Connect (OSTI)

    Barnett, J. M.; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle-Pacific Northwest Division operates numerous research and development (R and D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)'s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  18. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect (OSTI)

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  19. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  20. 2011 Status of the Automatic Alignment System for the National Ignition Facility

    SciTech Connect (OSTI)

    Wilhelmsen, K; Awwal, A; Burkhart, S; McGuigan, D; Kamm, V M; Leach, R; Lowe-Webb, R; Wilson, R

    2011-07-19

    Automated alignment for the National Ignition Facility (NIF) is accomplished using a large-scale parallel control system that directs 192 laser beams along the 300-m optical path. The beams are then focused down to a 50-micron spot in the middle of the target chamber. The entire process is completed in less than 50 minutes. The alignment system commands 9,000 stepping motors for highly accurate adjustment of mirrors and other optics. 41 control loops per beamline perform parallel processing services running on a LINUX cluster to analyze high-resolution images of the beams and their references. This paper describes the status the NIF automatic alignment system and the challenges encountered as NIF development has transitioned from building the laser, to becoming a research project supporting a 24 hour, 7 day laser facility. NIF is now a continuously operated system where performance monitoring is increasingly more critical for operation, maintenance, and commissioning tasks. Equipment wear and the effects of high energy neutrons from fusion experiments are issues which alter alignment efficiency and accuracy. New sensors needing automatic alignment assistance are common. System modifications to improve efficiency and accuracy are prevalent. Handling these evolving alignment and maintenance needs while minimizing the impact on NIF experiment schedule is expected to be an on-going challenge for the planned 30 year operational life of NIF.